
DATAFLOW ACTOR NETWORK PARTITIONING FOR MULTIPLE FPGAS

CHIN YONG HUAN

A project report submitted in partial fulfilment of the
requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2016

Ill

To my beloved mother and father

ACKNOWLEDGEMENT

I would like to thank all who in one way or another contributed in the
completion of this thesis. First and foremost, I would like to acknowledge and deliver
a highest appreciation to my project supervisor, Dr. Ab A1 Hadi Ab Rahman, for
his valuable direction and advice rendered. Sincere thanks too for his contribution,
guidance, care, patience and effort in guiding and inspiring me throughout the project.
His suggestions had often inspired me in conducting this project.

Secondly, I would like to thank Intel Technology Sdn Bhd for providing
supports and also adequate facilities which allow me to complete this project in time.
Also, thanks to all of my colleagues who are supportive, understanding and often
provide encouragement to me.

Finally, a humble and honorable thanks goes to my family for their
understandings and supports to me in completing this report. Besides that, I would
like to thank my friends for helping me when I encountered dificulties by sharing their
useful opinions and suggestions.

V

ABSTRACT

Dataflow actor network is used to display the relation between different actors
in a directed graph. It is suitable for modelling signal and video processing in
software applications. In this paper, the use of dataflow actor network is extended
to the hardware implementation of streaming applications via dataflow actor network
partitioning for multiple FPGAs based on the number of cuts, connection workload,
resource utilization ratio and latency. Multiple FPGAs partitioning is often required
for implementing design with large logic count, for cost reduction, multi clock and
multi power domains design implementation. The motivation of using the dataflow
actor network is due to the nature of the network which closely resembles the
structural view and the inter-connections of a design at the architecture level. This
representation in the form of a dataflow actor network is suitable for implementing
graph partitioning algorithms. The KL algorithm, GA, PSO, SA and WOA are used for
single objective partitioning while the MOPSO, MOSA and MOWOA have been used
for multi objective partitioning. The objective of this study is to develop partitioning
algorithm suitable for use in dataflow actor network and to determine the appropriate
partitioning criteria. Results showed that SA has better performance as compared to
other partitioning algorithm for single objective partitioning. On the other hand, for
multi objective partitioning the MOPSO has better performance for small design while
MOSA has better performance for larger design.

ABSTRAK

Rangkaian aliran data digunakan untuk menunjukkan hubungan antara
aktor yang berbeza dalam graf berarah. Ia sesuai untuk pemodelan isyarat dan
pemprosesan video dalam aplikasi perisian. Dalam thesis ini, rangkaian aliran
data aktor akan digunakan dalam pembahagian rangkaian aliran data pelakon
untuk perkakasan aplikasi pemprosesan video melalui beberapa FPGAs berdasarkan
bilangan pemotongan antara partition yang berbeza, beban komunikasi sambungan,
nisbah penggunaan sumber dan kependaman. Pembahagian reka bentuk melalui
beberapa FPGAs sering diperlukan untuk melaksanakan reka bentuk yang mempunyai
kiraan logik besar untuk tujuan mengurangkan kos dan untuk pelaksanaan reka
bentuk yang memerlukan pelbagai kelajuan jam dan domain kuasa. Antara motivasi
menggunakan rangkaian aliran data pelakon adalah kerana sifat rangkaian yang hampir
menyerupai pandangan struktur dan saling sambungan reka bentuk pada peringkat
seni bina. Perwakilan ini dalam bentuk rangkaian aliran data pelakon sesuai untuk
melaksanakan algoritma pembahagian graf. Algoritma KL , GA, PSO , SA dan
WOA digunakan untuk pembahagian objektif tunggal manakala MOPSO, MOSA dan
MOWOA telah digunakan untuk pembahagian pelbagai objektif. Objektif kajian
ini adalah untuk membuat algoritma pembahagian sesuai untuk digunakan dalam
rangkaian aliran data pelakon dan untuk menentukan kriteria pembahagian yang
sesuai. Eksperimen menunjukkan SA mempunyai prestasi yang lebih baik berbanding
dengan algoritma pembahagian lain untuk pembahagian objektif tunggal. Sebaliknya,
untuk pembahagian pelbagai objektif, MOPSO mempunyai prestasi yang lebih baik
untuk reka bentuk kecil manakala MOSA mempunyai prestasi yang lebih baik untuk
reka bentuk yang lebih besar.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xiv

1 INTRODUCTION 1
1.1 Project Background 1
1.2 Problem Statement 4
1.3 Objectives 5
1.4 Motivation 5
1.5 Scope of Study 5

2 LITERATURE REVIEW 7
2.1 Introduction 7
2.2 Model of Computation 7

2.2.1 Kahn Process Network 8
2.2.2 Dataflow Process Network 9
2.2.3 Synchronous Dataflow 9
2.2.4 Parameterized Synchronous Dataflow 10
2.2.5 Cyclo-Static Dataflow 10

2.3 CAL Actor 11
2.4 ORCC CAL Design How 12
2.5 CAL Actor Partitioning 16

2.5.1 Keminghan Lin 17

2.5.2 Simulated Annealing 20
2.5.3 Genetic Algorithm 22
2.5.4 Particle Swarm Optimization 24
2.5.5 Bee Swarm Algorithm 26
2.5.6 Ant Clustering Algorithm 28
2.5.7 Whale Optimization Algorithm 30

2.6 Comparison of Partitioning Algorithm 32
2.7 Research Gap 33

3 RESEARCH METHODOLOGY 34
3.1 Introduction 34
3.2 Project Design Flow 34

3.2.1 Determination of Testcase 36
3.2.2 Software Profiling 37
3.2.3 Hardware Characterization 38
3.2.4 Partitioning Criteria 40
3.2.5 Development of Partitioning Algorithm 43
3.2.6 Performance Metric 45

3.2.6.1 Partitioning Algorithm Perfor­
mance 45

3.2.6.2 Hardware Performance 50

4 RESULT AND DISCUSSION 52
4.1 Introduction 52

4.1.1 FIR Digital Filter Test Case 52
4.1.2 HEVC Decoder Test Case 55
4.1.3 MPEG4 Decoder Test Case 58

4.2 Single Objective Partitioning Algorithm 63
4.2.1 Partitioning Algorithm Performance 63

4.3 Multi Objective Partitioning Algorithm 65
4.3.1 Partitioning Algorithm Performance 65
4.3.2 Partitions’ Hardware Performance 68

5 CONCLUSION 72
5.1 Research Outcomes 72
5.2 Future Works 73

REFERENCES 75

Appendix A

X

TABLE NO. TITLE PAGE

2.1 Difference between Classical Dataflow Network and CAL
Actor Dataflow Network 16

2.2 Comparison of Partitioning Algorithm 32
3.1 Testcase Description 36
3.2 Single Objective Partitioning Algorithm 43
3.3 Multi Objective Partitioning Algorithm 45
4.1 Adjacency Matrix of FIR Digital Filter 53
4.2 Connection Workload of FIR Filter 54
4.3 FIR Filter Software Profiling Data 54
4.4 FIR Digital Filter Hardware Characterization Data 55
4.5 Software Profile Data of HEVC Decoder 57
4.6 Hardware Characterization Data of HEVC Decoder 58
4.7 Software Profile Data of MPEG4 Decoder 60
4.8 Software Profile Data of MPEG4 Decoder 61
4.9 Hardware Characterization Data of MPEG4 Decoder 62
4.10 Average Number of Cuts for Different Partitioning Algorithm 64
4.11 Standard Deviation and Run Time of Single Objective

Partitioning Algorithm 64
4.12 Performance Metric of Multiobjective Partitioning Algorithm

68

4.13 Partitioning Data for Three Objective Function (FIR Digital
Filter) 69

4.14 Partitioning Data for Four Objective Function (FIR Digital
Filter) 70

4.15 Partitioning Data for Four Objective Function (HEVC
Decoder) 70

4.16 Partitioning Data for Four Objective Function (MPEG4
Decoder) 71

5.1 Differences between Classical Graph and Dataflow Actor
Network 72

LIST OF TABLES

Hardware Performance of Different Test Cases

xii

FIGURE NO. TITLE PAGE

1.1 Architecture of SPLASH [1] 2
2.1 DPN Structure in Dataflow Actor Network 12
2.2 CAL Design Flow [2] 13
2.3 (a) Hypergraph (b) Dataflow Actor Graph 17
2.4 Keminghan Lin Flow Chart 19
2.5 Simulated Annealing Flow Chart 21
2.6 Genetic Algorithm Flow Chart 23
2.7 Particle Swarm Optimization Flow Chart 25
2.8 Bee Swarm Algorithm Flow Chart 27
2.9 Ant Colony Optimization Flow Chart 29
2.10 Whale Optimization Algorithm 31
3.1 Project Design Flow 35
3.2 VTVADO IDE Project How 39
3.3 Number of Cuts between Two Partitions 41
3.4 (a) Dataflow Actor Network in a Single Partition (b) Dataflow

Actor Network Split into Two Separate Partitions 42
3.5 General Procedure for Changing OP Algorithm to GPP

Algorithm 44
3.6 Displacement of Pareto Front 46
3.7 Coverage of Pareto Front 48
3.8 Spacing of Pareto Front 49
3.9 Maximum Spread of Pareto Front 50
4.1 FIR Digital Filter Dataflow Actor Network 53
4.2 HEVC Decoder Dataflow Actor Diagram 56
4.3 MPEG4 Decoder Dataflow Actor Network 59
4.4 Box Plot of Single Objective Partitioning Algorithm for 100

Iterative 63
4.5 Complete Data Set for Three Objective Function 65
4.6 Pareto Front of Three Objective Function 66
4.7 Pareto Front Obtained using MOPSO 66

LIST OF FIGURES

Pareto Front Obtained using MOWOA
Pareto Front Obtained using MOSA

xiv

ACO - Ant Colony Optimization
ALAP - As-Late-As-Possible
ASAP - As-Soon-As-Possible
BPSO - Binary Particle Swarm Optimization
CAL - CAL Actor Language
CSDF - Cyclo-Static Dataflow
DFG - Data How Graph
DPN - Data Process Network
DVD - Digital Versatile Disk
EDA - Electronic Design Aided
FIFO - First In First Out
FIR - Finite Impulse Response
FPGA - Field Programmable Gate Array
FSM - Finite State Machine
GA - Genetic Algorithm
HDL - Hardware Description Language
HEM - Hardware Program Execution Buffer Size Minimum
HEO - Hardware Program Execution Buffer Size Optimization
HEVC - High Efficiency Video Coding
IDE - Integrated Development Environment
ITRS - International Technology Roadmap of Semiconductor
KL - Kemighan Lin
KPN - Kahn Process Network
MOPSO - Multi Objective Particle Swarm Optimization
MOSA - Multi Objective Simulated Annealing
MOWOA - Multi Objective Whale Optimization Algorithm
MPEG - Moving Picture Experts Group
ORCC - Open RVC-CAL Compiler
PSDF - Parameterized Synchronous Dataflow
PSO - Particle Swarm Optimization

LIST OF ABBREVIATIONS

X V

RVC-CAL - Reconfigurable Video Coding
SA - Simulated Annealing
SCR - Super Computer Research
TEM - Trace Execution Buffer Size Minimization
TEO - Trace Execution Buffer Size Optimization
VLSI - Very Large Scale Integration
SDF - Synchronous Dataflow
WOA - Whale Optimization Algorithm
WNS - Worst Negative Slack
XDF - Extended Markup Language Directed File

CHAPTER 1

INTRODUCTION

1.1 Project Background

The role of semiconductors have been growing at a tremendous rate in many
fields and had even extended their applications in fields previously known as unrelated
to semiconductors such as in fashion industries, automobiles and wearables (spectacle,
watch, jewelry etc.). Thus, electronics and integrated circuits with low operating power
and small die size are in great demands. Following these aspects, the application
specific integrated circuit (ASIC) design and fabrication techniques are constantly
being improved by scaling down device length and further push the performance of
the device. While this approach is still feasible and complies with Moore’s Law, it
is often accompanied by the increase in complexity and non-recurring engineering
cost. Furthermore, with the increase in competitiveness in semiconductor fields,
semiconductors and integrated circuits business units had to put in a lot of effort in
achieving the shortest time to market in order to rise above other competitors. Hence,
there have been a shift in recent years from ASIC to field programmable gate array.

FPGAs are used in many applications. Some common uses include ASIC
design prototyping, data networking, medical, automotive, communication, audio,
video and image processing. Although FPGA can be used as a single device, there are
also occasions where multiple FPGA devices are more desirable for implementing a
system in order to improve performance. One example of such system is the SPLASH
system developed by Supercomputing Research Center (SRC). The SPLASH system
consists of an array of linearly connected reconfigurable logic made up from 32 Xilinx
3090 FPGAs used to perform compute intensive applications and for testing hardware-
based systolic algorithms [1].

2

Figure 1.1: Architecture of SPLASH [1]

Besides specialized architectures, there are other instances which require usage
of multiple FPGAs. One such instance is design partitioning. Partitioning in general
refers to dividing something into smaller independent divisions. However, in terms of
FPGAs partitioning, it refers to division of a RTL design into a few individual FPGA
devices. In one of the white paper from the International Technology Roadmap of
Semiconductor (ITRS) entitled “More than Moore”, modem very large scale integrated
circuit (VLSI) design does not only demands scaling down of device sizes, but also
demands the increase in functionality of the device [3]. This leads to logic design
getting larger and more complex. Prototyping is no longer feasible as it is not possible
for the design to fit into a single FPGA device. Hence, multiple FPGAs are used to
increase the resources of the FPGA device such as CLB, flip flop, static RAM (SRAM)
and I/O pin. By partitioning the design into separate different FPGA devices, each
partition can be connected to one another by means of external connection through the
device pin.

Although there have being new release of FPGA device with large number
of logic cells such as the Xilinx UltraSCALE, it is sometimes still preferable to
use multiple smaller FPGA devices to reduce the cost. In addition, some designs
may require operation in multiple power domains, clock frequency or even different
technology node which could only be made possible by using multiple FPGAs devices.
Furthermore, multiple FPGAs partitioning can be used to model the partitioning of a
design into several different integrated circuit (IC) packages to test for functionality

3

as the size of IC packages are often fixed and several sub functions in a design might
need to be separate into different IC packages. Multiple FPGAs partitioning can be
done either manually or by means of an electronic design automation (EDA) tool.
Conventional approach favors the manual method over the dependence on EDA tools
as designers have more flexibility and control over the distribution of the logic cells to
obtain balance partitions. Nevertheless, the improvement of EDA tools and also the
increase in the size of a design had cause the shift in favor over EDA tools than manual
efforts as manual efforts are cumbersome and hard to achieve timing convergence
without the aid of an EDA tool. Commercial tool such as Xilinx PlanAhead had
also used automated partitioning to assign logic cells to different CLBs. In addition,
designers are also given the flexibility to prioritize on the criteria used for deciding
the partitions - either based on resource constrain, timing constrain or balanced
partitioning.

It is undeniable that these few criteria are the main criteria for obtaining
good quality partitions. However, in specific application designs such as streaming
application design requires additional criteria. Other performance metrics that are
needed to be taken into account includes critical path delay, latency, throughput
and maximum allowable operating frequency. In this thesis, the cut size and the
communication rate are considered when performing partitioning. Cut size refers the
number of interconnections crossing the boundaries between multiple FPGAs while
the communication rate refers to the number of bits transfer over an interconnection.
These performance metrics are important as partitioning at interconnections with high
communication rate and high number of cut size would introduce unnecessary delay
and interference to the data transferred. Furthermore, it will also affect the overall
throughput of the system due to the introduction of parasitic delay in the external wires.

In order to partition the design based on cut size and communication rate, a
suitable representation of the overall system to be partitioned is necessary. While
there are many partitioning techniques which perform partitioning based on RTL
netlist of a design, CAL actor language (CAL) is used in this thesis. Using CAL,
the design is represented in the form of a dataflow actor network. Each actor
represents one of the functional units in the design while the edges of the dataflow
networks represent the interconnection between the functional units. Advantage of
using the CAL actors is that a design is already being represented in graph form
and hence there is no need for an intermediate stage to transform RTL netlist into
graph representation. Furthermore, dataflow actor networks are better representation
for streaming applications as compared to behavioral or netlist representation.

4

The organization of this thesis is as follows. Chapter one provides some
background information on dataflow actor network partitioning based on cut size and
communication rate. The problem statements, objectives, motivation and the scope of
study of this thesis are also being discussed for comprehension of readers. Chapter two
provides the review of previous related works regarding CAL actors and partitioning
techniques. In chapter three, the methodology used for CAL actor partitioning is being
shown and described in details. Chapter four shows the preliminary results and the
associated discussions. Chapter five concludes and provides some insight on CAL
actor partitioning.

1.2 Problem Statement

Partitioning problems have being regarded as classical problems involving
graph which consists of nodes and edges. The nodes of the graph is usually partitioned
into two different groups, known as bi-partitioning. The bi-partitioning problem is
first addressed by Brian Wilson Kemighan and Shen Lin. Both of them had come out
with an algorithm known as the Kemighan-Lin (KL) algorithm to solve the traveling
saleman problem which later has being adapted for graph partitioning [4]. Many of the
variation of partitioning algorithms are based on the KL algorithm and its application
had being used in VLSI circuit partitioning.

Recent papers such as in [5-7], the graph partitioning problems had also
being used to perform hardware software partitioning of dataflow graph network.
The sub blocks partitioned into hardware acts as an accelerator to improve its speed
performance. However, there are yet to be found the literature on partitioning of
dataflow graph network as a fully dedicated hardware design.

Besides that, in most partitioning problem, only the resource constrain and
timing constrain is being considered. In addition, the partitioning of the dataflow actor
network often done for multicore processor using actor workload as the partitioning
criteria which is not suitable for use as a partitioning criteria in FPGA implementation.
Lastly, general partitioning is often performed at lower abstraction level hence suitable
for smaller design only or require more complicated partitioning algorithm.

5

1.3 Objectives

There are several objectives to be met in this project. They are:-

1. To develop partitioning algorithm to perform hardware partitioning of the actors
in a network of a design into multiple FPGA devices.

2. To investigate suitable partitioning criteria for use of dataflow actor network
partitioning.

1.4 Motivation

The dataflow actor network resembles the structural view and the inter­
connections of a design at the architecture level suitable for implementing graph
partitioning algorithms. In addition, the current partitioning of the dataflow actor
network are either fully software implemented in the multicore processor or hardware
software co-design implemented in both FPGA and processor. For the partitioning
of dataflow actor in multiprocessor, the common partitioning criteria used is the actor
workload obtained through software profiling while for hardware software co-design,
the partitioning criteria commonly used is the actor execution time and resource area.
The partitioning criteria for both cases are not suitable to be used for a fully hardware
dedicated FPGA implementation.

1.5 Scope of Study

The study of dataflow actor network covers a very large field of research.
However, not every aspect of dataflow actor network is covered in this thesis. The
partitioning of actor network demonstrated in this thesis is limited to bi-partitioning
problems. Nevertheless, using the same basic principal, the partitioning could be
expended to handle k-way partitioning. In terms of the partitioning criteria, this thesis
focuses more on the number of cuts, connection workload, resource utilization ratio
and actor latency.

Since part of the study done in this thesis involved creating partitioning
algorithm for the dataflow actor network, it is inevitable that some of the processes

6

need to be automated. However, automation would only be done in several aspects
such as acquiring the RVC-CAL design, performing characterization and performing
partitioning. Other intermediate processes such as converting the RVC-CAL design
into its equivalent HDL representation would be done manually.

Lastly, the partitioning methodology and the use of RVC-CAL as design
representation introduced in this thesis are for streaming application designs. Other
forms of applications had yet to be tested. The test case used for evaluating the
partitioning algorithm is the four-tap FTR digital filter, HEVC decoder and MPEG4
decoder.

REFERENCES

M. B. Gokhale, Splash: A reconfigurable linear logic array. Supercomputing
Research Center, 1990.

C. Lucarz, R Faure, G. Roquier, M. Mattavelli, and V. Noel, “Cal
methodology,”

H. Kopetz, “The time-triggered model of computation,” in Real-Time Systems
Symposium, 1998. Proceedings., The 19th IEEE, pp. 168-177, IEEE, 1998.

S. Lin and B. W. Kemighan, “An effective heuristic algorithm for the traveling-
salesman problem,” Operations research, vol. 21, no. 2, pp. 498-516, 1973.

E. Bezati, H. Yviquel, M. Raulet, and M. Mattavelli, “A unified
hardware/software co-synthesis solution for signal processing systems,” in
Design and Architectures for Signal and Image Processing (DASIP), 2011
Conference on, pp. 1-6, IEEE, 2011.

G. Roquier, E. Bezati, and M. Mattavelli, “Hardware and software synthesis
of heterogeneous systems from dataflow programs,” Journal o f Electrical and
Computer Engineering, vol. 2012, p. 2, 2012.

B. Traskov, “Hardware/software partitioning of dataflow programs: Rapid
prototyping of computer systems in the cal actor language,” 2011.

S. Louise, R Dubrulle, and T. Goubier, “A model of computation for real-time
applications on embedded manycores,” in Embedded Multicore/Manycore
SoCs (MCSoc), 2014 IEEE 8th International Symposium on, pp. 333-340,
IEEE, 2014.

D. Fontanelli, L. Palopoli, and L. Abeni, “The continuous stream model of
computation for real-time control,” in Real-Time Systems Symposium (RTSS),
2013 IEEE 34th, pp. 150-159, IEEE, 2013.

K. Gilles, “The semantics of a simple language for parallel programming,” In
Information Processing, vol. 74, pp. 471-475, 1974.

E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings o f the
IEEE, vol. 83, no. 5, pp. 773-801, 1995.

76

12. F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi, “Ja-
be-ja: A distributed algorithm for balanced graph partitioning,” 2013.

13. B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow modeling
for dsp systems,” Signal Processing, IEEE Transactions on, vol. 49, no. 10,
pp. 2408-2421, 2001.

14. G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static data
flow,” in Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995
International Conference on, vol. 5, pp. 3255-3258, IEEE, 1995.

15. J. Gorin, M. Raulet, and F. Preteux, “Mpeg reconfigurable video coding: From
specification to a reconfigurable implementation,” Signal Processing: Image
Communication, vol. 28, no. 10, pp. 1224-1238, 2013.

16. G. Cedersjo and J. W. Janneck, “Software code generation for dynamic
dataflow programs,” in Proceedings of the 17th International Workshop on
Software and Compilers for Embedded Systems, pp. 31-39, ACM, 2014.

17. E. Bezati, “High-level synthesis of dataflow programs for heterogeneous
platforms,” 2015.

18. J. W. Janneck, I. D. Miller, D. B. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing hardware from dataflow programs: An mpeg-4
simple profile decoder case study,” in Signal Processing Systems, 2008. SiPS
2008. IEEE Workshop on, pp. 287-292, IEEE, 2008.

19. A. Ab Al Hadi Bin, Optimizing Dataflow Programs for Hardware Synthesis.
PhD thesis, ECOLE POLYTECHNIQUE FEDERATE DE LAUSANNE,
2014.

20. F. Palumbo, D. Pani, E. Manca, L. Raffo, M. Mattavelli, and G. Roquier, “Rvc:
A multi-decoder cal composer tool,” in Design and Architectures for Signal
and Image Processing (DASIP), 2010 Conference on, pp. 144-151, IEEE,
2010.

21. S. Dutt, “New faster kemighan-lin-type graph-partitioning algorithms,” in
Computer-Aided Design, 1993. ICCAD-93. Digest of Technical Papers., 1993
IEEE/ACM International Conference on, pp. 370-377, IEEE, 1993.

22. F. Vahid and T. D. Le, “Extending the kemighan/lin heuristic for hardware and
software functional partitioning,” Design Automation for Embedded Systems,
vol. 2, no. 2, pp. 237-261, 1997.

23. T. N. Bui and B. R. Moon, “Genetic algorithm and graph partitioning,”
Computers, IEEE Transactions on, vol. 45, no. 7, pp. 841-855, 1996.

77

24. P. Saini and E. Kaur, “Study of the circuit partitioning using genetic
algorithm,”

25. S. S. Gill, R. Chandel, and A. Chandel, “Genetic algorithm based approach
to circuitpartitioning,” International Journal o f Computer and Electrical
Engineering, vol. 2, no. 2, p. 196, 2010.

26. K. S. Kumar, U. Bhaskar, S. Chattopadhyay, and P. Mandal, “Circuit
partitioning using particle swarm optimization for pseudo-exhaustive testing,”
in Advances in Recent Technologies in Communication and Computing, 2009.
ARTCom’09. International Conference on, pp. 346-350, IEEE, 2009.

27. J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Systems, Man, and Cybernetics, 1997. Computational
Cybernetics and Simulation., 1997 IEEE International Conference on, vol. 5,
pp. 4104—4108, TERR, 1997.

28. S. Mirjalili and A. Lewis, “S-shaped versus v-shaped transfer functions for
binary particle swarm optimization,” Swarm and Evolutionary Computation,
vol. 9, pp. 1-14, 2013.

29. J. D. McCaffrey, “Graph partitioning using a simulated bee colony algorithm,”
in Information Reuse and Integration (IRI), 2011 IEEE International
Conference on, pp. 400—405, IEEE, 2011.

30. M. S. Soliman and G. Tan, “Graph partitioning using improved ant clustering,”
in Advances in Swarm Intelligence, pp. 231-240, Springer, 2010.

31. S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in
Engineering Software, vol. 95, pp. 51-67, 2016.

32. A. Prakash and R. Lai, “Pso: An approach to multiobjective vlsi partitioning,”
in Innovations in Information, Embedded and Communication Systems
(ICIIECS), 2015 International Conference on, pp. 1-7, IEEE, 2015.

33. S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A simulated annealing-
based multiobjective optimization algorithm: Amosa,” Evolutionary
Computation, IEEE Transactions on, vol. 12, no. 3, pp. 269-283, 2008.

34. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” Evolutionary Computation, IEEE
Transactions on, vol. 6, no. 2, pp. 182-197, 2002.

35. S. Bandyopadhyay, S. K. Pal, and B. Aruna, “Multiobjective gas, quantitative
indices, and pattern classification,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 34, no. 5, pp. 2088-2099, 2004.

78

36. J. R. Schott, “Fault tolerant design using single and multicriteria genetic
algorithm optimization.,” tech. rep., DTIC Document, 1995.

