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ABSTRACT 

  Evolving Spiking Neural Network (ESNN) is the third generation of artificial 

neural network that has been widely used in numerous studies in recent years. 

However, there are issues of ESSN that need to be improved; one of which is its 

parameters namely the modulation factor (Mod), similarity factor (Sim) and threshold 

factor (C) that have to be manually tuned for optimal values that are suitable for any 

particular problem. The objective of the proposed work is to automatically determine 

the optimum values of the ESNN parameters for various datasets by integrating the 

Firefly Algorithm (FA) optimizer into the ESNN training phase and adaptively 

searching for the best parameter values. In this study, FA has been modified and 

improved, and was applied to improve the accuracy of ESNN structure and rates of 

classification accuracy. Five benchmark datasets from University of California, Irvine 

(UCI) Machine Learning Repository, have been used to measure the effectiveness of 

the integration model. Performance analysis of the proposed work was conducted by 

calculating classification accuracy, and compared with other parameter optimisation 

methods. The results from the experimentation have proven that the proposed 

algorithms have attained the optimal parameters values for ESNN.  
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ABSTRAK 

 

 

Rangkaian Neural Pakuan Berevolusi (ESNN) adalah rangkaian neural buatan 

generasi ketiga yang banyak digunakan dalam kajian terkini. Walau bagaimanapun, 

terdapat permasalahan ESNN yang perlu diselesaikan iaitu salah satunya adalah 

parameternya iaitu faktor modulasi (Mod), faktor persamaan (Sim) dan faktor ambang 

(C) yang perlu diubah secara manual untuk nilai optimum yang sesuai bagi setiap 

permasalahan. Objektif bagi cadangan kerja yang dicadangkan adalah menentukan 

nilai parameter yang optimum secara automatik untuk parameter ESNN bagi setiap 

dataset dengan mengintegrasikan pengoptimum Algoritma Kelip-kelip (FA) ke dalam 

fasa latihan ESNN dan secara adaptif mencari nilai parameter yang paling baik. Dalam 

kajian ini FA telah diubahsuai dan ditambahbaik serta digunakan untuk meningkatkan 

ketepatan struktur ESNN dan kadar ketepatan klasifikasi. Lima dataset dari 

pembelajaran mesin University of California, Irvine (UCI) telah digunakan untuk 

mengukur keberkesanan model integrasi ini. Analisis prestasi kerja yang dicadangkan 

dilakukan dengan mengira ketepatan klasifikasi dan dibandingkan dengan kaedah 

pengoptimuman parameter yang lain. Hasil kajian telah membuktikan bahawa 

algoritma yang dicadangkan telah mencapai nilai parameter optimum untuk ESNN. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 Classification is one of the most commonly encountered processing tasks for 

decision making. A problem of classification occurs when an object requires to be 

assigned into a group that are predefined or class based on a number of observed 

attributes related to that object. Classification problems cover many areas in life such 

as medical diagnoses, medicine, science, industry, speech recognition and handwritten 

character recognition. A classifier have proven to be one of the most robust 

classification system which is ANN. It has the ability to deal with input pattern that 

are noisy and able to handle continuous data. Thus, demonstrated ANN as an important 

tool for classification (Mitchell, 1997).   

 ANN has been inspiration by the dynamics of the human brain. It has motivated 

the researchers to use the model as a powerful computational tool in solving complex 

pattern recognition, function estimation, classification problems and complex 

optimisation problems (Ghosh-Dastidar & Adeli, 2009). In designing and training the 

ANN structure, parameter defining is necessary; for example, the number of hidden 
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layers and neurons in the layers. Upon specific application, these features have 

changed. In defining these parameters, there is no general and explicit method. Each 

time the method of trial and error was used, the computational time has been increased 

and the method output has not been precise. Over time, researchers have been able to 

grasp the dynamics of the human brain which has led to the development of more 

biologically realistic network models. The outcome of this development has pointed 

towards to the introduction of SNN (Maass, 1997). 

SNN are the third generation of neural network model. The model uses spikes 

as a substitute and analyses the pulse coded information (Gerstner, 2001; Gerstner et 

al., 1993; Gerstner & van Hemmen, 1994; N. Kasabov, 2008; Maass, 1997). 

Additionally, when SNN is compared with ANN, SNN models provide more in-depth 

descriptions of the behaviour of biological neurons. Moreover, more addition 

information is used for the computations of the firing rate between real neurons. The 

rate coding which ANN used to represent the neuronal activity is less preferred 

compared to SNN, which used the difference in firing times. 

 

Even though SNN has many models, ESNN is one of the SNN which uses more 

of the research to do with neural networks. The reasons are that ESNN is simple with 

an efficient model of neurons and is trained with a fast one-pass learning algorithm 

(Hamed, 2012). ESNN’s evolved model nature can be updated when new data is 

accessible with no regards to retraining the earlier existing samples.  

 

In contrast, according to Hamed (2012), ESNN architecture - which has been 

discussed first in Wysoski et al. (2006) and as a further extension of evolving 
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connectionist systems (ECOS) method extended by Kasabov (1998) where the output 

of the network is influenced by the correct combination of parameters. This allows the 

network to reach the best outcome. Therefore, in order to find the best combination of 

parameters, an optimiser is needed.  

 

Optimization has been used to optimize ESNN parameters. There are three 

ESNN parameter values: (1) modulation factor (Mod), (2) threshold factor (C) and (3) 

similarity value (Sim). Selecting a better optimization algorithm is necessary to solve 

the real-world applications, especially for optimal parameter values for ESNN. Meta-

heuristic algorithms, mainly FA, are common competitors in optimization problems 

because of the following characteristics: adaptive applicability, simpler 

implementation, efficiently solving complex problems. Therefore, FA is conducted to 

optimize ESNN parameters.  

 

FA is one of the promising meta-heuristic algorithms that have been developed 

by Yang (2008) and can be utilized for solving optimization problems. FA solving uses 

a stochastic way and local search for a set of solutions which balances the exploration 

and exploitation of the search processes. The key objective of FA is to improve ESNN 

optimal solutions for parameter values and classification accuracy. 
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1.2 Problem Background 

 The research conducted by Maass (1999) and Schrauwen and Van 

Campenhout (2006) has shown SNN as being auspicious in simulating the information 

processed inside the human brain than sigmoid representations and analog neural 

networks. These has been directed SNN toward as vital method for classification. 

There are many classification problems that have used many types of SNN. Several 

studies done by Bohte et al. (2002a) such as supervised learning algorithm, spike 

backpropagation (SpikeProp), and spike-time encoding based on error BP has been 

used for solving classification problems.  

 

In Schrauwen et al. (2004), various learning rules to extend SpikeProp for good 

learning of spike times has been proposed. Consequently, Improved SpikeProp with 

particle swarm optimization (PSO) and angle-driven dependency learning rate has 

been presented for different methods for classification problems (Ahmed et al., 2013a). 

Even though much research in to SNN has been done, there is still a need to further 

the research to find out the most effective methods for optimising the parameters. One 

attempts is by Wysoski et al, (2006c), which proposed a new and improved model of 

SNN which is the ESNN.  

 

Recent studies on the hybridization of the ESNN algorithm have been 

implemented. ESNN has been combined with PSO as a novel supervised learning 

algorithm proposed by Hamed et al. (2011a). ESNN has shown that it is an efficient 

neural model trained using fast one-pass learning and that the abilities of the model 

can be updated whenever new samples are accessible without retraining (Schliebs et 
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al., 2009). Despite that, ESNN is affected by the selection of parameters, in which case 

the right selection of parameters will allow the network to develop towards a more 

effective structure. In Hamed et al. (2011) studies, it is determined that to achieve the 

number of optimal pre-synaptics neurons for a given dataset is the most significant 

problem. Another work from Hamed (2012), lower number of input spikes generated 

is caused by a fewer number of pre-synaptic neurons. This can affect learning 

accuracy, but with a larger number, this also increases the computational time. 

Kasabov (2003) mentioned that the evolving processes are difficult to model as there 

might be no prior knowledge for some parameters.  

 

Watt (2009) has pointed that a significant advantages would have been 

achieved to train parameters with the automatic selection of ECOS. Therefore, for the 

right parameter combination to be found, an optimiser is required (Saleh et al., 2014). 

There are several research studies that have been done in relation to the optimisation 

parameters of ESNN such as the Versatile Quantum-inspired Evolutionary Algorithm 

(vQEA) with ESNN (Schliebs, Platel, et al., 2009), Quantum-inspired Particle Swarm 

Optimisation (QiPSO) with ESNN by Hamed et al., (2009), and Evolutionary 

Algorithms (EA) with ESNN proposed by Saleh et al. (2014). According to Schliebs 

et al. (2009), from the analysis of the research results, the average accuracy achieved 

is constantly above 80%. On the other hand, in ESNN-QiPSO research, it was reported 

that from the analysis of the results, the average accuracy achieved is more than 90% 

when compared to ESNN only. Furthermore, the integrated ESNN-EA also reported 

that the average accuracy achieved is more than 90%.  
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There are several integrations between Evolutionary Algorithm (EA) and 

Swarm Intelligence (SI) methods with ESNN that have been conducted such as QiPSO 

(Hamed et al., 2009), vQEA (Schliebs et al., 2009), Heterogeneous Multi-Model 

Estimation of Distribution Algorithm (hMM-EDA) (Schliebs et al., 2010) and new 

hybrid harmony search algorithm with evolving spiking neural network (NHS-ESNN) 

(Saleh et al., 2017). However, for example, Genetic Algorithms (GA) have some 

drawbacks such as the fixed value of the parameters, competing for conventions and 

premature convergence problems (Kim et al., 2005; Sahab et al., 2005). 

The research studies above have shown good performance when integrating 

EA with ESNN. However, to challenge these research studies in order to get more 

effective optimisation and to improve ESNN performance, FA integrated with ESNN 

is proposed. Although FA is a relatively new meta-heuristic algorithm, its 

effectiveness and advantages have been applied in various applications such as 

classification and clustering (Rajini, 2012). Subsequently, a comprehensive 

performance study of FA with a comparison to another 11 different algorithms has also 

been conducted. The study showed that clustering can be solved using FA efficiently 

(Senthilnath et al., 2011). According to Banati and Bajaj (2011), FA has shown 

consistency and performs better in finding the optimal value for feature selection. 

Several studies conducted by Abshouri et al. (2011) and Farahani et al. (2011) have 

evaluated FA in relation to optimisation in dynamic environments has shown that FA 

is very efficient. Therefore, this research integrates FA with ESNN to find the optimal 

parameters value of ESNN and improve the classification accuracy of ESNN. 
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The problem faced in this research is if the proposed integration method of 

ESNN and FA is beneficial for learning improvement and for use as a new and 

effective ESNN parameter optimiser. In the latest study in neural networks, ESNN has 

received a lot of attention since ESNN offers several advantages over other neural 

networks model such as perceptron and multilayer perceptron (MLP) (Batllori et al., 

2011; Kasabov, 2012; Kasabov et al., 2014; Mohemmed et al., 2013; Murli et al., 2014; 

Nuntalid et al., 2011a; Schliebs and Kasabov, 2013). Despite that, due to the 

ineffectiveness of model optimisation and parameter selection strategies such as MLP 

with PSO (Çam et al., 2015; Kawam & Mansour, 2012), the integration of ESNN with 

FA has been proposed in this study.  

 

Mod, Sim and C are ESNN parameters used in the learning process of the 

ESNN algorithm. Currently, these parameters are currently set by hand. Therefore, to 

produce automated parameter selection is quite challenging (Kasabov, 2012; Kita, 

2011; Pears et al., 2013; Yu et al., 2014). The parameter optimisation in ESNN is 

crucial as it ensures the best classification output (Hamed, 2012).  

 

Nevertheless, it is supposed that there is ‘no free lunch theorem’ as no specific 

algorithm can achieve optimal performance for specific problems (Wolpert and 

Macready 1997). These study will explore further in to improving the FA for 

classification enhancement. On the other hand, it is the superiority of FA compared to 

other optimisation algorithms such as PSO and GA to consider, which includes being 

much more convenient to implement and better performance with a low number of 

parameters and being less complex in space (Fister et al., 2013) that has inspired 

research in to utilising this integration. 
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1.3 Research Aim 

This research aims to enhance the learning of Evolving Spiking Neural 

Networks (ESNN) with the Firefly Algorithm as a new and effective ESNN parameter 

optimizer. 

1.4 Research Questions 

 The following are the research questions used to address the goal of the 

research: 

 

i. How to develop an integrated model of Evolving Spiking Neural Network 

(ESNN) and Firefly Algorithm (FA) for learning improvement? 

ii. How to improve Firefly Algorithm as parameter optimizer to optimize ESNN’s 

parameters? 

iii. What are the estimation of parameters range for ESNN? 
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1.5 Research Objectives 

 The objectives of this study are: 

 

i. To develop an integrated model of Evolving Spiking Neural Network (ESNN) 

and Firefly Algorithm (FA) for learning improvement. 

ii. To improve Firefly Algorithm (FA) as parameter optimizer to optimize 

ESNN’s parameters 

iii. To estimate the optimal parameter range for ESNN. 

 

1.6 Research Scope 

 The scope of this research is as follow: 

 

i. The benchmark dataset used for evaluating the proposed methods are Iris, 

Wisconsin Breast Cancer, Pima Indians Diabetes, Heart and Wine dataset taken 

from UCI Machine Learning  

ii. The proposed architecture ESNN-FA focuses on the optimization of the three 

parameters of ESNN namely modulation factor (Mod), proportion factor (C) 

and similarity factor (Sim) for learning improvement. 

iii. The performance of the proposed methods is tested based on the classification 

accuracy. 
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1.7 Significance of Research 

This research study is conducted to enhance the ESNN learning algorithm by 

using FA as a new and effective parameter optimiser. The performance of FA as a 

parameter optimiser for enhancing ESNN training has been investigated using ESNN-

FA integration. Furthermore, the integration of the ESNN structure with FA will be 

developed. 

1.8 Thesis Organization 

 This thesis contains five chapters and is briefly discussed below:  

 

 Chapter 2, the literature review, this chapter provides an overview of SNN, 

ESNN and the meta-heuristic algorithm that are used in this study. The components of 

SNN, which are encoding methods, neuron models and learning are introduced. 

ESNN’s principles and their applications are also reviewed. 

 

 Chapter 3, this chapter illustrates the research methodology in this study. The 

methodology is presented in flow chart diagram with brief explanation on each step 

being utilized. The integrated model of ESNN-FA where FA acts as an optimizer of 

ESNN parameters is explained. 
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 Chapter 4, this chapter presents the results of this study. Analysis and 

comparative study of the results to evaluate the performance of the proposed methods 

are also discussed here. 

 

 Chapter 5, conclusions and the future research are discussed in this chapter. 

The contributions and the results of this study also highlighted in this chapter. 
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