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ABSTRACT 

 

 

 

 

 
Water contamination is a worldwide problem which deserves attention due to its 

negative impact on ecosystem, human health as well as economic growth. Heavy metals are 

a group of the pollutants that have received particular attention due to their high toxicity 

even at concentration as low as parts per billion (ppb). Technology advancement in the field 

of separation and detection of heavy metals has introduced sensitive and selective analytical 

instruments for real aquatic environmental samples. However, real sample matrices can 

reduce the quality of results. In modern analytical chemistry, there is a high demand for 

accurate quantification of trace and ultra-trace of heavy metals from real aqueous samples. In 

the present study, electromembrane extraction (EME) and electrochemical techniques were 

combined to develop effective electrodes which can separate, pre-concentrate and determine 

heavy metals such as Pb(II), Cr(VI) and Cd(II) in real aqueous samples. Electrochemically 

reduced graphene oxide-graphite reinforced carbon (ErGO-GRC) was utilised in conjunction 

with square wave anodic stripping voltammetry (SWASV) for the determination of Pb(II). 

Meanwhile, selective and sensitive determinations of Cr(VI) was carried out using ex-situ 

prepared nafion-coated antimony film on graphite reinforced carbon (NSbFE-GRC) by 

square wave adsorptive stripping voltammetry (SWAdSV) in the presence of diethyltriamine 

pentacetic acid (DTPA). Ex-situ prepared NSbFE-GRC was also used for simultaneous 

determination of Pb(II) and Cd(II) by SWASV. Simple polyvinylidene fluoride (PVDF) flat 

sheet membranes were synthesised and characterised in order to combine these developed 

electrochemical techniques with EME. Heavy metals were extracted from an aqueous sample 

solution into an acidic acceptor phase in the lumen of a PVDF membrane bag by the 

application of voltage across the supported liquid membrane (SLM), consisting of organic 

solvent and complexing carriers. Parameters affecting the EME were optimised for heavy 

metals. The PVDF–ErGO–GRC electrode system attained enrichment factors of 40 times 

and 80% extraction with relative standard deviation (n = 5) of 8.3% for Pb(II). Good 

linearity in the range of 0.25-2 nM was obtained with correlation coefficient of 0.999. The 

Pb(II) ions detection limit of PVDF–ErGO–GRC electrode was 0.09 nM. Meanwhile, the 

PVDF–NSbFE–GRC system attained enrichment factors of 86.6 times, 95.6% extraction, 

and good linearity in the range of 10-60 pM with correlation coefficient of 0.9933. 

Furthermore, the limit of Cr(VI) detection was found to be around 0.83 pM for the developed 

PVDF–NSbFE–GRC electrode. On the other hand, the PVDF–NSbFE–GRC was able to 

attain enrichment factors of 49.3 and 68.4 times, 82.6% and 114.0% extractions, and good 

linearity ranging from 2 to 10 pM with correlation coefficients of 0.9953 and 0.9883 for 

Pb(II) and Cd(II), respectively. Furthermore, the limits of detection for Pb(II) and Cd(II) 

were found to be around 0.65 pM and 0.60 pM, respectively. A chargeable battery operated 

portable EME system was developed for quantitative determination of heavy metals. The 

newly developed single setup electrochemical system was applied to the analysis of real 

aqueous samples such as tap water, industrial waste water, river water and sea water, and it 

was able to extract with percentage of extraction in the range of 78.7 -103.0% compared to 

commercially available direct current power supply. 
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ABSTRAK 

 

 

 

 

Pencemaran air adalah masalah di seluruh dunia yang patut diberi perhatian 

disebabkan oleh impak negatif terhadap ekosistem, kesihatan manusia serta pertumbuhan 

ekonomi. Logam berat merupakan satu kumpulan pencemar yang telah menerima perhatian 

khusus kerana ketoksikannya yang tinggi walaupun pada kepekatan serendah bahagian per 

bilion (ppb). Kemajuan teknologi dalam bidang pemisahan dan pengesanan logam berat 

telah memperkenalkan instrumen analisis yang peka dan selektif bagi sampel persekitaran 

akuatik. Walau bagaimanapun, matriks sampel sebenar boleh mengurangkan kualiti hasil. 

Dalam kimia analisis moden, terdapat permintaan yang tinggi bagi kuantifikasi tepat logam 

berat surih dan ultra surih daripada sampel akueus sebenar. Dalam kajian ini, teknik 

pengekstrakan elektromembran (EME) dan elektrokimia digabungkan untuk menghasilkan 

elektrod yang boleh memisahkan, pra-memekatkan dan menentukan logam berat misalnya 

Pb(II), Cr(VI) dan Cd(II) daripada sampel akueus sebenar. Karbon diperkuatkan grafin 

oksida-grafit secara penurunan elektrokimia (ErGO-GRC) telah digunakan sempena dengan 

voltammetri pelucutan anod gelombang segiempat (SWASV) bagi penentuan Pb(II). 

Sementara itu, penentuan selektif dan sensitif Cr(VI) dijalankan menggunakan filem 

antimoni yang dilapisi dengan nafion pada karbon diperkuatkan grafit (NSbFE-GRC) yang 

disediakan dengan voltammetri pelucutan penjerapan gelombang segiempat (SWAdSV) 

dengan kehadiran asid dietiltriamina pentasetik (DTPA). NSbFE-GRC yang disediakan 

secara ex-situ juga digunakan untuk penentuan Pb(II) dan Cd(II) dengan SWASV. Membran 

lembaran rata polivinilidena fluorida (PVDF) yang mudah telah disintesis dan dicirikan 

untuk menggabungkan teknik elektrokimia yang dibangunkan itu dengan EME. Logam berat 

telah diekstrak daripada larutan sampel akueus ke dalam fasa penerima berasid di dalam 

lumen beg membran PVDF dengan menggunakan voltan merentasi membran cecair 

disokong (SLM), yang terdiri daripada pelarut organik dan pembawa pengkompleks. 

Parameter yang mempengaruhi EME telah dioptimumkan bagi logam berat. Sistem elektrod 

PVDF-ErGO-GRC mencapai faktor pengayaan 40 kali  dan pengekstrakan 80% dengan 

sisihan piawai relatif (n = 5) 8.3% bagi Pb(II). Lineariti yang baik dalam julat 0.25-2 nM 

telah diperolehi dengan pekali korelasi 0.999. Had pengesanan ion Pb(II) elektrod PVDF-

ErGO-GRC adalah 0.09 nM. Sementara itu, sistem PVDF-NSbFE-GRC mencapai faktor 

pengayaan 86.6 kali, pengekstrakan 95.6%, dan lineariti yang baik dalam julat 10-60 pM 

dengan pekali korelasi 0.9933. Tambahan pula, had pengesanan Cr(VI) didapati sekitar 0.83 

pM bagi elektrod PVDF-NSbFE-GRC yang dibangunkan. Sebaliknya, PVDF-NSbFE-GRC 

telah dapat mencapai faktor pengayaan 49.3 dan 68.4 kali, pengekstrakan 82.6% dan 

114.0%, dan lineariti yang baik dari 2 hingga 10 pM dengan pekali korelasi masing-masing 

0.9953 dan 0.9883 bagi Pb(II) dan Cd(II). Tambahan pula, didapati had pengesanan bagi 

Pb(II) dan Cd(II) masing-masing adalah sekitar 0.65 pM dan 0.60 pM. Sistem EME mudah 

alih yang menggunakan bateri boleh dicas semula telah dibangunkan bagi penentuan 

kuantitatif logam berat. Sistem elektrokimia persediaan tunggal baharu yang dibangunkan itu 

telah digunakan untuk analisis sampel akueus sebenar misalnya air paip, air sisa industri, air 

sungai dan air laut, dan ia dapat mengekstrak dengan peratus pengekstrakan dalam julat 

78.1-103.0% berbanding pembekal arus terus komersial. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

 Water contamination is a worldwide problem which deserves attention due to 

its negative impact on eco-system, human health as well as economic growth (Ben 

Salem et al. 2014; Kim & Kang 2016). Heavy metals, as one of the pollutant 

categories receive concern due to their high toxicity even at concentration as low as 

parts per billion (ppb). Furthermore, the toxicity of heavy metals can be increased by 

transformation to more toxic compounds due to their average long-life. Depending 

on the type and speciation of heavy metal, it accumulates mainly in bones, brain, 

kidney and muscles, which may cause serious illnesses such as anaemia, kidney 

diseases, nervous disorders and sickness or even death among (Chen et al. 2012; Ben 

Salem et al. 2014; D. Wang et al. 2016). In infant and children, exposure to heavy 

metals above the standard level can result in delays in physical and mental 

development (Y. Wang et al. 2016a; Liu et al. 2014; Xia et al. 2016). Therefore, the 

determination of heavy metals has contributed to the awareness among human to 

provide beneficial guidance on the physiological effect on body and environment.  

 

 

There are numerous analytical techniques such as graphite furnace atomic 

absorption spectroscopy (GF-AAS) (Dokpikul et al. 2018; Behbahani et al. 2015; 

Cervantes et al. 2017; Schneider et al. 2017; Zhong et al. 2016), inductively coupled 

plasma mass spectroscopy (ICP-MS) (Cervantes et al. 2017), neutron activation 

analysis (NAA) (Namieśnik & Rabajczyk 2012) have been proposed for the 

determination of heavy metal ions. These analytical techniques are advantages in 

terms of sensitivity and multiple elemental analysis. However, these instruments 
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incur high cost. Nowadays, voltammetry techniques are much interested for the 

determination of heavy metal ions, due to their highly sensitive, low cost, simple 

operation and minimum use of reagents as well as suitable for speciation 

measurements (Y. Wang et al. 2016b; Liu et al. 2014). However, heavy metal in 

aquatic environmental samples are usually obtained in extreamely low level of 

concentration such as sub-ppb or ppt. Moreover, aquatic environmental samples are 

too complex for a direct measurement due to matrix interferences. These diffuculties 

can be overcome by separating and preconcentrating the heavy metal ions prior to the 

determination by any analytical techniques. Thus, there is a need to develop an 

effective analytical method which allows separating, detecting and quantifying low 

levels of heavy metal ions in aqueous environmental samples. 

 

 

 

 

1.2 Problem Statement 

 

 

Sampling, sample preparation, separation, detection and data analysis are the 

most important steps in analytical process. When dealing with real sample matrix 

samples each step equally important for collecting reproducible and reliable data. 

Technology advancement in the field of separation and detection have introduced 

sensitive and selective analytical instrument. However, real sample matrices can 

reduce the quality of results. In modern analytical chemistry, there is a high demand 

for accurate quantification of trace and ultra-trace of heavy metals from real aqueous 

sample matrices. Hence, the determination of trace heavy metals depends on 

instruments that capable of reaching detection limits as low as good selectivity. 

However, to achieve this practice the number of interfering compounds must be kept 

to a minimum to avoid severe matrix interference. In addition, there is also a demand 

for pre-concentration of trace heavy metals to reach lower concentration limits for 

sufficient detection. Recently, integrated and automated systems have been 

increasing popular to reduce analysis time and labour. However, the demand for 

highly time-efficient systems becomes challenging for separation of heavy metals 

from real sample matrices.  
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The problems associated with heavy metals in the environment clearly 

demand for an effective sustainable green analytical method which can 

simultaneously pre-concentrate, separate, and detect with lower detection limits. 

Several approaches such as ion-exchange separation (Aydin et al. 2011; Cechinel et 

al. 2017), single-drop micro-extraction (SDME) (Manzoori et al. 2009), dispersive 

liquid–liquid microextraction (DLLME) (Zhou et al. 2011; Dokpikul et al. 2018; 

López-García et al. 2013), solid phase extraction (SPE) (Cervantes et al. 2017; 

Pourreza & Naghdi 2014) and dispersive solid phase extraction (DSPE) (Fasih 

Ramandi & Shemirani 2015; Behbahani et al. 2015) are available for the separation 

and pre-concentration of heavy metal ions from aqueous environmental samples. 

However, such procedures are time-consuming and prone to contamination.  

 

 

Electromembrane extraction (EME) is a new concept of hollow fiber-liquid 

phase microextraction (HF-LPME) in which an electrical field serves as a driving 

force for the analytes to transfer between  the donor phase (DP) and the supported 

liquid membrane (SLM) and also between the SLM and the acceptor phase (AP) 

(Fotouhi et al. 2011; Gjelstad et al. 2006). Interestingly, the combination of EME 

and electrochemical studies has been popular in detecting pharmaceutical active 

compounds (PhACs) such as sufentanil (Ahmar et al. 2013), morphine (Ahmar et al. 

2014),  dextromethorphan (Fakhari et al. 2014), diclofenic  (Mofidi et al. 2017) and 

clozapine (Rouhollahi et al. 2016) due to the unique opportunities of addressing the 

challenges of green analytical chemistry by providing effective process of separating, 

pre-concentrating and detecting  while minimizing its environmental impact.  

 

 

Studies published utilize modified solid electrodes such screen printed 

(Fakhari et al. 2014; Ahmar et al. 2013) , carbon paste (Mofidi et al. 2017),  and 

glassy carbon (Kamyabi & Aghaei 2016a; Kamyabi & Aghaei 2016b)  electrodes 

where the solution from AP is collected using microsyringe and the pH of the 

solution adjusted before the analyte can be detected using electrochemical 

techniques. This is due to the low volume and inappropriate condition of aqueous AP 

in EME such as pH and type of buffer solution, which is not suitable for 

conventional electrochemical measurements. Therefore, the purpose of this research 

is to develop an electrochemical electrode system with EME as a part of the 
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electrode that can directly separate, pre- concentrate and detect heavy metal ions in 

real  aqueous environmental samples.  

 

 

 

 

1.3 Objectives of the Study 

 

 

 The objectives of this study are as follows: 

 

 

a) To determine the potential complexing carriers using liquid-liquid extraction 

technique for selected heavy metal ions; 

b) To examine electrochemical response of the selected heavy metal ions under 

conditions suitable for the acceptor phase; 

c) To investigate the transport of the selected heavy metal ions across the EME 

using PVDF flat sheet membrane; and  

d) To develop and apply portable power supply device for EME system of 

heavy metals in real samples such as tap, river, sea and industrial waste 

water. 

 

 

 

 

1.4 Scope of the Study 

 

 

This study was conducted to investigate a simultaneous separation, pre-

concentration, and detection system for heavy metal ions such as Cr(VI), Pb(II), and 

Cd(II) based on combination of voltammetry technique with EME. In achieving the 

objectives of the research there are few important tasks need to be carried out and 

five research scopes have been identified for accomplishing the objectives. The 

scopes are: 

 

 

1) Preliminary study was conducted by optimizing parameters for liquid –liquid 

extraction (LLE) such as six (6) type of complexing carriers (4-cyanopyridine 

(4-Cpy), 2-mercaptobenzothiazole (2-MBT), Tricaprylylmethyl ammonium 

chloride (Aliquat 336), tributhylphosphate (TBP), di-2-ethylhexylphosphoric 
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acid (D2EHPA), trihexyl(tetradecyl)phosphonium chloride (Cyphos 101) four 

(4) types of organic solvents (toluene, n-octanol, n-heptane and NPOE), pH 

and type of stripping phase. This was investigated to understand the 

complexing and stripping ability between carrier and heavy metal ions. The 

selection of appropriate acceptor phase of heavy metal ion from carrier is very 

crucial, as this aqueous phase condition was used to develop the 

electrochemical detection for earlier mentioned heavy metal ions. 

 

 

2) Heavy metal ions were detected using voltammetry technique based on the AP 

of LLE by using solid electrode. The solid electrodes used in this study were 

nafion coated-antimony film (NSbFE-GRC) and electrochemically reduced 

graphene oxide (ErGO-GRC) modified on graphite reinforcement carbon as 

substrate material. The ex-situ prepared NSbFE-GRC was used to selectively 

detect Cr(VI) with the presence of DTPA using square wave adsorptive 

stripping voltammetry (SWAdSV). NSbFE-GRC was also utilized for 

simultaneous detection of Cd(II) and Pb(II) by using square wave anodic 

stripping voltammetry (SWASV). Whereas, ErGO-GRC was used to 

selectively detect Pb(II) using SWASV. 

 

 

3) EME study was carried out by applying voltage using DC supply system with 

the appropriate carrier in organic solvent supported by a fabricated PVDF 

membrane which interposed between the aqueous sample matrix containing the 

targeted heavy metal ions and acceptor phase. Polyvinylidene (PVDF) 

membrane with different polymer percentage concentration (12%, 17% and 

22%) fabricated and characterized to determine the functional groups, water 

contact angles, thickness and porosity of membrane. In order to optimize the 

EME, parameters such as the influence of membrane composition on extraction 

voltage, extraction time, pH of the donor phase, stirring rate, carrier 

concentration, organic solvent and agarose gel were assessed. 

 

 

4) Portable power supply device (PPSD) was developed and used as portable 

sampling system for selective and simultaneous EME to separate and pre-
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concentrate Pb(II), Cd(II) and Cr(VI) in real samples such as tap, river, sea and 

industrial waste water prior to detect using voltammetry techniques. 

  

 

 

1.5  Significance of Study 

 

 

The quick separation, pre-concentration and determination of trace and 

ultratrace quantities of heavy metal in sample matrices with complex or variable 

composition by simple method has become the major interest in analytical chemistry. 

The construction of sensitive EME with GRC modified electrode have fast response, 

linear dynamic range, low cost, environmentally friendly and ease for preparation 

had been adding an advantage. Furthermore, this developed analytical technique was 

able to comply with the principle of sustainable development and green chemistry.  

 

 

Rapid growths of electromembrane studies demand the development of 

portable power supply device (PPSD) with battery. A portable power supply device 

(PPSD) with chargeable Li-ion battery have made on-site sampling or extraction. 

This developed portable device might be a powerful tool with combination of EME 

and voltammetry for simultaneous separation, pre-concentration and detection of 

trace level Pb(II), Cd(II) and Cr(VI) present in real  aqueous samples. This may be 

open up possibilities of development of other technical configurations in the future 

such as a portable EME or chronoamperometry system with software. 

 

 

 

 

1.6  Novelty of Study 

 

 

Till 2015, no research was carried out on the application of EME as a part of 

the electrochemical electrode system that can directly separate, pre-concentrate and 

detect heavy metal ions in real  environmental samples. However, the combination of 

these methods  started to get attention for heavy metal ions such as Hg(II) (Kamyabi 

& Aghaei 2016a) and As (III) (Kamyabi & Aghaei 2016b)  after the publication by 

Hamsawahini et al. (2015). Moreover, this is the first sudy that reported on the 
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development of a portable power supply device (PPSD) using chargable lithium ion 

battery for on-site EME sampling. 

 

 

1.7  Thesis Outline  

 

 

This thesis consists of six chapters. Chapter 1 describes in detail the research 

background, problem statement, objectives, scope as well as significance of the 

study. Chapter 2 compiles the literature review of separation and pre-concentration 

methods and voltammetry techniques for heavy metals. Chapter 3 describes 

methodologies and applications that involve LLE, voltammetry, electromembrane 

and portable power supply device development. 

 

 

Chapter 4 describes the preliminary studies conducted to investigate potential 

complexing carriers using liquid-liquid extraction technique for heavy metal ions 

including Cr(VI), Pb(II), and Cd(II). ICPMS and AAS used to determine the 

efficiency of metal extraction using complexing carriers. The results obtained used in 

developing EME technique for respective metals. This chapter also discusses on 

modified graphite reinforcement carbon electrodes in determination of Cr(VI), 

Pb(II), and Cd(II) using voltammetry techniques. NSbFE-GRC and ErGO-GRC used 

to determine the presence of Cr(VI), Pb(II), and Cd(II) in water samples such as 

industrial waste water, river water, sea water and tap water. 

 

 

Chapter 5 reports the development of EME using fabricated flat sheet PVDF 

membrane for Cr(VI), Pb(II), and Cd(II). EME techniques combined voltammetry 

techniques discussed in Chapter 4 which simultaneouly separate, pre-concentrate and 

determine Cr(VI), Pb(II), and Cd(II) in water samples such as industrial waste water, 

river water, sea water and tap water. Furthermore, this chapter describes the 

developed portable power supply device for EME and its efficiency for Cr(VI), 

Pb(II) and Cd(II) selective and simultaneous extraction in real samples such as tap, 

river, sea and industrial waste water. Finally, Chapter 6 summarizes the overall 

results obtained with suggestions for future work. 
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