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Abstract 

The structural, electronic, as well as the optical properties of the Sb2S3, are investigated using full-
potential (FP) linearized augmented plane wave (LAPW) method framed within density functional 
theory (DFT) via treating the exchange-correlation potential with Engel-Vosko generalized gradient 
approximation (EV-GGA). Electronic properties calculations were performed with and without taking 
into account the effects of spin-orbit coupling (SOC). From our results, we found that structural 
properties, the density of states and band structure are in good agreement with experimental 
results.The effects of SOC on electronic properties were found to be negligible. The calculated optical 
properties, namely, imaginary and real parts of the dielectric function, reflectivity, absorption coefficient, 
refractive index, extinction coefficient and energy loss function and their analysis showed; Sb2S3 metal 
chalcogenide is a promising material for solar cells. 
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INTRODUCTION 

Metal chalcogenides materials such as cadmium telluride (CdTe)

and copper indium gallium selenide (CIGS) have been known as an 

excellent candidate for high-performance photovoltaic devices like a 

solar cell. Though metal chalcogenides materials are highly efficient, 

the high cost, as well as high toxicity, limit their applications [1,2]. 

Therefore, low-cost, abundant and less toxic materials are needed [3]. 

A recent study showed that antimony sulphide (Sb2S3)  hold great 

potential for photovoltaic application, due to its band gap having value 

in the range 1.65 to 2.4 eV and high absorption coefficient in the visible 

region [4], obtained through a change in structure dimension [5-6]. 

Sb2S3 semiconductor material belongs to metal chalcogenides group 

which is cheaper, abundant, and less toxic than any other compound in 

the group. Therefore, detailed knowledge of electronic and optical 

properties is essential for understanding its optoelectronic behavior 

such as band gap and light absorption. The band gap of a material 

determines its electrical conductivity [7] and optical properties that 

show the interaction between matter and electromagnetic radiation [8]. 

The role of the computational methods has been exploited to give 

an accurate prediction of the material properties in the numerous cases 

[9]. Several computational works have been reported on Sb2S3 using 

different exchange-correlation functionals for getting reliable band 

structure and band gap value, but none of them included the effect of 

spin-orbit coupling (SOC). As spin-orbit interaction effect in heavy 

elements is substantial, therefore inclusion is important [10-12]. In this 

paper, with the inclusion of SOC, the calculation of band structure, the 

density of state (DOS), partial density of states (PDOS) and optical 

properties are computed by employing FP-LAPW method [13], 

realized in WIEN2k code [14]. The optical properties such as refractive 

index, extinction coefficient, absorption coefficient, energy-loss, and 

reflectivity obtained from the calculation of dielectric function are 

found in better consistency with the reported experimental results. 

COMPUTATIONAL METHOD 

Fig. 1  Crystal structure of Sb2S3 

To compute the structural, electronic as well as the optical 

properties of Sb2S3 in the orthorhombic crystal structure, FP-LAPW 

method as realized in WIEN2k code is used along with the inclusion of 

fully relativistic and SOC effects. The simulated Sb2S3 crystallized 

structure in the orthorhombic crystal unit cell belonging to the space-

group Pnma (62) is shown in Fig. 1. The initial structure parameters 

(lattice parameters and atomic positions) are used from the 

experimental study of Kyono and Kimata [15]. The electron exchange-

correlation functional was treated by the Engel Vosko generalized 

gradient approximation (EV-GGA) [16]. The muffin tin (MT) spheres 

radii of 2.0 and 2.43 a.u were chosen for S and Sb, respectively. The 

convergence parameter RKmax was set to be 9.0 shown in Eq. 1 for 

controlling the size of the basis set. The value of another parameter, 

Gmax in Eq. 2 was set to 12, where Gmax is taken as the largest vector for 
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the Fourier expansion of the charge density [17]. To perform self-

consistent integration over the Brillouin zone (BZ), tetrahedron method 

was used with 28 k-points in the irreducible BZ corresponding to 250 

k-points in the whole BZ. The self-consistent calculations were 

considered to be converged when the total energy was stabilized within 

0.00001 Ry. For optical properties, a uniformly distributed denser k-

point mesh of 1000 were used. 

𝛹 = ∑ 𝑐𝐾𝑛
𝑒𝑖𝐾𝑛𝑟

𝐾𝑀𝐴𝑋

𝐾𝑛

 (1) 

𝜌(𝑟) = ∑ 𝜌𝐺

𝐺𝑀𝐴𝑋

𝐺

𝑒𝑖𝐺𝑟 (2) 

 
 
RESULTS AND DISCUSSION 

 
Structural optimization  

Investigation of the structural properties is the first step in DFT 

calculations to avoid a certain error for accurate predictions of other 

quantities.  The lattice parameter 𝑎, 𝑏 and 𝑐 of Sb2S3 in orthorhombic 

structure were determined via energy optimization and is shown along 

with other previous experimental and theoretical values as can be seen 

in Table 1. Our calculated results reasonably comparable with the 

experimental measurments. 

 
Electronic Structure 

The band structure calculation of the Sb2S3 along high-symmetry 

points of the first Brillouin zone are plotted as shown in Fig. 2. The 

direct gap of Sb2S3 with and without SOC is of 1.64 eV and 1.60 eV 

respectively. Table 2 represents a summary of the band gap results 

obtained in this work along with available theoretical and experimental 

data from other researchers [4-5]. The obtained band gap with SOC is 

very close to experimental value [5] compared with other previous DFT 

calculations. Similarly, our results with EV-GGA approximation are 

much better than that the results obtained at the level of generalized 

gradient approximation by Perdew, Burke and. Ernzerhof (PBE-GGA) 

functional. However, our results are lower than the reported 

experimental measurement [6],  this may be due to the limitation of the 

first-principles approach based on DFT [18] or experimental 

measurements have some issue as well because compare to the PBE-

GGA,  GGA functional constructed by Engel and Vosko usually show 

improvement in reproducing the band gap closer to the experimental 

band gap. The SOC normally reduces the band gap. Our obtained 

results with SOC are in line as reported by Pourghazi et. al for 

chalcogenide compound [19]. The results of total densities of states 

(DOS) helps to further elaborate the nature of band structure whereas 

the partial density of states (PDOS) gives information about the origin 

of bands. Our calculated DOS  and partial DOS for Sb2S3 with the 

Fermi energy level represented by a reference line at zero energy is 

shown in Fig. 3. The results of DOS reveals that p-orbitals of Sb and S 

are the main contributors to the occupied states. 

 

 

(a) 

 

(b)  

Fig. 2 Bandstructure of Sb2S3 without (a) and with SOC (b) 

 
Table 1 Calculated equilibrium lattice constants of Sb2S3 

 

Ref. a (Å ) b (Å) c (Å) 

This work 11.646 3.953 11.587 

Exp [15] 11.311 3.839 11.223 

 
 

Table 2 Calculated and experimental energy gaps of Sb2S3 . 
 

Band gap energy (eV) Ref. 

1.64 EV-GGA 

1.60 EV-GGA (SOC) 

1.20 PBE-GGA [20] 

1.65 Exp [5] 

2.24 Exp [6] 
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(a)  

(b) 

Fig. 3 Calculated total density of states (DOS) with and without SOC (a) 
partial density of states (PDOS) of Sb2S3 for Sb and S with SOC (b) 

Optical properties 
Investigation of the optical properties of materials is essential for 

understanding their optoelectronic nature, this can be achieved through 

linear response behaviour with electromagnetic radiation. The 

electronic and ionic contributions to the real ε1(ω) and imaginary ε2(ω) 

parts of frequency dependent dielectric function, ε(ω) = ε1(ω) + ε2(ω)

as a function of incident photon can be determined from the band 

structure calculation via Wien2k code with the help of Kramers-Kronig 

relations [21]. With the knowledge of frequency dependent dielectric 

function, optical quantities, namely, absorption coefficient α(ω),

energy loss function L(ω), refractive index n(ω),extinction coefficient 

k(ω) and reflectivity R(ω) can be obtained as can be seen in the 

following expressions:  

ε1(ω) = 1 + (
2

π
) ∫ dω′

∞

0

ω′2
ε2(ω′)

ω′2 − ω2 (3) 

𝑛 = √(
√𝜀1

2(𝜔) + 𝜀2
2(𝜔) + 𝜀1(𝜔)

2
) (4) 

𝑘 = √√𝜀1
2(𝜔) + 𝜀2

2(𝜔) − 𝜀1(𝜔)

2
  

(5) 

𝛼(𝜔) =
𝜔

𝑐
√2 (√𝜀1

2(𝜔) + 𝜀2
2(𝜔) − 𝜀1(𝜔)) (6) 

𝐿(ω) =
𝜀2(𝜔)

𝜀2(𝜔) + 𝜀1(𝜔)

(7) 

𝑅(ω) =  |
√𝜀(𝜔) − 1

√𝜀(𝜔) + 1
|

2 (8) 

A single crystal of Sb2S3 is the optically trixial system because it 

has orthorhombic structure crystal structure. Therefore, its linear 

dielectric tensor of the Sb2S3 have three independent components. As 

shown in the Fig. 4(a) any of the directions has different value for 

dielectric function constant. The electronic at high frequency and ionic 

contributions of a non-polar system is contained in the static dielectric 

permittivity tensor 𝜀(0). The dielectric constant 𝜀(∞) at high frequency 

obtained in x, y and z direction are 9.29434, 131.547, and 126.892, 

respectively. In the imaginary part of the dielectric function, the onset 

of the absorption edge ε2(ω) called optical absorption edge occurred at 

1.61 eV for x, y and z direction, which is due to the inter-band transition 

between conduction band minimum and valence band maximum states

as can be seen in Fig. 4 (b). This value is corresponds to fundamental 

band gap shown in the Table 2. Moreover spectrum shape and optical 

gap value is found in quite good agreement with experimental results

as well[4]. 

(a) 

(b)  

Fig 4 The calculated (a) real ε1(ω) and (b) imaginary ε2(ω) parts of the 

complex dielectric constant of Sb2S3 
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The energy dependence absorption coefficient α(ω), refractive 

index n(ω), extinction coefficient k(ω), energy-loss  L(ω), and 

reflectivity R(ω) are given in Fig. 5 (a)-(e). These results are derived 

from the calculations of the ε(ω). From the Fig. 5 (a), the absorption 

coefficient for x, y, z-direction are 172.674 cm -1, 152.248 cm -1 and 

167.867cm -1 respectively. Absorption coefficient along y-direction is 

close to the experimental measurement of 139.76 cm -1. Fig. 5(b) 

displays the changes of refractive index with photon energy. As shown 

in Fig. 5 (b), the calculated n(0) in x, y, z-direction are found to be 

3.054, 3.638 and 3.566 respectively. The average value of  n(0) was 

found to be 3.29 which is higher as compared to the previously reported 

results, 2.087 [22], this may be due to the corresponding somewhat 

different DFT calculations. We observed that extinction coefficient 

k(ω) and imaginary part of dielectric function ε2(ω)  have a similar 

trend as can be seen in Fig 5(c).  Fig. 5 (d) is a graph of electron energy 

loss function L(ω) with respect to the photon energy, this function 

describes energy loss of a fast moving electron through a material while 

moving from the top of a valence band to the bottom of the conduction 

band. The observed sharp maxima in the graph of the L(ω) can be 

linked to the existence of plasma oscillations [23]. The resonant energy 

loss is seen at 18.898 eV, 18.898 eV and 18.844 eV in x, y, and z-

directions respectively. Optical reflectivity is calculated and shown in 

Fig. 5(e). The main peaks are roughly at 5.728 eV, 3.415 eV, 3.850 eV. 

From the figure, it can be seen that the reflectivity is high in the visible 

light region (1.65 - 3.1 eV) of the electromagnetic spectrum which 

makes the Sb2S3 compound a good material for photovoltaic 

applications. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

 
Fig. 5. Calculated optical constants of Sb2S3: absorption coefficient (a), refractive index (b), extinction coefficient (c), energy-loss (d) and reflectivity 
(e). 
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CONCLUSION 

In summary, the structural, electronic and optical properties of the 

Sb2S3 crystalline compound were calculated using the FP-LAPW 

approach at the level of the EV-GGA exchange-correlation functional. 

The calculated lattice parameters were found closer to the experimental 

measurements. The fully relativistic effect within spin-orbit coupling 

(SOC) was included in the calculations of the electronic and optical 

properties. The calculated band structure provides an excellent 

description of the semiconducting behavior of Sb2S3 with the band gap 

obtained the value (1.60 eV) in close agreement with experimental 

measurements. Projected density of states reveals that the p-orbitals of 

Sb and S atoms are major contributors for conduction band. Optical 

properties calculations indicate that the optical gap is almost the same 

as energy band gap from the bandstructure calculation. Optical gap of 

1.61 eV shows that Sb2S3 is a promising material for solar cell 

application. 
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