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ABSTRACT 

The controlled drug delivery in drug eluting stents exerts an important influence in 

decreasing restenosis in intravascular stenting. These stents are coated with drug to avoid the re-

narrowing of the arterial wall. The drug is directly associated with the original bare metal stents. 

Drug eluting stents have plus point of a flexible time delivery of a curative drug to the 

neighboring arterial tissue. It treats the required injuries efficiently having negligible systemic 

drug interaction. This thesis aims to develop a mathematical model for describing the procedure 

of drug distribution from stent coating and from arterial wall. For this purpose, a mathematical 

model of two phase is presented to simulate the transportation of drug between coating and 

arterial tissue. This two-phase model explores the impact of non-dimensional parameters such as 

solid liquid mass transfer rate   , ratio of accessible void volume to solid volume    and Peclet 

number    on drug release and mass concentrations from coating and tissue layers. For better 

understanding a 2D mathematical model of biodurable stent coating is developed, where the 

intravascular distribution of drug from an implanted drug eluting stent in arterial wall is 

simulated. The model integrates reversible drug binding and diffusion of drug in the stent 

coating. The arterial wall and coating drug diffusivities are examined for the impact of arterial 

drug uptake and drug release in the coating. The diffusion coefficient of drug   , the diffusion 

coefficients of wall   ,    ,     and strut embedment play an important role to regulate the 

drug release. Moreover, a 3D model of mass concentrations and drug release from the cross 

section of artery is investigated. The impact of advective and diffusive velocities is explored and 

these forces can be used to control the mass concentrations of drug. FEM and FDM is used for 

spatial and temporal discretization of model equations. The sequential and parallel algorithms are 

developed for numerical simulations. Furthermore, the motivation for using GPU accelerators 

with CUDA is explained to handle computational complexities. A hybrid CPU/GPU algorithm 

for the proposed models is designed and satisfactory results for parallel performance indicators 

such as; speedups Sp, temporal performance Tp, efficiency Ep and effectiveness Fp are obtained. 

The CN method gives better sequential results because it has less RMSE than GD and BD 

methods. However, the BD method gives good results for parallel indicators because it involves 

less computation than GD and CN methods. The sequential and parallel performance of BM 

method is better as compared to NM and PM methods. The BM method has least RMSE for both 

sequential and parallel algorithms. The parallel performance indicators Sp, Tp, Ep and Fp for BM 

method gives better performance than the other methods. Therefore, it is a superior method than 

the NM and PM methods.  Hybrid algorithms are more efficient in large-scale problem 

simulations as shown in parallel performance results. The governing models in this research 

provide the basis of a design tool for studying and calculating drug distribution in coating and 

arterial wall in the application of stent-based drug delivery. The models propose in this research 

are used for monitoring purpose and to determine drug release, mass transport, visualization and 

observation. The simulations support to offer a good perception into the potential effects of 

different parameters such as   ,   ,   ,   ,   ,    ,     and strut embedment can affect the 

efficiency of drug release.  
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ABSTRAK 

Kawalan penghantaran ubat dalam sten elusi ubat menghasilkan pengaruh yang penting 

dalam mengurangkan stenosis semula dalam sten intravaskular. Sten ini disaluti dengan ubat 

untuk mengelakkan penyempitan semula dinding arteri. Ubat ini berkait rapat dengan sten logam 

terdedah asli.  Sten elusi ubat mempunyai kelebihan dari segi masa penghantaran ubat 

penyembuhan yang fleksibel kepada tisu arterial bersebelahan. Ia merawat kecederaan secara 

efisien dengan interaksi ubat bersistem yang sedikit. Tesis ini bertujuan untuk membangunkan 

model matematik untuk menerangkan prosedur pengagihan ubat dari salutan sten dan dinding 

arteri. Bagi tujuan ini, model matematik dua fasa dikemukakan untuk simulasi pengangkutan 

ubat dari salutan ke tisu arteri. Model matematik dua fasa ini meneroka impak parameter tanpa 

matra seperti kadar pemindahan jisim antara pepejal dan cecair   , nisbah isipadu kosong yang 

boleh diakses dengan isipadu pepejal,    dan nombor Peclet,    terhadap pelepasan ubat dan 

kepekatan jisim daripada salutan dan lapisan tisu. Untuk pemahaman yang lebih baik, satu model 

matematik 2D bagi sten bersalut biotahan lama telah dibangunkan, di mana pengagihan ubat 

secara intravaskular daripada sten elusi ubat yang diimplan dalam dinding arteri telah 

disimulasikan. Model ini mengintegrasikan ikatan ubat boleh balik dan penyerapan ubat dalam 

salutan sten. Penyerapan ubat di dinding arteri dan penyerapan ubat salutan diperiksa untuk 

impak penyerapan ubat arteri dan pelepasan ubat dari salutannya. Pekali penyerapan ubat   , 

pekali penyerapan dinding   ,    ,     dan penyemakan topang memainkan peranan penting 

untuk mengawal pelepasan ubat. Tambahan pula, suatu model 3D untuk pengaruh kepekatan 

jisim dan pelepasan ubat daripada keratan rentas arteri dikaji. Impak hadlaju advektif dan 

penyerapan diterokai dan daya ini boleh digunakan untuk mengawal kepekatan jisim ubat. FEM 

dan FDM digunakan untuk  pendiskretan persamaan model secara ruangan dan secara temporal. 

Algoritma berturut dan selari telah dibangun bagi simulasi berangka. Selain itu, dorongan untuk 

menggunakan pemecut GPU dengan CUDA diterangkan bagi mengendalikan kerumitan 

komputasi. Algoritma hibrid CPU/GPU telah dibentuk bagi model yang dicadangkan dan 

memperoleh hasil prestasi selari memuaskan seperti kelajuan tambahan Sp, prestasi temporal Tp, 

kecekapan Ep dan keberkesanan Fp. Kaedah CN memberi hasil berturut yang lebih baik kerana ia 

mempunyai RMSE yang kurang daripada kaedah GD dan BD. Namun, kaedah BD memberikan 

hasil selari yang lebih baik kerana kaedah ini melibatkan pengiraan yang kurang berbanding 

kaedah GD dan CN. Prestasi berturut dan selari bagi kaedah BM adalah lebih baik berbanding 

kaedah NM dan PM. Kaedah BM mempunyai RMSE yang terkecil bagi algoritma berturut dan 

selari. Indikator prestasi selari Sp, Tp, Ep dan Fp yang ditunjukkan oleh kaedah BM adalah lebih 

baik berbanding kaedah lain. Oleh itu, ia adalah kaedah yang lebih unggul berbanding kaedah 

NM dan PM. Algoritma hibrid adalah lebih cekap dalam simulasi masalah berskala besar seperti 

yang ditunjukkan dalam hasil prestasi selari. Model tadbir dalam kajian ini menyediakan asas 

reka bentuk alat bagi mempelajari dan mengira pengagihan ubat dalam salutan dan dinding arteri 

dalam aplikasi penghantaran ubat berdasarkan sten. Model yang dicadangkan dalam kajian ini 

digunakan untuk tujuan pemantauan dan untuk menentukan pelepasan ubat, pengangkutan jisim, 

visualisasi dan pemerhatian.   Simulasi dapat menyokong persepsi yang baik mengenai kesan 

potensi parameter berbeza seperti   ,   ,   ,   ,   ,    ,     dan pembenaman topang yang 

boleh mempengaruhi kecekapan pelepasan ubat. 
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1 INTRODUCTION 

1.1 Introduction 

Endovascular drug eluting stents are being increasingly applicable for the 

prevention and cure of restenosis. Stents are devices inserted into arteries to widen 

their lumen, prevent occlusion and restore blood flow perfusion to the tissues 

downstream. Drug Eluting Stents (DES) are coated with drugs for decreasing in-stent 

restenosis after implantation. The drug molecules diffuse from the coating into the 

blood stream and into the artery wall, when a DES is inserted in the artery wall as 

shown in Figure 1.1.  

  

Figure 1.1 A drug eluting stent coated with a drug-loaded polymer and its 

implantation into a stenotic artery. The drug releases from the stent coating into 

artery wall to prevent re-blocking due to restenosis (Vo et al., 2016).  
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Hence, the delivery of drug depends on various aspects, for example 

physicochemical properties and coating geometry, drug properties such as solubility 

and diffusivity. In order to achieve optimum results, the therapeutic agent is loaded 

with biocompatible polymeric layers that are coated on the struts of the stent. These 

stents work under complex conditions that vary according to time and it is not easy to 

accurately predict their efficiency and performance over extended periods of time.  

The following data show the percentage of coronary artery disease in 

population. This percentage is huge in some countries. According to the latest WHO 

data published in May 2016, the death rate due to coronary heart diseases in 

Malaysia has reached 29363 or 23.10% in the world. On average it becomes 150.11 

cases per 100,000 of population. In Pakistan death rate has reached up to 9.87% of 

total deaths. 110.65 fatal cases per 100,000 of population are occurred according to 

data. Death rate in the United States due to heart attacks is, approximately 600,000. It 

is 25% of the total deaths. Among 715,000 Americans who suffered from the heart 

attacks, only 15% of the people die from the stroke. This stroke affects mostly the 

Afro- Americans and the wilds. It may cause 24.3% and 24.1% of deaths, 

respectively.  

Mathematical modeling paves the way of deep perception of the drug 

transport mechanisms in the arterial wall and coating, especially in the drug eluting 

stents case. In this way it has turn into an effective means to catalyze drug release 

processes. In spite of the fact that cardiovascular drug transportation shows a very 

complicated physiological and biochemical phenomenon, yet an improved release 

model may give comprehension of the release mechanism of the drug from arterial 

wall tissue to drug coating. The focus of this research is to aquire the behavior of 

mass transport and drug release from the arteries using mathematical modelling and 

simulation. This chapter highlights the background of the problem, significance and 

scope of the research. Several previous researches will provide an interpretation of 

the background of biodegradable polymer coated drug eluting stents (DES). 
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1.2 Background of Problem 

The background of the problem is divided into two main parts. The first part 

introduces the background of biodegradable polymer coated DES. The second part 

signifies the mass transport from DES.  

1.2.1 Biodegradable Coated Drug Eluting Stents 

This research aims to acquire the behavior of mass transport and drug release 

from the arteries using mathematical modelling and simulation. DES decrease the 

intensity of restenosis as compared to the uncovered metal stents. Nowadays, it 

becomes a widespread method for curing the coronary arteries. 

DES have a metallic wire covered by thin polymer layers. These polymer 

layers enclose a curative drug for the serving hyperplasia of smooth muscle cells. 

The DES performance improved by optimizing the stent geometry and coating 

design. The proceeding of non-proliferative remedial drug  from DES is directly 

related to the rate of the discharge of drug (Tzafriri et al., 2012). Manufacturing and 

design of DES are facing challenges in terms of biological effects and toxicity of the 

local area. The optimum drug concentration and absolute dose of tissue are still not 

enlightened (Venkatraman and Boey, 2007).  

The interaction of the mechanical action of the stent on the wall as well as the 

interface of the blood flow with the drug releasing process from DES are still new in 

the medical literature. These processes had also been analyzed separately in study of 

(Migliavacca et al., 2002; Prosi et al., 2005). The role of drug in healing the artery 

after the insertion and function of the stent is significant  (Migliavacca et al., 2007).  

The flow of blood has a slight effect on the penetration of the drug into the wall.  The 

lumen of artery works to reduce the concentration of the drug. Balakrishnan et al. 

(2005) suggest the justification of these assumptions is not really valued as the drug 

dissolve into the stream of blood. It affects the deposition of the drug in the part of 

the artery walls near the surrounding of the stent. 
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Many issues are directly associated to the slow process of drug release into 

the bio-durable coatings.  The bio-durable or non-erodible polymers are  the most 

frequent kinds of stent coatings to carry the mixtures of  active drug (Lüscher et al., 

2007; Venkatraman and Boey, 2007). This model is being made for the improvement 

of functioning and design of DES. Various researchers have proposed the usage of 

bio-degradable polymer coatings in place of bio-durable coatings (Acharya and Park, 

2006). Biocompatible PLGA (poly lactic-co-glycolic acid), has achieved much 

interest in DES research. PLGA optimize the rates of drug release, based on the 

weights of polymer molecule (Wang et al., 2006).  

Modeling and simulation are used to investigate the distribution of arterial 

drug around the stent strut. The mathematical models reduce the stent coating 

difficulties into a source term and provide improved understanding of drug 

concentration. Such models are used in diffusive and convective  transport of drug in 

the arterial wall (Hwang et al., 2001), stent expansion mechanics,  drug distribution 

(Zunino et al., 2009) and effect of blood flow in the arterial wall (Balakrishnan et al., 

2005; Kolachalama et al., 2009).  

 The distribution of arterial drug has been searched by diffusion of the drug in 

the coating and in the arterial wall. Some researchers discussed the features related to 

drug release such as changeable drug bindings, the strut implantation, compression, 

the viscosity of the coating and structure of the arterial wall of different layers 

(Balakrishnan et al., 2007; Mongrain et al., 2007; Zhu et al., 2014). A degradable 

stent coating is formulated artificially by supposing the value of drug diffusion in the 

coating store.  Drug delivery systems have been discussed in numerous models by 

polymer degradation in PLGA (Borghi et al., 2008; Prabhu and Hossainy, 2007; 

Versypt et al., 2013). Currently, there is plenty of models that propose the bio-

durable coating to understand the discharge of drug from the outer layer and later the 

diffusion of drug into the arterial wall. In these model‘s bio-durable coating is clearly 

formulated with constant release and diffusion of drug (Hossainy and Prabhu, 2008; 

Rossi et al., 2012; Zhu and Braatz, 2014a). Such models have not been employed to 

format the intravascular drug delivery from a biodurable stent coating. A systematic 

model for drug release in the PLGA coating is discussed in this work. It connects the 



5 

 

drug diffusion to the PLGA degradation and erosion in the arterial wall (Zhu and 

Braatz, 2014b). The movement of drug is formulated as a reversible or two sided 

binding process by Zhu et al. (2014). This study made some improvement in this 

model by considering convection and diffusion in the modeling of the equation for 

free and bound drug. Furthermore, an investigation based on parameters such as drug 

diffusivities, arterial wall diffusivities and strut embedment of stent strut has 

considered. The effect of strut embedment on arterial wall is investigated for three 

cases, no embedment, half embedment and full embedment. 

1.2.2 Mass Transport from Drug Eluting Stents 

The means of mass transport in DES is to transfer drug from the regions of 

high concentration to the low concentration. The presence of gradients of these 

concentrations induces diffusion between the DES and the arterial wall. Mass 

transport can be divided into two types in the human vasculature system. The first 

type is blood side mass transport. Blood side mass transport transfer the drug into the 

lumen vessels subject to the haemodynamic. The ability of DES to deliver accurate 

remedial mass of drug to the wall becomes limited inside the lumen due to the nature 

of blood flow. So, it efficiently takes the drugs away from the affected parts. This 

happens only in those regions where recirculation of blood is high. The second type 

is transport of drug into the arterial wall, known as wall side mass transport. Wall 

side mass transport depends on the structural conditions of the wall and properties of 

the drugs. These properties will determine how the drug are being transferred into the 

arterial wall. If intimal layer of artery wall is damaged , the mass transfer from 

medial layer  is accelerated directly (Hwang et al., 2001).  

Modelling of mass transport into the arterial walls needs powerful 

information about structure of arterial walls. The DES are fixed in seriously blocked 

regions of arteries. Wall side mass transport is directed by two forces, a convective 

pressure oriented force and the diffusive force. A dimensionless parameter known as 

the Peclet number (Pe)s in Equation 1.1, shows the relation of these two forces 

relatively.  
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(1.1) 

Peclet number plays an important role during mass transfer. If Peclet number 

is less than one, the transport of species is dominated by diffusion. If this number is 

greater than one, species are dominated by convection (Friedman, 2012). 

Mathematical studies convey dynamic material related to mass transport and 

enhancement of the functioning of DES. The delivery of medication between the 

tissue coatings of the arterial walls is more important. The distribution of the drug in 

the lumen by blood flow was published in 2007 (Mongrain et al., 2007). The 

publications appeared in 2009 (Zunino et al., 2009)  and 2010 (Vairo et al., 2010) 

may be categorized as possessing a mutual methodology.  

A model is developed to analyze the diffusion controlled drug release by 

taking spatially independent velocity (Hwang et al., 2001). Pontrelli and De Monte 

(2009) has developed a model based on purely mass diffusion. The methodology 

adopted by Pontrelli and de Monte (2007) for the solution of purely mass diffusion 

problem is similar as to dealing with heat conduction problems. Pontrelli and De 

Monte (2010) extends the previous work by taking a porous artery medial layer and 

porous coating of polymer top coat. This model describes the mass transport through 

multiple layers. A boundary layer model is discussed to deal the  drug distribution by 

means of lumen blood flow by Rugonyi (2008). A few publications highlight the  

numerical analysis of drug mass transport from DES in porous arteries (Pontrelli and 

de Monte, 2007; Zunino, 2004). The variation in the construction of the artery wall 

due to stent compression and its effects on drug mass transport have not been 

formatted numerically. O‘Connell and Walsh (2010) have investigated the effect of 

compression on the artery wall by considering porous material. Walsh, specifies the 

artery wall compression and suggests its existence in all DES computational models. 

A 3D purely diffusive mass transport model is presented by taking compressed 

porous media into account and including the compression on artery wall (Denny et 

al., 2013).  
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It is interesting and encouraging to explore the effects of the drug distribution 

and mass transport from DES with the aid of mathematical models. In this study 

three integrated mathematical models for drug release and mass distribution are 

considered. The governing equations and the boundary conditions in non-

dimensional form have been modified to find the broad range of key parameters. In 

this thesis numerical approach is used to solve the governing equations. For this 

purpose, FEM is applied to solve the model problems because FEM is better than the 

other numerical methods such as FDM and FVM. It has capacity to discretized 

complex geometries in an efficient way. This study involves the geometries of stent 

and arteries therefore it is necessary to use FEM. Furthermore, Matlab 2017a, Visual 

Studio 2010 and CUDA Toolkit 5 are used to develop hybrid platform (CPU-GPU) 

to tackle large sparse system of equations.  

1.3 Statement of the Problem  

This study aims to investigate the drug release and mass transfer from a DES. 

The drug mass transfer and drug release both into the wall regions and coating, are 

explored through the aid of some computational tool. Since, the perturbation or 

asymptotic methods are not able to solve the complex fluid flow model.  Numerical 

method seems to be more significant. Therefore, these aims are achieved by 

modeling the governing equations to illustrate the behavior of drug release and mass 

transport from DES. A two phase drug release model and mass transport from DES is 

under exploration. The movement of drug from biodegradable coated DES 

investigated for better understanding by simulation of 2D model. The governing 

equations explain the drug release from biodegradable coated DES. This model tends 

to explain the concentration of free and bound drug into the arterial wall and coating. 

A 3D mathematical model is considered to investigate the mass transport when blood 

stream passing into the lumen. The governing equations are numerically solved by 

applying finite element method. A hybrid platform is developed for large sparse 

system of discretized equations to reduce the computational cost. Further a sincere 

attempt is made to investigate the necessary modifications to make the integrated 

model able to represent dynamics of drug eluting stents. 
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1.4 Objectives of the Study 

The key objectives of this research are to investigate theoretically the 

characteristics and dynamics of drug release and mass transport from DES. This 

study includes the construction of suitable mathematical models by appropriate 

governing equations. These governing equations are solved by applying FEM. The 

objectives are: 

i. To enhance a two phase mathematical model for the exploration of the effects 

of key parameters on free and bound drug release in drug eluting stents. 

ii. To integrate a coupled mathematical model for the exploration of drug release 

from biodurable coating and arterial wall. 

iii. To develop a mathematical model in order to analyze the mass transport from 

arterial wall region and lumen. 

iv. To develop sequential and parallel algorithms for discretized equations using 

numerical methods. 

1.5 Significant of the Study 

The exact mechanism to understand drug transport and mass distribution in 

arteries is complicated and incomplete. The previous researches show only a part of 

this puzzling mystery. It is important to comprehend the development of the DES. A 

new method can be developed to overcome DES issues. Modelling and simulation 

techniques encourage the understanding of the functions of DES and improve the 

efficacy of device. Biodegradable poly coated DES are the best choice to enhance the 

drug transport. DES decrease the combative consequences in stented arteries in 

patients. A full understanding about the formation of stents is essential for the 

prevention of coronary heart diseases. The DES have become the most common 

treatment for the prevention of these diseases. It is significant to increase the 
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successfulness of this treatment. The study of the dynamic outcome of the DES on 

the targeted site is essential to reduce the percentage of the treatment failure.  

1.6 Scope of the Study 

The Figure 1.2 highlights the scope of the study in detail. 
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Figure 1.2 Scope of research 

The present study focuses on modelling and simulation to encourage the 

understanding of functions of DES. This in turn could potentially facilitates the 

enhancement of device efficacy and ultimately contribute to reduction of the number 
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of heart attacks. The investigation of key parameters may helpful to optimize the 

mass concentration and drug release from coated drug eluting stents.  

The fluid in the arteries is considered as an incompressible Newtonian fluid 

as shown in Figure 1.2. The mass distribution both into the artery walls and lumen is 

considered minutely in this attempt. Three mathematical models with 1D, 2D and 3D 

are considered in Cartesian coordinate systems to simulate the drug release and mass 

transport from DES. The governing equations are numerically solved by using the 

FEM. Linear elements, triangular elements and tetrahedron elements are used to 

discretize 1D, 2D and 3D models respectively. Sequential and parallel algorithms are 

developed for discretized equations. 

The Matlab 2017b software is used for the computation of sequential and 

parallel numerical results. There are several parallel architectures, the most 

widespread many-core architecture are the GPUs (graphics processing units). On the 

other hand, the most common multi-core architecture are the CPUs (central 

processing units). The code executed using hybrid algorithm is compared with its 

respective serial code executed in one CPU core. The advantage of the hybrid 

algorithm implementation is also observed graphically. 

1.7 Organization of Thesis  

This thesis contains seven chapters. These are organized as follows:  

Chapter 1 highlights the introduction, summary of the background, objectives 

and scope of the study, significance of DES, and at the end structural organization of 

thesis.  

Chapter 2 provides an overview of the DES for the treatment of arterial 

problems. Several existing DES; background of this technology; safety and uses, 

future of DES, role of mathematics and review of FEM and time stepping methods 

are briefly discussed in this chapter. The introduction of hybrid platform and its 
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implementation using CUDA are discussed in detail. The parallel performance 

indicators based on speedup, temporal performance, effectiveness and efficiency are 

also presented in this chapter.  

Chapter 3 details the research methodology of the work. The numerical 

background, governing equations, dependence of different parameters of the equation 

and elaborated solution technique have been discussed. The implementation of FEM 

and time stepping methods have also been discussed in this chapter. The contribution 

in this chapter is the modification of 1D, 2D and 3D mathematical models.  

Chapter 4 gives the idea of two phase mathematical model of drug release 

and mass transport from DES. This model has a system of partial differential 

equations (PDEs). The governing equations are spatially discretized by FEM. The 

temporal discretization is made by three different time marching numerical methods. 

These numerical methods are compared on the basis of execution time, number of 

iteration, maximum error and root mean square error. The FEM is parallelized using 

the hybrid platform to improve the performance of the sequential algorithm. The 

parallel performance of numerical methods is compared on base of parallel 

performance indicators such as speedup, efficiency, temporal performance and 

effectiveness. The main contribution in this chapter is comparison of numerical 

results and parallel performance results to investigate the role of key parameters. 

These parameters play an important part in the concentrations of drug and mass 

transport from DES. 

Chapter 5 presents a two dimensional (2D) mathematical model to analyze 

the drug release from biodurable coating and artery wall. The impact of the stent strut 

embedment, varied coating diffusivities and vascular drug diffusivities in the arterial 

wall are focused in this chapter to determine the device efficiency. Numerical 

solutions are obtained using FEM for governing equations. The governing equations 

are spatially discretized using FEM and the time derivative are treated by FDM 

method. The nonlinear system of algebraic equations is solved by three iterative 

methods known as Picard‘s method, Newton‘s Method and Broyden‘s Method. The 

sequential results of iterative methods are compared on the base of execution time, 
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number of iteration, maximum error and root mean square error. The hybrid platform 

is used to overcome computational costs by converting sequential algorithm to 

parallel algorithm. The parallel performance of iterative methods is compared on 

base of parallel performance indicators such as speedup, efficiency, temporal 

performance and effectiveness.  

The contribution of Chapter 6 focuses on the numerical results and parallel 

performance of the sequential and parallel algorithms for three-dimensional model 

(3D). This model is also discretized numerically using FEM. The nonlinear system of 

algebraic equations is solved by three iterative methods as discussed in Chapter 5. 

The sequential and parallel performance results are measured on the base of parallel 

performance indicators. 

 Chapter 7 states the conclusion drawn from the current work and suggests 

possible directions for the future work. 

1.8 Summary 

This chapter presents the introduction and background of the study to observe 

the drug release and mass transport from DES. Problem statement identifying 

research gaps and future calls of previous studies is discussed. The objectives of 

research based on problem statement are identified to fill theoretical gaps. 

Significance, scope of the study and organization of thesis are also enclosed in this 

chapter. 

.
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