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ABSTRACT 

Glass samples of undoped calcium-sulfoborophosphate and barium-

sulfoborophosphate with chemical composition of xCaSO4-30B2O3-(70-x)P2O5 and 

xBaSO4- 30B2O3-(70-x) P2O5 with 15 ≤ x ≤ 35 mol% were prepared using melt 

quenching method. A series of glass samples doped with rare earth (RE = Dy2O3, 

Sm2O3 and Eu2O3) with the chemical compositions of 25CaSO4-30B2O3-(45-y)P2O5–

yRE and 25BaSO4-30B2O3-(45-y)P2O5–yRE with 0.1≤y≤1.0 mol% were also 

prepared by melt quenching method. The amorphous phase of the glass samples were 

characterized by X-Ray diffraction (XRD) method, while the structural features of 

the samples were measured using Fourier transform infrared (FTIR) spectroscopy 

and Raman spectroscopy. The optical properties of glass samples were characterized 

by ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy and luminescence 

spectroscopy. The amorphous phase of the glass samples was confirmed by the 

diffuse broad XRD pattern. The infrared spectral measurements revealed the 

presence of vibrational groups of P-O linkage, BO3, BO4, P-O-P, O-P-O, S-O-B 

(sulfoborate network) groups and the bending B-O-B units in sulfoborophosphate 

structural network of glass samples. The Raman spectra also revealed the coexistence 

of structural units of BO4, SO4
2-

, PO4
3-

, and P-O-P in sulfoborophosphate glass 

samples. The luminescence spectra of Dy
3+

 ions doped glass samples exhibit four 

emission bands at around 482 nm, 572 nm, 662 nm and 685 nm, which correspond to 

the 
4
F9/2→

6
H15/2, 

4
F9/2→ 

6
H13/2, 

4
F9/2→

6
H11/2 and 

4
F9/2→

6
H9/2 transitions, 

respectively. The emission spectra of glass samples doped with Sm
3+

 ions show 

dominant peaks at around 559 nm, 596 nm, 642 nm and 709 nm which correspond to 

the transitions of 
4
G5/2→

6
H5/2, 

4
G5/2→

6
H7/2, 

4
G5/2→

6
H9/2 and 

4
G5/2→

6
H11/2, 

respectively. Meanwhile, glass samples doped with Eu
3+

 ions show emission spectra 

peaks around 589 nm, 611 nm, 651 nm and 701 nm which correspond to the 

transitions of 
5
D0→

7
F1, 

5
D0→

7
F2, 

5
D0→

7
F3 and 

5
D0→

7
F4, respectively. Absorption 

and emission spectra are used to evaluate the Judd-Ofelt intensity parameters and 

radiative transition probabilities, branching ratios and stimulated emission cross-

sections of the three rare-earth ions (Dy
3+

, Sm
3+

, and Eu
3+

) doped glass system. 

Based on this study, it can be concluded that the structural network features of 

calcium sulfoborophosphate and barium sulfoborophosphate glasses are similar, 

despite of different modifier. The incorporation of sulphate and rare-earth ions into 

the glass network show enhancement of chemical and physical stability, in addition 

to improving optical properties performance of the prepared glasses such as having 

high value of branching ratio, stimulated cross-section, gain bandwidth and optical 

gain. In view of this, calcium sulfoborophosphate and barium sulfoborophosphate 

glasses could be suggested as promising luminescent host material for solid-state 

lighting device application. 

  



vi 

ABSTRAK 

 Sampel kaca tanpa dop kalsium sulfoborofosfat dan barium sulfoborofosfat 

dengan komposisi kimia xCaSO4-30B2O3-(70-x)P2O5 dan xBaSO4- 30B2O3-(70-

x)P2O5 dengan 15≤x≤35 mol% telah disediakan melalui kaedah lindap-kejut leburan. 

Satu siri sampel kaca didop dengan nadir bumi (RE = Dy2O3, Sm2O3 dan Eu2O3) 

dengan komposisi kimia 25CaSO4-30B2O3-(45-y)P2O5–yRE dan 25BaSO4-30B2O3-

(45-y)P2O5–yRE dengan 0.1≤y≤1.0 mol% telah juga disediakan melalui kaedah 

lindap-kejut leburan. Fasa amorfus sampel kaca telah dicirikan melalui keadah 

pembelauan sinar-X (XRD), sementara ciri-ciri struktur sampel telah diukur 

menggunakan spektroskopi transformasi Fourier inframerah (FTIR) dan spektroskopi 

Raman. Sifat optik sampel kaca dicirikan melalui spektroskopi ultraungu-nampak-

inframerah dekat (UV-Vis-NIR) dan spektroskopi luminesens. Fasa amorfus sampel 

kaca telah disahkan oleh corak XRD membaur yang lebar. Pengukuran spektrum 

inframerah menunjukkan kewujudan kumpulan getaran P-O, BO3, BO4, P-O-P, O-P-

O, S-O-B (rangkaian sulfoborat) dan unit pembengkokan       B-O-B dalam rangkaian 

struktur sampel kaca sulfoborofosfat. Spektrum Raman juga menunjukkan 

kewujudan unit struktur BO4, SO4
2-

, PO4
3-

, dan P-O-P dalam sampel kaca 

sulfoborofosfat. Spektrum luminesens sampel kaca didop dengan ion Dy
3+

 

mempamerkan empat jalur pancaran pada sekitar 482 nm, 572 nm, 662 nm dan 685 

nm, yang masing‒masing berpadanan dengan peralihan 
4
F9/2→

6
H15/2,

4
F9/2→ 

6
H13/2 

4
F9/2→

6
H11/2 dan 

4
F9/2→

6
H9/2. Spektrum pancaran bagi sampel kaca didop dengan ion 

Sm
3+

 menunjukkan puncak dominan pada sekitar 559 nm, 596 nm, 642 nm dan 709 

nm yang masing-masing
 
berpadanan dengan peralihan 

4
G5/2→

6
H5/2, 

4
G5/2→

6
H7/2, 

4
G5/2→

6
H9/2 dan 

4
G5/2→

6
H11/2. Sementara itu, sampel kaca didop dengan ion Eu

3+
, 

menunjukkan puncak spektrum pancaran sekitar 589 nm, 611 nm, 651 nm dan 701 

nm yang masing-masing bersesuaian dengan peralihan 
5
D0→

7
F1, 

5
D0→

7
F2,

 5
D0→

7
F3 

dan 
5
D0→

7
F4. Spektrum serapan dan pancaran telah digunakan untuk menilai 

parameter keamatan Judd-Ofelt dan kebarangkalian peralihan pancaran, nisbah 

cabangan dan keratan rentas pancaran rangsangan bagi tiga sistem kaca didop dengan 

ion nadir bumi (Dy
3+

, Sm
3+

, and Eu
3+

). Berdasarkan kepada kajian ini, boleh 

disimpulkan bahawa ciri rangkaian struktur kaca kalsium sulfoborofosfat dan kaca 

barium sulfoborofosfat adalah sama walaupun berbeza pengubahsuai. Penambahan 

ion sulfat dan ion nadir bumi ke dalam rangkaian kaca telah meningkatkan kestabilan 

kimia dan fizik di samping meningkatkan prestasi sifat optik sampel kaca yang telah 

disediakan seperti mempunyai nilai yang tinggi bagi nisbah cabangan, keratan rentas 

rangsangan, jalur lebar gandaan dan gandaan optik. Oleh itu, kaca kalsium 

sulfoborofosfat dan kaca barium sulfoborofosfat boleh dicadangkan sebagai bahan 

hos pendaraahaya bagi aplikasi peranti pencahayaan keadaan pepejal. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

This chapter outlines the fundamental background knowledge of the study. 

This includes the statement of research problem which led to the present research, 

objectives of the study, scope, significance of the research and outlines of the thesis. 

1.1  Background of the Research 

Glass is any solid that has an amorphous structure in nature and displays a 

glass transition when heated. Precisely, it is a solid formed by rapid melt quenching. 

It is hard, breakable and optically transparent. Diverse type of materials is used for 

making glass such as polymers, alloys of metals, aqueous solution, molecular liquids, 

ionic melts, etc. However, other elements are usually added to the ordinary glasses to 

change their physical and chemical properties.  

The composition of materials used significantly contributes to the physical 

and chemical properties of glasses. Oxide glasses have three classes of components: 

the network formers, the intermediates, and modifiers. The network formers 

constitute a system of  highly cross-linked chemical bond, while the intermediates 

and modifiers that are usually present as ions alter the network structure by being 

counterbalance by nonbridging oxygen atoms that are covalently bonded by the glass 

network (Saidu et al., 2014).  

In recent years, Lanthanide (Ln)-doped inorganic materials such as Ln-doped 

glasses, crystals and phosphors have gained rapid research interest due to their 

technological importance in the development of various optical and optoelectronic 

devices such as lasers, display devices, LEDs, fiber optic amplifiers and optical 

sensors (Srinivasulu et al., 2013).  



2 

Borate (B2O3)
 
is one of the essential glass forming oxides and has been 

incorporated into various kinds of glass system to attain the desired physical and 

chemical properties (Wan et al., 2014). Borate glasses have been of scientific interest 

for many years because of their potential applications like electro-optic switches, 

electro-optic modulators, solid-state laser materials and non-linear optical parametric 

converters. It possess excellent transparency, thermal stability and excellent rare 

earth ion solubility but it has higher phonon energy ( ≈1300 cm
-1

) which reduces the 

rare earth emission intensity due to their higher nonradiative decay (Swapna et al., 

2013). The structure of vitreous B2O3 consists of a random network of boroxol rings 

and BO3 triangles connected by B-O-B linkages. However, metal oxides like MgO, 

CaO, SrO, BaO, ZnO and Al2O3, etc. have been added to B2O3 and were found to be 

excellent stabilizers of borate glasses (Sumalatha et al., 2013).  

Phosphate (P2O5) is another good glass forming oxides due to their 

favourable properties such as reasonably low liquid and glass transmission 

temperatures, low viscosity, high thermal expansion coefficient, high electrical 

conductivity and high ultraviolet transmission, it’s found application in a wide range 

of fields. For example, phosphate glasses are used in lasers, a solid electrolyte, bio-

medical devices and nuclear waste immobilization (Joseph et al., 2015). However, 

practical forming characteristics of phosphate glasses is limited because of their 

hygroscopic nature and relatively poor chemical durability (Jha and Jayasimhadri, 

2016).  

Therefore, to overcome the difficulties and limitations of both borate and 

phosphate glasses, the two host are combined to form a new glassy material called 

―Borophosphate glass‖ which gives a better advantageous as they exhibit different 

properties. However, borophosphate glasses are promising host materials for optical 

applications because of their excellent optical properties, low refractive indices, low 

dispersion and good transparency from ultraviolet to the near-infrared regions. 

Furthermore, the combination of B2O3 and P2O5 in the same matrix with additional 

oxides resulted in properties enhancements (Wan et al., 2014). The role played by 

B2O3 and P2O5 in the glass structure, and the interaction with other elements in the 

glass network is an interesting subject of glass science. Hence, the combination of 



 

3 

the two network formers enables considerable modifications of the properties of the 

materials compared to pure borate and phosphate networks alone (Pang et al., 2014). 

For instance, the chemical durability can be increased, or volume nucleation can be 

controlled by mixing the borate and phosphate groups. 

Borophosphate along with modifiers (sulfate) is a fascinating area of study. In 

these glasses, the basic units of pure borate glasses are trigonal BO3 groups, whereas 

those of pure phosphate glasses are PO4 tetrahedra linked through covalent bridging 

oxygen. The addition of a modifier to borate and phosphate networks has different 

effects. In borate network, the addition of a modifier in some concentration ranges 

increases the degree of polymerization. The boron coordination changes from 

trigonal (BO3) to tetrahedral (BO4), whereas in phosphate network, an ultra- 

phosphate network consisting of Q
2
 and Q

3
 tetrahedra may form with O/P < 3.0 

(Ravi Kumar et al.,). However, in the development of glass material, the stability and 

efficiency can be tailored by introducing a modifier.  

Calcium oxide and barium oxide are two useful modifiers in modifying the 

phosphate properties (Li et al., 2016). Calcium oxide and barium oxide served as a 

modifier to reduce the hygroscopic properties while sulfur was added into 

borophosphate as intermediate to enhance the host network. The influence of calcium 

oxide on iron phosphate could improve glass chemical durability, especially the 

alkaline resistance of glass fibre reinforced concrete (Brow, 2008). Barium oxides 

work as the modifier that could strengthen the glass network, restraining glass from 

crystallization, leading to P-O-Ba bands and improving the glass thermal stability, 

low melting temperature and wide glass forming region (Lu et al., 2015). Moreover, 

as a divalent network modifying oxide, BaO increases density, refractive index and 

vitreous luster of the glass, slightly promote the melting process and enhance the 

ability to absorb radiation (Lu et al., 2015). 

Rare earth (RE) doped glasses have become an important class of optical 

systems due to their applicability as a solid-state laser, waveguides lasers and optical 

amplifiers. Most of the studies of glasses focus on explaining the structure properties 

regarding non-bridging oxygen (NBO) and boron coordination number and a few 



4 

studies were concerned about understanding the role of rare earth doping in the 

structure of glasses (Dias et al., 2016).  

Luminescence intensity and lifetime of Ln
3+

 ions in glasses would depend on 

the excitation wavelength, environment, symmetry or nature of ligands, i.e., the 

covalence between rare earth ions and the ligands around them and cross-linking of 

the f-f transitions (Dias et al., 2016). Thus, borophosphate-based glasses are expected 

to be a promising host material for RE ions because of its excellent optical 

properties, low refractive indices, low dispersion and good transparency from the 

ultraviolet to the near-infrared regions (Yao et al., 2017). 

 Among the trivalent Lanthanide: Eu
3+ 

ions are found to be an essential ion to 

probe deep into the local environment around RE
3+

 ions in different matrices and to 

have the potential applications. This useful information about the local structure 

around Eu
3+

 ions can be obtained quite easily from its f -f transition spectra. In Eu
3+

 

ions, the ground state 
7
fo level and the first excited 

5
Do level are non -degenerate 

(J=0) under any symmetry and the local environment of Eu
3+ 

ions depends only on 

the splitting of 
5
Do → 

7
f j (J = 0-4) transitions (Hima Bindu et al., 2016). Among all 

the rare earth ions, Eu
3+

 doped borate materials are prepared as red luminophores for 

display applications as well as for red LED’s due to the host matrix chemical, 

mechanical durability and broad spectral transparency (Swapna et al., 2014).  

Furthermore, the trivalent europium ions are well-established as a 

spectroscopic probe to get an insight into the structure and nature of chemical bonds. 

This is mainly because of the simple energy level scheme of Eu
3+

 ions and the site-

selective nature of intensities between 
7
fj and 

5
Do energy levels. Also, the relative 

variation of emission intensities within the orange-red region due to site-selective 

nature of hypertensive and non-hypersensitive 
5
Do → 

7
fj and 

7
f2 transitions are of 

particular interest for device applications (Swapna et al., 2014). 

Sm
3+ 

ions containing glasses are fascinating to study due to strong 

luminescence and high quantum efficiency of the 
4
G5/2 level. Therefore, glasses 

doped with Sm
3+ 

ions have attractive applications as optical devices ( e.g., optical 
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data storage, colour displays e.t.c.) (Ramteke et al., 2015). Sm
3+ 

ions give very strong 

fluorescence in the orange-red spectral region in a variety of lattices, leading to 

potential high-power lasers, both in compact fiber and planar geometries. But only a 

few attempts have been made to explore the possibility of using orange-red 

luminescence of Sm
3+ 
ions for the development of LED’s in the visible spectral 

region as well as visible optical devices such as visible lasers and fluorescent 

devices. 

 Basavapoornima and Jayasankar (2014) noted that the main reason for not 

conducting several spectral studies on Sm
3+ 

ions doped in glasses is connected to its 

4f
6 

complicated structure.  Many energy levels lying close to each other interpret the 

absorption spectrum of this ion somewhat tricky for the determination of essential 

intensity parameters needed in the calculation of various radiative properties which 

otherwise require a suitable and skilful calculation technique.  

Dy
3+ 

ion is another promising rare earth ion for white light applications due to 

the transitions between 
4
F9/2 → 

6
H15/2 and 

4
F9/2 → 

6
H13/2 energy levels corresponding 

to the dominant emission bands at blue and yellow region respectively. The 
4
F9/2 → 

6
H13/2 emission band is due to the electric dipole transition and is profoundly affected 

by the ligand field and the 
4
F9/2 → 

6
H15/2 emission is due to magnetic dipole 

transition (Vijayakumar et al., 2014).  The linked between a blue and yellow region 

in CIE 1931 chromaticity diagram usually passes through the white light region. 

Furthermore, white light can be produced from the glass materials by adjusting the 

yellow to blue (Y/B) intensity ratio by varying the glass composition, RE ion 

concentration and excitation wavelengths (Vijayakumar et al., 2014). 

The optical homogeneity of glassy matrices makes available RE ions to 

exhibit different latent laser transitions. Spectroscopic study of RE ions in glasses 

suggests information with considering transition probabilities, lifetimes, branching 

ratios of excited states, which are vital in the design and growth of various electro-

optic and optical devices. To understand the quantitative optical phenomena of rare- 

earth ions in glasses, it is essential to evaluate radiative and non-radiative decay 

process of related 4f levels. The Judd-Ofelt theory parameterizes the induced electric 



6 

dipole transitions. The intensity of induced electric dipole transitions can be 

described regarding three phenomenological intensity parameters Ωλ (λ = 2, 4, 6).  

The Judd-Ofelt theory is usually adopted to obtain the radiative transition 

probabilities including emission by utilizing the data of absorption cross section of 

several f-f electric dipole lines. The physical and chemical implement of three Ωλ 

parameters (λ = 2, 4, 6) is becoming more evident by combining information of the 

local ligand field of doped ions by other spectroscopic technique and give the 

information about the rare-earth environment in glass such as bond covalency and 

symmetry. The non-radiative decay rate can be evaluated experimentally by 

combining the lifetime measurements, which includes contributions of multiphoton 

decay, energy transfer such as cross relaxation and frequency up conversion 

properties of rare earth doped glasses (Madhukar Reddy et al., 2015). 

Selection of borophosphate glass in this study as a glass former is due to they 

provide interesting optical and structural properties such as low refractive indices, 

low dispersion and good transparency from the ultraviolet to the near-infrared 

regions (Yao et al., 2017). An exciting characteristic of borate glasses is the 

appearance of variations in its structural properties when different modifier oxides 

are introduced. The addition of alkali earth metal into the glass structure leads to 

disruption of the glass network and promotes the formation of non-bridging oxygen 

groups, which is in contrast to alkaline earth oxides (Balakrishna et al., 2017).    

Therefore, due to the increasing demands on the distinct types of visible 

lasers and light sources. Also, the studies of these rare-earth ions’ materials have 

become an interesting topic in the field of material science because of its essential 

properties, so, more findings need to be done to determine the efficiency of rare earth 

in new material. 

1.2 Problem Statements 

The problem confronting phosphate glasses research is the hygroscopic and 

volatile nature of most metaphosphate, ultra-phosphate and polyphosphate materials. 
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Furthermore, phosphate glasses have limitations in their optical performance. 

However, improving the optical performance for a new efficient luminescent 

material remained the most challenging task in the industry for solid-state laser 

applications. Therefore, the incorporation of sulphate ions into the phosphate 

network improved the rare earth optical performance of borophosphate glasses. 

Furthermore, lasers are based on specific active materials that needs to satisfy good 

doping levels.  Therefore, an effort on new materials and new dopants concentrations 

is required to achieve progress in the field. The Judd-Ofelt parameters, radiative 

properties, optical properties, physical properties, luminescence properties and 

structural features of RE (Dy
3+

, Sm
3+

 and Eu
3+

) doped calcium sulfoborophosphate 

glass and barium sulfoborophosphate glass are rarely investigated.  Additionally, 

since there is a lack of report on these glasses, it is of important to study these glasses 

in order to give more information on the influence of Dy
3+

, Sm
3+

 and Eu
3+

 ions on 

the glasses.  

1.3 Objectives of the Research 

The main objective of this research is to develop a new luminescent host 

material that can exhibit a substantial enhancement of the optical and luminescence 

properties via doping of calcium sulfoborophosphate glass and barium 

sulfoborophosphate glass with different concentrations of Dy
3+

, Sm
3+

 and Eu
3+

 ions. 

The specific objectives of this research are: 

(a) To determine and compare the influence of doped Dy
3+

, Sm
3+

 and Eu
3+

 of 

different concentration on calcium sulfoborophosphate glass and barium 

sulfoborophosphate glass in terms of their structural features and regarding 

their luminescence characteristics enhancements. 

(b) To analyze and compare the impact of emission and absorption data between 

calcium sulfoborophosphate glass and barium sulfoborophosphate glass 

doped varies concentrations of Dy
3+

, Sm
3+

 and Eu
3+

 in terms of radiative 

properties using Judd-Ofelt analysis. 
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1.4 Scopes of the Research 

(a) In this study, the samples of undoped calcium sulfoborophosphate glass and 

barium sulfoborophosphate glass with the chemical composition of xCaSO4-

30B2O3-(70-x)P2O5 with 15 ≤ x ≤ 35 mol% and yBaSO4-30B2O3-(70-y)P2O5 

with 15 ≤ y ≤ 35 mol% were prepared by conventional melt quenching 

method. The series of glass samples doped with rare earth (RE = Dy2O3, 

Sm2O3 and Eu2O3) with the chemical compositions of 25CaSO4-30B2O3-(45-

x)P2O5 – xRE with 0.1≤ x ≤ 1.0 mol% and 25BaSO4-30B2O3-(45-y)P2O5 – 

yRE with 0.1≤ y ≤ 1.0 mol% were also been prepared by conventional melt 

quenching method.  

(b)  The amorphous nature of the glass sample was ascertained by X-ray 

Diffraction (XRD) and thermal stability of the undoped prepared glass 

samples were determined using Differential Thermal Analyzer (DTA).  

(c) The structural features of the host materials are investigated using Infrared 

and Raman spectroscopic techniques and excitation, emission and absorption 

of (RE=Dy
3+

, Sm
3+

 and Eu
3+

) doped calcium sulfoborophosphate glass and 

barium sulfoborophosphate glass were determined using photoluminescence 

and ultraviolet visible spectroscopy respectively. 

(d) The optical absorption parameters like optical band gap, refractive index, 

electronic polarizability and Urbach energy are measured from the data of 

UV-Vis spectroscopy.  

(e) The radiative parameters on the luminescence properties of (RE=Dy2O3, 

Sm2O3 and Eu2O3) doped calcium sulfoborophosphate glass and barium 

sulfoborophosphate glass were determined using Judd-Ofelt theory. 
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1.5 Significance of the Research  

Glasses are exceptionally significant optical materials. The rapid 

development of laser research has led to get much attention about theoretical 

treatment of RE ions in glass compare to other luminescence center. Conducting 

details and comprehensive research on the proposed glass host samples and the rare 

earth ions as dopant would contribute in perspective and investigative studies 

regarding their structural and optical properties of the glass samples. The Judd-Ofelt 

results provides information on the absorption and emission of the newly 

luminescence host. The new material can, therefore, provide a baseline data for 

future research and can be used as an alternative material for solid-state laser 

applications such as colour displays, optical fibre and amplifiers.  

1.6 Outlines of Thesis   

This thesis is classified into five different chapters. Chapter 1 describes the 

background of the research, problem statement, objective of the research, outlines of 

the thesis and significance of the research aimed to highlight the introduction aspect 

of the research work. In Chapter 2, an extensive literature review regarding the host 

structure used in the current study were made. The review includes description of 

structural features, luminescence properties as well as Judd-Ofelt and radiative 

parameters of other host materials. Chapter 3 describes the experimental procedures 

which encompass the methodology in preparing the glass samples with the analytical 

techniques used. Furthermore, detailed information about the types of spectroscopic 

methods used and the working principle of X-ray diffraction (XRD), FTIR and 

Raman spectroscopy, luminescence and UV-Visible-NIR spectrometer. Chapter 4 

presents the results and discussion regarding the different characterization, 

measurements and evaluations of the prepared samples. Chapter 5 presents the 

conclusions and recommendations for future work based on the research vacuums 

acknowledge during this study. 
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