
DATAFLOW ACTOR NETWORK PARTITIONING FOR MULTIPLE FPGAS

CHIN YONG HUAN

A project report submitted in partial fulfilment of the 
requirements for the award of the degree of 

Master of Engineering (Computer and Microelectronic Systems)

Faculty of Electrical Engineering 
Universiti Teknologi Malaysia

JUNE 2016



Ill

To my beloved mother and father



ACKNOWLEDGEMENT

I would like to thank all who in one way or another contributed in the 
completion of this thesis. First and foremost, I would like to acknowledge and deliver 
a highest appreciation to my project supervisor, Dr. Ab A1 Hadi Ab Rahman, for 
his valuable direction and advice rendered. Sincere thanks too for his contribution, 
guidance, care, patience and effort in guiding and inspiring me throughout the project. 
His suggestions had often inspired me in conducting this project.

Secondly, I would like to thank Intel Technology Sdn Bhd for providing 
supports and also adequate facilities which allow me to complete this project in time. 
Also, thanks to all of my colleagues who are supportive, understanding and often 
provide encouragement to me.

Finally, a humble and honorable thanks goes to my family for their 
understandings and supports to me in completing this report. Besides that, I would 
like to thank my friends for helping me when I encountered dificulties by sharing their 
useful opinions and suggestions.



V

ABSTRACT

Dataflow actor network is used to display the relation between different actors 
in a directed graph. It is suitable for modelling signal and video processing in 
software applications. In this paper, the use of dataflow actor network is extended 
to the hardware implementation of streaming applications via dataflow actor network 
partitioning for multiple FPGAs based on the number of cuts, connection workload, 
resource utilization ratio and latency. Multiple FPGAs partitioning is often required 
for implementing design with large logic count, for cost reduction, multi clock and 
multi power domains design implementation. The motivation of using the dataflow 
actor network is due to the nature of the network which closely resembles the 
structural view and the inter-connections of a design at the architecture level. This 
representation in the form of a dataflow actor network is suitable for implementing 
graph partitioning algorithms. The KL algorithm, GA, PSO, SA and WOA are used for 
single objective partitioning while the MOPSO, MOSA and MOWOA have been used 
for multi objective partitioning. The objective of this study is to develop partitioning 
algorithm suitable for use in dataflow actor network and to determine the appropriate 
partitioning criteria. Results showed that SA has better performance as compared to 
other partitioning algorithm for single objective partitioning. On the other hand, for 
multi objective partitioning the MOPSO has better performance for small design while 
MOSA has better performance for larger design.



ABSTRAK

Rangkaian aliran data digunakan untuk menunjukkan hubungan antara 
aktor yang berbeza dalam graf berarah. Ia sesuai untuk pemodelan isyarat dan 
pemprosesan video dalam aplikasi perisian. Dalam thesis ini, rangkaian aliran 
data aktor akan digunakan dalam pembahagian rangkaian aliran data pelakon 
untuk perkakasan aplikasi pemprosesan video melalui beberapa FPGAs berdasarkan 
bilangan pemotongan antara partition yang berbeza, beban komunikasi sambungan, 
nisbah penggunaan sumber dan kependaman. Pembahagian reka bentuk melalui 
beberapa FPGAs sering diperlukan untuk melaksanakan reka bentuk yang mempunyai 
kiraan logik besar untuk tujuan mengurangkan kos dan untuk pelaksanaan reka 
bentuk yang memerlukan pelbagai kelajuan jam dan domain kuasa. Antara motivasi 
menggunakan rangkaian aliran data pelakon adalah kerana sifat rangkaian yang hampir 
menyerupai pandangan struktur dan saling sambungan reka bentuk pada peringkat 
seni bina. Perwakilan ini dalam bentuk rangkaian aliran data pelakon sesuai untuk 
melaksanakan algoritma pembahagian graf. Algoritma KL , GA, PSO , SA dan 
WOA digunakan untuk pembahagian objektif tunggal manakala MOPSO, MOSA dan 
MOWOA telah digunakan untuk pembahagian pelbagai objektif. Objektif kajian 
ini adalah untuk membuat algoritma pembahagian sesuai untuk digunakan dalam 
rangkaian aliran data pelakon dan untuk menentukan kriteria pembahagian yang 
sesuai. Eksperimen menunjukkan SA mempunyai prestasi yang lebih baik berbanding 
dengan algoritma pembahagian lain untuk pembahagian objektif tunggal. Sebaliknya, 
untuk pembahagian pelbagai objektif, MOPSO mempunyai prestasi yang lebih baik 
untuk reka bentuk kecil manakala MOSA mempunyai prestasi yang lebih baik untuk 
reka bentuk yang lebih besar.
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CHAPTER 1

INTRODUCTION

1.1 Project Background

The role of semiconductors have been growing at a tremendous rate in many 
fields and had even extended their applications in fields previously known as unrelated 
to semiconductors such as in fashion industries, automobiles and wearables (spectacle, 
watch, jewelry etc.). Thus, electronics and integrated circuits with low operating power 
and small die size are in great demands. Following these aspects, the application 
specific integrated circuit (ASIC) design and fabrication techniques are constantly 
being improved by scaling down device length and further push the performance of 
the device. While this approach is still feasible and complies with Moore’s Law, it 
is often accompanied by the increase in complexity and non-recurring engineering 
cost. Furthermore, with the increase in competitiveness in semiconductor fields, 
semiconductors and integrated circuits business units had to put in a lot of effort in 
achieving the shortest time to market in order to rise above other competitors. Hence, 
there have been a shift in recent years from ASIC to field programmable gate array.

FPGAs are used in many applications. Some common uses include ASIC 
design prototyping, data networking, medical, automotive, communication, audio, 
video and image processing. Although FPGA can be used as a single device, there are 
also occasions where multiple FPGA devices are more desirable for implementing a 
system in order to improve performance. One example of such system is the SPLASH 
system developed by Supercomputing Research Center (SRC). The SPLASH system 
consists of an array of linearly connected reconfigurable logic made up from 32 Xilinx 
3090 FPGAs used to perform compute intensive applications and for testing hardware- 
based systolic algorithms [1].
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Figure 1.1: Architecture of SPLASH [1]

Besides specialized architectures, there are other instances which require usage 
of multiple FPGAs. One such instance is design partitioning. Partitioning in general 
refers to dividing something into smaller independent divisions. However, in terms of 
FPGAs partitioning, it refers to division of a RTL design into a few individual FPGA 
devices. In one of the white paper from the International Technology Roadmap of 
Semiconductor (ITRS) entitled “More than Moore”, modem very large scale integrated 
circuit (VLSI) design does not only demands scaling down of device sizes, but also 
demands the increase in functionality of the device [3]. This leads to logic design 
getting larger and more complex. Prototyping is no longer feasible as it is not possible 
for the design to fit into a single FPGA device. Hence, multiple FPGAs are used to 
increase the resources of the FPGA device such as CLB, flip flop, static RAM (SRAM) 
and I/O pin. By partitioning the design into separate different FPGA devices, each 
partition can be connected to one another by means of external connection through the 
device pin.

Although there have being new release of FPGA device with large number 
of logic cells such as the Xilinx UltraSCALE, it is sometimes still preferable to 
use multiple smaller FPGA devices to reduce the cost. In addition, some designs 
may require operation in multiple power domains, clock frequency or even different 
technology node which could only be made possible by using multiple FPGAs devices. 
Furthermore, multiple FPGAs partitioning can be used to model the partitioning of a 
design into several different integrated circuit (IC) packages to test for functionality
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as the size of IC packages are often fixed and several sub functions in a design might 
need to be separate into different IC packages. Multiple FPGAs partitioning can be 
done either manually or by means of an electronic design automation (EDA) tool. 
Conventional approach favors the manual method over the dependence on EDA tools 
as designers have more flexibility and control over the distribution of the logic cells to 
obtain balance partitions. Nevertheless, the improvement of EDA tools and also the 
increase in the size of a design had cause the shift in favor over EDA tools than manual 
efforts as manual efforts are cumbersome and hard to achieve timing convergence 
without the aid of an EDA tool. Commercial tool such as Xilinx PlanAhead had 
also used automated partitioning to assign logic cells to different CLBs. In addition, 
designers are also given the flexibility to prioritize on the criteria used for deciding 
the partitions -  either based on resource constrain, timing constrain or balanced 
partitioning.

It is undeniable that these few criteria are the main criteria for obtaining 
good quality partitions. However, in specific application designs such as streaming 
application design requires additional criteria. Other performance metrics that are 
needed to be taken into account includes critical path delay, latency, throughput 
and maximum allowable operating frequency. In this thesis, the cut size and the 
communication rate are considered when performing partitioning. Cut size refers the 
number of interconnections crossing the boundaries between multiple FPGAs while 
the communication rate refers to the number of bits transfer over an interconnection. 
These performance metrics are important as partitioning at interconnections with high 
communication rate and high number of cut size would introduce unnecessary delay 
and interference to the data transferred. Furthermore, it will also affect the overall 
throughput of the system due to the introduction of parasitic delay in the external wires.

In order to partition the design based on cut size and communication rate, a 
suitable representation of the overall system to be partitioned is necessary. While 
there are many partitioning techniques which perform partitioning based on RTL 
netlist of a design, CAL actor language (CAL) is used in this thesis. Using CAL, 
the design is represented in the form of a dataflow actor network. Each actor 
represents one of the functional units in the design while the edges of the dataflow 
networks represent the interconnection between the functional units. Advantage of 
using the CAL actors is that a design is already being represented in graph form 
and hence there is no need for an intermediate stage to transform RTL netlist into 
graph representation. Furthermore, dataflow actor networks are better representation 
for streaming applications as compared to behavioral or netlist representation.
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The organization of this thesis is as follows. Chapter one provides some 
background information on dataflow actor network partitioning based on cut size and 
communication rate. The problem statements, objectives, motivation and the scope of 
study of this thesis are also being discussed for comprehension of readers. Chapter two 
provides the review of previous related works regarding CAL actors and partitioning 
techniques. In chapter three, the methodology used for CAL actor partitioning is being 
shown and described in details. Chapter four shows the preliminary results and the 
associated discussions. Chapter five concludes and provides some insight on CAL 
actor partitioning.

1.2 Problem Statement

Partitioning problems have being regarded as classical problems involving 
graph which consists of nodes and edges. The nodes of the graph is usually partitioned 
into two different groups, known as bi-partitioning. The bi-partitioning problem is 
first addressed by Brian Wilson Kemighan and Shen Lin. Both of them had come out 
with an algorithm known as the Kemighan-Lin (KL) algorithm to solve the traveling 
saleman problem which later has being adapted for graph partitioning [4]. Many of the 
variation of partitioning algorithms are based on the KL algorithm and its application 
had being used in VLSI circuit partitioning.

Recent papers such as in [5-7], the graph partitioning problems had also 
being used to perform hardware software partitioning of dataflow graph network. 
The sub blocks partitioned into hardware acts as an accelerator to improve its speed 
performance. However, there are yet to be found the literature on partitioning of 
dataflow graph network as a fully dedicated hardware design.

Besides that, in most partitioning problem, only the resource constrain and 
timing constrain is being considered. In addition, the partitioning of the dataflow actor 
network often done for multicore processor using actor workload as the partitioning 
criteria which is not suitable for use as a partitioning criteria in FPGA implementation. 
Lastly, general partitioning is often performed at lower abstraction level hence suitable 
for smaller design only or require more complicated partitioning algorithm.
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1.3 Objectives

There are several objectives to be met in this project. They are:-

1. To develop partitioning algorithm to perform hardware partitioning of the actors 
in a network of a design into multiple FPGA devices.

2. To investigate suitable partitioning criteria for use of dataflow actor network 
partitioning.

1.4 Motivation

The dataflow actor network resembles the structural view and the inter­
connections of a design at the architecture level suitable for implementing graph 
partitioning algorithms. In addition, the current partitioning of the dataflow actor 
network are either fully software implemented in the multicore processor or hardware 
software co-design implemented in both FPGA and processor. For the partitioning 
of dataflow actor in multiprocessor, the common partitioning criteria used is the actor 
workload obtained through software profiling while for hardware software co-design, 
the partitioning criteria commonly used is the actor execution time and resource area. 
The partitioning criteria for both cases are not suitable to be used for a fully hardware 
dedicated FPGA implementation.

1.5 Scope of Study

The study of dataflow actor network covers a very large field of research. 
However, not every aspect of dataflow actor network is covered in this thesis. The 
partitioning of actor network demonstrated in this thesis is limited to bi-partitioning 
problems. Nevertheless, using the same basic principal, the partitioning could be 
expended to handle k-way partitioning. In terms of the partitioning criteria, this thesis 
focuses more on the number of cuts, connection workload, resource utilization ratio 
and actor latency.

Since part of the study done in this thesis involved creating partitioning 
algorithm for the dataflow actor network, it is inevitable that some of the processes
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need to be automated. However, automation would only be done in several aspects 
such as acquiring the RVC-CAL design, performing characterization and performing 
partitioning. Other intermediate processes such as converting the RVC-CAL design 
into its equivalent HDL representation would be done manually.

Lastly, the partitioning methodology and the use of RVC-CAL as design 
representation introduced in this thesis are for streaming application designs. Other 
forms of applications had yet to be tested. The test case used for evaluating the 
partitioning algorithm is the four-tap FTR digital filter, HEVC decoder and MPEG4 
decoder.
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