
 

TRUST-REGION BASED METHODS FOR UNCONSTRAINED GLOBAL 

OPTIMIZATION  

 

 

 

 

 

 

KERK LEE CHANG 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

 

 

 

 

 Faculty of Science  

Universiti Teknlogi Malaysia 

 

 

 

 

MARCH 2019 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/225547394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

 

iii 

DEDICATION 

 

 

 

 

 

 

 

 

 

 

 

 

To My Beloved Family and Friends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

iv 

ACKNOWLEDGEMENT 

 

 

 

 

 First of all, I would like to express my gratitude to my thesis supervisor, 

Professor Madya Dr Rohanin Bt. Ahmad for her guidance and support in completing 

my thesis. Her encouragement, patience, motivation enthusiasm, and immense 

knowledge motivated me to finish this thesis. She gives me a lot of valuable advice 

and guidance when I encountered the challenges. Her supervision inspired me a lot.  

 

 

I am also grateful and very appreciative of the encouragement, support, love 

and care from my family and friends. Thanks for always being there for me during 

the good and the bad. They have always been behind me and pushed me to be the 

best that I can do. Their caring and inspiration were driving me to finish this thesis. 

 

 

Besides that, I like to send my thankful to MyBrain15, KPM to provide me a 

financial aid. Without a doubt, this schorlarship has been played a key role in 

achieving my PhD journey. Because of MyBrain15, I do not need to worry about the 

financial burden placed on me. 

 

 

 

 

 

 

 

 

 

 

 



  

 

v 

ABSTRACT 

 

 

 

 

 Convexity is an essential characteristic in optimization. In reality, many 

optimization problems are not unimodal which make their feasible regions to be non-

convex. These conditions lead to hard global optimization issues even in low 

dimension. In this study, two trusted-region based methods are developed to deal 

with such problems. The developed methods utilize interval technique to find regions 

where minimizers reside. These identified regions are convex with at least one local 

minimizer. The developed methods have been proven to satisfy descent property, 

global convergence and low time complexities. Some benchmark functions with 

diverse properties have been used in the simulation of the developed methods. The 

simulation results show that the methods can successfully identify all the global 

minimizers of the unconstrained non-convex benchmark functions. This study can be 

extended to solve constrained optimization problems for future work. 
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ABSTRAK 

 

 

 

 

Kecembungan merupakan ciri yang penting dalam pengoptimuman. 

Sebenarnya, kebanyakan masalah pengoptimuman bukan bersifat unimod yang 

menyebabkan rantau tersaur masing-masing menjadi tak-cembung. Keadaan ini 

mengarah ke isu pengoptimuman sejagat susah walaupun dalam matra rendah. 

Dalam kajian ini, dua kaedah berdasarkan rantau-terpercaya telah dibangunkan untuk 

menyelesaikan masalah tersebut. Kaedah yang dibangunkan menggunakan teknik 

selang untuk mencari rantau tempat peminimum berada. Rantau yang dikenalpasti ini 

adalah cembung dengan sekurang-kurangnya satu peminimum. Kaedah yang 

dibangunkan telah terbukti memiliki sifat penurunan, penumpuan sejagat dan 

kekompleksan masa yang rendah. Beberapa fungsi bertanda aras yang mempunyai 

pelbagai sifat telah digunakan dalam simulasi kaedah yang dibangunkan. Keputusan 

simulasi menunjukkan kaedah ini berjaya mengesan semua peminimum sejagat 

fungsi-fungsi bertanda aras tak berkekangan tak-cembung. Kajian ini boleh 

dilanjutkan untuk menyelesaikan masalah pengoptimuman berkekangan untuk kerja 

masa hadapan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

1.0 Overview 

 

 

 This chapter provides the definition and brief explanation to give a necessary 

and clearer understanding of this study. An introduction of optimization is described 

in Section 1.1. The background, statement, research questions, objectives, scope and 

significance of the study will be discussed in Section 1.2 to Section 1.7. A research 

outline is provided in Section 1.8. 

 

 

 

 

1.1 Introduction 

 

 

Optimization is used widely in our daily life. It is a powerful tool, especially 

in the engineering field. For instance, it helps engineers to design aircraft with 

minimum weight and maximum strength, maximize the power output of electrical 

networks and machinery while minimizing heat generation. Also, optimization has 

been applied in the economic field to minimize the total transportation cost of 

shipping x units of products from origin to destination to name a few. 

 

 

 Optimization problems can be classified into several categories as shown in 

Figure 1.1. Optimization problems can be divided into two main categories which are 

discrete and continuous optimization. Discrete optimization can be separated into 

  



 

 

2 

integer programming and combinatorial optimization. While continuous optimization 

problems involved nonlinear programming and these problems can be categorized 

into unconstrained and constrained problem. The optimization problems can be 

further classified. Details can be referred in Neos (2016). 

 

 

 

Figure 1.1: Classes of optimization problem. 

 

 

 Each type of methods which used to solve these problems is a reliable tool in 

solving optimization problems. For example, the integer programming (IP), a well-

known method in optimization that can help to solve an air-crew scheduling problem 

(Hoffman and Padberg, 1993). A mixed integer linear programming (MILP) is used 

to minimize the total control cost consisting of operating and investment cost 

(Rodrigues et al., 2014). A nonlinear programming (NP) can be used to minimize the 

size of a tank, and its optimal result helps to explain why soft drink cans are long and 

thin while storage tanks are short and fat (Shaban et al., 1997). 

 

 

In general, optimization problems can be viewed as a decision problem that 

involves finding the "best" solution of the decision variables over all possible 
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candidates’ solution in the feasible region. By the "best" solution, it can be defined as 

the smallest value of the objective function and such a solution is called a minimizer 

of the objective function over a feasible region. It also can be defined as the biggest 

value of the objective function and called as a maximizer. 

 

 

An optimization problem consists of three important elements, which are 

objective function, constraints and variables. An objective function is needed to 

minimize or maximize the system. Constraints can comprise of a feasible region that 

defines limits of performance for the system. Variables used in the system are 

adjustable to satisfy the constraints (Biegler, 2010). 

 

 

Today, optimization is a dominant and indispensable decision-making tool. 

Many industries apply optimization techniques in their daily operation. For example, 

it is applied in the area of chemistry to minimize the total cost of the heat exchange 

and used in biology field to predict new designs of movement and behaviours of 

animals that may yet evolved (Banga, 2008). Minimizing costs is a natural goal to 

use optimization (Antoniou and Lu, 2007). Besides that, wastage of materials, the 

way of arranging productions lines machinery, location of warehouses and products 

storage can also be optimized. 

 

 

Based on Biegler (2010), optimization is encountered in all facets of chemical 

engineering from model and process development to process synthesis and design 

and finally to process operations, control, scheduling and planning. It becomes a 

major technique to keeps the chemical industry to remain competitive. 

 

 

Optimization was used to solve the diet problem in 1940's (Banga, 2008). It 

helped to find the cheapest combination of foods that will satisfy all the daily 

nutritional requirements of a person. The main objective of the problem is 

minimizing the cost of foods, while the decision variables are the amounts of each 
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type of food which need to be purchased and the constraints are nutritional needs to 

be satisfied, like total calories, or amount of vitamins, and minerals in the diet. 

 

 

In physics, a nonlinear multi-objectives technique is used to solve 

electromagnetic problem. The objective functions are highest efficiency, lowest cost, 

and minimum weight of active materials (Duan and Ionel, 2013). 

 

 

In order to satisfy the requirement from various areas, many methods were 

established. From Figure 1.1, nonlinear unconstrained optimization can be 

categorized into local optimization (LO) and global optimization (GO). For example, 

unconstrained optimization can be used to calibrate a multi-surface-plasticity of a 

soil constitute model (Yang and Elgamel, 2003).  

 

 

Existing methods for solving local optimization problem, called local search 

methods are Newton's method, Golden Section Search method, Steepest descent 

method to name a few. These methods are usually iterative methods. They will start 

by initial guesses and stop executing when they found one local solution (Chong and 

Zak, 2013). While global search methods like Hill Climbing Method, Tunneling 

Method, Multi-start method, etc are used to solve global optimization problems. 

 

 

 

 

1.2 Background of Problems 

 

 

 Optimization is central to any problem involving decision making, whether in 

engineering or economics. The area of optimization has received enormous attention 

in recent years, the realization of the global optimal solution of the problem is always 

preferred (Gould and Tolle, 1975).  
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 Solving a general unconstrained nonlinear optimization can be very hard, 

even when the problem is small in size since the feasible region of the problem is not 

always convex (Guenin et al., 2014). To illustrate the potential difficulty of general 

unconstrained nonlinear optimization, consider the following model instance taken 

from Pinter (2006). 

 

 

Minimize 2 2( , ) [sin( ) sin(3 5 ) sin( 4 )]f x y xy y x x y      (1.1) 

subject to 

 

3 3

2 5

x

y

  

  
 

 

 

 

 Figure 1.2 shows the 3D plot of the model above, and its corresponding 

contour plot is displayed in Figure 1.3. 

 

 

 

Figure 1.2: 3D plot of the Function (1.1).  
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Figure 1.3: Contour plot of the Function (1.1),  

 

 

 The model provided above is a multi-extremal problem. It has a lot of local 

solutions. Generally, a function can have more than one local solution since they are 

not unimodal. Local optimization (LO) methods like Newton's method do not 

emphasize on exploration (Balaprakash et al., 2012); hence it will be stuck in one 

local solution amongst many and the solution obtained might not be the most 

optimized one. 

 

 

 Many global optimization algorithms based on homotopy technique have 

been established such as Homotopy Optimization Method (HOM), and Homotopy 

Optimization with Perturbation and Ensembles method (HOPE). Homotopy is a 

fundamental concept in topology. In optimization, it acts like a medium to transfer 

solutions successively from one local minimum to another better one. 

 

 

 Generally, the global homotopy optimization methods require a significant 

amount of computation and only applicable to the problems with small number of 

local minimizers. To overcome this problem, Dunlavy and Leary (2005) introduced 

two optimization methods, which are Homotopy Optimization Method (HOM) and 
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Homotopy Optimization with Perturbation and Ensembles (HOPE). HOM is a local 

search method while HOPE is used as a global search. 

 

 

 HOPE applicability was shown on multi-extrema problems such as 60 modal 

Sine function which has 60 local minimizers. It can be concluded to be more efficient 

than quasi-Newton method and HOM based on the result by Dunlavy and Leary 

(2005).  

 

 

 Besides that, HOPE was proved to outperform Simulated Annealing (SA) on 

simple protein structure prediction problems (Dunlavy, 2005). SA method converges 

to a solution only when the probability is almost one, while HOPE was able to 

converge even when the probability is less than one (Dunlavy and Leary, 2005).  

 

 

 The basic concept of HOPE is to construct a simple auxiliary function with its 

minimizer known. Then it will use that minimizer as the initial point to locate the 

next minimizer on the homotopy function. A perturbation step will be applied to 

perturb the minimizers found so far in various directions. Those perturbed points are 

used as the next initial points to find the following minimizers. These two steps will 

be repeated as it deforms the auxiliary function continuously into the objective 

function. All the minimizers found will be stored in an ensemble. 

 

 

 HOPE seems like a promising algorithm in solving global optimization 

problems. However, we found two weaknesses from HOPE. In each iteration, the 

ensemble members carried forward the previous perturbed points and used as starting 

points to find other minimizers. Hence, it needs many function evaluations to 

complete its operation which makes it high in computational complexity.  
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 Furthermore, the success rate in locating a solution is highly dependent on the 

step size and the number of perturbation. A small step size and a large number of 

perturbations will increase the chances of correctly predicting the global minimizer. 

In the meantime, it also increases the computational steps taken. However, increasing 

the amount of computational steps did not promise a significant success rate 

(Dunlavy and Leary, 2005). 

 

 

 There is an attempt to improve HOPE, which partially overcame the 

weaknesses of HOPE called Homotopy with 2 Step Predictor-corrector Method 

(HSPM). This method is introduced by Kerk (2014). There are three essential 

elements in HSPM, which are homotopy, Intermediate Value Theorem (IVT) and 

modified Predictor-Corrector Halley's method (PCH). The role of homotopy 

technique in HSPM is to find an approximate global solution when the trusted 

interval failed to be found on the target function due to poor choice of step-size 

parameter. A trusted interval is an interval which can be trusted to contain at least 

one minimizer. Such trusted interval can be identified by using IVT. Modified PCH 

method was used as the local search to find the minimizer from each trusted interval. 

The details of HSPM can be referred to Rohanin and Kerk (2017). 

 

 

 From the result obtained by Kerk (2014), HSPM was shown to have less time 

complexity than HOPE and able to obtain a 100% success rate in locating the global 

solution regardless the step size. The main difference between HSPM and HOPE is, 

HOPE is a stochastic GO method while HSPM is a deterministic GO method. Thus, 

the number of function evaluation of HOPE is uncountable while number of function 

evaluation of HSPM is countable. Besides that, the same minimizer can be located 

repeatedly by HOPE but not in HSPM. This characteristic makes the ensemble of 

HOPE contains a sequence of the same minimizer which contributes to its 

expensiveness. 
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 However, the improvement of HOPE with HSPM is not complete since 

HSPM was designed for solving one variable unconstrained optimization problems. 

For versatility purpose, it needs to be extended. To extend HSPM, we need to find 

another possible technique to replace IVT such that a trusted region which contains 

at least one extremizer can be found. 

 

 

 

 

1.3 Statement of Problems 

 

 

Global optimization can be hard even when the function involved has a low 

dimension. It is due to the non-convex feasible regions. Many optimization methods 

established are used to locate local minimizers. Such methods are called local 

optimization method (LOM). An LOM will stop executing when a minimizer is 

found, or the stopping criterion is met. Hence, there is no guarantee that no other 

solution is better than the current solution found. This issue occurs typically in a 

multi-extrema problem. The existence of multiple local minima of a general non-

convex objective function makes global optimization a significant challenge (Horst 

et al., 2000). 

 

 

 HOPE was shown as a reliable method to find the minimizer from non-

convex optimization problems (Dunlavy and Leary, 2005). The result states that 

more computation efforts taken and the larger perturbation used, the performance of 

HOPE improves. In another word, to improve the chances of HOPE in locating a 

global minimizer, computational effort and cost of operation will need to increase as 

well. 

 

 

 Kerk (2014) introduced an unconstrained global optimization algorithm 

called HSPM. HSPM is a method modified from HOPE. HSPM was shown as an 
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excellent tool to solve one variable non-convex and unconstrained global 

optimization problems. However, it still has room for improvement such that it can 

be flexible to solve unconstrained multivariable optimization problems. 

 

 

 In this research, a global optimization algorithm which can be used to solve 

multi-variables optimization problems is developed. The proposed algorithm will use 

HSPM as the foundation. To avoid unnecessary computations, we will establish a 

promising area called the trusted region. At least one minimizer will lie in this region.  

 

 

 In HSPM, IVT technique enables HSPM to determine all intervals which 

contain at least one minimizer. The trusted interval was credited in reducing the 

unnecessary function evaluations since the local search step will be applied only on 

the trusted intervals found, and the same minimizer will not be located repeatedly. 

Besides that, since a trusted interval is expected to be convex, then we can say that 

HSPM is able to identify the convex parts from a non-convex feasible region. 

 

 

 To identify a trusted region for multivariable optimization problems, IVT is 

not compliant since it is only applicable for an interval. Therefore, in this study, we 

need to find another possible technique to replace IVT, such that a minimizer can be 

bounded successfully. 

 

 

 

 

1.4 Research Questions 

 

 

 With regards to the problem statement, the results of this thesis will be 

answering the following questions: 
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i. How to convert a non-convex optimization problems into piece-wise convex 

optimization problem? 

ii. How to reduce the time complexity of HSPM? 

iii. How to make HSPM deal with multivariable problems? 

iv. How to show the robustness of the proposed algorithm? 

v. How to establish the theoretical support for the proposed algorithm in solving 

unconstrained optimization problems? 

 

 

 

 

1.5 Objectives of the Study 

 

 

The objectives of this method are 

i. to develop a technique to identify convex regions from a non-convex region. 

ii. to develop an algorithm to solve multi-variable optimization problems. 

iii. to measure the performance of the proposed algorithm on benchmark 

unconstrained optimization problems. 

iv. to establish a theoretical background for the proposed algorithm. 

 

 

 

 

1.6 Scope of the Study 

 

 

 This research is designed to solve nonlinear, and non-convex unconstrained 

global optimization problems. In this research, a GO method will be extended to deal 

with multivariable problems based on HSPM and functions which are at least twice 

continuously differentiable, 
2C over a closed interval will be applied. The problems 

which only involved less than four variables are applied. There are many types of 



 

 

12 

methods to solve a GO problem such as deterministic, stochastic and heuristic. 

However, the deterministic will be the only approach utilized in this research. 

Furthermore, a trusted region will be determined by the method proposed. Software 

Wolfram Mathematica version 11.1.1 will be used. 

 

 

 

 

1.7 Significance of the Study 

 

 

This study is expected to extend HSPM to solve multivariable unconstrained 

global optimization problems. The proposed algorithm is aimed to be able to convert 

a non-convex optimization problems into piece-wise convex optimization problems 

and achieve a hundred per cent success rate in locating the global solution such as 

HSPM. Besides that, this study also is anticipated to result in a reliable algorithm 

such that industries including the academia can benefit from it. 

 

 

 

 

1.8 Research Outline 

 

 

 This thesis consists of seven chapters, and the contents of each chapter are 

described as follows: 

 

 

 Chapter 1 is related to the introduction of the topic of research. The contents 

in this chapter includes background of the problem, statement of the problem, 

research question, objectives of the study, scope of the study and significance of the 

study.  
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 Chapter 2 consists of the literature review for this research. Previous and 

recent studies are reviewed and discussed. Their strengths and weaknesses are 

analysed and concluded. The information from the materials such as journal will be 

stated. 

 

 

 Chapter 3 introduces the research methodology and plan for this research. It 

includes the overall research framework and methodology. The technique applied to 

complete research objectives is described.  

 

 

 In Chapter 4, the improved method from HSPM will be presented. Next, 

another extended method to solve multivariable optimization problems will be 

established in Chapter 5. The theoretical background will be provided for both 

proposed algorithms. The benchmark problems will also be solved to show their 

feasibility and robustness. 

 

 

 Then, the proposed algorithms will be compared to HOPE in Chapter 6. 

Chapter 7 shows the summary, the achievements accomplished and the suggestion 

for future works of this study. 
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