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ABSTRACT 
 

Kyle Hopkins Bowler: Cheminformatics Analysis and Computational Modeling 
of Detergent-Sensitive Aggregation 

 (Under the direction of Alexander Tropsha) 
 
 

Small molecule aggregates cause detergent reversible protein sequestration and are the 

most prevalent source of nonspecific activity in biochemical screening assays.  Large volumes of 

publicly available dose-response screens performed in the presence or absence of detergent have 

enabled cheminformatics analysis into chemical aggregation which reinforces prior notions that 

aggregation is prevalent and context dependent.  We report the development of random forest 

classifiers trained on screens of β-lactamase or cruzain targets under well-defined assay 

conditions which distinguish putative aggregators and non-aggregators with balanced accuracies 

as high as 78%.  These models overcome limitations of existing computational predictors related 

to programmatic errors, blurred modeling endpoints, and poor external predictivity.  Model 

interpretation indicated that polarity, aliphaticity, and weight are significantly correlated with 

aggregation propensity, although these features alone estimate behavior with under 70% 

accuracy.  Our curated datasets and validated models will help identify potential aggregators and 

reduce resource waste during drug discovery and optimization.   
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CHAPTER 1: CHEMINFORMATICS ANALYSIS AND COMPUTATIONAL 
MODELING OF DETERGENT-SENSITIVE AGGREGATION 

 
1. Introduction 

The premier method for initial hit identification in the modern pharmaceutical pipeline is 

High-Throughput Screening (HTS).  This approach often involves massive biochemical assaying 

of biological target(s) against organic small molecule libraries to identify potentially active 

chemical leads.1–3  Although initial HTS campaigns have reported apparent hit rates as high as 5% 

for certain targeted libraries, subsequent orthogonal testing has revealed that the frequency of 

specific, biologically active compounds is generally fewer than 0.1%.4  False-positive compounds 

are a prevalent liability in HTS libraries and confound the interpretation of assay readouts by 

interfering through distinct mechanisms with assay systems or detection technology rather than 

directly interacting with desired biological targets.5,6  Regrettably, significant resources are wasted 

on the progression and ultimate failure of false-positive assay interference compounds in the drug 

development pipeline.7–9   

The most common source of biochemical assay interference artifacts is through the 

formation of colloidal aggregates.4,10  For some HTS campaigns, at least 90% of primary screening 

hits have been found to exhibit promiscuous activity as aggregators.3,11,12  Aggregation is a well-

described physical phenomenon that involves the accumulation and precipitation of small 

molecules in bubble-like colloids.10,12,13  Aggregate precipitation can significantly disrupt in vitro 

assays by sequestering and partially unfolding target proteins in solution through reversible and 

high affinity adsorption to the surface of colloidal particles.14–17  This specific mechanism can elicit 
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assay artifacts and false-positive readouts in the context of biochemical HTS by presenting 

misleading data which suggests target inhibition but in reality is evidence of nonspecific activity.  

While aggregation-mediated interference has been implicated in other biological assay formats, 

such as cell-based phenotypic screens and in-vivo assays, the mechanism and pervasiveness in 

these contexts are less well characterized.12   

The affinities of specific proteins to adsorb to specific small molecule aggregates are highly 

variable3,10,18 and although sequestration and perturbation of tertiary structure most commonly 

results in the reduction of apparent protein activity, the perceived activity of some proteins may not 

be sensitive to, or may be enhanced by, aggregate adsorption.3  Additionally, colloid formation is 

context dependent and sensitive to changes in assay buffer system, pH, temperature, and mixing 

protocols12, and the structure of the aggregating compound also impacts the Critical Aggregating 

Concentration (CAC), which is commonly in the low micromolar range and is characterized by a 

steep hill-slope curve.12,19 

Colloids tend to reach mid-femtomolar concentrations and are imperceptible to the naked 

eye and non-trivial to detect.10,13  Therefore, experimental assay considerations and orthogonal 

controls which identify or triage aggregating compounds have been developed.12  The most 

common and effective approach for mitigating aggregation in biochemical assays has been the 

addition of detergents into assay reaction mixtures which disrupt colloids and raise the CAC.14,18,20  

For example, the addition of 0.01% (v/v) non-ionic detergent Triton X-100 effectively prevents 

colloid formation for most small molecules, and the calculation of detergent-sensitivity is a 

powerful proxy of the physical phenomenon of aggregation.21  However, some colloids are not 

detergent sensitive21, and not all assay formats can accommodate detergents due to potential 

interference with the target, reagents, or instrumentation.12  Other assay alterations and post hoc 
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methods which account for aggregators in biochemical screens also have general drawbacks.  For 

example, these techniques may be expensive, low- or mid-throughput, require specialized 

instrumentation or excess protein and compound concentrations,  or augment assay conditions in 

ways that may not be compatible.12  These drawbacks motivate the development of supplemental 

cheminformatics approaches which are robust, inexpensive, and enable rapid prospective screening 

of HTS libraries. 

Significant efforts have been made to gain insight on the Structure-Interference 

Relationship (SIR) of detergent-sensitive aggregators.  For example, substantial dose-series HTS 

against AmpC β-lactamase and cruzain targets have been performed both with and without the 

addition of detergent.11,12,22,23  PubChem assay IDs 485341, 485294, 585, and 584 for β-lactamase 

and 1476, 1478 for cruzain detail several hundred thousand datapoints for which an organic small 

molecule was tested at multiple concentrations, resulting in dose response curves which provide 

insight into compounds which may have activities sensitive to the addition of 0.01% Triton X-100 

detergent.  The publishing of massive HTS datasets such as these has empowered the development 

of cheminformatics approaches which aim to accurately predict future aggregating compounds.24–26 

Quantitative Structure-Property Relationship (QSPR) models have been developed towards 

the specific endpoint of aggregation.  QSPR and Quantitative Structure-Activity Relationship 

(QSAR) modeling are well established techniques invaluable to the field of medicinal chemistry 

which attempt to predict experimental endpoints for compounds using features derivable from 

chemical structure.27  The routine of building QSAR/QSPR models involves the collection of 

suitably diverse, adequately sized datasets of experimental results paired with tested chemical 

structures, the standardization of structures and curation of data, the balancing of datasets to 

achieve equal data distribution across categorical or continuous endpoints, the calculation of 
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structural descriptors, the partitioning of data into model training sets and external testing sets, the 

development of statistical models which are commonly machine learning-based, and most 

critically, the validation of trained models through prediction of withheld external test sets within a 

well-defined applicability domain and the execution of y-randomized models which detect dataset 

overfitting.27   Validated models should be mechanistically interpreted to gain insight into the 

endpoint being modeled28, and their primary application is in the Virtual Screening (VS) of 

additional chemical structure libraries to make fast and inexpensive predictions of activities and 

properties of compounds to be prospectively tested experimentally.27   

Several groups have estimated aggregation or general promiscuity through statistical, 

QSPR-based approaches.23,24,26,29,30  For example, OpenEye software available at 

https://www.eyesopen.com/ features a recursive partitioning classifier trained on 47 aggregators 

and 64 non-aggregators for which 260 descriptors were calculated.24  Later, a support vector 

machines aggregator classifier was trained on 1,319 aggregators and 128,325 non-aggregators 

based on classifications from the β-lactamase HTS data published by the Shoichet Laboratory at 

the time.26  Recently, Hit Dexter has been released as a statistical approach for predicting frequent 

false-positive compounds in general.29,30 

While these approaches have demonstrated impressive classification performance on 

historical datasets, previously-developed QSPR models which predict aggregation are also at risk 

to present high false-negative and false-positive classification rates.23–26  Models tested externally 

were found by Feng et al.23 and Shoichet el al.25 to have low predictive extensibility, likely as a 

result of the limited diversity of the training sets with several hundred aggregating compounds.  

Additionally, the Hit Dexter 1.0 tool29 which predicts highly promiscuous compounds in general is 

not mechanistically specific to the nuanced endpoint of aggregation and, in our analysis, is too 

https://www.eyesopen.com/
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broad to accurately estimate aggregation, although the newer 2.0 version30 has not yet been 

evaluated.   

The most popular tool for computationally flagging aggregating compounds is the 

Aggregator Advisor (http://advisor.bkslab.org/search/).12,25  This online application hosts over 

twelve thousand compounds deemed to display detergent-sensitive target inhibition from eighteen 

literature sources since 2015.  Specifically, molecules with an IC50 less than 100 μM which was 

diminished or eliminated by the addition of detergent were classified as aggregators and were 

placed in their “Rogues’ Gallery” reference database, which can also be found as a catalog on the 

ZINC15 website31 at https://zinc15.docking.org/catalogs/aggregators/.  Users may query the tool 

with chemical SMILES and the Advisor employs a proprietary algorithm through ChemAxon’s 

AxonPath fingerprints to calculate the Tanimoto Similarity Coefficient (TC)32 of the query to all 

aggregators in the Rogues’ Gallery.  Additionally, the tool approximates chemical lipophilicity by 

calculating the logP value of the query through the Molinspiration software at 

https://www.molinspiration.com/, which is a powerful indicator of chemical solubility and drug-

likeness.  If the TC to a “Rogue” is greater than 80% or the miLogP value is greater than 3.0, the 

user is informed that this compound should be investigated as an aggregator and that controls are 

always advised.   

However, in our analysis of the Aggregator Advisor25, theoretical and programmatic issues 

surfaced which weaken the tool’s capability of identifying future aggregators.  First, the 

quantitative threshold which describes detergent-sensitive aggregation is not consistent between 

the 18 orthogonal sources used to develop the “Rogues’ Gallery”.  This, combined with the 

amalgamation of data from diverse assay experimental conditions, blurs the specific modeling 

endpoint and violates the concept that aggregation is a context dependent phenomenon.   

http://advisor.bkslab.org/search/
https://zinc15.docking.org/catalogs/aggregators/
https://www.molinspiration.com/
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Additionally, the TC search algorithm employed by the Advisor cannot extend to the prediction of 

new chemotypes which may aggregate but are not related to the static reference dataset.  Finally, 

we identified programmatic errors with the Advisor where 266 compounds from the Rogues’ 

Gallery were found through query to have neither miLogP greater than 3.0 nor TC greater than 

80% to any compound within the Rogues’ Gallery.   

 
Figure 1 - Overall study design 

The present study consists of (1) data collection, (2) data curation, (3) analyses probing 
concentration and context dependence and historical aggregation predictors, and (4) QSPR 
modeling, validation, and interpretation.  This figure uses adapted images from the following 
cited references, including https://pubchem.ncbi.nlm.nih.gov/.25,27,29,33 
 

The wealth of public HTS data on detergent-sensitive, small molecule aggregators has 

enabled unprecedented modeling for the prediction of aggregation.  Here we report the 

development and rigorous validation of reliable and extensible QSPR models of detergent-sensitive 

aggregation for separate β-lactamase and cruzain targets with defined assay conditions and 

classification thresholds (Figure 1). 

https://pubchem.ncbi.nlm.nih.gov/
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2. Materials and Methods 

2.1 Data Collection 

HTS campaigns corresponding to a pair of PubChem assay IDs (AIDs) in which an organic 

small molecule library was screened both with and without the addition of 0.01% Triton X-100 

detergent were downloaded from https://pubchem.ncbi.nlm.nih.gov/bioassay.  This includes two 

separate campaigns against AmpC β-lactamase tested under identical assay conditions on different 

chemical libraries and at variable concentration intervals, corresponding to AID pairs 

485341/485294 and 585/584.23  These assays were performed in 20 mM phosphate buffer at pH 

7.0 using 5.3 nM AmpC β-lactamase protein in 1536-well Greiner black clear bottom plates at 

room temperature and activity was detected every twenty seconds for four minutes on a ViewLux 

(Perkin-Elmer) High-throughput CCD imager using 480 nm absorbance.  Compounds were tested 

at 0.457 μM, 2.290 μM, 11.40 μM, and 57.10 μM concentrations for AID pair 485341/48529 and 

at 1.8 nM, 9.2 nM, 0.046 μM, 0.23 μM, 1.15 μM, 5.75 μM, and 28.73 μM concentrations for AID 

pair 585/584.  A single campaign was extracted against the cysteine protease cruzain, 

corresponding to the AID pair 1476/1478.11,22  These assays were performed in 100 mM sodium 

acetate at pH 5.5 with 5 mM DTT using 1.5 nM cruzain protein in 1546-well Greiner black solid 

bottom plates at room temperature and activity was detected four times every thirty seconds for 

two minutes on ViewLux High-throughput CCD imager (Perkin-Elmer) using 360 nm excitation 

and 450 nm emission fluorescence.  AID pairs were joined on PubChem compound ID (CID) 

chemical identifiers, resulting in 320,095 datapoints with dose-response data both with and without 

detergent for the 485341/485294 AID pair, 70,660 datapoints for the 585/584 AID pair, and 

197,809 datapoints for the 1476/1478 AID pair. 

https://pubchem.ncbi.nlm.nih.gov/bioassay
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2.2 Concentration Dependence 

 Datapoints for the two HTS campaigns against β-lactamase were concatenated and - 

Log10(AC50) (pAC50) values from the detergent-free assays were binned according to concentration 

range separately for each target.  The percentage of the total number of active datapoints for each 

range was calculated.  In this context, active data refers to datapoints which have real, continuous 

pAC50 values reported in the detergent-free assay raw data. 

2.3 Data Classification 

We assign a binary classification to compounds based on aggregators displaying sharp hill-

slopes and activity which is completely abolished by the addition of detergent.3,12,14,33  Several 

HTS groups such as Southall et al. have adopted a dose-response curve classification ontology 

which labels completely inert curves as class 4.0.34  Collected data tested at serial concentrations 

were accompanied by fitted values approximating hill-slope, pAC50, and curve class.  In this study, 

compounds possessing a hill-slope greater than 1.5 with a real pAC50 value which are not curve 

class 4.0 without detergent, but which are curve class 4.0 and have no pAC50 value reported with 

detergent are labeled “putative aggregators”.  Compounds with no reported pAC50 value which are 

curve class 4.0 with and without detergent are labeled “non-aggregators”.  This classification 

resulted in 26,212 putative aggregators and 239,359 non-aggregators for AID pairs 

485341/485294, 13,825 putative aggregators and 38,207 non-aggregators for AID pairs 585/584, 

and 25,360 putative aggregators and 168,849 non-aggregators for AID pairs 1476/1478.  A third 

classification which was not used for modeling was defined.  Compounds possessing a hill-slope 

less than or equal to 1.5 with a real pAC50 value which are not curve class 4.0 with and without 

detergent were labeled “detergent-resistant actives”.  This resulted in 55 detergent-resistant actives 
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for AID pairs 585341/485294, 33 for AID pairs 585/584, and 155 for AID pairs 1476/1478.  

Compounds which do not satisfy any classification were removed from the dataset. 

2.4 Data Curation 

Classified data were curated per best practices of molecular modeling to cleanse chemical 

data which may be incomplete, inaccurate, imprecise, incompatible, or irreproducible (Figure 

2).35–37   

 
Figure 2 - Per-class dataset size throughout data curation 

The number of putative aggregator (Aggs) and non-aggregator (Non-Aggs) compounds at each 
step in the curation protocol.  Ordered steps include (1) removal of mixtures and inorganics, (2) 
standardization of chemotypes and removal of unstable resulting structures, (3) intra-dataset 
duplicate cleaning and inter-dataset duplicate cleaning for the β-lactamase dataset, and (4) a 
duplicate check using MOE, resulting in final curated datasets.  Curation workflow and image 
adapted from prior works.37   
 

SDF chemical structures were obtained from the PubChem Download Service at 

https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch.cgi and were joined to classified compounds 

on CID values.  Mixtures and inorganic compounds were removed by rendering compounds as 

RDKit objects, verifying electronic valence, separating the two largest components which are not 

covalently bound, removing inorganics with the largest component missing carbon atoms, 

removing mixtures with the second largest component possessing carbon atoms, and removing 

https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch.cgi
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salts and solvents by maintaining only the largest component.   Chemical chemotypes were 

standardized using ChemAxon’s “Standardizer” software available at 

https://chemaxon.com/products/chemical-structure-representation-toolkit.  The following chemical 

cleaning operations were applied to each chemical structure in the given sequence: isotope 

annotations were stripped, explicit hydrogens were removed, rings were dearomatized, stereocenter 

specifications were removed, compounds were neutralized to have no explicit charges, all absolute 

stereospecificity was cleared, wedges were cleaned, compounds were mesomerized, tautomerized, 

and aromatized, explicit hydrogens were added, specific chemotypes were standardized such as 

nitro- and aromatic-groups, structures were transformed to neutral chemotypes, and were cleaned 

in 2D.  Structures were dearomatized, rendered as RDKit objects, and converted to IUPAC 

InChiKey to assure stability following standardization.   Assay datapoints were aggregated on 

InChiKey and percent intra-dataset concordance was calculated per HTS campaign by dividing the 

number of compounds with more than one assay datapoint which unanimously agree in aggregator 

classification by the total number of compounds with more than one assay datapoint.  The number 

of assay datapoints for each compound was reduced to one by concatenating all compounds with 

only one assay datapoint with the first entry from compounds in duplicate sets which unanimously 

agree.  All entries from duplicate assay datapoints which disagreed in classification were removed 

completely from the dataset to increase data reliability.  Similarly, inter-dataset duplicate analysis 

was performed on the data from the two β-lactamase HTS campaigns.  Compounds from the 

485341/485294 AID pair and 585/584 AID pair were joined on InChiKey and the percent inter-

dataset concordance was calculated by dividing the number of compounds which exist in both sets 

and which agree in aggregator classification by the total number of compounds which exist in both 

sets.  To merge the two datasets, compounds which were unique to either HTS campaign were 

https://chemaxon.com/products/chemical-structure-representation-toolkit
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concatenated with the compounds which agreed between the two campaigns.   This process 

resulted in the concatenation of 22,774 putative aggregators, 206,647 non-aggregators, and 52 

detergent resistant actives unique from AID pair 485341/485294 with 5,221 putative aggregators, 

13,405 non-aggregators, and 25 detergent resistant actives unique from AID pair 585/584 and 

finally with 2,116 putative aggregators, 22,998 non-aggregators, and 3 detergent resistant actives 

which were agreed on between both sets.  MOE software was used to remove residual duplicates 

which share a tautomer based on SDF with a molecule previously seen in the dataset in a 

sequential fashion.  Prior to filtering, the putative aggregation, non-aggregation, and detergent-

resistant active compounds were concatenated per target to ensure that if duplicate entries exist, the 

detergent-resistant actives are those to be removed.  The 68 curated detergent-resistant actives for 

β-lactamase and 151 for cruzain were split out of the data and separately saved, while the 

remaining datasets were rendered as RDKit objects once more to verify chemical stability.  

Curated datasets were found to contain a small number of cis- and trans- E-Z stereoisomers.   

2.5 Context Dependence 

The two curated target datasets with putative aggregators, non-aggregators, and 

detergent-resistant actives were joined based on InChiKey identifiers.  Overlapping compounds 

were aggregated based on their binary classification in both target datasets.  For this analysis, 

detergent-resistant actives were also assigned to the non-aggregator class. 

2.6 External Software 

2.6.1 The Aggregator Advisor 

The 12,641 compounds within the Advisor’s Rogues’ Gallery reference database were 

acquired at http://advisor.bkslab.org/rawdata/aggpage.txt.  These SMILES were rendered as 

RDKit objects and converted through RDKit to SDF, resulting in the loss of two unreadable 

http://advisor.bkslab.org/rawdata/aggpage.txt
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structures.  These structures were curated as previously described.  This process resulted in the 

filtration of 30 aggregators possessing mixtures or inorganics, 5 aggregators with unstable 

structures following chemotype standardization, and 264 aggregators which were extra duplicate 

values.  The curated Rogues’ Gallery was separately joined on InChiKey to the curated β-

lactamase and cruzain datasets.  For this comparison the detergent-resistant actives were not 

included. 

The reference Rogues’ Gallery dataset was aggregated on chemical SMILES to isolate 

12,608 unique strings from the eighteen orthogonal sources enumerated at 

http://advisor.bkslab.org/rawdata/aggref.txt.  These sources were investigated for the consistency 

of their quantitative definition of aggregation.  These unaltered SMILES were run through the 

published command line python program “simi.py” provided at http://advisor.bkslab.org/faq/, 

which was slightly modified to write results to a csv file and return the query molecule SMILES, 

matched aggregator SMILES, Tanimoto Similarity Coefficient (TC), and compound identifier each 

time a query matched any given SMILES in the reference dataset with a TC of at least 0.70.  These 

12,608 SMILES were run through the proprietary Molinspiration software provided at 

http://www.molinspiration.com/cgi-bin/properties to calculate the miLogP property using the mib 

batch molecule processing v2017.01 program.  Two SMILES were flagged as having strange 

valence at oxygen by the tool and were removed from the dataset.  Compounds were characterized 

as aggregators through the same logic published in the Aggregator Advisor tool: they either had a 

miLogP value greater than 3.0 or a TC value to a matched compound in the Advisor tool greater 

than 0.8.  A handful of compound SMILES were copied and pasted directly from the reference 

dataset into the Aggregator Advisor online application at http://advisor.bkslab.org/ and queries 

were run at each available affinity range of either < 0.1 μM, 0.1 – 10 μM, or > 10 μM to test 

http://advisor.bkslab.org/rawdata/aggref.txt
http://advisor.bkslab.org/faq/
http://www.molinspiration.com/cgi-bin/properties
http://advisor.bkslab.org/
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whether the online application behaved the same as the batch python script (Supplemental 

Material 1). 

Several compounds were isolated which had less than 0.70 TC to any compound in the 

Aggregator Advisor tool and a miLogP less than 3.0.  “COC(\O)=c2/sc1cc(C)ccc1nc2C” with CID 

713501 was selected for examination of experimental data.  This compound was queried through 

PubChem at https://pubchem.ncbi.nlm.nih.gov/search/ and was evaluated for its activity in HTS 

assays.  

2.6.2 Hit Dexter 

Curated and classified β-lactamase and cruzain detergent-sensitive aggregator datasets 

were rendered as RDKit objects, converted to SMILES format, and screened through the Hit 

Dexter online tool at https://hitdexter.zbh.uni-hamburg.de/ (version 1.0).29  The computationally 

expensive Tanimoto Similarity-based applicability domain was not calculated due to the massive 

sizes of the datasets.  Hit Dexter-predicted “High” and “Moderate or High Promiscuity 

Probabilities” and the frequency of specific predictive warnings and errors were evaluated per-

class.   

2.7 Molecular Descriptor Calculation 

Molecules were described using two orthogonal feature generation techniques.  An 

amalgam of 4,529 2D whole-molecule physicochemical features were calculated without rounding 

atom coordinates using the Dragon7 software available from Kode at https://chm.kode-

solutions.net/products_dragonknime.php.38  Additionally, the ISIDA Substructural Molecular 

Fragments Method39 (Version 5.8.11, Build 14.01.2018) was employed to calculate the number of 

occurrences of all Substructural Molecular Fragments within each given dataset.  Default fragment 

calculation settings were used, with the exception that all paths were calculated for atom bond 

https://pubchem.ncbi.nlm.nih.gov/search/
https://hitdexter.zbh.uni-hamburg.de/
https://chm.kode-solutions.net/products_dragonknime.php
https://chm.kode-solutions.net/products_dragonknime.php
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lengths between 2 and 7.  The resulting descriptor files were partitioned to separate the descriptor 

matrix from the fragment indices, and indexed column headers were replaced by their associated 

Atom and Bonds string.  This resulted in 30,585 unique features for β-lactamase and 29,215 unique 

features for cruzain.  Dragon7 and ISIDA features were also calculated for the detergent-resistant 

actives. 

2.8 Feature Processing and Training Set Balancing 

The larger non-aggregator class was subset to match the size of the putative aggregator 

class for both the β-lactamase and cruzain training sets.  Dragon7 feature sets were processed to 

remove columns with incorrect values, low variance, or high correlation to other features.  

Dragon7 assigns “-999” values as a result of computational errors, therefore columns with any 

instance of “-999” or missing values were removed.  Columns with low variance typically do not 

effectively discriminate compound classification, therefore features with less than 0.01 variance 

were removed.  Correlating columns may provide redundant information and were also removed.  

Towards this, the Pearson’s product-moment coefficient was calculated for each pair of features, 

resulting in the generation of a square matrix of correlation values between -1 and 1.  A column 

was considered to correlate to another if the correlation coefficient was at least +/-0.90.  For each 

correlated family of columns, the count of correlated columns each column has with others in the 

dataset was determined and used to maintain only the column with the least number of correlated 

partners.  This process was repeated until no more correlating columns existed in the dataset.  

Finally, all features are normalized to the 0.0 and 1.0 range through linear transformation to ensure 

that they each carry the same magnitude of weight in the similarity search procedure.  This resulted 

in 861 processed Dragon7 features for β-lactamase and 854 features for cruzain.  Datasets were 

partitioned on their binary classification and a similarity search function was performed mapping 
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non-aggregating compounds against the putative aggregator set.  The Euclidean distance in 

normalized Dragon7 feature space between each non-aggregator and its nearest neighbor (NN) in 

the putative aggregator set was calculated.  To select for a set of non-aggregators matching the size 

of the smaller putative aggregator class, non-aggregators were sorted based on their distance to 

their NN in the putative aggregator dataset.  The 50% nearest and 25% furthest non-aggregators to 

the putative aggregator class were concatenated with an additional 25% random remaining non-

aggregators.   

Compounds selected through balancing were extracted from the original, unprocessed 

Dragon7 and ISIDA feature sets and were processed once more to remove columns with “-999” or 

missing values, columns with less than 0.01 variance, and columns with at least +/-0.90 (Dragon7) 

or +/-0.60 (ISIDA) correlation to other columns in the dataset.  This procedure resulted in curated, 

balanced, feature processed training datasets of 30,103 compounds per-class for β-lactamase with 

890 Dragon7 features and 1,085 ISIDA features and 24,660 compounds per-class for cruzain with 

906 Dragon7 features and 1,162 ISIDA features.  This left 212,852 and 138,238 non-aggregators 

externally withheld for the β-lactamase and cruzain test sets, respectively.  Compounds from the 

non-aggregator class which were withheld from the training set due to undersampling were 

maintained and used later as an external screening set for model validation, discussed below.  

There exist 42 cis/trans pairs of E-Z stereoisomers in the balanced β-lactamase dataset and 23 pairs 

in the balanced cruzain dataset which are not differentiated using Dragon7 and ISIDA features. 

2.9 Modelability Index 

The Modelability Index (MODI) is an a priori estimate of the ability to produce predictive 

models from a dataset based on 1-Nearest Neighbor (NN) learning approach without feature 

selection.40  Balanced, feature-processed training sets were normalized to the 0.0 and 1.0 range 
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through linear transformation and the NN in Euclidean distance in both Dragon7 and ISIDA 

feature spaces was determined for each compound.  The MODI40 was calculated by taking the 

average between the ratios of the number of compounds with NNs of the same class divided by the 

number of total compounds in that class for both the putative aggregator and non-aggregator 

classes.   

2.10 QSPR Model Generation and Validation 

QSPR models were built and rigorously validated by several external validation 

methodologies and controls including cross validation, external screening of withheld sets, and y-

randomized modeling, as is best practice for QSAR/QSPR (Figure 3).27,28,41,42 

 
Figure 3 - General modeling workflow 

Descriptor sets were processed, and binary classifications were balanced via stochastic and 
distance-based selection from the non-aggregator class.  Balanced sets were modeled using a 
random forest statistical learning method in five iterations of external cross validation (5FCV) and 
were implemented in the KNIME Cheminformatics Environment.  Y-randomized controls were 
performed in parallel.  Model ensembles were externally validated using non-aggregating 
compounds which were not selected for the balanced modeling set.  An Applicability Domain 
(AD) was applied based on agreeing consensus predictions from Dragon7 and ISIDA models. 
 

Balanced, feature-processed, and non-normalized training set data were partitioned five 

separate times to iteratively equip 80% of the compounds for modeling and withhold 20% of the 

compounds for external validation.  Compounds were partitioned based on a stratified sampling 

approach to ensure an equivalent proportion of putative aggregators and non-aggregators in the 
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training and test sets.  In this way, each compound served exactly four times in the training of new 

models and exactly once as an external test case.  Binary random forest43,44 modeling was 

performed using an ensemble of 1,000 trees.  Trees were decorrelated by randomly bootstrapping 

compound instances used in modeling with replacement and selecting a random sample of root(N)-

many features for each tree, where N is the total number of features available.  Trees were 

configured to evaluate features on classification accuracy at the median value and to use the 

information gain ratio as the split criterion.  The depth that each tree was permitted to grow was not 

restrained for Dragon7 models but was limited to a depth of 1,000 for ISIDA models due to 

computational demand.  Predictions were performed using a continuous probability based on the 

fraction of trees in the forest which vote to classify a given compound in the putative aggregator 

class.  During 5FCV, a single forest of trees was used to screen compounds in the external fold, but 

for external test sets withheld from modeling the average putative aggregator-probability was 

calculated for the ensemble of all five forests.  Compounds with a putative aggregator-probability 

greater than 0.5 were predicted to be putative aggregators, and otherwise were predicted to be non-

aggregators.  To obtain consensus predictions, binary predictions for each compound between the 

Dragon7 and ISIDA models were joined on InChiKey.  Compounds with disagreeing binary class 

predictions were considered outside of the models’ Applicability Domain (AD) and were not 

screened.  Chemical coverage was calculated by dividing the number of compounds within the AD 

with the total number of screened compounds.   

A binary scorer was applied to compounds within the model AD which calculates the 

number of true positives (TP or putative aggregators correctly predicted), true negatives (TN or 

non-aggregators correctly predicted), false positives (FP or non-aggregators incorrectly predicted), 

and false negatives (FN or putative aggregators incorrectly predicted).  These values were used to 
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calculate the following predictivity statistics: sensitivity (SE or TP / (TP + FN)) which estimates 

the accuracy of the putative aggregator classifications, specificity (SP or TN / TN + FP)) which 

estimates the accuracy of the non-aggregator classifications, positive predictivity (PPV or TP / (TP 

+ FP)) which estimates the reliability of the putative aggregator predictions, negative predictivity 

(NPV or TN / (TN + FN)) which estimates the reliability of the non-aggregator predictions, and 

balanced accuracy ((SE + SP) / 2).  Binary classifications for compounds in training datasets were 

randomly shuffled to maintain class distribution but perturb the link between these classes and their 

features.  Y-randomized modeling was performed using identical configuration settings as the non-

randomized modeling described above and predictivity statistics for these models were calculated.  

Consensus models were evaluated on two external testing sets not included within the training 

dataset.  The non-aggregators withheld during balancing and the detergent-resistant active sets 

which were curated and processed alongside the training set compounds were screened.  In this 

context, the detergent-resistant actives were considered non-aggregators.  Only coverage and SP 

metrics were calculated for these sets because they were exclusively composed of non-aggregating 

compounds.   

Finally, the predictivity of the Dragon7 and ISIDA models were evaluated independently 

for accuracy in 5FCV, y-randomization, and external validation, although no AD was applied. 

2.11 Interpretation of QSPR Models 

Model attribute statistics were used to calculate the percent each feature was chosen at the 

first split point in the trees by dividing the frequency each feature was used at the 0th level by the 

frequency each feature was a randomly sampled candidate.  Features for the Dragon7 and ISIDA 

models were separately sorted descending on percent chosen at the first split point.  The rank 
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ordering of the top forty Dragon7 features, the MLOG feature, and the top twenty ISIDA features 

between the β-lactamase and cruzain targets were comparatively analyzed.   

RDKit features available at http://www.rdkit.org which are broadly related to weight, 

polarity, and aliphaticity were calculated for the entire unbalanced datasets.  AMW, SlogP, and 

FractionCSP3 RDKit features were selected and each used to write single-feature models for the 

unbalanced β-lactamase dataset which classified compounds as putative aggregators if attribute 

values were greater than or equal to an optimized threshold tailored to that dataset established by 

iterative adjustment until the SE and SP of the resulting models were approximately equal.  A 

model was built using the logic of all three optimized feature classifiers which predicted the class 

with at least two of the three classifiers agreeing.  Finally, a random-forest model was built for 

the balanced β-lactamase dataset using each of these three features in addition to the highly 

prioritized ISIDA C-H feature.  Modeling was carried out as previously discussed, with the 

exception that no AD was applied. 

 

 

 

 

 

 

http://www.rdkit.org/
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3. Results 

3.1 Concentration Dependence 

 The frequency of active datapoints within variable AC50 concentration ranges was 

calculated for the raw detergent-free HTS assays to estimate the density of potential CACs (Table 

1). 

AC50 Concentration Bin Target # Datapoints % Active Data 
[10 μM, 0.1 mM) β-lactamase 45,625 70.30 

cruzain 25,168 89.18 
[1 μM, 10 μM) β-lactamase 15,223 23.46 

cruzain 2,768 9.81 
[0.1 μM, 1 μM) β-lactamase 2,718 4.19 

cruzain 205 0.73 
[10 nM, 0.1 μM) β-lactamase 656 1.01 

cruzain 68 0.24 
[1 nM, 10 nM) β-lactamase 603 0.93 

cruzain 12 0.04 
[0.1 nM, 1 nM) β-lactamase 46 0.07 

cruzain 0 0.00 
Table 1 - Aggregator concentration dependence for PubChem datasets 

Brackets indicate inclusion of the given concentration, while parentheses indicate exclusion.  
 
3.2 Dataset Concordance 

Intra- and inter-dataset concordance was evaluated on duplicate entries which have the 

same compound tested in multiple assays to establish confidence in assay results and verify 

compatibility between HTS campaigns against the same target (Table 2 and Table 3).   

Target HTS AIDs # Duplicate 
Compounds 

# 
Duplicate 

Sets 

% 
Agreement 

# Non-
Agg Sets 

Agree 

# Agg 
Sets 

Agree 
β-lactamase 485341/485294 2,725 1,298 92.84 1,075 130 

585/584 1,496 648 91.05 519 71 
cruzain 1476/1478 7,728 3,062 90.40 2,538 230 

Table 2 - Intra-dataset concordance analysis 
Duplicate sets are groups of instances in which a single compound has been tested in multiple 
assays.  % Agreement indicates the percent of duplicate sets which unanimously agree in binary 
classification of the duplicate compound.  
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 585/584 Classification 
Putative Aggregator Non-Aggregator 

485341/485294 
Classification 

Putative Aggregator 2,116 696 
Non-Aggregator 6,246 22,998 

Table 3 - β-lactamase inter-dataset concordance analysis 
Confusion matrix illustrating the classification agreement on compounds overlapping between 
both β-lactamase HTS campaigns.   
 
3.3 Context Dependence 

Chemical overlap and classification agreement between the β-lactamase and cruzain 

targets was evaluated to estimate the degree to which aggregation is a context dependent 

phenomenon (Figure 4 and Table 4). 

 
Figure 4 - Overlapping compounds tested between targets 

Venn Diagram illustrating the number of curated compounds for the entire β-lactamase and 
cruzain datasets and the number of compounds tested against both targets. 
 

 β-lactamase Classification 
Putative Aggregator Non-Aggregator 

Cruzain 
Classification 

Putative Aggregator 4,378 9,898 
Non-Aggregator 8,653 94,514 

Table 4 - Inter-target concordance analysis 
Confusion matrix illustrating the classification agreement for compounds overlapping between 
both curated target datasets.   
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3.4 Aggregator Advisor Analyses 

3.4.1 Classification Agreement 

The orthogonal sources used to collect compounds for the Aggregator Advisor25 Rogues’ 

Gallery were evaluated to determine whether classification inconsistencies exist for detergent-

sensitive aggregators (Table 5). 

Source 
ID 

Reference # Unique 
Compounds 

1 Seidler J, McGovern SL, Doman TN, Shoichet BK, J Med Chem, 46, 
4477-86 (2003) 

47 

2 Babaoglu et al, J Med Chem, 51, 2502-2011 (2008) 1,189 
3 Shoichet Lab In House Data - Kristin Ziebart 9 
4 Doak AK, Wille H, Pruisner SB and Shoichet BK, J Med Chem, 53, 

4259-4265 (2010) 
20 

5 Coan KED and Shoichet BK, J.Am.Chem.Soc, 130, 9606-9612 
(2008) 

5 

6 McGovern SL and Shoichet BK, J Med Chem 46, 1478-1483 (2003) 8 
7 McGovern SL, Caselli E, Grigorieff N and Shoichet BK, J Med 

Chem, 45, 1712-1722 (2002) 
24 

8 Coan KE and Shoichet BK, Mol. BioSyst, 3, 208-213, (2007) 2 
9 McGovern SL, Helfand, BT, Feng, B and Shoichet BK, J Med Chem, 

46, 4265-4272 (2003) 
5 

10 Reddie KG, Roberts DR and Dore TM, J Med Chem, 49, 4857-4860 
(2006) 

1 

11 Frenkel YV, Clark AD Jr, Das K, Wang UH, Lewi P, Jannssen PAJ 
and Arnold E, J Med Chem, 48, 1974-1983 (2005) 

14 

12 Giannetti AM, Koch BD, Browner MF, J Med Chem, 51, 574-480 
(2008) 

4 

13 Liu HY, Wang Z, Regni C, Zou X, Tipton PA, Biochemistry, 43, 
8662-8669 (2004) 

1 

14 Ferreira RS, Bryant C, Ang KKH, McKerrow JH, Shoichet BK, 
Renslo AR, J Med Chem, 52, 5005-5008 (2009) 

11 

15 Shoichet Lab In House Data - Allison Doak 23 
16 Jadhav A et al, J Med Chem, 53, 37-51 (2010) 10 
17 Mysinger M et al, PNAS, 109, 5517-5522 (2012) 1 
18 Ferreira RS, Simeonov A, Jadhav A, Eidam O, Mott BT, Keiser MJ, 

McKerrow JH, Maloney DJ, Irwin JJ and Shoichet BK, J Med Chem, 
2010, 53, 4891-905. 

11,232 

? ? 2 
Table 5 - Aggregator sources within the Advisor 

The number of unique SMILES obtained from each orthogonal source used to build the Rogues’ 
Gallery.  No reference was provided for two SMILES. 
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Chemical overlap and classification agreement between the curated PubChem datasets 

and the curated Aggregator Advisor25 Rogues’ Gallery were evaluated to estimate the degree to 

which our definition of aggregation aligned with the Advisor’s (Figure 5 and Figure 6). 

 
Figure 5 - Overlapping compounds used in the Advisor and tested in either target 

Venn Diagrams illustrating the number of curated compounds for either target dataset from 
PubChem overlapping with curated compounds from the Aggregator Advisor.  Not drawn to 
scale. 
 

 
Figure 6 – Overlapping compound class agreement between target sets and the Advisor 

Pie charts illustrating the percent classification agreement between compounds flagged as 
aggregators in the Aggregator Advisor and compounds from the β-lactamase and cruzain sets.   
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3.4.2 Programmatic Evaluation 

The Aggregator Advisor25 was evaluated to determine whether programmatic issues exist.  

A simple experiment was performed to evaluate the accuracy of the tool on its own reference 

database, the Rogues’ Gallery.  The logic used in the Aggregator Advisor to warrant an 

aggregation warning was applied to the SMILES in the Rogues’ Gallery dataset after screening 

through the tool (Table 6). 

# Unique SMILES miLogP > 3? TC > 0.8? 
9,259 Yes Yes 
2,359 No Yes 
722 Yes No 
266 No No 

Table 6 - Rogues’ Gallery Aggregators categorized by Advisor logic 
The number of compounds from the Rogues’ Gallery which obey or break either of the two criteria 
to be considered an aggregator by the Advisor tool.  808 Rogues found no matches to compounds 
within the Advisor.  Approximately 17% of the SMILES from the largest source for the Rogues’ 
Gallery did not find exact matches (TC = 1.0) through the Advisor tool. 

Supplemental Material 1 showcases several examples of the Aggregator Advisor online 

tool either successfully identifying or failing to identify SMILES from its own Rogues’ Gallery.  

This includes “CCCCSc3c(C)c2cc1OCOc1cc2nc3O”, a SMILES with both miLogP > 3.0 and TC 

> 0.8, “CC(=O)C2=C(C)Nc1ncnn1C2c4cccc(OCc3ccccc3)c4” and 

“O=C3CC(c1ccco1)CC(Nc2ccccc2)=C3C(=O)Nc4ccccc4”, two SMILES with miLogP > 3.0 and 

TC < 0.8, and “COC(\O)=c2/sc1cc(C)ccc1nc2C”, a SMILES within the Rogues’ Gallery which, in 

their words “… has not been previously reported as an aggregator, or to be similar to an 

aggregator. (LogP 2.7)”.  This response is generated for 222 unique SMILES from the Rogues’ 

Gallery. 

This last contradictory example SMILES, or CID 713501, was further examined on 

PubChem and was found to be both active and inactive in the same detergent-free assay against 

AmpC β-lactamase within two different HTS campaigns (Figure 7). 
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Figure 7 - Inconsistent results for an Aggregator tested in two β-lactamase assays 

Cropped images from https://pubchem.ncbi.nlm.nih.gov/compound/713501#section=BioAssay-
Results.  Note that the maximum tested concentration for AID 585 (left) is nearly half that of AID 
485341 (right). 
 
3.5 Hit Dexter Analysis 

The curated and classified chemical datasets for β-lactamase and cruzain were used as 

screening sets to interrogate the ability of the Hit Dexter tool29 to distinguish the putative 

aggregator and non-aggregator classes (Figure 8). 

 
Figure 8 - Per-class Hit Dexter promiscuity probability distributions 

High and moderate or high Hit Dexter promiscuity predictions were obtained from the entire, 
unbalanced and curated β-lactamase and cruzain datasets and were used to obtain histograms 
illustrating the difference in distributions between the non-aggregator (blue) and putative 
aggregator (red) classes.   Histograms are normalized to possess a total area of 1.  20 bins used. 

https://pubchem.ncbi.nlm.nih.gov/compound/713501#section=BioAssay-Results
https://pubchem.ncbi.nlm.nih.gov/compound/713501#section=BioAssay-Results
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Hit Dexter generated two types of predictive warnings: “Element types other than those 

present in the training data were detected.  A result was generated but is probably unreliable.” 

and “The molecular weight is not between 250 and 900 Da.  The prediction result may be 

unreliable.” (Table 7).   

Target # Errors # Non-Agg 
Warnings 

# Agg 
Warnings 

# Element 
Type 

Warnings 

# MW 
Warnings 

β-lactamase 21,745 21,264 476 65 21,680 
cruzain 14,648 14,371 274 50 14,598 

Table 7 – Hit Dexter error/warning frequency 
 
3.6 MODI and QSPR Model Performance 

The MODI was calculated to gauge whether balanced training sets maintained a tolerable 

frequency of activity cliffs45,46, or compounds which are most similar to a compound of the 

opposing class at which a small change in structure results in a large change in activity (Table 8).    

 Dragon7 ISIDA 
β-lactamase 0.636 0.643 

cruzain 0.632 0.645 
Table 8 - Training set MODI calculations 

MODI calculated for balanced, feature processed, non-normalized training sets. 
 

Detergent-sensitive aggregation models were built against the β-lactamase and cruzain 

targets and evaluated for predictive accuracy (Table 9 and Table 10, respectively). 

Feature 
Set(s) 

Type SE SP Balanced 
Accuracy 

NPV PPV Coverage 

Dragon7 5FCV Model 0.752 0.749 0.75 0.751 0.75 1.0 
5FCV y-Rand 0.503 0.503 0.503 0.503 0.503 1.0 

Withdrawn 
Non-

Aggregators 

- 0.764 - - - 1.0 

Detergent-
Resistant 
Actives 

- 0.765 - - - 1.0 

ISIDA 5FCV Model 0.702 0.756 0.729 0.717 0.742 1.0 
5FCV y-Rand 0.567 0.437 0.502 0.502 0.502 1.0 
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Withdrawn 
Non-

Aggregators 

- 0.768 - - - 1.0 

Detergent-
Resistant 
Actives 

- 0.824 - - - 1.0 

Consensus: 
Dragon7 + 

ISIDA 

5FCV Model 0.773 0.802 0.787 0.78 0.794 0.834 
5FCV y-Rand 0.565 0.438 0.502 0.502 0.502 0.506 

Withdrawn 
Non-

Aggregators 

- 0.821 - - - 0.829 

Detergent-
Resistant 
Actives 

- 0.845 - - - 0.853 

Table 9 - Predictive statistics of β-lactamase models 
 

Feature 
Set(s) 

Type SE SP Balanced 
Accuracy 

NPV PPV Coverage 

Dragon7 5FCV Model 0.741 0.694 0.718 0.728 0.708 1.0 
5FCV y-Rand 0.505 0.491 0.498 0.498 0.498 1.0 

Withdrawn 
Non-

Aggregators 

- 0.686 - - - 1.0 

Detergent-
Resistant 
Actives 

- 0.589 - - - 1.0 

ISIDA 5FCV Model 0.609 0.764 0.687 0.662 0.721 1.0 
5FCV y-Rand 0.158 0.845 0.502 0.501 0.505 1.0 

Withdrawn 
Non-

Aggregators 

- 0.741 - - - 1.0 

Detergent-
Resistant 
Actives 

- 0.642 - - - 1.0 

Consensus: 
Dragon7 + 

ISIDA 

5FCV Model 0.738 0.793 0.766 0.763 0.771 0.758 
5FCV y-Rand 0.16 0.841 0.50 0.497 0.505 0.495 

Withdrawn 
Non-

Aggregators 

- 0.786 - - - 0.749 

Detergent-
Resistant 
Actives 

- 0.684 - - - 0.629 

Table 10 - Predictive statistics of cruzain models 
 



28 

3.7 Interpretation of QSPR Models 

Features were sorted on frequency chosen at the first split point in the decision trees to 

approximately prioritize contribution to the prediction of aggregation.  The top forty Dragon7 

features were identified for both targets (Table 11) and the class-specific distributions for select 

features were visualized (Figure 9).   

Dragon7 
Descriptor 

Feature Description % Chosen: 
β-lactamase 

% Chosen: 
cruzain 

CATS2D_08_AP CATS2D Acceptor-Positive at lag 08 37.2 22.9 
F03[O-P] Frequency of O - P at topological distance 3 32.4 55.7 

CATS2D_04_DP CATS2D Donor-Positive at lag 04 31.9 41.1 
F10[F-F] Frequency of F - F at topological distance 10 24.2 27.1 
T(P..P) sum of topological distances between P..P 23.1 40.5 
AAC mean information index on atomic composition 100.0 14.3 
AMW average molecular weight 91.8 0.0 

F03[C-C] Frequency of C - C at topological distance 3 90.7 7.2 
SpMin5_Bh(m) smallest eigenvalue n. 5 of Burden matrix weighted by mass 85.3 13.5 
SpMin4_Bh(m) smallest eigenvalue n. 4 of Burden matrix weighted by mass 79.9 NA 

ATS7p Broto-Moreau autocorrelation of lag 7 (log function) 
weighted by polarizability 

73.8 NA 

SpMin8_Bh(s) smallest eigenvalue n. 8 of Burden matrix weighted by I-
state 

68.8 1.7 

F06[C-C] Frequency of C - C at topological distance 6 66.4 1.2 
SpMin6_Bh(e) smallest eigenvalue n. 6 of Burden matrix weighted by 

Sanderson electronegativity 
61.8 NA 

CIC1 Complementary Information Content index (neighborhood 
symmetry of 1-order) 

60.8 1.1 

CATS2D_08_DP CATS2D Donor-Positive at lag 08 59.5 0.0 
ATS2e Broto-Moreau autocorrelation of lag 2 (log function) 

weighted by Sanderson electronegativity 
57.3 NA 

F08[F-Cl] Frequency of F - Cl at topological distance 8 55.3 21.8 
P_VSA_MR_1 P_VSA-like on Molar Refractivity, bin 1 53.3 1.8 

N-075 R--N--R / R--N--X 53.0 0.0 
F10[O-Br] Frequency of O - Br at topological distance 10 51.0 0.0 

H% percentage of H atoms 47.7 0.0 
F09[O-Cl] Frequency of O - Cl at topological distance 9 44.2 9.7 
ATSC6p Centred Broto-Moreau autocorrelation of lag 6 weighted by 

polarizability 
44.2 0.0 

CATS2D_08_DN CATS2D Donor-Negative at lag 08 41.0 1.5 
ATSC8m Centred Broto-Moreau autocorrelation of lag 8 weighted by 

mass 
38.4 NA 

SM09_AEA(dm) spectral moment of order 9 from augmented edge adjacency 
mat. weighted by dipole moment 

38.3 NA 

TPC total path count 34.0 NA 
CATS2D_06_PL CATS2D Positive-Lipophilic at lag 06 33.3 0.0 

T(Cl..I) sum of topological distances between Cl..I 31.5 NA 
AVS_Dt average vertex sum from detour matrix 29.4 NA 
ATSC2m Centred Broto-Moreau autocorrelation of lag 2 weighted by 

mass 
28.8 0.0 

F09[C-C] Frequency of C - C at topological distance 9 27.0 4.3 
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HyWi_H2 hyper-Wiener-like index (log function) from reciprocal 
squared distance matrix 

26.3 2.9 

H-047 H attached to C1(sp3)/C0(sp2) 25.9 0.0 
Wap all-path Wiener index 24.5 5.9 

C-016 "=CHR" 23.4 NA 
F07[F-F] Frequency of F - F at topological distance 7 23.2 11.0 

CATS2D_05_AP CATS2D Acceptor-Positive at lag 05 22.2 12.5 
P_VSA_MR_4 P_VSA-like on Molar Refractivity, bin 4 21.9 3.6 

CATS2D_04_DD CATS2D Donor-Donor at lag 04 0.8 90.6 
Eig12_EA(dm) eigenvalue n. 12 from edge adjacency mat. weighted by 

dipole moment 
NA 85.9 

Eig15_EA(dm) eigenvalue n. 15 from edge adjacency mat. weighted by 
dipole moment 

10.9 83.6 

F02[O-O] Frequency of O - O at topological distance 2 0.0 80.5 
F07[F-Cl] Frequency of F - Cl at topological distance 7 NA 76.5 

Eig13_EA(dm) eigenvalue n. 13 from edge adjacency mat. weighted by 
dipole moment 

17.4 74.3 

T(N..P) sum of topological distances between N..P 15.3 65.0 
Eig14_EA(dm) eigenvalue n. 14 from edge adjacency mat. weighted by 

dipole moment 
9.6 58.8 

CATS2D_02_AA CATS2D Acceptor-Acceptor at lag 02 0.0 54.9 
B09[C-C] Presence/absence of C - C at topological distance 9 14.1 50.0 
T(O..P) sum of topological distances between O..P 15.7 48.3 

B08[C-C] Presence/absence of C - C at topological distance 8 14.2 42.2 
F03[O-Cl] Frequency of O - Cl at topological distance 3 6.3 41.5 

T(S..P) sum of topological distances between S..P 7.6 39.3 
B10[C-C] Presence/absence of C - C at topological distance 10 8.4 39.1 
F06[O-P] Frequency of O - P at topological distance 6 NA 38.9 

CATS2D_08_DD CATS2D Donor-Donor at lag 08 0.0 37.2 
F07[O-P] Frequency of O - P at topological distance 7 NA 35.3 

CATS2D_07_DA CATS2D Donor-Acceptor at lag 07 0.0 34.8 
SdsssP Sum of dsssP E-states 3.1 34.4 

CATS2D_02_DL CATS2D Donor-Lipophilic at lag 02 0.0 33.9 
B07[C-C] Presence/absence of C - C at topological distance 7 NA 33.5 
F03[C-I] Frequency of C - I at topological distance 3 8.5 30.3 

F03[Cl-Cl] Frequency of Cl - Cl at topological distance 3 11.4 29.0 
SssNH Sum of ssNH E-states 0.0 26.3 

D/Dtr04 distance/detour ring index of order 4 5.1 26.1 
F06[C-I] Frequency of C - I at topological distance 6 NA 25.3 
F05[O-O] Frequency of O - O at topological distance 5 1.4 25.2 
F03[N-F] Frequency of N - F at topological distance 3 1.6 24.4 

CATS2D_08_AN CATS2D Acceptor-Negative at lag 08 0.0 24.2 
F05[F-F] Frequency of F - F at topological distance 5 0.0 23.3 
F07[C-P] Frequency of C - P at topological distance 7 1.4 23.3 

SsSH Sum of sSH E-states 6.1 22.9 
CATS2D_05_DA CATS2D Donor-Acceptor at lag 05 0.0 22.8 

WiA_Dt average Wiener-like index from detour matrix 9.9 22.8 
Table 11 - Model-prioritized Dragon7 features 

Grey features overlap in the top forty for both targets, blue features are ordered with descending 
importance for β-lactamase, and orange features are ordered with descending importance for 
cruzain.  “NA” indicates that this feature was filtered during pre-processing.  
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Figure 9 - Per-class distributions for select Dragon7 model-prioritized features 

Histograms and inset box plots illustrating distributions for the non-aggregator (blue) and putative 
aggregator (red) classes on Dragon7 features selected based on interpretability which were 
calculated from the entire unbalanced, curated β-lactamase and cruzain datasets.  Histograms are 
normalized to possess a total area of 1.  In most cases 100 bins were used.  Distributions for 
additional features are given in Supplemental Material 8. 
 

The Aggregator Advisor25 uses logP as a key metric to flag potential aggregators.  To 

probe whether logP is predictive of aggregation and effectively distinguishes the non-aggregator 

and putative aggregator classes, the MLOGP Dragon7 feature was examined for model 

prioritization and class-specific distribution (Figure 10).  Neither target model chose the 

MLOGP feature at the first split point in any tree.  The β-lactamase model chose the feature 1.32% 

of the time at the second split level and 2.77% of the time at the third, while the cruzain model 

chose the feature 1.82% at the second split point and 1.38% of the time at the third. 
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Figure 10 - Per-class distributions for MLOGP 

Histograms and inset box plots illustrating distributions for the non-aggregator (blue) and putative 
aggregator (red) classes on the MLOGP Dragon7 feature calculated from the entire unbalanced, 
curated β-lactamase and cruzain datasets.  Histograms are normalized to possess a total area of 1.  
100 bins were used. 
 

The top twenty ISIDA features were identified for both targets (Table 12) and the class-

specific distributions for the C-H feature was visualized (Figure 11).   

ISIDA Descriptor % Chosen: β-lactamase % Chosen: cruzain 

H-C-C-S-C=S 63.9 41.1 
H-C-C-N-C-N=O 52.2 56.2 
H-C-C-C-N=C-H 50.4 36.1 
F-C-C-N=C-C-H 37.4 32.1 

F-C-C-N-C-N 36.8 51.1 
C-N-C=C-C-N-H 82.4 NA 
H-N-C-C-C-C-O 65.4 NA 
N-C=C-C-N-S=O 62.7 NA 

C-H 58.2 0.7 
H-C-N-C=C-P-O 56.8 NA 

F-C-C-N-S=O 53.7 30.7 
H-N-C-C-N=N 46.9 NA 
H-C-N-N-S=O 44.6 NA 

H-C-S-C-C=C-S 41.3 NA 
H-C-C-C=C-N=N 39.3 NA 
H-C-N-N=N-C=N 38.0 1.4 
C=C-S-C-C-C-N 33.0 0.0 
C-C-C-N-N-C-H 32.6 1.9 
C-C-C=N-C-C=O 32.4 NA 
H-C=C-O-C-C-N 31.9 0.8 

N-C-C-C=O 0.0 86.8 
H-C-C-C-S-C=S NA 73.3 
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N-C-C-C-C-O 0.0 64.4 
N-C-C-C-O 6.3 59.4 

O-P-O-P NA 53.8 
F-C-C-C-C-H 3.3 52.7 
C-C-N-O-H NA 42.4 

C-C-C-C-O-C=N NA 38.8 
H-N=C-N 1.8 37.9 

H-C-O-P-S-C-H NA 36.5 
C-C-C-C=N-O 0.0 35.8 

C-C-C=C-C-C-F 15.8 34.7 
H-N-C-C-C-O 15.3 34.1 

C=C-C-C-N-C-O NA 33.1 
C-C-C-C=C-N-C 0.0 31.6 

Table 12 - Model-prioritized ISIDA features 
Grey features overlap in the top twenty for both targets, blue features are ordered with descending 
importance for β-lactamase, and orange features are ordered with descending importance for 
cruzain.  “NA” indicates that this feature was filtered during pre-processing. 
 

 
Figure 11 - Per-class distributions for C-H bond count 

Histograms and inset box plots illustrating distributions for the non-aggregator (blue) and putative 
aggregator (red) classes on the ISIDA C-H feature which was calculated from the entire 
unbalanced, curated β-lactamase and cruzain datasets.  Histograms are normalized to possess a 
total area of 1.  100 bins were used. 
 

Insights gained through Dragon7 and ISIDA feature analysis were used to test whether 

aggregation models could be simplified to rules for a small number of RDKit features broadly 

related to weight, polarity, and aliphaticity.  The class-specific distributions for select RDKit 

features were visualized (Figure 12). 
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Figure 12 - Per-class distributions for select RDKit features 

Histograms and inset box plots illustrating distributions for the non-aggregator (blue) and putative 
aggregator (red) classes on select RDKit features calculated from the entire unbalanced, curated β-
lactamase (left column) and cruzain (right column) datasets.  Histograms are normalized to 
possess a total area of 1.  In most cases 100 bins were used. 
 

To test whether AMW, SlogP, and FractionCSP3 features adequately approximate 

detergent-sensitive aggregation, each feature was used to build single-feature models which 

classified compounds based on whether attributes were greater than or equal to an optimized 

threshold.  Additionally, a model was built using the logic of all three optimized classifiers 

which predicted the class with at least two of the three classifiers agreeing (Table 13). 

RDKit 
Feature 

Optimized 
Threshold 

SE SP Balanced 
Accuracy 

NPV PPV 

AMW 385 0.694 0.69 0.692 0.948 0.217 
FractionCSP3 0.3175 0.607 0.606 0.606 0.926 0.16 

SlogP 3.175 0.594 0.596 0.595 0.922 0.154 
All three All optimized 0.709 0.692 0.70 0.95 0.222 

Table 13 - Predictive statistics for RDKit β-lactamase models with optimized thresholds 
Thresholds were optimized and classifiers were built specifically for the entire unbalanced β-
lactamase dataset. 
 

Finally, to compare the consensus models built from the complete Dragon7 and ISIDA 

sets with models built with a refined selection of features, a random-forest classifier was built 

using AMW, SlogP, and FractionCSP3 RDKit features and the highly prioritized ISIDA C-H 

feature (Table 14). 
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Type SE SP Balanced 
Accuracy 

NPV PPV 

5FCV Model 0.682 0.689 0.686 0.685 0.687 
5FCV y-Rand 0.476 0.522 0.499 0.499 0.499 

Withdrawn Balancing 
Non-Aggregators 

- 0.72 - - - 

Table 14 - Predictive statistics for the refined, hybrid-feature β-lactamase RF model 
Models were built specifically for the balanced β-lactamase dataset.  No AD was applied. 
 
4. Discussion and Conclusions 

Our collection of dose-response HTS data reporting on detergent-sensitive aggregation is 

the largest used for cheminformatics analysis to-date.  This makes us uniquely positioned to 

develop novel models, as the strength and prospective accuracy of statistical predictors is often a 

function of the wealth of data used in training.25  Considering that the majority of aggregators have 

CACs in the low micromolar range12,19, these screens performed on concentration gradients 

ranging between 1.8 nM and 57.10 μM give us high sensitivity to detect artifact-like activity and 

allow our training data to be applicable to the majority of relevant doses tested in standard HTS.   

Our estimation of the density of aggregator CACs demonstrated that there are insufficient 

data to generate a series of models which predict aggregators at variable HTS concentration 

ranges.  Only the two largest tested concentration ranges, [10 μM, 0.1 mM) and [1 μM, 10 μM), 

contained a significant enough portion of the active data to adequately model concentration-

specific aggregation, with each of the other ranges containing less than 5% of the active data for 

both target datasets.  Therefore, models presented in this work are especially enriched in 

aggregators with CACs between 1 μM and 100 μM, and these models will be especially suited to 

predict future aggregators with CACs in this range. 

  There is no field consensus in quantitatively defining aggregation based on detergent-

sensitive assay interpretation in lieu of physical characterization.  For example, Shoichet et al.24 

labeled aggregators as detergent-sensitive compounds which inhibit three distinct enzymes in a 
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time-dependent manner, while NCGC12 claims that aggregators should be flagged if there is a 

greater than 20% reduction in activity as a result of adding detergent at a given concentration and 

that “rightward shifts in IC50 > 3x should be considered likely aggregate-dependent effects”.12  

Using the proxy of biochemical sensitivity to detergent in the absence of physical evidence of 

colloidal particles is imperfect, and no definition, including our own, is without exceptions.  This 

experimental uncertainty is inherent in any QSAR/QSPR modeling endeavor.  Therefore, we refer 

to our aggregators as “putative” to establish the qualification that this classification is extrapolated 

through biochemical assay and may, in some cases, be incorrect.  For example, our definition 

misclassifies colloidal aggregates which have no inhibitory effect on, or enhance, the activity of a 

specific target protein3, are not perturbed by detergent, or have low affinity to adsorb to β-

lactamase or cruzain proteins.3,10,18  Technically, compounds which are detergent-insensitive may 

either be inert with and without detergent or be active with and without detergent.  However, while 

defining the non-aggregator class, we observed that only tens of compounds were detergent-

resistant actives, while hundreds of thousands of compounds were completely inert.  To prevent 

confusion of the modeling endpoint with compounds which have drastically variable experimental 

activities, we chose to use the large set of inert compounds to define the non-aggregator class and 

maintained the detergent-resistant actives for external testing.  

We demonstrate the pervasiveness of putative aggregators in HTS, as more than 11% of 

the curated β-lactamase and cruzain datasets showed some degree of detergent-sensitive activity.  

This surpasses prior speculations that aggregators may plague up to 5% of some screening 

libraries12 and emphasizes the hazard of aggregators in HTS.   

Concordance analysis established strong internal confidence for the HTS campaigns, as 

each had more than 90% intra-dataset agreement on duplicate entries.  However, inter-dataset 
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agreement between the two HTS campaigns against β-lactamase was less confirmatory.  Only 

about 78% of compounds overlapping between the sets were assigned the same classification, with 

approximately 90% of disagreeing compounds being labeled as non-aggregators in HTS AIDs 

485341/485294 and putative aggregators in HTS AIDs 585/584.  This runs contrary to 

expectation, as the former HTS was performed at a maximal concentration approximately twice 

that of the latter.  Regardless, we deemed this degree of concordance suitable considering that 

these assays were performed under identical conditions and proceeded to merge datasets to 

ultimately form a single β-lactamase aggregation model. 

Our analyses reinforce prior notions that aggregation is a heavily context-dependent 

phenomenon.12  More than 22,000 unique NCGC compounds were screened against both the β-

lactamase and cruzain targets and were labeled aggregators in at least one of the two datasets.  

However, more than 80% of these aggregators were non-aggregators under the second set of assay 

conditions, which varied significantly by buffer system and pH, protein concentration, and 

detection technology.  Considering this degree of discordance, and that aggregation is highly 

context dependent, we maintained the two sets separately to model in parallel with refined assay 

contexts.  

We highlight major flaws in the classification definition and programmatic functionality of 

the Aggregator Advisor tool25.  First, we observed that the historical data collected for the Advisor 

were obtained from 18 orthogonal sources, some of which originate from unpublished reserves.  

Based on the verbiage of the original publication25, there is no consistent quantitative threshold 

which was used to classify compounds as aggregators from one data source to another.  Instead, 

aggregators were classified if they broadly “caused inhibition that was reversible by detergent”.  

For example, one source11 classified compounds as aggregators if they “had a maximum response 
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greater than 40% inhibition” against cruzain sensitive to the addition of detergent, while another 

source21 considered compounds aggregators “if they produced a curve class of -3 or better … over 

a concentration range from 4 nM to 30 μM” against AmpC β-lactamase which was sensitive to the 

addition of detergent.  As aggregation has been perceived as a context-dependent phenomenon12,19, 

these classification inconsistencies make it difficult to discern whether a compound in the Rogues’ 

Gallery aggregates in a certain assay and causes inhibition of a certain target.  Second, the public 

data used in this study corresponds to the two sources which contribute more than 98% of the 

compounds in the Rogues’ Gallery.  However, the Gallery only contains 1,189 aggregators from β-

lactamase HTS AIDs 585/584 and 11,232 aggregators from cruzain HTS AIDs 1476/1478, which 

from our interpretations contained 13,583 and 24,660 curated problematic detergent-sensitive 

compounds, respectfully.  Additionally, the β-lactamase HTS AIDs 485341/485294 resulted in 

25,586 unique curated putative aggregators, but these data were never equipped to support the 

Rogues’ Gallery.  This resulted in one example compound within the Rogues’ Gallery, CID 

713501, which is labeled in PubChem to have contradictory experimental evidence being both 

active and inactive in separate PubChem AmpC β-lactamase screens without detergent.  This 

example may be representative of many low confidence or misclassified aggregators within the 

Rogues’ Gallery.   

While comparing our classified datasets to the compounds in the Advisor we found that the 

majority of the Rogues’ Gallery existed as a minor subset of our curated sets.  However, there was 

a stark difference in the classification of compounds which overlap between the Advisor and the β-

lactamase set.  More than 87% of these compounds were considered aggregators by the Advisor 

but were inert in all PubChem HTS data against β-lactamase used in this study.  This was likely a 

result of the Adviser not considering information from the HTS AIDs 485341/485294.  On the 
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contrary, there was more than 90% agreement in the classification of putative aggregators between 

our cruzain set and the overlapping compounds in the Rogues’ Gallery.  This is likely because a 

significant majority of the compounds in the Gallery derive from the cruzain HTS campaign.47  

Therefore, it would seem that the Advisor is more well positioned to perform advisement of 

compounds which aggregate in conditions tested specifically in the cruzain HTS AIDs 1476/1478, 

but may not correctly flag compounds from other assay conditions or against different targets such 

as β-lactamase. 

While probing programmatic issues with the Aggregator Advisor we found that the 

provided python batch script does not allow the user to indicate a specified Affinity Range.  This, 

in addition to our observations that the outcome of any given SMILES query is not dependent on 

whether the Affinity Range is set on “< 0.1 μM”, “0.1-10 μM”, or “> 10 μM”, provides evidence 

that the tool does not include information on compound concentration to inform its analysis.  Next, 

due to some programmatic error, the absence of certain data in the TC search algorithm, or the 

non-standardization of SMILES, an alarming 808 compounds within the Rogues’ Gallery cannot 

identify themselves within the Aggregator Advisor tool and 222 SMILES from the Rogues’ 

Gallery cause the Advisor to respond that the compound “…has not been previously reported as 

an aggregator, or to be similar to an aggregator.”.  About 26% of the SMILES from the Rogues’ 

Gallery do not possess both criteria used to consider aggregators by the Advisor, and more than 

20% of the SMILES do not have miLopP > 3.0, which may indicate that this criterion does not 

effectively identify aggregators.  Altogether, these issues with the Aggregator Advisor necessitate a 

more reliable predictive model for colloidal aggregation. 

The Hit Dexter tool (version 1.0)29 failed to discriminate putative aggregators from non-

aggregators based on the per-class distribution of promiscuous probabilities.  We assume that the 
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frequency of promiscuous compounds in the aggregating class should be significantly higher, 

theoretically 100%, than the non-aggregating class, especially considering that aggregation is the 

most frequent cause of non-specific activity in HTS assays.4,10  Therefore, the Hit Dexter tool 

should rank the promiscuity of the putative aggregator class well above that of the non-aggregator 

class for both datasets.  Per-class Hit Dexter promiscuity probability distributions illustrate an 

indiscriminately small separation between the non-aggregator and putative aggregator classes, with 

approximately equal median and mean values for both the high and moderate or high promiscuity 

endpoints in both targets.  A small exception to this is in the case of the moderate or high 

promiscuity value for the cruzain dataset, in which there is approximately a 5% increase in the 

mean promiscuity of the aggregator class over the non-aggregator class.  Additionally, two errors 

occurred while screening.  There were 50 or more observations per target in which predictions 

were not reliable due to having unrecognized element types, and there were more than 14,500 

unreliable predictions per target due to compounds being outside of the training set range of 250 

and 900 Da.  These two errors represent significant flaws of the tool, as most HTS libraries contain 

compounds which fall outside of this weight range.   We note that we did not apply an applicability 

domain to these predictions due to computational demand, which may have altered predictive 

results.  During the writing of this work a second version of the Hit Dexter tool was released (2.0) 

which was trained on more extensive dose-response data on interference mechanisms.30  We did 

not evaluate the accuracy of version 2.0 on our datasets but suspect that this version might also fail 

to prioritize the aggregating class as promiscuous as a result of combining training set data related 

to many types of assay interference, therefore diluting and confusing the endpoint of the model and 

lowering predictive accuracy towards this specific mechanism.   
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We chose Dragon7 and ISIDA features to describe our compounds because they represent 

orthogonal feature generation techniques.  Dragon7 is the state of the art in the description of 

whole-molecule physicochemical features, and ISIDA exhaustively describes the frequency, not 

just existence, of molecular substructures.   The use of exclusively 2D features prevented us from 

discriminating rotomers or stereoisomers.  These techniques generated massive numbers of 

descriptors in order to gain maximal class distinction for modeling, including 4,500 Dragon7 

features and a sparse matrix of more than 29,000 ISIDA features. 

Feature processing was performed to lighten the computational demand and simplify 

feature selection during machine learning.  Binary statistical classifiers such as random forest are 

often sensitive to highly imbalanced training sets which have a disproportionate number of 

compounds between classes.48  To address this, we applied a balancing method to undersample the 

non-aggregator class which uses distance-based and stochastic components.  To match the size of 

the putative aggregator class, the nearest 50% non-aggregators to the putative aggregator class, the 

25% furthest non-aggregators, and 25% random remaining non-aggregators were selected.  This 

undersampling protocol theoretically retains compounds close to the interface between the two 

classes to inform the model about edge cases where the distinction between classes is small, 

compounds where the distinction between classes is massive, and compounds which are randomly 

distributed that maximize the diversity of the non-aggregator class.  Feature processing after 

balancing maintained a massive number of informative descriptors, more than 800 for Dragon7 

and more than 1,000 for ISIDA.  We used a stricter correlation cutoff for ISIDA to significantly 

reduce the size of the sparse matrix and lower the likelihood of fragment redundancies due to a 

fragment existing as a subset of another. 



42 

Dataset MODI values indicated that our modeling datasets contained high but tolerable 

frequencies of activity cliffs.  Datasets with MODIs significantly less than 0.65 may not be able to 

produce predictive models due to a saturation of activity cliffs which increase the difficulty for the 

statistical technique to discern characteristics which differentiate compounds between classes.40  

Because our balancing algorithm maintained the 50% non-aggregators closest to the opposing 

class, we anticipated a notable number of activity cliffs in our datasets.  Each of our modeling 

dataset MODI values approached 0.65, falling in the range between 0.632 and 0.645.  Therefore, 

we pursued the modeling of these data.    

 Our QSPR models proved to be rigorous and extensible, as they demonstrated high 

predictivity of detergent-sensitive aggregation for AmpC β-lactamase and cruzain-specific protein 

targets, with 5FCV balanced accuracies of 0.787 and 0.766, respectively.  We chose a random 

forest statistical modeling approach for its ease of interpretation and lightweight computational 

demand.43,44  Y-randomized controls verified that no model overfit the training datasets, as the 

5FCV balanced accuracies for all y-randomized models fell within the range of 0.498 and 0.503, 

approximating the accuracy of a random guess.  Performing consensus predictions using models 

generated from whole-molecule physicochemical features and fragment features allowed us to 

increase predictive confidence and establish a simple method for AD, as evidenced by the 

approximate 4% to 8% increase in 5FCV balanced accuracies when using consensus models 

instead of the single Dragon7 and ISIDA feature sets alone.  Indeed, SE, SP, balanced accuracy, 

NPV, and PPV were all increased in the consensus models over the single feature set models for 

both targets, with the exception that the cruzain Dragon7 model had a 0.3% higher 5FCV SE than 

the consensus model.  However, increased predictivity came at the expense of reduced coverage 

due to AD implementation, which caused up to a 17% reduction in the coverage of the β-lactamase 
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model and between about a 25% and 37% reduction for the cruzain screening sets.  It seemed that 

the Dragon7 features contributed more to the classification of putative aggregators, with the 5FCV 

SE of the Dragon7 models between 5% and 13.5% greater than that of the ISIDA models, while 

the ISIDA features had a larger contribution to the identification of non-aggregators, with 5FCV 

SP between 0.5% and 7% greater than that of the Dragon7 models.  Overall, the Dragon7 models 

outperformed the ISIDA models with 5FCV balanced accuracies between 2% and 3% higher, 

which may be a result of the sparsity of the ISIDA feature space.  Additionally, the consensus β-

lactamase model outperformed the cruzain model with a 5FCV balanced accuracy about 2% higher 

and coverage more than 7% greater for each screening set, likely a result of using a larger β-

lactamase training set composed of high-confidence duplicate classifications between two separate 

HTS campaigns.  Consensus models showed high SP in validation screens of hundreds of 

thousands of external non-aggregator compounds, with the β-lactamase and cruzain models 

correctly classifying non-aggregators about 82% and 74% of the time, respectively.  Additionally, 

these models demonstrated strong coverage of external non-aggregator datasets indicating a wealth 

of model chemical diversity, as the β-lactamase and cruzain screening sets were about 83% and 

75% covered, respectively.  Finally, about 85% of the detergent-resistant actives fell within the AD 

of the β-lactamase consensus model, which correctly classified more than 84% as being non-

aggregators.  However, the cruzain consensus model struggled to recognize the small set of 

detergent-resistant actives, with less than 70% correctly predicted out of the 63% within the AD.  

This may indicate that the cruzain model has insufficient information on specific, true-positive 

compounds in HTS.  However, predictions performed in conjunction with both models may have 

higher likelihood of being correctly classified in more generalized assay contexts.   
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 QSAR/QSPR model interpretation is often difficult or impossible due to the complicated 

nature of machine learning algorithms or the expanse and diversity of training datasets.  Even the 

logical algorithm of random forest becomes obscure when building five iterations of 1,000-tree 

forests.  However, we managed to probe the complicated SIR of these models to identify features 

correlated to aggregation in the context of the β-lactamase and cruzain screens by studying the 

frequency that features are the most predictive single-model classifiers in tree samplings.  Some of 

the top forty Dragon7 features for the β-lactamase model related to average molecular weight, 

which was chosen in the first split point of the trees about 92% of the time, the percentage of H 

atoms, the total path count, and the frequency of pairs of electronegative atoms such as O, Br, Cl, I, 

and F at certain topological distances.  Many model-prioritized Dragon7 features for cruzain 

related to the frequency of pairs of electronegative atoms such as O, F, Cl, N, P, and S.  Some top 

Dragon7 features which overlapped between the two models related to the frequency or existence 

of pairs of carbon atoms at certain topological distances.  Based on visualizations of per-class 

distributions for these features, putative aggregators for only the β-lactamase set tend to have larger 

H%, while aggregators for both target sets tend to have significantly larger average molecular 

weight and total path counts.  Model-prioritized ISIDA features for both targets were enriched in 

fragments containing many sp3-hybridized carbon atoms.  However, the only fragment which 

significantly distinguished the two classes was “C-H” for the β-lactamase model specifically, 

which tended to be significantly larger for the putative aggregator compounds.  As each of these 

prioritized features broadly relate to weight, chemical complexity, aliphaticity, and polarity, we 

used simple RDKit features to determine the generalizability of these trends.  Indeed, based on 

visualizations of class-separating distributions for these RDKit features, the putative aggregator 

class in both target datasets had a significantly higher frequency of heteroatoms and rings, although 
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only the β-lactamase dataset had an increase in the percentage of sp3-hybridized carbons in the 

aggregator class.  A series of other Dragon7 features significantly distinguished the two classes for 

both target datasets, such as HyWi_H2, AVS_Dt, ATS7p, and Log10(Wap), although these features 

are more difficult to interpret and generalize.  As the Aggregator Advisor25 uses logP as a metric 

to flag aggregation, we evaluated the importance of the MLOGP Dragon7 feature and found that 

it was never selected at the first branch point in our models and was seldom chosen at the second 

or third points.  Additionally, we demonstrate that MLOG does not significantly separate the 

putative aggregator and non-aggregator classes in either target dataset.  Although there is a slightly 

larger trend for aggregators to have larger MLOG based on median and mean, there were 

considerable populations of putative aggregators which have MLOGP below 3.0 and non-

aggregators with MLOG above 3.0.  Although we posit that aggregators tend to be larger in 

molecular weight and more complex, and specifically for the β-lactamase set, also seem to have 

more aliphatic groups, we also discovered that AMW, FractionCSP3, and SlogP alone are 

insufficient to approximate the predictive accuracy attained by our consensus models on the β-

lactamase curated set.  For example, after optimizing threshold values to maximize classification 

accuracy on the entire unbalanced β-lactamase set, we found that SlopP at a threshold of 3.175 and 

FractionCSP3 at a threshold of 0.3175 alone obtain a balanced accuracy of about 0.60, while 

AMW at a threshold of 385 alone achieves a balanced accuracy greater than 0.69, approximately 

the same as when using all three classifiers together.  In a fair comparison between our consensus 

models and RF models created from the AMW, SlogP, FractionCSP3, and C-H features on the 

balanced β-lactamase dataset we found that our models have more than a 10% improvement in 

5FCV balanced accuracy and external non-aggregator set SP over the refined feature model, 

although this comes at the cost of applying an AD.  Overall, the simplest small molecule attribute 
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which most accurately predicts aggregation is molecular weight.  This makes sense, as solubility 

tends to decrease with increasing molecular size.  

We encourage the application of our models by the scientific community.  In the simplest 

form, our curated datasets for both the β-lactamase and cruzain targets provided in Supplemental 

Material 2 could be used to identify compounds which have displayed detergent-sensitive activity.  

Screening libraries through both of our β-lactamase and cruzain models can help inform whether 

compounds should be orthogonally screened as aggregators or triaged based on specific HTS assay 

conditions.  We recognize that our models may not be extensible to the prediction of aggregators in 

extremely variable assay conditions.  We hope that these models increase public confidence and 

usage in computational approaches which predict specific mechanisms of assay interference and 

emphasize correct controls for particularly likely interference compounds.  While these tools are 

economically helpful for analyzing massive libraries, we do not in any way advocate their usage 

as sole substitutes for well-designed experimental counter-screens for aggregation.  We 

anticipate that the application of our predictors will inform medicinal chemists and chemical 

biologists of misleading aggregators and reduce wasted resources in pursuit of deceiving, non-

tractable chemical leads. 

5. Dissemination 

These models have been encapsulated within a KNIME prediction workflow for VS and 

are accessible for download in Supplemental Materials 3-7.  To use the workflow, import the 

Supplemental_Material_3.knwf to your KNIME working environment, input your Dragon7 and 

ISIDA features sets, point the “List Files” nodes to the directories containing the appropriate 

downloaded and extracted Dragon7 and ISIDA models for β-lactamase and cruzain, and execute 

the “Predictions” metanode.  It has been assumed that the user has curated their screening data 
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per best practices, calculated the Dragon7 and ISIDA feature sets as previously described, set the 

headers of the unique compound identifier column to “Compound_name”, and maintained the 

feature headers names as given exactly by the software packages.  Separate predictions for the β-

lactamase and cruzain targets will be saved to a specified location in a csv file following 

prediction of the query dataset.  These models can be employed by users to predict putative 

aggregators and non-aggregators in chemical libraries of their interest.  
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APPENDIX 
 

Supplemental Material 1 - Real-time video demonstration of various examples of the Aggregator 
Advisor either successfully detected or failing to detect compounds within its own 
Rogues' Gallery 

Supplemental Material 2 - Curated SDF balanced and unbalanced training sets and balancing-
withheld non-aggregator and detergent-resistant test sets for the β-lactamase and cruzain 
targets 

Supplemental Material 3 - KNIME prediction workflow 

Supplemental Material 4 - β-lactamase Dragon7 models 

Supplemental Material 5 - β-lactamase ISIDA models and feature headers 

Supplemental Material 6 - Cruzain Dragon7 models 

Supplemental Material 7 - Cruzain ISIDA models and feature headers 
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Supplemental Material 8 - Per-class distributions for additional select Dragon7 model-

prioritized features 
Histograms and inset box plots illustrating distributions for the non-aggregator (blue) and putative 
aggregator (red) classes on Dragon7 features selected based on their strong class-separating 
distributions from the entire unbalanced, curated β-lactamase (left column) and cruzain (right 
column) datasets.  Histograms are normalized to possess a total area of 1.  In most cases 100 bins 
were used.  Note that the histogram for the last feature, Wap, was scaled to log10.  
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