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ABSTRACT 

Cristin Montalbano: Academic Performance of Children with Social-Emotional Difficulties: 

Examining the Role of Self-Regulation 

(Under the direction of Desiree W. Murray, PhD) 

 

Student with social-emotional difficulties are at increased risk for many adverse 

outcomes, including school dropout, serious mental health concerns, justice-involved behavior, 

and decreased quality of life. Thus, considerable attention needs to be directed toward 

identifying ways to bolster resilience and mitigate these risks for these students. Research 

suggests that self-regulation skills, including attention, inhibitory control and emotion regulation, 

are critical for success across a variety of areas including academic performance; however, there 

are many questions about which specific facets of self-regulation are most critical for academic 

performance more broadly as well as in specific areas like reading and mathematics. Moreover, 

most of the prior literature has focused on early childhood, overlooking the critical learning 

opportunities in early elementary school. Little is also known about the impact of these factors 

for higher risk students with clear social-emotional difficulties. As such, this study utilized an 

integrative theoretical framework of self-regulation to examine how self-regulation factors 

influence academic performance, specifically for early elementary students with social-emotional 

difficulties. The student sample consisted of 129 first and second grade students nominated by 68 

teachers for a self-regulation intervention. Using baseline data collected as part of a federally-

funded study, multilevel modeling was used to determine the extent to which various cognitive 

and emotional mechanisms of self-regulation were associated with teacher-rated academic 

performance, reading proficiency, and mathematics proficiency, after controlling for gender and 
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socioeconomic status. Results indicated that attention, inhibitory control, and emotion regulation 

were significant predictors of teacher-rated academic performance. Attention was the only 

significant predictor of reading proficiency and inhibitory control was the only significant 

predictor of mathematics proficiency. Results also indicated that attention was the strongest 

predictor of teacher-rated academic performance and reading proficiency, whereas inhibitory 

control was the strongest predictor of mathematics performance. Socioeconomic status, one of 

the control variables, also accounted for significant variance in reading and mathematics 

proficiency as indicated by report card grades but not teacher-rated academic performance. 

These results add to the evidence that self-regulation is important for school success, and 

functions in a manner expected for early elementary students with social-emotional difficulties. 

Results suggest that both self-regulation and academic performance should be considered in 

interventions to help foster positive outcomes for students, particularly those with social-

emotional difficulties who are most in need.  
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CHAPTER 1: INTRODUCTION 

 

 In the United States, approximately 15% to 25% of children and adolescents struggle 

with social-emotional difficulties (McLaughlin et al., 2012; Merikangas et al., 2010; Perou et al., 

2013), which include disruptive behaviors, poor peer interactions, hyperactivity, impulsivity, and 

withdrawn behavior (Cole, Daniels, & Visser, 2012; Cooper & Cefai, 2013). Students presenting 

with these challenges often experience learning, achievement, and social concerns (Blair, 2002; 

Calkins, Blandon, Williford, & Keane, 2007; Lambert, 1988), and are often at increased risk for 

truancy (Henry & Huizinga, 2007) and school dropout (Henry, Knight, & Thornberry, 2012), as 

well as more serious mental health concerns (Darke, Ross, & Lynskey, 2003; Lambert, 1988) 

and justice-involved behavior (Fergusson & Horwood, 2003; Moffitt et al., 2011). Thus, 

considerable attention needs to be dedicated toward identifying ways to bolster resilience factors 

and mitigate risk for students with social-emotional difficulties in order to promote more 

favorable and positive outcomes.  

One way to promote more positive outcomes for students with social-emotional 

difficulties is to enhance academic performance in early elementary school (Oldfield, Hebron, & 

Humphrey, 2016). Academic performance in early elementary school is foundational for positive 

educational and life outcomes (Valiente, Lemery-Chalfant, Swanson, & Reiser, 2008). The 

relationship between social-emotional difficulties and academic performance is well documented 

in research, such that poor achievement has been found to be a predictor of challenging 

behaviors (Tremblay, Masse, Leblanc, Schwartzman, & Ledingham, 1992) and difficult 

behaviors have been shown to be a predictor of poor school success (Fleming et al., 2005; 
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Hinshaw, 1992; Valiente et al., 2013; Valiente, Lemery-Chalfant, Swanson, & Reiser, 2008).  

However, research has shown that bolstering students’ academic performance may mitigate the 

risks associated social-emotional difficulties (Oldfield et al., 2016). As such, focusing on specific 

factors that influence academic outcomes may suggest ways to strengthen interventions for 

students with social-emotional difficulties.   

Self-regulation is one area that researchers have focused on extensively to better 

understand the connection between social-emotional functioning and school readiness and 

success (i.e., Blair & Razza, 2007; Bull & Lee, 2014; Monette, Bigras, & Guay, 2011; Ng, 

Tamis-Lemonda, Yoshikawa, & Sze, 2015; Ponitz, McClelland, Matthews, & Morrison, 2009; 

Shaul & Schwartz, 2014; Ursache, Blair, & Raver, 2012). Self-regulation is defined as the ability 

to initiate and sustain goal-directed actions through managing cognition, emotion, and behavior 

for the purposes of adapting to various social and cognitive demands of situations (Berger, 

Kofman, Livneh, & Henik, 2007; Berger, 2011; Murray, Rosanbalm, Christopolous, & Hamoudi, 

2015; Schunk & Zimmerman, 1997). Self-regulation has been studied extensively across various 

disciplines of psychology, including, but not limited to, developmental, cognitive, and 

educational psychology (Greene, 2018; Nigg, 2017). For example, developmental psychologists 

typically examine self-regulation in terms of effortful control defined as the ability to inhibit a 

dominant response in order to engage in a subdominant response, detect errors, and plan 

(Rothbart & Bates, 2006), which has been studied in relation to emotion regulation (Eisenberg, 

Smith, Sadovsky, & Spinrad, 2004). On the other hand, cognitive psychologists typically focus 

on self-regulation and various executive functions, including working memory, inhibitory 

control, and task switching, and how they influence attention, cognition, and behaviors (Blair, 

Zelazo, & Greenberg, 2005). Educational psychologists focus on similar constructs; however, 
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emphasis is on self-regulated learning, which encompasses the processes utilized to sustain goal-

oriented cognitions, motivation, affect, and behaviors in the context of learning (Greene, 2018; 

Schunk & Greene, 2018; Zimmerman & Schunk, 2011).   

Due to the various ways in which researchers have investigated self-regulation, there is 

considerable variation in how it is conceptualized and how particular mechanisms are believed to 

relate and interact to influence behavior (Eisenberg & Zhou, 2016; Greene, 2018; Zhou, Chen, & 

Main, 2012). When self-regulation is investigated in the context of academic performance, 

factors such as executive functions, attention, and emotion regulation are often examined. As 

such, research on academic performance and self-regulation should incorporate both cognitive 

and emotional constructs. 

Given this recommendation, my study employed an integrative theoretical framework of 

self-regulation proposed by Murray and colleagues (2015). Drawing from developmental and 

cognitive models of self-regulation, this framework describes core self-regulatory mechanisms in 

three main domains: (1) cognitive (i.e., attention and executive functions), (2) emotional (i.e., 

emotion regulation), and (3) behavioral. Within this framework, cognitive and emotional 

domains influence behavioral self-regulation. Behavioral self-regulation encompasses various 

actions that can be regulated by an individual, including goal-setting, utilization of coping 

strategies, motivation, and various learning behaviors (Murray, Rosanbalm, Chistopolous, 

Hamoudi, 2015). This framework is useful in investigating how self-regulatory mechanisms 

relate to academic performance, as it identifies specific domains that can be examined and 

targeted through interventions.  

 There is a wealth of research on how various self-regulatory mechanisms influence 

academic performance. For example, several researchers found that attention, a cognitive 
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mechanism, made unique contributions to the prediction of students’ academic performance in 

reading and mathematics (Welsh, Nix, Blair, Bierman, & Nelson, 2010; Fuchs et al., 2005). 

Similarly, another study indicated that attention predicted school success in reading and 

mathematics, above and beyond other cognitive factors (Lan, Legare, Ponitz, Li, & Morrison, 

2011). Other studies have highlighted that inhibitory control was the only executive function that 

predicted unique variance in academic performance (Blair & Razza, 2007; Espy et al., 2004). 

Although research is unclear on how inhibitory control impacts mathematics performance versus 

reading performance (Lan et al., 2011; Ponitz et al., 2009), there is considerable support linking 

cognitive mechanisms of self-regulation to academic performance.  

Researchers have also found positive correlations between students’ emotion regulation 

skills and overall academic performance as well as functioning in mathematics and reading 

(Graziano, Reavis, Keane, & Calkins, 2007; Howse, Calkins, Anastopoulos, Keane, & Shelton, 

2003; Trentacosta & Izard, 2007). For example, Howse et al. (2003) found positive correlations 

between parent reports of children’s emotion regulation skills and children’s scores on 

standardized achievement measures of reading and mathematics. In another study, Graziano and 

colleagues (2007) found that emotion regulation was positively associated with teacher reports of 

academic performance and with standardized early reading and mathematics achievement scores. 

These studies highlight that emotional mechanisms of self-regulation are associated with 

academic performance.  

Overall, it appears that both cognitive and emotional mechanisms of self-regulation are 

related to academic performance, and likely interact to influence learning and behavior (Bell & 

Wolfe, 2004; Blair, 2016; Calkins & Marcovitch, 2010; Carlson & Wang; Raver et al., 2012; 

Ursache et al., 2012). What is not clear from extant literature, however, is what these conceptual 
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relationships among and between self-regulatory constructs look like in early elementary school 

for students with social-emotional difficulties, as most studies were conducted with preschool 

aged children from a more general population of students. Thus, my research examined how 

various cognitive and emotional mechanisms of self-regulation predicted academic performance 

for students with social-emotional difficulties in first and second grade.  

 Early elementary school (i.e., ages 6 to 8) is a critical time for self-regulation 

development, as self-regulation capacities and skills are undergoing rapid changes and 

development (Berger, 2011). Students of this age are developing more sophisticated cognitive 

strategies, including cognitive flexibility, attentional control, and problem-solving skills, which 

contribute to improvements in their abilities to self-regulate their cognitions, emotions, and 

behavior (Berger, 2011). Students with atypical or immature development in these areas, 

however, may exhibit social-emotional difficulties as well as academic challenges. Thus, it is 

important to understand self-regulation processes in these children in order to identify how to 

help before struggles are exacerbated over time. A more comprehensive understanding of how 

self-regulation and academic performance are related may provide additional insight into specific 

mechanisms that can be targeted through intervention and prevention efforts in schools for 

students with social-emotional difficulties.  

 In summary, in order to achieve school success, students need to effectively utilize 

cognitive and emotional self-regulatory mechanisms that enable them to successfully regulate 

their behavior and navigate academic demands within a classroom setting (Raver et al., 2012). 

While there is a wealth of research on various self-regulatory mechanisms and academic 

performance, little research exists on how these mechanisms influence academic performance, 

particularly for early elementary students with social-emotional difficulties who are at increased 
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risk for adverse outcomes. Research in this area has the potential to identify ways that students 

with social-emotional difficulties can be supported in order to change potential adverse 

trajectories. Thus, my study focused on better understanding how attention, inhibitory control, 

and emotion regulation interact to influence the academic performance of young students with 

social-emotional difficulties.  

 My study examined academic performance and the influence of attention, inhibitory 

control, and emotion regulation for first and second grade students with social-emotional 

difficulties, addressing three main research questions: (1) What are the associations between key 

cognitive and emotional self-regulation mechanisms (e.g., attention, inhibitory control, and 

emotion regulation) and teacher-rated academic performance, when controlling for gender and 

free/reduced lunch status?, (2) What are the associations between key cognitive and emotional 

self-regulation mechanisms and academic performance as measured by proficiency in reading, 

when controlling for gender and free/reduced lunch status?, and (3) What are the associations 

between key cognitive and emotional self-regulation mechanisms and proficiency in 

mathematics, when controlling for gender and free/reduced lunch status? In order to examine 

these research questions, baseline data from a large intervention study with multi-method 

measures of self-regulation and academic performance were analyzed.  
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CHAPTER 2: LITERATURE REVIEW 

 This section defines students with social-emotional difficulties, academic performance, 

and self-regulation. Additionally, the relevant research on self-regulation and academic 

performance is reviewed in order to establish context for the analysis of various cognitive and 

emotional mechanisms that may influence academic outcomes. My research is informed by 

several theories spanning developmental, cognitive, and educational psychology. Thus, pertinent 

theoretical frameworks of academic performance and self-regulation are reviewed. The literature 

on the connections between academic performance and self-regulation mechanisms is also 

presented, concluding with research focused specifically on various mechanisms that have been 

shown to influence academic performance for students with social-emotional difficulties and the 

gaps in research my study sought to address.  

Students with Social-Emotional Difficulties  

 Students with social-emotional difficulties are often characterized by externalizing 

behaviors such as hyperactivity, impulsivity, aggression, and difficulty following directions, 

internalizing concerns including anxiety or depression, and/or difficulties with social interactions  

(Cole et al., 2012; Cooper & Cefai, 2013). Although all students with social-emotional 

difficulties may not exhibit all of these concerns, they often exhibit difficulties in one or more of 

the aforementioned areas. This conceptualization of students with social-emotional difficulties is 

broader than typical conceptualizations provided by the law (i.e., IDEA) and by classification 

systems (i.e., DSM-V) due to the age of participants. Most students in early elementary school 

have not yet received a more formal diagnosis or classification (Kessler et al., 2007; McLaughlin 
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et al., 2012); however, the indicators noted are often viewed as precursors for the development of 

psychiatric diagnoses, including attention deficit/hyperactivity disorder (ADHD), conduct 

disorder (CD), oppositional defiant disorder (ODD), depression, and anxiety. In order to be 

relevant to a broad group of at-risk students, my study included students with externalizing, 

internalizing, and/or social deficits, referred to as students with social-emotional difficulties.   

 Students with social-emotional difficulties often experience both academic and 

behavioral challenges in the classroom (Bradley, Doolittle, & Bartolotta, 2008; Lane, Wehby, & 

Barton, 2005). Such concerns often extend from self-regulation issues such as attentional 

difficulties, poor emotion regulation skills, and difficulties with impulse control. Students with 

social-emotional difficulties often have academic and social performance difficulties, including 

lower grades and higher rates of conflicts with peers and teachers (Lane et al., 2005). For 

example, students with attentional, emotion regulation, and impulse problems demonstrate 

difficulty engaging effectively in the learning process (Massetti et al., 2008; Morris et al., 2013; 

Neuenschwander et al., 2012). Additionally, students who have frequent conflicts with teachers 

and peers often have higher rates of discipline referrals and suspensions that result in missed 

instructional time (Bradley et al., 2008). Thus, it is evident that students with social-emotional 

difficulties warrant special consideration, as their dysregulated behavior can have profound 

effects on their own learning and the learning of others. 

Academic Performance 

 Academic performance in early elementary school is foundational for favorable 

educational and life outcomes (Valiente, Lemery-Chalfant, Swanson, & Reiser, 2008). Strong 

academic performance has been linked to positive mental health and academic outcomes (Caspi, 

Elder, & Bem, 1987; Ensminger & Slusarcick, 1992). On the contrary, poor academic 
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performance is one of the strongest predictors of delinquency (Maguin & Loeber, 1996). Given 

the relationships between academic performance and critical developmental outcomes, it is 

imperative to understand the ways in which students’ academic performance can be bolstered. 

 Academic performance is a broad term used in the context of my study to describe 

students’ report card grades and teacher reports of their productivity and success. Academic 

performance has been comprehensively investigated, including for students with social-

emotional difficulties (Lee, 2016). Academic performance can be measured by report card grades 

or by teacher-rated academic performance. Each of these measures provides related but 

complimentary types of information regarding student performance. Teacher report captures 

specific information such as the percentage of work completed, level of independence in work 

completed, consistency in performance, as well as accuracy of work (DuPaul et al., 1991), while 

grades reflect the extent to which certain performance standards are met. 

Report card grades and teacher-rated academic performance have great utility (DiPerna, 

2006; DiPerna & Elliott, 1999; DuPaul et al., 1991). For example, both reflect student 

performance over a long period of time. Additionally, grades and teacher-rated academic 

performance generate specific information about performance-related behaviors while 

simultaneously providing an understanding of how students are performing in comparison to 

their peers (DuPaul et al., 1991). The specific performance-related information provides useful 

information regarding areas that can be targeted by interventions to bolster students’ academic 

performance.  

Theoretical Underpinnings of Self-Regulation and Academic Performance 

Self-regulation is broadly defined as the ability to initiate and sustain goal-directed 

actions through managing cognition, emotion, and behavior for the purposes of adapting to 
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various social and cognitive demands of situations (Berger et al., 2007; Berger, 2011; 

McClelland & Cameron, 2011; Murray et al., 2015; Schunk & Zimmerman, 1997). Many 

researchers have examined the influence of self-regulation on different outcomes including 

social, emotional, and academic success (Greene, 2018). There are three main areas of 

psychology that have examined the relationships between self-regulation and academic 

performance, including cognitive, developmental, and educational psychology. While there is 

definitely some overlap, each area focuses on different mechanisms or constructs. For example, 

developmental psychologists typically examine effortful control, defined as the ability to inhibit 

a dominant response, in their investigations of the relationships between self-regulation and 

academic performance (Eisenberg, Smith, Sadovsky, & Spinrad, 2004). On the other hand, 

cognitive psychologists focus on the relationships between executive functions, defined as 

cognitive mechanisms that help regulate behavior, and performance (Van der Ven, Kroesbergen, 

Boom, & Leseman, 2012). Educational psychologists incorporate similar constructs; however, 

researchers in this area typically examine various learning-related concepts, including self-

regulated learning and motivation, and how these constructs facilitate and relate to academic 

performance (Greene, 2018; Zimmerman & Schunk, 2011). Given the pivotal roles each area of 

psychology has played in the understanding of self-regulation and academic performance, the 

theoretical underpinnings of each area was reviewed in order to provide a theoretical framework 

for my study.  

Cognitive model of self-regulation. Researchers examining self-regulation from a 

cognitive perspective have typically focused on cognitive processes, such as attention and 

executive functions (e.g., inhibitory control, working memory, set shifting, and attention) 

involved in goal-directed behaviors (Blair & Razza, 2007; Miyake & Friedman, 2012; Miyake et 
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al., 2000; Willoughby et al., 2012). Executive functions are a set of cognitive mechanisms that 

play an integral role in organizing, planning, and executing attentional control, thoughts, and 

behaviors (Blair & Ursache, 2011; Blair et al., 2005; Miyake & Friedman, 2012). The most 

comprehensively understood and investigated executive functions are inhibitory control, working 

memory, and task switching (Berger, 2011; Blair & Ursache, 2011; Diamond, 2013; Miyake & 

Friedman, 2012; Miyake et al., 2000). Working memory assists with the process of holding, 

manipulating, and updating information over a relatively short period of time (Blair & Ursache, 

2011; Berger, 2011). Task switching, sometimes referred to as set shifting, is the ability to switch 

from one cognitive task or operation to another (Berger, 2011; Miyake et al., 2000). Inhibitory 

control is defined as the ability to constrain a dominant or automatic response in favor of a 

subdominant response (Blair & Ursache, 2011; Chung, Weyandt, & Swentosky, 2014; Miyake 

et. al., 2000; Rothbart & Bates, 2006). Attention, defined in various ways, is believed to 

undergird executive functions (Garon, Bryson, & Smith, 2008). Attention is also often viewed as 

a relatively fast process and executive functions are believed to be more deliberate (Blair & 

Ursache, 2011).  

Developmental model of self-regulation. Developmental psychologists have focused on 

effortful control processes (e.g., attentional control, inhibitory control, and activation control) 

and consider emotional self-regulation processes (Blair & Razza, 2007; Eisenberg et al., 2010; 

Eisenberg & Zhou, 2016; Raver et al., 2012; Raver, 2004). Attentional control is defined as the 

“abilities to maintain attentional focus upon task-related channels or to shift one’s focus as 

needed to deal with task demands” (Eisenberg et al., 2010, p. 682). This definition of attention 

implies a more volitional process than that of the conceptualization of attention by cognitive 

psychologists. Activation control encompasses “the ability to perform an action when there is a 
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strong tendency to avoid it” (Eisenberg et al., 2010, p.682). Similarly defined in the cognitive 

literature, inhibitory control is “the capacity to plan and effortfully suppress inappropriate 

responses under instructions or in novel or uncertain situations” (Eisenberg et al., 2010, p. 682). 

Finally, emotional self-regulation includes mechanisms geared toward preventing, initiating, or 

changing an emotional experience (Eisenberg et al., 2010). 

Educational model of self-regulation. Educational psychologists who study self-

regulation often focus on self-regulated learning, which is defined as the “active, thoughtful 

pursuit of desired learning goals through planning, enacting, monitoring, controlling, and 

reflecting upon internal (i.e., cognition, metacognition, motivation, behavior, affect) and external 

factors (i.e., environment) before, during, and after learning” (Greene, 2018; p. 137). Greene 

(2018) described a model of self-regulated learning that provides “an amalgamation of numerous 

predominant models” (p.22) and includes various targets, phases, and processes of self-regulated 

learning. Targets of self-regulated learning include cognition (i.e., thoughts directed towards 

learning tasks), metacognition (i.e., thoughts focused on cognition), motivation (i.e., processes 

that influence the initiating and sustaining of goals), behavior (i.e., learning-facilitating actions), 

affect (i.e., emotions and emotion regulation), and external environment (i.e., aspects of 

environment that support or impede the learning process). Phases of self-regulated learning 

include “before” learning, which includes task-identification, goal-setting, and planning, 

“during” learning, which encompasses learning engagement and strategy use, and “after” 

learning, which includes self-reflecting and evaluating results and processes. Lastly, processes of 

self-regulated learning include monitoring and control, such as assessing the effectiveness of 

strategies and outcomes and modifying accordingly, and metacognitive experiences, including 

awareness of cognitions while engaged in learning (Greene, 2018). This model provides 
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important information regarding learning behaviors that can be self-regulated in order to foster 

more positive academic outcomes.  

Linking cognitive, developmental, and educational models of self-regulation. As 

evidenced by the three different frameworks described, cognitive, developmental, and 

educational conceptualizations of self-regulation overlap. For example, cognitive and 

developmental psychologists both identify inhibitory control as a central process (Blair & Razza, 

2007; Liew, 2012; Zhou et al., 2012). Additionally, these models emphasize attention as an 

important construct (Zhou et al., 2012; Blair & Razza, 2007). Educational psychologists also 

acknowledge the central role of attention and executive functions, which are believed to be 

mechanisms that underlie self-regulated learning and provide the resources that enable 

individuals to regulate behaviors in the context of learning (Greene, 2018).  

The main difference between frameworks is that cognitive psychologists typically 

examine executive functions that do not consider emotional responses and behaviors (i.e., “cool” 

tasks), whereas developmental and educational psychologists also often take emotion-related 

constructs (i.e., emotions, emotion regulation, and “hot” tasks) into consideration ( Blair & 

Razza, 2007; Greene, 2018; Kim et al., 2013; Metcalfe & Mischel, 1999; Neuenschwander et al., 

2012). Historically, the self-regulatory processes associated with each framework have been 

examined separately (Eisenberg & Zhou, 2016; Zhou et al., 2012; Blair & Razza, 2007). 

However, due to the overlap in constructs, recent literature has encouraged examining these 

mechanisms in a more integrated manner (Eisenberg & Zhou, 2016; Zhou et al., 2012).  

Given this recommendation, Murray and colleagues (2015) proposed an applied, multi-

disciplinary model for understanding self-regulation. This model conceptualizes three core areas 

of self-regulation processes: cognitive, emotional, and behavioral. Cognitive self-regulation 
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includes attention and executive functions which are foundational for academic performance, 

whereas emotional self-regulation includes regulation of emotions in response to stress and 

demands such as those encountered in school. These two foundational components support 

behavioral self-regulation, which includes following rules, controlling impulses, using coping 

strategies, and engaging in learning-related behaviors (Murray et al., 2015).  

Cognitive self-regulation. Cognitive self-regulation can be defined as “the regulation of 

attention and selective strategy use in the execution of cognitive tasks” (Blair, 2002, p. 112). 

This definition encompasses both attention and executive functions including inhibitory control. 

Attention and inhibitory control have been researched extensively in both cognitive and effortful 

control literature (Blair, 2002; Ponitz et al., 2009; Zhou et al., 2012) and are the two mechanisms 

of interest in my research given their strong associations with academic performance  (Allan et 

al., 2014; Polderman, Boomsma, Bartels, Verhulst, & Huizink, 2010).  

 Attention. Many researchers agree that attention is a cognitive process that underlies and 

drives many other mechanisms of self-regulation (i.e., Fisher & Kloos, 2016; Berger, 2011; 

Garon et al., 2008). Attention has been conceptualized in various ways across different 

theoretical perspectives including cognitive, developmental, and behavioral (Tannock, 2003). 

For example, Posner and Rothbart (2007) described a cognitive model of attention, defining 

attention as “the regulating of various networks by attentional networks involved in maintaining 

the alert state, orienting, or regulation of conflict” (p. 2). According to the attention model 

proposed by Posner and Peterson (2012; 1990), attention encompasses three different, but 

interrelated systems including orienting, alerting, and executive attention that are activated in 

response to environmental stimuli (Posner & Peterson, 1990; Peterson & Posner, 2012). The 

orienting system focuses on “the ability to prioritize sensory input by selecting a modality or 
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location” (Peterson & Posner, 2012, p. 75). The alerting system encompasses the concept of 

arousal and focuses on maintaining alertness (Peterson & Posner, 2012). Executive attention 

focuses on error detection and the resolution of conflicting information, and is also related to the 

control of goal-directed behavior (Berger & Posner, 2000; Berger, 2011; Blair, 2016; Peterson & 

Posner, 2012). Within the developmental literature, effortful control is believed to be a part of 

executive attention (Posner & Rothbart, 2007).  

Additionally, some theories of attention also include sustained attention, which is defined 

as “the ability to maintain focus on a single object, task, or sensory channel for an extended 

period (Fisher & Kloos, 2016, p. 216). Sustained attention is often associated with the alerting 

system of Posner’s and Peterson’s model of attention (Berger, 2011). Additionally, sustained 

attention is often synonymous with the attentional control construct of effortful control 

(Eisenberg et al., 2010).   

From a more behavioral standpoint, attention is described in terms of various behaviors, 

including focus, organization, distractibility, and off-task behaviors (Gray et al., 2015). While 

cognitive, developmental, and behavioral perspectives on attention have similarities, what is 

unclear is how the various models of attention relate to one another. One study found that 

behavioral manifestations of attention map onto cognitive constructs in typically developing 

children aged three to seven (Rezazadeh, Wilding, & Cornish, 2011). In this study, researchers 

administered four lab-based measures that assessed various attention-related constructs including 

selective and sustained attention as well as response inhibition and attentional control, and asked 

parents to complete a rating scale regarding inattention. Results indicated that parent-rated 

inattention was significantly correlated with accuracy (i.e., errors) on a task measuring selective 

attention. No other significant associations were found (Rezazadeh et al., 2011).  
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Although extant literature is inconclusive regarding the associations between various 

models of attention, the majority of researchers who have investigated attention as it relates to 

academic performance have utilized teacher rating scales and observational measures. In fact, 

attention measured in this manner has been implicated as one of the strongest predictors of 

academic performance (Garner et al., 2013; Gray, Rogers, Martinussen, & Tannock, 2015; 

Pingault, Tremblay, & Vitaro, 2011; Zoromsk, Owens, Evans, & Brady, 2005). As such, studies 

examining academic performance might consider measuring attention in terms of focus, 

organization, distractibility, and off-task behaviors as measured by teacher ratings as well as 

observational measures. 

Inhibitory Control. As evidenced by the review of literature, inhibitory control is a 

common component of both executive functions and effortful control. Inhibitory control 

encompasses the ability to inhibit a dominant or automatic response in favor of a subdominant 

response in a given situation (Chung et al., 2014; Blair & Ursache, 2013; Miyake et. al., 2000; 

Rothbart & Bates, 2006). Murray and Kochanska (2002) suggest that inhibitory control is a 

multidimensional construct that includes the abilities to delay, slow or inhibit, and initiate 

another response.   

Considerable research has been conducted on whether cognitive self-regulatory 

mechanisms (i.e., inhibitory control, working memory, and set shifting) are a unitary construct or 

unique and dissociable constructs (Davidson, Amso, Anderson, & Diamond, 2006; Garon et al., 

2008; Miyake & Friedman, 2012; Miyake et al., 2000). Research on younger children ages two 

through five suggests that executive functions may be unitary (Wiebe et al., 2011; Wiebe, Espy, 

& Charak, 2008; Willoughby, Blair, Wirth, Greenberg, & Investigators, 2010;  Willoughby et al., 

2012). Starting around the age of six or seven, however, a multiple factor structure of executive 
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functions begins to emerge (McAuley & White, 2011;Lee et al., 2012; Miller, Giesbrecht, 

Müller, McInerney, & McInerney, 2012). For instance, in a study conducted by McAuley and 

White (2011) with 147 participants between the ages of 6 to 24, cognitive self-regulatory 

mechanisms were separable across all age levels. Additionally, in a cross-sectional study of 7-, 

11-, 15-, and 21-year-olds, Huizinga et al. (2006) found that various executive functions were 

dissociable yet correlated regardless of age. Thus, research suggests that cognitive self-

regulatory mechanisms become more dissociable with age (Lee, Bull, & Ho, 2013), and begin to 

appear as separate constructs as early as the age of six (McAuley et al., 2011; Lee et al., 2012). 

Distinct yet correlated constructs have been identified for older children and young adults 

(McCauley & White, 2011; Miyake et al., 2000).   

Given this support for the dissociability of executive functions around the age of six and 

the age of participants in my study, I conceptualized inhibitory control as a unique and 

dissociable construct from other executive functions. Inhibitory control is a particularly relevant 

construct for understanding young children’s social-emotional difficulties. Inhibitory control 

enables children with social-emotional difficulties to exhibit control over impulses and to engage 

in more desirable academic and social behaviors. The ability to engage in more desirable, 

positive behaviors supports positive outcomes, including academic performance (Eisenberg, 

Valiente, Eggum, 2010).  

Researchers across different areas of psychology have examined inhibitory control 

extensively (Zhou et al., 2012; Miyake et al., 2000; Murray & Kochanska, 2002). As Zhou and 

colleagues (2012) emphasize, there is little difference in the conceptualization of inhibitory 

control; however, there are differences in the ways in which inhibitory control is measured. For 

example, cognitive psychologists typically employ lab-based procedures, whereas developmental 
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psychologists often use questionnaires and behavioral tasks to measure inhibitory control (Zhou 

et al., 2012). Further research is warranted, however, on how these different measures are 

related. Given this lack of consensus, a multi-method approach to investigate inhibitory control, 

including child performance tasks and teacher reports, has been recommended.  

Emotional self-regulation. Emotional self-regulation, synonymous with emotion 

regulation, is another construct that has been extensively investigated. Perhaps related to the 

prevalence of research, emotional self-regulation is also differentially defined and 

conceptualized within the field (Cole, Martin, & Dennis, 2004; Djambazova-Popordanoska, 

2016; Eisenberg & Spinrad, 2004; Gross, 2014). Using a definition provided by Eisenberg and 

colleagues, emotional self-regulation is “the process of initiating, avoiding, inhibiting, 

maintaining, or modulating the occurrence, form, intensity, or duration of internal feeling states, 

emotion-related physiological, attentional processes, motivational states, and/or the behavioral 

concomitants of emotion in the service of accomplishing affect-related biological or social 

adaptation or achieving individual goals” (Eisenberg & Spinrad, 2004, p. 338). This definition 

acknowledges that emotional self-regulation stems from internal experiences and includes 

various processes used to “manage and change whether, when, and how one experiences 

emotions and emotion-related motivational and physiological states, as well as how emotions are 

expressed behaviorally” (Eisenberg, Hofer, Sulik, & Spinrad, 2014, p. 157). This includes 

processes used to assess and modify a situation, deploy attention, and engage in various 

strategies that modulate the expression of emotion (Eisenberg et al., 2014). Stated from a more 

applied perspective, emotional self-regulation involves understanding feelings and managing 

strong feelings in situations of frustration and distress, including accepting unpleasant emotions 

and utilizing feelings to guide prosocial behaviors (Murray et al., 2015).  
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Several researchers have developed models to describe the processes of emotional self-

regulation. For example, Gross (2014) presented the Process Model of Emotion Regulation. 

Gross asserts that emotions involve “person-situation transactions that compel attention, have 

meaning to an individual in light of currently active goals, and give rise to coordinated yet 

flexible multisystem responses that modify the ongoing person-situation transaction in crucial 

ways” (Gross, 2014, p. 5). According to this model, the person-situation transactions can be 

modified using five strategies of emotion regulation: situation selection, situation modification, 

attentional deployment, cognitive change, and response modulation. Situation selection involves 

taking action to avoid or participate in situations, situation modification encompasses modifying 

a circumstance to change the emotional experience, attentional deployment includes carefully 

utilizing attention in a specific situation to influence one’s emotional response, cognitive changes 

is modifying one’s cognitive appraisal of a situation, and response modulation includes engaging 

in various behaviors to alter one’s emotional response (Gross, 2014).  

In another conceptualization by Hoeksma and colleagues (2004), emotion regulation is 

described as a dynamic system with three defining components. The first component includes 

identifying when emotion regulation is needed. The second component includes understanding 

the goal(s) emotion regulation appears to serve, and the third component is understanding how 

such goals are achieved. Researchers assert that this system is warranted when there is a conflict 

between the desired emotional state and the one currently being experienced. Awareness of this 

discrepancy activates the system and assists with emotion regulation (Hoeksma et al., 2004). 

These models highlight the dynamic, multifaceted nature of emotional self-regulation and 

the complexity of processes that comprise one’s ability to regulate emotions. Researchers have 

investigated emotional self-regulation by assessing emotion knowledge and awareness as well as 
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management of strong emotions in different situations or tasks (i.e., emotion regulation). In most 

cases, emotion regulation as reported by teachers was the most significant predictor of academic 

performance (Garner & Waajid, 2012; Howse et al., 2003; Trentacosta & Izard, 2007). 

Behavioral self-regulation. Behavioral self-regulation is defined as the conscious 

management of behaviors for the purposes of achieving goals (Blair & Ursache; 2011). Many 

researchers agree that cognitive and emotional self-regulatory mechanisms intersect and provide 

the basis for behavioral regulation (e.g., Murray et al., 2015; Wanless et al., 2011). The 

intersection between cognitive and emotional self-regulation is best highlighted by the 

bidirectional developmental model described by Blair and Ursache (2011). In this model, 

cognitive mechanisms are described as effortful and deliberate aspects of self-regulation (i.e., 

top-down), whereas emotional self-regulatory mechanisms are described as more automatic (i.e., 

bottom-up). The top-down and bottom-up mechanisms interact in an “adaptive feedback loop” as 

a response to environmental stimuli and influence behavioral self-regulation (Blair & Ursache, 

2011, p. 300). Given the associations between cognitive and emotional mechanisms of self-

regulation and their influence on behavior, including learning behaviors, it is essential for 

researchers to assess aspects of both. 

Summary. Together, research in cognitive, developmental, and educational psychology 

provides a strong foundation for understanding cognitive, emotional, and behavioral self-

regulation in the context of learning. Research extending from cognitive and developmental 

models of self-regulation has advanced understanding of various cognitive and emotional self-

regulatory mechanisms. Self-regulation researchers within education have investigated similar 

constructs and have focused on specific targets, phases, and processes that can be self-regulated 

in order to foster learning. Given the overlap in constructs across models of self-regulation, my 
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study was guided by the broadest framework with relevance for academic performance described 

by Murray and colleagues (2015). This framework includes several self-regulatory mechanisms 

including attention, inhibitory control, and emotion regulation. These are constructs that have 

been investigated across disciplines in self-regulation research.  

As highlighted in the theoretical model for my study (see Figure 1), both cognitive and 

emotional self-regulatory mechanisms are believed to be related to academic performance. The 

theoretical strength of the association is indicated by the size of the arrows. Researchers have 

shown that attention is consistently the strongest predictor of academic performance (e.g., Lan et 

al., 2011; Razza et al., 2012). Inhibitory control and emotion regulation have also been found to 

be significant predictors of academic performance; however, the magnitudes of such associations 

have been unclear and inconsistent in previous research studies (e.g., Graziano et al., 2007; 

Howse et al, 2003; Lan et al., 2011; Razza et al., 2012).  
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Figure 1: Integrative Theoretical Framework 

 

Linking Cognitive and Emotional Self-Regulation and Academic Performance   

 Evidence suggests that various cognitive and emotional self-regulatory mechanisms work 

in an integrative, bidirectional manner to influence learning and behavior (Bell & Wolfe, 2004; 

Blair, 2016; Calkins & Marcovitch, 2010; Carlson & Wang, 2007; Ursache et al., 2012). For 

example, previous researchers have found that children’s emotional self-regulation skills can 

support or impair processing of cognitive tasks (Lench & Levine, 2005; Schimmack 2005). 

Researchers have also shown that cognitive self-regulation plays a pivotal role in helping 

manage emotions, as it facilitates children’s abilities to recall and utilize various rules and 

strategies (i.e., inhibitory control and emotion regulation skills), which subsequently decreases 

emotional responses that may impede performance (Schmeichel & Demaree, 2010; Wolfe & 
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Bell, 2007). Furthermore, cognitive neuroscientists suggest that areas of the prefrontal cortex 

(PFC) that influence cognitive self-regulation also influence emotional self-regulation (Calkins 

& Marcovitch, 2010). Essentially, cognitive and emotional self-regulation provide the foundation 

for behavioral self-regulation (Murray et al., 2015). As such, cognitive and emotional 

mechanisms of self-regulation need to be examined in an integrative manner. 

An integrated examination is essential, especially in the context of academic performance 

in reading and mathematics performance, given that success in academic areas requires students 

to pay attention and avoid distractions, inhibit predominant responses or cognitions, and regulate 

emotions (Blair & Raver, 2015; Schmitt, Geldhof, Purpura, Duncan, & McClelland, 2017). For 

example, attentional skills support students’ abilities to focus on lessons, reading materials, and 

many other activities, including written work (Willner, Gatzke-Kopp, Bierman, Greenberg, & 

Segalowitz, 2015). Inhibitory control supports students’ abilities to inhibit preconceived notions 

or understandings in order to learn new materials and rules in both mathematics and reading 

(Borella, Carretti, & Pelegrina, 2010; Dekker, Ziermans, & Swaab, 2016). Inhibitory control also 

helps students refrain from behaviors that can impede learning (e.g., talking with peers during 

lessons, searching through belongings instead of engaging in a learning task, etc.). Emotion 

regulation also helps students maintain appropriate affective states that support motivation and 

initiative in the learning process (Garner, 2010; Schutz & Davis, 2010; Tyson, Linnenbrink-

Garcia, & Hill, 2009). Together, these mechanisms help students persist and participate when 

faced with academic demands such as varying learning structures (i.e., whole group, small group, 

partner, and individual work), difficult content, fatigue, distraction, frustration and other factors 

associated with classroom learning. In the next section, empirical studies that have examined the 
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associations between self-regulation and academic performance are reviewed in order to provide 

support for the hypotheses of my study.  

Empirical Studies: The Influence of Cognitive and Emotional Self-Regulation on Academic 

Performance  

It is important to understand the mechanisms by which cognitive and emotional self-

regulation influence academic performance, as extant literature suggests that self-regulation is 

more critical for school success than is intelligence (Blair & Raver, 2015; Clark et al., 2010; 

Duckworth & Seligman, 2005; Espy et al., 2004). Many researchers have investigated the 

association between self-regulation and academic performance by grouping regulatory processes, 

such as attention, inhibitory control, and emotion regulation, under the general umbrella of self-

regulation (Brock, Rimm-Kaufman, Nathanson, & Grimm., 2009; Gestsdottir et al., 2014; 

Guimard, Hubert, Crusson-Pondeville, & Nocus, 2012; Hubert et al., 2015; Ponitz et al., 2009). 

Other researchers have investigated individual self-regulation constructs and academic 

performance (e.g., Allan et al., 2014; Graziano et al., 2007; Lan et al., 2011; Rabiner et al., 

2004). The literature from both types of research is reviewed next.  

Self-regulation and academic performance. Several researchers have investigated the 

association between self-regulation more broadly defined and academic performance, likely due 

to an overarching conception that various mechanisms of self-regulation are not dissociable for 

younger children (Brock et al., 2009; Gestsdottir et al., 2014; Guimard et al., 2012; Hubert et al., 

2015; Ponitz et al., 2009). Hubert and colleagues (2015) examined associations between self-

regulation and academic achievement in mathematics and reading in a sample of 138 French 

children between the ages of five and seven years old. Using a measure of self-regulation that 

requires attention, cognitive flexibility, working memory, and inhibitory control, researchers 
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found that self-regulation was significantly associated with mathematics, but not with reading 

performance (Hubert et al., 2015). Ponitz and colleagues (2009) examined similar constructs 

with 343 kindergarten students in the United States and found comparable results, such that self-

regulation predicted improvements in mathematics performance, but not reading.  

In contrast, another research team investigated associations between self-regulation and 

mathematics and reading performance for 301 children ages five to seven years old from 

Germany and Iceland (von Suchodoletz et al., 2013). Results suggested that self-regulation was 

related to both mathematics and reading performance. Another study with French students ages 

four to six yielded similar results, with self-regulation being related to both mathematics and 

reading performance (Guimard et al., 2012). Given that the literature is unclear and inconsistent 

in terms of whether self-regulation predicts academic performance more in one area than 

another, research should examine reading and mathematics performance separately.  

The aforementioned studies provide a wealth of information regarding self-regulation and 

academic performance; however, there are notable limitations. While it is understandable that 

such studies looked at self-regulation in a more unitary manner given the age group of children 

and the debate on when various mechanisms dissociate (Davidson et al., 2006; Garon et al., 

2008; Lerner & Lonigan, 2014; Miyake et al., 2000; Miyake & Friedman, 2012), these studies 

provide little information about how specific cognitive and emotional self-regulatory 

mechanisms relate to and influence academic performance. Next, research examining these 

mechanisms separately is reviewed.  

  Attention and academic performance. Inattention can impede students’ ability to 

acquire important academic skills, as attention difficulties often make it difficult for students to 

focus on lessons and retain information (Rabiner, Malone, & Conduct Problems Prevention 
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Group, 2004). There is a large number of researchers who have investigated the importance of 

attention for academic performance (Barriga, et al., 2002; Breslau et al., 2009; Fuchs et al., 2005; 

Lan et al., 2011; Massetti et al., 2008; Preston, Heaton, McCann, Watson, & Selke, 2009; 

Polderman et al., 2010; Rabiner et al., 2004; Rabiner, Carrig, & Dodge, 2016; Razza, Martin, 

Brooks-Gunn, 2012; Welsh et al., 2010). These researchers have investigated attentional control 

and sustained attention and their associations with academic performance across subject areas 

including reading and mathematics by utilizing lab-based tasks and/or teacher ratings. 

 Studies on attentional control and sustained attention, as measured by lab-based tasks, 

suggest that attentional control strongly predicts academic performance (Lan et al., 2011; Preston 

et al., 2009; Razza et al., 2012; Welsh et al., 2010). According to a study on executive functions 

and attention by Lan and colleagues (2011), attentional control was the most robust predictor of 

mathematics and reading performance for 119 Chinese and 139 American preschool children, 

above and beyond executive functions (Lan et al., 2011). Similarly, in another study with 164 

preschool children, researchers found that attentional control predicted growth in both reading 

and mathematics skills (Welsh et al., 2010). Moreover, in a study of 45 children ages 7 to 15 

with attention-deficit/hyperactivity disorder, Preston et al. (2009) found that attentional control 

accounted for a statistically significant amount of variance across achievement domains 

including reading, mathematics, and spelling. Razza and colleagues (2012) investigated the 

longitudinal relationships between students’ attention in preschool and success in later 

elementary school. With a sample of 2,595, results indicated that focused attention, as measured 

by a sustained attention task that required students to select objects similar to a target object, 

significantly predicted students’ achievement (Razza et al., 2012). These studies contribute to the 
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understanding of the connections between attentional control and reading and mathematics 

performance for younger students.   

 While connections between attention and academic performance appear similar for 

students in early elementary school, the conceptualization and measurement strategies for this 

age group are different. For instance, many researchers have investigated attention by examining 

teacher ratings of inattention (Barriga et al., 2002; Breslau et al., 2009; Fuchs et al., 2005; 

Polderman et al., 2010; Rabiner et al., 2016; 2004). For example, Rabiner and colleagues (2004) 

found that inattention predicted reduced reading achievement in first grade, even after 

controlling for IQ and earlier reading ability. Similarly, Fuchs et al. (2005) found that attention, 

also defined as inattention measured by teacher report, accounted for unique variance in 

predicting end-of-year mathematics performance.  

Other studies have found similar results. In a systematic review of the literature on 

attention problems researchers found a negative association between attention problems and 

performance in mathematics and reading (Polderman et al, 2010). Rabiner and colleagues (2004) 

also examined associations between attention concerns and academic achievement in a sample of 

621 first grade students. While this study also considered ethnicity and behavioral concerns (i.e., 

oppositional behavior, hyperactivity, and anxiety), results suggested that attention problems as 

measured by teacher ratings were independently related to poor academic achievement (Rabiner 

et al., 2004).  

 Similar trends are also seen in students with diagnosable attention problems. In a study of 

125 children ages four to six with ADHD, researchers found that children who met criteria for 

the inattentive subtype of ADHD had lower reading and mathematics performance over time 

than children who met criteria for the other subtypes of ADHD (Massetti et al., 2008). 
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Correspondingly, Rabiner and colleagues (2016) examined the long-term effects of attention 

problems in early elementary school. In a sample of 386 students identified as having attention 

difficulties by teacher ratings, results suggested that students with attention problems in first and 

second grades showed declines in mathematics and reading performance throughout elementary 

school (Rabiner et al., 2016).  

 With respect to students with social-emotional difficulties, attention is also a significant 

predictor of academic performance across ages. In one study, attention problems measured by 

teacher ratings at the age of six significantly predicted mathematics and reading achievement at 

age 17 for students with social-emotional difficulties, when accounting for socioeconomic status 

(Breslau et al., 2009). Additionally, in an examination of the associations between social-

emotional difficulties and academic performance in a sample of 51 students ages 11 to 17 in an 

alternative school, Barriga and colleagues (2002) found that teacher ratings of inattention 

mediated the associations between various difficulties and overall academic functioning, 

including performance in reading and mathematics.  

 It appears from the literature that attention skills are the strongest predictor of general 

academic performance as well as performance in reading and mathematics. Furthermore, the 

strength of these associations appears to extend beyond factors such as working memory, 

inhibitory control, and task switching (Lan et al., 2011), other social-emotional difficulties 

(Rabiner et al., 2004), SES (Breslau et al., 2009), and intelligence (Rabiner et al., 2004). Given 

the clear association between attention skills and academic performance, studies examining 

cognitive and emotional predictors of academic performance need to consider attention skills.  

Inhibitory control and academic performance. Inhibitory control is another construct 

that is very important for academic performance. Behavioral and academic expectations in the 
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classroom often require students to inhibit impulsive responses in favor of those desired by 

teachers and schools. The association between inhibitory control and academic performance has 

been investigated extensively across both cognitive and developmental literature (Blair & Razza, 

2007; Espy et al., 2004). As aforementioned, researchers examining inhibitory control from a 

cognitive perspective typically measure inhibitory control using lab-based measures. By contrast, 

researchers examining inhibitory control from a developmental perspective typically utilize 

questionnaires and lab-based tasks (e.g., Zhou et al.., 2012).  

In a meta-analysis of the association between inhibitory control and the development of 

academic skills in preschool and kindergarten, Allan and colleagues (2014) examined 75 peer-

reviewed studies. Results of this analysis yielded an effect size of .27, indicating a statistically 

significant association between inhibitory control and academic performance. Specifically, 

inhibitory control was more strongly associated with mathematics performance than with reading 

skills (Allan et al., 2014). Researchers also found that the association between inhibitory control 

and academic skills was moderated by the type of measures used to assess this construct. 

Preferred methods of assessing inhibitory control included behavior tasks and teacher reports, 

which appear to most strongly predict academic skills (Allan et al., 2014). This meta-analysis 

suggests that methods from both cognitive and developmental frameworks should be integrated 

when investigating the associations between inhibitory control and academic performance, an 

approach my study adopted.   

Several studies with a more traditional cognitive focus have investigated inhibitory 

control and academic performance using lab-based measures (Allan et al., 2014; Espy et al., 

2004; Ng et al., 2015; St. Clair-Thompson & Gathercole, 2006; Vuontela et al., 2013). For 

example, in a study of 66 preschool children, Espy and colleagues (2004) examined whether 
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various executive functions were related to mathematical skills. Researchers used lab-based 

executive functioning measures as well as a standardized measure of mathematics skills. Results 

indicated that inhibitory control was the only executive function that accounted for unique 

variance in mathematical skills (Espy et al., 2004). This study included measures extending 

primarily from cognitive research; however, the authors noted this as a limitation and 

recommended using both developmental and cognitive methods to assess various executive 

functions, including inhibitory control (Espy et al., 2004).  

Similarly, in a study of the association between inhibitory control in preschool and 

mathematics performance in first grade with 255 students, researchers found that inhibitory 

control at the age of four accounted for an advantage in early mathematics skills (i.e., problem-

solving) at ages four and six (Ng et al., 2015). In this study, inhibitory control was measured 

using a lab-based peg-tapping assessment and early mathematics skills were measured using a 

standardized test of achievement. These results highlight the importance of inhibitory control for 

mathematics performance.   

Many studies have also investigated the association between inhibitory control and 

academic performance across content areas including reading and mathematics. For example, 

Willoughby, Kupersmidt, and Voegler-Lee (2012) conducted an investigation of the causal 

association between executive function and academic achievement with 926 preschool children. 

Using lab-based measures of executive function and standardized measures of achievement, they 

found that students’ inhibitory control was positively related to their performance on 

standardized assessments of reading, writing, and mathematics, even after controlling for 

previous academic performance (Willoughby et al., 2012). It was noted, however, that different 
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analytic methods resulted in different conclusions, leading to the recommendation that research 

on executive function and academic achievement should include various measures of constructs.  

In a study of 51students aged 11 to 12 years, St. Clair-Thompson and Gathercole (2006) 

examined the association between specific executive functions and academic performance in 

reading, mathematics, and science. They used a series of executive function measures including 

stop signal and Stroop tasks, and standardized test scores were used to measure academic 

performance. Results indicated that inhibitory control was again the only executive function 

related to academic performance across content areas (St. Clair-Thompson & Gathercole, 2006). 

Vuontela and colleagues (2013) conducted a similar study, though academic performance was 

measured using teacher ratings scales. In this study with 54 students aged eight to twelve years 

old, researchers found that inhibitory control, as measured by a lab-based task, was significantly 

correlated with teacher-reported academic performance (Vuontela et al., 2013).   

Several studies have also been conducted on inhibitory control and academic 

performance from a developmental model of self-regulation (Valiente, Lemery-Chalfant, and 

Swanson, 2010; Hernández et al., 2017). In this literature, effortful control is often synonymous 

with inhibitory control and the methods for measuring associations with academic performance 

include teacher and parent ratings as well as lab-based assessments. For example, Valiente, 

Lemery-Chalfant, and Swanson (2010) examined the associations between academic 

achievement, effortful control, and emotionality with 291 kindergarten students. Students’ 

effortful control was assessed via teacher and parent reports and by a lab-based measure, and 

academic achievement was measured using various subtests in reading and mathematics on a 

standardized achievement test. Results suggested that both parent and teacher reports and lab-

based assessments of effortful control were associated with achievement in reading and 
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mathematics (Valiente et al., 2010). Similarly, in a study of 301 kindergarten students conducted 

by Hernández and colleagues (2017), researchers examined the predictive associations between 

effortful control in kindergarten and academic achievement in first grade, controlling for prior 

achievement. Effortful control was measured by teacher and parent ratings and a lab-based task 

and achievement in reading and mathematics was measured using a standardized achievement 

test. Results indicated that effortful control in kindergarten positively predicted academic 

achievement in both mathematics and reading in first grade (Hernández et al., 2017). 

Other studies have also examined inhibitory control from both cognitive and 

developmental perspectives (Allan & Lonigan, 2014; Blair & Raver, 2015; Neuenschwander et 

al., 2012). Blair and Razza (2007) examined the associations between effortful control, executive 

function, false belief understanding, and academic performance in reading and mathematics. In a 

study of 170 children who attended a preschool program for low-income families, these 

researchers used a peg-tapping measure to assess inhibitory control. Achievement measures were 

used to assess academic performance in mathematics and reading. Results indicated that various 

aspects of self-regulation accounted for unique variance in academic performance; however, 

inhibitory control was the only construct examined that was independently related to all 

measures of reading and mathematics abilities (Blair & Razza, 2007).  

Similarly, Allan and Lonigan (2011) studied the associations between inhibitory control 

and reading performance with 234 preschool students. Inhibitory control was assessed using 

various lab-based assessments typically used in effortful control and executive function studies. 

Academic performance was measured with a standardized measure. Results indicated that 

effortful control was significantly related to reading skills. Researchers also found no differences 

between all of the measures used to assess effortful control, suggesting that effortful control and 
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inhibitory control are similar, despite the varying theoretical underpinnings (Allan & Lonigan, 

2014).   

Neuenschwander and colleagues (2012) studied the predictive associations and 

interaction of various aspects of self-regulation, including effortful control and executive 

functions, and grades and performance on standardized tests. This study included 459 students 

between the ages of four and nine who were part of a longitudinal study conducted in 

Switzerland. This study included three lab-based measures of executive function, each assessing 

one of the main components. Measures of effortful control included parent rating scales and 

grades and standardized tests were used to assess academic performance in reading and 

mathematics. Results indicated that effortful control and executive functions were not 

significantly related to each other. Executive functions predicted performance in mathematics 

and reading and effortful control predicted school grades in reading and mathematics 

(Neuenschwander et al., 2012). The association between effortful control and school grades 

should be interpreted with caution, however, as effortful control was measured via parent reports. 

Teacher reports would have been a more direct manner of assessing effortful control in the 

context of school performance.  

Although the aforementioned studies highlight a link between inhibitory control and 

performance across content areas, other studies have shown differential associations between 

inhibitory control and performance in reading and mathematics. For example, Lan and 

colleagues (2011) investigated the links between various executive functions and academic 

performance in reading and mathematics. This study was a cross-cultural analysis of 119 

preschoolers from China and 139 preschoolers from the United States. Researchers utilized 

various lab-based measures of executive functions and other standardized tests of academic 
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performance in reading and mathematics. Results showed that inhibitory control uniquely 

predicted mathematics performance, but not reading performance for students from China and 

the United States (Lan et al., 2011). In another similar study, Ponitz and colleagues (2009) 

examined associations between self-regulation, measured by an assessment typically used to 

capture inhibitory control, and academic performance. This study of 343 kindergarteners showed 

that gains in self-regulation predicted gains in mathematics, but not in reading skills (Ponitz et 

al., 2009).  

 All of the aforementioned studies highlight that, in addition to other aspects of cognitive 

self-regulation, inhibitory control also plays an important role in academic performance. For 

example, some literature suggests a strong association between inhibitory control and 

mathematics performance (Espy et al., 2004; Ng et al., 2015). The associations between 

inhibitory control and reading performance, however, are less clear (Allen et al., 2014; Lan et al., 

2011; Ponitz et al., 2009). As such, further investigation is warranted to help understand how 

inhibitory control is related to overall academic performance and functioning in reading and 

mathematics. Additionally, what remains to be further understood is how inhibitory is related to 

academic performance specifically for students with social-emotional difficulties. No research 

was found that focused specifically on students with greater self-regulation difficulties, for 

whom similar mechanisms may or may not be present. More research using cognitive and 

developmental measures is also needed for students in early elementary school. Thus, I 

investigated associations between inhibitory control and academic performance for students with 

social-emotional difficulties. 

Emotional self-regulation and academic performance. Emotional self-regulation (i.e., 

emotion regulation) is an important construct to incorporate into the investigation of academic 
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performance, as a student’s ability to regulate emotions is related to functioning within the 

school context. For example, children with strong emotion regulation skills often have more 

positive peer relationships (Ladd, Birch, & Buhs, 1999), better relationships with teachers (Ladd 

et al., 1999), fewer attention concerns (Trentacosta & Izard, 2007), and fewer behavioral issues 

in the classroom (Garner & Waajid, 2012). Students with such skills experience less disruption in 

their learning or socialization when they are able to minimize the impact of intense emotions 

(Djambazova-Popordanoska, 2016). Emotion regulation also enables students to maintain 

appropriate affective states that support motivation and initiative in the learning process (Garner, 

2010; Schutz & Davis, 2010; Tyson et al., 2009). Thus, children with stronger emotion 

regulation skills are more likely to be evaluated favorably by teachers (Denham, Bassett, & 

Zinsser, 2012; Trentacosta & Izard, 2007) and experience school success (Graziano, Reavis, 

Keane, & Calkins, 2007).  

Extant research has linked emotional self-regulation to academic performance in various 

ways; however, the mechanisms through which poor emotional self-regulation may interfere 

with the learning process are unclear. From a cognitive resources model, students only have so 

much cognitive capacity to exert during learning (Schmeichel, Vohs, & Baumeister, 2003). 

Intense emotions compete for cognitive resources and impact cognitive mechanisms including 

attention, inhibitory control, working memory, and other higher order processes (Blair, 2002; 

Caine & Caine, 1991; Fogarty, 2009). Consequently, such intense emotions have the potential to 

interfere with the learning process (Goleman, 2004).  

Several researchers have examined the connections between emotional self-regulation 

skills and academic performance (Garner & Waajid, 2012; Graziano et al., 2007; Howse et al., 

2003; Trentacosta & Izard, 2007), though most have investigated these associations in preschool 
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children. For example, Garner and Waajid (2012) examined 74 preschoolers and found that 

emotion knowledge incrementally predicted cognitive competence and situation knowledge (i.e., 

understanding emotions in given situations) was a positive predictor of cognitive competence. 

Similarly, another study conducted with 122 kindergarten children found positive correlations 

between parent reports of children’s emotion regulation skills and children’s scores on 

standardized achievement measures of reading and mathematics performance (Howse et al., 

2003). In a study by Graziano and colleagues (2007), the role of emotion regulation was 

investigated in 325 kindergarteners’ academic performance (e.g., success, productivity, and 

performance on standardized measures). Results indicated that emotion regulation was positively 

associated with teacher reports of academic performance and with standardized early reading and 

mathematics achievement scores.  

Each of these studies highlight the importance of emotional self-regulation skills for 

academic performance in younger children; however, no research was found that investigated the 

connections between emotional self-regulation and academic performance in these areas for 

early elementary school students, particularly those with social-emotional difficulties. This 

population is important to examine because these children may already be behind their same-

aged peers academically and are at-risk for long-term negative educational outcomes without 

intervention.  

Summary. Based on the overview of the literature on attention, inhibitory control, and 

emotion regulation, it is evident that each of these cognitive and emotional mechanisms of self-

regulation interact in a complex manner to influence academic performance. Despite the 

evidenced interconnectedness, no studies were found that examined these specific mechanisms 

together and how they relate to academic performance, particularly for students with social-
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emotional difficulties. Within the effortful control literature, variations of each of these 

constructs have been integrated; however, such studies have often investigated the concept of 

emotion regulation under the categories of social-emotional skills or emotionality and have 

looked more indirectly at how these factors influence teacher and peer relationships, which 

impact school readiness and performance (Morris et al., 2013; Rhoades et al., 2016; Valiente et 

al., 2011, 2010, 2008). My study sought to investigate a more direct link between cognitive and 

emotional mechanisms of self-regulation, addressing a gap in research on the interconnectedness 

of these important constructs for early elementary school students with social-emotional 

difficulties. 

In addition, extant literature suggests that the associations between different self-

regulatory mechanisms and performance differ by content area, with the exception of attention. 

Research has also shown that attention is the most robust predictor of performance in reading 

and mathematics (Lan et al., 2011; Razza et al., 2012). In terms of inhibitory control, research 

indicates that inhibitory control is most consistently a significant predictor of mathematics 

performance, and less often a significant predictor of reading performance (Lan et al., 2011; 

Razza et al., 2012). Researchers who have investigated emotional regulation and academic 

performance have found that this predicts both reading and mathematics performance (Graziano 

et al., 2007; Howse et al, 2003).  

Several explanations for these differences in associations between academic areas exist 

(Schmitt et al., 2017). For instance, one explanation is that mathematics content places more 

cognitive demands on children than does reading (Bull, Espy, & Wiebe, 2008; Clark et al., 

2010). Successful mathematics performance, therefore, may require greater self-regulation 

(Schmitt et al., 2017). Additionally, literature from cognitive neuroscience suggests an overlap of 
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the brain regions (i.e., prefrontal cortex) that support self-regulation as well as mathematics 

performance (Klingberg, 2006). Furthermore, methods of assessing mathematics and reading 

performance may also contribute to differences in associations. For instance, some researchers 

purport that self-regulatory mechanisms provide “a foundation for the development of reasoning 

abilities or fluid mental capacities (e.g., problem-solving), which are typically required to do 

well on math assessments” (Schmitt et al., 2017, p. 1121). On the other hand, many reading 

assessments place more demands on crystallized mental abilities, as they are more knowledge-

based (e.g., word knowledge) (Schmitt et al., 2017).  

Given the literature suggesting differences in associations between cognitive and 

emotional mechanisms of self-regulation and mathematics and reading performance, 

investigations of academic performance must take such differences into account. Researchers 

have examined associations between cognitive and emotional mechanisms of self-regulation and 

mathematics and reading performance (Morris et al., 2013; Rhoades et al., 2016; Valiente et al., 

2011, 2010, 2008). Additional research, however, is warranted to further understand how these 

mechanisms influence academic performance in reading and mathematics, particularly for 

students with social-emotional difficulties. Thus, my study examined how various cognitive and 

emotional mechanisms of self-regulation relate to general academic performance as well as 

performance in reading and mathematics for students with social-emotional difficulties.  

Covariates: Socioeconomic Status and Gender  

In order to better understand the complex associations between self-regulation and 

academic performance, researchers often control for other factors that may contribute to 

variability in these constructs including gender and socioeconomic status (SES) (Gestsdottir et 

al., 2014; Hubert et al., 2015; McClelland & Cameron, 2011; von Suchodoletz et al., 2013). As 
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such, I have included a brief review of the literature on the associations between gender, SES, 

self-regulation, and academic performance below. Importantly, however, there was no specific 

evidence found to suggest that the association between self-regulation and academic 

performance might vary for boys versus girls or for children from lower versus higher 

socioeconomic backgrounds.  

Socioeconomic status and academic performance. Researchers examining academic 

performance often control for SES, as literature shows that SES is a well-recognized factor 

related to academic performance (e.g., Chatterji, 2006; Lee & Otaiba, 2015). For example, 

several researchers found a strong association between SES and academic performance, such that 

students from families with higher a SES often performed more favorably academically than 

students from families with a lower SES (Chatterji, 2006; Lee & Otaiba, 2015; Mulligan, 

Hastedt, & MCarroll, 2012). The differences in academic performance between students from 

higher and lower SES backgrounds are noticeable from a young age (Chatterji, 2006; Mulligan et 

al., 2012), are compounded over time (Chatterji, 2006), and cross various content areas, 

including reading and mathematics (Mulligan et al., 2012).  

There are several factors believed to contribute to the differences in academic 

performance between students from lower and higher SES backgrounds. First, students from 

lower SES families are more likely to enter school with fewer academic skills across content 

areas, as they typically do not have access to a wide variety of activities that promote the 

acquisition of pre-academic skills (Bradley, Corwyn, McAdoo, & Garcia, 2001; Byrnes & 

Wasik, 2009; Crosnoe & Cooper, 2010; Galindo & Sonnenschein, 2015; Jordan, Kaplan, Olah, 

& Locuniak, 2006).  Second, research suggests that exposure to language is another 

differentiating factor between children from lower and higher SES families. For example, 
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students from lower SES families may not have as much exposure to specific language that may 

prime them for understanding lessons and directions in the classroom setting (Galindo & 

Sonnenschein, 2015; Hindman, Skibbe, Miller, & Zimmerman, 2010). Furthermore, parents’ 

expectations for achievement may also contribute to differences in academic performance based 

on SES (Sonnenschein & Galindo, 2015).  Lastly, children from lower SES backgrounds 

experience higher exposure to stress, which can interfere with development in various ways  

(Hamoudi, Murray, Sorenson, & Fontaine, 2015).  

Socioeconomic status and self-regulation. Researchers investigating self-regulation also 

often control for SES, as lower SES is associated with cognitive and emotional self-regulation 

difficulties (Blair, 2010; Blair & Ursache, 2011; Wanless, McClelland, Tominey, & Acock, 

2011). For instance, in a meta-analysis of 25 studies on children between the ages of 2 and 18, 

Lawson, Hook, and Farah (2017) found a small, but statistically significant correlation between 

SES and self-regulatory abilities. However, while some researchers found significant 

associations between SES and self-regulation, others did not. For instance, Razza and colleagues 

(2012) found that poverty status did not relate to self-regulation. 

Some hypothesized reasons for such differences include environmental factors, such as 

experiences and stress levels. For example, children from lower SES households are less likely to 

have experiences and environments that foster strong cognitive and emotional self-regulation 

skills (Blair & Raver, 2015). Additionally, children from lower SES backgrounds are more prone 

to negative stress exposure, which negatively impacts the development of self-regulation 

(Hamoudi et al., 2015).   

Gender and academic performance. Gender is another demographic characteristic that 

is frequently used as a covariate in research on academic performance, as many studies have 



                                            

41 
 

shown gender differences in this area of research (Below et al., 2010; Lee, Moon, & Hegar, 

2011; Lonnemann et al., 2013; Marks, 2008; Robinson & Lubienski, 2011). For example, in a 

study of gender gaps and reading and mathematics across various countries, Marks (2008) found 

that gender differences varied by content area, as girls performed better than boys in reading, but 

boys performed better than girls in mathematics. In another study, Robinson and Lubienski 

(2011) conducted a longitudinal analysis of gender achievement gaps in mathematics and 

reading. Results suggested that, over a prolonged period of time, boys outperform girls in 

mathematics and girls outperform boys in reading. Furthermore, in a study of gender gaps 

specifically in mathematics, other researchers found that male students consistently displayed 

significantly higher scores on mathematics than female students from kindergarten through third 

grade (Lee, Moon, & Hegar, 2011). Another study found that gender differences favoring males 

in mathematics performance emerges even before kindergarten entry (Lonnemann, 

Linkersdörfer, Hasselhorn, & Lindberg, 2013). In a study of gender differences specifically in 

reading, Below and colleagues (2010) found significant gender differences favoring girls in early 

reading skills.  

Many researchers have hypothesized explanations for gender differences in academic 

performance. Some explanations include differences in behavior, motivation, brain activation, 

and learning strategies (Logan & Johnston, 2010). Others have attributed differences to 

sociological issues such as gender-based stereotype threat (Lindberg et al., 2010; Spencer, Steele, 

& Quinn, 1999). Marks (2008) found that gender gaps were influenced by factors including 

expectations for students and macro-societal factors, such as the proportion of women in the 

workplace, societal inequity, and public sector spending. 



                                            

42 
 

Gender and self-regulation. Researchers examining self-regulation typically control for 

gender, as many studies have suggested that girls perform better than boys on measures of both 

cognitive and emotional mechanisms of self-regulation (Else-Quest, Hyde, Goldsmith, & Hulle, 

2006;  Matthews, Ponitz, & Morrison, 2009; Matthews, Marulis, & Williford, 2014; Zimmerman 

& Iwanksi, 2014). For example, in a meta-analysis of gender differences and self-regulation, 

researchers found significant gender differences favoring females in effortful control, 

particularly with respect to inhibitory control (Else-Quest et al., 2006). Similarly, Matthews and 

colleagues (2009) found that girls outperformed boys on both direct and indirect measures of 

self-regulation (e.g., direct assessment and teacher report). Furthermore, Zimmerman and 

Iwanksi (2014) found gender differences in emotional self-regulation, particularly with respect to 

emotion regulation.  

 Several researchers have generated explanations for gender differences in self-regulation. 

For example, some researchers attribute gender differences to the types of measurement tools 

utilized in studies (Matthews et al., 2009;  Silverman, 2003). For example, Matthews and 

colleagues (2009) asserted that bias associated with teacher and parent reports may contribute to 

observed gender differences in extant literature.  

Summary. Based on the review of literature, it is evident that gender and SES may 

influence both self-regulation and academic performance; however, no specific research was 

found to suggest that the associations between self-regulatory mechanisms and academic 

performance vary by gender or SES. As such, in line with previous research, gender and SES 

were included as covariates in my study to ensure that any potential variance in academic 

performance resulting from gender and SES were controlled. A more extensive examination of 

the interrelationships was not possible given sample size limitations.  



                                            

43 
 

Purpose of the Current Study  

There are two main limitations of the current literature that my study sought to address. 

First, although many studies have investigated how attention and inhibitory control relate to 

academic performance and other studies have looked at the relationship between emotion 

regulation and academic performance, few studies have investigated an integrated model that 

includes both cognitive and emotional components and examines these in relation to each other. 

Second, many studies have also examined these constructs in preschool-aged children; however, 

fewer researchers have looked at the associations in early elementary school children. This is an 

important developmental period because the capacity to self-regulate continues to develop 

rapidly until around age seven or eight (Berger, 2011), which is a critical time for the 

development of foundational academic skills and behaviors. Not only is it important to 

investigate this developmental period, but it is also important to examine these associations for 

children with social-emotional difficulties, as they are at significant risk for adverse educational 

outcomes. To address these limitations, my research investigated the interrelationships among 

attention, inhibitory control, and emotion regulation in predicting academic performance.  

Research Questions and Hypotheses  

 My study examined predictors of students’ academic performance including cognitive 

and emotional self-regulation in order to better understand the roles each of these constructs play 

for students exhibiting social-emotional difficulties. The following research questions were 

investigated:  

1. What are the associations between key cognitive and emotional self-regulation 

mechanisms and teacher-rated academic performance, when controlling for gender and 

free/reduced lunch status? It was expected that attention skills, inhibitory control, and 
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emotion regulation would each contribute significantly to teacher-rated academic 

performance. Attention was expected to be the strongest predictor.  

2. What are the associations between key cognitive and emotional self-regulation 

mechanisms and academic performance, as measured by reading proficiency, when 

controlling for gender and free/reduced lunch status? It was expected that attention skills 

and emotion regulation would each contribute significantly to reading proficiency. 

Attention was expected to be the strongest predictor.  Inhibitory control was not expected 

to be a significant predictor.  

What are the associations between key cognitive and emotional self-regulation 

mechanisms and academic performance, as measured by mathematics proficiency, when 

controlling for free/reduced lunch? It was expected that attention skills, inhibitory 

control, and emotion regulation would each contribute significantly to the variance in 

outcomes. Attention was expected to be the strongest predictor of proficiency in 

mathematics.  
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CHAPTER 3: RESEARCH METHODS 

In this study, I examined the extent to which attention, inhibitory control, and emotion 

regulation contributed to academic performance for students in early elementary school 

exhibiting social-emotional difficulties. I conducted a secondary analysis of data collected as part 

of an efficacy investigation of a self-regulation intervention implemented in a school setting. The 

intervention was not the focus of this research, therefore, only baseline data was used. The 

original study from which this study extends was funded by the Institute of Education Sciences 

(IES) and was conducted within multiple school districts (R305A150169). This analysis of 

secondary data was approved by the University of North Carolina Institutional Review Board 

(IRB Number: 18-0064). Sources of data for participants included teacher reports, observation, 

school records, and direct child assessment. Composite scores were generated where appropriate, 

and multilevel regression and multilevel logistic regression were used to address research 

questions.  

Participants  

 Participants included students taking part in a federally-funded randomized trial of a self-

regulation intervention. Data from the second and third cohorts were utilized for my study as 

some measures were different for the first cohort. The final sample analyzed included 129 first 

and second grade students across 79 classrooms (68 teachers) in nine schools and three local 

school districts. Schools were selected based on principal interest and district recommendation. 

Teachers volunteered to participate based on information presented at each school via in-person 

information sessions. Several teachers participated in the study across multiple years, resulting in 
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the difference in the number of teachers and classrooms. Teachers were from schools located in 

both rural and urban areas of North Carolina within an hour’s drive of the university. 

Student and teacher characteristics. The student sample consisted of 88 males and 41 

females with diverse racial and ethnic backgrounds (see Table 2). There were 58 and 71 first and 

second grade students, respectively. Students’ average age in years was 7.20 (SD = 0.69, range: 

6.00-9.33). Data for the student sample was collected across two cohorts; there were no 

statistically significant differences between cohorts one and two on any measures or variables 

utilized in this study. Sixty-eight teachers provided data for this study, the majority of whom 

were female with an average of 8.19 years of teaching experience. Demographic information for 

students and teachers can be seen in Table 1.  

Table 1 

Demographic Information 

  
N M or % SD Min Max 

Students      

Age in Years 128 7.20 0.69 6.00 9.33 

Grade (Grade 1) 129 45% - - - 

Gender (Male) 129 68% - - - 

SES (Receives Free/Reduced Lunch) 129 76% - - - 

Teachers      

Gender (Female) 68 95% - - - 

Number of Years Teaching 68 8.19 8.14 0 30 
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The student sample had a higher than expected number of African Americans and a lower 

than expected number of Latinx students, given the overall demographics of the schools from 

which students were recruited (see Table 2). One possible reason for a higher than expected 

number of African American students is the nature of the recruitment process, which was based 

partly on teacher nomination. Research has shown that teachers may over-identify discipline 

problems in children of color in comparison to their white peers (Gregory, Skiba, & Noguera, 

2009; Skiba et al., 2014), thus potentially contributing to a higher referral rate in this study. In 

addition, socio-political factors may have reduced the response rate of Latinx families, as the 

study was recruiting during a time of heightened concern around immigration. Lastly, some 

Latinx students may have been excluded because of the study requirement for students to be 

proficient in English.  

Table 2    

Sample and Partnering School Demographic Information  

Student Race 
Overall School 

Demographics 
Sample Demographics 

African American 42% 62% 

Caucasian 22% 28% 

Latinx 30% 10% 

American Indian/Alaska Native 0.6% 0.8% 

Asian 1% 0% 

Native Hawaiian/Other Pacific Islander 0.1% 0% 

 

Procedure 

Identification of students. Students were identified using a two-step screening process. 

First, teachers completed a form providing the names of students in their class “with challenging 
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behaviors or difficulties managing emotions, interacting with peers, and meeting behavioral 

expectations in the classroom.” This form was completed by teachers in the spring of the year 

prior to the intervention. Once names were provided, parent permission forms were sent home 

and parent phone calls were made by the counselor. This approach was used to protect students’ 

confidentiality. Teachers during the next school year completed the Strengths and Difficulties 

Questionnaire (SDQ; Goodman, 1997) after the first three weeks of school. Students were 

included if they were rated in the “at-risk” range on the Total Difficulties scale (>12). The mean 

of students’ SDQ scores was 18.56 (SD = 5.11, range: 12-34). Students with autism spectrum 

disorder, full-time placement in special education classrooms, significant intellectual deficits as 

judged by school staff, and non-proficient in English based upon school staff report were not 

included, as the intervention for the main study was not designed for students in these categories. 

Sources of data. Parent background questionnaires, teacher surveys, direct child 

assessments, observational assessments, and school report cards were used as sources of data for 

this study.  

Parent background information. Student demographic information including 

race/ethnicity, free and reduced lunch status, gender, and age was reported by parents and/or 

guardians on a background questionnaire that was completed at the same time the written 

consent forms were completed. Any missing information was subsequently gathered via 

telephone conversations with parents.  

Teacher surveys. After students were nominated and parent permission was obtained, 

teachers were sent electronic surveys including various measures regarding students’ social-

emotional and academic functioning. These surveys were administered to teachers after 
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approximately three weeks of school to ensure that they knew students well enough to rate them 

accurately. Teachers were compensated $25 for each survey completed. 

Direct child assessments. Direct assessments of self-regulation skills were conducted 

one-on-one with students for approximately 45 minutes in one session and took place in a private 

and quiet room in the students’ school. All assessments from which data were derived for my 

study occurred between September and October of the school year. The order of the test 

administration was held constant across students. Assessments were administered by research 

assistants, graduate students, and other trained data collectors. Training for the administration of 

direct assessments included approximately 30 hours of in-person training and administration 

practice. Each assessor was required to pass predetermined certification standards prior to 

administering assessments. Additionally, video reviews were conducted and assessor meetings 

were held to ensure administration procedures were correctly maintained for the duration of the 

data collection period.  

Observational assessments. Observations were also conducted within students’ 

classrooms for approximately 30 minutes on two observation periods during structured learning 

time (e.g., language arts, mathematics, sciences, and/or social studies). All observations occurred 

between September and October of the school year.  Observations were conducted by research 

assistants, graduate students, and other experienced data collectors. Training for observational 

assessments included approximately 40 hours of training which included in-depth examination of 

all measures, administration procedures, and practice coding. Each observer was required obtain 

80% agreement with a master coder for at least two video coding sessions and then two 

subsequent live coding occasions before conducting any observations of students in the study. 

Inter-rater reliability was estimated based on 20% of all observations. Furthermore, observers 
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met weekly to prevent coder drift and to address any other field concerns related to observational 

assessments.  

Report card grades. Students’ report card grades were obtained from school staff at the 

end of each school year. To avoid confounding effects of the intervention in the present analysis, 

only first quarter grades were examined. 

Measures 

Screening measure. The Strengths and Difficulties Questionnaire (SDQ; Goodman, 

1997) was used to determine eligibility as described above. The SDQ  has been used extensively 

in studies to identify students with social-emotional difficulties (e.g., Goodman, Ford, Simmons, 

Gatward, & Meltzer, 2000; Lavigne, Meyers, & Feldman, 2016). The SDQ is a 25-item teacher 

rating scale used for assessing social-emotional functioning. It consists of five subscales relating 

to emotional problems, peer problems, conduct problems, hyperactivity, and prosocial behavior. 

Each subscale, except the prosocial scale, is summed to generate a total difficulties score, which 

was used to determine eligibility for the study. Items on the SDQ include “Often loses temper”, 

“Restless, overactive, cannot sit still for long”, “Often fights with other children or bullies them”, 

and “Picked on or bullied by other children”. Items are rated on a three-point scale, with the 

following descriptors as anchors: 1 = Not True, 2 = Somewhat True, and 3 = Certainly True.  

The SDQ total difficulties score has been found to have strong internal consistency, with 

average Cronbach’s alpha values of .82 with a range of .62 to .85 (Stone, Otten, Engels, 

Vermulst, & Janssens, 2010). Additionally, according to Stone and colleagues (2010), the total 

difficulties score has high test-retest reliability (r = .85) and strong concurrent validity (r = .76) 

with the Child Behavior Checklist (CBCL), another common measure used for identifying 
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social-emotional difficulties. For this study, the Cronbach’s alpha value for the total difficulties 

score was .84, indicating good internal consistency.  

Measures by construct. The measures described below were used to assess constructs of 

interest including attention, inhibitory control, emotion regulation, and academic performance 

(see Table 3). Composite scores were generated, as appropriate, and as outlined in the data 

preparation section, for each construct.  
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Table 3  

Measures 

Independent Variables Measures 

Attention 

 

• Strengths and Weaknesses of ADHD Symptoms and Normal 

Behavior – Inattentive Scale 

• Revised Edition of the School Observation Coding System – 

Off-Task Behavior 
 

Inhibitory Control  

 

• Academic Performance Rating Scale – Impulse Control Scale 

• Happy/Sad Stroop 

• Head-Toes-Knees-Shoulders Task 
 

Emotion Regulation 

 

• Emotion Regulation Checklist  

• Preschool Self-Regulation Assessment Assessor Report – 

Positive Emotion Scale 
 

Dependent Variables Measures 

 

Teacher-Rated 

Academic Performance 
 

• Academic Performance Rating Scale – Academic Success and 

Productivity Subscales Combined 

Reading Proficiency • Reading Proficiency Level (derived from report card grades) 

Mathematics Proficiency 
• Mathematics Proficiency Level (derived from report card 

grades) 

Covariates Measures 

Gender • Parent report of child’s gender 

Socioeconomic Status • Parent report of free/reduced lunch status 

 

Attention measures. Two measures, the Inattentive scale of the Strengths and 

Weaknesses of ADHD Symptoms and Normal Behavior (SWAN; Swanson et al., 2012) teacher 

rating scale and the Revised Edition of the School Observation Coding System (REDSOCS; 

Bagner, Boggs, & Eyberg, 2010; Jacobs et al., 2000), were used as measures of inattention.  
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Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Inattentive Scale 

(SWAN). The SWAN Inattentive Scale (Swanson et al., 2012) is a 9-item teacher rating scale 

based on the inattentive symptoms of attention deficit/hyperactivity disorder (ADHD) found in 

the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). It measures these 

behaviors on a seven-point scale that includes far below average, below average, slightly below 

average, average, slightly above average, above average, and far above average.  Each item on 

the Inattentive scale is scored from 3 to -3, where zero is considered average and -3 is far above 

average. Teachers are asked to evaluate the student by comparing them to other children in the 

classroom. Items on the Inattentive scale include “Sustain attention on tasks or play activities”, 

“Ignore extraneous stimuli”, and “Remember daily activities”.  The Inattentive scale score was 

generated by calculating an average item score. Higher scores on the SWAN Inattentive scale 

indicates more inattentive behavior.  

The SWAN has been found to have strong reliability and validity (Arnett et al., 2011; 

Brites, Salgado-Azoni, Ferreira, Lima, & Ciasca, 2015; Young, Levy, Martin, & Hay, 2009). The 

Inattentive scale has Cronbach’s alpha values ranging from .89 to .97 (Gold et al., 2013; Gomez, 

Vance, & Gomez, 2013). Additionally, correlations with other measures (i.e., the Conners’ 

Teacher Rating Scale-Revised, Short Version) of inattention are high (r = .75), thus 

demonstrating adequate construct validity (Cornish et al., 2005). Researchers who have used this 

scale have found predictive validity with respect to achievement (Malone & Fuchs, 2014; Rogers 

et al., 2011). For this study, the Cronbach’s alpha for the Inattentive scale was .93, indicating 

strong internal consistency.  

Revised Edition of the School Observation Coding System (REDSOCS) Off-Task 

Behavior. The REDSOCS (Bagner et al., 2010; Jacobs et al., 2000) is an interval-based, 
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observational coding system designed to assess behaviors of young children with disruptive 

behaviors in classrooms settings. This system includes codes for three behavioral categories: (a) 

Inappropriate Behavior, (b) Noncompliant Behavior, and (c) Off-Task Behavior, the latter of 

which was used as an indicator of inattention in this study. A child is considered on-task during 

an interval if he or she is attending to tasks, making appropriate motor responses, asking for 

assistance, etc. Off-task behavior is coded if the target child does not attend to the expected 

classroom tasks. Off-task behaviors include behaviors such as staring off, resting head on desk, 

talking to a classmate, getting out of seat, etc. REDSOCS behaviors are coded in 10 second 

intervals for a total of 10 minutes per child.  In this study, each child was observed twice within a 

two- to three-week window, with scores averaged for a more reliable score (Ginn, Seib, Boggs, 

& Eyberg, 2009). Higher scores on Off-task behavior indicate more inattentive behaviors. The 

REDSOCS has high interrater reliability and convergent validity with teacher rating scales 

(Jacobs et al., 2000), including significant correlations between off-task behavior and a teacher 

rating of inattention (r = .29). For my study, the interrater reliability for the REDSOCS Off-Task 

Behavior was high, as indicated by an intra-class correlation coefficient (ICC) of .96.  

Inhibitory control measures. Two direct child assessments and a teacher-rating of 

impulsivity were used to measure inhibitory control. These measures include the Happy-Sad 

Stroop Task (Lagattuta, Sayfan, & Monsour, 2011), the Head-Toes-Knees-Shoulders Task 

(HTKS; McClelland et al., 2007; Ponitz et al., 2009), and the Academic Performance Rating 

Scale Impulse Control scale (APRS; DuPaul et al., 1991).  

Happy-Sad Stroop Task. The Happy-Sad Stroop Task was used to measure children’s 

cognitive inhibitory control (Lagattuta et al., 2011). In particular, this measure assesses 

children’s ability to inhibit a natural response in order to give the correct response. For this task, 
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students were asked to say the opposite of what they saw in a picture. More specifically, students 

were asked to say ‘happy’ when viewing a sad face and ‘sad’ when viewing a happy face. After 

an explanation of the task, students were administered four practice trials. If the participant made 

any errors, he or she was corrected and administered another four practice trial. Data collection 

associated with this task did not commence until each student completed four consecutive trials 

correctly. Scores are based on the number of correct responses across 20 consecutive trials. Any 

incorrect or self-corrected answers are counted as incorrect, as per scoring guidelines from the 

developer. Higher scores on this measure suggest better inhibitory control.  

The Happy-Sad Stroop Task has been used as a measure of executive function, 

particularly inhibitory control (Fay-Stammbach, Hawes, & Meredith, 2017; Kramer, Hanson 

Lagattuta, & Sayfan, 2015; Lagattuta et al., 2011). It has shown good validity and reliability in 

children aged 4-11 years (Lagattuta et al., 2011). For example, test-retest reliability is high for 

both number of errors and response time (r = .63 and .86, respectively) and scores are 

significantly correlated with other Stroop versions (Lagattuta et al., 2011).  

Head-Toes-Knees-Shoulders Task (HTKS). The HTKS task is a widely used measure of 

behavioral inhibitory control in young children (McClelland & Cameron, 2012). This task is 

comprised of up to three parts, which are administered contingent on successful completion of 

previous parts. Students are initially given an overview of the task and opportunities for 

corrective feedback, if warranted. In part one, students are asked to touch their head when the 

examiner prompts them to “touch your toes” and vice versa. If a student scores four or more 

points on part one, then he or she continues to part two, which includes an additional rule that 

requires students to touch their knees when the examiner says, “touch your shoulders” and vice 

versa. If the student scores four or more points on part two, then he or she continues to part three, 
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which includes another change in rules. In this part, students are asked to touch their head when 

the examiner says “touch your knees” and vice versa, and students are asked to touch their toes 

when the examiner says, “touch your shoulders” and vice versa.  

The HTKS consists of 30 items in total, where scores for each item are either zero 

(incorrect), one (self-corrected), or two (correct). A total score is calculated by summing the 

total points students receive in each part. Higher scores on this task reflect higher levels of 

behavioral inhibition. The HTKS has shown adequate reliability and validity in children aged 

three to eight and across cultures (McClelland et al., 2007; McClelland et al., 2014; von 

Suchodoletz et al., 2013; Wanless et al., 2011). McClelland and colleagues (2014) found good 

test-retest stability with two different populations of students (r = .60 and .74, respectively). 

Another study found significant, positive correlations between the HTKS and other teacher 

rating scales of inhibitory control at two different time points (r = .27 and .21; McClelland et al., 

2007). Performance on this measure has been shown to predict academic achievement (von 

Suchodoletz et al., 2013; Wanless et al., 2011).  

Academic Performance Rating Scale (APRS), Impulse Control Scale. The APRS is a 19-

item teacher rating scale that assesses students’ academic productivity, success, and impulse 

control (DuPaul et al., 1991). The APRS is made up of three subscales, including Academic 

Success, Academic Productivity, and Impulse Control. The Impulse Control scale was used as a 

measure of inhibitory control, as it assesses impulsivity specific to academic tasks. The APRS 

Impulse Control scale consists of three items, including “What is the quality or neatness of this 

child’s handwriting?”, “How often does the child complete written work in a hasty fashion?” and 

“How often does the child begin written work prior to understanding the directions?” (DuPaul et 

al., 1991). Each item consists of a 5-point Likert scale where teachers are asked to rate students 



                                            

57 
 

based on their recent performance in school. A total score on this scale was calculated by adding 

the ratings for each item. Higher scores on this measure indicate better inhibitory control. The 

Impulse Control scale has demonstrated adequate reliability and validity, with a Cronbach’s 

alpha of .72 and test-retest reliability correlation of .88 (DuPaul et al., 1991). For this study, the 

Cronbach’s alpha value was .45, suggesting poor internal consistency; however, as outlined in 

the data preparation section, this measure was not used for analyses given the weak correlations 

between this measure and other measures of inhibitory control.  

Emotion regulation measures. Two measures were used to as measures of emotion 

regulation. These include the Emotion Regulation Checklist (ERC; Shields & Cicchetti, 1997), a 

teacher report scale, and the Positive Emotion Scale of the Preschool Self-Regulation 

Assessment Assessor Report (PSRA-AR; Bassett, Denham, Wyatt, & Warren‐Khot, 2012; 

Smith-Donald, Raver, Hayes, & Richardson, 2007), which is based on ratings from the direct 

child assessor.  

Emotion Regulation Checklist (ERC). The ERC is a 24-item questionnaire completed by 

teachers to assess children’s observed emotion-related responses, including intensity, lability, 

and regulation (Shields & Cicchetti, 1997). Each item consists of a 4-point Likert scale ranging 

from 1 (Rarely/Never) to 4 (Almost Always). The ERC is comprised of two subscales, including 

the Emotion Regulation and Lability/Negativity subscales. The Lability/Negativity subscale 

includes items such as “Is easily frustrated” and “Responds negatively to neutral or friendly 

overtures by peers” and the Emotion Regulation subscale includes items such as “Is a cheerful 

child” and “Can say when s/he is feeling sad, angry or mad, fearful, or afraid”. Previous 

researchers have generated total scores using all items of this measure, as the two subscales are 
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highly correlated (r = .51) and all items provide an overall measure of emotion regulation 

(Trentacosta & Izard, 2007).  

The ERC has been widely used with children in preschool through middle school and has 

been shown to relate to academic outcomes (Graziano et al., 2007; Montalbano, Murray, Kuhn, 

LaForett, & Cavanaugh, 2017; Trentacosta & Izard, 2007). The ERC has also demonstrated 

strong reliability and validity, with Cronbach’s alpha values of .84 and .96 for the Emotion 

Regulation subscale and .83 and .92 for the Lability/Negativity subscale (Shields & Cicchetti, 

1997; Trentacosta & Izard, 2007). In prior research, internal consistency has been high for the 

overall score generated (Cronbach’s alpha = .89; Shields & Cicchetti, 1997). For this study, I 

generated a total score. Some items were reverse scored so that higher scores reflect better 

emotion regulation. The Cronbach’s alpha value for my study was .81, suggesting adequate 

internal consistency.  

Preschool Self-Regulation Assessment Assessor Report (PSRA-AR) Positive Emotion 

Scale. The PSRA-AR is a 28-item questionnaire that provides an observer assessment of 

children’s behavior, including their emotion regulation skills, based on a one-on-one assessment. 

Each item consists of a 4-point Likert scale ranging from 0 to 3, where 0 typically indicates that 

a particular behavior does not occur and three indicates the behavior occurs more frequently 

(Smith-Donald et al., 2007). Factor analysis in a previous study (Smith-Donald et al., 2007) 

identified two factors for the PSRA-AR: (1) the Attention/Impulsivity scale and (2) the Position 

Emotion scale, which were validated in the present sample with some minor item differences. 

The Positive Emotion scale was used in this study as a measure of emotion regulation. This scale 

includes items such as “Modulates and regulates arousal level in self - keeps an ‘even keel’” and 
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“shows frequent feelings of anger/irritation”. Each item response on the Positive Emotion scale 

was averaged in order to calculate a total scale score. 

The PSRA-AR has been used in several studies investigating emotion-related self-

regulatory mechanisms in young children (Bailey, Denham, Curby, & Bassett, 2016; McCoy & 

Raver, 2011; Obradović, Portilla, & Ballard, 2016). The PSRA-AR has also demonstrated 

sufficient reliability. For example, this measure yielded Cronbach’s alpha values of .40 and .88 

for the Positive Emotion subscale (Bailey et al., 2016; McCoy & Raver, 2011). The Cronbach’s 

alpha value for the Positive Emotion Scale in the present study was .83, suggesting adequate 

internal consistency.  

Measures of academic performance. Two measures were examined separately as 

indicators of student academic performance, including the Academic Performance Rating Scale 

(APRS; DuPaul et al., 1991) and students’ grades.  

Academic Performance Rating Scale (APRS) Academic Success and Productivity Scales. 

As aforementioned, the APRS consists of three subscales, including Academic Success, 

Academic Productivity, and Impulse Control. The Academic Success and Academic Productivity 

subscales were used as measures of teacher-rated academic performance. The Academic Success 

subscale measures the teachers’ perception of students’ skills in reading, mathematics, and 

written language and includes items such as “How consistent has the quality of this child’s 

academic work been over the past week?” and “How frequently does this child have difficulty 

recalling material from a previous day’s lesson?”. The Academic Productivity Scale assesses the 

percentage and accuracy of work that is assigned and completed and includes items such as 

“How frequently does the student accurately follow teacher instructions and/or class discussion 

during large-group (e.g., whole class) instruction?” and “How frequently does the student 
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accurately follow the teacher instructions and/or class discussion during small-group (e.g., 

reading group) instruction?”. Individual item ratings on the Academic Success and Academic 

Productivity subscales were added together to create a total score. These two subscales were 

combined to obtain an overall score for teacher-rated academic performance due to high 

correlations between the subscales in this study (r = .84), consistent with previous research (r = 

.88; Graziano et al., 2007). Some items were reversed scored so that higher scores on the APRS 

indicates better academic performance.  

The APRS has been used in studies investigating students’ academic performance 

(Graziano et al., 2007; Power et al., 2012; Rabiner, Murray, Skinner, & Malone, 2010). It has 

shown strong reliability and validity, with Cronbach’s alpha values of .94 for the Academic 

Productivity scale and .94 for the Academic Success scale. Cronbach’s alpha values for the 

overall measure range between .88 and .95 (DuPaul et al., 1991; Merriman, Codding, Tryon, & 

Minami, 2016). The Cronbach’s alpha value for the combined Academic Success and 

Productivity subscales in this study was .88, indicating strong internal consistency.  

Grades. Students’ first quarter reading and mathematics grades were used as measures of 

academic performance. Grades have been used extensively in previous research as a measure of 

students’ academic performance across various content area  (Perfect, Levine‐Donnerstein, 

Archbold, Goodwin, & Quan, 2014; Rasmussen & Laumann, 2012; Valiente et al., 2011). Due to 

differences in grading systems across school districts, grades were dichotomously scored based 

on level of proficiency, whereby students were either assigned a P (proficient) or an N (not 

proficient). Proficiency was determined by whether a student received a “satisfactory” grade or a 

numerical score at or above 75%, a threshold with ecological validity based on feedback from 

school partners. Grades in reading and mathematics were analyzed separately to obtain an 
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understanding of how various self-regulatory mechanisms influence functioning in each content 

area.  

Covariates. Free/reduced lunch status and gender were included in analyses as 

covariates. Subsidized lunch status is typically used in studies of self-regulation (Rouse & 

Fantuzzo, 2016). In this study, receiving subsidized lunch support was coded as one. This study 

also included gender, with males coded as one. Including these covariates is typical for this area 

of research (Garner & Waajid, 2012; Graziano et al., 2007; Howse et al., 2003; Morris et al., 

2013; Rhoades et al., 2016; Valiente et al., 2010). 

Data Preparation 

Missing data. During the data preparation phase, missing data were examined. Only six 

of twelve measures had any missing values (e.g., HTKS, Happy-Sad Stroop, free/reduced lunch 

status, reading grades, and mathematics grades). No measure had more than 5% missing data; 

other measures only had between 0.7 and 4.3% missing data. Patterns of missingness were 

investigated using various graphs (e.g. dummy code matrix and missing data matrix) and did not 

display any clear pattern of missingness. Additionally, missing data patterns were examined 

using Little’s MCAR test. Results suggested data was missing at random, as Little’s MCAR test 

did not reach statistical significance [χ2 (44) = 55.53, p = .11]. Given the low percentage of 

missing data, no clear pattern of missingness, and a lack of statistical significance in terms of 

Little’s MCAR test, all missing data were determined to be missing at random. 

Since composite scores were generated as part of my investigation, only cases that were 

missing more than one measure of a composite were excluded in analyses. Two cases met this 

criterion. Six other cases were also excluded due to missing data on other variables including 

free/reduced lunch status and report card grades. A total of nine subjects were excluded from 
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analyses, which is 6.5% of subjects overall. Subjects included and not included in analyses did 

not differ significantly on any socio-demographic variables, including age [t(135)= -.37, p > .05], 

gender [t(136)= .10, p > .05], and SES [t(135)= .06, p > .05].  

Composite scores. Composite scores were generated as appropriate to represent 

constructs of interest. There are various methods that can be utilized for generating composite 

scores, including formative and reflective measurement strategies (Willoughby, Blair, & The 

Family Life Project Investigators, 2016; Willoughby, Holochwost, Blanton, & Blair, 2014; 

Bollen & Bauldry, 2011). Formative measurement generates a standardized mean score, whereas 

reflective measurement creates factors scores utilizing confirmatory factor analysis (CFA). 

Within the self-regulation literature, researchers have often utilized confirmatory factor analysis 

(CFA) to develop factor scores for various constructs (i.e., Miyake et al., 2000; Willoughby et 

al., 2012). There are advantages of using CFA outlined by Willoughby and colleagues (2014) 

including reduction of multiple measures into a latent construct, increased statistical power, and 

addressing the complexities associated with the interconnectedness of various self-regulatory 

mechanisms (i.e., task impurity problem; Miyake et al., 2000).  

Despite some advantages, there are also many concerns related to CFA in the 

development of composites within the self-regulation literature. According to Willoughby and 

colleagues (2014), correlations between various measures of self-regulation are often weak, 

resulting in latent variables that have limited maximal reliability. In addition, CFA represents 

mechanisms of self-regulation more narrowly than the theoretical conceptualization. As such, 

using CFA for composite score development can create a mismatch between the 

conceptualization and measurement of mechanisms of self-regulation (Willoughby et al., 2014).  
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Willoughby and colleagues (2016) examined whether mechanisms of self-regulation are 

better characterized as formative or reflective indicators. Using vanishing tetrad tests, they tested 

the fit of models in which mechanisms of self-regulation were used as formative or reflective 

indicators of latent constructs. Results indicated that self-regulatory mechanisms are better 

represented as formative indicators. Thus, Willoughby and colleagues (2016) recommend using 

formative methods to generate composite scores when examining self-regulatory mechanisms, 

which is the approach used in my study.   

Initially, bivariate correlations were computed to determine if composite scores were 

possible, as is consistent with prior research using similar measures (e.g., Carlson & Moses, 

2001; Fay-Stammbach et al., 2017). All measures that yielded significant correlations (> .30) 

were utilized to generate a composite for constructs of interest, a threshold in line with research 

in this area (e.g., Carlson & Moses, 2001; Fay-Stammbach et al., 2017). If correlations between 

measures did not meet this threshold, they were not combined into a composite score. Once 

bivariate correlations were computed, raw scores from measures that were significantly 

correlated were then transformed into z scores using the overall sample mean and standard 

deviation. Z scores were then averaged to create a composite score for each construct of interest, 

where appropriate. This process is consistent with other researchers who have utilized formative 

methods for generating composite scores (e.g., Fay-Stammbach et al., 2017; Willoughby et al., 

2016). 

It is important to note that two of the three proposed constructs had only two potential 

measures from which a composite score could be generated (i.e., attention and emotion 

regulation). In both of these instances, proposed measures did not yield strong enough 

correlations to create a composite score. As such, decisions had to be made about whether to 
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maintain a measure separately or to forgo use in analyses. This decision-making process was 

informed by several factors, including the necessity to maintain adequate power and to retain 

important predictors. Further details regarding the generation of composite scores as well as the 

rationale for decisions regarding measures, are outlined below.  

Attention composite score. As shown in Table 4, the SWAN Inattentive Scale (Swanson 

et al., 2012) and the REDSOCS Off-Task Behavior measure (Bagner et al., 2010; Jacobs et al., 

2000) were significantly correlated (r = .20); however, the correlation did not meet the 

aforementioned threshold to combine measures into a composite score. Instead, both measures 

were entered into models as separate measures of attention. Each of these measures capture 

attentive behavior; however, the SWAN Inattentive Scale is a more global measure and the 

REDSOCS Off-Task Behavior provides a snapshot of attention functioning during academic 

activities. Even though these measures were not strongly correlated, both types of attentional 

functioning are important to include when examining the associations between attention and 

academic performance (Garner et al., 2013; Gray, Rogers, Martinussen, & Tannock, 2015; 

Pingault, Tremblay, & Vitaro, 2011; Zoromsk, Owens, Evans, & Brady, 2005). Table 4 also 

includes descriptive statistics of the attention measures in order to provide an understanding of 

measures before composites and analyses.  

Table 4 

Descriptive Statistics and Correlation Matrix for Attention Measures  

  
M 

(SD) 
SWAN Inattentive Scale 

REDSOCS Off-Task 

Behavior Score 

SWAN Inattentive Scale 
1.48 

(0.96) 
1 -- 

REDSOCS Off-Task 

Behavior Score 

31.82 

(19.16) 
0.20* 1 

 *p < .05.   
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Inhibitory control composite score. As seen in Table 5, the Happy-Sad Stroop Task 

(Lagattuta et al., 2011), the HTKS (McClelland et al., 2007; Ponitz et al., 2009), and the APRS 

Impulse Control Scale (DuPaul et al., 1991) were all significantly correlated. The correlation 

between the Happy-Sad Stroop and the HTKS was .36. However, the correlations between the 

APRS Impulse Control Scale and the Happy-Sad Stroop and the HTKS, which were .28 and .18, 

respectively, were not strong enough to combine measures into a composite score. Given that the 

Happy-Sad Stroop and the HTKS have been more frequently used as indicators of inhibitory 

control (e.g., Fay-Stammbach et al., 2017; Fuhs, Farran, & Nesbitt, 2015; Fuhs, Nesbitt, Farran, 

& Dong, 2014), these two measures were combined to generate a composite score and the APRS 

Impulse Control Scale was excluded. Table 5 also includes descriptive statistics of inhibitory 

control measures in order to provide an understanding of measures before composites and 

analyses.  

Table 5 

Descriptive Statistics and Correlation Matrix for Inhibitory Control Measures 

  
M 

(SD) 

APRS – Impulse 

Control Scale 

Happy/Sad Stroop 

Task 
HTKS 

APRS – Impulse 

Control Scale 

8.54 

(2.15) 
1 -- -- 

Happy-Sad 

Stroop Task 

15.00 

(3.21) 
0.28** 1 -- 

HTKS  
38.94 

(15.34) 
0.18* 0.36** 1 

*p < .05.  **p < .01.  

Emotion regulation composite score. As seen in Table 6, the Emotion Regulation 

Checklist (Shields & Cicchetti, 1997) and the PSRA-AR Positive Emotion Scale (Bassett et al., 

2007) were not significantly correlated (r = .06). This likely reflects differences in both the raters 

and observed behavior, as the Emotion Regulation Checklist is a teacher rating scale based on 
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extensive observations of a child in the classroom whereas the PSRA-AR Positive Emotion Scale 

is based on a data collector’s observation of 45 minutes of interaction with a student during the 

one-on-one assessments. These measures also have items that may be measuring different areas 

of functioning in terms of emotional self-regulation. Given that the Emotion Regulation 

Checklist has been more frequently examined in the literature as a measure of emotion regulation 

(e.g., Graziano & Hart, 2016; Graziano et al., 2007; Trentacosta & Izard, 2007) and reflects a 

much broader sample of observed behavior, this measure was used for the emotion regulation 

variable and the PSRA-AR Positive Emotion Scale was excluded. Table 6 also includes 

descriptive statistics of emotion regulation measures in order to provide an understanding of 

measures before composites and analyses.  

Table 6 

Descriptive Statistics and Correlation Matrix for Emotion Regulation Measures 

  
M 

(SD) 

Emotion Regulation 

Checklist 

PSRA-AR Positive 

Emotion Scale 

Emotion Regulation Checklist 
2.66 

(0.40) 
1 -- 

PSRA-AR Positive Emotion 

Scale 

1.78 

(0.65) 
0.06 1 

  

 Final measures and variables included in analyses. Table 7 shows the final measures 

and variables used in analyses. As aforementioned, some measures did not yield strong enough 

correlations to generate composite scores. Thus, decisions about whether to analyze a measure 

separately or to forgo its inclusion in analyses were made based power, theoretical 

considerations, and the extent of use in prior research. Regarding measures of attention, the 

SWAN Inattentive Scale and REDSOCS Off-Task Behavior were not strongly correlated, but 

each was entered into the model separately given that they are both considered important and 
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valid measures of attentional functioning. In terms of inhibitory control, only two of the three 

measures were strongly correlated. As such, the Happy-Sad Stroop and the HTKS were 

combined to generate a composite score of inhibitory control and the APRS Impulse Control 

Scale was excluded from analyses. With regard to emotion regulation, the two measures were not 

significantly correlated. The Emotion Regulation Checklist was added into the model and the 

PSRA-AR Positive Emotion Scale was excluded from analyses given the Emotion Regulation 

Checklist is widely used in the literature and presumably represents a much larger sample of 

child behavior.  
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Table 7 

Final Measures and Variables Used in Multilevel Models 

Independent Variables Measures 

Attention 

• Strengths and Weaknesses of ADHD Symptoms and 

Normal Behavior – Inattentive Scale 

• Revised Edition of the School Observation Coding 

System – Off-Task Behavior 

Inhibitory Control  • Happy/Sad Stroop 

• Head-Toes-Knees-Shoulders Task 

Emotion Regulation • Emotion Regulation Checklist  

Dependent Variables Measures 

Teacher-Rated Academic 

Performance 
• Academic Performance Rating Scale – Academic 

Success and Productivity Subscales Combined 

Reading Proficiency • Reading Proficiency Level (derived from report card 

grades) 

Mathematics Proficiency • Mathematics Proficiency Level (derived from report 

card grades) 

Covariates Measures 

Gender • Parent report of child’s gender 

Socioeconomic Status • Parent report of free/reduced lunch status 

 

Outliers. Data were examined for potential univariate and multivariate outliers. Analysis 

of frequency distributions, histograms, and box plots did not reveal any significant outliers. In 

addition, all raw scores for variables were standardized by transforming the data into z-scores to 

further investigate for univariate outliers. No single z-scores exceeded ± 4.00, which is an 

acceptable rule given the sample size was larger than 100 (Stevens, 2001). In terms of 

multivariate outliers, Mahalanobis distance values were calculated for each variable and tested 
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using chi-square criteria. No outliers were indicated, as no Mahalanobis distance values 

exceeded the critical value of 18.47 at p < .001.  

Data Analysis Approach 

As previously noted, the 129 students in this study had 68 different teachers, with one to 

seven students per teacher. Due to the hierarchical nature of the data (i.e., students nested within 

teachers), multilevel modeling was used. This type of analysis is commonly used to analyze 

variance in outcomes when predictor variables are nested, as nested data inherently violate the 

assumption of independence of errors required for other types of analyses, such as the General 

Linear Model (Tabachnick & Fidell, 2012). Multilevel modeling addresses this issue by 

permitting intercepts and slopes to vary between levels and/or groups (Tabachnick & Fidell, 

2012; Snijders & Bosker, 1999), which accounts for the variance that is shared by children with 

the same teacher. As such, multilevel modeling was used to examine associations between 

various self-regulatory mechanisms and academic performance for all analyses. Additionally, 

different types of multilevel modeling were used for research questions addressing continuous 

and dichotomous outcome variables, including multilevel regression (i.e., linear mixed) and 

multilevel logistic regression (i.e., generalized linear mixed).  

Analyses related to research questions. In order to establish a common metric for 

interpretation, all continuous predictors were standardized to have a mean of 0.00 and a standard 

deviation of 1.00 (Burchinal et al., 2018; Hedges, 2008; Willoughby et al., 2012). I used a top- 

down multilevel modeling approach to analyze each research question (Kim, Anderson, & 

Keller, 2014; Ryoo, 2011). First, I fit unconditional means models and calculated intraclass 

correlation coefficients (ICC) using variance components to determine the amount of variance in 

the dependent variables explained by grouping structure (i.e., teacher). Next, full models were 
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fit, which included all Level-1 predictor variables and covariates (i.e., two attention measures, 

the composite score for inhibitory control, and the emotion regulation measure as well as gender 

and free/reduced lunch status). Since students were nested within teachers, teacher was 

accounted for at Level-2 of the model, though no Level-2 predictors were included. Predictor 

variables that were not statistically significant in the full models were trimmed one at a time in 

order of the smallest statistical significance until models included only statistically significant 

predictors. Given that gender and free/reduced lunch status were control variables, they remained 

in the model regardless of significance level. Once statistically significant predictors were 

obtained, additional analysis included systematically examining the significant predictor 

variables as random effects. Random effects could not be modeled initially, as this presented 

issues with model convergence. Analyses specific to each research question are described below. 

Analyses specific to each research question are described below.  

Research question one. The associations between cognitive and emotional indicators of 

self-regulation (i.e., attention, inhibitory control, and emotion regulation) and academic 

performance, as measured by teacher ratings of overall academic performance, were analyzed 

using multilevel regression analysis. Gender and free/reduced lunch were included as covariates. 

All models were fit using maximum likelihood estimation, as comparisons between successive 

models using model fit criteria involved both regression coefficients and variance components 

(Hox, 2010).  

First, the unconditional random intercept model was fit to the data with teacher-rated 

academic performance as the dependent variable and teacher as the Level-2 variable. This model 

provided an estimated mean teacher-rated academic performance score for all teachers. It also 
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provided a partitioning of variance between Level-1 and Level-2 (Heck, Thomas, & Tabata, 

2014). The equations below represent variation at each level: 

Level-1 Model 

 Yij = β0j + 𝜀ij 

Level-2 Model 

 β0j  = γ00 + e0j    

Combined Model  

 Yij = γ00 + e0j + 𝜀ij 

Where: 

 Yij = teacher-rated academic performance for student i with teacher j  

β0j = average teacher-rated academic performance for teacher j 

γ00 = grand mean of teacher-rated academic performance  

e0j  = teacher/level-2 error 

𝜀ij = child/level-1 error 

This model also provided a measure of dependence of the Level-2 variable through the ICC, 

which is an estimate of the amount of variance in a dependent variable explained by grouping 

structure (Hox, 2010). The ICC value was calculated using this formula  

𝐼𝐶𝐶 =  
𝜎𝐵

2

(𝜎𝐵
2 + 𝜎𝑊

2 )
 

where σ2 represents the variance, B represents between groups, and W represents within groups 

in the unconditional model.  

Second, the full model for research question one was fit, which included all Level-1 

predictor variables and covariates (e.g., two attention measures, the composite score for 
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inhibitory control, and the emotion regulation measure as well as gender and free/reduced lunch 

status). The equations for the full model are shown below. Of note, all Level-1 variables were 

modeled as fixed effects in the initial examination of the full model in order to ensure model 

convergence (Heck et al., 2014). The intercept was allowed to vary across teacher groups.  

Level-1 Model 

     Yij = β0j + γ10 X1ij + γ20 X2ij  + γ30 X3ij +  γ40 X4ij +  γ50 X5ij  + γ60 X6ij + 𝜀ij 

Level-2 Model 

     β0j  = γ00 + e0j    

Combined Model  

     Yij = γ00 + e0j + β0j + γ10 X1ij + γ20 X2ij  + γ30 X3ij +  γ40 X4ij +  γ50 X5ij  + γ60 X6ij + 𝜀ij 

Where: 

         Yij = teacher-rated academic performance for student i with teacher j  

              β0j = random intercept for teacher j 

γ00 = fixed intercept for students  

γ10 – γ60 = fixed slopes for each independent variable 

X1ij – X6ij = independent variables (off-task behavior, inattention, inhibitory control, 

emotion regulation, gender, free/reduced lunch) 

e0j  = teacher/level-2 error 

𝜀ij = child/level-1 error 

Once a model with only statistically significant predictors was obtained (i.e., after 

trimming non-significant predictors), additional exploratory analysis included systematically 

examining significant predictor variables as random effects. Due to issues with model 
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convergence and non-significant variance components, all predictors were maintained as fixed. 

Model deviance statistics were then examined for all models with predictor variables modeled as 

fixed in order to determine the most parsimonious model.  

 Research questions two and three. The associations between cognitive and emotional 

mechanisms of self-regulation (i.e., attention, inhibitory control, and emotion regulation) and 

academic performance, as measured by proficiency in reading and mathematics, were analyzed 

using multilevel logistic regression. Gender and free/reduced lunch were included as covariates. 

Given the similarities between outcome variables for research questions two and three (e.g., both 

dichotomously scored measures of proficiency), this summary encompasses the use of multilevel 

logistic regression for both research questions, as the only difference is that research question 

two included reading proficiency as the outcome measure and research question three examined 

mathematics proficiency. All models for research questions two and three were fit using robust 

estimation. Deviance statistics were not utilized for these research questions to assess model fit, 

as they are misleading and inaccurate for multilevel logistic regression (Hox, 2010).  

First, unconditional random intercept models were fit to the data with reading and 

mathematics proficiency as the dependent variables and teacher as the Level-2 variable. These 

models provided a partitioning of variance between Level-1 and Level-2 (Heck et al., 2014). The 

equations below represent variation at each level for both research questions: 

Level-1 Model 

 logitij = β0j  

Level-2 Model 

 β0j  = γ00 + e0j    

Combined Model  
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 logitij = γ00 + e0j  

Where: 

 logitij = log odds of proficiency versus non-proficiency for student i with teacher j  

β0j = average teacher-rated academic performance for teacher j 

γ00 = grand mean of teacher-rated academic performance  

e0j  = teacher/level-2 error 

These models also provided a measure of dependence of the Level-2 variable through the ICC. 

The ICC values for both research questions were examined using this formula 

𝜌 =
𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛

2

(𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛
2 + 3.29𝑊𝑖𝑡ℎ𝑖𝑛)

 

where 𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛
2  is the proportion of variance between units relative to 𝜎𝐵𝑒𝑡𝑤𝑒𝑒𝑛

2 + 3.29𝑊𝑖𝑡ℎ𝑖𝑛, 

which represents the total variance (Heck et al., 2012).  

Next, the full models for each research question were fit, which included all Level-1 

predictor variables and covariates (e.g., two attention measures, the composite score for 

inhibitory control, and the emotion regulation measure as well as gender and free/reduced lunch 

status). The equations for the full models are shown in the equations below. Similar to research 

question one, all Level-1 predictor variables were modeled as fixed effects in the initial 

examination of the full models in order to ensure model convergence (Heck et al., 2012). The 

intercepts were allowed to vary across teachers.  

Level-1 Model 

     logitij = β0j + γ10 X1ij + γ20 X2ij  + γ30 X3ij +  γ40 X4ij +  γ50 X5ij  + γ60 X6ij 

Level-2 Model 

     β0j  = γ00 + e0j    
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Combined Model  

     logitij = γ00 + e0j + β0j + γ10 X1ij + γ20 X2ij  + γ30 X3ij +  γ40 X4ij +  γ50 X5ij  + γ60 X6ij 

Where: 

         logitij = log odds of proficiency versus non-proficiency for student i with teacher j 

              β0j = random intercept for teacher j 

γ00 = fixed intercept for students  

γ10 – γ60 = fixed slopes for each independent variable 

X1ij – X6ij = independent variables (off-task behavior, inattention, inhibitory control, 

emotion regulation, gender, free/reduced lunch) 

e0j  = teacher/level-2 error 

Once a model with only statistically significant predictor variables was obtained (i.e., 

after trimming non-significant predictors), additional exploratory analysis included 

systematically examining significant predictors as random effects. Due to issues with model 

convergence and non-significant variance components, all predictors were maintained as fixed. 

Model deviance statistics were not calculated, as variance components cannot be used to 

compare regression coefficients across models or to examine reduction in variance in the same 

way as other models with continuous outcome variable. Each time a predictor is added to a 

model the variance at Level-1 is rescaled, which ultimately impacts the variance estimate at 

Level-2. As such, regression coefficients or any calculations of reduction in variance can be 

misleading and should not be interpreted (Hox, 2010).    

Assumptions of multilevel linear modeling. Multilevel linear modeling, which was 

used to analyze research question one, has various assumptions that must be met, including 

normality, linearity, and homoscedasticity. Similar assumptions are not required to be met for 
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multilevel logistic regression, which was used to analyze research questions two and three, as 

dependent variables are dichotomous for this type of analysis (Hox, 2010). Teacher-rated 

academic performance, the outcome variable for research question one, was the only dependent 

variable examined for deviations from normality, as it was the only continuous dependent 

variable in my study. As seen in Table 8, skewness and kurtosis values for this variable did not 

suggest departures from normality. Additionally, analysis of a histogram did not suggest a 

skewed distribution. Furthermore, results of a Shapiro-Wilk test indicated that the distribution of 

teacher-rated academic performance was normal (p > .05).  

Linearity was examined using bivariate scatterplots and partial regression plots. Based on 

these plots, associations between predictor variables and teacher-rated academic performance, 

the only continuous outcome measures, appeared linear. No issues related to multicollinearity 

were revealed through examination of predictor variable correlations (see Table 10) or through 

examination of values for the variance inflation factor (VIF) for each predictor. 

Homoscedasticity was examined using a scatterplot matrix and no concerns were revealed.  

Software. All data were analyzed using SPSS Version 24.0. There are several other 

programs that can be used for multilevel modeling (R, Stata, SAS, HLM, Mplus, etc.). Decisions 

regarding which program to use for multilevel modeling typically involve consideration of the 

level of complexity of analyses. Although other programs have advantages for more complex 

analyses, SPSS Version 24.0 generates the same results as other programs for multilevel 

regression and multilevel logistic regression, which are the analyses I utilized for my study (Hox, 

2010). 
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Summary  

Using baseline data from 129 first and second graders enrolled in the parent study’s self-

regulation intervention study, I examined how indicators of self-regulatory mechanisms 

contribute to academic performance for students in early elementary school with social-

emotional difficulties. Sources of data included teacher reports, observation, school records, and 

direct assessment. After screening for missing data and analytic assumptions, creating 

composites, and generating descriptive statistics, I used multilevel regression to examine 

research question one, which examined the associations between key cognitive and emotional 

indicators of self-regulation and academic performance, as measured by a teacher-rating scale of 

performance, after controlling for gender and free/reduced lunch. I used multilevel logistic 

regression to examine research questions two and three, which examined the associations 

between key cognitive and emotional self-regulation indicators and proficiency in reading and 

mathematics after controlling for gender and free/reduced lunch. The results of analyses are 

reviewed in detail in the following chapter. 
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CHAPTER 4: RESULTS 

 In this study, I examined the influence of attention, inhibitory control, and emotion 

regulation on academic performance for first and second grade students with social-emotional 

difficulties, addressing three main research questions: (1) What are the associations between key 

cognitive and emotional self-regulation mechanisms (e.g., attention, inhibitory control, and 

emotion regulation) and teacher-rated academic performance, when controlling for gender and 

free/reduced lunch status?, (2) What are the associations between key cognitive and emotional 

self-regulation mechanisms and academic performance as measured by proficiency in reading, 

when controlling for gender and free/reduced lunch status?, and (3) What are the associations 

between key cognitive and emotional self-regulation mechanisms and proficiency in 

mathematics, when controlling for gender and free/reduced lunch status? In order to examine 

these research questions, baseline data from a large intervention study with multi-method 

measures of self-regulation and academic performance were analyzed. This chapter presents the 

results of my examination of research questions, which includes descriptive statistics, a 

correlation matrix, and analytic models for each research questions.  

Descriptive Statistics and Correlation Matrix 

 Table 8 shows descriptive statistics for each of the three outcome variables including 

teacher-rated academic performance, reading proficiency, and mathematics proficiency, 

respectively. Since proficiency levels in reading and mathematics were coded dichotomously, the 

values presented represent the percent of students coded as proficient in each content area. Thus, 

of the 129 participants, 22% were proficient in reading and 34% were proficient in mathematics. 
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Given that scores on teacher-rated academic performance can fall within a range of 16-80 with 

higher scores reflecting better performance, the descriptive statistics below indicate overall lower 

performance in this area for this sample. When compared to norms developed by DuPaul and 

colleagues (1991), which indicated that average scores are typically about 72 (SD = 15.14), my 

study’s sample is more than one standard deviation below average. Each dependent variable 

overall reflects that the sample was experiencing academic difficulties.  

Table 8 

Descriptive Statistics of Dependent Variables  

  
N M or % SD Min Max 

Skewness 

(SE Skew.) 

Kurtosis 

(SE Kurt.) 

Dependent Variables       

Teacher-Rated 

Academic 

Performance 

129 42.90 10.04 23.00 65.00 
0.07 

(0.21) 

0.66 

(0.42) 

Reading 

Proficiency 
129 22% -- 0 1 -- -- 

Mathematics 

Proficiency 
129 34% -- 0 1 -- -- 

Note. Higher scores on teacher-rated academic performance indicates better academic 

performance.  

 

Table 9 shows descriptive statistics for unstandardized and standardized independent 

variables and covariates at the student level used in multilevel models. Prior to standardization, 

the descriptive statistics for REDSOCS Off-Task Behavior suggested that the average percent of 

time during which the sample was off-task was 31.82. With regard to the SWAN Inattentive 

Scale, the unstandardized descriptive statistics suggested the sample in general was inattentive, 

as scores above one on this scale suggest difficulties. Due to the procedures used to develop a 

composite score, the mean score for inhibitory control was close to 0 with a standard deviation of 

.40. Regarding the Emotion Regulation Checklist, which prior to standardization could have 
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scores ranging from 1 to 4 with higher scores suggesting better emotion regulation skills, 

descriptive statistics suggest higher levels of dysregulation in this sample, as scores above two 

suggest students are engaging in dysregulated behavior “often” or “almost always”. Since the 

covariates gender and free/reduced lunch status were coded dichotomously, the values presented 

represent the percent of students who are male and qualified for free/reduced lunch, which 

comprises the majority of the sample.   

Table 9 

Descriptive Statistics of Unstandardized and Standardized Independent Variables and 

Covariates 

  
N M or % SD Min Max 

Skewness 

(SE Skew.) 

Kurtosis 

(SE Kurt.) 

Independent Variables       

REDSOCS % Off-Task 129 
31.82 

(0.00) 

19.16 

(1.00) 

1.67 

(-1.57) 

87.50 

(2.91) 

0.60 

(0.21) 

-0.16 

(0.42) 

SWAN Inattentive Scale 129 
1.48 

(0.00) 

0.96 

(1.00) 

-2.00 

(-3.64) 

3.00 

(1.58) 

-0.51 

(0.21) 

.27 

(0.42) 

Inhibitory Control 

Composite 
129 

-0.02 

(0.00) 

0.86 

(1.00) 

-2.54 

(-2.91) 

1.37 

(1.60) 

-1.07 

(0.21) 

0.57 

(0.42) 

Emotion Regulation 

Checklist 
129 

2.66 

(0.00) 

0.40 

(1.00) 

1.46 

(-2.98) 

3.38 

(1.79) 

-0.52 

(0.21) 

-0.26 

(0.42) 

Covariates        

Gender (male) 129 68% - 0 1 - - 

Receives Free/Reduced 

Lunch 
129 76% - 0 1 - - 

Note. Higher scores on the REDSOCS and the SWAN Inattentive Scale indicate higher levels of 

inattentive behavior. A higher score on the inhibitory control composite indicates poorer 

inhibitory control. A higher score on the Emotion Regulation Checklist indicates better emotion 

regulation skills. The scores in parentheses reflect descriptive statistics for standardized 

continuous predictors.  

 

Table 10 displays the correlation matrix for the variables used in the multilevel model 

analyses. These correlations reflect associations among variables when clustering is not taken 

into account. Correlations between gender and most variables were not statistically significant, 
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except for both measures of attention for which there were positive, statistically significant 

correlations. With respect to free/reduced lunch status, there were statistically significant 

negative correlations with inhibitory control, emotion regulation, and proficiency in reading and 

in mathematics. In addition, REDSOCS Off-Task Behavior and reading proficiency were also 

significantly correlated; however, not in the expected direction, as this correlation suggests that 

as inattention increases so does the chance of being proficient in reading. Furthermore, inhibitory 

control and teacher-rated academic performance yielded a positive, statistically significant 

correlation; however, there were no statistically significant correlations between inhibitory 

control and proficiency in reading or mathematics. Statistically significant correlations were 

found between emotion regulation and teacher-rated academic performance; however, no 

statistically significant correlations were found between emotion regulation and proficiency in 

reading or mathematics. Lastly, each dependent variable (i.e., teacher-rated academic 

performance, reading proficiency, and mathematics proficiency) yielded positive statistically 

significant correlations with the other dependent variables.  



 

 

8
2
 

      Table 10 

      Correlation Matrix for All Variables 

  

Teacher-Rated 

Academic 

Performance 

Reading 

Proficiency 

Math 

Proficiency 

SWAN 

Inattentive 
REDSOCS 

Inhibitory 

Control 

Emotion 

Regulation 
Gender  

Free/Reduced 

Lunch Status 

Teacher-

Rated 

Academic 

Performance 

1 -- -- -- -- -- -- -- -- 

Reading 

Proficiency 
0.27** 1 -- -- -- -- -- -- -- 

Math 

Proficiency 
0.27** 0.44*** 1 -- -- -- -- -- -- 

SWAN 

Inattentive  
-0.69*** -0.12 -0.13 1 -- -- -- -- -- 

REDSOCS -0.14 0.24** 0.02 0.20* 1 -- -- -- -- 

Inhibitory 

Control 
0.36*** 0.11 0.24** -0.25** -0.06 1 -- -- -- 

Emotion 

Regulation 
0.38*** 0.01 0.05 -0.35*** -0.16 0.23* 1 -- -- 

Gender -0.08 0.13 0.11 0.21* 0.25** -0.01 -0.14 1 -- 

Free/Reduced 

Lunch Status 
-0.13 -0.18 -0.32*** 0.00 -0.04 -0.22* -0.23* -0.11 1 

       *p < .05.  **p < .01. ***p < .001 
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Research Question One 

In order to examine research questions one (i.e., What are the associations between key 

cognitive and emotional self-regulation mechanisms and teacher-rated academic performance, 

when controlling for gender and free/reduced lunch status?), multilevel regression was conducted 

using a top-down approach to multilevel modeling (Kim, Anderson, & Keller, 2014; Ryoo, 

2011). Table 11 shows the results for the unconditional model, which indicated no statistically 

significant variation across groups, as indicated by the Wald Z test. The Wald Z test summarizes 

the ratio of the estimate to its standard error; however, this test is two-tailed and variances cannot 

be smaller than zero (Heck et al., 2014). As such, Hox (2010) recommended conducting the 

Wald Z test as one-tailed by dividing the significance level by two. Therefore, all significance 

levels reported were divided by two in order to obtain more accurate results. The Wald Z test of 

the unconditional model suggested that multilevel analysis was not warranted; however, the ICC 

value, which was 0.1057, indicated that 10.57% of the variance in teacher-rated performance was 

due to the grouping structure of the data (e.g., students within teachers). Given that the ICC value 

exceeded 7%, multilevel analysis was warranted (Snijders & Bosker, 1999). Additionally, 

multilevel analysis was necessary for maintaining analytic consistency across research questions 

and because teacher differences explained variance despite the lack of statistical significance 

evidence by the Wald Z test. Furthermore, although the number of child participants per teacher 

was small (M = 1.90, range: 1-7), the grouping structure of this study still violated the 

assumption of independence of observation for those who shared the same teacher. Thus, 

proceeding with multilevel modeling resulted in more accurate standard error estimates 

(Raudenbush & Bryk, 2002).  
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Table 11 

Unconditional Model for Teacher-Rated Academic Performance 

Variable Estimate SE t-ratio 

Fixed Effect    

Intercept 42.97*** 0.94 45.49 
    

Variable Variance SE Wald Z 

Random Effect    

Intercept Between Participants 10.57 10.61 1.00 

Level 1 Error 89.39 14.31 6.25*** 

    

Deviance (-2 Log Likelihood) 959.04 

Note. The Wald Z test was conducted as one-tailed for specified reasons.   

*p < .05.  **p < .01.  ***p < .001. 

 

 Next, the full model for research question one was fit, which included all Level-1 

variables. The only predictor variable that was trimmed from the model was attention as 

measured by REDSOCS Off-Task Behavior. Statistically significant predictor variables 

maintained in the model included attention as measured by the SWAN, inhibitory control, and 

emotion regulation. Results are presented in Table 12. 

Once statistically significant predictors were obtained, additional exploratory analysis 

included systematically examining significant predictor variables as random effects. All 

predictor variables were first entered into the model simultaneously as random effects. As 

expected, this analysis was not possible due to failure of model convergence. Next, each 

predictor was entered into the model as random while other predictors remained fixed. No 

statistically significant variance components were yielded for any predictor variable modeled as 

a random effect. As such, all predictors were maintained as fixed effects in the final model.  

Model deviance statistics were examined for all models with predictor variables modeled 

as fixed in order to determine the most parsimonious model. Tables 11 and 12 include the -2 Log 
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Likelihood values for each model, which were utilized to conduct a likelihood ratio test. This test 

follows a chi-square distribution with degrees of freedom equaling the difference in the number 

of parameters between two models (Heck et al., 2014). Adding predictors to the null model 

significantly improved the model’s fit to the data. When comparing other models, the differences 

in model deviance values were small and not statistically significant; therefore, the restricted 

model (e.g., Model2) was accepted as the best fit, as it provides a similar fit to the data with 

fewer parameter estimates.    

Table 12 

Multilevel Models of Teacher-Rated Academic Performance 

 Model1 (Full Model) Model2 (Final Model) 

Variable Est. SE t-ratio Est. SE t-ratio 

Level 1 – Fixed Effects       

Intercept  43.12*** 1.65 26.12 43.17*** 1.65 26.23 

REDSOCS Off-Task -0.22 0.66 -0.33 - - - 

SWAN Inattentive Scale -6.03*** 0.64 -9.48 -6.06*** 0.63 -9.64 

Inhibitory Control 1.67* 0.63 2.63 1.67* 0.64 2.62 

Emotion Regulation 1.38* 0.68 2.04 1.39* 0.67 2.06 

Gender (Male) 1.44 1.30 1.10 1.36 1.28 1.06 

Free/Reduced Lunch -1.59 1.48 -1.08 -1.58 1.48 -1.07 

       

Variables Variance SE Wald Z Variance SE Wald Z 

Level 2 - Random Effect       

Intercept Between 

Participants 
15.00 6.84 2.19* 14.79 6.78 2.18* 

Level 1 Error 32.35 5.82 5.56*** 32.52 5.83 5.58*** 

Deviance Statistic 

(-2 Log Likelihood) 
855.15 855.26 

Note. The Wald Z test was conducted as one-tailed for specified reasons. Gender was coded as male = 1 and 

female = 0. Free/reduced lunch was coded as receives free/reduced lunch = 1 and does not receive free/reduced 

lunch = 0. Deviance statistics were calculated using the null model as a comparison of fit. Continuous 

predictor variables were standardized. 

*p < .05.  **p < .01.  ***p < .001. 
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Results of the final model indicated that the addition of the within-group predictors 

reduced the residual within-group variability (e.g., from 89.39 to 32.52) in comparison to the null 

model. This reduction in variance was then used to calculate a reduction in variance estimate for 

the within-teacher and between-teacher components of the model. It was calculated as follows: 

(𝜎𝑀1
2 − 𝜎𝑀2

2 )

𝜎𝑀1
2  

where M1 refers to the variance component for the unconditional model and M2 refers to the 

final model’s variance component. This is calculated as 0.6253 [(89.39 – 33.52 = 55.87)/89.39 = 

0.6250], which suggested that all predictors entered at Level-1 in the final model accounted for 

62.5% of within-teacher variability in teacher-rated academic performance. The predictors also 

impacted the residual variability in intercepts at the teacher level. Specifically, the initial 

variance component for teachers from the null model was 10.57. After variables were added, the 

between-teacher variance in teacher-rated academic performance scores increased to 14.79. In 

addition, the initial variability in academic performance as measured by the APRS observed 

between teachers (e.g., the ICC) increased from 10.57% to 31.26% in the final model. Results 

also suggested that after the introduction of all predictor variables, there was still significant 

variability to be explained both within and between teachers. This indicated that other predictors 

within and between teachers might explain the residual variability in intercepts.  

 Overall, three of four predictor variables were significantly associated with teacher-rated 

academic performance on the APRS while controlling for gender and free/reduced lunch status. 

As a frame of reference, the APRS yields scores ranging from 16 to 80. As hypothesized, the 

SWAN Inattentive Scale was the strongest predictor of teacher- rated academic performance. 

Results indicated that a one standard deviation increase in inattention was associated with a 6.06 

point decrease in teacher-rated academic performance, which is a decrease of 7.61%. Inhibitory 
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control was also a significant predictor of academic performance, as expected. Results indicated 

that a one standard deviation increase in inhibitory control corresponded with a 1.67 increase 

(i.e., 2.09%) in teacher-rated academic performance. Lastly, as also expected, emotion regulation 

was associated with academic performance in a positive direction, as a one standard deviation 

increase in emotion regulation yielded an increase of 1.39 (i.e., 1.74%) in teacher-rated academic 

performance. One measure of inattention (i.e., the REDSOCS Off-Task Behavior), gender, and 

free/reduced lunch status were not significantly associated with academic performance.  

Research Question Two 

In order to examine research question two (i.e., What are the associations between key 

cognitive and emotional self-regulation mechanisms and academic performance, as measured by 

reading proficiency, when controlling for gender and free/reduced lunch status?), multilevel 

logistic regression was conducted using the same top-down approach as research question one. 

Table 13 shows the results for the unconditional model. There are several ways to interpret a 

multilevel logistic regression. First, it can be interpreted using log odds. The estimated log odds 

coefficient for the intercept is -1.28, which can be interpreted as the predicted log of odds that a 

student is proficient (Heck et al., 2012). Second, log odds can be transformed into an odds ratio 

using exponentiation. When using this interpretation, the influence of each predictor is 

multiplicative. Exponentiating the log odds coefficient in this case resulted in an odds ratio of 

0.28.  

 Both the Wald Z test and the ICC value (i.e., 27.53% of the variability in reading 

proficiency lies between teachers) suggested significant variation across teacher groups, which 

justifies multilevel modeling. Furthermore, multilevel analysis was necessary for maintaining 

analytic consistency across research questions and because teacher differences explained 
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variance despite the lack of statistical significance. Moreover, although the number of child 

participants per teacher was small as previously noted, the grouping structure still violated the 

assumption of independence of observation for those who shared the same teacher. Thus, 

proceeding with multilevel modeling as planned resulted in more accurate standard error 

estimates (Raudenbush & Bryk, 2002).  

Table 13 

Unconditional Model for Reading Proficiency 

Variable Coefficient SE t-ratio 

Fixed Effect    

Intercept -1.28*** 0.26 -4.84 

    

Variable Estimate SE Wald Z 

Random Effect    

Intercept Between Participants 1.25 0.69 1.80* 

Note. The Wald Z test was conducted as one-tailed for specified reasons. 

*p < .05.  **p < .01.  ***p < .001. 

 

  Next, the full model for research question two was fit, which included all Level-1 

predictor variables and covariates. Non-significant, trimmed predictor variables included 

emotion regulation and inhibitory control. Statistically significant predictor variables maintained 

in the model included attention, as measured by the SWAN Inattentive Scale and REDSOCS 

Off-Task Behavior. Free/reduced lunch was also a significant predictor of reading proficiency.  

Once statistically significant predictors were obtained, additional exploratory analysis 

included systematically modeling the main significant predictor variables (i.e., REDSOCS Off-

Task, SWAN Inattentive Scale) as random effects. The predictors were first entered into the 

model simultaneously as random effects. As expected, this analysis was not possible due to 

failure of model convergence. Next, each predictor was entered in the model as random while 

other predictors remained fixed. When REDSOCS Off-Task Behavior was entered into the 
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model, the variance component was not statistically significant. When the SWAN Inattentive 

Scale was entered into the model as a random effect, the analysis was not possible due to failure 

of model convergence. Model convergence issues were likely related to the small number of 

students per teacher (M = 1.90, range: 1-7). As such, all predictors were maintained as fixed 

effects in the final model.  

Results of all models with fixed effects are presented in Table 14, including the results 

for the final model, which indicated that attention, as measured by the SWAN Inattentive Scale 

and REDSOCS Off-Task Behavior, were significant predictors of reading proficiency while 

controlling for gender and free/reduced lunch status. Free/reduced lunch status, though a 

covariate, also accounted for a significant amount of variance in reading proficiency. The 

estimates for the two dichotomous predictors are given in terms of groups coded as one, which is 

males and receiving free/reduced lunch. The reference parameters were not included in Table 14, 

as they were redundant. Results are interpreted in terms of odds ratios, which are the 

exponentiated values of the estimates. In terms of the SWAN Inattentive Scale, which yielded a 

negative, statistically significant association, the odds ratio for reading proficiency was 0.54, 

which means that for every one standard deviation increase, the odds of being proficient in 

reading are 0.54 times lower after accounting for other Level-1 predictors. This is a 46% 

decrease in odds. Essentially, this means that higher scores on this measure of inattention 

correspond with decreased odds of being proficient in reading. With regard to REDSOCS Off-

Task Behavior, results suggested a positive, statistically significant association and an odds ratio 

of 1.04. This suggests that for every one standard deviation increase on this measure, the odds of 

being proficient in reading are 1.04 times higher after accounting for other Level-1 predictors. 

This is a 4% increase in odds, which indicates a very small effect overall. This means that higher 
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scores on this measure of inattention are associated with increased odds of being proficient in 

reading. Possible explanations for this unexpected direction of effect are considered in the 

discussion. Lastly, results yielded a positive, statistically negative association and an odds ratio 

of 0.33 between free/reduced lunch status and proficiency in reading. This indicates that for 

students who receive free/reduced lunch the odds of being proficient are 0.33 what they are for 

students who do not receive free/reduced lunch after accounting for other Level-1 predictors. 

This is a 67% decrease in odds, suggesting a relatively large effect.  

 Overall, attention as measured by the SWAN Inattentive Scale and REDSOCS Off-Task 

Behavior, and free/reduced lunch status were significantly associated with reading proficiency 

whereas inhibitory control, emotion regulation, and gender were not. Results suggested that 

greater inattention as measured by the SWAN Inattentive Scale increased the odds of being non-

proficient in reading, as expected. Results also suggested that inattention as measured by 

REDSOCS Off-Task Behavior decreased the odds of being non-proficient in reading, which was 

not expected and clearly not aligned with extant literature. Furthermore, results indicated that 

free/reduced lunch status was a significant predictor, such that receiving free/reduced lunch 

decreased the odds of reading proficiency.  Lastly, attention, as measured by the SWAN 

Inattentive scale was the strongest predictor of reading proficiency in the expected direction. 
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Table 14 

Multilevel Models of Reading Proficiency 

 Model1 (Full Model) Model2 Model3 (Final Model) 

Variable 

Coeff. 

(SE) 
t-ratio 

Odds 

Ratio 

Coeff. 

(SE) 
t-ratio 

Odds 

Ratio 

Coeff. 

(SE) 
t-ratio 

Odds 

Ratio 

Level 1 – Fixed Effects          

Intercept  
-1.14 

(0.64) 
-1.77 0.32 

-1.20 

(0.62) 
-1.94 0.30 

-1.12 

(0.62) 
-1.82 0.33 

REDSOCS Off-Task 
0.58* 

(0.28) 
2.07 1.78 

0.59* 

(0.28) 
2.12 1.81 

0.58* 

(0.28) 
2.11 1.04 

SWAN Inattentive  

Scale 

-0.61* 

(0.25) 
-2.45 0.55 

-0.57* 

(0.25) 
-2.29 0.35 

-0.61* 

(0.24) 
-2.52 0.54 

Inhibitory Control 
0.30 

(0.28) 
1.04 1.34 

0.27 

(0.28) 
0.98 1.32 - - - 

Emotion Regulation 
-0.14 

(0.25) 
-0.56 0.87 - - - - - - 

Gender (Male) 
0.59 

(0.51) 
1.15 1.80 

0.61 

(0.50) 
1.23 1.84 

0.64 

(0.50) 
1.27 1.89 

Free/Reduced Lunch  
-1.07* 

(0.53) 
-2.03 0.34 

-1.01 

(0.53) 
-1.92 0.36 

-1.11* 

(0.52) 
-2.14 0.33 

          

Variable Est. SE Wald Z Est. SE Wald Z Est. SE Wald Z 

Level 2 - Random Effect          

        Intercept Between 

Participants 
1.69 0.89 0.06* 1.62 0.87 1.86* 1.50 0.82 1.82* 

Note. The Wald Z test was conducted as one-tailed for specified reasons. Gender was coded as male = 1 and female = 0. Free/reduced lunch was 

coded as receives free/reduced lunch = 1 and does not receive free/reduced lunch = 0. Continuous predictor variables were standardized. 

*p < .05.  **p < .01.  ***p < .001.
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Research Question Three 

In order to examine research question three (i.e., What are the associations between key 

cognitive and emotional self-regulation mechanisms and academic performance, as measured by 

mathematics proficiency, when controlling for free/reduced lunch?), multilevel logistic 

regression was conducted using the same top-down approach as research questions one and two. 

Table 15 shows the results for the unconditional model. As previously noted, there are several 

ways in which multilevel logistic regression can be interpreted. First, it can be interpreted using 

log odds. Second, log odds can be transformed into an odds ratio using exponentiation. When 

using this interpretation, the influence of each predictor is multiplicative. Exponentiating the log 

odds coefficient, in this case, resulted in the odds ratio of 0.47.  

The Wald Z test of the unconditional model suggested that multilevel analysis was not 

warranted; however, the ICC value, which was 0.1976, indicated that 19.76% of the variance in 

mathematics proficiency was due to the grouping structure of the data (e.g., students within 

teachers). Given that the ICC value exceeded 7%, multilevel analysis was warranted (Snijders & 

Bosker, 1999). Additionally, multilevel analysis was necessary for maintaining analytic 

consistency across research questions and because teacher differences explained variance despite 

the lack of statistical significance. Moreover, although the number of child participants per 

teacher was small as previously noted, the grouping structure of this study still violated the 

assumption of independence of observation for those who shared the same teacher. Thus, 

proceeding with multilevel modeling as planned resulted in more accurate standard error 

estimates (Raudenbush & Bryk, 2002).  
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Table 15 

Unconditional Model for Mathematics Proficiency 

Variable Coefficient SE t-ratio 

Fixed Effect    

Intercept -0.76 0.23 -3.35** 

    

Variable Estimate SE Wald Z 

Random Effect    

Intercept Between Participants 0.81 0.51 1.58 

Note. The Wald Z test was conducted as one-tailed for specified reasons. 

*p < .05.  **p < .01.  ***p < .001. 

 

  Next, the full model for research question three was fit, which included all Level-1 

variables and covariates. Attention, as measured by REDSOCS Off-Task Behavior and the 

SWAN Inattentive Scale, and emotion regulation were trimmed from the model, as they were not 

statistically significant. Inhibitory control and free/reduced lunch status were the only 

statistically significant predictors.  

Once statistically significant predictors were obtained, additional exploratory analysis 

included modeling inhibitory control as a random effect. When inhibitory control was added into 

the model as a random effect, the analysis was not possible due to failure of model convergence. 

As such, inhibitory control was maintained as a fixed effect in the final model.  

Results of all models with fixed effects are presented Table 16, including results for the 

final model, which indicated that inhibitory control was a significant predictor of mathematics 

proficiency, while controlling for gender and free/reduced lunch status. Free/reduced lunch status 

was also a significant predictor of mathematics proficiency. The estimates for the two 

dichotomous predictors are given in terms of groups coded as one, which is males and receiving 

free/reduced lunch. The reference parameters were not included in Table 16, as they were 

redundant. Results are interpreted in terms of odds ratios, which are the exponentiated values of 
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the estimates. In terms of inhibitory control, which yielded a positive, statistically significant 

association, the odds ratio for mathematics proficiency was 1.78, which means that for every one 

standard deviation increase in inhibitory control, the odds of being proficient in mathematics are 

1.78 times higher after accounting for other Level-1 predictors. This is a 78% increase in odds, 

indicating a relatively large effect. This suggests that higher scores on inhibitory control 

corresponds with increased odds of being proficient in reading. Additionally, results indicated a 

negative, statistically significant association and an odds ratio of 0.22 for free/reduced lunch 

status. This indicates that for students who receive free/reduced lunch the odds of being 

proficient in mathematics are 0.22 what they are for students who do not receive free/reduced 

lunch after accounting for other Level-1 predictors. This is a 78% decrease in odds, which 

suggests a relatively large effect.   

 Overall, inhibitory control and free/reduced lunch status were significantly associated 

with mathematics proficiency. Inattention, as measured by both measures, emotion regulation, 

and gender were not significantly associated with mathematics proficiency level. Results 

indicated that students with better inhibitory control had increased odds of being proficient in 

mathematics, as expected. Additionally, results indicated that students receiving free/reduced 

lunch had decreased odds of being proficient in mathematics as compared to students who do 

not. 
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Table 16 

Multilevel Models of Mathematics Proficiency 

 Model1 (Full Model) Model2 Model3 Model4 (Final Model) 

Variable 

Coeff. 

(SE) 
t-ratio 

Odds 

Ratio 

Coeff. 

(SE) 
t-ratio 

Odds 

Ratio 

Coeff. 

(SE) 
t-ratio 

Odds 

Ratio 

Coeff. 

(SE) 
t-ratio 

Odds 

Ratio 

Level 1 – Fixed 

Effects 
            

Intercept  
-0.26 

(0.62) 
-0.42 0.77 

-0.26 

(0.61) 
-0.43 0.77 

-0.34 

(0.58) 
-0.58 0.72 

-0.16 

(0.56) 
-0.29 0.85 

REDSOCS Off-

Task 

0.07 

(0.24) 
0.30 1.07 - - - - - - - - - 

SWAN 

Inattentive 

Scale 

-0.53 

(0.27) 
-1.98 0.59 

-0.51 

(0.27) 
-1.89 0.60 

-0.47 

(0.24) 
-1.95 0.63 - - - 

Inhibitory 

Control 

0.51 

(0.27) 
1.98 1.66 

0.50 

(0.26) 
1.96 1.65 

0.49 

(0.24) 
1.98 1.63 

0.57* 

(0.24) 
2.39 1.78 

Emotion 

Regulation 

-0.14 

(0.24) 
-0.58 0.87 

-0.15 

(0.24) 
-0.63 0.86 - - - - - - 

Gender (Male) 
0.76 

(0.51) 
1.49 2.13 

0.77 

(0.50) 
1.56 2.17 

0.79 

(0.49) 
1.62 2.21 

0.52 

(0.40) 
1.28 0.76 

Free/Reduced 

Lunch 

-1.69*** 

(0.59) 
-2.89 0.18 

-1.69** 

(0.58) 
-2.89 0.19 

-1.62** 

(0.54) 
-2.98 0.20 

-1.51** 

(0.53) 
-2.84 0.22 

             

Variable Est. SE Wald Z Est. SE Wald Z Est. SE Wald Z Est. SE Wald Z 

Level 2 - Random 

Effect 
            

     Intercept 

Between 

Participants 

1.64 0.80 2.05* 1.58 0.78 2.02* 1.57 0.77 2.04* 1.20 0.65 1.86 

Note. The Wald Z test was conducted as one-tailed due for specified reasons. Gender was coded as male = 1 and female = 0. Free/reduced lunch was coded 

as receives free/reduced lunch = 1 and does not receive free/reduced lunch = 0. Continuous predictor variables were standardized.  

*p < .05.  **p < .01.  ***p < .001. 
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CHAPTER 5: DISCUSSION 

 As research has shown, students with social-emotional difficulties often experience 

learning, achievement, and social concerns (Blair, 2002; Calkins et al., 2007; Lambert, 1988), 

and are at increased risk of adverse outcomes including truancy (Henry & Huizinga, 2007), 

school dropout (Henry et al., 2012), serious mental health concerns (Darke et al., 2003; Lambert, 

1988), and involvement with the justice system (Fergusson & Horwood, 2003; Moffitt et al., 

2011). This study focused on academic performance which may serve as a protective factor to 

mitigate the risks associated with social-emotional difficulties. My study examined associations 

among various self-regulatory mechanism (i.e., attention, inhibitory control, and emotion 

regulation) and academic performance specifically for students with social-emotional difficulties, 

as this information may suggest ways to strengthen interventions for this population of students. 

Research in the area of self-regulation and academic performance is abundant; however, 

research on how these constructs are related for students with social-emotional difficulties is 

sparse. My research makes a unique contribution to the literature as one of the few studies to 

employ an integrative framework that includes both cognitive and emotional mechanisms of self-

regulation in the investigation of academic performance specifically for students with social-

emotional difficulties in early elementary school. Using data from a federally-funded self-

regulation study, my study utilized multilevel regression and multilevel logistic regression to 

examine associations between various cognitive and emotional self-regulation mechanisms and 

academic performance after controlling for gender and free/reduced lunch status. Three outcome 

variables were investigated, including teacher rating of students’ academic performance, reading 
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proficiency, and mathematics proficiency. In this chapter, results are summarized by outcome 

variable and the significance and implications of these results are discussed. Implications for 

research and practice are also provided. I then conclude with a discussion of limitations and 

propose directions for future research. 

Research Question One 

Results of multilevel regression examining the associations between key cognitive and 

emotional self-regulation mechanisms and teacher-rated academic performance indicated that 

attention as measured by the SWAN Inattentive Scale, inhibitory control, and emotion regulation 

were each significant predictors. Results of this examination were aligned with my hypothesis 

that attention skills, inhibitory control, and emotion regulation would each predict teacher-rated 

academic performance, after controlling for gender and free/reduced lunch status. Results also 

supported my hypothesis that attention would be the strongest predictor of academic 

performance and that inhibitory control and emotion regulation would also be significant 

predictors. Such results support the extant literature on the associations between academic 

performance and attention (Barriga, et al., 2002; Breslau et al., 2009; Fuchs et al., 2005; Lan et 

al., 2011; Massetti et al., 2008; Preston et al., 2009; Polderman et al., 2010; Rabiner et al., 2004; 

2012; Welsh et al., 2010), inhibitory control (Vuontela et al., 2013), and emotion regulation 

(Garner & Waajid, 2012; Graziano et al., 2007; Howse et al., 2003; Trentacosta & Izard, 2007). 

The results of this investigation also support research that indicates various cognitive and 

emotional self-regulatory mechanisms work in an integrative manner to influence learning and 

behavior (Bell & Wolfe, 2004; Blair, 2016; Calkins & Marcovitch, 2010; Carlson & Wang, 

2007; Ursache et al., 2012).  These findingsaddress a gap in research on the interconnectedness 

of these important constructs for early elementary students with social-emotional difficulties.  
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In terms of attention, it was expected that both the SWAN Inattentive Scale and 

REDSOCS Off-Task would be significant predictors of teacher-rated academic performance 

given that they are both measures of attentional functioning; however, only the SWAN 

Inattentive scale was a significant predictor. These results, in addition to the preliminary 

correlational analyses that yielded only a small correlation between the REDSOCS Off-Task 

Behavior and the SWAN Inattentive Scale (r = 0.20), may indicate that the SWAN Inattentive 

Scale and REDSOCS Off-Task Behavior are capturing differing aspects of attentional 

functioning and, therefore, relating differently to teacher-rated academic performance. This is a 

reasonable hypothesis, as teacher ratings presumably reflect a large sample of a child’s observed 

behavior in the classroom over several weeks, whereas REDSOCS Off-Task Behavior reflects 

only two 10-minute snapshots which may vary depending on what the specific observed task 

encompassed (e.g., independent seatwork, listening to teacher lecture or reading, hands-on 

learning activities). 

Another explanation for these differential associations is method bias, which is defined as 

the “effects that measuring two or more constructs with the same method may have on estimates 

of the associations between them” (Podsakoff, MacKenzie, & Podsakoff, 2012, p. 540). Given 

that the SWAN Inattentive Scale and the measure of academic performance (i.e., the APRS) 

were both completed by teachers, perhaps some of the observed covariation is due to the shared 

measurement method. This is a reasonable explanation for the different associations between the 

SWAN Inattentive Scale and REDSOCS Off-Task Behavior and teacher-rated academic 

performance; however, some administration factors may also have counterbalanced the potential 

method bias. For instance, these two measures have different scale properties and were separate 

on the teacher questionnaire from which this data extended (Podsakoff et al., 2012).   
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Research Question Two 

 Results of multilevel logistic regression examining the associations between cognitive 

and emotional indicators of self-regulation and academic performance, as indicated by 

proficiency in reading, indicated that attention, as measured by the SWAN Inattentive Scale and 

by REDSOCS Off-Task Behavior, were significant predictors, after controlling for gender and 

free/reduced lunch status. Free/reduced lunch status was also a significant predictor. Results 

indicated overall that students with poorer attention skills, as measured by the SWAN Inattentive 

Scale, were more likely to be non-proficient in reading, as expected. Contrary to expectations, 

however, results also indicated that students with more observed inattention on the REDSOCS 

were more likely to be proficient in reading, although the size of this effect was small as 

indicated by odds ratios. Lastly, results indicated that receiving free/reduced lunch increased the 

likelihood of being non-proficient in reading.  

Some of the results of the final model for reading proficiency were aligned with my 

hypotheses and others were not. More specifically, I expected attention skills and emotion 

regulation to be significant predictors of proficiency in reading; however, only attention, as 

measured by the SWAN Inattentive Scale, was a statistically significant predictor of reading 

proficiency. This measure of attention was the strongest predictor of reading proficiency, which 

was aligned with expectations. REDSOCS Off-Task Behavior was also a statistically significant 

predictor of reading proficiency; however, the association was in a positive direction, such that 

better attention decreased the likelihood of being proficient in reading, which was not expected 

or aligned with extant literature. Neither inhibitory control or emotion regulation were 

statistically significant predictors of reading proficiency as expected.  
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 Similar to research question one, results related to attention being a significant predictor 

of academic performance, specifically, reading proficiency, are aligned with existing literature. 

For instance, many researchers have found that attention, as measured by teacher report, is 

related to students’ proficiency and performance in reading (Barriga et al., 2002; Breslau et al., 

2009; Fuchs et al., 2005; Polderman et al., 2010; Rabiner et al., 2016; 2004). These results are 

understandable, as attentional skills enable students to not only focus on lessons, but they also 

help students concentrate on reading materials so they can engage in the various processes 

needed for effective reading (i.e., attending to/maintaining information across various paragraphs 

or pages of reading materials).  

 Regarding the other measure of attention, REDSOCS Off-Task Behavior, results were 

not aligned with expectations or extant literature, as the direction of the association between 

scores on this measure and the odds of reading proficiency suggested that more inattentive 

behaviors increased the odds of being proficient in reading. As noted, however, this was a very 

small effect.  The unexpected nature of this association may extend from the measure itself. The 

REDSOCS is an interval coding system in which students were observed in their classrooms at 

two separate times. While this measure may provide a strong understanding of attentional 

function at those specific times, there is no guarantee that these data were gathered during 

reading, which may have influenced the outcome. In addition, this specific measure has not been 

previously examined in relation to academic outcomes, and may not have adequate reliability for 

doing so.  

In terms of emotion regulation, the results of my study were not aligned with previous 

research, as several researchers have found statistically significant associations between 

children’s emotion regulation and reading performance (Graziano, et al., 2007; Howse et al., 



                                            

101 
 

2003). This may be due to differences in the ages and the specific characteristics of the 

populations studied in previous studies and those of my research. For instance, researchers 

studying the associations between reading performance and emotion regulation typically 

examined younger children, whereas I investigated the connections for early elementary students 

with social-emotional difficulties. As such, emotion regulation may function differently in terms 

of reading proficiency for younger, preschool-aged children than for early elementary students 

with social-emotional difficulties. The sample used in my study also generally displayed limited 

variability in emotion regulation, which may have also contributed to the lack of significance.  

The fact that free/reduced lunch status was a statistically significant predictor of reading 

proficiency aligns with extant literature. For instance, many researchers have found strong 

associations between SES and reading performance, such that students from families with a 

higher SES often perform more favorably in reading than students from families with a lower 

SES (Chatterji, 2006; Lee & Otaiba). This may be due to differences in various areas including 

academic skills at school entry (Byrnes & Wasik, 2009), academic language exposure (Galindo 

& Sonnenschein, 2015; Hindman, Skibbe, Miller, & Zimmerman, 2010), parent expectations 

(Sonnenschein & Galindo, 2015), or stress exposure (Hamoudi et al., 2015).  

Research Question Three 

 The associations between key cognitive and emotional self-regulaton mechanisms and 

acaemic performance, as indicated by proficiency in mathematics, after controlling for gender 

and free/reduced lunch status, was examined using multilevel logisic regression. Inhibitory 

control and free/reduced lunch status were statistically significant predictors of proficiency in 

mathematics. Results indicated that students with poorer inhibitory control skills were more 



                                            

102 
 

likely to be non-proficient in mathematics. In addition, receiving free/reduced lunch increased 

the likelihood of being non-proficient in mathematics.  

 Some of the results were aligned with my hypotheses and others were not. For example, I 

hypothesized that attention, inhibtory control, and emotion regulation would be statistically 

significant predictors of mathematics proficiency; however, inhibitory control was the only 

significant predictor when controlling for gender and free/reduced lunch status. The finding that 

inhibitory control predicted mathematics proficiency is aligned with previous research. For 

instance, one group of researchers found that inhibitory control was the only executive function 

related to mathematical performance (Espy et al., 2004). Several others found similar results 

(e.g., Hernández et al., 2017; Ng et al., 2015). The significance of inhibitory control makes sense 

in terms of proficiency in mathematics, as mathematics performance often requires individuals to 

inhibit dominant responses in favor of more desirable ones (Lubin et al., 2016). This finding is 

also substantiated by cognitive neuroscience literature, which has found that the prefrontal cortex 

is involved in both math problem-solving and inhibitory control tasks (Blair & Razza, 2007; Bull 

et al., 2008).   

 The results related to attention for this research question were not consistent with 

previous research. For example, extant literature indicates that attention is the most robust 

predictor of mathematics performance above and beyond other factors, such as executive 

functions (Lan et al., 2011). Other reasearchers have also found that attention accounts for a 

statistically significant amount of variance in mathematic performance (Preston et al., 2009). 

Additionally, similar trends have been found for students with social-emotional difficulties, as 

Barriga and colleagues (2002) found that teacher ratings of inattention were related to academic 

performance in mathematic. As such, it is likely other factors contributed to the lack of 
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significance related to attention. One factor could be related to the measures of attention utilized 

in my study. Similar to research question two, perhaps the measures of attention are not 

capturing the type of attention related to strong performance in mathematics.  

Results related to emotion regulation were also not expected or aligned with previous 

research, given that the experience of intense emotions has the potential to interfere in the 

learning process (Goleman, 2004). Additionally, various researchers have found that emotion 

regulation skills are related to achievement in mathematics (Graziano et al., 2007; Howse et al., 

2003). The discrepancy in results may be a product of both the age of participants in my study as 

well as their particular characteristics, as previous studies on the associations between 

mathematics performance and emotion regulation skills were conducted with younger, 

preschool-aged children without social-emotional difficulties. As such, emotion regulation may 

function differently for older students with social-emotional difficulties, which would align with 

research on the development of emotion regulation that suggests that emotion regulation skills 

strengthen in early elementary school (Holodynski & Friedlemeier, 2005). The sample used in 

my study also generally displayed limited variability in emotion regulation, which may have also 

contributed to the lack of significance.  

The fact that free/reduced lunch status was a statistically significant predictor aligns with 

extant literature. Researchers have found strong associations between SES and mathematics 

performance. Similar to the literature on reading performance and SES, students from families 

with a higher SES often perform better in mathematics in comparison to students from families 

with a lower SES (Mulligan et al., 2012). As aforementioned, this may be due to differences in 

various areas including academic skills at school entry (Byrnes & Wasik, 2009), academic 

language exposure (Galindo & Sonnenschein, 2015; Hindman, Skibbe, Miller, & Zimmerman, 
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2010), parent expectations (Sonnenschein & Galindo, 2015), or stress exposure (Hamoudi et al., 

2015).  

Teacher-Rated Academic Performance, Reading Proficiency, and Mathematics Proficiency 

 As indicated by the results of my study, associations between self-regulatory mechanisms 

and socio-demographic factors and academic performance varied depending on outcome. 

Inattention, inhibitory control, and emotion regulation were significant predictors of teacher-

rated academic performance, whereas attention and free/reduced lunch status were predictive of 

reading proficiency, and mathematics proficiency was predicted by inhibitory control and 

free/reduced lunch status. These differences may be related to several factors, including 

specificity of outcome measures, content area or skills of focus, and perhaps different types of 

attention skills.   

 The differences in statistically significant predictors across research questions, while 

generally as anticipated, were also unexpected in some areas. This could be related to the 

specificity of both the predictors and outcomes measures. For instance, teacher-rated academic 

performance, which was measured by the APRS, was a more global assessment of students’ 

success and productivity in the classroom, whereas proficiency in reading in mathematics are 

clearly content-area specific. In addition, various self-regulatory mechanisms were also assessed 

more globally, in that they were not specifically measured in any particular context (e.g., during 

reading or mathematics activities). As such, it makes sense that attention, inhibitory control, and 

emotion regulation were statistically significant predictors of the more global academic 

performance measured by the APRS. When examining more specific outcomes, however, such 

as reading and mathematics proficiency, some self-regulatory variables were not associated as 

expected. For example, it was expected that each measure of attention would be a statistically 
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significant predictor of both reading and mathematics performance; however, this was not the 

case. This could be attributable to the fact that the SWAN Inattentive Scale was a more global 

assessment of attentional functioning and was not specific to a content area. The same rationale 

applies to REDSOCS Off-Task Behavior, as the interval data used to measure attentional skills 

may not have been gathered during a particular content area it was hypothesized to predict. 

Results may have been different if attention and perhaps other self-regulatory mechanisms had 

been measured within a specific content area.  

 When further honing in on outcome measures, it is obvious that teacher-rated academic 

performance, reading proficiency, and mathematics proficiency are all different ways in which a 

student can display success in school. Teacher-rated academic performance provides an 

understanding of students’ success and productivity in the classroom, which includes consistency 

of work habits, frequency with which a student can recall previously taught information, 

accuracy of work, and percentage of work completed. Proficiency in reading and mathematics, 

however, provides information regarding students’ performance in a specific content area. 

Perhaps a student’s attention skills, inhibitory control, and emotion regulation skills have a more 

direct relationship to the skills assessed through teacher-rated academic performance than 

through reading and mathematics proficiency, as these are more general measures of functioning. 

It could also be that mathematics and reading proficiency levels, as measured in this study, were 

too broad to capture the differential ways in which various self-regulatory mechanisms might 

influence specific academic performance in those areas. For example, overall reading and 

mathematics proficiency does not provide fine-grained information regarding how attention, 

emotion regulation, and inhibitory control might relate to the various reading (e.g., decoding, 
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comprehension) and mathematical processes (e.g., calculations, problem-solving) associated with 

proficiency in these areas.  

 One of the least expected deviations from hypotheses across research questions two and 

three was the finding related to attention skills. In research question two, attention was a 

statistically significant predictor of reading proficiency; however, it was not a statistically 

significant predictor of mathematics proficiency. While unexpected, the results of research 

question three highlight the possibility that different types of attention may be more associated 

with one type of academic performance than the others. For instance, results of these two 

research questions may suggest that attention skills are more important for reading than for 

mathematics, which was indicated in a meta-analysis (Jacob & Parkinson, 2015). This would 

make sense in the context of the classroom, as reading performance often encompasses attending 

to print materials for longer periods of time and across various lengths of print in order to 

comprehend what is written. Mathematics performance, on the other hand, may require less 

sustained attention, as a student may need to attend for shorter periods of time to solve one 

problem before moving on to the next. Indeed, mathematics proficiency may be more contingent 

on selective attention than on the sustained attention required for success in reading (Aylward et 

al., 1997; Preston et al., 2009). 

Multi-Method Assessment 

Previous researchers recommended using a multi-method approach to measure cognitive 

and emotional mechanisms of self-regulation, including attention, inhibitory control, and 

emotion regulation (e.g., Allan et al. 2014; Espy et al., 2004). Researchers have also 

recommended using assessment techniques that extend from both cognitive and developmental 

investigations of self-regulation (Allan et al., 2014). Thus, my study adopted this 
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multidisciplinary approach and utilized several different measures (i.e., direct assessment, 

observation, and teacher-report) to assess each self-regulatory construct of interest. I intended to 

generate composite scores for each construct; however, this was only possible for inhibitory 

control, as measures of other constructs were not correlated strongly enough to combine into a 

composite. As such, predictor variables included an observational measure of attention, teacher-

rated attention, the inhibitory control composite, and one measure of teacher-rated emotion 

regulation.  

In terms of attention measures, even though the SWAN Inattentive Scale and REDSOCS 

Off-Task Behavior were both designed to examine attention skills in the context of a classroom, 

these measures were not highly correlated (r = .20, p < .05). This may be related to the 

specificity of each of the measures. By design, the SWAN Inattentive Scale is a more global 

measure of attention skills that assesses various manifestations of attention commonly observed 

by a teacher (i.e., close attention to tasks, sustained attention, follow through with assignments, 

organization, etc.). REDSOCS Off-Task Behavior, on the other hand, provides a brief snapshot 

of an individual’s sustained attentional functioning through off-task behavior observed by a 

trained research assistant. These methods differences likely contribute to why these two 

measures were not more strongly correlated, as they may be capturing different aspects of 

attentional functioning.  

 Regarding inhibitory control, three measures were used to measure this construct, one 

was a teacher rating of impulse control specific to academic tasks (i.e., APRS Impulse Control 

Scale) and the other two were direct child assessments (i.e., the Happy-Sad Stroop and the 

HTKS). Correlations, however, were only strong enough to generate a composite using the two 

child performance assessments (r = .36, p < .001). This was not unexpected, as the teacher 
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measure was based on a different methodology and assessed impulsivity in a different context 

than the other measures.  As noted, I excluded this from analyses given that it has not been as 

widely used as a measure of inhibitory control as direct child measures.   

 With regard to emotion regulation, two measures were used to assess this construct, one 

was a teacher rating of emotion regulation (i.e., Emotion Regulation Checklist) and the other was 

an observer assessment which was completed after the one-on-one direct child assessments (i.e., 

PSRA-AR Positive Emotion Scale). The correlation between these two measures, however, was 

not strong enough to generate a composite score with both measures (r = .06, p > .05). Thus, the 

Emotion Regulation Checklist, which is more commonly used, was the only measure of emotion 

regulation included in multilevel models. Given that emotion regulation has various components 

as highlight by Gross (2014) and Hoeksma and colleagues (2004), these measures may be 

examining different aspects of emotion regulation.  

 Overall, utilizing a multi-method approach is aligned with recommendations set forth by 

previous researchers and captures the theoretical conceptualization of self-regulation as 

multifaceted. However, from an analytical perspective, my study highlights difficulties related to 

how best to combine measures of a similar construct, particularly when various measures 

believed to capture the same construct are not highly correlated (Willoughby et al., 2014, 2016). 

In my study, many of the poor correlations may reflect methods differences. It is possible that 

different measures reflect different but equally valid components of a particular construct. 

Nonetheless, this suggests that further work on measuring different components of cognitive and 

emotional mechanisms of self-regulation is needed (Jones, Bailey, Barnes, & Partee, 2016) . This 

may also suggest that researchers need to better understand context-specific self-regulatory 

functioning, as the utility and importance of various cognitive and emotional self-regulatory 
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mechanisms appears to vary depending context (Cleary, Callan, & Zimmerman, 2012; Cleary & 

Chen, 2009).    

Implications for Practice 

 One of the purposes of my study was to better understand the connections between 

various cognitive and emotional mechanisms of self-regulation and academic performance, 

particularly for early elementary students with social-emotional difficulties, in an effort to 

highlight the importance of targeting needs across social-emotional, cognitive, and academic 

domains. Results indicate that cognitive and emotional self-regulation do indeed relate to 

academic performance, although the manner in which this occurs seems to be relatively complex 

and may be dependent on how academic performance is measured. Thus, interventions geared 

toward bolstering students’ academic performance should also target attention, inhibitory 

control, and emotion regulation, as each of these mechanisms is important to students’ academic 

success. Self-regulation should not take precedence over efforts geared toward academic skill 

acquisition; however, both self-regulation and academic performance should be viewed in a 

more connected manner, as both sets of skills are important for bolstering protective factors and 

mitigating risk associated with social-emotional difficulties and poor academic performance. 

Thus, research interventions and curricula in schools should be designed to improve both self-

regulation skills as well as academic performance, as this may be a successful way to help foster 

students’ short- and long-term success. In fact, the Institute of Education Sciences is calling for 

research related to integrating social-emotional and academic models in order to “advance our 

understanding of social and behavioral competencies and how they relate to success in school” 

(Institute for Education Sciences, 2018).  
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The results of my study also indicated, that for more general academic performance (i.e., 

consistency of work habits, accuracy of work, percentage of work completed), SES plays less of 

a role; however, when honing in on academic performance within specific content areas such as 

reading and mathematics, SES plays a much larger role. Even though my study and previous 

researchers have found that self-regulatory skills are essential for school success (e.g., Blair & 

Razza, 2015; Fuchs et al., 2005; Razza et al., 2012; Welsh et al., 2010), these skills alone may 

not be enough to change trajectories for students, particularly those from backgrounds of 

poverty. These associations found in my study and in others’ work (e.g., Chatterji, 2006; Lee & 

Otaiba, 2015; Mulligan et al., 2012) suggest that schools’ efforts to enhance student achievement 

also need to be geared toward factors related to poverty that adversely impact a child’s school 

readiness and subsequent academic performance (i.e., nutrition, stress, early home 

environments). Thus, interventions that seek to help change poor trajectories for at-risk 

populations should include resources for not only building academic and self-regulation skills, 

but they should also target ways in which family, school, and community systems can operate to 

assuage some of the impact of high-poverty risk factors.  

Limitations 

 My study offers an important extension of work that examines the associations of various 

self-regulatory mechanisms and academic performance for students with social-emotional 

difficulties; however, there are several limitations. First, my study’s sample was too small for 

examining teacher and school-level predictors, or for modeling random effects. Next, my study 

examined predictors of academic performance in early elementary school students with social-

emotional difficulties in a sample of students who predominantly received free/reduced lunch, 

which reflects an overall lower SES. Additionally, most students in my study were male. Thus, 
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results may not generalize to students without social-emotional difficulties, females, or to 

students from families with different income levels. Also, aa measurement characteristic that 

may have influenced results is that there were several predictor and outcome variables that had 

limited variability. For instance, in terms of reading and mathematics proficiency, only 22% and 

34% of students in my sample were proficient in these areas, respectively. In addition, 

proficiency in reading and mathematics was coded dichotomously, which reduced potential 

variability as well. One other variable with limited variability was emotion regulation, as the 

intervention study from which my research extended targeted students with difficulties in this 

area.  

 Another measure-related limitation, though one that is difficult to avoid when examining 

constructs that are distinct yet interrelated, is that the performance-based measures of inhibitory 

control used in my study likely also required some aspects of working memory, such that 

participants had to hold various rules in their mind while performing a subdominant task. Thus, 

while these measures are widely used and developmentally appropriate measures of inhibitory 

control, this does present limitations related to capturing pure measure of inhibitory control. This 

challenge is consistent with current debates in the field related to the dissociability of highly 

interrelated cognitive and emotional mechanisms of self-regulation and is commonly referred to 

as the task impurity problem (Miyake et al., 2000). As methodological and analytical approaches 

continue to advance in the field of self-regulation, researchers may identify ways to more purely 

assess cognitive and emotional mechanisms of self-regulation.  

Future Research 

 Additional research is imperative for advancing understanding of associations between 

cognitive and emotional mechanisms of self-regulation and academic performance. In doing so, 
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researchers will continue to identify more specific ways to help students achieve optimal social-

emotional and academic outcomes. In this section, I have included recommendations for 

extending my research and suggestions for broader future research.  

 Extensions of current study. There are several important ways in which my research 

can be expanded to ask additional important questions related to the associations between 

cognitive and emotional self-regulation and academic performance. For instance, a similar 

investigation could include a larger, more diverse sample to improve power and generalizability. 

In addition, future researchers could utilize different measures of each construct to ascertain 

whether associations are similar to what was found in this study. Lastly, with a larger sample, 

additional Level-2 (i.e., teacher) and Level-3 (i.e., school) predictors could be added to a model 

to further investigate other factors that may influence associations between self-regulation and 

academic performance, particularly for students with social-emotional difficulties. Interesting 

Level-2 variables to explore would be class size and some teacher-related characteristics (e.g., 

teacher experience, job satisfaction, instructional quality or management skills, etc.). Level- 3 

variables could include school climate and school-level factors (e.g., per pupil expenditures).  

Recommendations for future research. Based on the results of my research and extant 

literature, future researchers can expand the literature on self-regulation and academic 

performance, particularly for students with social-emotional difficulties, in various ways. First, 

different analytical methods and research designs need to be utilized in order to make more 

causal inferences related to the associations between cognitive and emotional mechanisms of 

self-regulation and academic performance. For instance, Willoughby and colleagues (2012) 

recommend using randomized designs of curricula and/or programs designed to improve self-

regulation to examine whether treatment effects mediate improvements in academic functioning, 
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as this would be one of the strongest tests of whether there are causal associations between 

cognitive and emotional mechanisms of self-regulation and academic performance (Willoughby 

et al., 2012). Of note, the parent study from which this research extends is currently using a 

randomized design to examine whether the treatment effects of a self-regulation intervention will 

improve academic functioning for this sample of students, directly addressing this question. 

 Additionally, further research is needed to determine whether the associations between 

cognitive and emotional mechanisms of self-regulation and academic performance differ based 

on more specific characteristics of students’ social-emotional difficulties. For instance, it would 

be interesting to examine whether associations between cognitive and emotional mechanisms of 

self-regulation and academic performance are different for students with more internalizing 

behaviors in comparison to students with externalizing behaviors (Barriga et al., 2002). This 

information could suggest ways in which interventions geared toward promoting self-regulation 

and academic success could be differentiated based on presenting difficulties.  

 Furthermore, future studies should be specifically designed to examine how various 

family, teacher, school, and community factors influence the associations between cognitive and 

emotional mechanisms of self-regulation and academic performance. Many of these factors have 

been examined in the context of academic and self-regulatory functioning (e.g., Blair & Razza, 

2007; Burchinal et al., 2018); however, more integrated research is needed. This research could 

help identify ways in which family, teacher, school, and community systems can be targeted to 

foster positive self-regulatory and academic functioning.  

 Moreover, more research is needed to better understand associations between cognitive 

and emotional mechanisms of self-regulation and more specific performance in reading, 

mathematics, and other content areas. My study examined general academic performance as well 
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as proficiency levels in reading and mathematics, thus focusing on a relatively limited set of 

academic performance variables. Future researchers could include more fine-grained areas of 

functioning within certain content areas including use of achievement tests. For instance, it 

would be interesting to better understand how self-regulatory mechanisms relate specifically to 

reading comprehension or to problem-solving in mathematics. This type of examination would 

provide a more specific understanding of associations between academic performance and 

various cognitive and emotional mechanisms of self-regulation. Some researchers have 

examined such associations. For instance, Purpura and colleagues (2017) found that inhibitory 

control was associated with most aspects of mathematics functioning, including subitizing and 

counting. In terms of reading, this team found that inhibitory control was associated with early 

reading concepts such as awareness of print (Purpura et al., 2017). Additional research in this 

area, however, is needed, particularly for students with social-emotional difficulties. 

 Lastly, further research is needed on how the various targets, phases, and processes of 

self-regulated learning outlined by Greene (2018) factor into associations between various 

mechanisms of cognitive and emotional mechanisms of self-regulation and academic 

performance. Using these concepts of self-regulated learning in examinations of self-regulation 

and academic performance can help hone in on specific learning-related self-regulatory 

behaviors that can be targeted to foster stronger academic outcomes. Incorporating concepts 

extending from the self-regulated learning literature will also help the field move toward a more 

integrated, multidisciplinary understanding of self-regulation and academic performance.  

Summary 

 The purpose of my study was to investigate associations between cognitive and emotional 

mechanisms of self-regulations and academic performance in first and second grade students 
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with social-emotional difficulties by addressing three main research questions: (1) What are the 

associations between key cognitive and emotional self-regulation mechanisms (e.g., attention, 

inhibitory control, and emotion regulation) and teacher-rated academic performance, when 

controlling for gender and free/reduced lunch status?, (2) What are the associations between key 

cognitive and emotional self-regulation mechanisms and academic performance as measured by 

proficiency in reading, when controlling for gender and free/reduced lunch status?, and (3) What 

are the associations between key cognitive and emotional self-regulation mechanisms and 

proficiency in mathematics, when controlling for gender and free/reduced lunch status? In order 

to examine these research questions, baseline data from a large intervention study with multi-

method measures of self-regulation and academic performance were analyzed using multilevel 

regression and multilevel logistic regression.  

Results of research question one indicated that attention, inhibitory control, and emotion 

regulation were significant predictors of teacher-rated academic performance, with attention 

being the strongest predictor. These results were aligned with my hypotheses. Results of research 

question two indicated that attention was a significant predictor of proficiency in reading. These 

results were mostly aligned with my hypotheses; however, emotion regulation was also expected 

to be a significant predictor. Lastly, results of research question three suggested that inhibitory 

control is a significant predictor of mathematics proficiency when controlling for free/reduced 

lunch status.  

As secondary data analyses, my study understandably had several limitations; however, it 

makes two main contributions to the literature on self-regulation and academic performance. 

First, my study advances understanding of the links between attention, inhibitory control, and 

emotion regulation and teacher-rated academic performance as well as performance in reading 
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and mathematics, particularly for early elementary students with social-emotional difficulties. 

Although previous researchers have examined each of these constructs, few have done so in an 

integrated manner. Second, my study extends the literature on self-regulation and academic 

performance to students in early elementary school. Many researchers have investigated 

connections between these constructs for preschoolers, but literature is sparse on the associations 

between these constructs for early elementary students. Future research should include similar 

investigations with larger, more diverse samples and other measures of cognitive and emotional 

mechanisms of self-regulation. Additionally, future research efforts should include using 

different analytical methods and research designs in order to support causal inferences, 

examining whether associations vary for students with different social-emotional difficulties 

(e.g., internalizing versus externalizing), investigating family, teacher, school, and community 

factors, developing a more fine-grained understanding of associations between various areas of 

functioning within content areas, and integrating examination of targets, phases, and processes of 

self-regulated learning in order to support a more comprehensive understanding of self-

regulation and academic performance.  

In conclusion, given the associations between various cognitive and emotional 

mechanisms of self-regulation and academic performance, particularly for students with social-

emotional difficulties, my study helps inform interventions, as it highlights the need for 

interventions to focus on both self-regulation and academic skills in order to foster overall 

student success. In addition, given that SES was a significant predictor of academic performance, 

my study also suggests that bolstering self-regulation and academic skills may not be enough to 

change trajectories for students with social-emotional difficulties, thus suggesting that efforts 

also need to be geared toward factors related to poverty that adversely affect a child’s school 
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readiness and subsequent academic success. As such, interventions must also target ways in 

which family, school, and community systems operate to lessen the influence of poverty-related 

risk factors.  
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