
ENHANCED NON-DOMINATED SORTING GENETIC ALGORITHM FOR

TEST CASE OPTIMIZATION

IZWAN BIN MOHD ISMAIL

A dissertation submitted in fulfilment of the

requirements for the award of the degree of

Master of Computer Science

Faculty of Computing

Universiti Teknologi Malaysia

JUNE 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/225547372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

lll

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to my dissertation supervisor,

Assoc. Prof. Dr. Wan Mohd Nasir Wan Kadir for guidance and help from him for me

to complete my project. His opinion and suggestion is highly appreciated. Next, I also

would like to dedicate my appreciation to my parents for their pray and support to me

in my effort for completing this dissertation. I also would like to thank my friends that

giving opinion and helping me accomplish this dissertation. Finally, I would like to

thank all lecturers in Faculty of Computing. They have taught me a valuable lesson

that I used for completing this dissertation. Thanks to all.

iv

ABSTRACT

Due to inevitable software changes, regression testing has become a crucial phase in

software development process. Many software testers and researchers agreed that

regression testing process consumes more time and cost during software development.

Test case optimization has become one of the best solutions to overcome problems in

regression testing. Test case optimization is focusing on reducing number of test cases

in the test suite that may reduce the overall testing time, cost and effort of software

testers. It considers multiple objectives and provides several numbers of optimal

solution based on objectives of the testing. Therefore, this research aims at developing

an alternative solution of test case optimization technique using NSGA II with fitness

scaling as an additional function. Fitness scaling function is applied in NSGA II to

eliminate pre-mature convergence among set of solution in the evolution of offspring

in NSGA II which may produce more efficient fitness value. This research focuses on

regression testing optimization by implementing weight of test cases and fault

detection rate per test case as its objective function for optimization purposes. The

proposed technique is applied to the GUI-based testing case study. The result shows

that Pareto front produced by enhanced NSGA II give more wider set of solution that

contains more alternatives and provide better trade-off among solutions. The

evaluation shows that enhanced NSGA II perform better compared to conventional

NSGA II by increasing the percentage of the reduced test cases with 25% and yield

lower fault detection loss with 1.64% which indicating that set of reduced test cases

using enhanced NSGA II is able to maintain the fault detection capability in the system

under test.

v

ABSTRAK

Oleh kerana perubahan perisian yang tidak dapat dielakkan, ujian regresi telah menjadi

fasa penting dalam proses pembangunan perisian. Banyak penguji perisian dan

penyelidik bersetuju bahawa proses ujian regresi menggunakan lebih banyak masa dan

kos semasa pembangunan perisian. Pengoptimuman kes ujian telah menjadi salah satu

penyelesaian terbaik untuk mengatasi masalah dalam ujian regresi. Pengoptimuman

kes ujian menumpukan kepada pengurangan bilangan kes ujian dalam satu ujian yang

boleh mengurangkan masa ujian keseluruhan, kos dan usaha penguji perisian. Ia

mengambil kira pelbagai objektif dan menyediakan beberapa penyelesaian yang

optimum berdasarkan objektif ujian. Oleh itu, kajian ini bertujuan untuk

membangunkan penyelesaian pengoptimuman kes ujian alternatif menggunakan

NSGA II dengan skala kecergasan sebagai fungsi tambahan. Fungsi skala kecergasan

digunakan dalam NSGA II untuk menghapuskan penumpuan pra-matang di kalangan

set penyelesaian dalam evolusi keturunan yang dapat menghasilkan nilai kecergasan

yang lebih cekap. Kajian ini memberi tumpuan kepada pengoptimuman ujian regresi

dengan melaksanakan pemberat kes ujian dan kadar pengesanan kesalahan setiap kes

ujian sebagai fungsi objektif untuk tujuan pengoptimuman. Teknik yang dicadangkan

digunakan untuk kajian kes berasaskan GUI. Hasil kajian menunjukkan bahawa Pareto

hadapan yang dihasilkan oleh NSGA II yang ditingkatkan memberikan satu set

penyelesaian yang lebih luas yang mengandungi lebih banyak alternatif dan

menyediakan penyelesaian yang lebih baik. Penilaian menunjukkan bahawa

peningkatan NSGA II lebih baik berbanding dengan NSGA II konvensional dengan

peningkatan peratusan kes ujian yang dikurangkan dengan 25% dan menghasilkan

kehilangan pengesanan kesalahan yang lebih rendah dengan 1.64% yang

menunjukkan bahawa kes ujian dikurangkan menggunakan NSGA II ditingkatkan

dapat mengekalkan keupayaan pengesanan kesalahan dalam sistem yang diuji.

TABLE OF CONTENT

CHAPTER TITLE PAGE

DECLARATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENT vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

LIST OF APPENDICES xiii

1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem Background 2

1.3 Problem Statement 5

1.4 Research Aim and Objectives 7

1.5 Scope of Study 7

1.6 Significance of Study 8

1.7 Dissertation Organization 8

vi

2 LITERATURE REVIEW

2.1 Overview

9

9

2.2 Overview of Software Testing 10

2.2.1 Traditional Software Testing 10

2.2.2 Agile Software Testing 11

2.3 Software Testing Life Cycle 12

2.4 Regression Testing 16

2.5 Test Case Optimization as Multi Objective Problems 18

2.6 Test Cases Optimization Techniques 19

2.6.1 Simplified Swarm Optimization (SSO) 19

2.6.2 Artificial Bee Colony (ABC) 20

2.6.3 Cuckoo Search (CS) Algorithm 21

2.6.4 Genetic Algorithm (GA) 22

2.7 Genetic Algorithm Techniques in Test Case

Optimization 24

2.7.1 General Genetic Algorithm 24

2.7.2 Weight-Based Genetic Algorithm (WBGA) 25

2.7.3 Fuzzy-Based Genetic Algorithm 26

2.7.4 Non-dominated Sorting Genetic Algorithm 27

2.8 Summary 29

3 RESEARCH METHODOLOGY 30

3.1 Overview 30

3.2 Research Operational Framework 30

3.2.1 Phase 1: Identify multiple techniques and

issues in test case optimization 32

3.2.2 Phase 2: Enhancing Non-Dominated Sorting

Genetic Algorithm (NSGA II) 32

3.2.3 Phase 3: Compare enhanced technique with

existing techniques 33

3.2.4 Phase 4: Discussion and Conclusion 34

vii

3.3 Research Instruments 34

3.4 Case Study 35

3.5 Evaluation Metrics 37

3.6 Summary 38

4 ENHANCED NON-DOMINATED SORTING GENETIC

ALGORITHM 39

4.1 Overview 39

4.2 Dataset Generation 39

4.2.1 Terp Paint 3.0 Test Cases 40

4.2.2 Weight of Event Calculation 41

4.3 Implementation of NSGA II 43

4.4 Implementation of Fitness Scaling in the Proposed

Approach 49

4.5 Summary 51

5 RESEARCH FINDINGS AND DISCUSSION 52

5.1 Overview 52

5.2 Pareto Front in Optimization Problem 52

5.3 Experiment Result and Discussion 53

5.3.1 Experiment Setup 54

5.3.2 Experiment Result with the Conventional

NSGA II 55

5.3.3 Experiment Result with Enhanced NSGA II 57

5.4 Evaluation Metrics 59

5.4.1 Percentage of Reduced Number of Test Cases 60

5.4.2 Percentage of Fault Detection Loss 61

5.4.3 Overall Discussion 62

5.5 Summary 63

viii

6 CONCLUSION 64

6.1 Research Summary 64

6.2 Research Contribution 65

6.3 Future Work 66

ix

REFERENCES

APPENDIX A - B

67

71 - 86

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Comparison between test case optimization technique 28

3.1 Component of Terp Paint 3.0 36

4.1 Terp Paint Test Cases Matrix 40

4.2 Event Classification Index 41

4.3 Weight of Event Calculation Representation 42

4.4 Test Case Matrix with Weight of Events 42

5.1 NSGA II Experiment Parameter 54

5.2 Output Vector Q1 55

5.3 Non-dominated Front for Q1 56

5.4 Output Vector Q2 58

5.5 Non-dominated Front for Q2 59

5.6 Comparison of Percentage of Reduced Number Test Cases 60

5.7 Percentage of Fault Detection Loss 61

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Concept of Test Case Optimization 3

2.1 Waterfall Model 11

2.2 Agile Software Methodology 12

2.3 Software Test Life Cycle 13

2.4 Basic Flow of Genetic Algorithm 23

3.1 Research Operational Framework 31

3.2 GUI of Terp Paint 3.0 35

4.1 Illustration of NSGA II (Deb et al., 2002) 43

4.2 Flowchart of NSGA II (Deb et al., 2002) 44

4.3 Objective function evaluation 46

4.4 Non-dominated sorting function in MATLAB 47

4.5 Pseudocode for NSGA II 48

4.6 Flowchart of NSGA II with Fitness Scaling 50

4.7 Fitness Scaling Implementation 50

4.8 Fitness Scaling Function in MATLAB 51

5.1 Pareto Front for Conventional NSGA II 56

5.2 Pareto Front for Enhanced NSGA II 58

5.3 Summarize Graph of Results 62

xii

LIST OF ABBREVIATIONS

ABC - Artificial Bee Colony

ACO - Ant Colony Optimization

CS - Cuckoo Search

FAexGA - Fuzzy-Based Age Extension of Genetic Algorithm

GA - Genetic Algorithm

NSGA II Non-dominated Sorting Genetic Algorithm

PSO - Particle Swarm Optimization

RWGA - Random Weight Genetic Algorithm

SDLC - Software Development Life Cycle

SSO - Simplified Swarm Optimization

SUT - System Under Test

WBGA - Weighted-Based Genetic Algorithm

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Sample of Test Cases 73

B Source Code for NSGA II and Fitness Scaling 78

CHAPTER 1

INTRODUCTION

1.1 Overview

Software testing is one of the important and crucial phase in software

development life cycle. Generally, software testing purposes to ensure the correctness

and error-free of the software that is developed. In the conventional Software

Development Life Cycle (SDLC), software testing placed at fourth phase which means

a particular software need to undergo all three phases before it can be tested by

software testers. There are a lot of disadvantages for software testing in traditional

SDLC. Throughout the years, software developers and software testers agreed that

software testing needs to be done after each new iteration and changes occur in

particular software. This situation leads to Agile development framework that

overcomes major problems in software testing in traditional SDLC (Nidagundi and

Novickis, 2017).

The basic concept of software testing can be understood by divided it into two

groups which are black box testing and white box testing. Shortly, black box testing

focusing on GUI of particular System Under Test (SUT) without considering internal

structure of code for the software. Meanwhile, white box testing is the reverse concept

which considering and testing the whole internal structure of codes of the software.

Software testing can be executed manually or automatically. Some research claimed

that automated testing is much better compared to manual testing (Sharma et al.,

2

2013). It is due to many problems in manual testing that can be reduced and

completely overcome by using automated testing rather than manual testing. Another

important testing process in software testing is regression testing. Regression testing

can be exhaustive and expensive due to changes occurring in SUT (Zheng et al., 2016).

Regression testing is very important for current software development process which

is iterative and continuous that need to be tested frequently. Manual and automated

testing can be time-consuming in regression testing since the whole system needs to

tested again even a small change occurred thus become the major drawback in

regression testing. Hence, test case selection, optimization and prioritization have been

introduced by multiple researchers in order to overcome the main problem in

regression testing. Although automated and manual testing can be done parallelly,

there are several aspects that need to be considered to ensure the effectiveness of the

developed software. As mentioned previously, software testing is all about ensuring

the correctness of software so that the software itself is working efficiently without

error and be able to help to solve problems in many fields.

1.2 Problem Background

Software testing has its own life cycle which is also known as Software Testing

Life Cycle (STLC). STLC indicates all the process involves in the testing process

starting with requirement analysis, test planning, test case development, test

environment setup, test execution and test cycle closure. The most critical part in

STLC is test case development which indicates the activity of test suite, test cases and

test data generation.

It is well known that software nowadays has improved in so many ways. Thus,

the software itself has become more complex and complicated in order to develop, test

and maintain the software. Rapid development and fast deployment of the software

has become major concern of the customers hence giving a lot of pressure to the

software development team to accomplish it. Some software that in the market today

didn’t perform software testing to their products that may lead to catastrophic effect

3

in the future. It is because software testing become time and cost consuming since the

software that being developed has grown into complicated application.

Theoretically, larger and complex software system consist of many functions

thus require more time and cost to undergo software testing process. The number of

test cases generated also has increase in order to achieve full coverage of software

testing for particular SUT. Hence, a smaller number of test cases which also a subset

of original test cases that need to be executed has become major concern of software

testers without neglecting full coverage criteria for particular SUT (Jeyaprakash and

Alagarsamy, 2015). This situation is also known as test cases optimization,

minimization and reduction. Test case optimization purposes to find the subset from

set of test cases which contain the most optimized set of test cases by eliminating

redundancy in test cases and selecting the best and have good criteria declared in

particular test suite (Singh 2014). The problem concept of test case optimization can

be derived as T = {T1, T2, T3,.. ..Tn}, whereas T is the original test suite consists of

larger number of test cases. Meanwhile, T’ = {T1’, T2’, T3’,....Tn’}, whereas T’

consist of the most efficient test cases that optimized from original test suite

(Chaudhary, 2016).

In early introduction of test case optimization in regression testing, it is treated

as single objective optimization problem which only considering reducing overall cost

for software testing as their main objective. However, test case optimization is a

technique that can provide trade-off between overall cost of software testing and other

variables and factors to achieve more efficient software testing which lead to the

introduction of multi-objective optimization problem (Savsani and Tawhid 2017). In

U

Figure 1.1 Concept of Test Case Optimization

4

addition, multi-objective optimization problem is hard to satisfy all objectives since it

has many optimal solutions for every objective (Cheng et al., 2013).

Many researchers have treated test case optimization technique as a multi­

objective optimization problem that considering more than two objectives in one time

such as overall cost, fault detection capability or number of faults detected, reduced

number of test cases and time taken for optimization technique. As a multi-objective

problem, test case optimization needs to be flexible in finding as many as optimal

solutions to solve the problem in software testing mainly in regression testing. Hence,

Pareto optimal is introduced in order to find the optimal set of solutions that can be

provided to solve test cases optimization problem (Chaudhary, 2016). By finding the

Pareto set of solution, the objectives can be trade-off so that software testers can

choose the best solution for the problems.

Many researches have been conducted in order to help software testers to fully

optimize their test cases in test suite of software testing by implementing multiple

types of algorithms and framework. Several popular algorithms such as Particle

Swarm Optimization (PSO), Simplified Swarm Optimization (SSO), Artificial Bee

Colony (ABC), Ant Colony Optimization (ACO), Cuckoo Search (CS) Algorithm and

Genetic Algorithm (GA) has been implemented as optimization algorithm for test

cases minimization and reduction.

All of these optimization algorithms are adapting the natural behaviour of the

living organism in the world. For example, Artificial Bee Colony (ABC) is adapting

the concept of bees in the real world. Three groups of bees are introduced in this

approach which are scout bees, onlooker bees and employee bees (Lam et al., 2012).

Next, Cuckoo Search (CS) is adapting one type of bird named cuckoo which usually

laying their eggs in other bird’s nest. It will eliminate foreign eggs in the nest so that

their eggs can survive for hatching (Ahmed et al., 2015). On the other hands, Genetic

Algorithm (GA) which is based on Darwin concept of evolution consist of population

of chromosomes that needed for their next generation (Jeyaprakash and Alagarsamy,

2015). Next chapter of this research will explain briefly of all the algorithms and

techniques mentioned previously.

5

Some of these techniques claimed to be effective and efficient in order to help

in optimization of test cases. The main challenge of these algorithms is to find their

fitness function to help to produce a set of optimized test case as an output. The main

drawback in basic GA is that it is only implementing their own basic operation which

includes selection, crossover and mutation of chromosomes which may lead to

inefficient fitness function evaluation. However, Genetic Algorithm is found as

relatively quite simple and effective based on previous researches. Hence, this

research will focus on enhancing GA in particular approach to find better set of

optimize test cases for particular SUT.

1.3 Problem Statement

The number of test cases in test suite will increase as the software that being

developed evolve into much bigger and complicated software. Test cases optimization

is one of the techniques to help increase the effectiveness of entire software testing

itself. Basically, test cases optimization works by eliminating redundant test cases in

a test suite and also finding the best set of test cases by considering the coverage of

the test cases. Full coverage of software testing with less number of test cases has

become a major concern in test case optimization technique.

In term of GUI testing, generated test cases will consist of events in particular

software that may consist of redundant events and may increase overall execution cost.

Some of the generated test cases may not be able to detect any fault in the software

hence it is not required for GUI testing and can be eliminated from the test suite.

However, eliminating such test cases may not an easy step. Software testers need to

ensure that applied optimization technique did not exclude and ignores test cases that

have longer number of events executed because it may reveal more faults in the SUT

(Nguyen et al., 2014).

Genetic Algorithm (GA) is one of the available techniques in order to find the

most optimized set of test cases. The basic approach of GA in optimizing test cases

starting with random generation of chromosomes that represent the population. Next,

6

the fitness value of each chromosome in the population is calculated in order to

continue with selection, crossover and mutation operators to generate new population

which more fit and optimized (Singhal et al., 2012). Stopping criteria is applied to the

population to determine whether the new population is achieved the targeted fitness

value.

Multiple variants of GA have been implemented throughout the years as test

cases optimization algorithm such as Weight-Based Genetic Algorithm (WBGA),

Fuzzy-Based Age Extension of Genetic Algorithm (FAexGA) and Non-Dominated

Sorting Genetic Algorithm (NSGA II). In general, WBGA implements weight on the

chromosomes to find the fitness value hence lead to optimizing overall test

cases(Wang et al., 2013). Meanwhile, FAexGA purposes to assign aging technique to

the test cases to eliminate the old test cases (Last et al., 2006). Each of these algorithms

has their own drawback. For example, WBGA cannot become the best solution for

test case optimization due to fixed weight applied to the test cases while FAexGA

techniques only applicable to GUI testing only. NSGA II on the other hand is sorting

the test cases using only crowding distance approach to find the most optimize set of

test cases (Jeyaprakash and Alagarsamy, 2015).

Hence, this research focuses on the implementation of Genetic Algorithm

(GA) as the main algorithm for test case optimization. Non-Dominated Sorting

Genetic Algorithm (NSGA II) is chosen as the main algorithm and also the

implementation of the basic concept of GA itself which is crossover, mutation and

fitness scaling as evaluation of fitness function. Most of the research that

implementing NSGA II only depending on Pareto-Ranking function and additional

fitness function to obtain most optimized set of test cases in the particular test suite.

This research however tries to extend NSGA II by implementing fitness scaling

process that may produce more efficient set of test cases. According to the statement

provided previously, main research question can be derived as follow:

“How to increase the percentage o f reduced number o f test cases in test case

optimization using Non-Dominated Sorting Genetic Algorithm (NSGA II)?”

7

Based on main research question above, several minor research questions can

be constructed in order to answer the main question. Minor research questions

constructed as follow:

i. What is a better technique for determining fitness value of test cases apart from

Pareto ranking approach in NSGA II?

ii. How may the identified fitness scaling technique improve the percentage of

reduce number of test cases?

iii. How to evaluate the effectiveness of the identified technique in reducing the

number of test cases?

1.4 Research Aim and Objectives

This research aims to enhance existing optimization technique in regression GUI

testing using Non-Dominated Sorting Genetic Algorithm (NSGA II) by implementing

fitness scaling approach alongside with Pareto-Ranking approach to the algorithm

which may produce more optimize GUI test cases. Based on the research aim

mentioned, several objectives are generated as guidance for this research. The

objectives of this research are:

i. To improve the Non-Dominated Sorting Genetic Algorithm (NSGA II) for test

cases optimization technique.

ii. To evaluate the improved technique by benchmarking with the original

algorithm of NSGA II.

1.5 Scope of Study

This study is targeting in the optimization of test cases for small and medium

size of software that requires rapid software testing process which consists of large

number of test cases in their test suite. The paramount of this study are as follow:

8

i. This study focuses on the implementation of fitness scaling techniques in Non­

Dominated Sorting Genetic Algorithm (NSGA II) in order to find the most

optimize test cases in the test suite.

ii. Main priorities of the output expected from this study are increasing the

percentage of the reduced number of test cases and maintaining fault detection

capability of test case in particular software testing.

iii. It is also focusing on enhancing the existing algorithm and comparing it with the

original one.

1.6 Significance of Study

This research purposes to give benefits to the software testing industry focusing

on GUI regression testing by providing another alternative solution for test cases

optimization alongside with other optimization techniques available in the field. In

addition, this approach proposed in this study may help small and medium size of

software application for fast software testing before a particular software being

released to the market. Moreover, this approach also may contribute an additional

knowledge of software testing on the body of knowledge for students and other

researchers to contribute more in test case optimization technique.

1.7 Dissertation Organization

This thesis consists of five chapter. The first chapter states an overview of

software testing, Software Testing Life Cycle (STLC) and the overall description of

propose technique implemented in this research. Chapter two explains the details of

software testing, STLC and previous techniques implemented as test case optimization

algorithms. Next, the concept of implementation of Non-Dominated Sorting Genetic

Algorithm (NSGA II) and the framework of execution is described in Chapter three.

Chapter four of this thesis include early result and discussion of proposed technique.

The final chapter of this thesis will conclude the proposed technique in term of

effectiveness and efficiency of test case optimization using enhancement of NSGA II.

REFERENCES

AdiSrikanth, Kulkarni, N., Naveen, K., Singh, P. and Srivastava, P. (2011). Test Case

Optimization Using Artificial Bee Colony Algorithm. Advances in Computing

and Communications, 333031, 570-579.

Ahmed, B.S. (2016). Test case minimization approach using fault detection and

combinatorial optimization techniques for configuration-aware structural testing.

Engineering Science and Technology, an International Journal, 19(2), 737-753.

Ahmed, B.S., Abdulsamad, T.S. and Potrus, M.Y. (2015). Achievement of minimized

combinatorial test suite for configuration-aware software functional testing using

the Cuckoo Search algorithm. Information and Software Technology, 6 6 , 13-29.

Ahmed, B.S., Sahib, M.A. and Potrus, M.Y. (2014). Generating combinatorial test

cases using Simplified Swarm Optimization (SSO) algorithm for automated GUI

functional testing. Engineering Science and Technology, an International

Journal, 17(4), 218-226.

Belli, F., Beyazit, M. and Guler, N. (2011). Event-Based GUI Testing and Reliability

Assessment Techniques-An Experimental Insight and Preliminary Results.

Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE

Fourth International Conference on, 212-221.

Chaudhary, N. (2016). Multi Objective Test Suite Reduction for GUI Based Software

Using NSGA-II. , (August), 59-65.

Chaudhary, N., Sangwan, O.P. and Arora, R. (2014). Event-coverage and weight

based method for test suite prioritization. International Journal o f Information

Technology and Computer Science (IJITCS), 6(12), 61.

68

Cheng, L., Tsou, C., Lee, M., Huang, L., Song, D. and Teng, W. (2013). Tradeoff

analysis for optimal multiobjective inventory model. Journal o f Applied

Mathematics, 2013(i).

Day, P. (2014). N-Tiered test automation architecture for Agile software systems.

Procedia Computer Science, 28, 332-339.

Deb, K., Pratab, S., Agarwal, S. and Megarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2), 182-197.

Elbaum, S., Rothermel, G. and Penix, J. (2014). Techniques for improving regression

testing in continuous integration development environments. Proceedings o f the

22nd ACM SIGSOFT International Symposium on Foundations o f Software

Engineering - FSE 2014, 235-245.

Holst, T.L. (2005). Genetic Algorithms Applied to Multi-Objective Aerospace Shape

Optimization. Journal o f Aerospace Computing, Information, and

Communication, 2(4), 217-235.

Huang, C.Y., Chen, C.S. and Lai, C.E. (2016). Evaluation and analysis of

incorporating Fuzzy Expert System approach into test suite reduction.

Information and Software Technology, 79, 79-105.

Jeyaprakash, S. and Alagarsamy, K. (2015). A distinctive genetic approach for test-

suite optimization. Procedia Computer Science, 62(Scse), 427-434.

Kandil, P., Moussa, S. and Badr, N. (2014). Regression Testing Approach for Large-

Scale Systems. 2014 IEEE International Symposium on Software Reliability

Engineering Workshops, 132-133.

Kumar, G. and Bhatia, P.K. (2016). Software Test Case Reduction using Genetic

Algorithm : A Modified Approach. , 3(5), 349-354.

Kumar, G. and Bhatia, P.K. (2013). Software testing optimization through test suite

reduction using fuzzy clustering. CSI Transactions on ICT, 1(3), 253-260.

Kumari, A.C. (2013). RegressAid - A CASE Tool for Minimization of Test Suite for

Regression Testing. , 71(18), 30-34.

Lam, S.S.B., Raju, M.LH.P., M, U.K., Ch, S., Srivastav, P.R., and Sekhara, S. (2012).

Automated Generation of Independent Paths and Test Suite Optimization Using

Artificial Bee Colony. Procedia Engineering, 30(2011), 191-200.

Last, M., Eyal, S. and Kandel, A. (2006). Effective Black-Box Testing with Genetic

Algorithms. , 134-148.

69

Marchetto, A. and Islam, M. (2013). A Multi-Objective Technique for Test Suite

Reduction. ICSEA 2013, The Eighth ..., (c), 18-24.

Mateen, A. (2016). Optimization of Test Case Generation using Genetic Algorithm (

GA). , 151(7), 6-14.

McMaster, S. and Memon, A. (2008). Call-stack coverage for GUI test suite reduction.

IEEE Transactions on Software Engineering, 34(1), 99-115.

Memon, A.M., Soffa, M. Lou and Pollack, M.E. (2001). Coverage criteria for GUI

testing. ACM SIGSOFTSoftware Engineering Notes, 26(5), 256.

Memon, a. M., Pollack, M.E. and Soffa, M.L. (2001). Hierarchical GUI test case

generation using automated planning. IEEE Transactions on Software

Engineering, 27(2), 144-155.

Mondal, D., Hemmati, H. and Durocher, S. (2015). Exploring test suite diversification

and code coverage in multi-objective test case selection. 2015 IEEE 8th

International Conference on Software Testing, Verification and Validation, ICST

2015 - Proceedings.

Nguyen, B.N., Robbins, B., Banarjee, I. and Memon, A. (2014). GUITAR: An

innovative tool for automated testing of GUI-driven software. Automated

Software Engineering, 21(1), 65-105.

Nidagundi, P. and Novickis, L. (2017). Introducing Lean Canvas Model Adaptation

in the Scrum Software Testing. Procedia Computer Science, 104(December

2016), 97-103.

Nidagundi, P. and Novickis, L. (2016). Introduction to Lean Canvas Transformation

Models and Metrics in Software Testing. Applied Computer Systems, 19(1), 30­

36.

de Oliveira Neto, F.G., Torkar, R. and Machado, P.D.L. (2016). Full modification

coverage through automatic similarity-based test case selection. Information and

Software Technology, 80, 124-137.

Samatha, K., Chokkadi, S. and Yogananda, J. (2012). A Genetic Algorithm Approach

for Test Case Optimization of Safety Critical Control. Procedia Engineering, 38,

647-654.

Sanchez, A.B., Segura, S. and Ruiz-Cortes, A. (2014). A Comparison of Test Case

Prioritization Criteria for Software Product Lines. 2014 IEEE Seventh

International Conference on Software Testing, Verification and Validation, 41 -

50.

70

Savsani, V. and Tawhid, M.A. (2017). Non-dominated sorting moth flame

optimization (NS-MFO) for multi-objective problems. Engineering Applications

o f Artificial Intelligence, 63, 20-32.

Schwartz, A. and Do, H. (2016). Cost-effective regression testing through Adaptive

Test Prioritization strategies. Journal o f Systems and Software, 115, 61-81.

Sharma, C., Sabharwal, S. and Sibal, R. (2013). A Survey on Software Testing

Techniques using Genetic Algorithm. International Journal o f Computer Science

Issues, 10(1), 381-393.

Singh, R. (2014). Test Suite Minimization using Evolutionary Optimization

Algorithms: Review. , 3(6), 2086-2091.

Singhal, A., Chandna, S. and Bansal, A. (2012). Optimization of Test Cases Using

Genetic Algorithm 1. , 2(3), 367-369.

De Souza, L.S., Prudencio, R.B.C., Barros, F.D.A. and Aranha, E.H.D. (2013). Search

based constrained test case selection using execution effort. Expert Systems with

Applications, 40(12), 4887-4896.

Srividhya, J. (2014). A Synthesized Overview of Test Case Optimization Techniques.

, 1(2).

Wang, S., Ali, S. and Gotlieb, A. (2013). Minimizing test suites in software product

lines using weight-based genetic algorithms. 2013 15th Genetic and Evolutionary

Computation Conference, GECCO 2013, 1493-1500.

Yoo, S. and Harman, M. (2007). Pareto efficient multi-objective test case selection.

Proceedings o f the 2007 international symposium on Software testing and

analysis - ISSTA ’07, 140.

Yoo, S. and Harman, M. (2014). Regression testing minimization, selection and

prioritization: A Survey. Software Testing Verification and Reliability, 24(8),

591-592.

Yusoff, Y., Ngadiman, M.S. and Zain, A.M. (2011). Overview of NSGA-II for

optimizing machining process parameters. Procedia Engineering, 15, 3978­

3983.

Zheng, W., Hierons, R.M., Li, M., Liu, X. and Vinciotti, V. (2016). Multi-objective

optimisation for regression testing. Information Sciences, 334, 1-16.

