
 

DETERMINATION OF OPTICALLY STIMULATED LUMINESCENCE 

DOSIMETRIC CHARACTERISTICS AND SUITABILITY FOR ENTRANCE 

SURFACE DOSE ASSESSEMENT IN DIAGNOSTIC X-RAY EXAMINATIONS 

 

 

 

 

 

 

 

YAHAYA MUSA 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

 

 

Choose an item. 

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

NOVEMBER 2018 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/225547504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iii 

DEDICATION 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my parents 

Late Alhaji Musa Danladi and Hajiya Maryam Muhammad Lukman. 

  



iv 

ACKNOWLEDGEMENT 

First, I thank Allah, the almighty for giving me the wisdom and strength to 

carry out this research. I would like to express my sincere gratitude and appreciation 

to my supervisor, Assoc. Prof. Dr. Suhairul Bin Hashim for his endless support, 

guidance, patience and encouragement. His inspiration and guidance helped me realize 

my potentials and proved to be the decisive element to the success of this research. I 

would like to extend my sincere gratitude to my co-supervisor, Dr Nor Ezzaty Ahmad 

for her generous guidance and support, her contributions to make this research possible 

cannot be overstated. 

My sincere appreciation goes to the entire technical staff of Nuclear Lab, 

department of Physics for their guidance and tolerance throughout the experimental 

works. I am grateful to my research group members: Dr. Muhammad Khalis Abdul 

Karim, Dr. Muhammad Abu Mhareb, Nasuha Salehhon, Ang Wee Chin, Ratna 

Suffhiyanni Omar, Asmah Bohari and Andrew Ochoji. I am also grateful to my 

colleagues Dr. N.N. Garba, Dr. Y. A. Yamusa, A.U. Abubakar, Dr. Aminu Ismail, 

Salihu Dishing, Bashir Jatau, Dr. Suraj Suleiman and many others for their support 

during this journey.  

I would like to acknowledge with gratitude, the love and support of my entire 

family. To my late father, your boundless love and support will always remain with 

me. May Allah accept this as an act charity and send light to your grave. I am grateful 

to my mother, your unending love and support throughout my life have always given 

me confidence to the next level. To my brothers and sister, you have always supported 

me at difficult times, thank you. I am also grateful to specially; Salihu Muhammed 

Lukman and Dr Salihu Lukman for being helpful when I needed it the most. I am also 

grateful to my beloved wife for her sacrifice, considerate and being supportive 

throughout this journey.  You all kept me going, and this thesis would not have been 

possible without you. 

This thesis turns out to be a reality with the kind support of many individuals 

that could not be mentioned here. I would like to extend my sincere appreciations to 

all of them. 

I am thankful to the management of Centre for Energy Research and Training, 

Ahmadu Bello University, Zaria for kind approval to my study fellowship application. 

Finally, I am thankful to Ahmadu Bello University, Zaria for providing the 

financial support through the Needs Assessment and Intervention Fund. 

  



v 

ABSTRACT 

The availability of Optically Stimulated Luminescence (OSL) dosimeter 

system developed by Landauer Inc. (Glenwood IL) has greatly improved radiation 

dosimetry application in the medical field. Recent studies with OSL dosimeters 

(nanoDots) gave much emphases to patient radiation exposure in radiotherapy but 

ignoring the potential risks from radiographic examinations. This study focused on the 

measurement of entrance surface dose (ESD) resulting from radiographic examination. 

Monitoring procedures have been developed by the International Atomic Energy 

Agency (IAEA) to estimate ESD, while considering exposure parameters and patient’s 

characteristics. However, dosimetric properties of the OSL system must be 

characterized to ascertain its suitability for ESD measurements in medical radiography 

due to energy dependence and over-response factors of the Al2O3 material. This thesis 

consists of three phases: 1) evaluating stability of the new OSL dosimetry system, 2) 

characterizing the nanoDots in radiographic energy range from 40 kV to 150 kV with 

typical doses ranging from 0 to 20 mGy, and 3) assessing suitability of the nanoDots 

for ESD measurement in routine X-ray examinations. The dosimetric characteristics 

of the nanoDots in the above energy range are presented in this study, including 

repeatability, reproducibility, signal depletion, element correction factor, linearity, 

angular and energy dependence, and dose measurement accuracy. Experimental results 

showed repeatability of below 5% and reproducibility of less than 2%. OSL signals 

after sequential readouts were reduced by approximately 0.5% per readout and having 

good linearity for doses between 5 – 20 mGy. The nanoDots OSL dosimeter showed 

significant angular and energy dependence in this energy range, and corresponding 

energy correction factors were determined in the range of 0.76 – 1.12. ESDs were 

determined in common diagnostic X-ray examinations using three different methods 

including direct (measured on phantom/patient) and indirect (without phantom) 

measurements with nanoDots OSL dosimeters, and CALDose_X 5.0 software 

calculations. Results from direct and indirect ESD measurements showed good 

agreement within relative uncertainties of 5.9% and 12%, respectively, in accordance 

with the International Electrotechnical Commission (IEC) 61674 specifications. 

However, the measured results were below ESDs calculated with CALDose_X 5.0 

software. Measured eye and gonad doses were found to be significant compared to 

ESDs during anterior-posterior (AP) abdomen and AP skull examinations, 

respectively. The results obtained in this research work indicate the suitability of 

utilizing nanoDots OSL dosimeter for entrance surface dose assessment during 

diagnostic X-ray examinations. 
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ABSTRAK 

Ketersediaan dosimeter OSL (Optically Stimulated Luminescence) yang 

dibangunkan oleh Landauer Inc. (Glenwood IL) telah menambah baik aplikasi 

dosimetri sinaran dalam bidang perubatan. Kajian terbaharu dengan dosimeter OSL 

(nanoDots) memberi lebih penekanan kepada dedahan sinaran terhadap pesakit dalam 

radioterapi tetapi mengabaikan potensi risiko daripada pemeriksaan radiografi. Kajian 

ini memberi tumpuan kepada pengukuran dos permukaan masuk (ESD) yang terhasil 

daripada pemeriksaan radiografi. Prosedur pemantauan telah dibangunkan oleh Agensi 

Tenaga Atom Antarabangsa (IAEA) untuk menganggarkan ESD, sambil 

mempertimbangkan parameter dedahan dan ciri-ciri pesakit. Walau bagaimanapun, 

sifat dosimetri sistem OSL mesti dicirikan untuk menentukan kesesuaiannya bagi 

pengukuran ESD dalam radiografi perubatan disebabkan oleh faktor kebersandaran 

tenaga dan lampau-sambutan oleh bahan Al2O3. Tesis ini merangkumi tiga fasa: 1) 

menilai kestabilan sistem OSL yang baharu, 2) pencirian nanoDots dalam julat tenaga 

radiografi daripada 40 kV sehingga 150 kV dengan dos tipikal daripada 0 sehingga 20 

mGy, dan 3) menilai kesesuaian nanoDots bagi pengukuran ESD dalam pemeriksaan 

sinar-X rutin. Ciri-ciri dosimetri nanoDots dalam julat tenaga di atas dibentangkan 

dalam kajian ini, termasuk keterulangan, kebolehulangan semula, penyusutan isyarat, 

faktor pembetulan unsur, kelinearan, kebersandaran sudut dan tenaga, dan kejituan 

pengukuran dos. Dapatan eksperimen menunjukkan keterulangan adalah di bawah 5% 

dan kebolehulangan semula adalah kurang daripada 2%. Isyarat OSL selepas bacaan 

berjujukan berkurang kira-kira 0.5% setiap kali bacaan dan mempunyai kelinearan 

baik untuk dos di antara 5 - 20 mGy.  Dosimeter OSL nanoDots menunjukkan 

kebersandaran sudut dan tenaga yang ketara dalam julat tenaga ini, dan faktor 

pembetulan tenaga yang sepadan ditentukan dalam julat 0.76 - 1.12. ESD ditentukan 

dalam pemeriksaan diagnosis sinar-X menggunakan tiga kaedah yang berbeza 

termasuk pengukuran langsung (diukur pada fantom/pesakit) pengukuran tidak 

langsung (tanpa fantom) dengan dosimeter OSL nanoDots, dan pengiraan 

menggunakan perisian CALDose_X 5.0. Keputusan dari pengukuran ESD secara 

langsung dan tidak langsung menunjukkan persetujuan yang baik dalam 

ketidakpastian relatif masing-masing sebanyak 5.9% dan 12%, selaras dangan 

spesifikasi Suruhanjaya Elektroteknikal Antarabangsa (IEC) 61674. Bagaimanapun, 

dapatan terukur adalah di bawah ESD yang dikira menggunakan perisian CALDose_X 

5.0. Dos terukur di mata dan gonad didapati lebih ketara berbanding dengan ESD yang 

diukur semasa pemeriksaan abdomen anterior-posterior (AP) dan tengkorak AP. 

Keputusan yang diperolehi dalam kajian ini menunjukkan kesesuaian menggunakan 

dosimeter OSL nanoDots untuk penilaian dos permukaan masuk semasa pemeriksaan 

diagnostik sinar- X. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Research 

The use of optically stimulated luminescence (OSL) technique for a variety of 

radiation dosimetry applications in recent years is increasing due to the dramatic 

growth in the use of ionizing radiation for clinical purpose. Since the inception of OSL 

technique for dosimetry applications in the 80s, a good number of studies have been 

carried out to comprehend the luminescence properties of different materials (Huntley, 

Godfrey-Smith and Thewalt, 1985). The most essential factors that define a successful 

measurement in radiation dosimetry are traceability, consistency and accuracy, 

particularly in radiology and radiotherapy where the outcome is highly dependent on 

the radiation dose delivered to the patient (IAEA, 2009). The need for radiological 

techniques such as general radiography and computed tomography (CT) for diagnostic 

purposes has increased significantly in the last few decades which resulted to high 

demand of radiation monitoring mechanisms to assess the risk-to-benefit relationship 

associated with the use of these modalities and to keep the dose levels of patients and 

personnel as low as reasonably achievable (ALARA) in order to avoid the risk of 

cancer induction associated with diagnostic radiations. 

Estimation of doses in diagnostic radiology is usually done by entrenching a 

dosimeter in the patient’s/personnel’s body or tissue-equivalent phantom. Both 

thermoluminescence dosimeter (TLD) and OSLD are known to be utilized for 

radiation dosimetry including personal monitoring, in-vivo dosimetry and estimation 

of dose index in computed tomography (CT) from the dose profiles (Endo et al., 2012). 

The application of optically stimulated luminescence (OSL) technique is not limited 

to personal and medical dosimetry, but has recently been used for the assessment of 

environmental dose using naturally occurring minerals in luminescence dating and 
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retrospective dosimetry which serve as leap forward in the development of OSL 

readers (Yukihara and McKeever, 2008). 

The use of X-rays in diagnostic radiology has contributed immensely to the 

identification and treatment of countless number of diseases and helps to improve the 

health of people, but at the same time, radiation doses from diagnostic radiology have 

the largest contributions to the combined dose from all artificial sources of radiation 

which is attributed to the large number of X-ray examinations performed annually 

(IAEA, 2007). According to the recent analysis by United Nations Scientific 

Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 3.6 billion 

diagnostic X-ray examinations are undertaken annually worldwide (UNSCEAR, 

2011). This shows that there is high increase of patient exposure to ionizing radiation 

in order to provide a proper diagnosis at the same time using high exposure to produce 

images of good quality. Therefore, dosimetric technique is required in diagnostic X-

ray imaging systems in order to determine the dosimetric parameters for establishing 

diagnostic reference levels (DRL) and assessing the average dose to the tissues and 

organs at risk. 

Any exposure to ionising radiation is presumed to give rise to a risk of 

detrimental effects, such that one has to recognize that there is certain degree of risk 

involved and must limit the radiation dose to a level at which the assumed risk is 

considered to be acceptable or permissible in view of the benefits derived from such 

procedures (ICRP, 1977). Part of the European Union recommendation for efficient 

radiation protection was to reduce unproductive and needless radiation exposure by 

optimization of protection measures and use of dose limits (European Commission, 

1999). This is because despite the net benefit in these procedures supersede the risk, 

the potential for radiation-induced injuries to patient remain possible.  

Assessment of dose and determination of dosimetric parameters would not be 

possible without evaluating the associated dosimetry equipment performance as part 

of the requirement and quality assurance process (IAEA, 2007). It is therefore 

necessary and essential to test the performance of new dosimetry equipment for quality 

control and assurance. Entrance surface dose (ESD) is an important parameter in 
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assessing the dose delivered to patient in a single radiographic exposure. The European 

Union (EU) has identified this physical quantity as one to be monitored as a diagnostic 

reference level (DRL) which permits optimization of patient dose. Patient doses in 

diagnostic X-ray examinations can be best estimated in terms of the entrance surface 

dose (ESD) per radiograph or dose area product (DAP) for the complete examination 

(European Commission, 1996). However, TLD is the most widely used dosimeter for 

ESD measurement in clinical dosimetry but the prevailing potentials of OSLD to be 

used for nearly real time dosimetry has given OSL a good level of superiority in some 

aspects (McKeever and Moscovitch, 2003). Monte Carlo simulations of the energy 

deposition from X-ray exposure can also be achieved, provided the irradiation 

conditions related to the X-ray procedure and anatomy of the patient under study are 

well defined (Meghzifene et al., 2010). By means of dosimeter or ionization chamber, 

ESD can also be measured directly with the use of suitable phantoms (Ng and Yeong, 

2014). 

The availability of commercial OSL dosimeters has also contributed to the 

successful applications of OSL technique for clinical and personal use. The InLight 

and nanoDots OSL dosimeters made of up Al2O3:C produced by Landauer had 

extensively been used for dosimetry applications in recent years (Yukihara and 

McKeever, 2008).  But the use of this dosimetry system is not rapidly migrating into 

diagnostic radiology especially radiography, with majority of the recent studies giving 

emphasis to image quality and overlooking the possible risk of radiation exposure to 

patients. 

1.2 Problem Statements 

In a properly managed diagnostic X-ray examinations, the radiation doses 

which typically range from 1 – 20 mGy are far much lower than those capable of 

producing noticeable serious radiation injury (IAEA, 2007). Yet, there may be no such 

lower dose limit for the instigation of some deleterious effects (stochastic effects). 

Such small doses may give rise to malignant neoplasia and radiation-induced mutation, 

which in turn may form the basis of hereditary effects. Thus, the possible risk from 
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small doses due to exposure to ionizing radiation is perhaps owing to these types of 

biological changes and any increment of doses to individuals from X-ray carries 

certain amount of risk, even though the risk may be extremely small. According Linear 

No Threshold (LNT) hypothesis, any dose, whatever small, can produce a detriment 

and the risk excess of developing a radiation-induced disease increases with the dose 

to the individual linearly (Ferdeghini, 2014). However, the appropriate action that 

should be taken to prevent unnecessary exposure in radiography is to regularly monitor 

the radiation dose used for each procedure using a suitable technique by trained staff 

(IAEA, 2007). 

This has attracted a lot of research interest to the use of OSL dosimeters as 

potential alternative to the well-known TLDs. TLDs are highly sensitive devices and 

have been used extensively on patients as well as on phantoms. But the destructive 

readout feature of the TLD limits the reanalysis of the absorbed dose. (McKeever and 

Moscovitch, 2003; Meigooni et al., 1995; Olko, 2010). Measurement using ionization 

chambers can also be made with high degree of accuracy than other dosimeters, but 

require sophisticated electrometer circuit and storage facility, and are not always used 

on patients due to their bulkiness and connecting cables that inconvenience the patient 

mobility with potential interfering shadow on the radiograph (Merchant, 1933; 

Massoud E, 2014; Ponmalar et al., 2017). Despite good reproducibility and real-time 

readout of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) based 

dosimeter, the presence of finite lifetime and temperature dependence limit their 

application (Ponmalar et al., 2017; Rahman et al., 2016; Rivera-Montalvo, 2016). 

Owing to their excellent dosimetric attributes, the aluminium oxide based 

(Al2O3:C) OSL dosimeter developed by Landauer Inc, have been used extensively in 

clinical radiotherapy (Mrčela et al., 2011; Andersen, Aznar and Boetter-Jensen, 2003; 

Dunn et al., 2013; Jursinic, 2007; Jursinic, 2010; Ponmalar et al., 2017; Viamonte et 

al., 2008), and diagnostic radiology procedures including computed tomography (CT) 

(Al-Senan and Hatab, 2011; Ding and Malcolm, 2013; Scarboro et al., 2015; Tawfik 

et al., 2013; Yukihara et al., 2009; Yusuf et al., 2014), fluoroscopy (Akselrod, Botter-

Jensen and McKeever, 2006; Gasparian et al., 2010; Perks, Yahnke and Million, 

2008), and mammography (Al-Senan and Hatab, 2011; Alothmany et al., 2016; Perks, 
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Yahnke and Million, 2008). In spite of the interesting features of the Al2O3:C OSLDs 

in radiation dosimetry, which include high sensitivity, good precision for low dose 

measurements, possible re-analysis, high speed readout and elimination of thermal 

annealing steps (McKeever and Moscovitch, 2003; Olko, 2010), all-inclusive literature 

review revealed that the use of Al2O3:C OSLDs in general X-ray is not well-

established. This is attributed to the fact the material over-respond to low energy X-

rays about 3 – 4 times at an effective energy of ~40 – 50 keV compared to higher 

energy photons from 60Co or 137Cs due to its high effective atomic number (11.28), 

resulting to certain level of energy dependence (Yukihara et al., 2009). 

The principal goal of this research is to characterize the nanoDot OSLDs in 

radiography energy range (40 – 150 kV), with the aim of providing solutions involving 

over-response and energy dependence associated to the Al2O3 material in low energy 

X-ray, and to assess the suitability of the nanoDot OSLDs for entrance surface dose 

(ESD) assessment in diagnostic X-ray examinations. The major significance and 

relevance of this research is to offer an alternative for ESD determination using OSL 

through provision of new data for common X-ray examinations and relevant 

dosimetric characteristics. The problem statement of the study is shown schematically 

in Figure 1.1. 
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Figure 1.1 Schematic diagram of the research problem statement. 
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1.3 Aim and Objectives of the Research 

This study is aimed to characterize the new OSL dosimetry system in UTM 

supplied by Landauer Inc and evaluate its suitability for clinical dosimetry in general 

X-ray. The objectives of this research are as follows; 

(a) To calibrate and evaluate the stability of the new Landauer InLight MicroStar 

OSL dosimetry system. 

(b) To investigate the dosimetric characteristics of the nanoDots OSLD including 

repeatability, reproducibility, dose linearity, signal depletion, element 

correction factor, angular dependence, and energy dependence in radiography 

energy range from 40 kV – 150 kV with typical doses ranging from 0 – 20 

mGy. 

(c) To assess the suitability of the nanoDots OSLD for direct and indirect ESD 

measurements in Chest, Abdomen, Skull, and Thoracic spine radiography, with 

associated eye, thyroid and gonad doses using adult anthropomorphic phantom 

and compare with CALDose_X 5.0 software calculations. 

 

1.4 Scope of the Research 

The current study involves the evaluation of the InLight microStar reader 

performance, characterization of the OSL dosimeters and their applications for ESD 

measurement in common X-ray examinations. The scope of this study is itemized as 

follows; 

The baseline of the OSL reader performance was established by assessing the 

reader stability based on background signal fluctuations. Afterwards, the microStar 

reader was calibrated using OSL dosimeters irradiated to 80 kV X-ray beam and dose 

levels of 0 – 30 mGy for low dose calibration and 0 – 1000 mGy for high dose 

calibration. 
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The nanoDot OSLDs dosimetric characteristics were evaluated in radiation 

qualities for radiography (RQR) by assessing the repeatability, reproducibility, signal 

depletion, dose-response linearity, individual dosimeter element correction factors, 

energy dependence, angular dependence and dose measurements accuracy in the 

energy range from 40 – 150 kV using typical doses in radiography ranging from 0 -20 

mGy. 

Entrance surface doses (ESDs) were measured using the so-called Indirect 

measurement and Direct measurement methods based on the IAEA procedures 

described in Technical Report Series No. 457. Direct measurements were performed 

using anthropomorphic whole-body phantom, while indirect measurements were 

performed in the absence of backscatter material. The common X-ray examinations 

that were considered are: AP abdomen, LAT abdomen, AP chest, PA chest, AP 

thoracic spine and AP skull. 

Mathematical software known as CALDose_X 5.0 was utilized to calculate 

ESDs in the X-ray examinations mentioned earlier, using the same exposure 

parameters as employed in the measurement methods. The measured ESDs were then 

validated by comparison with CALDose_X software calculations, published works 

and established international diagnostic reference levels (DRLs). 

Doses to the critical organs such as eye, thyroid and gonad were also measured 

using direct method during the AP abdomen, AP chest and AP skull examinations. 

1.5 Thesis Outline 

This thesis is designed to give a broad overview of the use of optically 

stimulated luminescence dosimetry for entrance surface dose measurements in 

radiography. The steps taken for achieving this goal was exclusively experimental, 

which involved understanding the basic technique required for ESD estimation in 

common X-ray examinations.  
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The thesis is however sectioned into chapters, with Chapter 2 effectively 

describing the general principles of dosimetry in radiography and OSL technique, as 

well as their previous and current status. Chapter 3 momentarily outline the materials 

involved in carrying out this research and briefly describe the methods used. Chapter 

4 is made up of results and discussion in the order of the outlined objectives; i.e., 

evaluation of the microStar performance and stability, characterization of the OSL 

dosimetry system, and measurement and evaluation of entrance surface dose in 

diagnostic X-ray examinations. Chapter 5 will consist of conclusions based on the 

results obtained and offer some recommendations that might improve future studies 

involving the use of Landauer OSL dosimetry system in radiographic dose and energy 

range.
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