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ABSTRACT 

Sing-Wai Wong: The role of autophagy machinery in osteoclast disease pathogenesis 

(Under the direction of Ching-Chang Ko and Jennifer Martinez) 

 

 

Osteoclast disease, such as Paget’s disease of the bone and osteoporosis, are pathological 

conditions of excessive bone resportion caused by disproportionate generation or over-activation 

of osteoclasts. They represent some of the most common chronic diseases that result in morbidity 

and disability in the elderly population with an estimation of more than 60 million people in the 

US currently affected with osteoclast diseases. My dissertation research  focuses on studying the 

role of autophagy machinery in osteoclast differentiation and osteoclast disease pathogenesis. 

In the second chapter, we investigate the role autophagy receptor Optineurin (OPTN) in the 

pathogenesis of Paget’s disease of the bone (PDB). We identify that OPTN acts as an intrinsic 

negative modulator for osteoclast development, as it restrains osteoclast differentiation in vitro 

and protects against the development of PDB in vivo. While the absence of OPTN results in a 

defective type I interferon responses in osteoclasts, exogenous supplementations of recombinant 

IFN completely reverse the hyperactivity observed in OPTN deficient osteoclasts. Therefore, 

we propose that IFN could serve a novel pharmacotherapy for PDB. 

In the third chapter, we investigate the role of autophagy machinery in osteoclast 

differentiation. We reveal that certain upstream autophagy core proteins, such Beclin-1, VPS34, 

ATG14 and FIP200 are required for osteoclast development, which seems to be dispensable of 

autophagic flux. Moreover, we uncovered the noncanonical roles of autophagy protein Beclin-1 in 

osteoclast differentiation – nuclear Beclin-1 protects against DNA damages and cell death to main-



 

tain sufficient noncanonical NF-kB responses during osteoclastogenesis. Since mice with myeloid 

restricted Becn1 deficiency exhibit insignificant age-related bone loss, Beclin1 may be a novel 

therapeutic target for osteoporosis. 

 Taken together, my research adds knowledge to our current understanding of osteoclast 

development - the entire autophagy pathway is instrumental for osteoclast differentiation, through 

different components exert different control over the differentiation process. Targeting the 

autophagy and its effector pathways may be a novel anti-resorptive regimen for patients with 

osteoclast disease, and may potential benefit them in a multifaceted way.
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CHAPTER 1: INTRODUCTION 1 

Osteoclast diseases 

Osteoclast disease, such as osteopenia, osteoporosis and Paget’s disease of the bone, are 

pathological conditions of excessive bone resorption caused by disproportionate generation of 

activation of osteoclasts, the multi-nucleated cells that degrade bone. They represent some of the 

most common chronic disease that result in morbidity and disability in the elderly population 

(Bilezikian 2019). It is estimated that more than 60 million people in the US are currently affected 

with osteoclast disease (Johnell and Kanis 2006), which result in disability, death and decreased 

quality of life, and places a huge burden on the patients, healthcare systems and the entire society. 

 

Osteoporosis 

The clinical definition of osteoporosis is “a systemic disease characterized by low bone 

mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone 

fragility and susceptibility” (Peck et al. 1993). Osteoporosis was first named during the last 

century based on the histological diagnosis, “porous bone”. In 1994, the World Health 

Organization, defined the diagnosis of osteoporosis as dependent on bone mineral density and 

previous facture history (Bilezikian 2019). It has been estimated that more than 10 million 

                                                        
1 This chapter is partial extracted from previous published articles in Frontiers in Immunology and the 

FEBS (Federation of European Biochemical Societies) Journal. The original citations are as follows: 

Wong SW, Sil P, Martinez J. "Rubicon: LC3-associated phagocytosis and beyond." FEBS J 285(8) (April 

2018): 1379-1388. 
Sil P, Wong SW, Martinez J. “More Than Skin Deep: Autophagy Is Vital for Skin Barrier Function”. 

Front Immunol 25; 9 (Jun 2018): 1376 
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American people over 50 years of age have osteoporosis, that leads to approximately 1.5 million 

bone fractures annually (Bilezikian 2019).Osteoporosis is diagnosed with a decrease of bone-

mineral density (BMD) of more than 2.5 standard deviations below the average of young adults 

(T score < 2.5), assessed by dual x-ray absorptiometry (DXA) (Kanis et al. 1994). Bone fracture 

is the main consequence of osteoporosis, and commonly occurrs in the spine, hip or wrist. After 

a bone fracture of the low extremities, the mortality of osteoporotic patients can reach up to 20% 

due to adverse complications, such thromboembolism and pneumonia.  

It is widely accepted that, from the pubertal growth spurt, when the peak bone mass is 

attained, to the very early middle age, these is no significant change in BMD or microarchitecture. 

Beginning in the third decade of life, the trabecular bone starts to be lost in both males and females, 

suggesting that aging is a critical confounding factor for osteoclastic bone resorption. After the age 

of 50 years, the volumetric BMD exhibits a linear declination, which is greater in females than in 

males (Bilezikian 2019; Khosla and Riggs 2005). It has been estimated that about 40% of 

postmenopausal women are affected with osteoporosis. After menopausal, serum estrogen 

concentrations decrease dramatically (85% to 90% reduction of serum estradiol levels), and this 

reduction is in parallel with a rapid systemic bone resorption (Khosla et al. 1997). While the rates 

of bone formation and resorption are approximately equivalent before menopause, a menopausal 

associated estradiol reduction results in a disequilibrium of bone homostasis by increasing both 

bone resorption and formation, with bone resorption outpacing bone formation (Garnero et al. 

1996). Mechanistically, estrogen has been showed to suppress RANKL, receptor activator of 

nuclear factor kB ligand, a key cytokine for osteoclastogenesis (Eghbali-Fatourechi et al. 2003) 

and promotes the expression of osteoprotegerin (OPG), a decoy receptor for RANKL and an 

osteoclastogenic inhibitor (Hofbauer et al. 1999). With the decrease of the estrogen level, the ratio 
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of RANKL/OPG is increased, which favors osteoclast differentiation and subsequent bone 

resorption (Bilezikian 2019). Compared to postmenopausal females, aged males have less bone 

reduction (Riggs et al. 1998) and less frequency of bone fractures due to the involvement of both 

testosterone and estrogen in bone preservation (Khosla et al. 1998).  

 

Paget’s diseases of the bone 

Paget disease of bone (PDB) is featured by focal areas of irregular bone remodeling in the 

elderly population. It is the second most common bone disease after osteoporosis in the United 

States, with a prevalence rate of 2.32% in people over 65 years of age (Altman et al. 2000). Paget’s 

disease commonly affects axial bones, including the pelvis, femur, spine, skull and tibia. Based on 

the number of affected sites, this disease can be monostotic (only affect a single bone) or polystotic 

(involvement of two or more bones). The majority of Paget’s disease patient are asymptomatic and 

were usually diagnosed during routine X-ray exams. With disease progression, however, signs and 

symptoms appear. The common clinical manifestation of PDB are bone pain, bone deformity, bone 

fracture, spinal stenosis/cord compression. In rare situations (less than 1%), a Pagetic lesion 

undergoes malignant degeneration and can be transformed to bone tumors, such as osteosarcomas 

or fibrosarcomas (Bilezikian 2019).  

The earliest change in a Pagetic lesion is an increase formation of osteoclasts, which cause 

bone resorption in the affected regions. Compared to normal osteoclasts, osteoclasts in Pagetic 

lesions exhibit a hyper-activated signature – the number, size, actively and nuclei number of 

Pagetic osteoclasts are all increased (Rebel et al. 1980; Singer et al. 2006; Teramachi et al. 2016). 

As skeletal homeostasis breaks and bone resorption initiates, an early osteolytic lesion is formed 

and it manifests as a radiolucency on radiographs (Bilezikian 2019). After the osteolytic phase, 
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osteoblasts are recruited to the resorptive site for a compensative bone repair. Due to the rapid 

nature of bone formation, the structure, quality and shapes of newly formed bones are abnormal, 

and its phase is named as hypertrophic or mixed phase lesion of PBD. At the final stage, the 

affected bone may exhibits decreased hypercellularity, which changes to a sclerotic, mosaic lesion 

in which active bone turnover is absent, naming burned out Paget’s disease (Bilezikian 2019).  

Multiple lines of evidence indicate that both environmental and genetic factors have been 

involved in the etiopathogenesis of PDB.  While environmental challenges such as, toxins, animal 

exposures, viral infections have been occasionally reported to be associated with PDB (Singer 

2015), numerous studies showed a strong genetic predisposition of PDB (Singer 2015). 

Approximately 20% PDB patient have a positive family history and about a half of familial PDB 

patients harbor a mutation in the SQSTM1 gene, which encodes p62, an autophagy receptor protein 

(Singer 2015). To date, about 30 different mutations in SQSTM1 have been reported to cause PDB, 

with most of the mutations located in the ubiquitin-associated domain (Singer 2015). Some in vitro 

functional studies demonstrate that these PDB-associated mutants enhance NF-kB activation, and 

hence increase osteoclast differentiation. As only one tenth of patients with PDB demonstrate a 

mutation in SQSTM1, genome-wide association studies (GWAS) have explored new candidate 

genes associated with PDB (Albagha et al. 2010; Singer 2015). Among 15 known susceptibility 

loci for Paget’s disease discovered by GWAS, 4 risk loci, including CSF1, OPTN, TM7SF4 and 

TNFRSF11A, showed the strongest links to PDB and contributes to 67% of the genetic risks 

(Albagha et al. 2010; Chung et al. 2010).         

     

Signaling pathways involved osteoclast differentiation 
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Osteoclasts are multi-nucleated bone-resorbing cells derived from monocytic lineage cells 

of hematopoietic cells, and the process of osteoclast differentiation is called osteoclastogenesis 

(Suda et al. 1999). Since the discovery of RANKL in 1990s, the molecular mechanisms that govern 

osteoclast differentiation continue to be elucidated (Anderson et al. 1997). It has been widely 

accepted that the differentiation of osteoclast depends exclusively on RANKL, an essential 

osteoclastogenic cytokine produced from osteoblastic cells, mesenchymal stem cells and immune 

cells. RANKL binds to its receptor, RANK, on the monocyte/macrophage lineage cell surfaces to 

induce osteoclastogenesis programme (Theill et al. 2002). 

 Upon RANKL stimulations, TRAF6 (Darnay et al. 1998; Naito et al. 1999) is activated and 

ubiquitinated for the recruitment of TAB1 (TGF-β-activated kinase 1-binding protein 1) and TAB2 

to form RANK-TRAF6-TAB1-TAB2 complex, which activates TAK1 (activate mitogen-activated 

kinase kinase kinase) (Mizukami et al. 2002). The activation of TAK1 results in both canonical 

and noncanonical NF-kB activations (Lamothe et al. 2012; Swarnkar et al. 2015). For canonical 

NF-kB responses, the IKK complex comprising IKKα, IKKβ, and NEMO (NF-κB essential 

modulator) (Swarnkar et al. 2016) induces the phosphorylation and subsequent degradation of IκB. 

After IκB degradation, the NF-κB complex, p65/p50, is activated and translocated into the nucleus 

to transactivate its downstream genes. Unlike canonical NF-kB responses, noncanonical NF-kB 

activations requires the formation of an IKKα homodimer, which is induced by NIK (kinase NF-

κB-inducing kinase). The IKKα homodimer then induce the processing from p100 to to p52 to 

form a RelB/p52 heterodimer (Iotsova et al. 1997). Similar to the canonical NF-κB complex, the 

noncanonical heterodimer, RelB/p52 is subsequently activated and translocated into the nucleus 

to trans-activate its effector genes (Okamoto et al. 2017).  
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In addition to NF-kB responses, RANKL also activates MAP kinases activations during 

osteoclastogenesis. In vitro studies showed that pharmacological inhibition of the MAP kinase, 

p38, blocks osteoclast differentiation (Li et al. 2002). While JNK1 and JNK2, MAP kinases are 

both highly expressed in osteoclasts, only JNK1 is indispensable for in vitro osteoclastogenesis 

(David et al. 2002). Although ERK1/2 is activated in RANKL induced osteoclastogenesis, its role 

osteoclast differentiation is inconclusive (Okamoto et al. 2017). Activated MAP kinase activate 

and phosphorylate the transcription factor, AP-1, for osteoclast differentiation. AP-1 is a 

heterodimer formed by c-Fos (Grigoriadis et al. 1994) and c-Jun proteins, and the RANKL induced 

the c-Fos expression is mediated by CREB (CaMK/cAMP responsive element binding protein) 

(Sato et al. 2006), PPARγ (peroxisome proliferator activated receptor γ) (Wan et al. 2007) and NF-

κB pathways (Yamashita et al. 2007). While c-Fos is an essential component for osteoclast 

differentiation established by the finding that c-Fos deficient mice exhibit osteoclastopenia 

(Grigoriadis et al. 1994), the role of c-Jun family of proteins in osteoclast differentiation is not 

well studied (Okamoto et al. 2017). 

NFATc1 has been considered a master regulator for osteoclast differentiation (Takayanagi 

et al. 2002a), and it is trans-activated by c-Fos, canonical and noncaonical NF-kB. While the 

above-mentioned pathways are thought to be the main resources for NFATc1 inductions, studies 

demonstrate other transcription factors, such as ATF4 (activating transcription factor 4) (Cao et al. 

2010), LRF (leukemia/lymphoma-related factor) (Tsuji-Takechi et al. 2012), Jdp2 (Jun 

dimerization protein) (Maruyama et al. 2012) and Blimp1 (B lymphocyte-induced maturation 

protein 1) (Miyauchi et al. 2010) are also involved in the trans-activation of NFATc1. Once 

activated, NFATc1 can be recruited to its own promoter site to promote its auto-amplification 

(Asagiri et al. 2005), maintaining its expression in a high level and transactivation the promoters 
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of downstream osteoclastogenic genes, such as CTSK (cathepsin K) (Saftig et al. 1998), ACP5 

(tartrate-resistant acid phosphatase 5b) (Hayman et al. 1996), ITGB3 (integrin β3) (McHugh et al. 

2000), OSCAR (osteoclast-associated receptor), DC-STAMP (dendritic cell-specific 

transmembrane protein) (Yagi et al. 2005), OC-STAMP (osteoclast stimulatory transmembrane 

protein) (Miyamoto et al. 2012), Atp6v0d2 (v-type proton ATPase subunit d2) (Lee et al. 2006). 

 

Autophagy  

Autophagy means self (auto) eating (phagy) and is a highly conserved cellular process 

across eukaryotes, which allows cells to recycle cytoplasmic materials via the lysosome and 

survive periods of nutrient deprivation. The term autophagy is derived from ancient Greek, but the 

word first garnered attention when Christian de Duve not only coined it but also won the Nobel 

prize in Physiology or Medicine in 1974 for his work on lysosomes (De Duve and Wattiaux 1966). 

More recently, Dr. Yoshinori Oshumi, described the autophagy-related genes (ATG) in yeast in 

1993 (Takeshige et al. 1992) and received the Nobel prize in 2016. His pioneering work led to the 

discovery of other ATG genes and its human orthologs. Autophagy pathways include 

macroautophagy (canonical autophagy/autophagy), microautophagy, and chaperone-mediated 

autophagy (CMA). Traditionally, autophagy is orchestrated by the group of ATG proteins, which 

precisely control the autophagic process. The process kickstarts the formation of the pre-initiation 

complex, followed by generation of the phagophore, autophagosome, and autolysosome, leading 

to cargo degradation (Figure 1.2). Mammalian target of rapamycin complex 1 inhibition leads to 

the induction of autophagy and assembles ULK1/2, ATG13, and FIP200 to form the pre-initiation 

complex at the phagophore (Figure 1.1). Once activated, it targets the Class III 

phosphatidylinositol-3-kinase (PI3K) complex (Beclin1, VPS34, VPS15, and ATG14) which 
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recruits downstream conjugation ATG proteins. During autophagosome elongation, 

E3(Ubiquitin)-ligase ATG7 mediates ATG5–ATG12–ATG16L1 complex formation and is 

recruited to the autophagosome membrane. Ubiquitin-conjugating/E2-like enzyme ATG10 

mediates covalent conjugation of the ubiquitin-like ATG12–ATG5. E2-like enzyme ATG3 forms 

ATG12–ATG3 conjugate, controls mitochondrial homeostasis. ATG7 can recruit ATG3 and 

ATG10 forming ATG7–ATG3 and ATG10–ATG3, respectively. Mice lacking ULK1/2, ATG3, 

ATG5, ATG7, ATG12, or ATG16L1 are embryonic lethal mutations. ATG12-conjugation is 

essential for the formation of preautophagosomes. ATG3 aids in conjugation of LC3-I with 

phosphatidylethanolaminie (PE) required for the formation of autophagosomes. This facilitates the 

LC3 lipidation with PE and forms LC3-PE (or LC3-II). LC3-PE embeds into the mature 

autophagosome which finally fuses with the lysosome, wherein the cargo is degraded and recycled. 

The autophagy pathway is not only limited to the processes of degradation and survival during 

starvation but is also active in regulating other cellular functions. This bolsters the need for 

investigating autophagy’s widespread influence on different biological mechanisms. 

 

PI3KC3s 

Recent studies have described three functionally, molecularly, and location distinct Class 

III PI3K complexes (herein called PI3KC3) that operate during autophagy. PI3KC3s commonly 

contain VPS34, the catalytic subunit, Beclin 1, and VPS15 (also called p150), and the specificity 

of PI3KC3 are determined by different complex components which bind Beclin 1 (Sun et al. 2011). 

The PI3KC3 containing ATG14 (also called Barkor or ATG14L) is required for starvation‐induced 

autophagy and is targeted to form autophagosomes. In addition, ATG14 has been shown to 
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augment PI(3)P production by VPS34, indicating that during canonical autophagy, ATG14 serves 

as both a localization agent and activity regulator of PI3KC3 (Burman and Ktistakis 2010).  

A second PI3KC3 lacks ATG14 but contains UVRAG (UV radiation resistance‐associated 

gene), a Beclin 1‐binding protein that promotes Beclin 1–VPS34 interactions as well as Vps34 

activity (Liang et al. 2006). The role of the UVRAG‐containing PI3KC3 has been controversial 

(Liang et al. 2006; Song et al. 2014), as some studies have supported its role in autophagosome 

formation while other studies have challenged this role and rather highlighted this PI3KC3's major 

role in endocytosis, endosomal trafficking, autophagosome maturation via its interaction with class 

C‐VPS/HOPS (Itakura et al. 2008; Liang et al. 2008). 

The third PI3KC3 contains both UVRAG and Rubicon, and unlike the preceding two 

PI3KC3, this complex is a negative regulator of autophagy, interacting at multiple steps in the 

autophagic pathway. This inhibitory complex is partly induced by the master autophagy negative 

regulator, mTORC1. Under nutrient‐rich conditions, mTORC1 binds and phosphorylates 

UVRAG, amplifying the association of UVRAG with Rubicon and the inhibition of autophagy 

(Kim et al. 2015). Originally identified as a Beclin 1‐binding partner localizing at the early and 

late endosomes, Rubicon was also described as a VPS34‐binding partner via its RUN domain, and 

this interaction inhibited VPS34 lipid kinase activity and autophagosome formation (Zhong et al. 

2009). Thus, Rubicon‐deficient cells demonstrate increased autophagic activity, with increased 

ATG16L puncta, decreased levels of p62, LC3+ puncta, and LC3‐II conversion (Matsunaga et al. 

2009; Zhong et al. 2009). However, Rubicon also plays a role in inhibiting the autophagosomal 

maturation stage, as Rubicon‐deficient cells showed a higher ratio of autophagolysosomes to 

autophagosomes, compared to control cells (Itakura et al. 2008). 
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Selective autophagy 

To ensure proper scrutiny, the autophagy machinery takes on specialized roles that 

selectively targets and digests intracellular components and is called selective or non-canonical 

autophagy (Martinez et al. 2015; Munch and Dikic 2018). Depending on the cargo engulfed, it can 

be classified into CMA (heat-shock cognate 70 stress protein mediated target of the substrate), 

aggrephagy (clearance of protein aggregates), macrolipidophagy (the degradation of lipids), 

pexophagy (autophagic degradation of peroxisomes), ER-phagy (endoplasmic reticulum 

autophagy), mitophagy (damaged mitochondria), xenophagy (intracellular pathogens), and LC3-

associated phagocytosis (LAP) (efferocytosis and pathogen phagocytosis) (Martinez et al. 2015; 

Munch and Dikic 2018). Selective autophagy receptors/adaptors p62/Sqstm1 (Sequestome1), 

OPTN (Optineurin), TAX1BP1 (T-cell leukemia virus type I binding protein 1), 

NDP52/CALCOCO2 (calcium binding and coiled-coil domain 2), and NBR1 (neighbor of BRCA1 

gene 1) coordinate and mediate degradation of ubiquitinated cargos by delivering them to LC3-

containing phagophores (Deosaran et al. 2013; Lamark et al. 2009; Richter et al. 2016; Viret et al. 

2018; Whang et al. 2017). Mitophagy involves degradation of redundant and distressed 

mitochondria and normally occurs in a Parkin-PINK1-dependent manner. After ubiquitination, 

autophagy adaptors, OPTN and NDP52, can recognize and deliver them to LC3-positive 

autophagosomes for degradation (Lazarou et al. 2015; Padman et al. 2019). Similarly, in 

xenophagy, cytosolic pathogens or pathogen-contained vacuole can be ubiquitinated by ubiquitin 

ligases. Subsequently, ubiquitinated pathogens or their substrates are recruited by autophagy 

receptors for autophagosomal degradation (Alexander and Leib 2008; Mao and Klionsky 2017; 

Sil et al. 2018). However, when an extracellular pathogen is phagocytosed and it engages pathogen 

recognition receptor (PRR), as a result it activates a specialized autophagy process called LAP 



11 

(Wong et al. 2018). The LAP pathway is also utilized for the clearance of dead cells triggered by 

wounds, pathogen exposure, or environmental triggers (Wong et al. 2018). 
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Figure 1.1 Known signaling pathway networks involved in osteoclastogenesis.  

(Figure from Kazuo Okamoto et al. Physiol Rev, 2017) 
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Figure 1.2 Process of autophagy. mTOR inhibition triggers the activation of AMPK and 

initiates an autophagy-inducing signals during a low energy state such as starvation, ROS, 

exercise, infection, drugs, and hypoxic stress. This initiates the formation of pre-initiation 

complex (ULK1/2, ATG13, and FIP200) in the presence of unwanted cargo (such as, 

mitochondria, pathogens, protein aggregates, and intracellular components). This will, in turn 

activates the Class III phosphatidylinositol-3-kinase (PI3K) complex, composed of ATG14 

(UVRAG)-VPS15-VPS34-Beclin1. The Class III PI3K complex completes the autophagosome 

formation by producing PI3P which recruits downstream ubiquitin-like conjugation systems 

(ATG5–12) and converts LC3-I to form LC3-PE. Finally, lysosome fuses with the 

autophagosome to form the autolysosome to degrade the enclosed cargo. The degraded cargo is 

finally assimilated and recycled (Sil et al. 2018).
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Chapter 2: THE ROLE OF AUTOPHAGY RECEPTOR, OPTINEURIN IN 

OSTEOCLASTOGENSIS AND THE PATHOGENESIS OF  

PAGET’S DISEASE OF THE BONE2 

 

Introduction 

Paget’s disease of the bone (PDB) is an age-dependent bone disease wherein patients 

exhibit symptoms of focal areas of bone fragility, bone deformity, pathological fracture, and nerve 

root compression. PDB pathology has been attributed to osteoclast hyperactivation, leading to 

excessive bone resorption and irregular bone remodeling (Teramachi et al. 2016). Compared to 

normal osteoclasts, Pagetic osteoclasts are increased in number, nuclei, activity, and function 

(Kukita et al. 1990; Rebel et al. 1976). Furthermore, Pagetic osteoclast precursors display 

heightened osteoclastogenic potential, as they have an increased responsiveness to RANKL, a 

critical cytokine for osteoclast differentiation (Menaa et al. 2000). The molecular mechanisms that 

underlie hyper-activation of Pagetic osteoclasts, however, remain unknown. 

While environmental factors, such as viral infections and toxins, can contribute to the 

etiology of PDB, recent evidence indicates that genetic factors also play a predominant role in 

PDB pathogenesis (Albagha 2015; Ralston and Albagha 2014). Mutations in Sqstm1, which 

encodes the autophagy receptor p62, have been repeatedly reported among familial PDB patients 

(Morissette et al. 2006), and p62 dysfunction results in increased generation and activity of 

                                                        
2 This chapter is extracted from a submitted manuscript in Cell Death & Differentiation. The original 

citation is as follows: 

Wong SW, Huang BW, Kim EH, Hu XX, Kolb JP, Padilla RJ, Xue P, Wang L, Oguin TH,. Miguez PA, 
Tseng HC, Ko CC, and Martinez J. "Global deletion of Optineurin results in altered type I IFN signaling 

and abnormal bone remodeling in a model of Paget’s disease." Cell Death Differ.(accepted) 
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osteoclasts in vitro (Sundaram et al. 2011).  Recent genome-wide association studies (GWAS) 

have identified another autophagy receptor, Optineurin (OPTN), that is genetically linked to PDB 

(Albagha et al. 2010), with the PDB-associated OPTN variant resulting in a decreased gene 

expression (Obaid et al. 2015). OPTN is ubiquitously expressed and mediates the delivery of 

ubiquitinated cargos, such as damaged organelles, protein aggregates, and intracellular pathogens, 

to autophagosomes during selective autophagy (Slowicka et al. 2016b). OPTN also functions in 

multiple non-autophagic processes, including vesicle trafficking, Golgi organization, and 

modulation of the NF-κB pathway (Chibalina et al. 2010; Chibalina et al. 2008; Meena et al. 2016; 

Munitic et al. 2013; Zhu et al. 2007). In addition to PDB, genetic mutations in OPTN underlie 

primary open-angle glaucoma (POAG) and amyotrophic lateral sclerosis (ALS). While the impacts 

of OPTN in POAG and ALS have been intensively studied (Chalasani et al. 2007; Ito et al. 2016; 

Toth and Atkin 2018), the specific role of OPTN in PDB remains to be established.   

 A recent study demonstrated that while siRNA-mediated knockdown of Optn increased 

osteoclastogenesis ex vivo, only approximately 10% of 15- to 18-month old mice harboring a loss-

of-function mutation in the ubiquitin binding domain (OptnD477N/D477N) developed  PDB lesions 

(Obaid et al. 2015). However, the role of OPTN in molecular pathways beyond ubiquitin binding 

has not be examined in relation to PDB pathogenesis. Therefore, we generated Optn global 

knockout (Optn–/–) mice and performed detailed bone phenotyping analysis. We discovered that 

Optn–/– mice spontaneously develop late-onset polyostotic osteolytic lesions that are reminiscent 

of clinical findings in PDB patients. Similarly, we observed an increased capacity for osteoclast 

differentiation with elevated cFos expression in the absence of Optn ex vivo. Mechanistically, 

OPTN’s inhibition of osteoclastogenesis is two-fold. Optn–/– osteoclasts produce significantly 

decreased levels of IFN, a known negative regulator of c-Fos (Obaid et al. 2015), as well as 
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display a previously undescribed defect in signaling through the IFN/R.  This defective 

IFN/R signaling also resulted in decreased cell death and hence increased survival.  Thus, we 

have generated and characterized a novel and clinically relevant mouse model of PDB and 

identified a novel OPTN-type I IFN axis in PDB pathogenesis. 

 

Material and Methods 

Animals 

Optnflox/flox mice on a C57BL/6 background were generated using a targeting vector-

inserted LoxP site that flanks the first coding exon and a neomycin selection cassette (Figure 2.1). 

We crossed Optnflox/flox mice with CMV-Cre mice (Jackson Laboratories, Bar Harbor, ME USA) to 

generate CMV-Cre; Optnflox/wt mice, which were used as breeding pairs. Global Optn knockout 

(CMV-Cre; Optnflox/flox) mice are hereafter referred to as Optn-/- mice, and the primers used for 

genotyping are listed below.  

Primer Set Forward Reverse 

A-B3 
taggacctgttaccatgtccca 

 

ccctgttcattcaggcccaaag 

 

A-D1 
taggacctgttaccatgtccca 

 

cttggctggacgtaaactcctc 

 

G2-H2 
gcccggtaccatcaagtcta 

 

aacacctctccagtgcaacc 

 

 

Female Optn-/- mice were aged for up to 22 months, as aged male mice are more susceptible to 

spontaneous osteoarthritis, to minimize the influence of age-related osteoarthritis on phenotype 

(20, 21).  Ifnar-/- mice were a generous gift from Dr. Michael Fessler (NIEHS). All animal 

procedures were approved by Institutional Animal Care and Use Committees at the University of 

North Carolina, Duke University, and NIEHS. 
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Micro-CT Scanning and Dual Energy X-Ray Absorptiometry (DEXA)  

Bones were harvested, fixed in 4% paraformaldehyde, and scanned by MicroCT Scanco 

40 (Scanco Medical, Bassersdorf, Switzerland) in 10 μm resolution (E = 70kVa; I = 145 μA). 

Regions of interest of the cortical and trabecular bone was measured 0.7 mm proximal to the distal 

tibiofubular junction, and 0.7 mm distal to metaphysis of tibia, respectively. The reconstructed 

solid 3D images were used for visualizing bone morphology and microarchitecture. We measured 

bone mineral content (BMC) and bone mineral density (BMD) of lumbar spines and femurs by 

DEXA using LUNAR PIXImus bone densitometer (GE Healthcare, Fairfield, CT USA). 

 

Slide staining  

Bones were decalcified in 10% EDTA for 3 weeks and then processed, paraffin embedded, 

and sectioned at thickness of 5 μm. Sections were stained with hematoxylin and eosin (H&E) for 

general histology, and with tartrate-resistant acid phosphatase (TRAP) activity to detect 

osteoclasts, with safranin O for cartilage. For immunohistochemistry staining, enzymatic antigen 

retrieval was performed on decalcified sections. After overnight incubation with the primary 

antibody, sections were incubated with the biotinylated secondary antibody (1:1000; Vector 

Laboratories, Burlingame, CA USA). The sections were then immersed in a solution containing 

avidin-biotin peroxidase complex (Vector Laboratories, Burlingame, CA USA), and 3,3'-

diaminobenzidine was used as the chromogen.  

 

Serum measurement of PDB biomarkers 

Sera was isolated from whole blood by centrifugation of 3000 rpm at 4 °C for 15 minutes. 

Serum ALP level was measured by ALP Assay Kit (Abcam, Cambridge, UK). Serum 
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concentrations of IL-6 was measured by Milliplex Multiplex Assay (EMD Millipore, Burlington, 

MA USA). C-terminal propeptide (sCTx) was measured using ELISA kits (Immunodiagnostic 

Systems, Boldon, UK). 

 

Osteoclast differentiation and resorptive assay in vitro 

After euthanasia by CO2, tibias and femurs were harvested from 8-12 weeks old mice. Bone 

marrow cells were flushed into phenol free α-MEM medium, supplemented with 10% FBS, L-

Glutamine, non-essential amino acids, and penicillin/streptomycin. Non-adherent cells were 

harvested after 24 hours and re-plated at a density of 1.5 × 105 cells/cm2 with 30 ng/mL M-CSF 

(R&D Systems, Minneapolis, MN USA). After two days, the medium was replenished with 30 

ng/mL M-CSF and 10 ng/mL RANKL (R&D Systems Minneapolis, MN USA) for osteoclast 

differentiation. After 3 days of culture, cells were fixed and stained with tartrate-resistant acid 

phosphatase (TRAP) to detect osteoclasts (Xiu et al. 2014a). Bone marrow osteoclast precursors 

were plated and differentiated into equal numbers of osteoclasts (see above) on Osteo Assay 

Surface plates (Corning Lifesciences, Tewksburg, MA USA) for resorption assay. At day 5, the 

plate was bleached, and areas of resorption pits were quantified using NIH Image J.  

 

In vitro IFN and anti-IFNaR antibody treatment 

Bone marrow osteoclast precursors were treated with 1U IFN (R&D Systems, 

Minneapolis, MN USA) in the osteoclastogenic medium (30 ng/mL M-CSF and 10 ng/mL 

RANKL) for 3 days. Similarly, bone marrow osteoclast precursors were treated with anti-IFNAR 

antibody or control antibody a working concentration of 5 μg (Leinco, Fenton, MO USA) in the 
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osteoclastogenic medium for 3 days. Cells were fixed and stained for TRAP activity to evaluate 

osteoclastogenesis. 

 

Antibodies and Western Blot Analysis 

The following antibodies were from Cell Signaling (Beverly, MA USA): c-Fos (Cat. 

#4384), LC3B (Cat. #2775), p62 (Cat. #5114), ATG5 (Cat. #12994), ATG7 (Cat. #2631), p65 

(Cat. #8242), phos-p65 (Cat. #3033), p100/p52 (Cat. #4882), IκBα (Cat. #4814), phos-p38 (Cat. 

#9215), p38 (Cat. #9212), phos-ERK1/2 (Cat. #4370), ERK1/2 (Cat. #4695), phos-JNK (Cat. 

#4668), JNK (Cat. #9252), phos-CREB (Cat. #9198), CREB (Cat. #4820), phos-STAT1 (Cat. 

#9167), STAT1 (Cat. #9172), STAT2 (Cat. #72604), SOCS3 (Cat. #2932), phos-TBK1 (Cat. 

#5483), TBK1 (Cat. #3504), phos-IRF3 (Cat. #4947), IRF3 (Cat. #4302), and RIPK1 (Cat. #3493). 

The following antibodies were from Santa Cruz Biotechnology Inc. (Dallas, TX USA): NFATc1 

(Cat. #sc-7294), OPTN (Cat. #sc-166576), and Actin (Cat. #sc-1616). Anti-OPTN antibodies were 

from ProteinTech (Rosemont, IL USA; Cat. #10837-1-AP) and Cayman Chemical (Ann Arbor, 

MI USA; Cat. #100000). The myosin VI antibody was from Proteus (Ramona, CA USA; Cat. #25-

6791); Huntingtin antibody was from Millipore (Burlington, MA USA; Cat. #MAB2166); Rab8a 

antibody was from BD Biosciences (San Jose, CA USA; Cat. #610845); phos-STAT2 antibody 

was from Abcam (Cambridge, MA USA; Cat. #ab53132). Secondary antibodies were from 

Jackson Immuno-Research (West Grove, PA, USA).  

Proteins were harvested, and protein concentration was measured as previously described 

(Lee et al. 2015). 5-10 µg of total protein lysate was resolved by Criterion TGX precast gel (Biorad, 

Hercules, CA, USA) and transferred to nitrocellulose membrane using the Trans-Blot Turbo 

Transfer System (Bio-rad, Hercules, CA, USA) and immunodetected using appropriate primary 
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and peroxidase-coupled secondary antibodies (Jackson Immunoresearch, West Grove, PA USA). 

Proteins were visualized by enhanced chemiluminescence (ECL, Amersham Bioscience, Little 

Chalfont, UK). 

 

Osteoblast differentiation in vitro 

MC3T3-E1 pre-osteoblasts (Subclone 14, CRL-2594) were obtained from ATCC 

(Manassas, VA USA). The cells were seeded at 2 X 105 cells per 35mm dish, expanded in growth 

media (α-MEM containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin), and 

differentiated with growth media supplemented with 10mM -glycerophosphate and 0.2 mmol/L 

21 ascorbic acid. The media was changed every 3 days. After 7, 14, and 21 days, the cells were 

fixed with 75% cold ethanol for 30 minutes and then stained with 1% Alizarin Red (Acros 

Organics, Geel, Belgium) solution (pH 4.2) for 10 minutes at RT. 

 

Fluorochrome labeling for in vivo bone formation 

Two fluorochromes (Sigma-Aldrich, St. Louis, MO USA), calcein (20mg/kg) and alizarin 

red (30mg/kg), were used to label in vivo bone formation by intraperitoneal injection. The calcein 

and alizarin red were administered 5 days and 2 days prior to euthanasia, respectively. Mineral 

Apposition Rate (MAR, µm/day), was calculated as the distance between two sequential labels 

divided by the interlabeling period (days).   

 

RNA isolation and qPCR 

Total RNA was isolated using the RNeasy plus mini kit (Qiagen, Hilden, Germany) and 

was reverse-transcribed using the iScript DNA synthesis kit (Biorad, Hercules, CA, USA). qPCR 

was performed using Taqman Universal PCR master Mix (ThermoFisher, Waltham, MA USA) 
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with Taqman probes (Gapdh: Cat. #4331182, Ifnb1: Cat. #4331182). The transcript level of Ifnb1 

was normalized to the level of Gapdh within each sample using the ΔΔCt method.  

 

Microarray 

RNA was isolated from day 2 Optn+/+ and Optn-/- bone-marrow-derived osteoclasts as 

described above, and gene expression analysis was conducted using Affymetrix Mouse Genome 

430 2.0 GeneChip® arrays (Affymetrix, Santa Clara, CA). Arrays were scanned in an Affymetrix 

Scanner 3000 and preliminary analyses were performed with OmicSoft Array Studio (Version 9.0) 

software. 

 

Flow Cytometry 

To assess cell death, osteoclast precursors were harvested 24 and 48 hours after treatment 

with RANKL in the presence or absence of IFN and stained with Annexin-V (1:50), Zombie-Red 

(1:1000), and CD45 (1:200), as previously described (Dillon et al. 2014).  All antibodies were 

from Biolegend (San Diego, CA USA).  

 

Statistical Analysis 

For all in vitro studies, three independent experiments were performed. Data are presented 

as mean ± SD. Student’s T test or Analysis of Variance (ANOVA) was used to determine the 

differences among groups. A p value less than 0.05 is considered statistically significant. 

 

Results 

Optineurin is highly expressed in the bone marrow and is upregulated during in vitro osteo- 
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clastogenesis.   

To explore the relevance of OPTN in bone biology, we first examined its expression pattern 

in the long bone by immunohistochemistry. OPTN was most highly expressed in the bone marrow 

(BM) but was also expressed in osteocytes and chondrocytes (Figure 2.2).  We next examined the 

temporal expression of OPTN during in vitro osteoclastogenesis, using both bone marrow cells 

(Figure 2.2B) and RAW 264.7 cells (Figure 2.2C) as osteoclast precursors.  Osteoclasts were fully 

differentiated on Days 3 and 4 post-RANKL stimulation of BM cells and RAW 264.7 cells, 

respectively, as determined by Tartrate-resistant acid phosphatase (TRAP) staining. Expression of 

OPTN increased during osteoclast differentiation, peaking at Days 3 and 2 post-RANKL 

stimulation in BM cells and RAW 264.7 cells, respectively (Figures 2.2B-C). Immunofluorescence 

staining further demonstrated that OPTN was localized in the cytoplasm and perinuclear space of 

fully differentiated osteoclasts (Figures 2.2B-C).  

 

Young Optn-/- mice do not display gross skeletal defects in vivo 

 To study the role of Optn during bone homeostasis in vivo, we generated CMV-

Cre:Optnflox/flox (Optn global knockout mice), hereafter referred to Optn-/- mice, (Figure 2.1A-B). 

Western blot analysis confirmed that OPTN was dramatically decreased in multiple organs of 

Optn-/- mice, confirming global deficiency of this protein (Figure 2.1C). At 3 months of age, Optn-

/- mice were phenotypically normal and did not have gross anatomical abnormalities or body size 

differences compared to Optn+/+ littermates (Figure 2.3A). Furthermore, skeletal phenotyping 

using micro-computerized tomography (µCT) scanning revealed that 3-month old Optn-/- mice did 

not display overt PDB-like lesions in the long bones (Figure 2.3B). Young Optn-/- mice also had 

normal bone morphometric parameters of trabecular and cortical bones compared to Optn+/+ 
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littermates (Figure S3C). Similarly, serum levels of alkaline phosphatase (ALP) activity and C-

terminal telopeptide (CTX-1), both biomarkers indicative of bone turnover, were not significantly 

elevated between Optn+/+ and Optn-/- mice at 3 months of age (Figure 2.3D).  

 

Optineurin deficiency in vivo results in PDB-like lesions in aged mice. 

We next performed skeletal phenotyping of the mice at 8, 12, and 16 months of age. Similar 

to 3-month old mice, neither genotype displayed any skeletal abnormalities or lesions at 8 or 12 

months of age (Figure 2.4A-B, Table 2). At 16 months of age, however, 50% of Optn-/- mice had 

developed incipient, monostotic, localized osteolytic lesions in the tibiae (Figure 2.4C). While 

there was no significant difference in serum ALP levels between Optn+/+ and Optn-/- mice at 8, 12, 

and 16 months, serum ALP levels had significantly increased in Optn-/- mice between 8 and 16 

months, signaling an age-induced onset of PDB in the absence of Optn (Figure 2.4D). 

Because PDB primarily affects the elderly population with a peak incidence between 70 

and 80 years of age (25), we next performed skeletal phenotyping of 22-month old mice, which is 

equivalent to humans at 70 years old (26). Strikingly, 100% of aged Optn-/- mice had developed 

polyostotic, localized osteolytic lesions in femurs, tibiae  (Figures 2.5A-B), calvaria (Figure 2.5C), 

lumbar vertebra (Figure 2.5D), and fibulas (Figure 2.5E), which are the most commonly affected 

bones of PDB, and these lesions phenotypically resembled the early or osteolytic stage of PDB 

(Table 2). Additionally, 20% of Optn-/- mice exhibited facial deformities (Figure 2.5C) and bone 

hypertrophic lesions (Figure 2.5E), pathologies associated with the intermediate or osteoblastic 

stage of PDB (Table 2). Furthermore, spinal cord/nerve root compression (Figure 2.5D) and 

pathological fractures (Figure 2.5E) were also seen in affected bones of 40% of aged Optn-/- mice 

(Table 2). Aged Optn-/- mice also contained decreased cortical bone components in unaffected 
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bones (Figure 2.4F) and displayed a decrease in bone mineral density (BMD) (Figure 2.4G). Taken 

together, these results demonstrate that Optineurin-deficiency results in age-dependent, localized 

bone lesions that are phenotypically consistent with PDB. 

 

Pagetic lesions in Optn-/- animals are characterized by hyper-osteoclastogenesis 

The osteolytic lesions observed in Optn-/- mice are characteristic of disproportionate bone 

turnover, indicating that OPTN exerts its effect by either enhancing bone resorptive activity by 

osteoclasts or reducing bone formation activity by osteoblasts. Although OPTN is induced during 

osteogenesis in vitro (Figure 2.6A), we did not observe any difference in vivo bone formation as 

determined by mineral apposition rate (MAR) between young Optn+/+ and Optn-/- mice (Figure 

2.6B). Thus, we hypothesized that osteolytic lesions observed in aged Optn-/- mice were a result 

of altered osteoclast activity.   

We next performed histological analysis of bones of aged Optn+/+ and Optn-/- mice. H&E 

and TRAP staining of the distal femur of Optn-/- mice confirmed osteolytic lesions and revealed 

increased bone resorption, with osteoclast-filled pits within the compact bone of Optn-/- mice, 

while bones from age-matched Optn+/+ mice lacked these pathological features (Figure 2.7A).  

Cross-sectional analysis of a mixed osteoscleorotic-osteolytic lesion in the proximal tibia of an 

Optn-/- mouse shows that these lesions are comprised of numerous osteoclasts located within the 

inner surface of cortical bone and adjacent trabecular surfaces (Figure 2.7B,C). In addition, the 

mixed lesion also displayed secondary endochondrial bone formation (Figure 2.7B). Focal lesions 

in affected bones from Optn-/- mice contained significantly more osteoclasts per area examined 

compared to Optn+/+ mice (Figure 2.7D), and each Optn-/- osteoclast contained more nuclei than 

Optn+/+ osteoclasts, indicative of increased osteoclast activity (Figure 2.7E).   
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The gold standard for clinical diagnosis of PDB in human patients is increased serum levels 

of ALP, in response to increased osteoclastic bone resorption (Al Nofal et al. 2015). Similar to 

PDB patients, we found that aged Optn-/- mice had significantly increased ALP activity in their 

serum, compared to age-matched Optn+/+ mice, and thus recapitulate the classical diagnostic 

biomarker for PDB (Figure 2.7F). Furthermore, serum levels of CTX-1, the bone resorption 

biomarker, were significantly increased in aged Optn-/- mice compared to Optn+/+ littermate mice 

(Figure 2F).  However, serum levels of IL-6, a cytokine that has been associated with PDB 

(Teramachi et al. 2014), were not affected by loss of OPTN in aged animals (Figure 2.6C).  Taken 

together, our data demonstrate that Optn-/- mice exhibit serum and histological features of PDB 

associated with increased osteoclastogenesis, and the Optn-/- mice represent a novel and clinically 

relevant mouse model for PDB. 

 

OPTN deficiency enhances in vitro osteoclastogenesis  

We next explored the mechanisms by which deficiency of OPTN augments osteoclast 

formation. Optn-/- bone marrow osteoclast precursors generated significantly increased numbers 

of osteoclasts ex vivo, compared to Optn+/+ bone marrow precursors (Figure 2.8A). Furthermore, 

Optn-/- osteoclasts differentiated ex vivo on calcium phosphate-coated plates displayed increased 

resorptive activity, as indicated by larger resorption pit areas compared to Optn+/+ osteoclasts 

(Figure 2.8B). Finally, Optn-/- precursor cells expressed significantly higher levels of c-Fos and 

NFATc1, two important osteoclast differentiation factors, post-RANKL treatment (Figure 2.8C).  

Collectively, these data demonstrate that OPTN is a key negative regulator of osteoclastogenesis.  

As autophagy has been shown to be involved in osteoclast differentiation (Lin et al. 2013) 

and OPTN is an autophagy receptor, we first asked if the absence of OPTN alters autophagic 
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induction during osteoclastogenesis. Intriguingly, Optn-/- osteoclasts had a similar transformation 

of the autophagy marker LC3-I to LC3-II and degradation of p62, as well as expression of ATG5 

and ATG7, compared to Optn+/+ osteoclasts, suggesting that autophagy is unaffected in Optn-/-  

osteoclasts under osteoclastogenic conditions (Figure 2.8D). Activation of the c-Fos-NFATc1 axis 

for osteoclastogenesis involves the NF-κB pathway (Abu-Amer 2013).  As OPTN has been shown 

to suppress NF-κB activation (Zhu et al. 2007), we examined the phosphorylation of p65, a 

member of the canonical NF-κB pathway, in Optn+/+ and Optn-/-  osteoclast precursors after 

RANKL treatment. The level of phosphorylated p65 in Optn-/- osteoclast precursors was similar to 

that in Optn+/+ osteoclast precursors at both early time points (Figure 2.8E) and late time points 

(Figure 2.8F).  Similarly, the degradation of the IκBα, a negative regulator of canonical NF-κB 

activation, was equivalent in Optn+/+ and Optn-/- cells after RANKL treatment (Figure 2.8E). While 

previous studies utilized the OptnD477N/D477N model, which results in OPTN protein that is unable 

to bind Ly63-linked ubiquitin chains but can still interact with other proteins via its other un-

mutated domains (Obaid et al. 2015), our constitutive knockout model displayed no differences in 

NF-κB activation during osteoclastogenesis.  Collectively, these data indicate that while defects in 

OPTN’s ability to bind ubiquitin can alter NF-κB activation, the absence of OPTN does not. 

In addition, we also assessed non-canonical NF-κB activation by examining the processing 

of p100 to p52 during osteoclastogenesis. Optn-/- osteoclast precursors displayed similar levels of 

the cleaved p52 protein compared to Optn+/+ osteoclast precursors (Figure 2.8F). These results 

demonstrate that OPTN regulates osteoclast differentiation independently of autophagy, canonical, 

or non-canonical NF-κB activation.    

We next evaluated other possible signaling pathways implicated in osteoclastogenesis and 

observed equivalent phosphorylated levels of JNK1/2, ERK1/2, p38, and CREB (Figure 2.9A, B) 
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in Optn+/+ and Optn-/- osteoclast precursors post-RANKL treatment. We further examined the 

expression of known OPTN binding partners, RAB8A, Myosin VI, and Huntingtin (HTT) in Optn-

/- osteoclasts relative to Optn+/+ osteoclasts, and we found that their expression levels were 

comparable (Figure 2.9C). Therefore, OPTN deficiency does not affect classical osteoclastogenic 

pathways in osteoclast precursors during RANKL treatment. 

 

OPTN is required for both the production of type I IFN and signaling via the IFN/R 

To investigate potential transcriptional differences between Optn+/+ and Optn-/- osteoclasts, 

genome-wide transcriptional profiling was performed at day 3 of osteoclast differentiation ex vivo. 

Microarray revealed that many critical pathways were upregulated in Optn-/- osteoclasts, including 

genes regulating cytoskeletal rearrangements, cell cycle, cytokine and chemokine expression, and 

osteoclast differentiation and function, compared to Optn+/+ osteoclasts (Figure 2.9D).  Consistent 

with our protein results, the transcription of Rab8a/b, Myosin VI, and Htt was equivalent between 

and Optn+/+ and Optn-/- osteoclasts (Figure 2.9D).  Additionally, there was no difference in 

transcription of other components known to interact with OPTN, such as Ripk1, Cyld, Sqstm1, and 

Hace1, between Optn+/+ and Optn-/- osteoclasts (Figure 2.9D). 

We did, however, observe a significant difference in the expression of genes associated 

with the type I interferon (IFN) signature. Genes such as Ifitm10, Ifitm5, Ifna1, Irf7, and Ifnar2 

were dramatically reduced in Optn-/- osteoclasts compared to Optn+/+ osteoclasts (Figure 2.10A). 

Conversely, expression of Socs3, a negative regulator of type I IFN signaling (Krebs and Hilton 

2000), was significantly upregulated in Optn-/- osteoclasts compared to Optn+/+ osteoclasts (Figure 

2.10A). Engagement of the IFN/R with type I IFN (typically IFN in myeloid derived cells, 

such as osteoclasts) results in the phosphorylation of STAT1 (Lehtonen et al. 1997). In response 
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to RANKL treatment, Optn-/- osteoclast precursors displayed lower levels of total and 

phosphorylated STAT1 and higher levels of SOCS3, suggesting that Optn deficiency confers a 

reduced activation of  the type I IFN response in response to RANKL (Figure 2.10B).  

We next explored whether this reduced type I IFN signaling in Optn-/- osteoclasts resulted 

from decreased IFN production or defective IFN/R signaling, or both. We first observed that 

Optn-/- osteoclast precursors generated significantly lower levels of Ifnb1 in response to RANKL 

treatment (Figure 2.10C), compared to Optn+/+ precursors. RANKL-induced IFN production 

does not require canonical TBK1 and IRF3 machinery (Takayanagi et al. 2002b), and we indeed 

observed that RANKL failed to activate IRF3 in osteoclast precursors and induced a comparable 

level of TBK1 phosphorylation, which is required for NF-κB activities, between Optn+/+ and Optn-

/- precursors (Figure 2.9E). Next, we examined signaling downstream of IFN engagement of 

IFN/R during IFN treatment. Strikingly, Optn-/- osteoclast precursors displayed defective 

IFN/R signaling in response to IFN stimulation, as evidenced by decreased total and 

phosphorylated STAT1/2 (Figure 2.10D). As expected, IFN/R-deficient (Ifnar-/-) osteoclast 

precursors displayed a completely abolished type I interferon signaling in response to RANKL or 

IFN (Figure 2.9F-G). Taken together, these results demonstrate that OPTN is critical for both the 

production of type I IFN and efficient signaling via IFN/R pathway.  

 Type I IFN signaling can also promote RIPK3-mediated necroptosis (Dillon et al. 2014), 

therefore we next examined if defects in IFN production by Optn-/- osteoclasts conferred a 

survival advantage compared to Optn+/+ osteoclasts. Treatment of Optn-/- osteoclast precursors 

with RANKL, a member of the TNF superfamily (Hanada et al. 2011), resulted in significantly 

increased survival at both 24 and 48 hours post-RANKL treatment, compared to Optn+/+ 

precursors (Figure 2.11A).  In order to determine if exogenous IFN treatment during 
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osteoclastogenesis could modulate cell death in Optn-/- osteoclast precursors, we differentiated 

Optn+/+ and Optn-/- precursors into osteoclasts with RANKL in the absence or presence of IFN.  

The survival advantage observed in Optn-/- osteoclast precursors was partially rescued at 24 and 

48 hours compared to Optn+/+ precursors at 24 and 48 hours post-RANKL/IFN treatment (Figure 

2.11B, 2.12A).   

As IFN is also an established negative regulator of osteoclastogenesis (Takayanagi et al. 

2002b), we next asked if exogenous IFN treatment during osteoclastogenesis could rescue the 

hyper-differentiation observed in Optn-/- osteoclasts. Recombinant IFN was sufficient to inhibit 

the number of osteoclasts generated by Optn-/- precursors, as evidenced by TRAP staining (Figure 

2.11C).  Furthermore, antibody-mediated inhibition of IFN/R signaling (IFNAR) resulted in 

a significant increase in osteoclastogenesis of both Optn+/+ and Optn-/- precursors (Figure 2.11C). 

Importantly, IFN/R signaling blockade had a larger effect on Optn+/+ precursors, essentially 

normalizing the Optn-/- osteoclastogenic phenotype (Figure 2.11C).  This suggests that the excess 

OC differentiation of Optn-/- cells is mediated by a deficit in native IFN signaling. 

 Collectively, we have described the Optn-/- mouse as a novel and clinically relevant model 

for PDB in vivo and have demonstrated that OPTN is required to maintain homeostatic levels of 

osteoclastogenesis in vivo and ex vivo, the absence of which results in hyperactive osteoclast 

differentiation and activity.  In addition, we demonstrate that OPTN functions on two levels to 

regulate osteoclast differentiation – the production of type I IFN and signaling of type I IFN 

through the IFN/R (Figure 2.13), and the net effect of this defect is increased osteoclastogenesis, 

as well as defects in cell death, opening the door for possible interferon intervention for the 

treatment of PDB. 
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Discussion 

Recent advances in the underlying genetic influences on the onset and severity of PDB 

have shed light onto the root causes of this disease and opened up avenues for deeper biological 

understanding. Here, we performed extensive in vivo skeleton characterization of the Optn-

deficient mouse, which exhibits full penetrance and multiple key clinical manifestations of PDB 

in an age-dependent manner, in contrast to the OptnD477N/D477N mutant mice, in which only 10% of 

15-month old mice develop PDB lesions (Obaid et al. 2015; Slowicka et al. 2016a). Therefore, this 

Optn-deficient mouse represents a novel and useful mouse model to study PDB pathogenesis, and 

potentially, other pathologies associated with OPTN dysfunction, such as primary open-angle 

glaucoma (POAG) and amyotrophic lateral sclerosis (ALS).   

While multiple studies have explored the molecular mechanisms by which OPTN 

dysfunction underlies disease pathogenesis, these studies have mainly focused on POAG and ALS 

(Toth and Atkin 2018). Studies have demonstrated that the POAG-associated OPTN mutant 

(E50K) could selectively induce ROS-associated cell death of retinal ganglion cells in vitro 

(Chalasani et al. 2007), and OPTN E50K knock-in mice exhibit loss of retinal ganglion cells in 

vivo (Tseng et al. 2015). Further, in response to TNF signaling, OPTN deficiency leads to 

persistent RIPK1 signaling and uncontrolled necroinflammation in the spinal cord, resulting in 

axonal degeneration and ALS (Ito et al. 2016). However, in contrast to the pathophysiology of 

Optn-dependent POAG and ALS, which is characterized by the loss  of ganglion cells or neurons 

(Ito et al. 2016; Tseng et al. 2015), PDB is highlighted by a ‘gain’ of osteoclasts (Roodman and 

Windle 2005), suggesting that the molecular mechanisms implicated in the pathogenesis of PDB 

is dissimilar to POAG and ALS. While Optn-deficient osteoclasts did not display any difference 

in RIPK1 expression at either mRNA and protein levels, it is possible that activation of necroptotic 
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machinery is altered in Optn-deficient osteoclasts.  A recent study has identified MK2 has a critical 

negative regulator of RIPK1 activity, wherein MK2 phosphorylates RIPK1 at Ser321 to inhibit its 

ability to induce RIPK1-dependent apoptosis and necroptosis (Jaco et al. 2017).  Interestingly, 

MK2-/- mice display a significant decrease in osteoclastogenesis, which could suggest that an 

increase in functionally active RIPK1 results in decreased osteoclast survival (Herbert et al. 2015).  

The role that OPTN plays in modulating the MK2-RIPK1 axis in response to type I IFN remains 

to be elucidated. 

 Although OPTN has been shown to be a potent inhibitor of NF-κB activity (Slowicka et 

al. 2016b), our data showed that Optn-deficient osteoclasts do not have altered NF-κB activation 

ex vivo, consistent with recent reports (Meena et al. 2016; Munitic et al. 2013; Slowicka et al. 

2016a). We did, however, observe a significant and two-pronged defect in the execution of the 

negative feedback loop mediated by IFN.  In the absence of OPTN, both production of IFN and 

signaling downstream of the IFN/R are impaired. While previous studies have described a role 

for OPTN in IFN production during osteoclastogenesis (Obaid et al. 2015), here we demonstrate 

for the first time that OPTN is also required for optimal signaling downstream of IFN engagement 

of the IFN/R (Figure 2.13). This defect manifests itself in a failure to upregulate anti-

osteoclastogenic factors, as well as promote cell survival. Thus, OPTN limits osteoclastogenesis 

at two distinct nodes and is a critical factor in restricting uncontrolled bone resorption.  

Moreover, a defect in type I IFN production could in fact account for the defect in IFN/R 

signaling, as type I IFN upregulates expression of key components of the IFN/R signaling 

pathway (Ivashkiv and Donlin 2014).  It’s possible that Optn-deficient osteoclasts fail to produce 

amounts of type I IFN necessary to properly establish an IFN/R signaling platform, as indicated 

by decreased levels of total STAT1 and STAT2 in Optn-deficient precursors. In addition, 
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supplementation with recombinant IFN/ rescues the hyper-osteoclastogenic phenotype in Optn-

deficient osteoclasts as it upregulates components of the IFN/R signaling pathway, such as 

STAT1 and STAT2, as well as inhibit cFos-mediated osteoclast differentiation.  Furthermore, 

blocking IFN/R signaling with anti-IFNAR Ab had a more profound effect on Optn+/+ 

osteoclasts, suggesting that defects in IFN/R signaling prevented antibody blockade from being 

fully effective in Optn-/- osteoclasts. 

Interestingly, while Optn-deficient osteoclasts exhibit a defective type I IFN pathway, the 

measles virus, which elicits a robust type I IFN response, is strongly correlated to PDB 

development (Kurihara et al. 2006). Indeed, this association could support why individuals 

harboring the OPTN variant are prone to develop PDB, as their intrinsic defects in the type I IFN 

pathway permit them to be more susceptible to measles virus infection. Because of Optineurin’s 

dual function in maintaining bone homeostasis and antiviral type I IFN signaling, IFNβ could be 

a novel pharmacotherapy for PDB, as it provides restoration of dysregulated bone resorption in 

addition to anti-viral functions. 

Taken together, our results allow us to propose a possible mechanistic model of OPTN-

associated PDB pathogenesis. At the molecular level, OPTN plays dual role in the negative 

regulation of osteoclastogenesis - the production of type I IFN and signaling of the type I IFN 

through the IFN/R to maintain bone homeostasis. Deficiency in OPTN fails to execute the 

proper inhibitory functions of type I IFN signaling, leading to hyperactivation of 

osteoclastogenesis and development of osteolytic lesions observed in PDB
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Table 2:  Phenotypic analysis of skeletal abnormalities in 3-, 8-, 12-, 16-, and 22-month old 

Optn+/+ and Optn-/- mice 
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Figure 2.1 Generation of the Global Optn knockout mouse.  (A) Targeting strategy for the 

deletion of exon 1 of Optn via Cre-mediation excision of LoxP-flanked exon 1.  Neomycin cassette 

(NeoR) is flanked by frt sites for selection. Cre expression facilitates the deletion of the LoxP-

flanked portion of Optn, included the NeoR cassette.  Genotyping primer positions are indicated 

by arrowheads (A, B3, G2, and H2).  (B) Expected and observed frequency of offspring from 

Optn+/- x Optn+/- crosses of mice.  All genotypes were observed at Mendelian ratios. (C) 

Genotyping PCR of DNA from (+/+), (-/-), (+/-), (fl/fl), and (fl/+) animals using primers A-B3, 

G2-H2, and A-D. (D) Western blot analysis of OPTN expression after CMV-mediated deletion in 

eye, liver, and kidney.
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Fig 2.2. Expression of OPTN in bone and osteoclasts. (A) Immunohistochemistry for OPTN in 

the femurs of a 10-wk-old mouse. Chondrocytes, bone marrow, muscle, and osteocytes are 

indicated by arrows. (B) TRAP staining, immunoblot, and immunofluorescent staining of OPTN 

(green) expression during Days 0-3 of RANKL-induced in vitro osteoclast differentiation of bone 

marrow (BM) cells. BM-derived OC were co-stained with phalloidin (pink) and DAPI (blue). (C) 

TRAP staining, immunoblot, and immunofluorescent staining of OPTN (green) expression during 

days 0-4 of RANKL-induced in vitro osteoclast (OC) differentiation of RAW 264.7 cells. RAW-

derived OC were co-stained with phalloidin (pink) and DAPI (blue). 
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Figure 2.3.   Optn-/- mice are phenotypically normal at 3 months of age.  (A) 3-month old 

Optn+/+ and Optn-/- mice. (B) Representative micro CT 3D reconstructed images of tibia trabecular 

bones of Optn+/+ and Optn-/- mice.  (C) Trabecular and cortical bone morphometric analysis of 

Optn+/+ and Optn-/- mice. BV/TV, bone volume / total volume; Tb. N, trabecular number; Tb. Th, 

trabecular thickness; Tb. Sp, trabecular spacing; Tt. Ar, total area; Ct. Ar, cortical area; Ct. Ar/Tt. 

Ar, cortical area / total area; Ct. Th, cortical thickness.  (n=5-7 female mice per genotype) (D) 

Serum levels of alkaline phosphatase (ALP) and C-terminal telopeptide (CTX-1) in 3-month old 

Optn+/+ (+/+) and Optn-/- (-/-) mice (n=4 mice per genotype). 

 



38 

 



39 

Figure 2.4. Optn-/- mice begin displaying PDB characteristics at 16 months of age. (A-C) 

Representative micro CT 3D reconstructed images of tibia trabecular bones of Optn+/+ and Optn-

/- mice at 8 (A), 12 (B), and 16 months of age (C). (D) Serum levels of alkaline phosphatase (ALP) 

in 8-, 12-, and 16-month old Optn+/+ (+/+) and Optn-/- (-/-) mice (n=3-8 mice per genotype).  (E) 

Incipient, monostotic, localized osteolytic lesions (white arrows) present in the proximal tibia of 

both 16-month and 22-month old Optn-/- mice. (F) Cortical bone morphometric analysis (Cortical 

thickness [Ct.Th] and % cortical area of total area [%Ct.Ar/Tt.Ar]) of unaffected tibiae of 22-

month old Optn+/+ and Optn-/- mice. (G) Bone mineral density (BMD) of lumbar spine and femur 

of 22-month old Optn+/+and Optn-/- mice. (* p< 0.05, ** p< 0.01, n = 5 female mice per genotype).   
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Figure 2.5. Aged Optn-/- mice develop Pagetic lesions and exhibit osteoporosis. (A-E) 

Representative micro CT 3D reconstructed images of osteolytic lesions in the distal femur (A, B), 

proximal tibia (B), calvaria (C), and lumbar vertebral body (D) of 22-month old female Optn-/- 

mice (-/-), compared to age-matched female Optn+/+ mice (+/+). Irregular bone remodeling in the 

calvaria and facial deformity (C) was observed in Optn-/- mice (-/-). The affected L4 of lumbar 

vertebral body displayed a chaotic trabecular structure, which causes spinal stenosis and spinal 

cord/nerve root compression (D).  (E) Aged Optn-/- mice had mixed stage lesions in the proximal 

tibia and fibula, and the affected fibula displayed a pathological fracture. (n=9 mice per genotype). 
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Figure 2.6 Optn-/- mice do not display any osteoblastic defects.  (A) Alizarin Red staining and 

immunoblot of OPTN expression during Days 0, 7, 14, and 21 of in vitro osteogenesis of MC3T3-

E1 pre-osteoclasts. (B) Representative images of in vivo bone formation in 3-month old Optn+/+ 

(+/+) and Optn-/- (-/-) mice, Alizarin (red), Calcein (green).  Quantification of measuring mineral 

apposition rate (MAR) in cortical and trabecular bone (n=4 mice per genotype). (C) Serum levels 

of IL-6 in 22-month old Optn+/+ (+/+) and Optn-/- (-/-) mice (n=5 mice per genotype). 
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Figure 2.7 Increased osteoclastogenesis in aged Optn-/- mice. (A) H&E staining of the distal 

femur of 22-month old female Optn+/+ (+/+) and Optn-/- (-/-) mice.  (B)  Staining of a mixed 

osteoscleorotic-osteolytic lesion in the proximal tibia of 22-month old Optn-/- (-/-) mouse with 

H&E (left), TRAP (middle), and Safranin O/Fast Green (right). (C-D) TRAP staining in distal 

femur (C) and parietal bone (D) in 22-month old Optn+/+ (+/+) and Optn-/- (-/-) mice.  
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Quantification of osteoclasts per mm2 of unaffected bones of Optn+/+ (+/+) and Optn-/- (-/-) mice 

(*** p < 0.001, n = 5 mice).  (E) Representative images of multi-nucleated osteoclast in the lesion 

of 22-month old Optn+/+ (+/+) and Optn-/- (-/-) mice. Quantification of number of nuclei per 

osteoclast in 22-month old  Optn+/+ (+/+) and   Optn-/- (-/-) mice (**** p <0.0001, n = 60 

osteoclasts). (F) Serum levels of alkaline phosphatase (ALP) and collagen type I C-telopeptide 

(CTX-1) in 22-month old Optn+/+ (+/+) and Optn-/- (-/-) mice (* p < 0.05, *** p < 0.001, n = 4-6 

per genotype). 
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Figure 2.8 OPTN deficiency promotes osteoclastogenesis in vitro. (A) Optn+/+ and Optn-/- bone 

marrow-derived precursors from 8-12 week old mice were cultured under osteoclastogenic 

conditions, and osteoclast (OC) differentiation was assessed by quantification of the number of 
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multi-nucleated TRAP-positive cells on day 3 post-RANKL treatment.  Representative images are 

shown. (*** p < 0.001, n = 4 wells). (B) Optn+/+ and Optn-/- bone marrow-derived precursors from 

8-12 week old mice were cultured under osteoclastogenic conditions on Osteo Assay Surface 

plates, and resorptive activity was quantified on day 5 post-RANKL treatment.  Representative 

images are shown. (* p < 0.05, n = 9 wells). (C) Western blot of OPTN, c-Fos, and NFATc1 in 

Optn+/+ and Optn-/- OC at days 0-3 of OC differentiation.  Densitometry was calculated with 

ImageJ (* p < 0.05, n = 3 blots). (D) Optn+/+ and Optn-/- bone marrow-derived precursors were 

cultured under osteoclastogenic conditions, and autophagic activity was assessed by Western blot 

on days 0-3 post-RANKL treatment. Cells were probed for OPTN, LC3, p62, ATG5, and ATG7. 

(E-G) Optn+/+ and Optn-/- bone marrow-derived precursors were cultured with RANKL for 0-60 

minutes or 0-3 days, to assess the activation of canonical and noncanonical NF-B signaling, 

respectively, by Western blot. Cells were probed for OPTN (E-G), phos-p65 (E-F), Total p65 (F), 

Total IB (E), and p100/p52 (F).  
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Figure 2.9 Optn-/- osteoclasts display no defect in common osteoclastic signaling pathways. 

(A) Western blot of OPTN, phos-ERK1/2, Total ERK1/2, phos-p38, Total ps38, phos-JNK1/2, 
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and total JNK1/2 in Optn+/+ and Optn-/- OC precursors treated with RANKL from 0 to 30 minutes. 

(B) Western blot of OPTN, phos-CREB, and Total CREB in Optn+/+ and Optn-/- OC precursors 

treated with RANKL from 0 to 2 days; the OPTN lane was run on the same gel, but were 

noncontiguous (C) Western blot of OPTN, RAB8A, Myosin V, and HTT in Optn+/+ and Optn-/- 

OC. (D) Microarray analysis of Optn+/+ and Optn-/- OC on day 3 post-RANKL treatment.  Heat 

map representing color-coded expression levels of differentially expressed genes in the type I IFN 

signature (log2 values) of biological triplicate samples of Optn+/+ and Optn-/- OC. (E) Western blot 

of OPTN, phos-TBK1, Total TBK1, phos-IRF3, and Total IRF3 expression in Optn+/+ and Optn-/- 

OC precursors treated with RANKL from 0 to 30 minutes. (F) Western blot of phos-STAT1, Total 

STAT1, and SOCS3 expression in Ifnar+/+ and Ifnar-/- OC precursors treated with RANKL from 

0 to 6 hours. (G) Western blot of phos-STAT1, Total STAT1, phos-STAT2, and Total STAT2, in 

Ifnar+/+ and Ifnar-/- OC precursors treated with IFN from 0 to 120 minutes.  (H) Western blot of 

RIPK1 in Optn+/+ and Optn-/- OC precursors treated with RANKL from 3 days. 
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Figure 2.10 OPTN deficiency affects RANKL induced IFN production and type I IFN 

activation. (A) Microarray analysis of Optn+/+ and Optn-/- OC on day 3 post-RANKL treatment.  

Heat map representing color-coded expression levels of differentially expressed genes in the type 

I IFN signature (log2 values) of biological triplicate samples of Optn+/+ and Optn-/- OC. (B) 

Western blot of OPTN, phos-STAT1, Total STAT1, and SOCS3 expression in Optn+/+ and Optn-

/- OC precursors treated with RANKL  at 4 and 6 hours. (C) The mRNA level of Ifnb1 in OC 
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precursors treated with RANKL at 4 hours was determined using qPCR. (* p < 0.05, n = 3 wells). 

(D) Optn+/+ and Optn-/- OC precursors from 8-12 week old mice were treated with IFN and 

assessed for type I IFN signaling via Western blot for phos-STAT1, phos-STAT2, Total STAT1, 

and Total STAT2. Densitometry was calculated with ImageJ (* p < 0.05, n = 3 blots).  
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Figure 2.11 Recombinant IFN can rescue hyper-osteoclastogenesis observed during OPTN 

deficiency. (A) Optn+/+ and Optn-/- OC precursors from 8-12 week old mice treated with RANKL, 

and cells were harvested at 0, 24, and 48 hours post-RANKL treatment and analyzed by flow 

cytometry for cell death by Annexin V and Zombie-Red. %Dead Cells calculated as percentage 
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Annexin V+ Zombie-Red+ of CD45+ cells (* p < 0.05, ** p < 0.01, n = 6 wells).  (B) Optn+/+ and 

Optn-/- OC precursors treated with RANKL with or without IFN, and cells were harvested at 24 

and 48 hours post-RANKL/ IFN treatment and analyzed by flow cytometry for cell death by 

Annexin V and Zombie-Red. %Dead Cells calculated as percentage Annexin V+ Zombie-Red+ of 

CD45+ cells (* p < 0.05, *** p < 0.001, n = 3 wells).  (C) TRAP staining of Optn+/+ and Optn-/- 

osteoclast precursors treated with RANKL with or without IFN for 3 days to assess OC formation 

(** p < 0.01, n = 4 wells). (H) TRAP staining of osteoclast precursors under osteoclastogenic 

conditions with control or IFN/R blocking (IFNAR) antibody for 3 days (* p < 0.05, * p < 

0.01, *** p < 0.001, n = 4 wells) 
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Figure 2.12 Optn-/- osteoclast precursors display a survival advantage during differentiation. 

(A) Optn+/+ and Optn-/- OC precursors treated with RANKL with or without IFN, and cells were 

harvested at 24 and 48 hours post-RANKL/ IFN treatment and analyzed by flow cytometry for 

cell death by Annexin V and Zombie-Red. Representative flow cytometry plots are shown. 
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Figure 2.13 Schematic of the dual role of OPTN in mediating negative regulation of 

osteoclastogenesis.  During RANKL-mediated osteoclastogenesis, OPTN is required for optimal 

IFN production, which is critical for inhibition of cFos, promotion of the IFN/R signaling 

cascade, and induction of cell death. 
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CHAPTER 3: A NON-CANONICAL ROLE FOR AUTOPHAGY MACHINERY IN 

OSTEOCLAST DIFFERENTIATION 

 

Introduction 

Autophagy is an evolutionally conserved intracellular system that forms double-

membraned autophagosomes to engulf cytoplasmic materials and to deliver them to lysosomes for 

degradation. Usually, the term “autophagy” implies macroautophagy, which is a catabolic process 

that non-selectively digests intracellular components for the nutrients recycling. While autophagy 

has been well known as a survival mechanism triggered by harsh environment, such as nutrient 

starvation and stresses to maintenance the cell viability, it is also highly activated during 

embryonic development and cell differentiation (Mizushima and Levine 2010). Multiple lines of 

evidence shows that autophagy is involves in the terminal differentiation and maturation of many 

types of cells, including the immunes cells (B and T lymphocytes) (Clarke and Simon 2019), skins 

(keratinocytes) (Akinduro et al. 2016), and smooth muscles (myofibrobalsts) (Bernard et al. 2014).   

Osteoclasts are myeloid-derived multinucleate cells that degrade mature bone for bone 

remodeling. Under homeostatic situations, there is an equilibrium between osteoclastic bone 

resorption and osteoblastic bone formation.  However, over-activation of osteoclasts can lead bone 

loss outpacing bone formation, and hence development of osteoclast diseases, such as 

osteoporosis. GWA studies (Zhang et al. 2010) demonstrated that genetic variations in the core 

genes of autophagy pathway are associated with decreased bone mineral density, a precondition 

of osteoporosis. A previous study has showed that some autophagy proteins, such as ATG5, ATG7, 

and ATG4B, are involved in the resorptive function of osteoclast (DeSelm et al. 2011). While 
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Becn1 knockdown (Chung et al. 2014) and pharmacological inhibition studies (Xiu et al. 2014b) 

demonstrated that both depletion of an autophagy protein and blocking autophagy prohibit in vitro 

osteoclastogenesis, the absence of ATG5 seems to not interfere with osteoclast differentiation both 

in vivo and in vitro. Therefore, it remains unknown whether the autophagy influx induction or 

certain autophagy components are involved in osteoclast different and underlying mechanisms by 

which autophagy machinery functions in osteoclastogenesis remain elusive. Here, we studied the 

role of different autophagy proteins in osteoclast differentiation. We found that the only certain 

autophagy core proteins, such Beclin-1, VPS34, ATG14 and FIP200 are involved in osteoclast 

differentiation. Similarly, we observed an osteopetrosis phenotype caused by osteoclastopenia in 

mice with myeloid deficiency of Becn1. Mechanistically, Beclin-1 are required for noncanonical 

NF-kB activation and preventing DNA damages and cell death during osteoclast development. 

Therefore, we identified the non-canonical role of autophagy machinery for osteoclast 

development. 

 

Material and Methods 

Animals 

Rubcnflox/flox mice were cross with LysM-Cre+ mice (Peter Murray, St. Jude Children’s 

Research Hospital) to generate myeloid restricted conditional knockout mice, RubcnLM/LM , in 

C57BL/6 background, respectively. Other autophagy gene conditional knockout mice in C57BL/6 

background are provided:  LysM-Cre+ Becn1flox/flox, (Becn1LM/LM) from Edmund Rucker, University 

of Kentucky), LysM-Cre+ Atg5flox/flox (Atg5LM/LM), from Thomas A. Ferguson, Washington 

University, LysM-Cre+ Fip200flox/flox, (Fip200LM/LM) from Jun-Lin Guan, University of Michigan, 

LysM-Cre+ Atg14flox/flox (Atg14LM/LM) from Herbert Virgin, Washington University, LysM-Cre+ 
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Vps34flox/flox (Vps34LM/LM) from Richard Flavell, Yale University. Male mice were used for both in 

vivo and ex vivo studies. All animal procedures were approved by Institutional Animal Care and 

Use Committees at the NIEHS. 

 

Micro-CT Scanning and Dual Energy X-Ray Absorptiometry (DEXA)  

Femurs and Tibiae were harvested, fixed in 10% paraformaldehyde, and scanned by 

MicroCT Scanco 40 (Scanco Medical, Bassersdorf, Switzerland) in 10 μm resolution (E = 70kVa; 

I = 145 μA). Regions of interest of the trabecular and cortical bone was measured, 0.60 mm distal 

to metaphysis of tibia and 0.6 mm proximal to the distal tibio-fibular junction, respectively. The 

reconstructed solid 3D images were used for visualizing trabecular bone microarchitecture. We 

measured whole body bone mineral content (BMC) and bone mineral density (BMD) by DEXA 

using LUNAR PIXImus bone densitometer (GE Healthcare, Fairfield, CT USA). 

 

Slide staining  

Bones were decalcified in 10% EDTA for 3 weeks and then processed, paraffin embedded, 

and sectioned at thickness of 5 μm. Sections were stained with hematoxylin and eosin (H&E) for 

general histology, and with tartrate-resistant acid phosphatase (TRAP) straining to detect TRAP+ 

cells.  

 

Osteoclast differentiation and Immunofluorescence 

Tibias and femurs were harvested from 8-10 weeks old male mice after euthanasia by CO2. 

Bone marrow cells were flushed into phenol free α-MEM medium, supplemented with 10% FBS, 

L-Glutamine, non-essential amino acids, and penicillin/streptomycin. Unattached cells were 
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harvest after overnight and re-plated at a density of 1.5 × 105 cells/cm2 in presence of 30 ng/mL 

M-CSF for 2-3 days to prepare for osteoclast precursor cells (R&D Systems, Minneapolis, MN 

USA). To stimulate osteoclastogenic differentiation, osteoclast precursors are treated with 10 

ng/mL RANKL and 30 ng/mL M-CSF in the cell culture medium for 3 continuous days (R&D 

Systems Minneapolis, MN USA). Cells were fixed 10% formalin and stained with tartrate-resistant 

acid phosphatase (TRAP) to detect TRAP+ multinucleated cells. For immunofluorescence staining, 

non-adherent bone marrow cells were cultured and stimulated in chamber slides with 4% 

formaldehyde fixation. After fixation, cells were blocked and perforated in block buffer (0.1% 

Triton X-100 and 1% BSA in PBS), and then incubated with 1/200 diluted primary antibodies 

overnight at 4°C. Cell were rinsed by PBS and incubated with Alex Fluor-conjugated secondary 

antibodies (Invitrogen).  

 

Antibodies and Western Blot Analysis 

The following antibodies were from Cell Signaling (Beverly, MA USA): Fip200 (Cat. #), 

Vps34 (Cat. #), Atg14 (Cat. #), Rubicon (Cat. #), c-Fos (Cat. #4384), LC3B (Cat. #2775), p62 

(Cat. #5114), ATG5 (Cat. #12994), ATG7 (Cat. #2631), TRAF3 (Cat. #), p65 (Cat. #8242), 

phospho-p65 (Cat. #3033), p100/p52 (Cat. #4882), IκBα (Cat. #4814), phospho -p38 (Cat. #9215), 

p38 (Cat. #9212), phospho -ERK1/2 (Cat. #4370), ERK1/2 (Cat. #4695), phospho -JNK (Cat. 

#4668), JNK (Cat. #9252), phospho -CREB (Cat. #9198), CREB (Cat. #4820). The following 

antibodies were from Santa Cruz Biotechnology Inc. (Dallas, TX USA): NFATc1 (Cat. #sc-7294), 

Beclin-1 (Cat. #), and Actin (Cat. #sc-1616). Secondary antibodies were from Jackson Immuno-

Research (West Grove, PA, USA).  
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Proteins were harvested, and protein concentration was measured as previously described 

(Lee et al. 2015). 5-10 µg of total protein lysate was resolved by Criterion TGX precast gel (Biorad, 

Hercules, CA, USA) and transferred to nitrocellulose membrane using the Trans-Blot Turbo 

Transfer System (Bio-rad, Hercules, CA, USA) and immunodetected using appropriate primary 

and peroxidase-coupled secondary antibodies (Jackson Immunoresearch, West Grove, PA USA). 

Proteins were visualized by enhanced chemiluminescence (ECL, Amersham Bioscience, Little 

Chalfont, UK). 

 

RNA isolation and Microarray 

Total RNA was isolated using the RNeasy plus mini kit (Qiagen, Hilden, Germany) 

according manufacturer’s protocol. RNA was isolated from Becn1WT/WT and Becn1LM/LM bone-

marrow-derived osteoclasts as described above, and gene expression analysis was conducted using 

Affymetrix Mouse Genome 430 2.0 GeneChip® arrays (Affymetrix, Santa Clara, CA). Arrays 

were scanned in an Affymetrix Scanner 3000 and preliminary analyses were performed with 

OmicSoft Array Studio (Version 9.0) software. 

 

Assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) 

ATAC-seq was performed as previously described. Briefly, the harvested cell pellet was 

re-suspended in Greenleaf lysis buffer and placed on ice for 5 min. Then crude nuclei were pelleted 

by centrifuge for 5 min at 500 × g, 4°C. Nuclei pellet were re-suspended in transposition mix 

(Illumia cat# FC-121-1030), and DNA were purified by the Qiagen MinElute PCR purification 

kit. ATAC-seq library was generated by PCR amplification and sequenced on the NextSeq 
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(Illumina). Biological triplicates were performed, and combined reads were used for further 

analysis. 

 

Flow Cytometry 

To assess cell death, osteoclast precursors were harvested 24 and 48 hours after treatment 

with RANKL in the presence or absence of IFN and stained with Annexin-V (1:50), Zombie-

Violet (1:1000), and CD45 (1:200), as previously described (Dillon et al. 2014).  All antibodies 

were from Biolegend (San Diego, CA USA).  

 

Statistical Analysis 

For all in vitro studies, three independent experiments were performed. Data are presented 

as mean ± SD. Student’s T test or Analysis of Variance (ANOVA) was used to determine the 

differences among groups. A p value less than 0.05 is considered statistically significant. 

 

Results 

Upregulation of autophagy proteins and induction of autophagy during ex vivo 

osteoclastogenesis. 

   

To examine the temporal expression of autophagy components during ex vivo 

osteoclastogenesis, we generated osteoclast precursors from bone marrow-derived macrophage 

cells (BMMs), followed by 3 days of RANKL stimulation (Figures 3.1A), which resulted in fully 

differentiated, multinucleated osteoclasts, as detected by tartrate-resistant acid phosphatase 

(TRAP) staining (Figures 3.1B). The expression levels of multiple classical proteins in the 

autophagy pathway, including FIP200, Beclin-1, VPS34, ATG14, and ATG5 were elevated during 

osteoclast differentiation, peaking at 3 days post-RANKL stimulation (Figures 3.1D). In addition, 
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an induction of autophagic flux was detected during osteoclast differentiation, indicated by the 

transformation of LC3-I to LC3-II and a gradual degradation of p62, both canonical markers for 

autophagy (Figures 3.1D). Immunofluorescence staining further demonstrated the presence of 

LC3-II puncta in the cytoplasm of fully differentiated osteoclasts (Figures 3.1C). As autophagy is 

activated during osteoclastogenesis, we hypothesized that the autophagy machinery may play a 

role in osteoclast development. 

 

Ablation of Becn1 in osteoclast precursors resulted in osteopetrosis and prevented age-

related bone loss in mice 

 

To investigate the significance of autophagy in osteoclast biology in vivo, we first 

performed skeletal phenotyping of mice with myeloid lineage restricted deficiency of Becn1, a 

core component of the Class III PI3K complex of the autophagy machinery. Western blot 

confirmed approximately 70% reduction of Beclin-1 in bone marrow cell derived BMMs and 

osteoclasts from LysM-Cre+ Becn1flox/flox (hereafter Becn1LM/LM) mice compared to that from 

Becn1WT/WT mice (data no shown). At 2-months of age, Becn1LM/LM mice exhibited a strong 

osteopetrosis phenotype (Figures 3.2A, B), characterized by increased bone mass and density. 3D 

reconstruction of the tibiae by microcomputed tomographic analysis revealed both trabecular and 

cortical bone parameters were significantly increased Becn1LM/LM mice compared to Becn1WT/WT 

littermates (Figures 3). Furthermore, H&E staining also confirmed an increased trabecular bone 

component in Becn1LM/LM mice (Figures 3.2C). As Becn1 deletion is restricted to the osteoclast, 

not osteoblast, lineage in the Becn1LM/LM mice, we next examined osteoclast formation in vivo via 

TRAP staining. Compared to wild type littermates, Becn1LM/LM mice exhibited a significantly 

decreased number of TRAP+ osteoclasts around the growth plate of femurs (Figures 3.2D), 

suggesting that the osteopetrotic phenotype is caused by osteoclastopenia.  
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During the aging process, there is a natural loss of the bone, so we next asked if aged  

Becn1LM/LM mice were protected from aged-induced bone loss. Similar to 2-month old mice, 1-

year old Becn1LM/LM mice exhibited an increased bone mass and decreased bone loss compared to 

Becn1WT/WT mice (Figures 3.2E), indicating that Becn1LM/LM mice were indeed protected against 

age-related bone loss. However, a higher basal bone volume in Becn1LM/LM mice may contribute 

to this protection. Collectively, our results suggest that autophagy is required for osteoclast 

formation in vivo. 

 

Differential requirements for autophagic components during osteoclastogenesis ex vivo  

To confirm the role of autophagy in osteoclast development, we performed primary ex vivo 

osteoclastogenesis using bone marrow cells from the long bones of Becn1LM/LM and Becn1WT/WT 

mice. Compared to Becn1WT/WT OCs, Becn1LM/LM OCs displayed an accumulation of p62 and a 

decrease in LC3-II conversion (Figures 3.3A), indicating that autophagic flux is defective during 

differentiation of  Becn1LM/LM osteoclasts. Importantly, Becn1-deficiency resulted in significantly 

decreased numbers of TRAP+ osteoclasts (Figures 3.3B). In parallel with this reduction in TRAP+ 

ploykaryons, Becn1LM/LM precursor cells expressed significantly lower levels of c-Fos and 

NFATc1, two essential osteoclastic transcription factors, following RANKL treatment (Figure 

3.3C). These data confirm that autophagy induction and Beclin-1 may be needed for 

osteoclastogenesis. 

Beclin-1 is a core protein in the Class III PI3K complex, so we next asked if its binding 

partners in the Class III PI3K Complex are also required for osteoclast differentiation. Similar to 

the phenotype of Becn1LM/LM osteoclasts, we found the absence of either Vps34 or Atg14 resulted 

in significantly decreased numbers of OCs, as well as defective autophagy flux in the Vps34- or 
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Atg14-deficient OCs (Figures 3.3D, E). Intriguingly, myeloid deficiency of Uvrag, which can also 

be associated with the Class III PI3K Complex (Figures 3.3F), or Rubcn, an essential component 

of LC3-associated phagocytosis (LAP) and negative regulator for autophagy, did not result in 

defective osteoclastogenesis, demonstrating that these molecules are not required.  

In addition, we examined the requirement for the pre-initiaion complex, upstream of the 

Class III PI3K complex, in osteoclastogenesis.  Deletion of Rb1cc1, which encodes FIP200, 

blocked autophagic flux in differentiating osteoclasts, and significantly decreased ex vivo 

osteoclastogenesis (Figures 3.4A).  However, deletion of Atg5, a component of the ubiquitin-like 

conjugation system downstream of the Class III PI3K complex, did not affect osteoclast formation, 

with BMM from both Atg5WT/WT and Atg5LM/LM mice generating equivalent TRAP+ osteoclasts and 

equivalent levels of c-Fos and NFATc1 (Figures 3.4B). As expected, however, Atg5LM/LM OCs 

displayed an intrinsic defect in autophagic flux, compared to Atg5WT/WT OCs (Figures 3.4B). 

Collectively, these data indicate that upstream canonical autophagy proteins in the pre-initiation 

complex (FIP200) and Class III PI3K complex, (Beclin-1, VPS34 and ATG14) display autophagic 

defects and are required for osteoclast differentiation ex vivo, while proteins downstream in the 

autophagy pathway (such as ATG5), display autophagic defects yet are not required for 

osteoclastogenesis. Thus, defects in autophagy per se do not result in decreased osteoclastogenesis, 

therefore these required autophagic components must be functioning in a non-canonical fashion. 

 

Becn1 deficiency does not affect common osteoclastogenic pathways 

We next sought to investigate the mechanisms by which Beclin-1 functions as a positive regulator 

for osteoclast differentiation. As a previous study showed that Becn1 gene knockdown in BMMs 

decreased RANKL induced JNK and p38 activation, we next evaluated MAP kinases activation in 
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Becn1WT/WT and Becn1LM/LM osteoclast precursors following RANKL treatment. We observed 

equivalent levels of phosphorylated JNK1/2, ERK1/2 and p38 in Becn1WT/WT and Becn1LM/LM 

BMMs post-RANKL treatment (Figures 3.5A), suggesting that Becn1 deficiency does not alter 

RANKL induced MAP kinase activation. RANKL-mediated NF-κB pathway activation is 

prerequisite for the c-Fos-NFATc1 axis during osteoclastogenesis. We next assessed the activation 

of p65 and IκBα, members of the canonical NF-κB pathway, in Becn1WT/WT and Becn1LM/LM post-

RANKL treatment. The levels of phosphorylated p65 and IκBα, and the degradation of the IκBα 

showed similar patterns in Becn1WT/WT and Becn1LM/LM BMMs post-RANKL treatment (Figures 

3.5B), suggesting that Becn1 deficiency does not affect RANKL-induced canonical NF-κB 

responses. As RANKL also induces a PI3K-Akt-NFATc1 signaling axis for osteoclastogenesis, 

we examined the phosphorylated levels of Akt in Becn1WT/WT and Becn1LM/LM BMMs in response 

to RANKL treatment. We observed an equivalent level of phosphorylated Akt in Becn1WT/WT and 

Becn1LM/LM BMMs post-RANKL treatment (Figures 3.5C). These data, therefore, suggest that 

Beclin-1 regulates osteoclastogenesis independently of MAP kinases, canonical NF-κB activation, 

or Akt activation.  

 

Becn1 deficiency alters non-canonical NF-κB activation  

Previous studies have shown that non-canonical NF-κB responses also participate in 

osteoclastogenesis, therefore we next evaluated if Becn1 deficiency affects non-canonical NF-κB 

activations in osteoclasts. As expected, RANKL induces a robust processing of p100 to p52, which 

indicates non-canonical NF-κB activation, in Becn1WT/WT precursors during osteoclast 

development. Becn1LM/LM precursors, however, displayed a decreased level of the processed p52 

protein compared to Becn1WT/WT osteoclast precursors, suggesting that Becn1 deficiency results in 
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a defective non-canonical NF-κB response (Figures 3.6A). Importantly, fractionation experiments 

revealed that, in Becn1WT/WT osteoclast precursors, RANKL treatment results in nuclear 

translocation of RelB, and that RelB nuclear translocation is significantly decreased in Becn1LM/LM 

precursors (Figures 3.6B).  Intriguingly, RANKL treatment of Becn1WT/WT precursors also induced 

nuclear translocation of Beclin-1, which was absent in Becn1LM/LM  precursors (Figures 3.6B).  To 

validate this observation, we performed immunofluorescence staining, and confirmed nuclear 

translocation of both Beclin-1 and RelB to the nucleus of RANKL-stimulated Becn1WT/WT 

precursors, both of which were again absent in Becn1LM/LM  precursors (Figures 3.6C).  Therefore, 

Beclin-1 is required for RANKL-induced non-canonical NF-κB activation in osteoclasts, possibly 

via the nuclear translocation of Beclin-1. 

 

Nuclear Beclin-1 is required to mediate the DNA damage repair response and promote cell 

survival during osteoclastogenesis 

 

To address the mechanisms underlying Beclin-1’s role in osteoclastogensis, we performed 

genome-wide transcriptional profiling using microarray with the Becn1WT/WT and Becn1LM/LM 

osteoclasts at day 2 of osteoclast differentiation ex vivo. Microarray revealed that many critical 

pathways were significantly downregulated in Becn1LM/LM osteoclasts compared to Becn1WT/WT 

osteoclasts, including protein ubiquitination, NF-κB signaling and the DNA damage response, 

whereas genes related to cell death, the oxidative stress response, and the unfolded protein 

response were upregulated in Becn1LM/LM osteoclasts (Figures 3.7A). In parallel to the global gene 

profiling, we examined chromatin accessibility of day 2 Becn1WT/WT and Becn1LM/LM osteoclasts by 

assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq). 

Compared to Becn1WT/WT osteoclasts, Becn1LM/LM osteoclasts displayed increased chromatin 

accessibility at  transcriptional start sites (TSSs) - 48.2% of TSS in Becn1LM/LM osteoclasts 
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compared to 3.8% of TSS in Becn1WT/WT osteoclasts, suggesting changes in chromatin 

corresponding to increased transcription in Becn1LM/LM osteoclasts (Figures 3.7B).  In Becn1LM/LM 

osteoclasts, differential ATAC-seq peaks within TSSs or broader promoter regions mapped to 

genes encoding proteins involved in intrinsic apoptotic signaling pathway and the responses to ER 

stress. By contrast, differential ATAC-seq peaks in Becn1WT/WT osteoclasts were clustered to genes 

encoding proteins involved in the negative regulation of apoptotic signaling pathways and genes 

responded to DNA damage (Figures 3.7B). Therefore, our data from accessible chromatin profile 

matches temporal transcription pattern in Becn1LM/LM osteoclasts, suggesting that the 

differentiating Becn1LM/LM osteoclasts exhibit transcriptional signatures associated with unresolved 

DNA damage and cell death. 

 

Nuclear Beclin-1 maintains genomic integrity to promote cell survival during osteoclast 

differentiation 

 

A recent study demonstrated that nuclear translocation of Beclin-1 is required for radiation-

induced DNA damage repair. As our transcriptional profiling demonstrated that Becn1LM/LM 

osteoclasts had defects in DNA damage repair pathways, we next asked if Becn1-deficiency 

resulted in compromised genomic integrity during osteoclast differentiation. After one day of 

RANKL stimulation, both Becn1WT/WT and Becn1LM/LM precursors showed increased nuclear 

staining of phosphorylated histone H2.AX (phospho-γH2.AX), which is a biomarker for DNA 

double-strand breaks (DSBs) (Figures 3.8A). After 2 days of RANKL treatment, Becn1WT/WT 

precursors displayed reduced phos-γH2.AX levels, concurrently with increased levels of 

phosphorylated ATM (phospho-ATM), a key regulator of the DNA damage response.  Becn1LM/LM  

precursors, however, exhibited increased levels of phospho-γH2.AX and significantly decreased 

levels of phospho-ATM (Figures 3.8B). Taken together, these results indicate that Becn1LM/LM 
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osteoclast precursors have an intrinsic defect in repairing DNA damage incurred during 

osteoclastogenic differentiation.  

Unresolved DNA damage may elicit cyto-destructive cell death as a mechanism to 

eliminate damaged cells. We next accessed if Becn1-deficiency affects the survival advantage of 

differentiating osteoclasts. Treatment of Becn1LM/LM precursors with RANKL, a TNF superfamily 

member, resulted in a significantly increased percentage of apoptotic and necrotic cells, as 

indicated by Annexin and Zombie-Violet double positivity, compared to Becn1WT/WT precursors 

(Figures 3.8C). Taken together, these results demonstrate that Beclin-1 serves a non-canonical role 

by preserving genomic integrity and preventing cell death during osteoclast development. 

 

Discussion 

It is well known that lysosomal pathways and autophagy function in cell survival and 

intracellular quality control. In recent decades, however, emerging evidence has revealed non-

canonical roles for autophagy machinery. In this study, we demonstrated the importance of 

autophagy proteins, including Beclin-1, FIP200, VPS34, and ATG14 in osteoclast development, 

yet their requirement does not seem linked to canonical autophagy, as Atg5-deficiency does not 

impair osteoclastogenesis despite a defect in autophagic flux.   

Previous studies show that downstream autophagy, but Atg5 deficient OC precursors can 

undergo normal osteoclast differentiation, although defects in autophagy flux found in Atg5 

deficient osteoclasts. While we agree with the previous study that the absence of Atg5 does not 

affect osteoclast differentiation, our study highlighted that the proteins in the upstream pre-

initiation complex and PI3KC3 complex are dispensable for osteoclast formation, suggesting that 

the entire autophagy pathway may be instrumental for both osteoclast differentiation and function, 
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through different components exert different control over each process. Coincidently, studies 

showed that the differentiation of osteoblasts, counterparts of osteoclast, depends on upstream 

autophagic machinery FIP200 (Liu et al. 2013), while the ATG5 functions in the mineralized role 

of osteoblasts (Nollet et al. 2014). However, the normal osteoclast differentiation from ATG5 

deficient precursors cannot totally excluded that autophgic flux is unneeded for osteoclastogenesis, 

as studies have proven the existence of Atg5-independent non-canonical autophagy, which 

depends on the Rab9 to form autophagosomes (Nishida et al. 2009). Therefore, future studies need 

to address whether molecules in Atg5-independent autophagy pathways is involved in 

osteoclastogenesis. 

Although it has been shown that the upregulation of autophagy genes, BECN1, ATG5 and 

LC3, depends on the IKK-β and IKK-α, components of NF-κB pathways (Comb et al. 2011), 

whether autophagy machinery mediates NF-κB responses remains elusive. Our data showed Becn1 

deficient osteoclasts had by reduced expression of p52 and diminished nuclear translocation of 

RelB, thus indicating Beclin-1 is required for RANKL induced non-canonical NF-κB activations. 

While a recent study suggests applications of lysosomal inhibitor chloroquine reduced the 

degradation of TRAF3, a negative regulator for non-canonical NF-κB pathway, thereby 

diminishing its activations, we did not find a changed TRAF3 levels in the Becn1 deficient 

osteoclast, suggesting that Beclin-1 regulates noncanonical NF-κB pathway independent of 

TRAF3. 

 Interestingly, we observed a nuclear translocation of Beclin-1 during osteoclastogenesis, 

and it is reasonable to speculate it re-distribution may mediate non-canonical NF-κB activation in 

osteoclasts. While a recent study has identified an alternative function of Beclin-1 for DNA DSBs 

repair, our data agree with the previous study, showing a sustained DNA damage response in the 
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Becn1 deficiency differentiating osteoclasts, due to a decreased activity of ATM, a critical kinase 

for DSBs repair. As ATM along with NEMO have been shown as central players in nuclear-

initiated NF-κB signaling pathway (Miyamoto 2011), the decreased levels phosphorylated ATM 

in Becn1 deficient osteoclasts may cause an alteration of noncanonical NF-κB response and hence 

an decreased osteoclastogensis. 

 Taken together, our study delineates the mechanisms by which autophagy components 

mediate osteoclast differentiation. At the molecular level, autophagy machinery FIP200, Beclin-

1, VPS34 and ATG14 are involved in osteoclastogenesis, which seems to be dispensable of 

autophagic flux. Furthermore, Beclin-1 employed a noncanonical role to maintain gemone 

integerity and prevent necrobiosis for proper noncaonical NF-κB responses during 

osteoclastogenesis (Figure 3.9).   
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Figure 3.1 Expression of autophagy proteins during osteoclast differentiation. (A) A 

schematic picture for ex vivo osteoclastogenesis. (B) TRAP and Hematoxylin staining of day 0 to 

day 3 of RANKL induced osteoclastogenesis from bone marrow macrophages (BMMs). 3 days 

post-RANKL stimulations, TRAP+ multinucleated osteoclasts are formed (20X).  (C) 

Immunofluorescent staining of LC3B (green), DAPI (blue) and phalloidin (far red) for BMMs 

derived osteoclasts. (D) Expression of the osteoclastogenic marker and autophagy proteins in day 

0 to day 3 of RANKL-induced osteoclast differentiation ex vivo from BMMs assessed by 

immunoblotting. 
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Figure 3.2 Becn1LM/LM  mice exhibit an osteopetrosis phenotype and have reduced age-related 

bone loss (A) Representative micro CT rendering pictures of tibia trabeculae of 2-month-old 

Becn1WT/WT  and Becn1LM/LM   mice. (B) Representative H&E staining of femurs of 2-month-old 

Becn1WT/WT  and Becn1LM/LM   mice. (C) Trabecular and cortical bone morphometric analysis from 

the tibiae of 2-month-old mice; BV/TV, bone volume / total volume; Tb. N, trabecular number; 

Tb. Th, trabecular thickness; Tb. Sp, trabecular spacing; Tt. Ar, total area; Ct. Ar, cortical area; 

Ct. Ar/Tt. Ar, cortical area / total area; Ct. Th, cortical thickness.  (n= 6-7 male mice per genotype). 

(D) Representative TRAP staining of femurs of 2-month-old Becn1WT/WT  and Becn1LM/LM   mice. 
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(E) Whole body bone mineral density (BMD) of 1-year-old Becn1WT/WT and Becn1LM/LM   mice (n=5 

male mice per genotype). 
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Figure 3.3 Differential requirements for PI3KC3 components during osteoclastogenesis ex 

vivo. (A) Becn1WT/WT and Becn1LM/LM BMMs were cultured under osteoclastogenic conditions, and 

Beclin-1 knockout efficacy and autophagic influx was assessed by immunobloting on days 0-3 

post-RANKL treatment. Protein lysates were probed for Beclin-1, LC3 and p62.  (B) (A) 

Becn1WT/WT and Becn1LM/LM BMMs were cultured under osteoclastogenic conditions, and 

osteoclast (OC) differentiation was assessed by quantification of the number of TRAP+ 

multinucleated (≥3 nuclei) cells on day 3 post-RANKL treatment.  Representative images are 
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shown. (** p < 0.01, n = 5 wells).  (C) Immunoblotting of c-Fos, and NFATc1 in Becn1WT/WT and 

Becn1LM/LM OC at days 0-2 of OC differentiation. (D) Vps34WT/WT and Vps34LM/LM BMMS were 

cultured under osteoclastogenic conditions, and OC differentiation the number of TRAP+ 

multinucleated (≥3 nuclei) cells on day 3 post-RANKL treatment (*** p < 0.001, n = 5 wells). 

Cell protein lysates were probed for VPS34 and p62 in Vps34WT/WT and Vps34LM/LM OC at days 0-

3 of OC differentiation, and for c-Fos, and NFATc1 in Vps34WT/WT and Vps34LM/LM OC at days 0-

2 of OC differentiation. (E) Atg14WT/WT and Atg14LM/LM BMMS were cultured under 

osteoclastogenic conditions, and OC differentiation the number of TRAP+ multinucleated (≥3 

nuclei) cells on day 3 post-RANKL treatment (n = 5 wells). Cell protein lysates were probed for 

ATG14 and p62 in Atg14WT/WT and Atg14LM/LM OCs at days 0-3 of OC differentiation, and for c-

Fos, and NFATc1 in Atg14WT/WT and Atg14LM/LM OCs at days 0-2 of OC differentiation. (F) 

UvragWT/WT and UvragLM/LM BMMS were cultured under osteoclastogenic conditions, and OC 

differentiation the number of TRAP+ multinucleated (≥3 nuclei) cells on day 3 post-RANKL 

treatment (NS = no significance, 0.0001, n = 5 wells). Cell protein lysates were probed for ATG14 

and p62 in UvragWT/WT and UvragLM/LM OCs at days 0-3 of OC differentiation, and for c-Fos, and 

NFATc1 in UvragWT/WT and UvragLM/LM OCs at days 0-2 of OC differentiation. 
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Figure 3.4 Differential requirements for autophagy components during osteoclastogenesis ex 

vivo. (A) Fip200WT/WT and Fip200LM/LM BMMS were cultured under osteoclastogenic conditions, 

and OC differentiation the number of TRAP+ multinucleated (≥3 nuclei) cells on day 3 post-

RANKL treatment (**** p < 0.0001, n = 5 wells). Cell protein lysates were probed for FIP200 

and p62 in Fip200WT/WT and Fip200LM/LM OCs at days 0-3 of OC differentiation, and for c-Fos, and 

NFATc1 in Fip200WT/WT and Fip200LM/LM OCs at days 0-2 of OC differentiation. (B) Atg5WT/WT 

and Atg5LM/LM BMMS were cultured under osteoclastogenic conditions, and OC differentiation the 

number of TRAP+ multinucleated (≥3 nuclei) cells on day 3 post-RANKL treatment (n = 5 wells). 

Cell protein lysates were probed for ATG5 and p62 in Atg5WT/WT and Atg5LM/LM OCs at days 0-3 

of OC differentiation, and for c-Fos, and NFATc1 in Atg5WT/WT and Atg5LM/LM OCs at days 0-2 of 

OC differentiation. 
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Figure 3.5 The absence of Becn1 does not affect common osteoclastic signaling pathways in 

RANKL-treated BMMs. (A) Western blot of Beclin-1, phos-p38, Total p38, phos-JNK1/2, and 

total JNK1/2, phos-ERK1/2 and Total ERK1/2, in Becn1WT/WT and Becn1LM/LM OC precursors 

treated with RANKL from 0 to 30 minutes. (B) Western blot of phos-p65, Total p65, phos- IκBα, 

and total IκBα in Becn1WT/WT and Becn1LM/LM OC precursors treated with RANKL from 0 to 30 

minutes. (C) Western blot of phos-Akt and Total Akt in Becn1WT/WT and Becn1LM/LM OC precursors 

treated with RANKL from 0 to 30 minutes. 
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Figure 3.6 Becn1LM/LM osteoclasts display defects in non-canonical NF-κB responses. 

Becn1WT/WT and Becn1LM/LM OC precursors underwent osteoclastogenesis after RANKL treatment. 

(A) Total protein lysates were immunoblotted for p100/p52 to access non-canonical NF-κB 

activations. (B) Cytoplasmic (Cyto) and nuclear fractions were extracted from Becn1WT/WT and 

Becn1LM/LM OC precursors 1 day post-RANKL treatment. Cytoplasmic (Cyto) and nuclear levels 

of Beclin-1 and RelB are accessed by Western immunoblotting. LDHA was used as a cytoplasmic 

housekeeping and PARP was used as a nuclear housekeeping. (C) Immunofluorecent staining for 

the subcellular localization of Beclin-1 (green) and RelB in BMMs 1 day following RANKL 

stimulations. These cells were co-stained with DAPI (blue).  
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Figure 3.7 Becn1LM/LM osteoclasts display transcriptional profiles associated with unresolved 

DNA damage and cell death. (A) Microarray analysis of Becn1WT/WT and Becn1LM OC on day 2 

post-RANKL stimulation followed by gene set enrichment analyses. Alterations of signaling 

pathways were summarized by the Ingenuity Pathway Analysis TM software. Heat map 

representing of hierarchically clustered differentially expressed genes related to the biological 

pathways of biological duplicate samples of Becn1WT/WT and Becn1LM OC. (B) Open chromatin 

assessments of Becn1WT/WT and Becn1LM OC on day 2 post-RANKL stimulation using ATAC-Seq. 
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Comparison of the proportions of the ATAC-seq peak regions identified in Becn1WT/WT and 

Becn1LM OCs that represent the various genome annotations. Significantly enriched genes of 

differentially accessible regions nearby genes from gene set enrichment analysis. 
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Figure 3.8 Becn1LM/LM osteoclasts display defects in DNA repair and an increase of cell death.  

(A) Immunofluorescence staining of phospho-γH2.AX (red) and DAPI (blue) for Becn1WT/WT and 

Becn1LM/LM OC precursors with day 0-2 RANKL stimulations. (B) Becn1WT/WT and Becn1LM/LM OC 

precursors treated with RANKL. Adherent cells were harvested at 0, 1, and 2 days post-RANKL 

stimulation and were analyzed by cytometry of intracellular phospho-γH2 and phospho-ATM. (C) 

Becn1WT/WT and Becn1LM/LM OC precursors treated with RANKL and both non-adherent and 

adherent cells were harvested at 0, 1, and 2 days following RANKL stimulation and were analyzed 

for cell death by cytometry of Annexin V and Zombie-Red. Percentage of dead cells calculated 

percentage Annexin V and Zombie-Red double positive of CD45 positive cells.  
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Figure 3.9 Schematic picture of the role of autophagy machinery in the regulation of 

osteoclast differentiation. The upstream core autophagy proteins, Fip200, Beclin-1, VPS34, and 

ATG14 are required for RANKL-induced osteoclastogenesis. During osteoclast differentiation, 

Beclin-1 is relocated to the nucleus to protect against DNA damage response, to promote cell 

survival and to augment nuclear mediated NF-κB responses.  
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CHAPTER 4: FUTURE DIRECTIONS 

 

Osteoclast disease, such as Paget’s disease of the bone and osteoporosis, is a group of 

disorder featured with imbalanced bone remodeling with a shift toward a net of bone loss caused 

by increased osteoclastogenesis. In this study, we uncovered the role of autophagy machinery in 

osteoclast differentiation and their implications in osteoclast disease pathogenesis 

comprehensively using a sophisticated osteoclast primary culture system and different strains of 

global and conditional autophagy gene knockout mice. 

In the second chapter, we describe a novel and clinical relevant Paget’s disease mouse 

model with global deficiency of the autophagy receptor OPTN. We also delineate the molecular 

mechanisms by which OPTN negatively regulates osteoclast differentiation, and identify IFN as 

a novel therapeutic target for PDB from in vitro rescue experiments. Though many experiments 

completed, more opening questions come up and require us to address in the future. While IFN 

recombinant protein could rescue the hyperactivated phenotype in OPTN deficient osteoclasts in 

vitro, can it prevent or treat the osteolytic lesions in OPTN global knockout mice in vivo? How 

does OPTN regulate RANKL-induced IFN production and mediate type I IFN response? Besides 

interferon signal, does OPTN modulate other signaling pathways to regulate osteoclastogensis? 

In the third chapter, we elucidate the molecular mechanisms by which autophagy 

machinery mediates osteoclast development. We identify certain upstream autophagy components, 

including FIP200, Beclin-1, ATG14 and VPS34 are required for autophagic induction and the 

differentiation of osteoclasts. Intriguingly, the absence of ATG5 blocks autophagic induction in 
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osteoclasts but does not affect their differentiation, suggesting ATG5 deficient osteoclasts might 

employ an ATG5-independent alternative autophagy to complete the differentiation process. The 

ATG5-independent autophagy relies on Rab9 for autophagosome formation. While Rab9 has been 

shown highly expressed in the mature osteoclasts (Zhao et al. 2002), future study about its role in 

osteoclast differentiation is needed. While we have studied six different autophagy proteins in 

osteoclast differentiation, future studies should access if other upstream autophagy proteins, such 

as ULK1, ULK2 or ATG13 is involved in the osteoclastogeneis. 
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