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ABSTRACT

YING ZHANG: MANAGING EMERGING MARKET OPERATIONS.
(Under the direction of Jayashankar M. Swaminathan.)

Emerging markets have been a critical part of global business, with high share of global GDP

and rapid economy growth. My dissertation research focuses on studying risks and opportunities

in emerging market operations. One critical characteristic of emerging markets is that agriculture

remains an essential sector. The world looks to emerging countries to meet the increasing food

demand. However, the output remains significantly below the potential due to limited financial,

technology and policy support. Scientific agriculture such as effective planting and mechanization

could potentially help farmers achieve higher yields. In the first chapter of my dissertation, we study

the optimal seeding policy under rainfall uncertainty. Utilizing field weather data from Southern

Africa, we investigate the advantage of the optimal planting schedule and the impact of climate

conditions on this advantage in a real-size large-scale problem. Another critical characteristic of

emerging markets is the low labor cost. This makes emerging markets attractive bases for global

manufacturing and service operations. However, the globalization of supply chains complicates the

logistics and procurement operations. In the second chapter, we focus on the warehouse outsourcing

strategy in global supply chains. We establish the optimal warehousing strategy and demonstrate

that excluding the logistics dynamics from contracting and making warehousing decisions unilat-

erally afterwards can lead to a suboptimal warehousing strategy for the retailer. Furthermore, a

variety of threats such as supplier failure and transportation disruption could delay or even disrupt

the operations, offsetting the low-cost benefit of emerging economies. In the third chapter, we study

the optimal sourcing strategy under disruption in global supply chains. We establish the optimal

sourcing strategy and provide insights on the roles of the nearshore supplier in response to supply

chain disruption. Overall, my dissertation concentrates on the application of scientific methods

to planting and farm machinery procurement to improve agricultural productivity in Africa and

leveraging low-cost benefits in emerging markets.
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CHAPTER 1: INTRODUCTION

Emerging markets are a critical part of global business, with share of 60% of global GDP and

economy growth that is three times faster than developed economies (Chakravarty 2016). As a

result, multinationals have set their sights on emerging markets for business opportunities. How-

ever, the operations strategies that firms apply in developed economies no longer fit for emerging

economies that are often characterized by traditional economy, high volatility and limited govern-

ment support (Amadeo 2016). Tailoring operations strategies to emerging economies is critical for

multinationals to increase productivity and profit margin as well as achieve flexibility and respons-

iveness in emerging market operations. Research studies on managing emerging market operations

could provide valuable insights and help multinationals achieve these objectives. Taking one step

in this direction, this work explores critical issues on agriculture operations in emerging countries

and managing global supply chains that involve emerging markets. Towards the end, my research

aims to shed light on the impact of various risks and opportunities on optimal operations strategies

in emerging markets.

The first chapter focuses on agriculture operations in emerging markets. Agriculture remains

an essential sector in emerging economies, accounting for more than 20% of GDP in many emerging

countries (World Bank 2016). With more than 60% of the global uncultivated arable land, emerging

countries are regarded as a critical player to feed the world in the near future (Obasanjo 2012).

However, the output of agricultural products in many emerging markets is significantly below the

potential due to outdated machines and farming techniques and uncertainty in rainfall (Lopes

2014). Scientific agriculture in the form of effective planting, fertilizing, irrigation, pest control and

mechanization could potentially help farmers achieve higher yields. In this chapter, we study the

optimal seeding policy in rain-fed agriculture in Africa and explore the benefit of the optimal policy

over commonly used heuristics in practice using field weather data from Southern Africa.

The second chapter studies warehousing solutions in emerging countries in global sourcing. Low
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labor cost in emerging countries makes them attractive bases for global manufacturing and service

operations. However, due to long distance logistics associated with offshore sourcing, firms face

dramatic increase in transportation cost, inventory cost and warehousing cost (Belanger and Leclerc

2013). Warehousing solutions in emerging countries near suppliers attempt to address the cost

escalation issue and therefore have become more prevalent in offshore production (Robinson, C.H.

2015). Although the benefit of such warehousing solutions is intuitive, firms need to understand the

implications of logistics operations on supply chain contracting to achieve the optimal warehousing

strategy. We study the optimal warehousing strategy in offshore procurement and compare the

contracting that incorporates the total landed cost in contract negotiation to that commonly studied

in previous literature.

The third chapter studies another key challenge in global supply chain management: supply

chain disruption in offshore sourcing. In offshore procurement from emerging markets, a variety of

threats such as supply and delivery uncertainty and regulatory changes could delay or even disrupt

the operations, thus offsetting the low-cost benefit of the emerging economies. Therefore firms

start to move production from offshore countries to nearshore countries (Culp 2013). However, this

does not always guarantee a higher profit and diversification of suppliers is suggested as an effective

strategy (Mann 2014, Jain et al. 2013). In this chapter, we study the optimal dual-sourcing strategy

in global sourcing and explore the roles of suppliers (mitigation and contingency) in response to

supply chain disruption.

1.1 Optimal Seedling Policy under Rainfall Uncertainty

In the first chapter, we study the optimal planting schedule and explore the benefit of this

schedule on crop yields in small-scale farming. This is a critical area of farming operations as

increased agricultural productivity is often cited as a solution to the impending global food shortage

problem. The demand for agricultural products is increasing due to world’s growing population.

By 2050, food production must double to meet the demand of the world (United Nations 2009).

With roughly 60% of the global total uncultivated arable land, African countries are regarded as

a critical player to feed the world (Obasanjo 2012). However, agricultural output in Africa mainly

depends on rainfall, as irrigation is too expensive for resource-poor farmers in this semi-arid area

2



(Foti et al. 2008). Due to outdated machines and farming techniques and uncertainty in rainfall,

planting yields in Africa are far below the developing world average. As a result Africa generates

only 10% of the global agricultural output (Lopes 2014) and hunger affects about 240 million African

people (Munang and Andrews 2014). Furthermore, due to severe climate conditions, crop yields

are estimated to decrease by 10% to 20% by the middle of this century (Munang and Andrews

2014). Scientific agriculture in the form of effective planting, fertilizing, irrigation, pest control and

mechanization could potentially help farmers achieve higher yields.

Many multi-national firms in the agriculture industry are striving to develop innovative solu-

tions to help small-scale farmers become more effective. Our motivation for this work comes from

interactions with AGCO, the third largest manufacturer of farm equipment in the world, that is

introducing modern farming practices in Africa. In its efforts to introduce mechanization it needs

to quantify the benefits of scientific farming to funding agencies that could then finance those ef-

forts. In order to do that one needs to understand the optimal approach to planting seeds under

uncertain rainfall and compare the benefits in relation to commonly used heuristics in practice.

In this paper, we model a farmer’s planting problem for a single crop under rainfall uncertainty

as a finite-horizon stochastic dynamic program. We use the cumulative biomass production to

measure the crop yield and estimate the daily biomass production as the minimum of the values

by two methods each day, one limited by water available for transpiration and the other limited

by radiant energy. Utilizing earlier work in plant physiology related to biomass production, we

further assume that the biomass production is zero during rainy periods and proportional to water

transpiration during sunny periods, that in turn is dependent on the soil water content (Patteron

2018). In our model, a farmer needs to decide whether to plant a seed in each period in the planting

horizon given the soil water content. We show that the structure of the optimal schedule is a time

dependent threshold-type policy where the farmer should plant when the seed amount on hand is

above the optimal threshold. This threshold depends on the soil water content and remaining time

in the horizon. Furthermore we provide conditions under which the threshold is non-increasing in

the soil water content. Mechanization can increase the speed at which seeds could be planted. We

extend our model to mechanization by considering a scenario where a farmer could plant up to m

(m > 1) seeds in each period. For this scenario, we show that the optimal planting schedule is still a

3



time dependent threshold-type policy where the farmer should plant down to an optimal level that

depends on soil water content, planting capacity and remaining time in the horizon. This optimal

plant-down-to level is non-decreasing in the planting capacity. To the best of our knowledge this

is the first model and analysis that incorporates the knowledge from plant physiology literature

related to soil water content and seed growth in an optimal decision making framework.

In our computational study we utilize field weather data from Southern Africa to investigate the

impact of climate conditions on the relative biomass production advantage of the optimal planting

schedule over commonly used heuristics in practice. The relative biomass production advantage

of the optimal schedule varies with the initial soil water content and could be as high as 16.88%.

Even when the initial soil water content is very low, the relative biomass production advantage

of the optimal schedule is 8.88%. Generally crop yields suffer significantly when the main rainfall

starts later (Mugalavai et al. 2008), when the expected length of dry spell before the main rainfall

becomes longer (Dennett 1987) or when the within-season variability of rainfall becomes higher

(Stern and Cooper 2011). We find that the advantages of the optimal planting schedule are higher

under these conditions. This indicates that the adoption of the optimal planting schedule could

mitigate the risk of crop yield drop due to severe climate conditions.

1.2 Locating Warehouses in An Emerging Country - A Win-Win Proposition?

In the second chapter, we study the retailer’s warehousing strategy in global sourcing. Due to

long distance logistics associated with offshore sourcing, firms face dramatic increase in transport-

ation cost, inventory cost and warehousing cost (Belanger and Leclerc 2013). Warehouse solutions

in emerging countries near suppliers attempt to address the cost escalation issue and therefore have

become more prevalent in offshore production (Robinson, C.H. 2015). Setting up such warehouses

assists firms to achieve cost efficiency as well as demand responsiveness. For instance, Black Dia-

mond Equipment started a global distribution center in China to locate inventory closer to various

OEM providers and its own manufacturing facilities. This allows Black Diamond to consolidate

freight, reduce overall inventory holding cost and become more responsive to demand change (Black

Diamond 2009). Similarly, Ace Hardware Corporation holds goods from more than fifty suppliers

in a global distribution warehouse in China. This enables Ace Hardware to reduce logistics cost
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and delivery time (China Daily 2006).

Although the benefit of locating warehouses in emerging countries appears intuitive, firms often

ignore the implications of logistics operations on supply chain contracting (Kumar et al. 2010).

Traditional contracting literature related to offshore sourcing studies the wholesale-price contract

and does not include the logistics operations costs in the retailer’s and supplier’s profits under

contract negotiation (Feng and Lu 2013). In fact a retailer’s logistics cost structure will change

substantially when she sets up an emerging-country warehouse to keep second-tier cycle stock,

which in turn will influence the supplier’s logistics cost. As a result, excluding logistics operations

costs from contracting and making warehousing decisions unilaterally afterwards could lead to a

suboptimal warehousing strategy for the retailer.

The motivation of this work comes from our interaction with a large retailer in Australia. The

retailer used to have products shipped directly from their Chinese suppliers to the retail locations.

Recently they have started to hold second-tier cycle stock at the Chinese warehouse to reduce

inventory cost and delivery time. In order to make the optimal warehousing decision, the retailer

needs to understand the potential cost advantage or disadvantage of using the Chinese warehouse

and the implications of the total landed cost (including logistics operations costs) on contracting

and the warehousing decisions.

In this chapter, we study supply chain contracting of a single product between a retailer in a

developed country and a supplier in an emerging country. The retailer faces stochastic lead time

and stochastic demand. She can hold cycle stock and safety stock at the retail location in the

developed country (developed country warehousing). In that case, the supplier delivers products

to the exporting harbor and from there the retailer directly ships products to the retail location.

Instead, in addition to cycle stock and safety stock at the retail location, the retailer can also hold

second-tier cycle stock in a warehouse in the emerging country (emerging country warehousing).

In that case, the supplier delivers products to the emerging-country warehouse where the retailer

breaks an inbound shipment into small batches. These small batches are then shipped to the retail

location sequentially. In both cases, the supplier incurs fixed and variable costs for each batch he

ships out. The retailer incurs procurement cost, overseas shipping cost, order processing cost and

inventory holding cost. Conditional on the retailer’s warehousing decision, the supplier and retailer
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negotiate over the wholesale price and order batch size.

Using the Nash bargaining framework, we establish the retailer’s optimal warehousing strategy

by providing a threshold on the holding cost at the emerging-country warehouse below which the

retailer should used the emerging-country warehouse. This threshold is increasing in lead time

reduction due to the warehouse and could be higher than the holding cost at the retail location

if the lead time reduction is high. We show that while the emerging country warehousing is more

profitable, the retailer could agree on a higher wholesale price if the holding cost at the warehouse

is low and the lead time reduction due to the warehouse is high. This property holds even when

the retailer’s bargaining power is close to one. If her bargaining power is low, she could still ask

for a discount on the wholesale price when the warehouse holding cost is low and the lead time

reduction is low.

Under the traditional contract, the negotiated wholesale price is not dependent on the warehous-

ing decision of the retailer as the logistics operations costs are not taken into account in contracting

and the warehousing decision is made unilaterally by the retailer after negotiation. In our model,

however, the negotiated wholesale price is dependent on the retailer’s warehousing decision, which

leads to individual profits and warehousing decision different from those under the traditional con-

tract. When the retailer uses the emerging-country warehouse under both contracts, her warehouse

inventory level is higher under the contract including the logistics cost. Our results indicate that

incorporating the logistics costs into contract negotiation could impact the retailer’s warehousing

strategy if the warehouse holding cost is low and the lead time reduction by the warehouse is low,

or the warehouse holding cost is high and the lead time reduction is high. Finally, we show that for

any bargaining power of the retailer, there exists a threshold of the warehouse holding cost below

which the retailer’s profit is higher under the contract including logistics costs.

1.3 Role of the Nearshore Supplier under Supply Chain Disruption Uncertainty

In the third chapter, we study the optimal sourcing strategy and the role of the nearshore

supplier in response to supply chain disruption. Firms start to move production from offshore

countries to nearshore countries due to cost increase in offshore countries and increasingly complex

disruption in global supply chains (Culp 2013). For instance, Japanese automakers such as Honda,
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Mazda and Nissan have shifted production from Asian countries to Mexico to serve the market

in North America. By doing this, they gain fatter cost margins and improve product availability

(Greimel 2014).

However, moving production facilities closer to markets does not always lead to a higher profit.

Otis Elevator lost $60m in 2013 due to moving production back to the United States in South

Carolina (Mann 2014). Successful examples (e.g. Forever 21 and Mattel) suggest a good strategy

of using both offshore and nearshore suppliers to achieve cost efficiency and product availability

under the disruption risk of offshore supply chain (Iyer 2010, Render 2012). Jain et al. (2013)

also provide empirical evidence that diversification of global suppliers leads to lower inventory

investment.

Firms need to consider multiple factors comprehensively to make the optimal decisions in global

sourcing. Offshore orders bring cost advantage due to low labor and material cost of the offshore

supplier. However, offshore outsourcing is regarded as one of the top causes of supply chain disrup-

tion (Zurich Insurance Group 2013), as it brings external threats (e.g. natural disasters), system

vulnerabilities (e.g. oil dependence), quality issues and lack of flexibility (Accenture 2013, Ander-

son 2013). Furthermore, firms need increasing flexibility and responsiveness to prepare for demand

fluctuations (Lacity and Rottman 2012). Hence it is difficult for firms to figure out the optimal

global sourcing strategy under the risk of supply chain disruption.

A nearshore supplier is often regarded as a contingency supplier when firms adopt a diversified

supplier base in response to supply chain disruption. They only order from the nearshore supplier

when disruption occurs (Tomlin 2006). Allowing for the dual-sourcing option, we analyze the role

of the nearshore supplier: whether it is a purely contingency supplier or also serves as inventory

safeguard.

In this chapter, we study a dual-sourcing problem for a single product under the risk of supply

chain disruption as a finite-horizon stochastic dynamic program. A firm can order from an offshore

supplier and a nearshore supplier each period based on her demand forecast and disruption inform-

ation to minimize the expected total cost. The nearshore supplier is expensive but reliable and the

offshore order is cheap but may meet supply chain disruption. The disruption state determines the

probability of disruption and evolves in a Discrete Time Markov Chain (DTMC) every period. The
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lead time of an offshore order is 2 and that of a nearshore order is 1. The demand forecast evolves

following a Martingale Model of Forecast Evolution (MMFE) every period.

We show that the optimal outsourcing strategy is a state-dependent two-threshold base-stock

policy. Every period the firm should place a nearshore order up to the optimal nearshore threshold,

and place an offshore order additionally up to the optimal offshore threshold, whenever the inventory

level allows. If the nearshore threshold is higher than the offshore threshold, she only orders from

the nearshore supplier up to the offshore threshold level. We provide conditions on cost parameters

and disruption risk under which the firm should use a sole- or dual-sourcing strategy and investigate

the impact of cost, disruption and demand forecast on the two thresholds.

In our numerical study, we investigate the impact of various factors on the firm’s strategy in

response to supply chain disruption. Firms often apply contingency or mitigation tactics to prepare

for supply chain disruption and demand fluctuations. Contingency tactics mean that firms take

actions after disruption occurs, such as ordering from a backup supplier; mitigation tactics mean

that firms take actions in advance of disruption, such as building up enough inventory safeguard

(Tomlin 2006). We define two measures to represent the firm’s dependence on the nearshore supplier

and the role of nearshore orders: a contingency plan or a mitigation plan. An asymptotically optimal

heuristics algorithm is developed based on Infinitesimal Purtubation Analysis (IPA) and sample

path algorithm to search for the optimal order decisions. Our results indicate that rather then

purely serving as a contingency plan, nearshore orders also build up inventory safeguard under

specific conditions. We find that compared with long and infrequent disruption, under short and

frequent disruption, a larger portion of nearshore orders are contingency orders. Furthermore,

although firms shift to nearshore production due to cost increase of offshore orders, they should

only do that when the disruption risk is sufficiently high.
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CHAPTER 2: OPTIMAL SEEDING POLICY UNDER RAINFALL
UNCERTAINTY

2.1 Introduction

The demand for agricultural products is increasing due to world’s growing population. By

2050, food production must double to meet the demand of the world (United Nations 2009). With

roughly 60% of the global total uncultivated arable land, African countries are regarded as a critical

player to feed the world (Obasanjo 2012). However, agricultural output in Africa mainly depends

on rainfall, as irrigation is too expensive for resource-poor farmers in this semi-arid area (Foti et al.

2008). Due to outdated machines and farming techniques and uncertainty in rainfall, planting

yields in Africa are far below the developing world average. As a result Africa generates only

10% of the global agricultural output (Lopes 2014) and hunger affects about 240 million African

people (Munang and Andrews 2014). Furthermore, due to severe climate conditions, crop yields

are estimated to decrease by 10% to 20% by the middle of this century (Munang and Andrews

2014). Scientific agriculture in the form of effective planting, fertilizing, irrigation, pest control and

mechanization could potentially help farmers achieve higher yields.

Many multi-national firms in the agriculture industry are striving to develop innovative solu-

tions to help small-scale farmers become more effective. Our motivation for this work comes from

interactions with AGCO, the third largest manufacturer of farm equipment in the world, that is

introducing modern farming practices in Africa. In its efforts to introduce mechanization it needs

to quantify the benefits of scientific farming to funding agencies that could then finance those ef-

forts. In order to do that one needs to understand the optimal approach to planting seeds under

uncertain rainfall and compare the benefits in relation to commonly used heuristics in practice.

In this paper, we model a farmer’s planting problem for a single crop under rainfall uncertainty

as a finite-horizon stochastic dynamic program. We use the cumulative biomass production to

measure the crop yield and estimate the daily biomass production as the minimum of the values
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by two methods each day, one limited by water available for transpiration and the other limited

by radiant energy. Utilizing earlier work in plant physiology related to biomass production, we

further assume that the biomass production is zero during rainy periods and proportional to water

transpiration during sunny periods, that in turn is dependent on the soil water content (Patteron

2018). In our model, a farmer needs to decide whether to plant a seed in each period in the planting

horizon given the soil water content. We show that the structure of the optimal schedule is a time

dependent threshold-type policy where the farmer should plant when the seed amount on hand is

above the optimal threshold. This threshold depends on the soil water content and remaining time

in the horizon. Furthermore we provide conditions under which the threshold is non-increasing in

the soil water content. Mechanization can increase the speed at which seeds could be planted. We

extend our model to mechanization by considering a scenario where a farmer could plant up to m

(m > 1) seeds in each period. For this scenario, we show that the optimal planting schedule is still a

time dependent threshold-type policy where the farmer should plant down to an optimal level that

depends on soil water content, planting capacity and remaining time in the horizon. This optimal

plant-down-to level is non-decreasing in the planting capacity. To the best of our knowledge this

is the first model and analysis that incorporates the knowledge from plant physiology literature

related to soil water content and seed growth in an optimal decision making framework.

In our computational study we utilize field weather data from Southern Africa to investigate the

impact of climate conditions on the relative biomass production advantage of the optimal planting

schedule over commonly used heuristics in practice. The relative biomass production advantage

of the optimal schedule varies with the initial soil water content and could be as high as 16.88%.

Even when the initial soil water content is very low, the relative biomass production advantage

of the optimal schedule is 8.88%. Generally crop yields suffer significantly when the main rainfall

starts later (Mugalavai et al. 2008), when the expected length of dry spell before the main rainfall

becomes longer (Dennett 1987) or when the within-season variability of rainfall becomes higher

(Stern and Cooper 2011). We find that the advantages of the optimal planting schedule are higher

under these conditions. This indicates that the adoption of the optimal planting schedule could

mitigate the risk of crop yield drop due to severe climate conditions.

The rest of the paper is organized as follows. §2.2 discusses the related literature. §2.3 studies
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the manual planting model and §2.4 analyzes the mechanized planting model. In §2.5 we conduct

an extensive computational study and explore the relative biomass production advantage of the

optimal planting schedule over commonly used heuristics in practice. In §2.6 we present model

variants that consider seed death in the growth as well as availability of water tank irrigation. We

conclude in §2.7.

2.2 Related Literature

Our work is in the area of agricultural operations. Lowe and Preckel (2004) review applications

of planting models and decision technology to agriculture problems related to operations manage-

ment. Recent papers in agricultural operations study irrigation resource allocation (Dawande et al.

2013, Huh and Lall 2013), harvest risk (Allen and Schuster 2004, Lejeune and Kettunen 2017), ca-

pacity and production planning with random yield and demand (Kazaz 2004, Kazaz and Webster

2011, Tan and Çömden 2012, Hu and Wang 2017, Boyabatlı et al. 2017), crop planning (Maatman

et al. 2002, Boyabatli et al. 2018), food gleaning operations (Ata et al. 2017), contracting (Boyabatli

et al. 2011, Ferreira et al. 2017), government policy (Gupta et al. 2017, Alizamir et al. 2018), agricul-

ture market in developing economies (An et al. 2015, Tang et al. 2015) and data-driven agriculture

operations (Devalkar et al. 2018). Among these, Tan and Çömden (2012) study the optimal farm

area and seeding time of multiple farms to maximize the profit under uncertain demand. The unit

crop yield is modeled to be purely dependent on the seeding time for a specific farm. Kazaz (2004)

and Kazaz and Webster (2011) study pricing and production planning in a two-stage stochastic

programming framework and in their models crop yield is dependent on the seeded amount. These

papers do not study seed scheduling and ignore the impact of uncertain rainfall on crop yield. In

contrast, we focus on seed planting process in rain-fed agriculture and model the seeding problem

in a finite-horizon stochastic dynamic program. Maatman et al. (2002) model farmers’ strategies

of production, consumption, selling, purchasing and storage in a two-stage stochastic program-

ming framework with the objective to minimize deficits of various nutrients over multiple farming

seasons. The production decision is dependent on observed rainfall that determines the number

of days available for sowing. In our model, the objective is to maximize the expected yield and

we establish the optimal seeding policy. The seeding decision is dependent on uncertain rainfall
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as the rainfall determines the soil water content, which in turn determines the growth of planted

seeds and survival rate of seeds after planting. Ata et al. (2017) study the dynamic staffing policy

in gleaning operations under uncertain food and labor supply with the objective to maximize the

gleaning organization’s net payoff and show that the optimal policy is a nested threshold policy.

In the context of farming operations, we study the optimal seeding policy under uncertain rainfall

(water supply) with the objective to maximize the crop yield and show that the optimal policy is

a threshold-type policy.

Production scheduling in manufacturing industry has been extensively studied in operations

management (Graves 1981). Most of the production schedule models focus on minimizing total

inventory cost during the planning horizon. In each period, inventory cost is incurred due to

leftover inventory or unsatisfied demand, that carries over to the next period. The optimal schedule

minimizes the expected total cost. For the planting scheduling problem, however, in each period

a seed planted generates an expected yield that depends on the soil water content, rainfall and

sunny days in the remaining horizon. The optimal planting schedule maximizes the cumulative

biomass production at the end of the horizon. Our work is also related to scheduling problems

in agriculture research, that includes production scheduling (Burt and Allison 1963), harvesting

scheduling (Chen et al. 1980) and fertilizer scheduling (Thornton and MacRobert 1994). Most of

these scheduling problems ignore the stochasticity in growth rate due to external factors such as

rainfall that determines the final yield. One exception is Burt and Allison (1963) who formulate

the crop-rotation planting schedule and model the dynamics of soil water content that is influenced

by annual planting or fallowing decision. We also model the dynamics of soil water content and

seed growth but additionally take uncertain rainfall into consideration. In our model, the soil water

content evolution and seed growth are determined by the weather rather than planting decisions.

Different from their work, we demonstrate the structure of the optimal planting schedule and show

its advantage over commonly used heuristics in practice under varying climate conditions.

2.3 Basic Planting Model

In this section we present a planting model for a single crop in a finite horizon. A planting

horizon consists of N periods with reverse time indexing, i.e., the first period is period N , followed
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by N −1, N −2 and so on. The weather in the planting horizon is characterized by vector pr. prt is

the probability that it is rainy in period t. 1− prt is the probability that it is sunny in period t. As

African countries receive many hours of sunshine on average and high intensity of solar radiation,

we assume that the weather is sunny when it does not rain (SOLA 2013). We assume that at

the beginning of any period t, the farmer knows whether period t would be rainy or not. This

assumption is reasonable since the local weather forecast information is available to most farmers

nowadays. The farmer cannot plant in a period if it rains and thus the decision for the farmer is to

decide whether to plant in each sunny period. To simplify the analysis, we assume that only one

seed can be planted in one period (in §2.4, we generalize this model). Note that, for simplicity we

assume that each period represents one day. However, one could consider the period that represents

half a day or smaller intervals as well.

We assume that fertilizing, pest control and harvesting processes are automatically optimized

by the farmer given the planting schedule and do not explicitly model these decisions. Fertilizers

are often used to strengthen the root and leaf growth, blossom formation and fruit production.

Therefore the effectiveness of fertilizing is highly dependent on the planting time and growth stage

of crops (Grant 2018). Similarly the schedule of insecticide use is dependent on the planting date

because treatments are required to target specific growth stages and a time window shortly before

or after the planting date (Allen et al. 2017). Harvesting is often scheduled to start some time

after the planting date and the time gap between planting and harvesting is determined by the

crop species and geographical characteristics (NASS and USDA 1997). Therefore scheduling any

of these operations is dependent on and coordinated with the planting schedule.

After a seed is planted, it begins to germinate and establish the seedling under favorable condi-

tions. Whether a seed survives after planting and successfully establishes the seedling is significantly

dependent on the soil water content in a short period after planting, about six days for maize in

Africa (George and Rice 2016, du Plessis 2003). As this is a small proportion of the growing cycle,

say 100 or 120 days for maize in Africa, we ignore the time of seedling emergence and thus assume

that the survival probability of a seed after planting is a function of soil water content at the begin-

ning of the planting period. We use swt to denote the soil water content at the beginning of period

t. If a seed is planted in period t, the probability that the seed survives is denoted by sv(swt)
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where sv(.) is the survival probability function of a seed. We assume that once a seed survives the

planting period, it will survive the rest of the planting horizon. We discuss the variant that seeds

could die after the planting period in §2.6 and the extension where multiple seeds could be planted

in §2.4.

Crop yield is considered as the product of biomass production (also referred as total dry mat-

ter or above-ground biomass) and harvest index, where the latter often varies with crop species

and genotypes (Atwell 1999). As we consider the planting schedule for a single crop, we use the

cumulative biomass production to measure the crop yield.

To estimate daily biomass production, we use the same method as in Agricultural Production

Systems Simulator (APSIM). The biomass production is the minimum of the values by two methods

each day, one limited by water available for transpiration and the other limited by radiant energy,

biomass production = min{transpiration × transpiration efficiency, radiation interception × radi-

ation use efficiency} (APSIM 1996, Kumar 2011). Let BMt denote the daily biomass production in

period t by a seed living in the ground. Then BMt = min{BM tp
t (tpt), BM

ri
t (rit)} where BM tp

t (tpt)

is the biomass production in period t calculated through plant transpiration in that period tpt and

BM ri
t (rit) is the biomass production in period t calculated through radiation interception in that

period rit.

The biomass production estimation method (transpiration or radiation interception) that limits

the biomass production is dependent on the weather, rainy or sunny. During rainy days, the relative

humidity of the air is high and this results in minimal transpiration level (Taiz and Zeiger 2010).

We assume that the water transpiration is zero during a rainy period. Therefore, if period t is

rainy, BMt = min{BM tp
t (0), BM ri

t (rit)} = BM tp
t (0) = 0.

During sunny days, the plant could intercept abundant radiation in Africa (SOLA 2013). Mean-

while, the plant also incurs water loss through transpiration in the high temperature (Taiz and

Zeiger 2010). Hence during a sunny day, BMt = min{BM tp
t (tpt), BM

ri
t (rit)} = BM tp

t (tpt). The

biology and agronomy literature shows that biomass production is linear in cumulative transpiration

(de Wit 1958). Since previous work measures the cumulative transpiration, we consider stationary

transpiration efficiency and assume that BM tp
t (.) is stationary and independent on t. Further, the

literature shows that daily transpiration is a piece-wise linear function of soil water content (Gard-
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Table 2.1: NOTATIONS

Notations for the Basic Planting Model
st system state at the beginning of period t
gsdt amount of seeds living in the ground at the beginning of period t
asdt amount of seeds available on hand for future planting at the beginning of period t
cbmt cumulative biomass production by all seeds up to the beginning of period t
swt soil water content at the beginning of period t
prect precipitation amount in period t given it rains
prt probability of rainfall in period t
ωt(.) transition of soil water content from period t to t− 1 as a function of soil water content

at the beginning of period t and precipitation amount (zero if sunny in period t)
sv(.) probability of seed survival after planting as a function of soil water content
bm(.) daily biomass production of a single seed as a function of soil water content
Vt(.) maximum expected biomass production by seeds in the ground and seeds available on

hand with t periods to go
Qt(.) expected biomass production by seeds in the ground with t periods to go
Ut(.) maximum expected biomass production by seeds available on hand with t periods to go

Additional Notations for the Mechanized Planting Model
m planting capacity
smt system state at the beginning of period t where the planting capacity is m
it decision variable, the amount of seeds to plant in period t given period t is not rainy
V m
t (.) maximum expected biomass production by seeds in the ground and seeds available on

hand under planting capacity m with t periods to go

ner and Ehlig 1963). Therefore, BM tp
t (.) can be expressed as a stationary function of soil water

content. Let bm(.) denote the biomass production by a seed living in the ground during a sunny

period. Given period t is sunny, BMt = BM tp
t (tpt) = bm(swt). If a seed survives the planting

period t, we assume that it contributes the biomass production of bm(swt) in period t as any other

seed living in the ground does. We can show that our results still hold when a seed that survives

the planting period only starts to contribute the biomass production from the next period.

Let st = (gsdt, asdt, cbmt, swt) denote the system state at the beginning of period t and S =

{(gsd, asd, cbm, sw)|cbm, sw ∈ R+
⋃
{0}, gsd, asd ∈ N}. gsdt is the number of seeds living in the

ground at the beginning of period t; asdt is the number of seeds available on hand for future

planting at the beginning of period t; cbmt is the cumulative biomass production from all seeds

living in the ground up to the beginning of period t; swt is the soil water content at the beginning

of period t. We use prect to denote the conditional precipitation amount given it rains in period t

and ωt(.) to denote the transition function of soil water content. Given that the soil water content

at the beginning of period t is swt, the soil water content at the beginning of period t − 1 is

swt−1 = ωt(swt, 0) if it does not rain in period t and swt−1 = ωt(swt, prect) if it rains in period t.
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Figure 2.1: STATE TRANSITION FOR SINGLE CROP PLANTING MODEL

Table 2.1 summarizes our notations and Figure 2.1 illustrates the state transition. At the

beginning of period t, if it is rainy, the farmer cannot plant and no decision needs to be made. The

amount of seeds living in the ground, available on hand and the cumulative biomass production

remain the same till the beginning of period t − 1. If it is sunny in period t, the farmer needs to

decide whether to plant a seed or not. If the decision is not to plant, the amount of seeds living in the

ground and the number of seeds available on hand remain the same till the beginning of period t−1.

The seeds living in the ground contribute gsdt ∗ bm(swt) to the cumulative biomass production. If

the decision is to plant, the amount of seeds available on hand decreases by one. With probability

sv(swt), the seed survives after planting. In this case the amount of seeds living in the ground

increases by one and the cumulative biomass production increases by gsdt ∗ bm(swt) + bm(swt),

where the latter part is from the newly planted seed. With probability 1− sv(swt), the seed does

not survive after planting. In this case the amount of seeds living in the ground does not change

and the cumulative biomass production increases by gsdt ∗ bm(swt).

Our objective is to find a planting schedule that maximizes the expected biomass production at

the end of the planting horizon. Let Vt(.) denote the maximum expected total biomass production

with t periods to go, as a function of system state st = (gsdt, asdt, cbmt, swt). Then,

Vt(gsdt, asdt, cbmt, swt) = prtVt−1(gsdt, asdt, cbmt, ωt(swt, prect)) + (1− prt ) ∗max
{
Vt−1(gsdt, asdt,

cbmt + gsdt ∗ bm(swt), ωt(swt, 0)), sv(swt) ∗ Vt−1(gsdt + 1, asdt − 1, cbmt + (gsdt + 1) ∗ bm(swt),

ωt(swt, 0)) + (1− sv(swt)) ∗ Vt−1(gsdt, asdt − 1, cbmt + gsdt ∗ bm(swt), ωt(swt, 0))
}
,

V0(gsd0, asd0, cbm0, sw0) = cbm0.
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Lemma 2.1 (Separable Property of Biomass Production). The biomass production value function

Vt(gsdt, asdt, cbmt, swt) can be expressed as the sum of cbmt, a function of (gsdt, swt) and a function

of (asdt, swt), i.e.,

Vt(gsdt, asdt, cbmt, swt) = cbmt + gsdt ∗Qt(swt) + Ut(asdt, swt), where (2.1)

Qt(swt) =prtQt−1(ωt(swt, prect)) + (1− prt )(bm(swt) +Qt−1(ωt(swt, 0))), Q0(sw0) = 0, (2.2)

Ut(asdt, swt) = prtUt−1(asdt, ωt(swt, prect)) + (1− prt ) max
{
Ut−1(asdt, ωt(swt, 0)),

sv(swt)(bm(swt) +Qt−1(ωt(swt, 0))) + Ut−1(asdt − 1, ωt(swt, 0))
}
, U0(asd0, sw0) = 0.

(2.3)

Lemma 2.1 shows that for any period t, seeds that are living in the ground (gsdt) and seeds

available on hand (asdt) independently contribute to cumulative biomass production. Qt(swt) is

the expected future biomass production of one seed living in the ground with t periods to go given

that the soil water content at the beginning of period t is swt. It is dependent on the weather

and precipitation amount in the future periods as shown in Equation (2.2). Ut(asdt, swt) is the

maximum expected biomass production of all seeds available on hand (asdt) with t periods to go

given that the soil water content at the beginning of period t is swt. Since the future biomass

production of all seeds living in the ground (gsdt ∗Qt(swt)) is not dependent on the future planting

decisions of the farmer, it is sufficient to focus on Equation (2.3) to explore the optimal planting

decision.

Theorem 2.1. Given state st = (gsdt, asdt, cbmt, swt) in period t,

1. the optimal planting decision is dependent on the amount of seeds available on hand (asdt)

and soil water content (swt);

2. there exists a threshold SDt(swt) that the optimal decision is to plant if asdt > SDt(swt) and

not to plant otherwise.

For a sunny period t, the number of seeds available on hand (asdt) and the soil water content

(swt) are the determinants of the optimal planting decision. Planting early allows seeds to contrib-

ute biomass production for a long time. However the soil water content at planting may be low and
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this results in low seed survival after planting. On the other hand, seeds can only contribute biomass

production for a short period if they are planted late. But they would survive with a high chance as

the soil water content tends to become higher at the late stage of the planting horizon. For sunny

period t, the optimal decision is to plant if the contribution of biomass production by planting one

seed in period t (sv(swt)∗(bm(swt)+Qt−1(ωt(swt, 0)))) is higher than the marginal contribution of

biomass production by reserving this seed in the next period (Ut−1(asdt, ωt(swt, 0))− Ut−1(asdt −

1, ωt(swt, 0))). The optimal policy can be characterized by the optimal planting threshold SDt(swt).

Given soil water content swt, the optimal decision is to plant if the seed amount available on hand

is higher than the optimal threshold (asdt > SDt(swt)). This is because the expected biomass

production of planting one seed (sv(swt) ∗ (bm(swt) + Qt−1(ωt(swt, 0)))) remains constant with

varying seed amount on hand (asdt) while the marginal biomass production of reserving this seed

in the next period (Ut−1(asdt, ωt(swt, 0))− Ut−1(asdt − 1, ωt(swt, 0))) is non-increasing in asdt.

Proposition 2.1. Assume ωt(swt, prect) = δ ∗ swt + prect, δ ∈ (0, 1), bm(sw), sv(sm) are con-

tinuous and three-times differentiable and prtωt+1(swt+1,
prect
δ ) + (1−prt )ωt+1(swt+1, 0) ≥ swt+1, ∀t.

SDt(swt) is non-increasing in swt if (1) bm(sw) is non-decreasing and convex in sw and has

third order derivative non-negative for any sw > 0 and (2) sv(sw)∗bm(sw) and sv(sw)∗bm(δ∗sw)

are non-decreasing and concave in sw and have third order derivative non-positive for any sw > 0.

Proposition 2.1 provides conditions on the survival probability function sv(.) and the biomass

production function bm(.) under which the optimal planting threshold SDt(swt) is non-increasing

in the soil water content given that the dynamics soil water content ωt(.) takes a widely used

form (see details in §2.5) and the expected soil water content is non-decreasing. Generally higher

soil water content leads to both higher biomass production of planting one seed in the current

period (sv(swt)(bm(swt)+Qt−1(ωt(swt, 0)))) and higher marginal biomass production by reserving

this seed in the next period (Ut−1(asdt, ωt(swt, 0))− Ut−1(asdt − 1, ωt(swt, 0))). The conditions in

Proposition 2.1 guarantee that with higher soil water content, the biomass production of planting

a seed increases more than that of reserving this seed in the next period. Therefore the farmer is

more willing to plant under higher soil water content.
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Figure 2.2: STATE TRANSITION FOR MECHANIZED PLANTING MODEL

2.4 Mechanized Planting Model

Mechanization can increase the speed of planting. In this section, we study a mechanized

planting problem where the farmer can plant up to m (m > 1,m ∈ N ) seeds in each period and

m is the capacity of mechanized planting. Let smt denote the system state and V m
t (.) denote the

maximum expected biomass production with t periods to go and planting capacity m. Note that

the mechanized planting problem can be regarded as a general case of the manual planting problem

in §2.3. For any sunny period, the farmer needs to decide how many seeds to plant. Suppose

it seeds are planted in period t, the number of seeds available on hand would decrease by it,

asdt−1 = asdt − it. We assume that the probability function of seed survival amount is a binomial

function and the probability that k seeds would survive after planting is (sv(swt))
k(1−sv(swt))

1−k,

k = 0, 1, . . . , it. In this case, the amount of seeds living in the ground would increase by k, gsdt−1 =

gsdt + k, and the cumulative biomass production would increase by gsdt ∗ bm(swt) + k ∗ bm(swt),

where the former part is the biomass production contributed by seeds living in the ground and the

latter part by the newly planted seeds. Figure 2.2 illustrates the state transition in the mechanized

planting problem.

V m
t (gsdt, asdt, cbmt, swt)

=prtV
m
t−1(gsdt, asdt, cbmt, ωt(swt, prect)) + (1− prt ) ∗ max

it=0,...,min{asdt,m}

{ it∑
k=0

(kit)(sv(swt))
k

∗ (1− sv(swt))
it−k ∗ V m

t−1(gsdt + k, asdt − it, cbmt + (gsdt + k)bm(swt), ωt(swt, 0))
}

V m
0 (gsd0, asd0, cbm0, sw0) = cbm0

We can show that V m
t (.) satisfies the separable properties as in Lemma 2.1 and hence the
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optimal planting decision is dependent on the amount of seeds available on hand and the soil water

content for given planting capacity. Let amt (asdt, swt) denote the optimal planting decision for a

sunny period t under capacity m.

Theorem 2.2. Given state smt = (gsdt, asdt, cbmt, swt) in period t,

1. the optimal planting decision is dependent on the amount of seeds available on hand (asdt),

the soil water content (swt) and the planting capacity (m);

2. there exists a threshold SDm
t (swt) that the optimal decision amt (asdt, swt) satisfies

amt (asdt, swt) =

 min{m, asdt − SDm
t (swt)} if asdt > SDm

t (swt)

0 otherwise
; (2.4)

3. assume ωt(swt, prect) = δ ∗ swt + prect, δ ∈ (0, 1), bm(sw), sv(sm) are continuous and three-

times differentiable and prtωt+1(swt+1,
prect
δ ) + (1− prt )ωt+1(swt+1, 0) ≥ swt+1,∀t. SDm

t (swt)

is non-increasing in swt if (1) bm(sw) is non-decreasing and convex in sw and has third order

derivative non-negative and (2) sv(sm)∗ bm(sw) and sv(sm)∗ bm(δ ∗sw) are non-decreasing,

concave in sw and have third order derivative non-positive for any sw > 0.

The optimal planting schedule can be described as a capacitated plant-down-to policy, as shown

in Figure 2.3. Given the soil water content swt = 2 and planting capacity m = 4, the optimal

decision is not to plant when the amount of available seeds (asdt) is less than or equal to 5. If

the amount of available seeds is 6 to 9, the optimal decision is to plant 1 to 4 seeds respectively.

When the amount of available seeds is more than 9, the optimal planting amount is 4 as the

planting capacity is 4 and no more than 4 seeds can be planted in each period. The optimal

decision in each period can be described by a threshold SD4
t (swt), that is dependent on the soil

water content and planting capacity. In a sunny period, if the available seed amount is higher than

the threshold SD4
t (swt), the optimal decision is to plant down to SD4

t (swt) unless limited by the

capacity. Otherwise the optimal decision is to hold seeds to the next period. As a result, given the

current optimal decision is to plant, if the available seed amount on hand increases by one unit, the

optimal planting amount also increases by one unit, as long as the planting capacity allows. This
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Figure 2.3: AN EXAMPLE OF OPTIMAL PLANTING POLICY UNDER CAPACITY 4 WITH
t PERIODS TO GO

result is similar to the modified base stock policy for inventory problems under capacity constraint

(Federgruen and Zipkin 1986).

Proposition 2.2. SDm
t (swt) is non-decreasing in m. Furthermore, when SDm

t (swt) > 0, SDm
t (swt)+

1 ≤ SDm+1
t (swt).

The optimal plant-down-to level is non-decreasing in the planting capacity m as stated in Pro-

position 2.2. Obviously under unlimited capacity, the optimal plant-down-to threshold characterizes

the optimal planting decision. Under limited planting capacity, the planting amount may not reach

the optimal plant-down-to threshold as under unlimited capacity, harming the expected biomass

production. In order to mitigate this loss due to capacity limitation in future periods, the optimal

planting amount tends to be larger under a lower planting capacity than under a higher capacity.

This result is consistent with the literature of capacitated inventory system where the order-up-to

level tends to be non-increasing in the production capacity (Federgruen and Zipkin 1986).
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2.5 Computational Study

Our computational study is aimed to (i) investigate the benefit of using an optimal planting

policy in comparison to commonly used heuristics in practice and (ii) identify climate conditions

where using the optimal policies might be more beneficial.

Seed Survival Function

We assume a logit model of seed survival after planting, where a logit-transformation of the

survival probability of a planted seed is a linear function of the soil water content, i.e. sv(swt) =

β+eγ∗swt
1+β+eγ∗swt . The logit model is consistent with the generalized linear mixed model (GLMM) that is

commonly used to analyze the impact of soil water content on seed survival and seedling emergence

(Bolker et al. 2009). We set β = 0 for simplicity and set γ = 0.05 to allow for a large range of

survival probabilities throughout the computational study.

Biomass Production Function

As the crop physiology literature indicates, we assume that the biomass production is a linear

function of soil water content bm(swt) = α ∗ swt, α > 0 (Gardner and Ehlig 1963, de Wit 1958).

Because bm(swt) is proportional to swt, when comparing two planting policies (Θ1 and Θ2), the

relative difference of the biomass production between the two policies is irrelevant to α, as stated

in Proposition 2.3. Without loss of generality we set α = 1.

Proposition 2.3. For a planting horizon with N periods, let BMΘ1(asdN , swN ) denote the cumu-

lative biomass production over the planting horizon under policy Θ1 and BMΘ2(asdN , swN ) under

policy Θ2, where at the beginning of the planting horizon the number of seeds available on hand is

asdN and the soil water content is swN . If bm(swt) = α∗swt, α > 0, then the relative difference of

the biomass production under Θ1 and Θ2, BMΘ2 (asdN ,swN )−BMΘ1 (asdN ,swN )

BMΘ1 (asdN ,swN )
, is independent on the

value of α.
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Dynamics of Soil Water Content

To characterize the dynamics of soil water content, we apply a widely used Antecedent Precipit-

ation Index (API) model to describe the impact of water run-off and precipitation on the soil water

content (Kohler and Linsley 1951). In this model, the transition function of soil water content

is ωt(swt, prect) = δ ∗ swt + prect where δ is a recession factor that describes the water run-off.

Although the factor δ depends on the geographical characteristics of the studied area, studies show

that the value of this factor minimally differs among different areas (Kohler and Linsley 1951).

Pellarin et al. (2009) estimate a daily recession factor δ = 0.7788 in West Africa. Therefore in the

computational study we set the recession factor δ = 0.8.

2.5.1 Weather Data

We use daily weather data from 124 weather stations that span nine countries in Southern

Africa (Zambia, Malawi, Zimbabwe, Botswana, Mozambique, Namibia, South Africa, Lesotho and

Swaziland) from www.wunderground.com. The data coverage is from September 2010 to May 2017

and we consider weather stations that have at least one full year of records. The data records

indicate whether a given day was rainy or not at a given station as well as the amount of rain. We

use this data set to calculate the probability of rain for a specific date (month, day) (prt ) and the

conditional precipitation amount for a specific date given that day is rainy (prect).

We use an example to illustrate how to calculate prt and prect for each date in the planting

horizon. For a specific station, suppose we have six observations for January 1st - two rainy obser-

vations and four sunny observations - and the precipitation amount for the two rainy observations

are 12 mm and 10 mm. Then the probability of rain for January 1st is, prt = 2/6 = 0.33. The

conditional precipitation amount for January 1st given it is rainy is (12mm+ 10mm)/2 = 11mm.

2.5.2 The Real Size Problem

In the real problem that motivated this work, the season typically goes from November to

May in a six-month period. As crops need time to grow to maturity after planting, we assume no

planting after March 1st in our study. This is consistent with practice in Southern Africa that cereal
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Figure 2.4: ILLUSTRATION OF IPA APPROXIMATION

planted in early November starts complete photosynthesis through leaves in February and farmers

stop planting around the beginning of March (FEWS NET 2017). The planting horizon ends in

February thereby having 120 periods (days) in which decisions need to be made. Although we can

use backward induction to search for the optimal planting schedule and obtain final cumulative

biomass production values, the running time increases exponentially in the length of the planting

horizon. In order to handle such a large-scale problem and find the optimal solution, we develop an

approximation based on IPA (Infinitesimal Perturbation Analysis). Based on Theorem 2.2, in each

period the optimal plant-down-to policy can be illustrated in a stair structure as represented by

the arrows in Figure 2.4. For each period we use a line segment to approximate the stair structure,

as indicated by the dashed line in Figure 2.4. We then apply IPA to search for the optimal line

segments associated with all periods under the assumption of continuous action space. For each

period, searching for the optimal line segment is equivalent to searching for the optimal decision

variables (thwt, thyt in Figure 2.4) that characterize the line segment and we apply gradient search

in this process. IPA guarantees that the expectation of sample-path gradient we obtain converges

to the gradient of the expected biomass production value. Each time we evaluate the expected

gradient of the biomass production value with respect to the threshold decision variables, we take

the average of 300 sample-path gradients. Once the thresholds are searched out, the biomass
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Table 2.2: RELATIVE BIOMASS PRODUCTION DEVIATION FROM THE BENCHMARK
SETTING

tol 7% 3% 1% 0.5% grtol 15% 10% 7% 3% 1%

-0.28% 0.81% 0.87% 0.91% 0.07% 0.10% 0.06% 0.11% 0.13%

production values are calculated by taking the average of 5, 000 sample-path biomass production

values, each obtained following the plant-down-to policy with thresholds computed.

To make sure that the convergence happens properly, we impose two stopping criteria in search-

ing for the optimal thresholds. The first criteria is that, in two consecutive search iterations, if

the absolute value of the relative average gradient change with respect to any decision variable is

smaller than grtol, then we stop searching. The second criteria is that, in two consecutive search

iterations, if the absolute value of the relative biomass production change for any combination of

initial seed amount on hand and initial soil water content (asdN , swN ) is smaller than tol, then

we stop searching. In our computational study, we use grtol = 5% and tol = 5%. Setting this

as the benchmark, we calculate the relative deviation from the biomass production values when

tol = {7%, 3%, 1%, 0.5%} and grtol = {15%, 10%, 7%, 3%, 1%}. Our results in Table 2.2 demon-

strate that the average biomass production values does not deviate significantly when the values of

grtol and tol deviate from the benchmark setting.

2.5.3 Relative Advantage of Optimal Planting Schedule using Approximation

We consider the cases where the planting capacity m ∈ {1, . . . , 8} and investigate the relative

biomass production advantage of the optimal planting schedule over commonly used myopic heurist-

ics in practice. In Africa, farmers commonly start to plant after observing several consecutive days

of rain or enough cumulative precipitation. For the staple product, maize, one of the rules of thumb

is to start planting after observing 25 mm of cumulative precipitation in a 10-day period starting

from November 1st and then keep planting at full capacity until all seeds are depleted (Tadross

et al. 2009). Based on this convention, we adopt the commonly used heuristics in practice using the

rainfall data and compare the final biomass production with that generated by the optimal schedule.

We use the relative biomass production advantage of the optimal planting schedule over commonly

used heuristics, Biomass Production of Optimal Planting Schedule−Biomass Production of Commonly Used Heuristics
Biomass Production of Commonly Used Heuristics ,
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Table 2.3: RELATIVE BIOMASS PRODUCTION IMPROVEMENT OF THE OPTIMAL
POLICY

planting capacity 1 2 3 4

avg. soil water content 12.75% 15.05% 15.05% 15.10%

min. soil water content 8.88% 14.02% 13.95% 13.96%

max. soil water content 15.04% 16.81% 16.78% 16.81%

planting capacity 5 6 7 8

avg. soil water content 15.10% 15.08% 15.07% 15.14%

min. soil water content 14.05% 14.05% 14.03% 14.03%

max. soil water content 16.88% 16.87% 16.77% 16.86%

to measure the benefit from adopting the optimal planting schedule. The biomass production

values under commonly used heuristics are obtained by taking the average of 5,000 sample-path

yields, each obtained under the 25mm heuristics. Note that under commonly used heuristics with

planting capacity m > 1, when the decision is to plant, the amount of seeds planted is set to be

the maximum planting capacity m.

We consider three cases of initial soil water content from the field weather data: the average soil

water content (10.39 mm), the minimum soil water content (2.26 mm) and the maximum soil water

content (24.53 mm). For each of the seven planting horizons between September 2010 and May

2017, we calculate the soil water content on November 1st using the function of soil water dynamics

ωt(swt, prect) = 0.8 ∗ swt + prect and the rainfall data in September and October before the start

of that planting horizon, assuming that the soil water content at the beginning of September 1st

is zero. The average (minimum, maximum) case is the average (minimum, maximum) soil water

content on November 1st over the seven planting horizons.

Table 2.3 demonstrates the relative biomass production advantage of the optimal schedule over

commonly used myopic heuristics when the planting capacity under both planting policies are the

same. When the initial soil water content level is very low, the final biomass production under the

optimal schedule gets hurt since it takes a long time for the soil water content to reach the optimal

threshold for planting. In spite of that adopting the optimal schedule leads to improvement in

the final biomass production even under minimum initial soil water content. The relative biomass

production improvement of the optimal policy under manual planting (m = 1) is 12.75% under

average initial soil water content, 8.88% under minimum initial soil water content and 15.04%
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Table 2.4: RELATIVE BIOMASS PRODUCTION IMPROVEMENT OF THE OPTIMAL
POLICY AND MECHANIZED PLANTING

planting capacity 1 2 3 4

avg. soil water content 12.75% 125.64% 245.49% 360.89%

min. soil water content 8.88% 116.68% 242.04% 356.05%

max. soil water content 15.04% 129.96% 250.26% 367.26%

under maximum initial soil water content. Under mechanized planting (m > 1), the relative

biomass production improvement of the optimal policy minimally changes as the planting capacity

changes. The relative improvement is about 15% under average initial soil water content, 14%

under minimal soil water content and 17% under maximum soil water content.

Table 2.4 illustrates the relative biomass production advantage of mechanized (m > 1) or manual

(m = 1) planting under the optimal policy over manual planting (m = 1) under commonly used

myopic heuristics. When moving from manual planting (m = 1) to mechanized planting (m > 1),

we are increasing the number of seeds available to the farmer proportional to the increased speed.

By adopting mechanization (m = 3) under the optimal policy, the final biomass production can be

improved by nearly 250% regardless of the initial soil water content. This improvement by adopting

both the optimal policy and mechanization is consistent with the observations made in the pilot

study in Zambia by AGCO (Swaminathan 2018).

2.5.4 Out-of-Sample Testing

We conduct out-of-sample testing to validate our results. Our dataset contains seven years

of daily rainfall data, where each data point (month, date) contains the average probability of

rainfall and the average conditional precipitation amount given it rains over all weather stations.

Let p
[i],r
t and prec

[i]
t , i = 1, ..., 7; t = 1, ..., 181 denote the average probability of rainfall in day t of

the ith planting horizon and average conditional precipitation amount in day t of the ith planting

horizon given it rains. To conduct the out-of-sample testing, we search for the optimal planting

thresholds using the data of the first three years (November 2010 - April 2013), where the daily

rainfall probability and conditional precipitation amount are calculated by prt =
∑3
j=1 p

[j],r
t

3 , prect =∑3
j=1

p
[j],r
t prec

[j]
t

3prt
. Then for year k in the rest four years (November 2013 - April 2017), we use

the daily rainfall probability of year k, p
[k],r
t to generate 5, 000 sample paths where each sample
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Table 2.5: RELATIVE BIOMASS PRODUCTION IMPROVEMENT OF THE OPTIMAL
POLICY IN OUT-OF-SAMPLE TESTING (m = 1)

year 2014 2015 2016

avg.soil water content 8.35% 8.23% 10.31%

min. soil water content 7.09% 2.29% 6.75%

max. soil water content 9.94% 11.19% 11.84%

path characterizes whether it rains in each day of the planting horizon. If it rains in period t, the

precipitation amount is prec
[k]
t . The biomass production under the optimal policy is calculated by

taking the average of the 5, 000 sample-path biomass production values, each obtained following the

plant-down-to policy with planting thresholds searched out based on the first three years’ rainfall

data. The biomass production under the commonly used heuristics is calculated by taking the

average of the 5, 000 sample-path values, each obtained following the 25mm heuristics.

Table 2.5 shows that the biomass production from the optimal policy is higher than that from

commonly used heuristics in practice in the out-of-sample testing. The relative improvement of the

optimal policy is close to but lower than the full information case (m = 1) in Table 2.3.

2.5.5 Advantage of Optimal Planting Schedule under Climate Change

Next we explore the impact of severe climate conditions on the advantage of optimal planting

schedule over commonly used heuristics in practice under manual planting (m = 1). In practice,

farmers may adopt different rules to determine the onset planting date under different climate

conditions. In calculating the relative advantage of the optimal policy under different climate

conditions, we compare the biomass production under the optimal policy to the best commonly used

myopic heuristics policy and take the average relative advantage of the optimal policy. We use [x, y]

to denote the heuristics under which the farmer would start planting at full capacity after observing

x mm of precipitation in a y-day period starting from November 1st and keep planting whenever

possible till the depletion of seeds or the end of the planting horizon, whichever occurs earlier. We

enumerate the myopic policies in set H = {[x, y]|x = 10, 15, 20, 25, 30; y = 5, 10, 15, 20, 25, 30, 35}.
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Figure 2.5: RELATIVE BIOMASS PRODUCTION IMPROVEMENT OF THE OPTIMAL
POLICY UNDER DELAYED MAIN RAINFALL

Delayed Main Rainfall:

We first explore the impact of delayed main rainfall on the relative biomass production advantage

of the optimal planting schedule. Our weather data shows that both the rainfall probability and

average precipitation tend to increase from November and starts to drop around mid-January. In

recent years, however, extensive areas in Southern Africa have seen delays in the onset of the

planting season of up to five and six weeks due to late start of the main rainfall (Stern and Cooper

2011). We shift the evolution pattern of rainfall probability to indicate early or late start of the

main rainfall, as shown in the left panel of Figure 2.5. A larger index indicates a later start of the

main rainfall. The average rainfall probability over the planting horizon remains the same among

all rainy patterns (constant
∑120
t=1 p

r
t

120 ).

Our numerical study demonstrates that the loss in harvest due to delayed rainfall could be

mitigated by applying the optimal planting schedule, as in the right panel of Figure 2.5. Generally

crop yields suffer significantly with a late onset date (Mugalavai et al. 2008). When the main rainfall

comes later, under commonly used myopic heuristics, the farmer would wait for a longer time until

sufficient cumulative precipitation is observed. In our computational results, the delayed rainfall

leads to increasing time window in the best myopic policy: from [10, 5] in pattern 1 to [10, 20] in

pattern 7. Planting starts later if the main rainfall starts later and all seeds may not be depleted at

the end of the horizon. However, the optimal planting schedule is created uniquely for each of the

weather patterns. Therefore, if the rainfall gets delayed, the optimal planting thresholds tend to
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Figure 2.6: RELATIVE BIOMASS PRODUCTION IMPROVEMENT OF THE OPTIMAL
POLICY UNDER LONGER EARLY DRY SPELL

decrease and the farmer will start to plant at a lower soil water content. More seeds can be planted

to grow during the main rainfall, leading to a higher final yield than commonly used heuristics.

Dry Spell Before Main Rainfall:

Another critical agricultural issue that African countries have faced in recent years, especially

with El Niño events, is that a long dry spell often occurs before the main rainfall. This type of

drought often aggravates circumstances. Early rainfall is often followed by a long dry spell before

the main rainfall comes. This early rainfall allows the planting process to start, but it is insufficient

for crop establishment and thus leads to drop in yields (Dennett 1987). We represent the increasing

expected length of dry spells by decreasing the rainfall probabilities before the main rainfall, as

shown in the left panel of Figure 2.6. A larger index indicates a longer expected length of dry spell

before the main rainfall.

The right panel of Figure 2.6 shows that the relative biomass production advantage of the op-

timal schedule increases as the expected length of early dry spell becomes longer. Under commonly

used myopic heuristics, the farmer starts to plant after observing early rainfall and keeps planting

during the dry spell. The longer expected dry spell leads to a longer time window in the best

myopic policy: from [10, 5] in pattern 1 to [10, 10] in pattern 7. Longer early dry spell leads to later

onset planting date and more biomass production loss under the myopic policy. Under the optimal

schedule, however, planting may not continue after early rainfall if a dry spell encountered in the

following periods results in low soil water content. When the early dry spell becomes longer, the
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Figure 2.7: RELATIVE BIOMASS PRODUCTION ADVANTAGE OF THE OPTIMAL POLICY
UNDER INCREASING RAINFALL VARIABILITY

optimal planting thresholds of the early periods become higher and planting occurs at a higher soil

water content. When the initial soil water content is low, the farmer starts planting later when the

dry spell is about to end. If the initial soil water content is high and the farmer starts planting

when the early rainfall is observed, she may stop planting during the dry spell if it results in low

soil water content and continue to plant later when more rainfall occurs. Therefore the biomass

production loss due to longer early dry spell could be mitigated by adopting the optimal schedule.

Within-season Variability of Rainfall:

The within-season variability of rainfall distribution usually leads to lower crop yields (Stern

and Cooper 2011). In Africa, the distribution of daily precipitation is often highly skewed, with

23% of rainy days contributing 80% of total rainfall (Dennett 1987). In our model, we use the

flatness of the evolution pattern of the rainfall probability to indicate within-season variability of

the rainfall, as in the left panel of Figure 2.7. A smaller index indicates a more flat distribution

and a lower within-season variability of rainfall. The average rainfall probability over the horizon

remains the same among all rainy patterns (constant
∑120
t=1 p

r
t

120 ).

The right panel of Figure 2.7 illustrates that the relative biomass production advantage of

the optimal planting schedule increases as the within-season variability of rainfall increases. Under

such conditions, the optimal planting thresholds of early periods decrease and those of later periods

increase. Therefore the farmer starts to plant earlier and seeds contribute more biomass production.

However, under commonly used heuristics, planting starts later when the within-season rainfall
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variability increases. The time window in the best myopic policy increases from pattern 1 ([10, 5])

to pattern 7 ([10, 15]). When the rainfall peak comes, fewer seeds have been planted and the

planting process may be impeded as farmers cannot plant when it rains. Therefore with increasing

within-season rainfall variability, the final biomass production under commonly used heuristics

tends to become lower and thus the relative advantage of the optimal policy becomes higher.

2.5.6 Advantage of Optimal Policy under Varying Seed Quality

Poor crop establishment has been identified as a major cause of low yields in Southern Africa.

With inadequate soil water content and poor land preparation methods, sowing good-quality seeds

could significantly improve crop yields. In plant physiology literature, seed quality refers to three

aspects: seed germination, vigor and size and it influences final crop yields during different growing

stages (Ellis 1992). In this section, we investigate the impact of seed quality on the advantage of

the optimal policy over commonly used heuristics in practice.

Seed size is considered of particular importance at early seedling stages and studies have

provided evidence that larger seed size would lead to higher survival rate and emergence per-

centage (Lloret et al. 1999). Seeds with higher vigor have been demonstrated to provide a higher

survival rate in the field of many crops such as corn and soybean (Ellis 1992). Seed priming -

soaking seeds into water or other solution before sowing - often leads to higher germination per-

centage (Foti et al. 2008). Thus high seed quality indicates high seed survival probability after

planting. To investigate the impact of seed quality on the advantage of the optimal schedule, we

use the probability function of seed survival sv(swt, η) = eγ∗swt
η+eγ∗swt and evaluate the relative biomass

production advantage of the optimal planting schedule under varying η ∈ {1, . . . , 10} (varying γ

minimally changes the value of survival probability). A larger η represents lower seed quality. We

calculate the relative biomass production advantage of the optimal policy over the commonly used

heuristics (25mm heuristics) with both policies under manual planting (m = 1).

Figure 2.8 shows the impact of seed quality (η) on the advantage of the optimal policy. Both the

absolute (left panel) and relative (right panel) biomass production advantage of the optimal policy

are increasing in seed quality (decreasing in η). We observe that the relative biomass production

advantage of the optimal policy is minimally increasing in seed quality (decreasing in η) when the
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Figure 2.8: IMPACT OF SEED QUALITY ON THE RELATIVE BIOMASS PRODUCTION
ADVANTAGE OF THE OPTIMAL POLICY

soil water content is high. Because the high soil water content guarantees high survival rate of

seeds even when the seed quality is low, varying the seed quality does not significantly influence

the relative biomass production advantage of the optimal policy.

2.6 Model Variants

In this section, we study two variants of the planting model to discuss the cases when some

assumptions are relaxed.

2.6.1 Plant Death during Growth

In practice even if a seed survives the planting day, it could die later in the rest of the planting

horizon due to drought (Stern and Cooper 2011). We use sd(swt) to denote the probability that

a seed living in the ground dies in period t where swt is the soil water content at the beginning

of period t. We assume that the probability function of seed death amount is a binomial function

and seed death only occurs in sunny periods as it is often associated with drought. When a seed

dies, the biomass production generated by this seed is also lost and we use the average biomass

production of a single seed up to that point (cbmt/gsdt) to approximate the biomass production

loss due to the death of that seed. We use superscript d to represent the variant with seed death
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and let V d,m
t (.) denote the maximum expected biomass production with t periods to go. Then,

V d,m
t (gsdt, asdt, cbmt, swt)

=prtV
d,m
t (gsdt, asdt, cbmt, ωt(swt, prect)) + (1− prt ) max

it=0,...,min{asdt,m}

{ it∑
k=0

(kit)(sv(swt))
k

∗ (1− sv(swt))
it−k ∗

( gsdt∑
j=0

(jgsdt)(sd(swt))
j(1− sd(swt))

gsdt−j ∗ V d,m
t−1 (gsdt − j + k,

asdt − it, cbmt + (gsdt − j + k) ∗ bm(swt)− j
cbmt

gsdt
, ωt(swt, 0))

)}
.

We can show that the optimality of the plant-down-to policy still holds in the variant with seed

death. For given soil water content in period t, the optimal planting threshold tends to become lower

if the seed death probability becomes lower. This is because a lower seed death probability provides

a higher integrated survival chance of a seed, leading to a higher expected biomass production of a

planted seed and thus higher planting amount. Proposition 2.4 states this result.

Proposition 2.4. Assume ωt(.), sv(.) and bm(.) satisfies the conditions in Proposition 2.1. Let

sd1(.), sd2(.) denote two seed death probability functions and SDd,m
t,1 (.), SDd,m

t,2 (.) the associated

optimal planting thresholds for period t, t = 1, . . . , N . If sd1(swt) ≤ sd2(swt), ∀swt > 0, then

SDd,m
t,1 (swt) ≤ SDd,m

t,2 (swt).

2.6.2 Water Tank Irrigation

In some areas in Africa, although irrigation is rarely available, communities build water tank

to reserve rainfall water for irrigation purposes. Farmers could use the water for irrigation when

rainfall does not occur for a long time. As the administrator of the community makes irrigation

schedule decisions rather than the farmer, we assume fixed irrigation schedule and explore the

biomass production advantage of the water tank irrigation under the optimal policy.

Let irrt denote the amount of irrigation water in period t when it does not rain. The farmer

could use irrt amount of water to irrigate the field if period t is sunny and we assume that watering

the field does not interfere her planting process. Given the soil water content at the beginning

of period t is swt, the soil water content in the next period is swt−1 = ωt(swt, irrt) and we

use ωt(swt, irrt) = 0.8 ∗ swt + irrt in the computational study. We explore the advantage of
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Table 2.6: RELATIVE BIOMASS PRODUCTION ADVANTAGE OF WATER TANK IRRIGA-
TION UNDER THE OPTIMAL POLICY (m = 1)

θ% 5% 10% 15% 20% 25%

avg. soil water content 4.28% 8.45% 12.59% 16.88% 21.02%

min. soil water content 4.26% 8.57% 12.27% 17.38% 21.55%

max. soil water content 4.06% 8.13% 12.26% 16.44% 20.89%

water tank irrigation under the optimal policy and manual planting (m = 1) in the real size

problem. We set irrt equal to θ percentage of the average daily precipitation (2.89 mm) and use

θ ∈ {5, 10, 15, 20, 25}. We compare the biomass production with irrt water irrigation to the no-

irrigation case under the optimal policy and manual planting. Table 2.6 illustrates the relative

biomass production improvement of water tank irrigation under the optimal policy. It indicates

that the relative biomass production improvement of water tank irrigation is approximately linearly

increasing in the amount of irrigation water.

2.7 Concluding Remarks

Increase in human population has brought a lot of attention to agriculture in African countries.

With the average planting yields far below the developing world average, farmers in Africa need

to adopt advanced planting techniques to increase crop yields. Further, agriculture in Africa faces

severe issues due to delay of the main rainfall, long dry spells before the main rainfall, and high

within-season variability of rainfall. As climate conditions become more severe, the crop yield is

seriously harmed.

In this paper we study the planting schedule problem of a single crop under rainfall uncertainty

as a finite-horizon stochastic dynamic program. Planting early may allow the seeds to start contrib-

uting biomass production early, but higher soil water content later on could lead to a higher chance

of seed survival. We show that the optimal planting schedule is a time dependent threshold-type

policy, where the farmer should plant down to the optimal threshold.

In practice, farmers start to plant each year after observing enough cumulative rainfall. Utilizing

field weather data collected from nine countries in Southern Africa, we show that adopting the

optimal schedule could significantly improve final biomass production. Furthermore, our results
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demonstrate that the risk from the severe climate conditions can be significantly mitigated by

adopting the optimal planting schedule. The more severe the climate conditions the higher the

relative biomass production advantage of the optimal planting schedule.

In this work we only focus on the planting schedule of seeds and assume that other decisions such

as fertilizer addition and pest control are done optimally. In many real situations those aspects

can also be difficult to adopt. In Africa, farmers start to obtain access to advanced technology

in farming such as soil and solar sensors, satellite data and plant growth monitors. Application

of these technologies would influence the optimal seeding policy. Besides, we study the planting

schedule problem in a dynamic programming framework. Other models such as robust dynamic

programming or Bayesian approach could also be applied to characterize the optimal planting policy.

Further, we only consider one crop in this work. Sometimes, crop rotation has an important impact

on the yields of seeds and in such cases that needs to be incorporated. Finally, we do not consider

any budget constraints that a farmer might face for seed procurement, automation, fertilizers or

pest control. All the above issues are ripe for future studies in this area.
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CHAPTER 3: LOCATING WAREHOUSES IN AN EMERGING COUNTRY - A
WIN-WIN PROPOSITION?

3.1 Introduction

Due to long distance logistics associated with offshore sourcing, firms face dramatic increase in

transportation cost, inventory cost and warehousing cost (Belanger and Leclerc 2013). Warehousing

solutions in emerging countries near suppliers try to address the cost escalation and therefore have

become more prevalent in offshore production (Robinson, C.H. 2015). Setting up such warehouses

assists firms to achieve cost efficiency as well as demand responsiveness. For instance, Black Dia-

mond Equipment started a global distribution center in China to locate inventory closer to various

OEM providers and its own manufacturing facilities. This allows Black Diamond to consolidate

freight, reduce overall inventory holding cost and become more responsive to demand change (Black

Diamond 2009). Similarly, Ace Hardware Corporation holds goods from more than fifty suppliers

in a global distribution warehouse in China. This enables Ace Hardware to reduce logistics cost

and delivery time (China Daily 2006).

Although the benefit of locating warehouses in emerging countries appears intuitive, firms often

ignore the implications of logistics operations on supply chain contracting (Kumar et al. 2010).

Traditional contracting literature related to offshore sourcing studies the wholesale-price contract

and does not include the logistics operations costs in the retailer’s and supplier’s profits under

contract negotiation (Feng and Lu 2013). In fact a retailer’s logistics cost structure will change

substantially when she sets up an emerging-country warehouse to keep second-tier cycle stock,

which in turn will influence the supplier’s logistics cost. As a result, excluding logistics operations

costs from contracting and making warehousing decisions unilaterally afterwards could lead to a

suboptimal warehousing strategy for the retailer.

The motivation of this work comes from our interaction with a large retailer in Australia. The

retailer used to have products shipped directly from their Chinese suppliers to the retail locations.
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Recently they have started to hold second-tier cycle stock at the Chinese warehouse to reduce

inventory cost and delivery time. In order to make the optimal warehousing decision, the retailer

needs to understand the potential cost advantage or disadvantage of using the Chinese warehouse

and the implications of the total landed cost (including logistics operations costs) on contracting

and the warehousing decisions.

In this chapter, we study supply chain contracting of a single product between a retailer in a

developed country and a supplier in an emerging country. The retailer faces stochastic lead time

and stochastic demand. She can hold cycle stock and safety stock at the retail location in the

developed country (developed country warehousing). In that case, the supplier delivers products

to the exporting harbor and from there the retailer directly ships products to the retail location.

Instead, in addition to cycle stock and safety stock at the retail location, the retailer can also hold

second-tier cycle stock in a warehouse in the emerging country (emerging country warehousing).

In that case, the supplier delivers products to the emerging-country warehouse where the retailer

breaks an inbound shipment into small batches. These small batches are then shipped to the retail

location sequentially. In both cases, the supplier incurs fixed and variable costs for each batch he

ships out. The retailer incurs procurement cost, overseas shipping cost, order processing cost and

inventory holding cost. Conditional on the retailer’s warehousing decision, the supplier and retailer

negotiate over the wholesale price and order batch size.

Using the Nash bargaining framework, we establish the retailer’s optimal warehousing strategy

by providing a threshold on the holding cost at the emerging-country warehouse below which the

retailer should used the emerging-country warehouse. This threshold is increasing in lead time

reduction due to the warehouse and could be higher than the holding cost at the retail location

if the lead time reduction is high. We show that while the emerging country warehousing is more

profitable, the retailer could agree on a higher wholesale price if the holding cost at the warehouse

is low and the lead time reduction due to the warehouse is high. This property holds even when

the retailer’s bargaining power is close to one. If her bargaining power is low, she could still ask

for a discount on the wholesale price when the warehouse holding cost is low and the lead time

reduction is low.

Under the traditional contract, the negotiated wholesale price is not dependent on the retailer’s
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warehousing decision as the logistics operations costs are not taken into account in contracting

and the warehousing decision is made unilaterally by the retailer after negotiation. In our model,

however, the negotiated wholesale price is dependent on the retailer’s warehousing decision, which

leads to individual profits and warehousing decision different from those under the traditional con-

tract. When the retailer uses the emerging-country warehouse under both contracts, her warehouse

inventory level is higher under the contract including the logistics cost. Our results indicate that

incorporating the logistics costs into contract negotiation could impact the retailer’s warehousing

strategy if the warehouse holding cost is low and the lead time reduction by the warehouse is low,

or the warehouse holding cost is high and the lead time reduction is high. Finally, we show that for

any bargaining power of the retailer, there exists a threshold of the warehouse holding cost below

which the retailer’s profit is higher under the contract including logistics costs.

The remainder of this paper is organized as follows. The next section surveys the related

literature. Our model is presented in §3.3. §3.4 discusses the retailer’s warehousing decision and

§3.5 analyzes the implications of the retailer’s warehousing decision on the negotiation outcomes.

In §3.6, we compare the retailer’s optimal warehousing decision under the traditional contract and

the contract including logistics costs. Our concluding remarks are presented in §3.7.

3.2 Related Literature

Our work is in the area of production outsourcing and adds to the aspect of supply chain

contracting. Previous research has discussed various issues related to outsourcing decisions such

as contract type (Van Mieghem 1999), scale economies (Cachon and Harker 2002), demand risk

allocation (Ülkü et al. 2007), industry structure (Feng and Lu 2012, Feng and Lu 2013) and learning-

by-doing (Gray et al. 2009). Among previous papers studying offshore outsourcing, many of them

ignore the embedded risk in long-distance supply chain due to long and uncertain lead time and

stochastic demand. In this chapter, we model the safety stock at the retail location to represent

the retailer’s risk from stochastic market demand coupled with overseas shipping. Furthermore,

previous work on outsourcing contract often models the retailer’s cost as variable cost (Feng and

Lu 2012) or the sum of variable cost and fixed cost for each order batch (Cachon and Harker

2002). Logistics operations costs such as inventory holding cost and transportation cost are ignored
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Figure 3.1: EVENT SEQUENCE

in contract negotiation and therefore the negotiation outcomes are independent of the retailer’s

warehousing strategy. In contrast, we study a detailed logistics cost model that includes lot-sizing

shipment cost and inventory holding cost. Hence the retailer’s warehousing decision would impact

the negotiated outcomes such as wholesale price and order batch size.

Our paper builds on the inventory theory of multi-echelon systems. The retailer manages a

multi-echelon inventory system when she uses an emerging-country warehouse as she holds invent-

ory at the warehouse as well as the retail location. Previous literature has studied the optimal

inventory policy in a multi-echelon system under various settings such as periodic or continuous

review inventory system (Clark and Scarf 1960, De Bodt and Graves 1985), stochastic or constant

market demand (Schwarz and Schrage 1975, Chen and Zheng 1994) and echelon stock or install-

ation stock inventory policy (Badinelli 1992, Axsäter and Rosling 1993). This stream of research

has demonstrated the optimality of the echelon-stock policy and most papers assume the nested

inventory policy. For tractability of our model, we apply a nested echelon-stock policy and adopt

the approximation of the retailer’s long-run average cost from De Bodt and Graves (1985). Using

this approximation, we further study the contracting problem.

3.3 Model

We study supply chain contracting of a single product between a retailer in a developed country

and a supplier in an emerging country. The market price p is fixed and the market demand

is stochastic and stationary with normal distribution N(µ, σ2). The retailer faces a two-stage
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Figure 3.2: ORDER TRANSSHIPMENT AND INVENTORY LEVEL IN DEVELOPED COUN-
TRY WAREHOUSING (a) AND EMERGING COUNTRY WAREHOUSING (b)

process: the warehousing decision stage and the contracting stage and Figure 3.1 illustrates the

event sequence. At the first stage, she determines the warehousing strategy: developed country

warehousing or emerging country warehousing. In developed country warehousing setting, the

supplier ships products to the exporting harbor and from there the retailer ships products directly

to the retail location, as illustrated in (a) of Figure 3.2. In this case, the retailer holds cycle

stock and safety stock at the retail location. In emerging country warehousing setting, however,

the supplier ships products to the warehouse in the emerging country and the retailer takes over

afterwards. As in (b) of Figure 3.2, an inbound shipment is broken into n smaller batches at the

warehouse and these small batches are shipped to the retail location sequentially. n ∈ N+ is called

inventory multiplier in inventory literature (De Bodt and Graves 1985) and determined by the

retailer at this stage. After the batches are depleted, the warehouse gets the next replenishment

from the supplier. In this case, in addition to safety stock and cycle stock at the retail location, the

retailer holds second-tier cycle stock at the warehouse. Conditional on the retailer’s warehousing

decision, at the second stage, she negotiates with the supplier over the wholesale price and order

batch size.
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3.3.1 Supplier’s Profit

The supplier’s cost structure remains the same in both developed country warehousing setting

and emerging country warehousing setting. He incurs variable and fixed costs for every batch he

ships out and the retailer pays him for procurement. Let QD denote the batch size in developed

country warehousing setting and QE(n) in emerging country warehousing setting with n as the

inventory multiplier. The supplier incurs cost of cs + cQD in developed country warehousing

setting and cs + cQE(n) in emerging country warehousing setting for each batch that he ships

out where c represents the variable production cost and cs can be interpreted as fixed cost such

as local shipping cost or customs declaration cost. Without loss of generality, we normalize c to

zero. Let wD denote the wholesale price in developed country warehousing setting and wE(n) in

emerging country warehousing setting. The supplier’s long-run average profit in developed country

warehousing setting ΠD
s and that in emerging country warehousing setting ΠE

s (n) are given by

ΠD
s = (wD − cs

QD
)µ, ΠE

s (n) = (wE(n)− cs
QE(n)

)µ. (3.1)

3.3.2 Retailer’s Profit in Developed Country Warehousing

In developed country warehousing setting, the retailer takes care of the products once she

receives shipments at the exporting harbor. She obtains sales revenue at p per unit and pays the

supplier at wD per unit. For every batch shipped to the retail location, the retailer incurs cost

cw+chQ
D, with cw representing the fixed cost for each batch and ch the variable cost for each unit.

To measure the long-run average inventory cost of the retailer, we consider a continuous review

inventory system at the retail location, consisting of cycle stock and safety stock. The average

inventory level due to cycle stock is QD/2. Let LDs denote the retailer’s lead time: the time from

order receiving at the supplier to order arrival at the retail location and ls and (σs)
2 denote the

mean and variance of LDs . Thus the safety stock at the retail location is SSD = k(σ
√
ls + σs

√
µ),

where k is the service factor at the retail location (Eppen and Martin 1988). Let hr denote the
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inventory holding cost at the retail location. The retailer’s long-run average profit ΠD
r is given by

ΠD
r = (p− wD − ch −

cw
QD

)µ− hr(
QD

2
+ k(σ

√
ls + σs

√
µ)). (3.2)

3.3.3 Retailer’s Profit in Emerging Country Warehousing

In emerging country warehousing setting, the retailer takes care of the products once she re-

ceives shipments at the emerging-country warehouse. Let QEr (n) denote the batch size of the

outbound shipment of the warehouse to the retail location and QEr (n) = QE(n)
n as an inbound

shipment to the warehouse is broken into n outbound shipments. For every outbound batch of the

warehouse, the retailer incurs logistics cost of cw + cEhQ
E
r (n). As the variable cost (ch in developed

country warehousing setting, cEh in emerging country warehousing setting) is often associated with

transportation and labor intensive tasks such as sorting, packaging, labeling and loading and these

costs are usually lower in emerging country warehousing setting, we assume cEh = 0 without loss of

generality.

The retailer manages a two-echelon inventory system as she holds inventory at the warehouse

as well as the retail location. We assume that the retailer adopts a nested inventory policy since

it leads to a stationary policy and it is easy to control and evaluate (De Bodt and Graves 1985).

A nested policy means that whenever a stage orders, all its downstream stages also order. In our

model, a nested inventory policy indicates that every time an inbound batch (QE(n)) arrives at

the emerging-country warehouse, immediately an outbound batch (QEr (n)) is shipped out overseas.

The remaining batches at the warehouse are shipped out sequentially to the retail location until

depletion and then the next inbound shipment arrives, as shown in (b) of Figure 3.2. The average

inventory level at the emerging-country warehouse is n−1
2n Q

E(n) and the average cycle stock level

at the retail location is QEr (n)
2 = QE(n)

2n .

We assume that the retailer adopts an echelon-stock inventory policy that concerns echelon

stock levels rather than installation stock levels. Installation stock is the on-hand inventory while

echelon stock is the installation stock plus all downstream installation stock and in-transit inventory

(De Bodt and Graves 1985). To calculate the expected safety stock under a nested echelon-stock

policy, we adopt the approximation of expected safety stock in De Bodt and Graves (1985) who use

43



the expected net inventory level just before replenishment to approximate the average safety stock.

Let Lw denote the lead time of the retail location: the time from order receiving at the warehouse

to order arrival at the retail location, with mean lw and variance (σw)2. Let LEs denote the overall

lead time of the retailer: the sum of the time from order receiving at the supplier to order arrival

at the warehouse and the time from order receiving at the warehouse to order arrival at the retail

location (Lw). To keep the analysis simple, we assume that the mean and variance of LDs and LEs

are the same. Thus the safety stock level at the retail location is given by

SSE(n) = k(
n− 1

n
(σ
√
lw + σw

√
µ) +

1

n
(σ
√
ls + σs

√
µ))

(see De Bodt and Graves (1985) and Mitra and Chatterjee (2004) for detailed derivation).

We assume that ls > lw and σs > σw as the lead time of the retail location becomes shorter and

more stable when the product batches are shipped to the retail location from the warehouse rather

than the supplier. Lw includes the time on order processing at the warehouse, overseas shipping

and local shipping in the developed country. Lw is shorter on average (lw < ls) and more stable

(σw < σs) because it does not include stochastic time on production, shipping within the emerging

country and customs declaration at the exporting harbor. In other words, the retailer’s safety stock

level becomes lower in emerging country warehousing setting.

Let hw denote the inventory holding cost at the warehouse. The retailer’s long-run average

profit ΠE
r (n) is given by

ΠE
r (n) =(p− wE(n)− cwn

QE(n)
)µ− hw

n− 1

2n
QE(n)−

− hr(
QE(n)

2n
+ k(

n− 1

n
(σ
√
lw + σw

√
µ) +

1

n
(σ
√
ls + σs

√
µ))).

(3.3)

3.3.4 Negotiation Outcomes

We adopt a Nash bargaining framework to model the negotiation between the supplier and the

retailer. Supply chain management literature has pointed out that the bargaining framework is

more appropriate to model procurement contract than the Stakelberg game (Lovejoy 2010, Feng

and Lu 2013). We adopt the asymmetric Nash bargaining solution to determine the negotiation
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outcomes. Let θ denote the bargaining power of the retailer and then the bargaining power of the

supplier is 1 − θ, θ ∈ (0, 1). In each of the two warehousing settings, if the supplier and retailer

cannot reach an agreement, we assume that both parties achieve zero profit. We further assume

that the optimal supply chain profit in developed country warehousing setting is positive.

Let (πDr , π
D
s ) denote the optimal Nash bargaining solution and ΠD

sc = ΠD
r + ΠD

s the supply

chain profit in developed country warehousing setting. (πDr , π
D
s ) maximizes (ΠD

s )1−θ ∗ (ΠD
r )θ over

(ΠD
s ,Π

D
r ). Taking the first order condition of (ΠD

s )1−θ ∗(ΠD
r )θ with respect to ΠD

r and ΠD
s , we have

πDr = θΠD
sc, π

D
s = (1− θ)ΠD

sc. Let (πEr (n), πEs (n)) denote the optimal Nash bargaining solution and

ΠE
sc(n) = ΠE

r (n)+ΠE
s (n) the supply chain profit in emerging country warehousing setting. Similarly

we have πEr (n) = θΠE
sc(n), πEs (n) = (1 − θ)ΠE

sc(n). That is, the individual profit is proportional

to the supply chain profit and the coefficient is the bargaining power. Therefore maximizing the

individual profit is equivalent to maximizing the supply chain profit.

In our model, as the logistics costs are taken into account in contracting, the negotiation is

over both wholesale price and order batch size and thus the optimal negotiated wholesale price is

dependent on the optimal batch size. To maximize individual profits, the optimal order batch size

maximizes the supply chain profit. In developed country warehousing setting, the supply chain

profit ΠD
sc is,

ΠD
sc = ΠD

s + ΠD
r = (p− ch −

cs + cw
QD

)µ− hr(
QD

2
+ k(σ

√
ls + σs

√
µ)). (3.4)

Let qD denote the optimal batch size in this setting and qD =
√

2µ(cw+cs)
hr

as ΠD
sc is concave in QD.

The associated negotiated wholesale price and long-run average profit of the retailer are,

wD =(1− θ)(p− ch)− (2(1− θ)cw + (1− 2θ)cs)

√
hr

2µ(cs + cw)
− (1− θ)

hrk(σ
√
ls + σs

√
µ)

µ
,

(3.5)

πDr = θ((p− ch)µ−
√

2hrµ(cs + cw)− hrk(σ
√
ls + σs

√
µ)). (3.6)
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In emerging country warehousing setting, the supply chain profit ΠE
sc(n) is given by,

ΠE
sc(n) = ΠE

s (n) + ΠE
r (n) =(p− cwn+ cs

QE(n)
)µ− (hw

n− 1

2n
+ hr

1

2n
)QE(n)−

− hrk(
n− 1

n
(σ
√
lw + σw

√
µ) +

1

n
(σ
√
ls + σs

√
µ)).

(3.7)

Let qE(n) denote the optimal batch size in this setting and qE(n) =
√

2µn(cwn+cs)
(n−1)hw+hr

as ΠE
sc(n) is

concave in QE(n). The associated negotiated wholesale price and long-run average profit of the

retailer are,

wE(n) =(1− θ)p− (2(1− θ)cwn+ (1− 2θ)cs)

√
(n− 1)hw + hr
2nµ(cwn+ cs)

−

− (1− θ)
hrk(n−1

n (σ
√
lw + σw

√
µ) + 1

n(σ
√
ls + σs

√
µ))

µ
,

(3.8)

πEr (n) =θ(pµ−
√

2(cwn+ cs)(hw(n− 1) + hr)µ

n
−

− hrk(
n− 1

n
(σ
√
lw + σw

√
µ) +

1

n
(σ
√
ls + σs

√
µ))).

(3.9)

3.4 Warehouse Outsourcing Decision

The retailer would choose emerging country warehousing if her profit is higher than that in

developed country warehousing setting, i.e. πEr (n) ≥ πDr . We define the retailer’s benefit of

emerging country warehousing over developed country warehousing by ∆πr(n) = πEr (n)− πDr .

∆πr(n) =θchµ+ θhrk
n− 1

n
(σ∆L +

√
µ∆σ) + θ(

√
2hr(cs + cw)µ−

−
√

2(cwhwn+
cs(hr − hw)

n
+ cshw + cw(hr − hw))µ),

(3.10)

where ∆L =
√
ls −
√
lw, ∆σ = σs − σw. ∆πr(n) represents the cost advantage of emerging coun-

try warehousing setting with inventory multiplier set to be n over developed country warehousing

setting. Using the emerging-country warehouse brings potential cost advantage from three as-

pects. First, the retailer achieves labor cost advantage in the emerging country (θchµ). Second,

a shorter and more stable lead time reduces the safety stock holding cost at the retail loca-

tion (θhrk
n−1
n (σ∆L +

√
µ∆σ)). Third, the retailer obtains potential benefit from shifting some
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cycle stock from the retail location to the emerging-country warehouse as second-tier cycle stock

(θ(
√

2hr(cs + cw)µ−
√

2(cwhwn+ cs(hr−hw)
n + cshw + cw(hr − hw))µ)).

∆πr(n) helps understand the impact of demand patterns on the retailer’s warehousing strategy.

∆πr(n) is increasing in demand uncertainty (σ) as it is positively related to the safety stock reduction

by using the emerging-country warehouse. When the demand fluctuates more dramatically, the

retailer has an incentive to use the emerging-country warehouse to mitigate the risk from demand

uncertainty. However, ∆πr(n) may be increasing or decreasing in demand mean (µ). A higher µ

enlarges the absolute value of each of the three parts that make up ∆πr(n) in Equation (3.10): labor

cost advantage, safety stock cost reduction and cycle stock cost advantage of using the emerging-

country warehouse. If the third component of ∆πr(n) is negative, it is decreasing in µ.

Lemma 3.1. The retailer’s warehousing strategy (developed country warehousing or emerging coun-

try warehousing) is independent of her bargaining power.

As the retailer obtains θ proportion of the supply chain profit, ∆πr(n) equals to θ proportion

of the supply chain profit advantage of emerging country warehousing over developed country

warehousing. In other words, the retailer’s choice between developed country warehousing and

emerging country warehousing is independent of her bargaining power.

Proposition 3.1. (i) There exists a threshold of inventory multiplier nf such that ∆πr(n) ≥ 0

when n ≤ nf . Moreover, nf is non-increasing in hw and non-decreasing in ∆L.

(ii) Let n∗ denote the optimal inventory multiplier that maximizes ∆πr(n). Then n∗ ≤ nf .

Moreover, n∗ is non-increasing in hw and non-decreasing in ∆L.

The retailer would choose emerging country warehousing if the threshold nf > 1. In that

case, setting n ≤ nf results in a higher profit in emerging country warehousing setting. A larger

n indicates more cycle stock at the warehouse and less cycle stock and safety stock at the retail

location. If n is high, although the retailer keeps little inventory at the retail location, high

warehouse inventory level and frequent delivery to the retail location lead to high cost. This could

even offset the cost benefit of low inventory level at the retail location and scale economy at the

supplier, resulting in a lower supply chain profit. The value of n that best balances the inventory at

the emerging-country warehouse and the retail location results in the optimal profit for the retailer.
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Figure 3.3: EFFECT OF WAREHOUSE HOLDING COST hw (a) AND LEAD TIME REDUC-
TION BY EMERGING-COUNTRY WAREHOUSE ∆L (b) ON nf AND n∗, cw = 5, cs = 50, hr =
4, ch = 0

Both the threshold nf and the optimal inventory multiplier n∗ are non-increasing in the holding

cost at the emerging-country warehouse (hw) and non-decreasing in the lead time reduction by

using the warehouse (∆L), as demonstrated in Figure 3.3. When the warehouse holding cost is

low, the retailer achieves high cost advantage by holding inventory at the warehouse. In this case,

emerging country warehousing outweighs developed country warehousing even if the retailer holds

high inventory level at the warehouse (large n). Therefore nf is high. Moreover, to achieve the

optimal profit with low warehouse holding cost, the retailer would keep most of her cycle stock

at the warehouse and low inventory level at the retail location. Therefore n∗ is non-increasing in

hw. When the lead time reduction by using the warehouse is high, the retailer observes high safety

stock cost reduction by using the warehouse. In this case, even if the retailer sets high warehouse

inventory level, the benefit from safety stock reduction could offset the possible cost disadvantage

due to high cycle stock. Therefore nf is high. Moreover, to maximize the advantage of high lead

time reduction due to the warehouse, the retailer needs to benefit from high safety stock reduction

that requires frequent delivery to the retail location. Therefore n∗ is non-decreasing in ∆L.
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Figure 3.4: IMPACT OF WAREHOUSE HOLDING COST (hw) AND LEAD TIME REDUCTION
(∆L) ON THE RETAILER’S OPTIMAL WAREHOUSE DECISION, cw = 10, cs = 50, hr = 4, ch =
0.

Proposition 3.2. There exists a threshold rh such that if hw/hr < rh, where

rh =

(√
1 +

cs
2cw + cs

+
khr(σ∆L/

√
µ+ ∆σ) + 2ch

√
µ

2
√
hr(2cw + cs)

)2

− 1, (3.11)

then ∆π(n∗) > 0.

The retailer should use the emerging-country warehouse when the warehouse holding cost ratio

hw/hr is lower than the threshold rh. Figure 3.4 shows that the retailer’s optimal warehouse

strategy under varying warehouse holding cost (hw) and lead time reduction by the warehouse

(∆L). When ∆L is large, rh > 1 and emerging country warehousing setting is preferred even when

hw > hr. In this case, even though shifting cycle stock from the retail location to the warehouse

incurs additional inventory holding cost, it is more than offset by cost savings in safety stock

reduction by using the warehouse.

Figure 3.5 illustrates that the threshold of the warehouse holding cost (rh) is increasing in the

supplier’s fixed cost (cs) if the lead time reduction due to the warehouse is low (Figure 3.5 (a)) and

decreasing if the lead time reduction is high (Figure 3.5 (b)). When the lead time reduction (∆L) is

low, the cost advantage of the retailer’s logistics operations cost mostly comes from holding much

inventory at the warehouse. Meanwhile the supplier obtains benefit from scale economy due to large

order quantities from the retailer. When the fixed cost of the supplier (cs) becomes higher, using
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Figure 3.5: IMPACT OF WAREHOUSE HOLDING COST (hw) AND SUPPLIER’S FIXED COST
(cs) ON THE RETAILER’S OPTIMAL WAREHOUSE DECISION, cw = 10, hr = 4, ch = 0.

the warehouse brings more benefit from scale economy to the supplier. Therefore emerging country

warehousing could still be more profitable with higher warehouse holding cost (higher rh). On the

other hand, when the lead time reduction (∆L) is high, the retailer obtains high cost advantage

from safety stock reduction. In this case, the retailer holds low inventory at the warehouse and

orders in small quantities from the supplier. When the fixed cost of the supplier (cs) becomes

higher, the supplier’s cost disadvantage is more severe. Therefore the warehouse holding cost has

to be lower to ensure that emerging country warehousing is more profitable (lower rh).

3.5 Implications on Negotiation Outcomes

To analyze the impact of warehousing strategy on the negotiated wholesale price, we define the

increase in the wholesale price from developed country warehousing setting to emerging country

warehousing setting as ∆w(n) = wE(n)− wD,

∆w(n) =(1− θ)ch + (1− θ)cw(

√
2hr

(cw + cs)µ
−

√
2((n− 1)hw + hr)n

(cwn+ cs)µ
)+

+ (1− 2θ)cs(

√
hr

2(cw + cs)µ
−

√
(n− 1)hw + hr
2(cwn+ cs)nµ

)+

+ (1− θ)hrk
(n− 1)(σ∆L +

√
µ∆σ)

nµ
.

(3.12)
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∆w(n) ≤ 0 indicates that the negotiated wholesale price becomes lower when the emerging-country

warehouse is used.

Proposition 3.3. There exists a threshold nw(θ), such that

(i) ∆w(n) ≤ 0 when n ≥ nw(θ);

(ii) if hw ≤ hr, then ∆w(n) ≥ 0 for all n ≤ nw(θ);

(iii) if hw ≤ hr, then nw(θ) ≤ nf , therefore ∆πr(n) ≥ 0 for all n ≤ nw(θ);

(iv) if rw(θ) ≤ hw/hr ≤ 1, where

rw(θ) =

((1− 2(1− θ)cw
4(1− θ)cw + (1− 2θ)cs

)

√
2(2cw + cs)

cw + cs
+

khr(σ∆L/
√
µ+ ∆σ) + 2ch

√
µ

√
hr(4cw + (1−2θ)

1−θ cs)/
√

2cw + cs
)2 − 1,

then nw(θ) = 1, therefore ∆w(n) ≤ 0 for all n ∈ N+.

While using the emerging-country warehouse with large n, the retailer keeps high inventory

level at the warehouse and orders in a large batch size from the supplier. The supplier achieves

benefit in scale economy since he does not have to ship as many lots while the high inventory

level at the warehouse results in high total inventory holding cost for the retailer. In this case,

the supplier has to offer a discount on the wholesale price. On the other hand, with small n the

retailer keeps low inventory level at warehouse and orders in small quantities from the supplier. The

supplier obtains little benefit in scale economy as he has to ship frequently to the warehouse while

the retailer obtains cost reduction in safety stock and possible advantage of warehouse inventory

holding cost. In this case, to compensate the supplier, the retailer has to agree on a higher wholesale

price. When the warehouse holding cost ratio is above the threshold rw(θ) (hw/hr ≥ rw(θ)), even

if the order quantities from the supplier are small, the retailer achieves limited benefit in total

inventory holding cost from using the emerging-country warehouse. Therefore the she always asks

for a discount on the wholesale price while using the emerging-country warehouse, regardless how

she sets the inventory multiplier.
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Figure 3.6: IMPACT OF WAREHOUSE HOLDING COST (hw) AND LEAD TIME REDUCTION
BY THE EMERGING-COUNTRY WAREHOUSE (∆L) ON THE SIGN OF ∆πr(n

∗) AND ∆w(n∗),
cw = 5, cs = 50, hr = 4, ch = 0.

Figure 3.6 demonstrates different cases of (∆πr(n
∗),∆w(n∗)), i.e. whether the change in the

retailer’s optimal profit (∆πr(n
∗)) and the associated wholesale price (∆w(n∗)) are positive or

negative when the retailer shifts from developed country warehousing to emerging country ware-

housing. There are two factors in play. The benefit from the emerging-country warehouse increases

in ∆L (lead time reduction) and reduces with hw (warehouse holding cost). In Zone I, both the

wholesale price and individual profits become higher when the retailer uses the emerging-country

warehouse (∆πr(n
∗) ≥ 0,∆w(n∗) ≥ 0). In this zone, the retailer obtains benefit from safety stock

reduction. When the warehouse holding cost is low, she also takes cost advantage by keeping stock

at the warehouse, therefore ∆πr(n
∗) ≥ 0. In this case, the retailer needs to agree on a higher

wholesale price to share the benefit from using the warehouse. When the warehouse holding cost is

high and the safety stock reduction is also high, the benefit from safety stock reduction outweighs

the cost disadvantage at the warehouse and using the emerging-country warehouse is still profit-

able (∆πr(n
∗) ≥ 0). In this case, the retailer keeps low stock level at the warehouse due to high

warehouse holding cost and the order quantities from the supplier are small, which leads to high

logistics cost for the supplier. To compensate the supplier, the retailer needs to agree on a higher
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Figure 3.7: IMPACT OF WAREHOUSE HOLDING COST (hw), LEAD TIME REDUCTION
BY THE EMERGING-COUNTRY WAREHOUSE (∆L) AND THE RETAILER’S BARGAINING
POWER (θ) ON THE SIGN OF ∆π(n∗) AND ∆w(n∗), cw = 5, cs = 50, hr = 4, ch = 0.

wholesale price (∆w(n∗) ≥ 0).

In contrast, in Zone IV, both the wholesale price and individual profits become lower when

the retailer uses the emerging-country warehouse (∆πr(n
∗) ≤ 0,∆w(n∗) ≤ 0). In this region, the

reduction in lead time is low and the warehouse holding cost is high. Using the emerging-country

warehouse is not profitable. To share the cost disadvantage, the supplier has to offer a discount on

the wholesale price.

In Zone II (∆πr(n
∗) ≥ 0,∆w(n∗) ≤ 0), the lead time reduction of the warehouse (∆L) is low

but the warehouse holding cost (hw) is also low. Since the benefit from safety stock reduction is

low, the retailer gets most of the advantage from keeping high stock level at the warehouse. In this

case, the retailer orders from the supplier in large quantities, which in turn decreases the supplier’s

logistics cost. Therefore the retailer requires the supplier to offer a discount on the wholesale price.

In Zone III (∆πr(n
∗) ≤ 0,∆w(n∗) ≥ 0), the warehouse holding cost is high and the increased

holding cost by using the emerging-country warehouse outweighs the benefit from lead time reduc-

tion (∆πr(n
∗) ≤ 0). In this case, the retailer benefits from lead time reduction, but also decreases

the quantity purchased, leading to low inventory level at the warehouse and increased logistics cost

for the supplier. Therefore, she compensates the supplier through a higher wholesale price.

The bargaining power influences the distribution of the four zones, as shown in Figure 3.7. When
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the retailer’s bargaining power is low (θ = 0.01 in Figure 3.7 (a)), Zone II no longer exists. In Zone II

in Figure 3.6, the retailer requires a discount on wholesale price while using the warehouse because

she achieves most of the cost advantage from keeping high stock level at the warehouse while the

supplier’s gets reduced logistics cost due to large order quantities. When the retailer’s bargaining

power is low (θ = 0.01), however, the retailer can only obtain a small proportion of supply chain

benefit from using the warehouse and thus has to agree on a higher wholesale price. Therefore

Zone II as in Figure 3.6 no longer exists in Figure 3.7 (a). In Zone III, using the emerging-country

warehouse is not profitable and the retailer has to agree on a higher wholesale price. Compared

with larger bargaining power of the retailer as in Figure 3.6, the area of region III is smaller and

the supplier tends to offer a discount on the wholesale price when the emerging-country warehouse

is used (larger area of Zone IV). This is because, although using the warehouse results in benefit

loss for the supply chain, the retailer only takes a small proportion of this loss when her bargaining

power is small and thus tends to require a discount on the wholesale price.

When the retailer’s bargaining power is high (θ = 0.99 in Figure 3.7 (b)), the distributions

of Zone II and Zone III as in Figure 3.6 get exchanged. In Zone II, using the emerging-country

warehouse brings benefit to both parties and the retailer asks for a discounted wholesale price. In

this zone, the retailer achieves most of the benefit from high lead time reduction by the warehouse

and holds low inventory stock at the warehouse. Although the supplier does not achieve high scale

economy due to small order quantities, he still has to offer a discount on the wholesale price because

the retailer obtains a large proportion of supply chain profit (θ = 0.99). In Zone III, on the other

hand, using the emerging-country warehouse is not profitable and the retailer has to agree on a

higher wholesale price. In this zone, the retailer achieves some benefit from lead time reduction by

the warehouse and keeps low stock level at the warehouse, while the supplier’s logistics cost is high

due to small order quantities. Since the retailer has to take a large proportion of the profit loss

while using the warehouse (θ = 0.99), she has to offer a higher wholesale price to compensate the

supplier.

54



Figure 3.8: EVENT SEQUENCE UNDER TRADITIONAL CONTRACTING

3.6 Comparison with Traditional Contract Design

In offshore sourcing, firms do not consider the total landed cost (including logistics costs) during

contract negotiation and make decisions of the logistics operations in a responsive way afterwards

(Kumar et al. 2010). Figure 3.8 illustrates the event sequence in this case. The retailer still faces

a two-stage decision process. In the first stage, the retailer and the supplier negotiate over the

wholesale price. As introduced earlier, in procurement contracting literature the cost structure is

often modeled in the form of unit variable cost. The logistics operations costs are not included in

contracting. In the second stage, the retailer makes the warehousing decision. The order batch

size, whether to use the emerging-country warehouse and the inventory multiplier if the emerging-

country warehouse is used are determined by the retailer unilaterally. In this section, we analyze

the differences in outcome from such analysis.

Let w denote the wholesale price in the traditional contract. The retailer’s profit under nego-

tiation is (p − w)µ and the supplier’s profit under negotiation is (w − c)µ with c normalized to

zero. Compared with the contract discussed in §3.3, the supplier’s profit under negotiation does

not include her logistics cost ( cs

QD
µ in developed country warehousing setting and cs

QE
µ in emerging

country warehousing setting) and the retailer’s profit under negotiation does not include her trans-

portation, inventory and warehousing costs ((ch + cw
QD

)µ+ hr(
QD

2 + k(σ
√
ls + σs

√
µ)) in developed

country warehousing setting and cwn
QE(n)

µ + hw
n−1
2n Q

E(n) + hr(
QE(n)

2n + k(n−1
n (σ

√
lw + σw

√
µ) +

1
n(σ
√
ls + σs

√
µ))) in emerging country warehousing setting). Let wt denote the negotiated whole-
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sale price and we use superscript t to represent the traditional contract in this section. As the

disagreement profits for both parties are zero, the negotiated wholesale price is wt = (1− θ)p. The

contract assigns (1− θ)pµ to the supplier and θpµ to the retailer.

As the retailer takes care of her logistics costs (transportation, inventory and warehousing

costs) by herself, she determines the order batch size by minimizing her total logistics cost and

this decision is independent on the negotiation outcomes. Let QD,t denote the order batch size in

developed country warehousing setting and QE,t(n) in emerging country warehousing setting with

inventory multiplier n. In developed country warehousing setting, the retailer’s profit is given by,

ΠD,t
r =(θp− ch)µ− (

cwµ

QD,t
+
hr
2
QD,t)− hrk(σ

√
ls + σs

√
µ)

and the optimal order quantity is qD,t =
√

2cwµ/hr. Hence the retailer’s optimal profit is

πD,tr =(θp− ch)µ−
√

2cwµhr − hrk(σ
√
ls + σs

√
µ). (3.13)

In emerging country warehousing setting, the retailer’s profit is given by,

ΠE,t
r (n) =θpµ− (

cwnµ

QE,t(n)
+

(n− 1)hw + hr
2n

QE,t(n))−

− hrk(
n− 1

n
(σ
√
lw + σw

√
µ) +

1

n
(σ
√
ls + σs

√
µ))

and the optimal order batch size is qE,t(n) = n
√

2cwµ
(n−1)hw+hr

. Hence the retailer’s optimal profit is

πE,tr (n) =θpµ−
√

2cwµ((n− 1)hw + hr)− hrk(
n− 1

n
(σ
√
lw + σw

√
µ) +

1

n
(σ
√
ls + σs

√
µ)).

(3.14)

The retailer chooses emerging country warehousing setting if ∆t
πr(n) = ΠE,t

r (n)−ΠD,t
r ≥ 0, where

∆t
πr(n) =

√
2cwµhr −

√
2cwµ((n− 1)hw + hr) + hrk

n− 1

n
(σ∆L + ∆σ

√
µ) + ch

√
µ.

Proposition 3.4. Let nt denote the optimal inventory multiplier that maximizes πE,tr (n).
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(i) There exists a threshold rh,t such that if hw/hr ≤ rh,t, where

rh,t =

(
1 +

khr(σ∆L/
√
µ+ ∆σ) + 2ch

√
µ

2
√

2hrcw

)2

− 1,

then ∆t
πr(n

t) ≥ 0.

(ii) There exists a threshold ∆t
L such that if ∆L ≤ ∆t

L, then rh,t ≤ rh. Therefore, ∆πr(n) ≥ 0 for

all n such that ∆t
πr(n) ≥ 0.

Under the traditional contract, the retailer uses the emerging-country warehouse if the ware-

house holding cost is sufficiently low. Note that this threshold of holding cost ratio (hw/hr) has

different expression from that in Proposition 3.2, which could lead to the warehousing decision under

this contract different from that under the contract including logistics costs as in §3.3, as illustrated

in Figure 3.9. We use (X,Xt) to denote the warehousing strategy as the lead time reduction (∆L)

and the warehouse holding cost (hw) vary, with D indicating developed country warehousing and E

emerging country warehousing. The first coordinate in the parenthesis represents the warehousing

strategy under the contract that includes logistics costs in negotiation and the second coordinate

with superscript t represents the warehousing strategy under the traditional contract that excludes

logistics operations costs in negotiation. Under the traditional contract, the retailer incurs logist-

ics cost
√

2cwhrµ + hrk(σ
√
ls + σs

√
µ) + chµ if developed country warehousing setting is chosen

and
√

2cwµ((nt − 1)hw + hr) + hrk(n
t−1
nt (σ

√
lw + σw

√
µ) + 1

nt (σ
√
ls + σs

√
µ)) if emerging country

warehousing setting is chosen, and obtains θpµ from selling the products, regardless of her warehous-

ing decision. Under the contract including logistics costs, the retailer’s effective logistics cost is θ

proportion of the supply chain logistics cost, i.e. θ(chµ+
√

2hr(cw + cs)µ+hrk(σ
√
ls+σs

√
µ)) if de-

veloped country warehousing setting and θ(

√
2(cwn∗+cs)(hw(n∗−1)+hr)µ

n∗ +hrk(n
∗−1
n∗ (σ

√
lw +σw

√
µ)+

1
n∗ (σ
√
ls+σs

√
µ))) if emerging country warehousing setting is chosen, and obtains θpµ from selling

the products, regardless of her warehousing decision. Therefore the optimal warehousing decision

under the traditional contract minimizes the retailer’s logistics cost while the optimal warehousing

decision under the contract including logistics costs minimizes the supply chain logistics cost.

In Zone I, when the holding cost at the emerging-country warehouse is low, the retailer takes

advantage of low inventory cost and safety stock reduction (∆t
πr(n

t) ≥ 0). Moreover, as the retailer
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Figure 3.9: WAREHOUSING STRATEGIES UNDER CONTRACTS INCLUDING AND EX-
CLUDING LOGISTICS COSTS, cw = 10, cs = 200, hr = 4, k = 1.2, ch = 0

keeps high inventory level at the warehouse and orders in large quantities, the supplier benefits

from scale economy and thus the supply chain logistics cost becomes lower (∆πr(n
∗) ≥ 0). When

the warehouse holding cost is high and the lead time reduction due to the warehouse is also high,

with respect to the supply chain, the benefit from safety stock reduction more than offsets the

disadvantage of high inventory holding cost at the warehouse and high logistics cost of the supplier

due to small order quantities (∆πr(n
∗) ≥ 0). In this case, as the supplier’s logistics cost is not

considered in the optimal warehousing decision under the traditional contract, the retailer also

achieves a lower logistics cost while using the warehouse (∆t
πr(n

t) ≥ 0).

In contrast, in Zone IV, the benefit from lead time reduction cannot offset the cost disadvantage

of holding inventory at the warehouse. Therefore developed country warehousing is preferred under

the traditional contract (∆t
πr(n

t) ≤ 0). Further, smaller order quantities due to low stock level at

the warehouse lead to higher logistics cost for the supplier when the emerging-country warehouse

is used and thus even higher supply chain logistics cost. Therefore developed country warehousing

is preferred under the contract including logistics costs as well (∆πr(n
∗) ≤ 0).

In Zone II, the retailer uses the emerging-country warehouse under the contract including lo-

gistics costs but not under the traditional contract (∆πr(n
∗) ≥ 0, ∆t

πr(n
t) ≤ 0). In this zone, the
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retailer achieves some benefit from safety stock reduction but it cannot offset the cost disadvantage

by holding inventory at the warehouse. Therefore under the traditional contract using the ware-

house is not profitable (∆t
πr(n

t) ≤ 0). Under the contract including logistics costs, the retailer

stocks much at the warehouse and orders in large quantities from the supplier, which in turn leads

to low logistics cost for the supplier. Although the retailer’s logistics cost becomes higher when she

uses the warehouse, the overall supply chain logistics cost gets reduced and therefore the retailer

would use the emerging-country warehouse.

In Zone III (∆πr(n
∗) ≤ 0, ∆t

πr(n
t) ≥ 0), the lead time reduction by the emerging-country

warehouse (∆L) is high but the warehouse holding cost (hw) is also high. In this case, the retailer’s

cost advantage from lead time reduction outweighs the cost disadvantage from warehouse holding

cost. Therefore under the traditional contract, using the emerging-country warehouse brings benefit

to the retailer (∆t
πr(n

t) ≥ 0). However, under the contract including logistics costs, the retailer

keeps low stock level at the warehouse and orders in small quantities, which in turn leads to high

logistics cost for the supplier. Although using the warehouse brings benefit to the retailer, it leads

to cost disadvantage for the supply chain. Therefore developed country warehousing is preferred

under the contract including logistics costs. In both Zone II and Zone III, the strategic decision is

impacted by whether logistics costs are take into account in contract negotiation.

Proposition 3.5. If hw/hr ≤ rh, then qE(n∗) ≥ qE,t(nt) and n∗ ≥ nt.

Under the traditional contract, the optimal order batch size minimizes the logistics cost of

the retailer. However, under the contract including logistics costs, the optimal order batch size

minimizes the logistics cost of the supply chain, i.e. the sum of the retailer’s logistics cost and

the supplier’s logistics cost. Since the supplier’s logistics cost is decreasing in the batch size, the

optimal batch size under the contract including logistics costs is larger (qE(n∗) ≥ qE,t(nt)). That is,

while using the emerging country warehouse, the retailer holds more cycle stock at the warehouse

and less cycle stock at the retail location under the contract including logistics costs. Therefore,

the retailer ships more frequently from the warehouse to the retail location and holds less safety

stock at the retail location (n∗ ≥ nt).

Proposition 3.6. Let π∗r = max{πDr , πEr (n∗)} denote the retailer’s optimal profit under the contract
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Figure 3.10: IMPACT OF BARGAINING POWER (θ) AND WAREHOUSE HOLDING COST
(hw) ON RETAILER’S OPTIMAL PROFITS UNDER CONTRACTS INCLUDING AND EX-
CLUDING LOGISTICS OPERATIONS COST, cw = 10, cs = 50, hr = 4, k = 1.2, ch = 0, lw =
1, 1s = 2

including logistics operations costs and π∗tr = max{πD,tr , πE,tr (nt)} denote the retailer’s optimal profit

under the traditional contract.

1. There exists a threshold θt(hw) such that if θ ≤ θt(hw), then π∗tr ≤ π∗r ;

2. There exists a threshold htw(θ) such that if hw ≤ htw(θ), then π∗tr ≤ π∗r .

In Figure 3.10 we compare the retailer’s optimal profits under the traditional contract and

the contract including logistics costs. The retailer’s optimal profit under the contract including

logistics costs is higher (lower) if her logistics cost is lower (higher). Note that the retailer’s logistics

cost under the contract including logistics costs is proportional to her bargaining power (θ) while

that under the traditional contract is independent on her bargaining power. Hence there exists

a threshold θt(hw) such that the retailer’s profit is higher under the contract including logistics

costs when θ is smaller than θt(hw). In this case, since the retailer only needs to take care a small

proportion of the supply chain logistics cost under the contract including logistics costs, her logistics

cost is lower than that under the traditional contract (π∗r > π∗tr ).

Figure 3.10 shows that for any θ, there exists a threshold htw(θ) such that the retailer’s profit is

higher under the contract including logistics costs (π∗r > π∗tr ) when the warehouse holding cost is

lower than that threshold (hw ≤ htw(θ)). In region I, when the warehouse holding cost is high, the
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supply chain logistics cost is high. As the bargaining power of the retailer is high, her (effective)

logistics cost is higher under the contract including logistics costs. Therefore π∗r < π∗tr . When the

warehouse holding cost is low and the retailer uses the emerging-country warehouse, the inventory

level at the warehouse is higher under the contract including logistics costs (as explained after

Proposition 3.5). Therefore as the warehouse holding cost decreases, the inventory holding cost

at the warehouse decreases more under the contract including logistics costs than that under the

traditional contract. This indicates that the supply chain logistics cost under the contract including

logistics costs decreases more than the retailer’s logistics cost under the traditional contract. When

the warehouse holding cost is lower than the threshold htw(θ), her logistics cost under the contract

including logistics costs (θ proportion of supply chain logistics cost) would be lower than that under

the traditional contract (π∗r > π∗tr ). This threshold htw(θ) goes to zero when θ goes to one. If the

retailer’s bargaining power is low as in region II, her logistics cost is lower under the contract

including logistics costs (π∗r > π∗tr ) when the warehouse holding cost is high and developed country

warehousing is chosen under both contracts. When the warehouse holding cost is low, the emerging-

country warehouse is used. In this case, as discussed above, the supply chain logistics cost under

the contract including logistics costs decreases faster (with respect to warehouse holding cost) than

the retailer’s logistics cost under the traditional contract. In other words, for low θ, π∗r > π∗tr when

hw is high and as hw decreases, π∗r increases more than π∗tr . Therefore π∗r > π∗tr still holds when

hw is low.

3.7 Concluding Remarks

Due to long and uncertain lead time and high inventory level in long-distance supply chains,

transportation, inventory and warehousing costs increase dramatically when firms globalize their

supply chains. In order to achieve cost efficiency and demand responsiveness in global sourcing,

firms have started to locate warehouses in emerging countries near their offshore suppliers. Previous

academic literature ignores logistics operations costs in supply chain contracting. In this chapter,

we incorporate logistics operations costs in contracting between a retailer in a developed country

and a supplier in an emerging country. We explore the implications of logistics costs on the retailer’s

optimal warehouse decision and demonstrates that ignoring logistics operations costs in contracting
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could lead to suboptimal warehousing decisions.

We show that if a retailer could achieve short and stable lead time from the emerging-country

warehouse, she may use the emerging-country warehouse even when the warehouse holding cost does

not bring cost advantage. When the emerging-country warehouse brings low warehouse holding cost

and/or high lead time reduction, the retailer would agree on a higher wholesale price to the supplier

while using the emerging-country warehouse. Further we demonstrate that including logistics costs

in contract negotiation impacts the retailer’s warehousing strategy. Finally, we show that when the

emerging-country warehouse provides low holding cost, the retailer could achieve a higher profit by

including logistics costs in contracting.
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CHAPTER 4: ROLE OF THE NEARSHORE SUPPLIER UNDER SUPPLY
CHAIN DISRUPTION UNCERTAINTY

4.1 Introduction

Firms start to move production from offshore countries to nearshore countries due to cost in-

crease in offshore countries and increasingly complex disruption in global supply chains (Culp 2013).

For instance, Japanese automakers such as Honda, Mazda and Nissan have shifted production from

Asian countries to Mexico to serve the market in North America. By doing this, they gain fatter

cost margins and improve product availability (Greimel 2014).

However, moving production facilities closer to markets does not always lead to a higher profit.

Otis Elevator lost $60m in 2013 due to moving production back to the United States in South

Carolina (Mann 2014). Successful examples (e.g. Forever 21 and Mattel) suggest a good strategy

of using both offshore and nearshore suppliers to achieve cost efficiency and product availability

under the disruption risk of offshore supply chain (Iyer 2010, Render 2012). Jain et al. (2013)

also provide empirical evidence that diversification of global suppliers leads to lower inventory

investment.

Firms need to consider multiple factors comprehensively to make the optimal decisions in global

sourcing. Offshore orders bring cost advantage due to low labor and material cost of the offshore

supplier. However, offshore outsourcing is regarded as one of the top causes of supply chain disrup-

tion (Zurich Insurance Group 2013), as it brings external threats (e.g. natural disasters), system

vulnerabilities (e.g. oil dependence), quality issues and lack of flexibility (Accenture 2013, Ander-

son 2013). Furthermore, firms need increasing flexibility and responsiveness to prepare for demand

fluctuations (Lacity and Rottman 2012). Hence it is difficult for firms to figure out the optimal

global sourcing strategy under the risk of supply chain disruption.

A nearshore supplier is often regarded as a contingency supplier when firms adopt a diversified

supplier base in response to supply chain disruption. A firm only orders from the nearshore supplier
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after disruption occurs (Tomlin 2006). Allowing for the dual-sourcing option, we analyze the role

of the nearshore supplier: whether it is a purely contingency supplier or also serves as inventory

safeguard.

In this chapter, we study a dual-sourcing problem for a single product under the risk of supply

chain disruption as a finite-horizon stochastic dynamic program. A firm can order from an offshore

supplier and a nearshore supplier each period based on her demand forecast and disruption inform-

ation to minimize the expected total cost. The nearshore supplier is expensive but reliable and the

offshore order is cheap but may meet supply chain disruption. The disruption state determines the

probability of disruption and evolves in a Discrete Time Markov Chain (DTMC) every period. The

lead time of an offshore order is two and that of a nearshore order is one. The demand forecast

evolves following a Martingale Model of Forecast Evolution (MMFE) every period.

We show that the optimal outsourcing strategy is a state-dependent two-threshold base-stock

policy. Every period the firm should place a nearshore order up to the optimal nearshore threshold,

and place an offshore order additionally up to the optimal offshore threshold, whenever the inventory

level allows. If the nearshore threshold is higher than the offshore threshold, she only orders from

the nearshore supplier up to the offshore threshold level. We provide conditions on cost parameters

and disruption risk under which the firm should use a sole- or dual-sourcing strategy and investigate

the impact of cost, disruption and demand forecast on the two thresholds.

In our numerical study, we investigate the impact of various factors on the firm’s strategy in

response to supply chain disruption. Firms often apply contingency or mitigation tactics to prepare

for supply chain disruption and demand fluctuations. Contingency tactics mean that firms take

actions after disruption occurs, such as ordering from a backup supplier; mitigation tactics mean

that firms take actions in advance of disruption, such as building up enough inventory safeguard

(Tomlin 2006). We define two measures to represent the firm’s dependence on the nearshore supplier

and the role of nearshore orders: a contingency plan or a mitigation plan. An asymptotically optimal

heuristics algorithm is developed based on Infinitesimal Purtubation Analysis (IPA) and sample

path algorithm to search for the optimal order decisions. Our results indicate that rather than

purely serving as a contingency plan, nearshore orders also build up inventory safeguard under

specific conditions. We find that compared with long and infrequent disruption, under short and
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frequent disruption, a larger portion of nearshore orders are contingency orders. Furthermore,

although firms shift to nearshore production due to cost increase of offshore orders, they should

only do that when the disruption risk is sufficiently high.

The remainder of this paper is organized as follows. §4.2 surveys the related literature. We

analyze the basic model in §4.3. A model with general lead time is presented in §4.4. In §4.5,

we develop an efficient heuristics and investigate the effect of various parameters on the optimal

strategy and the role of the suppliers in a numerical study.

4.2 Related Literature

Our work is in the area of supply chain disruption and adds to the aspect of dual sourcing.

Previous literature has covered various issues under supply chain disruption, such as sourcing

decisions in competitive setting (Wu and Zhang 2014, Yang et al. 2012) and non-competitive setting

(Song and Zipkin 2009, Silbermayr and Minner 2014) and pricing decisions (Gong et al. 2014, Feng

2010). Supply chain disruption has been modeled in the form of supplier availability (Parlar et al.

1995), supply uncertainty (Anupindi and Akella 1993), stochastic lead times (Song and Zipkin

2009), supplier with possible system breakdown (Tomlin 2006, Chen et al. 2012), etc. We consider

two characteristics of supply chain disruption. First, we allow for time non-homogeneity of the

disruption risk. The majority of previous papers only focus on deterministic disruption risks except

a few modeling the evolution of disruption length (Tomlin 2006, Saghafian and Van Oyen 2016)

or the evolution of up and down state (Gong et al. 2014). We model the evolution of disruption

state as a Discrete Time Markov Process (DTMC). Second, we consider disruption uncertainty

when making decisions and different disruption states represent different probabilities of disruption

occurrence. Previous studies often assume observed disruption (up or down) before ordering, that

is, the probability of disruption is either zero or one (Tomlin 2006, Gong et al. 2014). Therefore

our model can be regarded as a generalization of those in previous papers.

Dual-souring in both finite and infinite horizon settings have been extensively studied in opera-

tions management (Minner 2003, Veeraraghavan and Scheller-Wolf 2008). Previous multi-sourcing

problems with forecast updates focus on various issues such as optimal policies with or without

fixed cost (Sethi et al. 2003, Sethi et al. 2001) and under stochastic lead times (Song and Zipkin
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2009), heuristics policies (Allon and Van Mieghem 2010), capacity planning (Li and Debo 2009,

Peng et al. 2012), etc. Similar to many papers (Peng et al. 2012, Sethi et al. 2001, Sethi et al. 2003,

Feng et al. 2005), we adopt the Martingale Model of Forecast Evolution (MMFE) to model demand

forecast update. The power of MMFE is first illustrated in Heath and Jackson (1994). It reflects

the forecast from a lot of forecasting methods and captures the demand evolution from aggregated

information.

4.3 Model

We study a dual-sourcing problem for a single product under the risk of supply chain disruption

in a finite horizon. Every period the firm orders from a nearshore supplier and an offshore supplier

to minimize the expected total cost over the planning horizon. The market demand is continuous,

stochastic and stationary with mean µ and unsatisfied demand is backlogged. Let N denote the

number of periods in the planning horizon.

Nearshore orders are reliable and take one period to arrive. Offshore orders face possible

complete disruption and take two periods to arrive. Let Ft and St denote the fast and slow

order quantities in period t, t = 1, . . . , N . When placing orders, the firm incurs cost of cft (Ft) for

the nearshore order and prepayment of cst (St) for the offshore order. If the offshore order would

arrive, the firm incurs additional cost of ct(St). The firm incurs a prepayment on placing offshore

orders because overseas subcontractors usually ask for some proportion of total payment at order

submission in order to mitigate their financial risk (Wang 2013). We assume that cff (.), cst (.) and

ct(.) are convex. Let ht denote the unit inventory holding cost and πt the unit backlog penalty

cost. With x the on-hand inventory level at the beginning of period t and D the demand in period

t, the expected inventory cost at the end of period t is Ht(x−D) = ED[ht(x−D)+ + πt(x−D)−].

We use MMFE to model the demand forecast evolution. Let Dt denote the stochastic demand

in period t. We use Dt = {Dt,t, . . . , Dt,N} to represent the demand forecast obtained at the

beginning of period t and εt = {εt,t, . . . , εt,N} to represent the demand forecast update at the end

of period t with mean zero and covariance matrix Σt. Hence the realized demand at the end of

period t is dt = Dt+1,t = Dt,t + εt,t and the demand forecast at the beginning of period t + 1 is

Dt+1 = {Dt,t+1 + εt,t+1, . . . , Dt,N + εt,N}. We assume that εt is independent of Dt and εt, εs, s 6= t
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Figure 4.1: EVENT SEQUENCE

are independent.

Let it denote the disruption state of period t. With probability Pi, the offshore order placed

at period t, St would meet complete disruption and cannot arrive. The assumption of complete

disruption is not as restrictive as it seems to be. For example, common external factors (e.g.

natural disaster, strike events, customs inspection) and internal factors (e.g. lacking communication

with suppliers, inappropriate product design, outdated technology) all lead to complete disruption.

Without loss of generality, we label the disruption states such that ∀i > j, Pi < Pj , i.e. the larger

the state number is, the lower the disruption risk is. The disruption state evolves in a Discrete Time

Markov Chain (DTMC) with transition matrix denoted by {Pij}, i.e. Prob{it+1 = j|it = i} = Pij .

We assume that it is observed at the beginning of period t. Let qt ∈ {0, 1} denote the disruption

indicator of St, where qt = 0 indicates complete disruption and qt = 1 indicates no disruption. We

assume that the firm observes qt at the beginning of period t + 1 as often the time information

about the order state would be available some time after the order is placed. At the beginning of

period t+ 1, the firm knows that qtSt ∈ {0, St} would arrive at the end of period t+ 1.

Let xt denote the on-hand inventory at the beginning of period t. Figure 4.1 illustrates the

event sequence. Note that we do not differentiate between the end of period t and the beginning

of period t+ 1.

1. At the beginning of period t, the firm observes the on-hand inventory xt and the disruption indicator

of the last offshore order qt−1. The disruption state it is observed;

2. The firm orders Ft from the nearshore supplier at cost cft (Ft) and St from the offshore supplier with
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prepayment cst (St);

3. At the end of period t, Ft arrives. If qt−1 = 1, the firm receives St−1 and incurs cost ct(St); otherwise

she does not receive St−1 nor incurs cost;

4. The firm observes demand updates εt = {εt,t, . . . , εt,N} at the end of period t. The demand in

period t is realized through Dt+1,t = Dt,t + εt,t and demand forecast is updated through Dt+1 =

{Dt,t+1 + εt,t+1, . . . , Dt,N + εt,N}. The firm incurs holding or backlogging cost.

Let st = (xt, St−1, qt−1, it,Dt) denote the system state in period t and Vt(st) denote the optimal

cost-to-go function in period t at state st, t = 1, . . . , N . We model the problem in a finite-horizon

dynamic programming framework and the Bellman’s equations are,

Vt(xt, St−1, qt−1, it,Dt) = qt−1ct−1(St−1) + inf
Ft,St≥0

{
cft (Ft) + cst (St) +Ht(xt + Ft + qt−1St−1

−Dt+1,t) + EεtPit,it+1

(
PitVt+1(Xt+1, St, 0, it+1,Dt+1) + (1− Pit)Vt+1(Xt+1, St, 1, it+1,

Dt+1)
)}
, t = 1, . . . , N,

Vt(xt, St−1, qt−1, it,Dt) = qt−1ct−1(St−1), t = N + 1.

(4.1)

Proposition 4.1. Let wt = xt + qt−1St−1, t = 2, . . . , N , w1 = x1. Vt(xt, St−1, qt−1, it,Dt) can be

transformed to a convex function of wt, denoted by Ut(wt, it,Dt). Specifically, for t = 1, . . . , N ,

Ut(wt, it,Dt) = Vt(xt, St−1, qt−1, it,Dt)− qt−1ct−1(St−1), (4.2)

Ut(wt, it,Dt) = inf
z≥y≥wt

{
Ht(y −Dt+1,t) + (1− Pit)ct(z − y) + cft (y − wt) + cst (z − y)+

+ Eεt
∑
it+1

Pit,it+1

[
PitUt+1(y −Dt+1,t, it+1,Dt+1) + (1− Pit)Ut+1(z −Dt+1,t, it+1,Dt+1)

]}
,

Ut(wt, it,Dt) = 0, t = N + 1.

(4.3)

wt is the inventory position the firms observes at the beginning of period t before ordering.

Rather than keeping track of xt, qt−1 and St−1 separately, it is sufficient to keep track of the

inventory position wt. We redefine the system state as s̃t = (wt, it,Dt). y = xt + qt−1St−1 + Ft

in Equation (4.3) is the inventory position after placing the order from the nearshore supplier and

68



z = xt + qt−1St−1 + Ft + St in Equation (4.3) is the inventory position after placing orders from

both suppliers. Searching for the optimal Ft and St in Equation (4.1) is equivalent to searching for

the optimal y and z in Equation (4.3). We call y the nearshore base-stock level and z the offshore

base-stock level.

Theorem 4.1. Assume the slow order cost functions are linear, i.e., cst (x) = cst ∗ x, ct(x) = ct ∗ x.

Given s̃t = (wt, it,Dt), two base-stock levels y∗t , z
∗
t characterize the optimal ordering policy as

follows:

i. y∗t < z∗t

(F ∗t , S
∗
t ) =


(y∗t − wt, z∗t − y∗t ) wt < y∗t

(0, z∗t − wt) y∗t ≤ wt < z∗t

(0, 0) o.w.

ii. y∗t ≥ z∗t

(F ∗t , S
∗
t ) =

 (z∗t − wt, 0) wt < z∗t

(0, 0) o.w.

Consistent with the dual-sourcing literature (Sethi et al. 2001), the optimal policy in our model

is a state-dependent two-threshold base-stock policy. The firm should order up to min(y∗t , z
∗
t ) from

the nearshore supplier. If y∗t < z∗t , she should order additionally up to z∗t from the offshore supplier.

The assumption that qt−1 is known at the beginning of period t is critical to the optimality of the

two-threshold base-stock policy. It guarantees that the inventory position wt is observed at the

beginning of every period. We can show the optimality of the state-dependent two-threshold base-

stock policy still holds when we adopt Markovian modulated demand rather than MMFE or assume

partial disruption rather than complete disruption.

Our model considers uncertain disruption where the supply chain disruption cannot be observed

at ordering from the offshore supplier. If the firm knows whether St would meet disruption or not

before ordering, as assumed in previous studies (Tomlin 2006), she would place nearshore orders only

after disruption occurs and offshore orders otherwise. Thus the firm only orders from one supplier

each period. Nearshore orders always serve as a contingency plan in response to disruption. In

contrast, if the firm does not know whether St would meet disruption or not as in our model, she
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may order from both suppliers in one period. Nearshore orders may serve as a mitigation plan as

well as a contingency plan under some circumstances. We illustrate this result further in §4.5.

Although the structure of the optimal policy appears similar to the dual-sourcing problems in

literature (Sethi et al. 2001), the difference occurs in evolution of base-stock levels. With stationary

demand and costs but no disruption, y∗t = y∗ + Dt,t − µ and z∗t = z∗t (Dt,t, Dt,t+1). The firm only

makes additive modifications on the two thresholds based on the demand forecast update εt every

period. In contrast, under the risk of supply chain disruption, the firm needs to update the optimal

thresholds based on the disruption state evolution and may switch between sole- and dual-sourcing

from period to period.

Proposition 4.2. Assume ckt (x) = ckt+1(x) = ckx, k ∈ {f, s}, ct(x) = ct+1(x) = cx. Given s̃t =

(wt, it,Dt),

i. y∗t ≥ z∗t if cf − cs

1−Pit
− c ≤ 0 and y∗t < z∗t if cf − cs

1−Pit
− c > 0;

ii. z∗t − y∗t increases with cf − cs

1−Pit
− c.

The effective purchase cost difference (cf − cs

1−Pit
− c) captures the expected cost difference

between nearshore and offshore orders. It determines which supplier(s) the firm should order from

in period t. In period t, if y∗t < z∗t , the firm may order from both suppliers; if y∗t ≥ z∗t , she only

orders from the nearshore supplier. The higher the expected cost difference is, the more the firm

tends to order from the offshore supplier. The firm orders only from the nearshore supplier when

the offshore order shows no effective cost advantage and only from the offshore supplier when the

offshore order shows sufficiently high effective cost advantage. If the effective cost advantage is

moderate, the firm would order from both suppliers.

4.3.1 Impact of Disruption and Demand Forecast

In this section we investigate the impact of supply chain disruption and demand forecast on

optimal thresholds. Throughout this section, we consider linear and stationary purchase cost as

in Proposition 4.2. We assume that the DTMC describing the disruption states is stochastically

monotone.
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Definition 4.1 (Definition of Stochastically Monotone (Daley 1968)). A real-valued Markov chain

with stationary one-step transition function P(., .) is stochastically monotone when for every set

By = (−∞, y] ∩ X and every pair x1, x2 ∈ X with x1 < x2, P(x1, By) ≥ P(x2, By).

The assumption of stochastically monotone DTMC indicates that, for states i, j such that i < j,

it is more likely for the less reliable state i, compared to the more reliable state j, to transit to less

reliable states.

Definition 4.2. For two offshore suppliers with same set of disruption state I, the transition matrix

P is larger than P ′ in stochastic order (P ≥st P ′) if
∑

j<k Pi,j >
∑

j<k P ′i,j ,∀i, k ∈ I.

When comparing two offshore suppliers, the supplier with a larger transition matrix in stochastic

order indicates higher reliability of the supply system: the transition probability from any state to

a more reliable state is higher than the other system. This definition describes another dimension

of supply chain disruption other than the risk of a disruption state: supply chain reliability. Supply

chain reliability refers to the possibility that the supply chain would stay in a relatively reliable

state while the disruption risk indicates the possibility that the disruption occurs.

Proposition 4.3. For two systems with the same cost parameters and εt independent and identic-

ally distributed indexed by [1], [2], given s̃t = (wt, it,Dt), consider the following conditions:

(a) P
[1]
it
≥ P [2]

it
; (b) i

[1]
t ≤ i

[2]
t ; (c) P [1] ≤st P [2].

i. If any of (a) ∼ (c) holds, y
∗,[1]
t ≥ y∗,[2]

t ;

ii. If z∗t > y∗t holds in both systems and any of (a) ∼ (c) holds, z
∗,[1]
t ≤ z∗,[2]

t ;

iii. If z∗t < y∗t holds in both systems and any of (b), (c) holds, z
∗,[1]
t ≥ z

∗,[2]
t . (a) is irrelevant to

comparison of z
∗,[1]
t and z

∗,[2]
t .

iv. If z∗t ≤ y∗t in system [1], z∗t ≥ y∗t in system [2] and any of (a) ∼ (c) holds, z
∗,[1]
t ≥ z∗,[2]

t .

(i) and (ii) discuss the case where the firm would order from both suppliers in the two systems

in period t. Condition (a) and (b) compare the disruption risk of the current state in the two

systems. Under more severe disruption risk in a less reliable state, the firm orders more from the
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nearshore supplier and less from the offshore supplier. The total order quantity becomes lower,

because the firm tends to over-order from the offshore supplier due to potential disruption but not

from the nearshore supplier. Condition (c) compares the supply chain reliability of the two systems.

Although the disruption risk of each disruption state remains the same in the two systems, system

[2] is more reliable than system [1]. In a more reliable system, the firm should order more from the

offshore supplier and less from the nearshore supplier, as it is more possible to transit to a more

reliable state in a more reliable system. More severe disruption risk, less state reliability and less

supply chain reliability strengthen the attractiveness of the nearshore supplier.

(i) and (iii) discuss the case where the firm only orders from the nearshore supplier in period

t in both systems. In a more reliable system or state, although the nearshore supplier is always

reliable, the nearshore order quantity tends to decrease. In system [1], where the firm tends to

transit to a less reliable state, she needs more inventory safeguard to mitigate potential disruption

risk. If the current disruption state or supply system becomes sufficiently reliable, the firm even

starts to order from the offshore supplier.

Definition 4.3. Consider two random variables X and Y such that E[ϕ(X)] ≤ E[ϕ(Y )] for all

convex functions ϕ, provided expectation exists. Then X is said to be smaller than Y in the convex

order denoted as X ≤cx Y .

Proposition 4.4. Assume that Ut(wt, it,Dt) is continuously twice differentiable and Σt is a diag-

onal matrix, t = 1, . . . , N . Consider two systems with the same cost parameters and demand mean,

indexed by [1], [2]. If ε
[1]
t,s ≤cx ε

[2]
t,s, then y

∗[1]
s ≤ y∗[2]

s , z
∗[1]
s ≤ z∗[2]

s , and Us(w, i,Ds)
[1] ≤ Us(w, i,Ds)

[2],

∀i, s = t, . . . , N .

Larger forecast in convex order means lower forecast accuracy. The firm would order more from

the nearshore supplier and in total under lower forecast accuracy. Although it appears that the

firm relies more on the reliable supplier under such conditions, this is not always true as whether

the slow order quantity would increase or decrease is not obvious. We illustrate this effect in §4.5.
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4.3.2 Bounds of Optimal Thresholds

As no closed-form solutions exist for the optimal base-stock levels, we provide upper and lower

bounds of the two thresholds with stationary cost parameters: the myopic thresholds and infinite-

horizon thresholds. The myopic thresholds yo, zo ignore the effect of future periods and minim-

izes the single-period expected cost. The infinite-horizon thresholds y∗, z∗ optimize an associated

infinite-horizon problem, minimizing the long-run average expected cost.

Proposition 4.5. Let (y∗(it,Dt), z
∗(it,Dt)) and (yo(it,Dt), z

o(it,Dt)) denote the optimal infinite-

horizon threshold levels and the myopic threshold levels with stationary linear cost functions such

that ckt (x) = ckx, k ∈ {f, x}, ct(x) = cx, cf− cs

1−Pit
−c > 0, t = 1, . . . , N . Then for (y∗t (it,Dt), z

∗
t (it,Dt)),

1. y∗(it,Dt) > y∗t (it,Dt) > yo(it,Dt);

2. z∗(it,Dt) > z∗t (it,Dt) > zo(it,Dt).

The optimal thresholds are higher than the myopic thresholds because the latter ignores future

demand. Similarly the optimal thresholds are lower than the infinite-horizon thresholds. The

optimal thresholds tend to increase with the length of planning horizon and converges to the

infinite-horizon thresholds.

4.4 Extended Model

In this section, we discuss the optimal policy with general fixed lead times. Let lf denote the

lead time of the nearshore supplier and ls the lead time of the offshore supplier. The firm observes

the nearshore and offshore orders in-transit before ordering every period.

Theorem 4.2. If the lead times of the two suppliers differ by one period, i.e., lf = l, ls = l+1, and

qt is realized at the beginning of period t+ 1, the optimal policy is a state-dependent two-threshold

base-stock policy with the structure stated in Theorem 4.1.

Our result is consistent with the literature (Minner 2003) that, for a dual-sourcing problem

without disruption and demand forecast, a two-threshold base-stock policy is no longer optimal

if the lead time difference is larger than one. The critical assumption of qt−1 ensures that the
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Figure 4.2: ILLUSTRATION OF THE HEURISTICS ALGORITHM

firm is able to keep track of her inventory position before placing orders. The optimality of the

two-threshold base-stock policy breaks down if this assumption does not hold. We use a simple

counter example to illustrate this.

A Counter Example Suppose we have a 3-period problem with lf = 2, ls = 3, and q1 is realized

at the beginning of period 3. Following the notation defined in §4.3, the inventory positions

in periods 1, 2, 3 are x1, x2 + F1 + q1S1, x3 + F2 + q1S1. However, the firm doesn’t observe

q1 at the beginning of period 2. In period 2, the firm cannot observe the order-up-to levels

after placing orders, as y2 = x2 + F1 + q1S1 + F2, z2 = y2 + S2. Hence in period 2, we cannot

characterize the optimal ordering policy by base-stock levels.

4.5 Computational Study

4.5.1 A Heuristic Algorithm

We develop an asymptotically optimal heuristics algorithm to search for the base-stock levels

and calculate expected order quantities and cost. We use Infinitesimal Perturbation Analysis (IPA)

(Glasserman 1991) in gradient search to search for the optimal base-stock levels and a sample-path

algorithm to calculate expected order quantities and cost. Although IPA has been widely applied for

base-stock levels (Glasserman and Tayur 1995), few studies apply IPA in two-threshold base-stock

policies. We illustrate the procedure of the heuristics algorithm in Figure 4.2.

• Step 0 : Set t = 1 and i to be the disruption state with the smallest value. Let min-cost denote the
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current minimum cost and new-cost denote the newly calculated expected cost. Choose the step size,

α and the tolearance δ in gradient search.

• Step 1 : For disruption state i, assuming
∑t−1

j=1 εj,t = 0, use the following steps to search for the

base-stock levels for period t, y∗t , z
∗
t .

– Step 1.1 Initialization: set yk = µ, zk = µ, k = t, t+ 1, . . . , N , min-cost=∞;

– Step 1.2 For disruption state i, use IPA to estimate the gradient of total expected cost with

respect to yk, zk, k = t, t+ 1, . . . , N , denoted by ∇yk,∇zk, k = t, t+ 1, . . . , N ;

– Step 1.3 Use sample path algorithm to calculate expected cost (new-cost) with newly updated

yk, zk, k = t, t + 1, . . . , N . When placing orders, adjust optimal base-stock levels dependent

on
∑k−1

i=j εj,k, k = t, t + 1, . . . , N generated by sample paths: y′k ← yk +
∑k−1

j=1 εj,k, z
′
k ← zk +∑k−1

j=1 εj,k, k = t, t+ 1, . . . , N ;

– Step 1.4 If |new-cost−min-cost | < δ, set yk ← yk−α∗∇yk, zk ← zk−α∗∇zk, k = t, t+1, . . . , N ,

min-cost←new-cost and go back to the second Step 1.2 ; otherwise, y∗t ← yt, z
∗
t ← zt, and go to

Step 2.

• Step 2 Adjust threshold levels based on
∑k−1

j=1 εj,k, k = t, t + 1, . . . , N as stated in Step 1.3. The

threshold levels for disruption state i in period t, y∗t (i), z∗t (i) are y∗t and z∗t . If all disruption states in

period t has been traversed, go to Step 3 ; otherwise set i to the next disruption state (next smallest

value) and go to Step 1.

• Step 3 t← t+ 1. If t = N + 1, stop; otherwise, go to Step 1.

We search for optimal threshold levels (y∗t (i), z
∗
t (i)) regardless of the threshold difference for

different disruption states in future periods. Let I denote the set of disruption states. It would be

more accurate to search for optimal y∗t (i), z
∗
t (i), i ∈ I based on yk(i), zk(i), i ∈ I, k = t + 1, . . . , N .

However the number of threshold levels in future periods,
∑N

k=t+1

∑
i∈I(yk(i)+zk(i)), would increase

exponentially as N increases, leading to significant loss of computation efficiency.

Ever period the firm incurs purchase cost cft Ft+c
s
tSt+ct−1qt−1St−1 and inventory cost h(xt+1)++

π(xt+1)−. To calculate ∇yk and ∇zk, k = t, . . . , N in Step 1.2, we need ∂Ft
∂s , ∂St

∂s and ∂xt+1

∂s ,

∀s ∈ {yt, . . . , yN , zt, . . . , zN} in each period. Applying IPA, the partial derivatives can be derived
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based on the following iterative equations,

∂Ft
∂s

=


(∂yt
∂s −

∂xt
∂s − qt−1

∂St−1

∂s

)
I{yt>xt+qt−1St−1}, yt < zt(

∂zt
∂s −

∂xt
∂s − qt−1

∂St−1

∂s

)
I{zt>xt+qt−1St−1}, zt < yt

(4.4)

∂St
∂s

=


(
∂zt
∂s −

∂xt
∂s − qt−1

∂St−1

∂s

)
I{yt<xt+qt−1St−1<zt} +

(
∂zt
∂s −

∂yt
∂s

)
I{yt>xt+qt−1St−1}, yt < zt

0, zt < yt

(4.5)

∂xt+1

∂s
=
∂xt
∂s

+
∂Ft
∂s

+ qt−1
∂St−1

∂s
, (4.6)

where s ∈ {yt, . . . , yN , zt, . . . , zN}. Equation (4.4) and Equation (4.5) follow the two-threshold

base-stock policy with thresholds yt, zt. Equation (4.6) follows on-hand inventory level evolution.

With Equation (4.4)∼Equation (4.6), we can use E∂Ft
∂s (E∂St

∂s , E∂xt
∂s ) to estimate ∂EFt

∂s (∂ESt∂s , ∂Ext
∂s )

in calculating the expected total cost. Since E∂Ft
∂s (E∂St

∂s , E∂xt
∂s ) converges to ∂EFt

∂s (∂ESt∂s , ∂Ext∂s ) with

probability 1, the heuristics algorithm is asymptotically optimal.

Proposition 4.6. If {εt,s}, s = t, . . . , N are independent and each Dt has a density on (0,∞),

∀t = 1, . . . , N , then the followings hold:

i. For t = 1, . . . , N , each of Ft, St, xt+1 is differentiable at (y1, . . . , yN , z1, . . . , zN−1) with respect

to each yt, zt, t = 1, . . . , N − 1, with probability one. Moreover, the derivatives satisfy Equa-

tion (4.4)∼Equation (4.6) (Assuming SN = 0);

ii. If in addition E[Dt] < ∞ for all t, then ∂EFt
∂s ,

∂ESt
∂s ,

∂Ext+1

∂s exist and equal E∂Ft
∂s ,E

∂St
∂s ,E

∂xt+1

∂s

correspondingly, s ∈ {y1, . . . , yN , z1, . . . , zN−1}.

4.5.2 Numerical Study

In the numerical study, we explore the firm’s reliance on different suppliers and investigate which

type(s) of strategies that the firm should apply in response to potential disruption: contingency

and mitigation strategies. We study a 20-period problem and generate M = 2, 000 sample paths

in each instance to calculate total nearshore and offshore order quantities. Let P = [Pr, Pu]

denote the disruption probability vector, where r represents the reliable state and u represents
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the unreliable state. We consider stationary cost parameters. The basic parameter setting is

cf ∈ {4.5, 6, 9, 9.9}, cs = 1, c = 2, b = 10, h ∈ {0.5, 1, 2, 3} where b is the stationary unit backlog

cost and h is the stationary unit holding cost. The transition matrix of the disruption DTMC is

P = [0.7, 0.3; 0.3, 0.7].

We use P̄ = Pr+Pu
2 to represent the disruption level and P̂ = Pu−Pr to represent the disruption

stability. Disruption level emphasizes the severity of the average disruption risk. We enumerate

P in S1 = {[0.1, 0.2], [0.2, 0.3], . . . , [0.7, 0.8], [0.8, 0.9]} to discover the impact of disruption level

on the firm’s strategy. In S1, the disruption becomes more and more severe as P̄ increases from

P = [0.1, 0.2] to P = [0.8, 0.9] but P̂ remains the same. Disruption stability explains how close the

two disruption states are. We enumerate P in S2 = {[0.5, 0.5], [0.4, 0.6], . . . , [0.1, 0.9]} to discover

the impact of disruption stability on the firm’s strategy. In S2, the disruption becomes more and

more decentralized as P̂ changes from P = [0.5, 0.5] to P = [0.1, 0.9] but the average disruption

risk (P̄ ) remains the same.

We define DOM to measure the percentage of nearshore orders among all orders, where

DOM =
Total Fast Order Quantity

Total Fast Order Quantity + Total Slow Order Quantity
. (4.7)

DOM explains the firm’s dependence on the nearshore supplier. We define MIT to measure the

perentage of mitigation orders among nearshore orders, where

MIT =
Total Mitigation Order Quantity

Total Mitigation Order Quantity + Total Contingency Order Quantity
. (4.8)

MIT explains the firm’s reliance on mitigation orders among nearshore orders. It indicates whether

the firm relies on the nearshore supplier to build inventory safeguard besides the offshore supplier.

In each period, the contingency order occurs when the last offshore order cannot arrive due to

disruption. Thus we use the minimum of nearshore order quantity and the last offshore order

quantity under such circumstances as a proxy of contingency nearshore order quantity and the
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Figure 4.3: EFFECT OF DISRUPTION RISK ON DOM AND MIT, cv = 0.05, h = 2

difference of the two quantities as a proxy of mitigation nearshore order quatity, i.e.,

Total Mitigation Order Quantity =
M∑
m=1

1

M

N∑
t=2

(
Fmt ∗ I{qmt−1=1} + (Fmt − Smt−1)+ ∗ I{qmt−1=0}

)
,

Total Contingency Order Quantity =

M∑
m=1

1

M

N∑
t=2

(
min{Fmt , Smt−1} ∗ I{qmt−1=0}

)
,

where N is the length of planning horizon, M is the number of sample paths and superscript m

indicates the m-th sample path.

4.5.2.1 Effect of Supply Chain Disruption

The left panel of Figure 4.3 shows that DOM increases with the disruption level, as indicated

by Proposition 4.3. MIT decreases with the disruption level (P̄ ) when it is low and increases with

it when it is high. When the disruption of the offshore supply chain is not severe, the firm mainly

orders from the offshore supplier. Most of the nearshore orders are placed when the last offshore

order meet disruption. As the disruption becomes more severe, the firm places contingency orders

more frequently. Hence the nearshore supplier serves more of a backup supplier. However, when

the disruption is severe, the firm mainly depends on the nearshore supplier to satisfy the demand.

Therefore, the nearshore supplier mainly serves as a normal supplier rather than a backup supplier.

Furthermore, the threshold of the disruption level above which MIT starts to increase with the

disruption level tends to increase with the nearshore order cost. This is because the firm benefits
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Figure 4.4: EFFECT OF FORECAST ACCURACY ON DOM AND MIT UNDER VARIOUS
DISRUPTION RISK, cf = 9.9, h = 0.5

more from the offshore supplier when its cost advantage becomes higher.

The right panel of Figure 4.3 shows that both MIT and DOM increase with the disruption

risk uncertainty (P̂ ) when the nearshore order is expensive and decrease with P̂ otherwise. When

the disruption is highly decentralized (e.g. P = [0.1, 0.9]), in the reliable state the firm almost

only places contingency orders from the nearshore supplier. Hence both MIT and DOM are

not influenced much by the cost difference between nearshore and offshore orders. On the other

hand, when the disruption becomes centralized (e.g. P = [0.5, 0.5]), with great cost advantage of

the offshore supplier the firm rarely orders from the offshore supplier and all nearshore orders are

mitigation orders. As the cost advantage of offshore orders increases, the firm orders more from

the offshore supplier and places more contingency orders from the nearshore supplier. Therefore,

compared with centralized disruption, under decentralized disruption the optimal decision is more

sensitive to cost advantage of offshore orders.

4.5.2.2 Effect of Forecast Accuracy

We use cv =
Var(εt,t)

EDt to measure the forecast accuracy and investigate the effect of cv by

enumerating cv ∈ {0.01, . . . , 0.20}, as firms require the forecast error below 10% to 15%. When

cv increases, the forecast accuracy decreases. For normally distributed forecast error, we set the

forecast accuracy k periods ahead as cvk =
Var(εt,t+k)

EDt+k = cv ∗ (k + 1).

As Figure 4.4 exhibits, DOM decreases with cv under low P̄ values while increases with cv

under high P̄ values. When forecast becomes less accurate, the firm needs to prepare more inventory
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Figure 4.5: DISTRIBUTION OF DEMAND MEAN FOR DIFFERENT PRODUCT LIFE
CYCLES, LC(LIFE CYCLE)∈ {2, 4, . . . , 18}

safeguard in advance. This additional inventory is contributed by the offshore supplier under

unsevere disruption and by the nearshore supplier under severe disruption. Hence when cv increases,

the firm relies less on the nearshore supplier under unsevere disruption and more on the nearshore

supplier under severe disruption. For the same reason, MIT also decreases in cv under unsevere

disruption and increases in cv under severe disruption. In addition, our numerical results show

that the effect of the forecast accuracy on the optimal ordering decision is significantly influenced

by the disruption level rather than the disruption uncertainty.

4.5.2.3 Effect of Product Life Cycle

We explore the impact of product life cycle in a 20-period planning horizon. For life cycle LC,

demand occurs in periods (20 − LC)/2 + 1 to (20 + LC)/2 with mean 600/LC, as illustrated in

Figure 4.5. For instance, with LC = 2 the mean demand in period 10, 11 is 300 and that in other

periods is 0. Products with long life cycles could indicate daily consumed products, while those

with short life cycles could indicate seasonal products.

DOM increases with product lifecycle only under high offshore order advantage (both high

offshore order cost advantage and unsevere disruption), as illustrated in Figure 4.6 (see left panel,

P = [0.2, 0.3]). It decreases with product lifecycle when the advantage of the offshore order is not

sufficiently high (severe disruption or low offshore order cost advantage). Under such conditions,

with a longer lifecycle, the firm can accumulate more cheap order deliveries. Thus she needs
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Figure 4.6: EFFECT OF PRODUCT LIFE CYCLE ON DOM UNDER VARIOUS DISRUPTION
RISK, cf = 9, h = 0.5 (LEFT), cf = 6, h = 2 (RIGHT), LC ∈ {2, 4, . . . , 18}

less orders from the nearshore supplier. When the advantage of offshore orders is high, however,

nearshore orders are almost only needed during disruption. With a longer lifecycle, the contingency

order quantity increases as more periods are exposed to disruption. In addition, the firm orders

less from the offshore supplier in advance due to low disruption risk. Therefore DOM increases

with product lifecycle.

In addition, our results show that, under more cetralized disruption risk, DOM and MIT

are more sensitive to the change of product lifecycle. This is because, the firm mainly relies on

the nearshore supplier under severe disruption risk and on the offshore supplier under unsevere

disruption risk, but not on both suppliers in either case. Hence under more centralized disruption

risk, the allocation of nearshore and offshore orders (the allocation of mitigation and contingency

orders among nearshore orders) is more sensitive to the product lifecycle.

4.5.2.4 Effect of Disruption Type

We investigate how firms should prepare for and respond to supply chain disruption facing dif-

ferent types of disruption: long and infrequent disruption and short and frequent disruption. For

instance, disruption such as natural disaster belongs to long and infrequent disruption while disrup-

tion such as shipping delay and customs detention belong to short and frequent disruption. We con-

sider the disruption states where P ∈ S3 = {[0, 1], [0.001, 0.999], [0.01, 0.99], [0.05, 0.95], [0.1, 0.9]}.

In the unreliable (reliable) state, it is almost sure that the disruption would (would not) occur. We

use the transition matrix of disruption states in the form of P = [p, 1− p; 1− p, p] with extreme p
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Figure 4.7: EFFECT OF DISRUPTION TRANSITION UNCERTAINTY ON DOM AND MIT
UNDER LONG AND INFREQUENT DISRUPTION (LEFT) AND SHORT AND FREQUENT
DISRUPTION (RIGHT), LOW ADVANTAGE: cf = 4.5, h = 2, HIGH ADVANTAGE: cf =
9.9, h = 1.5, P = [0.001, 0.999]

values. The disruption uncertainty (whether the disruption would occur or not) is low with such

p values. A transition matrix with p close to 0, p ∈ S4 = {0.1, 0.05, 0.01, 0.001}, indicates short

and frequent disruption. From p = 0.1 to p = 0.001, the disruption becomes shorter and more

infrequent on average and the transition uncertainty decreases. A transition matrix with p close

to 1, p ∈ S5 = {0.9, 0.95, 0.99, 0.999}, indicates long and infrequent disruption. From p = 0.9 to

p = 0.999, the disruption becomes longer and less frequent and the transition uncertainty decreases.

As illustrated in Figure 4.7, the disruption uncertainty and cost advantage of offshore orders

have different effect on DOM and MIT under different types of disruption. With low disruption

uncertainty, the firm mainly places nearshore orders in the unreliable state and offshore orders in

the reliable state. Under long and infrequent disruption, the firm mainly relies on one supplier to

build inventory safeguard. The more uncertain the disruption is, the more contingency orders are

needed. Thus neither DOM nor MIT are significantly influenced by the cost advantage of offshore

orders but sensitive to transition uncertainty. Under short and frequent disruption, however, the

firm needs contingency orders in the unreliable state and tends to ”over-order” in the reliable

state. Hence the cost advantage of offshore orders significantly influences DOM and MIT but the

transition uncertainty does not.

We then explore the value of transition uncertainty information, VTI, defined as the relative

cost reduction when ordering with accurate disruption information, i.e.Total Cost(Pb)−Total Cost(P)
Total Cost(P) ,P ∈
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Figure 4.8: EFFECT OF DISRUPTION TRANSITION UNCERTAINTY ON VTI UNDER
LONG AND INFREQUENT DISRUPTION (LEFT) AND SHORT AND FREQUENT DISRUP-
TION (RIGHT), LOW ADVANTAGE: cf = 9.9, h = 1.5, HIGH ADVANTAGE: cf = 4.5, h = 1.5,
P = [0.01, 0.09]

S4
⋃
S5, where Pb = [0.5, 0.5; 0.5, 0.5]. Given that the true transition matrix is P, Total Cost(Pb)

is the total cost when using Pb to place orders and Total Cost(P) is the total cost when using the

correct transition matrix P to place orders. Thus VTI is the relative cost increase when ordering

without any information about disruption state transition.

Because of the effect of disruption transition uncertainty on DOM and MIT is significant

under long and infrequent disruption and not significant under short and frequent disruption, the

effect on VTI shows the similar pattern. The more certain the true transition is, the higher VTI

is. Furthermore, VTI is higher under higher cost advantage of offshore orders.

4.5.2.5 Effect of Offshore Order Cost Advantage

As firms claim that cost increase is an important cause for nearshore production, we explore

how sensitive firms should be to this cost increase. We regard (cs + c)/cf as a proxy of the cost

advantage of offshore orders and enumerate (cs+ c)/cf ∈ {1
6 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

5
6} to investigate how this

ratio influences DOM and MIT. Our numerical results show that unless the disruption level is

sufficiently high, increasing (cs + c)/cf does not significantly influence DOM or MIT. When the

disruption level is sufficiently high (P ∈ {[0.7, 0.8], [0.8, 0.9]}), however, DOM and MIT become

quite sensitive to (cs + c)/cf . We also vary the prepayment ratio (cs/(cs + c)) from 10% to 100%

and observe that this change does not significantly influence DOM or MIT either, except under
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sufficiently high disruption level.

4.6 Concluding Remarks

With increasingly frequent disruptions and increasing cost in long-distance supply chains, firms

have shifted manufacturing facilities from offshore countries to nearshore countries in recent years.

However, this shift may not always bring them expected benefit. Firms need to balance the trade-

off between reliable but expensive operations in local markets and unreliable but cost efficient

operations in offshore countries. In this chapter, we study a dual-sourcing problem with an offshore

and a nearshore supplier available. We identify the optimal sourcing strategy and explore the firm’s

behavior in preparation for and response to supply chain disruption.

We show that the optimal policy is a two-threshold base-stock policy and explore the effect

of effective cost difference, disruption parameters and forecast error on base-stock levels. We

develope an IPA-based heuristics algorithm to calculate average order quantities. By analyzing

two measures (DOM and MIT), we explore the firm’s reliance on the nearshore supplier and the

mitigation order percentage among nearshore orders. Our results indicate that rather than a pure

backup supplier, firms should also use nearshore orders to build inventory safeguard in advance

under some conditions. As the disruption in long distance supply chain becomes more severe, the

nearshore orders serve more of a contingency plan if the disruption is not sufficiently severe. If the

disruption is sufficiently severe, firms would regard the nearshore supplier as the main supplier.

Finally we address some related issues in global sourcing that we do not cover in this chapter.

The product quality from offshore outsourcing is another important factor that drives firms to

nearshore manufacturing facilities. We do not specifically model the quality issue of offshore sup-

pliers, although we can regard unqualified products as a special type of disruption. In addition,

firms value quick-response supply chain as it determines how frequently they can update and modify

the product designs (Anderson 2013). In that sense, lead time determines the innovation frequency

of product design. Extended research could explore the impact of innovation frequency on the

optimal strategy in global sourcing.
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH

Research studies on operations strategies tailored to emerging markets are critical for multina-

tionals to improve competitiveness in emerging markets. In this dissertation, we address key issues

in agriculture operations in emerging countries and global supply chain management that involves

emerging markets. This work provides insights on how to leverage the emerging markets to increase

productivity and profit margin as well as to achieve flexibility and responsiveness in emerging mar-

ket operations. The study in the three chapters demonstrates the advantage of scientific methods

in improving agricultural productivity in emerging countries and contributes to the understanding

of the impact of various risks and opportunities on the low-cost benefits in emerging markets.

In the first chapter we study a planting schedule problem of a single crop under rainfall un-

certainty as a finite-horizon stochastic dynamic program. Planting early may allow the seeds to

start contributing biomass production early, but planting later with higher soil water content could

lead to a higher chance of seed survival. We show that the optimal planting schedule is a time

dependent threshold-type policy, where the farmer should plant down to the optimal threshold.

In practice, farmers start to plant after observing enough cumulative rainfall in the planting

season. Utilizing field weather data from Southern Africa, we show that the risk of crop yield drop

due to severe climate conditions can be significantly mitigated by adopting the optimal planting

schedule. The more severe the climate conditions the higher the relative yield advantage of the

optimal planting schedule. Furthermore, for the real size large-scale problem, we show that adopting

the optimal schedule could significantly improve the crop biomass production.

In this work we only focus on the planting schedule of seeds and assume that other decisions such

as fertilizer addition and pest control are done optimally. In many real situations those aspects can

also be difficult to adopt. Further, we only consider one crop in this work. Sometimes, crop rotation

has an important impact on the yields of seeds and in such cases that needs to be incorporated.

Finally, we do not consider any budget constraints that a farmer might face for seed procurement,
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automation, fertilizers or pest control. All the above issues are ripe for future studies in this area.

In the second chapter, we study supply chain contracting that incorporates total landed cost

between a retailer in a developed country and a supplier in an emerging country. We explore the

implications of logistics costs on the retailer’s optimal warehouse decision and demonstrates that

ignoring logistics operations costs in contracting could lead to suboptimal warehousing decisions.

We show that if a retailer could achieve short and stable lead time from the emerging-country

warehouse, she may use the emerging-country warehouse even when the warehouse holding cost

does not bring cost advantage. When the emerging-country warehouse leads to low warehouse

holding cost and/or high lead time reduction, the retailer would agree on a higher wholesale price

while using the emerging-country warehouse. Further we demonstrate that including logistics costs

in contract negotiation impacts the retailer’s warehousing strategy. Finally, we show that when the

emerging-country warehouse provides low holding cost, the retailer could achieve a higher profit by

including logistics costs in contracting.

In the third chapter, we study a dual-sourcing problem with an offshore supplier and a nearshore

supplier available and explore the role of the nearshore supplier in response to supply chain disrup-

tion. We show that the optimal policy is a two-threshold base-stock policy and explore the effect

of effective cost difference between the nearshore and offshore suppliers, disruption parameters and

forecast error on base-stock levels.

In the computational study, we develop two measures to explore the firm’s reliance on the

nearshore supplier: the percentage of nearshore order quantity over total order quantity (DOM)

and the percentage of mitigation order quantity over total nearshore order quantity (MIT). Our

results indicate that rather than regarding the nearshore supplier as a pure backup supplier, firms

should also use nearshore orders to build inventory safeguard in advance under some conditions.

Finally we address some related issues in global sourcing that we do not cover in this chapter.

The product quality from offshore outsourcing is another important factor that drives firms to

nearshore manufacturing facilities. We do not specifically model the quality issue of offshore sup-

pliers, although we can regard unqualified products as a special type of disruption. In addition,

firms value quick-response supply chain as it determines how frequently they can update and modify

the product designs (Anderson 2013). In that sense, offshore sourcing would result in infrequent
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product innovation due to the long lead time. Extended research could explore the impact of

innovation frequency on the optimal strategy in global sourcing.

This dissertation takes one step to explore critical issues in tailoring operations strategies to

emerging economies and leveraging the emerging markets. The studies have opened up avenues of

promising and exciting research agendas. Future work concerns alternative applications of mechan-

ization and scientific methods in agriculture operations and diverse analysis of global supply chain

management that involves emerging markets.

In emerging countries, lacking access to farming machinery results in agricultural output far

below the developing-world average. Adopting mechanization is a fundamental and sustainable

approach to increase agricultural productivity through improved timeliness of farming operations

and expansion of cultivated area. Research studies on the application of mechanization in agricul-

ture could help governments, charity foundations and multinationals promote affordable farming

machinery suitable for emerging countries. Future research would focus on the investment of mech-

anization in agriculture. As the procurement of mechanization and crop seeds is constrained by

limited budget, a study that explores the optimal investment under limited budget and the strategy

of sharing farming machinery among farmers would provide administrative advice on the adoption

of mechanization. Moreover, as farmers could be strategic in pricing the agricultural products based

on the crop yield and previous price information, extended research studies the impact of strategic

farmers on the optimal investment of mechanization.

In the context of global supply chain management, we discuss the prevalent practices of off-

shore warehousing and nearshore sourcing in global sourcing. Research extensions on the optimal

warehousing strategy with both nearshore and offshore suppliers and the impact of competition

between retailers on the optimal warehousing strategy would contribute to the understanding of

the implications of logistics operations on the global procurement strategies.

Furthermore, after the adoption of the Sustainability Development Goals (SDGs), global food

security issues have brought great attention to governments and companies. The emerging markets

play an important role in combating global food insecurity as they are major producers of many

agricultural products while being relatively underfed and malnourished (Fan and Brzeska 2010).

Future research concerning critical issues on food safety, food waste reduction and nutrient im-
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provement would provide insights on managing sustainable global food supply chains and facing

the challenge of feeding the world.
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APPENDICES

Appendix I

In this section, we present appendix for Chapter 2.

Proof of Results in §2.3

Proof of Lemma 2.1. We prove this result by induction. For t = 0, sinceQ0(sw0) = 0, U0(asd0, sw0) =

0 and V0(gsd0, asd0, cbm0, sw0) = cbm0, obviously Equation (2.1) holds. Assume that Equa-

tion (2.1), Equation (2.2) and 2.3 hold for Qt(swt), Ut(asdt, swt) and Vt(gsdt, asdt, cbmt, swt).

For period t+ 1,

Vt+1(gsdt+1, asdt+1, cbmt+1, swt+1) = prt+1Vt(gsdt+1, asdt+1, cbmt+1, ωt+1(swt+1, prect+1))+

(1− prt+1) ∗max
{
Vt(gsdt+1, asdt+1, cbmt+1 + gsdt+1 ∗ bm(swt+1), ωt+1(swt+1, 0)), sv(swt+1)

∗ Vt(gsdt+1 + 1, asdt+1 − 1, cbmt+1 + (gsdt+1 + 1) ∗ bm(swt+1), ωt+1(swt+1, 0))+

(1− sv(swt+1)) ∗ Vt(gsdt+1, asdt+1 − 1, cbmt+1 + gsdt+1 ∗ bm(swt+1), ωt+1(swt+1, 0))
}

= prt+1(cbmt+1 + gsdt+1 ∗Qt(ωt+1(swt+1, prect+1)) + Ut(asdt+1, ωt+1(swt+1, prect+1)))+

(1− prt+1) max
{
cbmt+1 + gsdt+1 ∗ bm(swt+1) + gsdt+1 ∗Qt(ωt+1(swt+1, 0)) + Ut(asdt+1,

ωt+1(swt+1, 0)), sv(swt+1)(cbmt+1 + (gsdt+1 + 1) ∗ bm(swt+1) + (gsdt+1 + 1)∗

Qt(ωt+1(swt+1, 0)) + Ut(asdt+1 − 1, ωt+1(swt+1, 0))) + (1− sv(swt+1))(cbmt+1+

gsdt+1 ∗ bm(swt+1) + gsdt+1 ∗Qt(ωt+1(swt+1, 0)) + Ut(asdt+1 − 1, ωt+1(swt+1, 0)))
}

= cbmt+1 + gsdt+1 ∗
(
prt+1Qt(ωt+1(swt+1, prect+1)) + (1− prt+1)(bm(swt+1) +Qt(ωt+1(

swt+1, 0)))
)

+
(
prt+1Ut(asdt+1, ωt+1(swt+1, prect+1)) + (1− prt+1) max{Ut(asdt+1, ωt+1(

swt+1, 0)), sv(swt+1)(bm(swt+1) +Qt(ωt+1(swt+1, 0))) + Ut(asdt+1 − 1, ωt+1(swt+1, 0))}
)

= cbmt+1 + gsdt+1 ∗Qt+1(swt+1) + Ut+1(asdt+1, swt+1)

where Qt+1(swt+1) and Ut+1(asdt+1, swt+1) follow Equation (2.2) and Equation (2.3) for period

t+ 1.
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Proof of Theorem 2.1. The first result can be easily shown using Lemma 2.1 as the maximizing

operation in Vt(gsdt, asdt, cbmt, swt) lies only in Ut(asdt, swt) but neither cbmt nor gsdt ∗Qt(swt).

To show the second result, it is sufficient to show that Ut(asdt, swt) is concave in asdt, i.e. the

incremental difference of Ut(asdt, swt) with respect to asdt is non-increasing. We show this result by

induction. Let ∆Ut(asdt, swt) = Ut(asdt+1, swt)−Ut(asdt, swt) denote the incremental indifference

of Ut(asdt, swt) with respect to asdt and we need to show that ∆Ut(asdt, swt) ≥ ∆Ut(asdt+1, swt).

For t = 0, obviously this result holds based on Equation (2.3). Assume that ∆Ut−1(asdt−1, swt−1) ≥

∆Ut−1(asdt−1 + 1, swt−1). Note that SDt(swt) is the largest integer value of asdt that satisfies

∆Ut−1(asdt − 1, ωt(swt, 0)) ≥ sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))).

Then

∆Ut(asdt, swt) =prt∆Ut−1(asdt, ωt(swt, prect)) + (1− prt )∗
∆Ut−1(asdt − 1, ωt(swt, 0)) asdt > SDt(swt)

∆Ut−1(asdt, ωt(swt, 0)) asdt < SDt(swt)

sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) asdt = SDt(swt)

,

∆Ut(asdt + 1, swt) =prt∆Ut−1(asdt + 1, ωt(swt, prect)) + (1− prt )∗
∆Ut−1(asdt, ωt(swt, 0)) asdt > SDt(swt)− 1

∆Ut−1(asdt + 1, ωt(swt, 0)) asdt < SDt(swt)− 1

sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) asdt = SDt(swt)− 1

.

If asdt ≥ SDt(swt) + 1, ∆Ut(asdt + 1, swt) ≤ ∆Ut(asdt, swt) is non-positive by assumption; If

asdt ≤ SDt(swt)− 2, ∆Ut(asdt + 1, swt) ≤ ∆Ut(asdt, swt) is non-positive by assumption; If asdt =

SDt(swt)− 1, ∆Ut(asdt + 1, swt)−∆Ut(asdt, swt) is

prt (∆Ut−1(asdt + 1, ωt(swt, prect)−∆Ut−1(asdt, ωt(swt, prect))))+

(1− prt )(sv(swt)(bm(swt) +Qt−1(ωt(swt, 0)))−∆Ut−1(asdt, ωt(swt, 0))),

which is non-positive because the optimal decision is not to plant when the seed amount asdt + 1
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equals to SDt(swt); If asdt = SDt(swt), ∆Ut(asdt + 1, swt)−∆Ut(asdt, swt) is

prt (∆Ut−1(asdt + 1, ωt(swt, prect)−∆Ut−1(asdt, ωt(swt, prect))))+

(1− prt )(∆Ut−1(asdt, ωt(swt, 0))− sv(swt)(bm(swt) +Qt−1(ωt(swt, 0)))),

which is non-positive because the optimal planting decision is to plant when the seed amount

asdt + 1 equals to SDt(swt) + 1.

Proof of Proposition 2.1. We first show that if sv(swt) and bm(swt) are non-decreasing and convex

in swt, SDt(swt) is non-increasing in swt. Note that SDt(swt) is the largest integer value of asdt

that satisfies

∆Ut−1(asdt − 1, ωt(swt, 0)) ≥ sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))),

and ∆Ut−1(asdt − 1, ωt(swt, 0)) is non-increasing in asdt. Hence it is sufficient to show that

∆Ut−1(asdt, ωt(swt, 0))− sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) (A.1)

is non-increasing in swt, ∀β ≥ 0. For t = 1, it is obvious that (A.1) is non-increasing in swt.

Assume that (A.1) is non-increasing in swt. Then for a (t + 1)-period problem, we want to show

that

∆Ut(asdt+1, ωt+1(swt+1, 0))− sv(swt+1) ∗ (bm(swt+1) +Qt(ωt+1(swt+1, β))) (A.2)

is non-increasing in swt+1, where

sv(swt+1)(bm(swt+1) +Qt(ωt+1(swt+1, 0)))

=sv(swt+1)(bm(swt+1) + prtQt−1(ωt(ωt+1(swt+1, 0), prect))+

(1− prt )(bm(ωt+1(swt+1, 0)) +Qt−1(ωt(ωt+1(swt+1, 0), 0))))
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Since (A.1) is non-increasing in swt, we have

∆Ut−1(asdt+1, ωt(ωt+1(swt+1, 0), prect))− sv(ωt+1(swt+1, 0) +
prect
δ

)(bm(ωt+1(swt+1, 0)+

prect
δ

) +Qt−1(ωt(ωt+1(swt+1, 0) +
prect
δ

, 0))),

∆Ut−1(asdt+1, ωt(ωt+1(swt+1, 0), 0))− sv(ωt+1(swt+1, 0))(bm(ωt+1(swt+1, 0))+

Qt−1(ωt(ωt+1(swt+1, 0), 0))),

∆Ut−1(asdt+1 − 1, ωt(ωt+1(swt+1, 0), 0))− sv(ωt+1(swt+1, 0))(bm(ωt+1(swt+1, 0))+

Qt−1(ωt(ωt+1(swt+1, 0), 0)))

(A.3)

are non-increasing in ωt+1(swt+1, 0) by assumption. As ωt+1(swt+1, 0) is non-decreasing in swt+1,

the expressions in (A.2) are non-increasing in swt+1. Note that

∆Ut(asdt+1, ωt+1(swt+1, 0))

=prt∆Ut−1(asdt+1, ωt(ωt+1(swt+1, 0), prect)) + (1− prt )∗

∆Ut−1(asdt+1 − 1, ωt(ωt+1(swt+1, 0), 0)) asdt+1 > SDt(ωt+1(swt+1, 0))

∆Ut−1(asdt+1, ωt(ωt+1(swt+1, 0), 0)) asdt+1 < SDt(ωt+1(swt+1, 0))

sv(ωt+1(swt+1, 0)) ∗ (bm(ωt+1(swt+1, 0))

+Qt−1(ωt(ωt+1(swt+1, 0), 0))) asdt+1 = SDt(ωt+1(swt+1, 0))

.

Since the expressions in (A.3) are non-increasing in swt+1. Then it remains to show that

prtsv(ωt+1(swt+1, 0) +
prect
δ

)(bm(ωt+1(swt+1, 0) +
prect
δ

) +Qt−1(ωt(ωt+1(swt+1, 0)+

prect
δ

, 0))) + (1− prt )sv(ωt+1(swt+1, 0))(bm(ωt+1(swt+1, 0)) +Qt−1(ωt(ωt+1(swt+1, 0), 0)))

− sv(swt+1)(bm(swt+1) + prtQt−1(ωt(ωt+1(swt+1, 0), prect)) + (1− prt )(bm(ωt+1(swt+1, 0))+

Qt−1(ωt(ωt+1(swt+1, 0), 0))))

(A.4)

is non-increasing in swt+1. As swt+1 ∈ R and SDt(ωt+1(swt+1, 0)) ∈ N , in proving the result, we

only consider the incremental of swt+1 that will not change the value of SDt(ωt+1(swt+1, 0)). We
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first show that

prtsv(ωt+1(swt+1, 0) +
prect
δ

)bm(ωt+1(swt+1, 0) +
prect
δ

) + (1− prt )sv(ωt+1(swt+1, 0))∗

bm(ωt+1(swt+1, 0))− sv(swt+1)bm(swt+1)

(A.5)

is non-increasing in swt+1. Since sv(sw) ∗ bm(δ ∗ sw) has third order derivative negative, sv(sw) ∗

bm(sw) is concave and prtωt+1(swt+1,
prect
δ ) + (1− prt )ωt+1(swt+1, 0) ≥ swt+1,

prtsv(ωt+1(swt+1, 0) +
prect
δ

)bm(ωt+1(swt+1, 0) +
prect
δ

) + (1− prt )sv(ωt+1(swt+1, 0))∗

bm(ωt+1(swt+1, 0))− sv(ωt+1(swt+1, 0) + prt
prect
δ

)bm(ωt+1(swt+1, 0) + prt
prect
δ

)+

sv(ωt+1(swt+1, 0) + prt
prect
δ

)bm(ωt+1(swt+1, 0) + prt
prect
δ

)− sv(swt+1)bm(swt+1)

is non-increasing in swt+1 (first order derivative of sv(sw) ∗ bm(δ ∗ sw) is concave and first order

derivative of sv(sw) ∗ bm(sw) is decreasing). We then show that

prtsv(ωt+1(swt+1, 0) +
prect
δ

)Qt−1(ωt(ωt+1(swt+1, 0) +
prect
δ

, 0)) + (1− prt )sv(ωt+1(swt+1,

0))Qt−1(ωt(ωt+1(swt+1, 0), 0))− sv(swt+1)(prtQt−1(ωt(ωt+1(swt+1, 0), prect)) + (1− prt )∗

Qt−1(ωt(ωt+1(swt+1, 0), 0)))

(A.6)

is non-increasing in swt+1. Since sv(sw)bm(δ∗sw) is convex and has third order derivative negative,

so does sv(sw)Qt−1(ωt(sw, 0)). Since bm(sw) is concave and has third order derivative positive, so

does Qt−1(ωt(sw, 0). Hence

prtsv(ωt+1(swt+1, 0) +
prect
δ

)Qt−1(ωt(ωt+1(swt+1, 0) +
prect
δ

, 0)) + (1− prt )sv(ωt+1(swt+1,

0))Qt−1(ωt(ωt+1(swt+1, 0), 0))− sv(ωt+1(swt+1, 0) + prt
prect
δ

)Qt−1(ωt(ωt+1(swt+1, 0)+

prt
prect
δ

, 0)) + sv(ωt+1(swt+1, 0) + prt
prect
δ

)Qt−1(ωt(ωt+1(swt+1, 0) + prt
prect
δ

, 0))−

sv(swt+1)Qt−1(ωt(swt+1, 0)) + sv(swt+1)(Qt−1(ωt(swt+1, 0))−Qt−1(ωt(ωt+1(swt+1, 0)+

prt
prect
δ

, 0)) +Qt−1(ωt(ωt+1(swt+1, 0) + prt
prect
δ

, 0))− prtQt−1(ωt(ωt+1(swt+1, 0), prect))−

(1− prt )Qt−1(ωt(ωt+1(swt+1, 0), 0)))
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is non-increasing in swt+1 (the first order derivative of sv(sw)Qt−1(ωt(sw, 0)) is concave, sv(sw)Qt−1(ωt(sw, 0))

is concave, Qt−1(sw) is convex, sv(sw) is positive and increasing in sw and the first order deriv-

ative of Qt−1(ωt(sw, 0)) is convex). Therefore we show that (A.4) is non-increasing in swt+1 as

sv(sw) ∗ bm(ωt+1(sw, 0)) is non-decreasing in sw.

Proof of Results in §2.4

Proof of Theorem 2.2. Following the procedure in Lemma 2.1, we can show that the separable

property holds for the mechanized planting problem, that is

V m
t (gsdt, asdt, cbmt, swt) = cbmt + gsdt ∗Qt(swt) + Umt (asdt, swt), (A.7)

where

Qt(swt) =prtQt−1(ωt(swt, prect)) + (1− prt )(bm(swt) +Qt−1(ωt(swt, 0))),

Q0(sw0) =0,

(A.8)

Umt (asdt, swt) =prtU
m
t−1(asdt, ωt(swt, prect)) + (1− prt ) ∗ max

it={0,...,min{m,asdt}}

{
it ∗ sv(swt)∗

(bm(swt) +Qt−1(ωt(swt, 0))) + Umt−1(asdt − it, ωt(swt, 0))
}
,

Um0 (asd0, sw0) =0.

(A.9)

Note that the Qt(.) is independent on the capacity m as it is the expected biomass production of

a single plant living in the ground with t periods to go. To show the optimality of the threshold

policy, it is sufficient to show that ∆Umt (asdt, swt) = Umt (asdt + 1, swt) − Umt (asdt, swt) is non-

increasing in asdt. For t = 0, obviously ∆Umt (asdt, swt) is non-increasing in asdt. Assume that

∆Umt−1(asdt−1, swt−1) is non-increasing in asdt−1. Then

∆Umt (asdt, swt) =prt∆U
m
t−1(asdt, ωt(swt, prect)) + (1− prt )∗

∆Umt−1(asdt −m,ωt(swt, 0)) asdt ≥ SDm
t (swt) +m

∆Umt−1(asdt, ωt(swt, 0)) asdt < SDm
t (swt)

sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) o.w.

,
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∆Umt (asdt + 1, swt) = prt∆U
m
t−1(asdt + 1, ωt(swt, prect)) + (1− prt )∗

∆Umt−1(asdt + 1−m,ωt(swt, 0)) asdt ≥ SDm
t (swt) +m− 1

∆Umt−1(asdt + 1, ωt(swt, 0)) asdt < SDm
t (swt)− 1

sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) o.w.

If asdt ≥ SDm
t (swt) + m, ∆Umt (asdt + 1, swt) ≤ ∆Umt (asdt, swt) by assumption; If asdt ≤

SDm
t (swt) − 2, ∆Umt (asdt + 1, swt) ≤ ∆Umt (asdt, swt) by assumption; If asdt = SDm

t (swt) − 1,

∆Umt (asdt + 1, swt)−∆Umt (asdt, swt) is

prt (∆U
m
t−1(asdt + 1, ωt(swt, prect)−∆Umt−1(asdt, ωt(swt, prect))))+

(1− prt )(sv(swt)(bm(swt) +Qt−1(ωt(swt, 0)))−∆Umt−1(asdt, ωt(swt, 0))),

which is non-positive because the optimal decision is not to plant when the seed amount asdt + 1

is SDm
t (swt); If asdt = SDm

t (swt) + c− 1, ∆Umt (asdt + 1, swt)−∆Umt (asdt, swt) is

prt (∆U
m
t−1(asdt + 1, ωt(swt, prect)−∆Umt−1(asdt, ωt(swt, prect))))+

(1− prt )(∆Umt−1(asdt + 1−m,ωt(swt, 0))− sv(swt)(bm(swt) +Qt−1(ωt(swt, 0)))),

which is non-positive because the optimal planting decision is to plant when the seed amount asdt+1

is SDm
t (swt)+m. If SDm

t (swt) ≤ asdt ≤ SDm
t (swt)+m−2, ∆Umt (asdt+1, swt)−∆Umt (asdt, swt)

is zero and it is obviously non-positive.

Similar to Proposition 2.1, to show that SDm
t (swt) is non-increasing in swt, it is sufficient to

show that

∆Umt−1(asdt, ωt(swt, 0))− sv(swt)(bm(swt) +Qt−1(ωt(swt, 0))) (A.10)

is non-increasing in swt. Following the same procedure as in the proof of Proposition 2.1, we can

show that (A.10) is non-increasing in swt+1.

Proof of Proposition 2.2. To show that SDm
t (swt) ≤ SDm+1

t (swt), it is sufficient to show that

Umt−1(asdt + 1, ωt(swt, β))− Umt−1(asdt, ωt(swt, β))

≤Um+1
t−1 (asdt + 1, ωt(swt, β))− Um+1

t−1 (asdt, ωt(swt, β)),

(A.11)
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β > 0. For t = 1, it is easy to show that (A.11) holds. We assume that (A.11) holds for t− 1. Note

that SDm
t (swt) is the largest integer that satisfies

∆Umt−1(asdt − 1, ωt(swt, 0)) ≥ sv(swt)(bm(swt) +Qt−1(ωt(swt, 0))) (A.12)

and ∆Umt−1(asdt − 1, ωt(swt, 0)) is non-decreasing in m by assumption. Therefore at asdt =

SDm
t (swt), we have ∆Um+1

t−1 (asdt−1, ωt(swt, 0)) ≥ sv(swt)((bm(swt)+Qt−1(ωt(swt, 0)))). SDm+1
t (swt)

is the largest integer that satisfies

∆Um+1
t−1 (asdt − 1, ωt(swt, 0)) ≥ sv(swt)(bm(swt) +Qt−1(ωt(swt, 0))) (A.13)

and ∆Um+1
t−1 (asdt−1, ωt(swt, 0)) satisfies (A.12) at asdt = SDm+1

t (swt), SD
m+1
t (swt) ≥ SDm

t (swt)

by definition. When SDc
t (swt) = 0, obviously SDm+1

t (swt) ≥ SDm
t (swt) holds.

We then show that ∆Umt (asdt+1, ωt+1(swt+1, β)) is non-decreasing in m. For a t-period problem

with capacity m, we have

∆Umt (asdt+1, ωt+1(swt+1, β)) = prt∆U
m
t−1(asdt+1, ωt(ωt+1(swt+1, β), prect)) + (1− prt )∗

∆Umt−1(asdt+1 −m,ωt(ωt+1(swt+1, β), 0)) asdt+1 ≥ SDm
t (ωt+1(swt+1, β)) +m

∆Umt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) asdt+1 < SDm
t (ωt+1(swt+1, β))

sv(ωt+1(swt+1, β)) ∗ (bm(ωt+1(swt+1, β))

+Qt−1(ωt(ωt+1(swt+1, β), 0))) o.w.

.

For a t-period problem with capacity m+ 1, we have

∆Um+1
t (asdt+1, ωt+1(swt+1, β)) = prt∆U

m+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), prect)) + (1− prt )∗

∆Um+1
t−1 (asdt+1 −m− 1, ωt(ωt+1(swt+1, β), 0)) asdt+1 > SDm+1

t (ωt+1(swt+1, β)) +m

∆Um+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)) asdt+1 < SDm+1

t (ωt+1(swt+1, β))

sv(ωt+1(swt+1, β)) ∗ (bm(ωt+1(swt+1, β))

+Qt−1(ωt(ωt+1(swt+1, β), 0))) o.w.

.
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We define

Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) =
∆Umt − prt∆Umt−1(asdt+1, ωt(ωt+1(swt+1, β), prect))

1− prt
.

By assumption, ∆Umt−1(asdt+1, ωt(ωt+1(swt+1, β), prect)) is non-decreasing in m. It remains to

show that Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) is non-decreasing in m. We consider the following

three cases of SDm
t (swt) as in the proof of Theorem 2.2.

1. SDm
t (ωt+1(swt+1, β)) ≤ max{0, asdt+1 −m},

Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) =
∆Umt−1(asdt+1 −m,ωt(ωt+1(swt+1, β), 0)) asdt+1 ≥ m

sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β))+

Qt−1(ωt(ωt+1(swt+1, β), 0)))
asdt+1 < m

,

if SDm+1
t (ωt+1(swt+1, β)) ≤ max{0, asdt+1 −m− 1},

Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)) =

∆Um+1
t−1 (asdt+1 −m− 1, ωt(ωt+1(swt+1, β), 0)) asdt+1 ≥ m+ 1

sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β))+

Qt−1(ωt(ωt+1(swt+1, β), 0)))
asdt+1 < m+ 1

,

if max{0, asdt+1 −m} ≤ SDm+1
t (ωt+1(swt+1, β)) ≤ asdt+1,

Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)) =

sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β)) +Qt−1(ωt(ωt+1(swt+1, β), 0))),

if SDm+1
t (ωt+1(swt+1, β)) ≥ asdt+1 + 1,

Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)) = ∆Um+1

t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0));
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2. max{0, asdt+1 + 1−m} ≤ SDm
t (ωt+1(swt+1, β)) ≤ asdt+1,

Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) =

sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β)) +Qt−1(ωt(ωt+1(swt+1, β), 0)))

if SDm+1
t (ωt+1(swt+1, β)) ≥ asdt+1 + 1,

Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)) = ∆Um+1

t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)),

if SDm+1
t (ωt+1(swt+1, β)) ≤ asdt+1,Λ

m+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)) =

sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β)) +Qt−1(ωt(ωt+1(swt+1, β), 0)));

3. SDm
t (ωt+1(swt+1, β)) ≥ asdt+1 + 1,

Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) = ∆Umt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)),

Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)) = ∆Um+1

t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)).

For case 1, if SDm
t (ωt+1(swt+1, β)) ≤ max{0, asdt+1 −m},

∆Umt−1(asdt+1 −m,ωt(ωt+1(swt+1, β), 0)) ≤ ∆Um+1
t−1 (asdt+1 −m,ωt(ωt+1(swt+1, β), 0))

by assumption and

∆Um+1
t−1 (asdt+1 −m,ωt(ωt+1(swt+1, β), 0)) ≤ ∆Um+1

t−1 (asdt+1 −m− 1, ωt(ωt+1(swt+1, β), 0))

as ∆Um+1
t−1 (asdt+1 −m,ωt(ωt+1, β), 0) is non-increasing in asdt+1. For asdt+1 = m, as

∆Umt−1(asdt+1 −m,ωt(ωt+1(swt+1, β), 0))

≤sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β)) +Qt−1(ωt(ωt+1(swt+1, β), 0)))

when SDm
t (ωt+1(swt+1, β)) ≤ max{0, asdt+1 −m}. Therefore

Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) ≤ Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)).
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If max{0, asdt+1 −m} ≤ SDm+1
t (ωt+1(swt+1, β)) ≤ asdt+1,

Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) ≤ Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0))

as

∆Umt−1(asdt+1 −m,ωt(ωt+1(swt+1, β), 0))−

sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β)) +Qt−1(ωt(ωt+1(swt+1, β), 0))) < 0

when asdt+1 ≥ m. If SDm+1
t (ωt+1(swt+1, β)) ≥ asdt+1 + 1,

Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) ≤ Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0))

as

∆Um+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0))−

sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β)) +Qt−1(ωt(ωt+1(swt+1, β), 0))) > 0.

Hence for case 1, Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) ≤ Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)). For

case 2, as

∆Um+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0))−

sv(ωt+1(swt+1, β))(bm(ωt+1(swt+1, β)) +Qt−1(ωt(ωt+1(swt+1, β), 0))) > 0

if SDm+1
t (ωt+1(swt+1, β)) ≥ asdt+1 + 1,

Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) ≤ Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)).

For case 3, by assumption

∆Umt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) ≤ ∆Um+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)).

Hence Λmt−1(asdt+1, ωt(ωt+1(swt+1, β), 0)) ≤ Λm+1
t−1 (asdt+1, ωt(ωt+1(swt+1, β), 0)). Therefore we

show that ∆Umt (asdt+1, ωt+1(swt+1, β)) is non-decreasing in m, i.e. Umt (asdt, swt) is supermodular

in (asdt,m).
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Finally to show that SDm
t (swt) + 1 ≤ SDm+1

t (swt) when SDm
t (swt) > 0, we only need to

consider the case where SDm
t (swt) is the largest j ∈ N+ that satisfies ∆Umt−1(j − 1, ωt(swt, 0)) ≥

sv(swt)(bm(swt) +Qt−1(ωt(swt, 0))) and SDm+1
t (swt) is the largest j ∈ N+ that satisfies

∆Um+1
t−1 (j − 1, ωt(swt, 0)) ≥ sv(swt)(bm(swt) +Qt−1(ωt(swt, 0))).

If we can show that ∆Um+1
t−1 (SDm

t (swt), ωt(swt, 0)) ≥ sv(swt)(bm(swt) + Qt−1(ωt(swt, 0))), then

we can show that SDm
t (swt) + 1 ≤ SDm+1

t (swt). It is sufficient to show that

∆Umt−1(asdt, swt) ≤ ∆Um+1
t−1 (asdt + 1, swt)

for all asdt ∈ N . We show this by induction. For t = 1, it is obvious that ∆Umt−1(asdt, swt) ≤

∆Um+1
t−1 (asdt + 1, swt). Assume that ∆Umt−1(asdt, swt) ≤ ∆Um+1

t−1 (asdt + 1, swt). For period t,

∆Umt (asdt+1, swt) =prt∆U
m
t−1(asdt+1, ωt(swt, prect)) + (1− prt )∗

∆Umt−1(asdt+1 −m,ωt(swt, 0)) asdt+1 ≥ SDm
t (swt) +m

∆Umt−1(asdt+1, ωt(swt, 0)) asdt+1 < SDm
t (swt)

sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) o.w.

,

By assumption ∆Umt−1(asdt+1, ωt(swt, prect)) ≤ ∆Um+1
t−1 (asdt+1 + 1, ωt(swt, prect)). Then we need

to show that Λmt−1(asdt+1, swt) ≤ Λm+1
t−1 (asdt+1 + 1, swt). We consider the following cases. Note

that SDm
t (swt) ≤ SDm+1

t (swt).
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1. SDm
t (swt) ≤ max{0, asdt+1 −m},

Λmt−1(asdt+1, swt) =

 ∆Umt−1(asdt+1 −m,ωt(swt, 0)) asdt+1 ≥ m

sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) asdt+1 < m
,

if SDm+1
t (swt) ≤ max{0, asdt+1 −m},

Λm+1
t−1 (asdt+1 + 1, swt) =

 ∆Um+1
t−1 (asdt+1 + 1−m,ωt(swt, 0)) asdt+1 ≥ m

sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) asdt+1 < m
,

if max{0, asdt+1 −m+ 1} ≤ SDm+1
t (swt) ≤ asdt+1 + 1,

Λm+1
t−1 (asdt+1 + 1, swt) = sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))),

if SDm+1
t (swt) ≥ asdt+1 + 2,Λm+1

t−1 (asdt+1 + 1, swt) = ∆Um+1
t−1 (asdt+1 + 1, ωt(swt, 0));

2. max{0, asdt+1 + 1−m} ≤ SDm
t (swt) ≤ asdt+1,

Λmt−1(asdt+1, swt) = sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))),

if SDm+1
t (swt) ≥ asdt+1 + 2,

Λm+1
t−1 (asdt+1 + 1, swt) = ∆Um+1

t−1 (asdt+1 + 1, ωt(swt, 0)),

if SDm+1
t (swt) ≤ asdt+1 + 1,

Λm+1
t−1 (asdt+1 + 1, swt) = sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0)));

3. SDm
t (swt) ≥ asdt+1 + 1,

Λmt−1(asdt+1, swt) =∆Umt−1(asdt+1, ωt(swt, 0)),

Λm+1
t−1 (asdt+1 + 1, swt) =∆Um+1

t−1 (asdt+1 + 1, ωt(swt, 0)).

For case 1, when asdt+1 ≤ m− 1, it is obvious that Λmt−1(asdt+1, swt) ≤ Λm+1
t−1 (asdt+1 + 1, swt) as

∆Um+1
t−1 (asdt+1 + 1, swt) ≥ sv(swt) ∗ (bm(swt) +Qt−1(ωt(swt, 0))) when SDm+1

t (swt) ≥ asdt+1 + 2.

When asdt+1 ≥ m, as ∆Umt−1(asdt+1 − m,ωt(swt, 0)) ≤ sv(swt) ∗ (bm(swt) + Qt−1(ωt(swt, 0)))

when SDm
t (swt) ≤ max{0, asdt+1 − m} and by assumption ∆Umt−1(asdt+1 − m,ωt(swt, 0)) ≤

∆Um+1
t−1 (asdt+1−m,ωt(swt, 0)), Λmt−1(asdt+1, swt) ≤ Λm+1

t−1 (asdt+1+1, swt). For case 2, as ∆Um+1
t−1 (asdt+1+
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1, ωt(swt, 0)) − sv(swt) ∗ (bm(swt) + Qt−1(ωt(swt, 0))) ≥ 0 when SDm+1
t (swt) ≥ asdt+1 + 2,

Λmt−1(asdt+1, swt) ≤ Λm+1
t−1 (asdt+1+1, swt). For case 3, ∆Umt−1(asdt+1, ωt(swt, 0)) ≤ ∆Um+1

t−1 (asdt+1+

1, ωt(swt, 0)) by assumption. Thus we show that Λmt−1(asdt+1, swt) ≤ Λm+1
t−1 (asdt+1 + 1, swt).

Proof of Results in §2.5

We develop a heuristics algorithm for the mechanized planting problem by using a line segment

to approximate the stairs as illustrated in Figure A.1. In order to apply Infinitesimal Perturbation

Analysis (IPA, see Glasserman 1991), we loose the constraint of integer planting amount and set the

action space with state (asdt, swt) to be [1,min{asdt, c}] ([0, 1] for c = 1). Let (SPRt, SPSt)t=1,...,N

denote a sample path of an N -period problem that describes the weather of each period and

whether sunny season starts at that period if not rainy. In this section, as we generate sample

paths in the analysis, the index is no longer in reverse order, i.e. index with t indicates the

tth period from the start of the planting horizon. Let HSP
N (thw, ths) denote the sample path

yield under weather sample path SP . The threshold of period t is the line segment between

(1, thwt) ((0, thwt) for c = 1) and (thst, 0), where the first argument in the parentheses is the seed

amount and the second argument is the soil moisture. The partial derivative of the sample path

yield function HSP
N (thw, ths) with respect to any threshold sk, s = thw, ths; k = 1, . . . , N can be

derived based on the following iterative equations. We use swSPt and asdSPt to denote the soil

water content and amount of seeds available in period t on sample path SP , t = 1, . . . , N and

∂asdSPt
∂sk

,
∂HSP

t (thw,ths)
∂sk

to denote the path-wise derivatives of asdSPt , HSP
t (thw, ths) with respect

to threshold sk, s = thw, ths; t = 1, . . . , N .

∂asdSPt+1

∂sk

=



∂asdSPt
∂sk

I{asdSPt >c}
swSPt ≥ thwt or thwt ∗ thst = 0; swSPt < thwt,

ȳSPt < thst − swSPt (thst −minplant)/thwt
∂asdSPt+1

∂thwk
=

swSPt thst
(thwt)2 I{k≤t},

∂asdSPt+1

∂thsk
= (1− swSPt

thwt
)I{k≤t}

swSPt < thwt, ȳ
SP
t − (thst −minplant)∗

(1− swSPt /thwt) ∈ (minplant, c)

∂asdSPt
∂sk

o.w.

,

(A.14)
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Figure A.1: HEURISTICS ALGORITHM BASED ON IPA AND SAMPLE PATH

where minplant = 0 if c = 1 and minplant = 1 otherwise. ∀s = thw, ths,

∂HSP
t+1(thw, ths)

∂sk
=
∂HSP

t (thw, ths)

∂sk
+
∂(asdSPt − asdSPt+1)

∂sk
gs(swSPt )QSPt (1, 1),

∂HSP
0 (thw, ths)

∂sk
=0,

(A.15)

Proposition A.1. If (SPRt, SPSt), t = 1, . . . , N are independent and each swt has a density on

(0,∞), ∀t = 1, . . . , N , then the followings hold:

1. For t = 1, . . . , N , each of asdSPt and HSP
t (thw, ths) is, with probability one, differentiable

at sk, s = thw, ths; k = 1, . . . , N . Moreover, the derivatives satisfy Equation (A.14) and

Equation (A.15);

2.
∂ESP asdSPt

∂sk
and

∂ESPHSP
t (thw,ths)
∂sk

exist and equal ESP
∂asdSPt
∂sk

and ESP
∂HSP

t (thw,ths)
∂sk

, s = thw, ths; k =

1, . . . , N .

We use ESP {∂HSP
N (thw, ths)/∂sk} to estimate ∂ESP {HSP

N (thw, ths)}/∂sk in our heuristics,

s = thw, ths; k = 1, . . . , N , as the former converges to the latter. The gradient search is used

to improve the thresholds until the deviation falls in the pre-determined tolerance. Figure A.1

demonstrates the design of the algorithm.

Lemma A.1 ((Glasserman and Tayur (1995))). Let {X(s), s ∈ S} be a random function with

103



S and open subset of S. Suppose that E[X(s)] < ∞ for all s ∈ S. Suppose, further, that X is

differentiable at s0 ∈ S with probability one, and that X is almost surely Lipschitz with modulus

KX satisfying EKX <∞. Then E[X(s0)]′ exists and equals E[X ′(s0)].

See the proof of the lemma in Glasserman and Tayur (1995), Lemma 3.2. For t = 1, . . . , N ,

given thresholds thwt, thst and weather sample path SP , the amount of seeds available to plant,

asdSPt evolves with the following iterative equation.

asdt − asdt+1 =



asd−min{asdt, c} swt ≥ thwt or thwt ∗ thst = 0

min{c, asdt−

(thst −minplant)(1− swt/thwt)}

asdt ≥ (thst −minplant)∗

(1− swt/thwt), swt < thwt

0 o.w.

(A.16)

Proof of Proposition A.1. Let it, t = 1, . . . , N denote the planting amount of period t and Uxt (1, 1),

t = 1, . . . , N is the biomass production of one unit of seed planted in period t. Then it = asdt −

asdt+1. Let HN (thw, ths) denote the expected yield with thresholds thw and ths.

HN (thw, ths)

=

N∑
j=1

( j−1∑
t=1

E(sv(swt)it(QN−t+1(swt) + bm(swt))

)

=
N∑
j=1

( j−1∑
t=1

E((asdt − asdt+1)sv(swt)QN−t+1(swt) + bm(swt))

)

=
N∑
j=1

( j−1∑
t=1

E
(

min
{
asdt + (thst −minplant) min{ swt

thwt
− 1, 0}, c

}
∗

∗ I{asdt−(thst−minplant)(1− swt
thwt

)>minplant} ∗ sv(swt)(QN−t+1(swt) + bm(swt))
))

=
N∑
j=1

( j−1∑
t=1

E
(
cI{asdt+(thst−minplant) min{ wt

thwt
−1,0}>m} + (asdt + (thst −minplant)∗

(
swt
thwt

− 1)I{ swt
thwt

−1<0}) ∗ I{minplant<asdt+(thst−minplant) min{ swt
thwt

−1,0}<c}∗

∗ sv(swt)(QN−t+1(swt) + bm(swt))
))

(A.17)
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As the probability that the sunny season starts at period j is (1−P rj )P sj , the derivative of the final

yield with respect to some threshold sk, s = thw, ths, t = 1, . . . , N is,

∂HN (thw, ths)

∂sk

=

j−1∑
t=1

∂EasdtI{minplant<asdt+(thst−minplant) min{ swt
thwt

−1,0}<c}sv(swt)(QN−t+1(swt) + bm(swt))

∂sk

+

j−1∑
t=1

∂E(thst −minplant)( swtthwt
− 1)I{ swt

thwt
<1,minplant<asdt+(thst−minplant)( swtthwt

−1)<c}sv(wt)

∂sk

∗ (QN−t+1(swt) + bm(swt))

)
.

(A.18)

The state variables asdt are differentiable up to the starting of sunny season if the quantities in

Equation (A.16) are uniquely attained in all periods. As we assume continuous available seed

amount asdt in all periods in the algorithm and the action space is also continuous, the probability

of having mod (asdN , c) = 0 converges zero. Hence with probability one, asdt is differentiable

with respect to sk. As the amount of seeds available at the beginning of the planting horizon is

finite and sv(swt) ≤ 1, the expectation of asdt is finite. The operations min, max and addition are

Lipschitz, so each ȳt is a composition of Lipschitz functions and therefore Lipschitz. Therefore the

results E∂asdSPt
∂sk

= ∂Easdt
∂sk

and E∂HSP
t (thw,ths)

∂sk
= ∂EHt(thw,ths)

∂sk
, s = thw, ths; k, t = 1, . . . , N follow

from Lemma A.1.

Let iSPt (thw, ths) denote the planting decision on sample path SP under sample path SP with

respect to threshold sk, s = thw, ths; k, t = 1, . . . , N and it(thw, ths) the planting decision under

these thresholds. To prove that the expectation of the sample path derivatives converge to the

derivatives of the expectation, it is sufficient to show

lim
SP→∞

1

SP

SP∑
l=1

∂H l
t(thw, ths)

∂sk
= E

∂H l
t(thw, ths)

∂sk

⇔ lim
SP→∞

1

SP

SP∑
l=1

∂ilt(thw, ths)

∂sk
= E

∂it(thw, ths)

∂sk
.
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Hence it is sufficient to show that

lim
SP→∞

1

SP

SP∑
l=1

∂asdlt
∂sk

= E
∂asdt
∂sk

.

lim
SP→∞

1

SP

SP∑
l=1

∂asdlt+1

∂sk

= lim
SP→∞

1

SP

{ SP∑
l=1

∂asdlt
∂sk

{
I
{swlt<thwt,asdlt<minplant+(thst−minplant)(1−

swlt
thwt

)}
+ I{swlt≥thwt,ȳlt>c}+

+ I
{swlt<thwt,asdlt−(thst−minplant)(1−

swlt
thwt

)>c}

}
+
∂(thst −minplant)(1− swlt

thwt
)

∂sk
∗

∗ I
{swlt<thwt,minplant<asdlt−(thst−minplant)(1−

swlt
thwt

)<c}

}
= lim
SP→∞

1

SP

{ SP∑
l=1

∂asdlt
∂sk

{I{swlt≥thwt,asdlt>c}+

+ I
{swlt<thwt,asdlt−(thst−minplant)(1−

swlt
thwt

)/∈(minplant,c)}
}+

+
∂(thst −minplant)

∂sk
I
{swlt<thwt,minplant<asdlt−(thst−minplant)(1−

swlt
thwt

)<c}
−

−
∂ (thst−minplant)

thwt

∂sk
E[swtI{swt<thwt,minplant<asdlt−(thst−minplant)(1− wt

thwt
)<m}]

}
Note that ∂thst

∂sk
= 1 if sk = thst and 0 otherwise;

∂
thst
thwt
∂sk

= 1
thwt

if sk = thst, − thst
(thwt)2 if sk = thwt

and 0 otherwise. Hence it remains to show the derivative of asdt with respect to sk. That is, the

average of the sample path derivative of asdt+1 with respect to sk converges to the expectation of the

derivative of asdt+1 with respect to sk when the number of sample path goes to infinity as long as this

result holds for period t. We can use induction to show that limSP→∞
1
SP

∑SP
l=1

∂asdlt
∂sk

= E∂asdt
∂sk

,∀t

as it is obvious that this result holds for t = 1.

To show that the approximation of line segment does not lead to large deviation in yield values,

we compare the yield values under the heuristics based on IPA approximation to the optimal values

in a 13-period problem with varying parameters. In IPA approximation, we take the average of

500 sample path when evaluating the gradient as well as calculating the final yields. The optimal

values are calculated through value iteration. The absolute relative deviation of the heuristics to
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the optimal value function ((optimal value − value from heuristics)/optimal value) is minimal.

Appendix II

In this section, we present appendix for Chapter 3.

Lemma B.2. Let ∆πr(0) = 0. There exists an n∗ ∈ N+ that ∆πr(n) > ∆πr(n − 1) when n ≤ n∗

and ∆πr(n) ≥ ∆πr(n+ 1) when n ≥ n∗.

Proof of Lemma B.2. Let ∆̄πr(n) =
√
n+ a

n + c + b
n where a = cs(hr−hw)

cwhw
, c = cshw+cw(hr−hw)

cwhw
,

b =
hrk(σ∆L+

√
µ∆σ)√

2cwhwµ
. Let ∆πr(n) denote the value of ∆πr when the inventory multiplier is n,

n ∈ N+. So θ
√

2cwhwµ(∆̄πr(1)− ∆̄πr(n)) + θchµ = ∆πr(n). For n ∈ {x : x > 1, x ∈ N+},

∆πr(n) > ∆πr(n− 1)⇔∆̄πr(n) < ∆̄πr(n− 1)

⇔
√
n+

a

n
+ c+

b

n
<

√
n− 1 +

a

n− 1
+ c+

b

n− 1

⇔
1− a

n(n−1)√
n+ a

n + c+
√
n− 1 + a

n−1 + c
<

b

n(n− 1)

⇔n− 1− a

n
< b

(√
1

n
+

a

n3
+

c

n2
+

√
n− 1

n2
+

a

n2(n− 1)
+

c

n2

)
.

It is easy to show that the left hand side is increasing in n and the right hand side is decreasing in n

with n ∈ N+. So there exists n∗ ∈ N+ that ∆̄πr(n) < ∆̄πr(n−1) if n ≤ n∗ and ∆̄πr(n) ≤ ∆̄πr(n+1)

otherwise (n∗ = 1 if ∆̄πr(n) is always decreasing in n). Note that ∆̄πr(x), x ≥ 1 is continuous

and differentiable at x when x ∈ R+. Hence we use ∆̄πr(x), x ≥ 1 to analyze the behavior of

∆̄πr(n), n ∈ N+ in following analysis.

Proof of Proposition 3.1. Lemma B.2 shows that ∆π(n) is increasing in n when n ≤ no and is

decreasing in n when n ≥ no. no is the integer that maximizes ∆π(n). In addition, ∆π(1) = chµ

and ∆π(n) → −∞ as n → ∞. Hence there exists some nf that ∆π(n) ≥ 0 if 1 ≤ n ≤ nf and

∆π(n) < 0 if n > nf , where nf is the largest integer n satisfying ∆π(n) ≥ 0. Obviously nf > no.
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For n = nf , it is the largest integer that satisfies

√
cwhwnf +

cs(hr − hw)

nf
+ cshw + cw(hr − hw)−

hrk(σ∆L/
√
µ+ ∆σ)

√
2

(1− 1

nf
)

≤
√
hr(cs + cw) + ch

√
µ.

Note that the left hand side
√
cwhwnf + cs(hr−hw)

nf
+ cshw + cw(hr − hw)− hrk(σ∆L/

√
µ+∆σ)√

2
(1− 1

nf
)

is decreasing in n at n = nf based on Lemma B.2. As this expression is decreasing in ∆L or ∆σ,

nf changes to nf + 1 when the expression value is decreased enough. Rearranging the terms, it is

easy to see that
√
cwhwnf + cs(hr−hw)

nf
+ cshw + cw(hr − hw) is increasing in hw. If the increase is

high enough, nf changes to nf − 1.

For n = no, it satisfies

√
cwhwno +

cs(hr − hw)

no
+ cshw + cw(hr − hw) +

hrk(σ∆L/
√
µ+ ∆σ)

√
2no

≤

√
cwhw(no + 1) +

cs(hr − hw)

(no + 1)
+ cshw + cw(hr − hw) +

hrk(σ∆L/
√
µ+ ∆σ)

√
2(no + 1)

,√
cwhwno +

cs(hr − hw)

no
+ cshw + cw(hr − hw) +

hrk(σ∆L/
√
µ+ ∆σ)

√
2no

≤

√
cwhw(no − 1) +

cs(hr − hw)

(no − 1)
+ cshw + cw(hr − hw) +

hrk(σ∆L/
√
µ+ ∆σ)

√
2(no − 1)

.

When ∆L or ∆σ is increasing,
hrk(σ∆L/

√
µ+∆σ)√

2(no−1)
is increasing the most, then

hrk(σ∆L/
√
µ+∆σ)√

2no
and

hrk(σ∆L/
√
µ+∆σ)√

2(no+1)
. If ∆L or ∆σ is increasing enough,

√
cwhwno +

cs(hr − hw)

no
+ cshw + cw(hr − hw) +

hrk(σ∆L/
√
µ+ ∆σ)

√
2no

≥

√
cwhw(no + 1) +

cs(hr − hw)

(no + 1)
+ cshw + cw(hr − hw) +

hrk(σ∆L/
√
µ+ ∆σ)

√
2(no + 1)

and no increases to no + 1. At n = no,

√
cwhwn+ cs(hr−hw)

n + cshw + cw(hr − hw) is increasing

in n. Note that the in the squared function, the coefficient of hw is cw(no − 1) + cs(1 − 1
no ). As

hrk(σ∆L/
√
µ+∆σ)√

2n
is decreasing in n, cw(no − 1) + cs(1 − 1

no ) is increasing in n when n ≥ no − 1 or

no minimizes cw(no − 1) + cs(1 − 1
no ). For the former case, when the increase of hw is sufficiently
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large, no changes to no − 1. For the latter case, no does not change when hw is increasing.

Proof of Proposition 3.2. From Proposition 3.1, to have some n > 1 that ∆π(n) > 0, the necessary

and sufficient condition is ∆π(2) ≥ 0.

∆π(2) ≥ 0⇔ hw
hr
≤

(√
1 +

cs
2cw + cs

+
k
√
hr(σ∆L/

√
µ+ ∆σ) + 2ch

√
µ/hr√

2cw + cs

)2

− 1. (B.19)

The right hand side of Equation (B.19) increases with cs when

cs <

(
2
√

2cw

k
√
hr(σ∆L/

√
µ+ ∆σ) + 2ch

√
µ/hr

)2

− cw

and decreases with cs otherwise.

Proof of Proposition 3.3. When θ ∈ (0, 1), we use ∆w(x), x > 1, x ∈ R to analyze the behavior of

∆w(n), n > 0, n ∈ N+.

∆w(x) =(1− θ)

(
ch + cw

(√
2hr

(cw + cs)µ
−

√
2((x− 1)hw + hr)x

(cwx+ cs)µ

)
+

+
1− 2θ

1− θ
cs

(√
hr

2(cw + cs)µ
−

√
(x− 1)hw + hr
2(cwx+ cs)xµ

)
+ hrk

(x− 1)(σ∆L +
√
µ∆σ)

xµ

)
.

∆w(x) is continuous and differentiable in x. If we can show that there exists xw(θ) such that ∆w(x)

is increasing in x when x < xw(θ) and decreasing in x otherwise, then we can show that there exists

nw(θ) that ∆w(n) is increasing in n when n ≤ nw(θ) and decreasing in n otherwise. Letting rc = cs
cw

and rh = hr
hw

, we have

d∆w(x)

dx
=

1− θ
x2

√
2cwhw
µ

(
hrk(σ∆L/

√
µ+ ∆σ)

√
2cwhw

−
x3 + 2rcx

2 + (rh − 1)rcx− 1−2θ
2(1−θ)rc(x

2 + 2(rh − 1)x+ (rh − 1)rc)

2
√

(x+ rc)(x− 1 + rh)/x(x+ rc)

)
.

We want to show that d∆w(x)
dx > 0 for n smaller than some nw(θ) and d∆w(x)

dx < 0 otherwise.
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d∆w(x)

dx
> 0⇔

x3 + 2rcx
2 + (rh − 1)rcx− 1−2θ

2(1−θ)rc
(
x2 + 2(rh − 1)x+ (rh − 1)rc

)
2
√

(x− 1 + rh)(x+ rc)/x(x+ rc)
<
hrk(σ∆L/

√
µ+ ∆σ)

√
2cwhw

(B.20)

Note that α = − 1−2θ
2(1−θ) is increasing in θ and α ≥ −1/2. To show our results, we discuss how

h(x, α) := x3+(2+α)rcx2+(1+2α)(rh−1)rcx+αr2
c (rh−1)

(x+rc)
√

(x+rc)(x+rh−1)/x
changes with x, x > 1, α ≥ −1/2.

∂h(x, α)

∂x
=

x− 1 + rh

2x3((rc + x)(x− 1 + rh)/x)
5
2

(
αrc
[
x4 + r2

c (rh − 1)2 + 2rcx
(
2x2 + 3(rh − 1)x+

+ 2(rh − 1)2
)]

+ x
[
x3 (3x+ 4(rh − 1)) + 2rcx

2 (5(rh − 1) + 4x) + r2
c

(
8x2+

+ 12(rh − 1)x+ 3(rh − 1)2
)])

.

Since x > 1, x−1+rh

2x3((rc+x)(x−1+rh)/x)
5
2
> 0. To show how h(x, α) changes with x, it remains to show

whether

h1(x, α) =αrc
[
x4 + r2

c (rh − 1)2 + 2rcx
(
2x2 + 3(rh − 1)x+ 2(rh − 1)2

)]
+ x
[
x3
(
3x+

+ 4(rh − 1)
)

+ 2rcx
2 (5(rh − 1) + 4x) + r2

c

(
8x2 + 12(rh − 1)x+ 3(rh − 1)2

) ]
is positive or negative with x > 1, α ≥ −1/2.

h11(x, α) =
∂h1(x, α)

∂x
= x3(15x+ 16rh − 16) + 2rcx

2
[
15rh + 2(8 + α)x− 15

]
+ r2

c

(
4α
[
1+

+ r2
h − 3x+ 3x2 + rh(−2 + 3x)

]
+ 3
[
1 + r2

h − 8x+ 8x2 + rh(−2 + 8x)
])

h111(x, α) =
∂h11(x, α)

∂x
= 15x3 + 3x2(15x+ 16rh − 16) + 4(8 + α)rcx

2 + 4rcx
[
15rh − 15+

+ 2(8 + α)x
]

+ r2
c

[
4α(6x+ 3rh − 3) + 3(16x+ 8rh − 8)

]
.

With rh, rc > 0, α > −1/2 and x > 1, it is easy to show that h111(x, α) > 0. So h11(x, α) is

increasing in x. We have

h11(1, α) = 16rh + 2rc(16 + 2α+ 15rh − 15) + r2
c

[
4α(1 + r2

h + rh) + 3(1 + r2
h + 6rh)

]
> 0.
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So with rh, rc > 0, α > −1/2 and x > 1, h11(x, α) > 0. This means that h1(x, α) is increasing in x.

h1(1, α) =4(rh − 1) + 3 + 2rc(5(rh − 1) + 4) + r2
c (3(rh − 1)2 + 12(rh − 1) + 8)+

+ αrc
[
r2
c (rh − 1)2 + 1 + 2rc(2(rh − 1)2 + 3(rh − 1) + 2)

]
.

We take a look at h1(x, α). Since

x4 + r2
c (rh − 1)2 + 2rcx

(
2x2 + 3(rh − 1)x+ 2(rh − 1)2

)
> 0

always holds, minα h1(x, α) is attained at α = −1/2. Obviously as α increases, h1(x, α) increases

for all x > 1 and given rc, rh, when α is sufficiently large, ∂h(x,α)
∂x > 0,∀x > 1. In this case, since

h(x, α) is increasing in x, there exists some value xw such that d∆w(x)
dx > 0 when x < xw and

d∆w(x)
dx < 0 otherwise. Since

x
[
x3 (3x+ 4(rh − 1)) + 2rcx

2 (5(rh − 1) + 4x) + r2
c

(
8x2 + 12(rh − 1)x+ 3(rh − 1)2

)]
→∞

as x → ∞, the value of α above which ∂h(x,α)
∂x > 0, ∀x > 1 always holds is bounded. Hence it is

sufficient to analyze h1(x, α) with x = 1 and α = −1/2.

h1(1,−1/2) = (r2
c − 0.5r3

c )(rh − 1)2 + (4 + 10rc + 9r2
c )(rh − 1) + (3 + 7.5rc + 6r2

c ).

If h1(1,−1/2) > 0, then h(x, α) is increasing in x. Hence we can show that there exists an xw

that d∆w(x)
dx > 0 when 1 < x < xw and d∆w(x)

dx < 0 otherwise. If h1(1,−1/2) < 0, as x increases,

there exists an xww that ∂h(x,α)
∂x < 0 when 1 < x < xww and ∂h(x,α)

∂x > 0 otherwise. h(x, α) first is

decreasing in x and then is increasing in x. Based on the value of h(x,−1/2), three cases of ∆w(x)

are possible, illustrated in Figure B.2. For x ∈ (1,∞),

i. if
hrk(σ∆L/

√
µ+∆σ)√

2cwhw
< minx>1 h(x,−1/2), ∆w(x) is decreasing in x, as illustrated in the upper

left panel of Figure B.2;

ii. if
hrk(σ∆L/

√
µ+∆σ)√

2cwhw
> h(1,−1/2), ∆w(x) first increases then is decreasing in x, as illustrated in

the upper right panel of Figure B.2;
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Figure B.2: THREE CASES OF ∆w(x) WITH h1(1,−1/2) < 0, ch = 0

iii. if minx>1 h(x,−1/2) <
hrk(σ∆L/

√
µ+∆σ)√

2cwhw
< h(1,−1/2), ∆w(x) is first decreasing then increasing

then decreasing in x, as illustrated in the bottom panels of Figure B.2.

It easy to see that for all cases, either ∆w(x) < ∆w(1) for all x > 1 or there exists xw(θ) such that

∆w(x) < ∆w(1) for all x > ∆w(x) and there exists x < xw(θ) such that ∆w(x) > ∆w(1). Note that

case iii will never happen with rh ≥ 1, as h1(1,−1/2) > 0 in this case. Since ∆w(n, θ) → −∞ as

n→∞, based on the above analysis there exists a threshold nw(θ) that ∆w(n) < 0 when n > nw(θ)

and ∃n < nw(θ) s.t. ∆w(n) ≥ 0. Furthermore, if rh ≤ 1, ∆w(n) ≥ 0 for all n < nw(θ).

To show that there exists some n > 1 such that ∆w(n) > 0, it is sufficient to show that

∆w(2) > 0. When ∆w(2) > 0, we have

hw < hr

(((
1− 2(1− θ)cw

4(1− θ)cw + (1− 2θ)cs

)√2(2cw + cs)

cw + cs
+

+
k
√
hr(σ∆L/

√
µ+ ∆σ) + 2ch

√
µ/hr

(4cw + (1−2θ)
1−θ cs)/

√
2cw + cs

)2
− 1
)

We then show that nw(θ) is decreasing in θ. By rearranging the terms of ∆w(n), we know that

∆w(n) is decreasing in θ when ∆π(n) ≥ 0 and increasing in θ otherwise. As nw(θ) ≤ nf when

hw ≤ hr, for all n ≤ nw, ∆w(n) is decreasing in θ. As a result, nw(θ) is decreasing in θ in this case.
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From result 1 in Proposition 3.3, if ∆w(2) < 0 for some θ, ∆w(n) < 0, ∀n.

∆w(2) < 0

⇔ hrkσ∆L

2
√

2dcwhw
<

√rc(rc − rh + 1)

2 + rc
+ rh − rc + 1−

√
rh

1 + rc

+

+
(1− 2θ)rc
2(1− θ)

(√
rh + 1

2(2 + rc)
−
√

rh
1 + rc

)
.

As
√

rh+1
2(2+rc)

−
√

rh
1+rc

< 0 and (1−2θ)rc
2(1−θ) is decreasing in θ, the right hand side is increasing in θ. So

there exists some θw such that when θ ≥ θw, ∆w(n) < 0, ∀n.

To show the last result, we need to show that, for all θ ∈ (0, 1),

√n+
rc(rc − rh + 1)

n+ rc
+ rh − rc − 1−

√
rh

1 + rc

+
(1− 2θ)rc
2(1− θ)

(√
n+ rh − 1

n(n+ rc)
−
√

rh
1 + rc

)

≤
√
n+

rc(rh − 1)

n
+ rc + rh − 1−

√
rh(rc + 1),

(B.21)

where rc = cs
cw

and rh = hr
hw

> 1. Since
√

n+rh−1
n(n+rc)

−
√

rh
1+rc

≤ 0 and (1−2θ)
2(1−θ) <

1
2 , it is sufficient to

show that inequality B.21 holds when (1−2θ)
2(1−θ) = 1

2 ,

√
n+

rc(rh − 1)

n
+ rc + rh − 1−

√
n+

rc(rc − rh + 1)

n+ rc
+ rh − rc − 1− rc

2

√
n+ rh − 1

n(n+ rc)

≤
√
rh(rc + 1)−

√
rh

1 + rc
− rc

2

√
rh

1 + rc

(B.22)

When n = 1, the left hand side of inequality B.22 equals to the right hand side. Therefore it is

sufficient to show that

δ(x)

=

√
x+

rc(rh − 1)

x
+ rc + rh − 1−

√
x+

rc(rc − rh + 1)

x+ rc
+ rh − rc − 1− rc

2

√
x+ rh − 1

x(x+ rc)
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is decreasing in x.

δ′(x) < 0⇔
1− rc(rh−1)

x2√
x+ rc(rh−1)

x + rc + rh − 1
<

1− rc(rc−rh+1)
(x+rc)2 − x2+(2x+rc)(rh−1)

x(x+rc)2 ∗ rc2√
x+ rc(rc−rh+1)

x+rc
+ rh − rc − 1

⇔

√
x+ rc(rc−rh+1)

x+rc
+ rh − rc − 1√

x+ rc(rh−1)
x + rc + rh − 1

<
1− rc(rc−rh+1)

(x+rc)2 − x2+(2x+rc)(rh−1)
x(x+rc)2 ∗ rc2

1− rc(rh−1)
x2

⇔x+ rc
x

<
x2 + 3xrc/2− r2

c (rh − 1)/(2x)

x2 − rc(rh − 1)

⇔x2 + 2x(rh − 1) + rc(rh − 1) > 0

Therefore, Equation (B.21) always holds. As a result, when hw ≤ hr, ∆w(n) > 0 as long as

∆π(n) > 0.

Lemma B.3. Let f(x) =
√

1− 1
x2 + ss

x , x > 1, ss > 0. Then ∃ xo s.t. f(x) is increasing in x when

x ≤ xo and is decreasing in x otherwise.

Proof of Lemma B.3. We take the derivative of f , f(x)′ = 1√
x2−1

−
√
x2−1+ss
x2 . Then f(x)′ ≥ 0 when

x ≤
√

1 + 1
ss2

and f(x)′ > 0 otherwise.

Proof of Proposition 3.4. Based on the proof of Proposition 3.2, ∃ ntr s.t. ∆tr
π ≥ 0 when n ≤ ntr

and ∆tr
π < 0 when n ≥ ntr. Therefore, the sufficient and necessary condition that maxn∈N+∆tr

π > 0

is that ∆tr
π ≥ 0 at n = 2. Plugging in n = 2 and we can get rh,tr.

Note that rh,tr = rh if cs = 0. Based on Lemma B.3, rh,tr is increasing in cs when cs is

sufficiently small or σ∆L/
√
µ+∆σ is sufficiently large. To investigate the impact of σ∆L/

√
µ+∆σ

on the comparison of rh and rh,tr, we compare the first order derivatives of the following two

functions:

rtr1 =
khr(σ∆L/

√
µ+ ∆σ) + 2ch

√
µ

2
√

2hrcw
, r1 =

khr(σ∆L/
√
µ+ ∆σ) + 2ch

√
µ

2
√
hr(2cw + cs)

.

Obviously
∂rtr1

∂(σ∆L/
√
µ+∆σ) ≥

∂r1
∂(σ∆L/

√
µ+∆σ) . rtr1 is increasing faster in ∆L than r1 and both are

increase to infinity as ∆L is going to infinity. Therefore there exists ∆tr
L s.t. rtr1 + 1 ≤ r1 +√

1 + cw
2cw+cs

when ∆L ≥ ∆tr
L and rtr1 + 1 ≤ r1 +

√
1 + cw

2cw+cs
otherwise. As comparing rh,tr and rh
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is equivalent to comparing rtr1 + 1 and r1 +
√

1 + cw
2cw+cs

, this leads to the first result. Similarly the

second result in Proposition 3.4 holds as rtr1 is not decreasing in cs while r1 is decreasing in cs.

Proof of Proposition 3.5. Let xtr denote the maximizer of ΠE,tr
r − ΠD,tr

r on (0,∞) and x∗ the

maximizer of ∆π. Equivalently, xtr minimizes f tr =
√

2cw((x− 1)hw + hr)+hrk(σ∆L/
√
µ+∆σ)/x

and x∗ minimizes fE =
√

2(cw + cs/x)((x− 1)hw + hr) + hrk(σ∆L/
√
µ+ ∆σ)/x. Obviously f tr is

decreasing in x when x is lower than some threshold and is increasing in x otherwise. If xtr ≤ 1 or

xtr is very close to 1 such that ntr = 1, obviously no ≥ ntr. If xtr > 1 and ntr > 1, the derivative

of df tr/dx = 0 at x = xtr. Note that

fE − f tr =
√

2(cw + cs/x)((x− 1)hw + hr)−
√

2cw((x− 1)hw + hr)

=
2cs(hw + hr−hw

x )√
2(cw + cs/x)((x− 1)hw + hr) +

√
2cw((x− 1)hw + hr)

=
cs
√

2 ∗ ((x− 1)hw + hr)/xcw√
(x+ cs/cw) +

√
x

is non-negative and decreasing in x. As fE is decreasing faster in x than f tr, fE is still decreasing

when f tr reaches its minimum point, i.e. xtr < x∗ as long as hw/hr ≤ rh.

Lemma B.4. Let f(x) be an increasing function of x, x ∈ N+ and h, b be positive constant. Then√
hf(x) + b is supermodular in (x, h), i.e.

∂(
√
hf(x+ 1) + b−

√
hf(x) + b)

∂h
> 0.

Proof of Lemma B.4. We directly take the derivative of
√
hf(x+ 1) + b−

√
hf(x) + b with respect

to h, we get

∂(
√
hf(x+ 1) + b−

√
hf(x) + b)

∂h
=

1

2

(
f(x+ 1)

h+ b
f(x+1)

− f(x)

h+ b
f(x)

)
> 0.

The above expression is positive because f(x)/(h+ b/f(x)) is positive and increases with x.

Proof of Proposition 3.6. We first prove the result about the bargaining power. Without generality,
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we assume that ch = 0. Under traditional contract, the retailer’s optimal profit is

π∗tr = θ(p− c)−
√

2cwµ((nt − 1)hw + hr)− hrk(
1

nt
(σls + σs

√
µ) +

nt − 1

nt
(σlw + σw

√
µ)).

When case D (direct shipping to the developed country) is preferred over case E (using the

emerging-country warehouse), nt = 1. Thus we use nt = 1 to represent the case where the

emerging-country warehouse is not preferred under traditional contract. Under the contract in-

cluding logistics operations cost during negotiation, the retailer’s optimal profit is

π∗r =θ(p− c−
√

2(cwn∗ + cs)((n∗ − 1)hw + hr)

n∗
+ hrk(

1

n∗
(σls + σs

√
µ)+

+
n∗ − 1

n∗
(σlw + σw

√
µ))).

Similarly we use n∗ = 1 to represent the case where using the emerging-country warehouse is not

preferred under the contract including logistics operations cost. As θ does not influence n∗ or nt,

we see that

π∗r ≥ π∗tr ⇔ θ ≤
√

2cwµ((nt − 1)hw + hr) + hrk( 1
nt (σls + σs

√
µ) + nt−1

nt (σlw + σw
√
µ))√

2(cwn∗+cs)((n∗−1)hw+hr)
n∗ + hrk( 1

n∗ (σls + σs
√
µ) + n∗−1

n∗ (σlw + σw
√
µ))

:= θt(hw).

Thus when θ ≤ θt(hw), π∗r ≥ π∗tr .

Next we show the result about the warehouse holding cost. Let CLogr denote the minimized cost

of the retailer’s logistics operations under traditional contract and CLogsc denote the minimized cost

of supply chain logistics operations under contract including logistics operations cost, where

CLogr =
√

2cwµ((nt − 1)hw + hr) + hrk(
1

nt
(σ∆L + ∆σ

√
µ) + (σlw + σw

√
µ))

CLogsc =

√
2µ(cwn∗ + cs)((n∗ − 1)hw + hr)

n∗
+ hrk(

1

n∗
(σ∆L + ∆σ

√
µ) + (σlw + σw

√
µ)).

To show that there exists htw(θ) such that when hw ≤ htw(θ), π∗r ≥ π∗tr , we first consider the case

where the emerging-country warehouse is preferred under both contracts. Then it is sufficient to

show that as hw increases, CLogsc increases faster than CLogr . If n∗ > 1, when hw increases to
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hw + ∆h, ∆h > 0, we discuss three cases:

1. both n∗ and nt does not change;

2. n∗ decreases to n∗ − 1, nt does not change;

3. nt increases to nt − 1, n∗ does not change.

We only consider sufficiently small ∆h such that the case where both n∗ and nt decrease by at least

one cannot occur. Note that n∗ ≥ nt always holds as hw changes. For the first case where both n∗

and nt does not change,

CLogsc (hw + ∆h)− CLogsc (hw) ≥ CLogr (hw + ∆h)− CLogr (hw)

⇔
√

(cw + cs/n∗)
(√

(n∗ − 1)(hw + ∆h) + hr −
√

(n∗ − 1)hw + hr

)
≥
√
cw

(√
(nt − 1)(hw + ∆h) + hr −

√
(nt − 1)hw + hr

)
Since (cw + cs/n)(n− 1) is an increasing function of n, based on Lemma B.4, we have

√
(cw +

cs
n∗

)(n∗ − 1)(hw + ∆h) + (cw +
cs
n∗

)hr −
√

(cw +
cs
n∗

)(n∗ − 1)hw + (cw +
cs
n∗

)hr

≥
√

(cw +
cs
nt

)(nt − 1)(hw + ∆h) + (cw +
cs
n∗

)hr −
√

(cw +
cs
nt

)(nt − 1)hw + (cw +
cs
n∗ )hr

≥
√

(cw +
cs
nt

)(nt − 1)(hw + ∆h) + (cw +
cs
nt

)hr −
√

(cw +
cs
nt

)(nt − 1)hw + (cw +
cs
nt

)hr

Then it is sufficient to show that√
(cw +

cs
nt

)((nt − 1)(hw + ∆h) + hr)−
√

(cw +
cs
nt

)((nt − 1)hw + hr)

≥
√
cw((nt − 1)(hw + ∆h) + hr)−

√
cw((nt − 1)hw + hr),

which is sufficient to show that

√
(cw +

cs
nt

)((nt − 1)(hw + ∆h) + hr)−
√

(cw +
cs
nt

)((nt − 1)hw + hr)
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is increasing in cs. As

√
(cw +

cs
nt

)((nt − 1)(hw + ∆h) + hr)−
√

(cw +
cs
nt

)((nt − 1)hw + hr)

=
(cw + cs

nt )(n
t − 1)∆h√

((nt − 1)(hw + ∆h) + hr) +
√

((nt − 1)hw + hr)
,

√
(cw + cs/nt)((nt − 1)(hw + ∆h) + hr)−

√
(cw + cs/nt)((nt − 1)hw + hr) is increasing in cs. Hence

we show that when both n∗ and nt does not change when hw increases to hw+∆h, C logistissc increases

faster than CLogr .

If n∗ decreases to n∗ − 1 as hw increase to hw + ∆h and nt does not change,

CLogsc (hw + ∆h)− CLogsc (hw) ≥ CLogr (hw + ∆h)− CLogr (hw)

⇔
√

(cw +
cs

(n∗ − 1)
)((n∗ − 2)(hw + ∆h) + hr) + hrk

σ∆L + ∆σ
√
µ

√
2µ(n∗ − 1)

−

−
√

(cw +
cs
n∗

)((n∗ − 1)hw + hr)− hrk
σ∆L + ∆σ

√
µ

√
2µn∗

≥
√
cw

(√
(nt − 1)(hw + ∆h) + hr −

√
(nt − 1)hw + hr

)
As n∗ minimizes CLogsc at hw, we have

√
2µ(cw + cs/n∗)((n∗ − 1)hw + hr) + hrk

σ∆L + ∆σ
√
µ

n∗

≤
√

2µ(cw + cs/(n∗ − 1))((n∗ − 2)hw + hr) + hrk
σ∆L + ∆σ

√
µ

n∗ − 1
.

Thus it is sufficient to show that√
(cw +

cs
n∗ − 1

)((n∗ − 2)(hw + ∆h) + hr)−
√

(cw +
cs

n∗ − 1
)((n∗ − 2)hw + hr)

≥
√
cw

(√
(nt − 1)(hw + ∆h) + hr −

√
(nt − 1)hw + hr

)
For the first part, we have already show that, with n∗ − 1 ≥ nt, the above inequality holds. Hence

for this case, when hw increases to hw + ∆h, CLogsc increases faster than CLogr .
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If n∗ does not change but nt decreases to nt − 1 as hw increases to hw + ∆h,

CLogsc (hw + ∆h)− CLogsc (hw) ≥ CLogr (hw + ∆h)− CLogr (hw)

⇔
√

(cw +
cs
n∗

)((n∗ − 1)(hw + ∆h) + hr)−
√

(cw +
cs
n∗

)((n∗ − 1)hw + hr)

≥
√
cw((nt − 2)(hw + ∆h) + hr) + hrk

σ∆L + ∆σ
√
µ

√
2µ(nt − 1)

−
√
cw((nt − 1)hw + hr)−

− hrk
σ∆L + ∆σ

√
µ

√
2µnt

As nt − 1 minimizes CLogr at hw + ∆h, we have

√
2µcw((nt − 2)(hw + ∆h) + hr) + hrk

σ∆L + ∆σ
√
µ

nt − 1

≤
√

2µcw((nt − 1)(hw + ∆h) + hr) + hrk
σ∆L + ∆σ

√
µ

nt
.

Thus it is sufficient to show that√
(cw +

cs
n∗

)((n∗ − 1)(hw + ∆h) + hr)−
√

(cw +
cs
n∗

)((n∗ − 1)hw + hr)

≥
√
cw((nt − 1)(hw + ∆h) + hr)−

√
cw((nt − 1)hw + hr)

As n∗ ≥ nt, the above inequality holds. Thus as nt decrease to nt− 1 but n∗ does not change when

hw increases to hw+∆h, CLogsc increases faster than CLogr . Note that as hw increases, CLogsc and CLogr

increase faster as we show above. Hence there exists htw(θ) ≥ 0 such that θC logsiticssc ≤ CLogr when

hw ≤ htw(θ). When hw goes to zero, both n∗ and nt go to infinity. However, as n∗ and nt is in a

squared form of hw, both CLogr and CLogsc would go to
√

2cwµhr. Hence when hw ≤ hr ∗min{rh, rt},

there always exists an htw(θ) > 0 such that π∗r ≥ πtr when hw ≤ hTwr.

Furthermore, for rt < hw/hr < rh, as hw decreases, π∗r decreases but π∗tr does not change. If

at some hw ∈ (hr ∗ rt, hr ∗ rh) that π∗r = π∗tr , then π∗r ≥ π∗tr always holds when hw ≤ hr ∗ rt,

as explained above. Therefore when hw ≤ hr ∗ rh, as π∗r always decreases faster than π∗tr as hw

decreases, there must exist an htw(θ) ≤ rh ∗ hr such that π∗r ≥ π∗tr when hw ≤ htw(θ).
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Appendix III

In this section, we present appendix for Chapter 4.

Proof of Results in §4.3

Lemma C.5. Vt(xt, St−1, qt−1, it,Dt) is (jointly) convex in (xt, St−1), t = 1, . . . , N .

Proof of Lemma C.5. The Bellman’s equation of Vt(xt, St−1, qt−1, it,Dt) is

Vt(xt, St−1, qt−1, it,Dt) = inf
F t,St≥0

{
Ht(xt) + E

[N−1∑
l=t

[
cfl (Fl) + csl (Sl) + ql−1cl−1(Sl−1)+

+Hl(Xl+1)
]

+ cfN (FN ) + qN−1cN−1(SN−1) +HN (XN+1)

]}
.

Let F t = (Ft, Ft+1, . . . , FN ) denote the fast order quantities from period t to period N ,

and St = (St, St+1, . . . , SN−1) denote the slow order quantities from period t to period N − 1.

Jt(xt, St−1, qt−1, it,Dt,F t,St) is the expected cost in period t with future order quantities F t,St.

Let Xt = (xt, . . . xN ) be a sample path of on hand inventory at the beginning of period t given

(xt,F t,St) and X̃t = (x̃t, . . . , x̃N , X̂t = (x̂t, . . . , x̂N ) be two sample paths of on hand invent-

ory at the beginning of period t driven by the same demand sample path given (xt, F̃ t, S̃t) and

(xt, F̂ t, Ŝt). We denote Jt(xt, St−1, qt−1, it,Dt,F t,St) as the expected cost from period t to N with

orders F t,St,

Jt(xt, St−1, qt−1, it,Dt,F t,St) =E
[N−1∑
l=t

[
cfl (Fl) + csl (Sl) + ql−1cl−1(Sl−1) +Hl(Xl+1)

]
+

+ cfN (FN ) + qN−1cN−1(SN−1) +HN (XN+1)
]
.

Then it is sufficient to show that Jt(xt, St−1, qt−1, it,Dt,F t,St) is (jointly) convex in (xt, St−1), as

Vt(xt, St−1, qt−1, it,Dt) = inf
F t,St≥0

Jt(xt, St−1, qt−1, it,Dt,F t,St).

We prove the convexity of Jt(xt, St−1, qt−1, it,Dt,F t,St) in (xt, St−1) by induction. Note that

Ht(x) is convex in x. For two sets of (Xt,F t,St), (X̃t, F̃ t, S̃t) and (X̂t, F̂ t, Ŝt), ∀θ ∈ [0, 1], the
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following inequality is satisfied,

θHt(X̃t + F̃t + qt−1S̃t−1) + (1− θ)Ht(X̂t + F̂t + qt−1Ŝt−1)

≥Ht(θ(X̃t + F̃t + qt−1S̃t−1) + (1− θ)(X̂t + F̂t + qt−1Ŝt−1))

Obviously when t = N , JN (xN , SN−1, qN−1, iN ,DN , FN ) is (jointly) convex in (xN , SN−1) as

cft (.), cst (.), ct(.) are convex. Assume Jt(xt, St−1, qt−1, it,Dt,F t,St) is (jointly) convex for t = n+1.

Then for t = n, we have

θ

{
qn−1cn−1(S̃n−1) + cfn(F̃n) + csn(S̃n) + E

{
Hn(F̃n+1) +

N−1∑
l=n+1

[
cfl (F̃l) + csl (S̃l)+

+ ql−1cl−1(S̃l−1) +Hl+1(X̃l)
]

+ cfN (F̃N ) + qN−1cN−1(S̃N−1) +HN (X̃l+1)
}}

+ (1− θ)∗

∗
{
qn−1cn−1(Ŝn−1) + cfn(F̂n) + csn(Ŝn) + E

{
Hn(F̂n+1) +

N−1∑
l=n+1

[
cfl (F̂l) + csl (Ŝl)+

+ ql−1cl−1(Ŝl−1) +Hl(X̂l+1)
]

+ cfN (F̂N ) + qN−1cN−1(ŜN−1) +HN (X̂l+1)
}}

≥qn−1cn−1(θS̃n−1 + (1− θ)Ŝn−1) + cfn(θF̃n + (1− θ)F̂n) + csn(θF̃n + (1− θ)F̂n)+

+ E
{
Hn(θX̃n+1 + (1− θ)X̂n+1) +

N−1∑
l=n+1

[
cfl (θF̃l + (1− θ)F̂l) + csl (θS̃l + (1− θ)Ŝl)+

+ ql−1cl(θS̃l−1 + (1− θ)Ŝl−1) +Hl(θX̃l+1 + (1− θ)X̂l+1)
]

+ cfN (θF̃N + (1− θ)F̂N )+

+ qN−1cN−1(θS̃N−1 + (1− θ)ŜN−1) +HN (θX̃N+1 + (1− θ)X̂N+1)
}

⇔θJn(x̃n, S̃n−1, qn−1, in,Dn, F̃ n, S̃n) + (1− θ)Jn(x̂n, Ŝn−1, qn−1, in,Dn, F̂ n, Ŝn)

≥Jn(θx̃n + (1− θ)x̂n, θS̃n−1 + (1− θ)Ŝn−1, qn−1, in−1,Dt, θF̃ n + (1− θ)F̂ n, θŜn+

+ (1− θ)Ŝn)

Hence Vn(xn, Sn−1, qn−1, in,Dn) is (jointly) convex in (xn, Sn−1).
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Lemma C.6. Vt(xt, St−1, qt−1, it,Dt) satisfies the optimality equations,

Vt(xt, St−1, qt−1, it,Dt) =qt−1ct−1(St−1) + inf
Ft,St≥0

{
cft (Ft) + cst (St) +Ht(Xt+1)+

+ Eεt
∑
it+1

Pit,it+1

(
PitVt+1(Xt+1, St, 0, it+1,Dt+1)+

+ (1− Pit)Vt+1(Xt+1, St, 1, it+1,Dt+1)
)}
, t = 1, . . . , N − 1;

Vt(xt, St−1, qt−1, it,Dt) =qt−1ct−1(St−1) + inf
Ft,St≥0

{
cft (Ft) +Ht(Xt+1)

}
, t = N.

There are Borel measurable functions that provide optimal fast and slow order quantities,

F ∗n = ft(xt, St−1, qt−1, it,Dt), t = 1, . . . , N ;S∗n = st(xt, St−1, qt−1, it,Dt), t = 1, . . . , N − 1.

Proof of Lemma C.6. Let F̂1 = f1(x1, S0, q0, i1,D1), Ŝ1 = s1(x1, S0, q0, i1,D1), X̂1 = x1; X̂t =

X̂t−1 + F̂t−1 + qt−2Ŝt−2 −Dt+1,t; F̂t = ft(X̂t, Ŝt−1, qt−1, it,Dt), Ŝt = st(X̂t, Ŝt−1, qt−1, it,Dt). From

the definition of F̂1, Ŝ1, for the first period,

cf1(F̂1) + cs1(Ŝ1) + E
∑
i2

Pi1,i2
(
Pi1V2(X̂2, Ŝ1, 0, i2,D2) + (1− Pi1)V2(X̂2, Ŝ1, 1, i2,D2)

)
≤cf1(F1) + cs1(S1) + E

∑
i2

Pi1,i2
(
Pi1V2(X2, S1, 0, i2,D2) + (1− Pi1)V2(X2, S1, 1, i2,D2)

)
For the second period,

V2(X2, S1, q1, i2,D2)

=q1c1(S1) + inf
F2,S2≥0

{
cf2(F2) + cs2(S2) +H2(X̂3) + E

∑
i3

Pi2,i3
(
Pi2V3(X̂3, S2, 0, i3,D3)+

+ (1− Pi2)V3(X̂3, S2, 1, i3,D3)
)}

≤q1c1(S1) + cf2(F2) + cs2(S2) +H2(X3) + E
∑
i3

Pi2,i3
(
Pi2V3(X3, S2, 0, i3,D3)+

+ (1− Pi2)V3(X3, S2, 1, i3,D3)
)

where X3 is the on hand inventory at the beginning of period 3 when order quantities in period 2

are f2(X2, S1, q1, i2,D2),s2(X1, S1, q1, i2,D2) correspondingly. Combining the above inequalities,
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we have

cf1(F̂1) + cs1(Ŝ1) +H2(X̂3) + EX2c
f
2(F̂2) + EX2c

s
2(Ŝ2) + (1− Pi1)c1(Ŝ1) + E

∑
i2

Pi1,i2
(
Pi1

[
E
∑
i3

Pi2,i3
(
Pi2V3(X̂3, Ŝ2, 0, i3,D3) + (1− Pi2)V3(X̂3, Ŝ2, 1, i3,D3)

)]
+ (1− Pi1)∗

∗
[
E
∑
i3

Pi2,i3
(
Pi2V3(X̂3, Ŝ2, 0, i3,D3) + (1− Pi2)V3(X̂3, Ŝ2, 1, i3,D3)

)])
≤cf1(F1) + cs1(S1) +H2(X3) + EX2c

f
2(F2) + EX2c

s
2(S2) + (1− Pi1)c1(S1) + E

∑
i2

Pi1,i2
(
Pi1

[
E
∑
i3

Pi2,i3
(
Pi2V3(X3, S2, 0, i3,D3) + (1− Pi2)V3(X3, S2, 1, i3,D3)

)]
+ (1− Pi1)∗

∗
[
E
∑
i3

Pi2,i3
(
Pi2V3(X3, S2, 0, i3,D3) + (1− Pi2)V3(X3, S2, 1, i3,D3)

)])
⇔EX̂2

2∑
l=1

(
cfl (F̂l) + csl (Ŝl)

)
+ (1− Pi1)c1(Ŝ1) +H2(X̂3) +

∑
i2

∑
i3

Pi1,i2Pi2,i3
(
Pi2V3(X̂3, Ŝ2, 0,

i3,D3) + (1− Pi2)V3(X̂3, Ŝ2, 1, i3,D3)
)

≤EX2

2∑
l=1

(
cfl (Fl) + csl (Sl)

)
+ (1− Pi1)c1(S1) +H2(X3) +

∑
i2

∑
i3

Pi1,i2Pi2,i3
(
Pi2V3(X3, S2, 0,

i3,D3) + (1− Pi2)V3(X3, S2, 1, i3,D3)
)

Keeping deriving similar inequalities about total cost from period 1 to period N , eventually we

have

N∑
l=1

EXl
(
cfl (F̂l) + csl (Ŝl) +Hl(X̂l+1)

)
+

N∑
l=1

Pi1,i2
∑
i2

. . .PiN−1,iN

∑
iN

(1− Pil)EX̂lcl(Ŝl)

≤
N∑
l=1

EXl
(
cfl (Fl) + csl (Sl) +Hl(Xl+1)

)
+

N∑
l=1

Pi1,i2
∑
i2

. . .PiN−1,iN

∑
iN

(1− Pil)EXlcl(Sl).

Next we prove that Vt(xt, St−1, qt−1, it,Dt) satisfies the optimality equations states in the pro-

position by induction. Obviously for t = N , Vt(xt, St−1, qt−1, it,Dt) satisfies the optimality equation

by definition. Suppose that for t = n+ 1, Vt(xt, St−1, qt−1, it,Dt) satisfies the optimality equations
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states in the proposition. For t = n,

Vn(xn, Sn−1, qn−1, in,Dn)

=qn−1cn−1(Sn−1) + inf
Fn,Sn≥0

{
cfn(Fn) + csn(Sn) +Hn(Xn+1) +

N−1∑
l=n+1

{
cfl (Fl) + csl (Sl)+

+ ql−1cl−1(Sl−1) +Hl(Xl+1)
}

+ cfN (FN ) + qN−1cN−1(SN−1) +HN (XN+1)

}
=qn−1cn−1(Sn−1) + inf

Fn,Sn≥0

{
cfn(Fn) + csn(Sn) + E

{
Hn(Xn+1) + qncn(Sn)+

+ inf
Fn+1,Sn+1≥0

{
cfn+1(Fn+1) + csn+1(Sn+1) +Hn+1(Xn+2) +

N−1∑
l=n+2

(
cfl (Fl) + csl (Sl)+

+ ql−1cl−1(Sl−1) +Hl(Xl+1)
)

+ cfN (FN ) + qN−1cN−1(SN−1) +HN (XN+1)
}}}

=qn−1cn−1(Sn−1) + inf
Fn,Sn≥0

{
cfn(Fn) + csn(Sn) +Hn(Xn+1) + E

∑
in+1

Pin,in+1

[
PinVn+1(Xn+1,

Sn, 0, in+1,D
′
n + ε′n) + (1− Pin)Vn+1(Xn+1, Sn, 1, in+1,Dn+1)

]}

By assuption Vn+1(xn+1, Sn, qn, in+1,D
′
n + ε′n) is (jointly) convex in (xn+1, Sn) and Xn+1 = xn +

Fn + qn−1Sn−1 −Dn+1,n. Hence

(PinVn+1(Xn+1, Sn, 0, in+1,D
′
n + ε′n) + (1− Pin)Vn+1(Xn+1, Sn, 1, in+1,Dn+1))

is (jointly) convex in (Fn, Sn). The optimal choices of Fn, Sn must be bounded by some Q < ∞.

Following the same reasoning in Sethi et al. (2001), we have two Borel measurable functions that

provide the optimal order quantities.

Lemma C.7. The optimality equation Vt(xt, St−1, qt−1, it,Dt) can be transformed as

Ut(wt, it,Dt) = Vt(xt, St−1, qt−1, it,Dt)− qt−1ct−1(St−1),
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where wt = xt + qt−1St−1. The transformed optimality equations satisfy

Ut(wt, it,Dt) = inf
z≥y≥swt

{
Ht(y −Dt+1,t) + (1− Pit)ct(z − y) + cft (y − wt) + cst (z − y)+

+ Eεt
∑
it+1

Pit,it+1

[
PitUt+1(y −Dt+1,t, it+1,Dt+1)+

+ (1− Pit)Ut+1(z −Dt,t − εt,t, it+1,Dt+1)
]}
,

where D′t = (Dt,t+1, . . . , Dt,N ), ε′t = (εt,t+1, . . . , εt,N ).

Ut(wt, it,Dt) =Ht(f̃t −Dt+1,t) + (1− Pit)ct(s̃t − f̃t) + cft (f̃t − wt) + cst (s̃t − f̃t) + Eεt
∑
it+1

Pit,it+1[
PitUt+1(f̃t −Dt,t − εt,t, it+1,Dt+1) + (1− Pit)Ut+1(s̃t −Dt,t − εt,t, it+1,Dt+1)

]
,

t = 1, . . . , N − 1;

Ut(wt, it,Dt) = inf
y

{
cft (y − wt) +Ht(y −Dt,t − εt,t)

}
, t = N

where f̃t = f̃t(wt, it,Dt), s̃t = s̃t(wt, it,Dt) are the optimal order up to levels which satisfy

f̃t(wt, it,Dt) = wt + F̂t(wt, it,Dt), s̃t(wt, it,Dt)− f̃t(wt, it,Dt) = Ŝt(wt, it,Dt)

and F̂t(wt, it,Dt), Ŝt(wt, it,Dt) are the optimal fast and slow order quantities correspondingly in

period t given (wt, it,Dt).

Proof of Lemma C.7. Let f̃t(wt, it,Dt), s̃t(wt, it,Dt) satisfy

f̃t(wt, it,Dt) = wt + F̂t(wt, it,Dt), s̃t(wt, it,Dt)− f̃t(wt, it,Dt) = Ŝt(wt, it,Dt)

and F̂t(wt, it,Dt), Ŝt(wt, it,Dt) are the optimal fast and slow order quantities correspondingly in

period t given (wt, it,Dt) for all t. Let y = swt + qt−1St−1 + Ft, z = y + St;

We prove this proposition by induction. When t = N , obviously this is satisfied. Suppose that

125



when t = n+ 1, this is satisfied. Then when t = n, we have

Un(wn, in,Dn)

= inf
z≥y≥wn

{
Hn+1(y −Dn,n − εn,n) + (1− Pin)cn(z − y) + cfn(y − wn) + csn(z − y)+

+ Eεn
∑
in+1

Pin,in+1

[
PinUn+1(y −Dn,n − εn,n, in+1,D

′
n + ε′n) + (1− Pin)∗

Un+1(z −Dn,n − εn,n, in+1,D
′
n + ε′n)

]}

= inf
Fn,Sn≥0

{
Hn+1(xn + qn−1Sn−1 −Dn,n − εn,n) + (1− Pin)cn(Sn) + cfn(Fn)+

+ csn(Sn) + Eεn
∑
in+1

Pin,in+1

[
PinVn+1(xn + qn−1Sn−1 −Dn,n − εn,n, Sn, 0, in+1,D

′
n + ε′n)+

+ (1− Pin)
(
Vn+1(xn + qn−1Sn−1 −Dn,n − εn,n, Sn, 1, in+1,D

′
n + ε′n)− cn(Sn)

)]}

= inf
Fn,Sn≥0

{
cfn(Fn) + csn(Sn) + Eεt

∑
in+1

Pin,in+1

[
PinVn+1(xn + qn−1Sn−1 −Dn,n − εn,n,

Sn, 0, in+1,D
′
n + ε′n) + (1− Pin)Vn+1(xn + qn−1Sn−1 −Dn,n − εn,n, Sn, 1, in+1,D

′
n + ε′n)

]}

=Vn(xn, Sn−1, qn−1, in,Dn)− qn−1cn−1(Sn−1)

We then prove the Bellman’s equations for Ut(wt, it,Dt). When t = N , obviously the Bellman’s

equations are satisfied. Assume when t = n + 1, the Bellman’s equations are satisfied. Then for

t = n, we plug in order up to levels, f̃n, s̃n, into the following cost expressions.

Hn+1(f̃n −Dn,n − εn,n) + (1− Pin)cn(s̃n − f̃n) + cfn(f̃n − wn) + csn(s̃n − f̃n) + Eεt
∑
in+1

Pin,in+1

[
PinUn+1(f̃n −Dn,n − εn,n, in+1,D

′
n + ε′n) + (1− Pin)Un+1(s̃n −Dn,n − εn,n, in+1,D

′
n + ε′n)

]
=cfn(F̂n) + csn(Ŝn) +Hn(Xn+1) + Eεt

∑
in+1

Pin,in+1

(
PinVn+1(Xn+1, Ŝn, 0, in+1,D

′
n + ε′n)+

+ (1− Pin)Vn+1(xn + qn−1Sn−1 + F̂n −Dn,n − εn,n, Ŝn, 1, in+1,D
′
n + ε′n)

)
=Vn(xn, Sn−1, qn−1, in,Dn)− qn−1cn−1(Sn−1) = Un(wn, in,Dn)
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Hence we prove the Bellman’s equations for Ut(wt, it,Dt).

Lemma C.8. Ut(wt, it,Dt) is convex in wt.

Proof of Lemma C.8. We know that Vt(xt, St−1, qt−1, it,Dt) is (jointly) convex in (xt, St−1). Define

Bt(xt, St−1, qt−1, it,Dt, Ft, St)

=cft (Ft) + cst (St) +Ht(Xt+1) + Eεt
∑
it+1

Pit,it+1

(
PitVt+1(xt + qt−1St−1 + Ft −Dt,t − εt,t, St, 0,

it+1,Dt+1) + (1− Pit)Vt+1(xt + qt−1St−1 + Ft −Dt,t − εt,t, St, 1, it+1,Dt+1)
)

Since Vt+1(xt + St−1qt−1 + Ft − Dt,t − εt,t, St, it,Dt+1) is (jointly) convex in (xt + St−1qt−1 +

Ft − Dt,t − εt,t, St), it ∈ 0, 1, t ≥ 1, ∀εt,t, Bt(xt, St−1, qt−1, it,Dt, Ft, St) is (jointly) convex in

(xt + qt−1St−1 +Ft−Dt,t, St). Let wt = xt + qt−1St−1 +Ft, from the proof of Lemma C.7, we know

Ut(wt, it,Dt) = inf
Ft,St

Bt(xt, St−1, qt−1, it,Dt, Ft, St)

Therefore Ut(wt, it,Dt) is convex in wt. In addition, by the definition of UN (wN , iN ,DN ), UN (wN , iN ,DN )

is convex in wN .

Proof of Proposition 4.1. The results in Proposition 4.1 can be derived directly from Lemma C.7

and Lemma C.8.

Proof of Theorem 4.1. For period t, let y = ȳ, z = z̄ be the minimum points of the following

function on the region of z ≥ y ≥ swt.

cft (y − wt) + cst (z − y) + (1− Pit)ct(z − y) +Ht(y −Dt+1,t) + Eεt
∑
it+1

Pit,it+1

[
PitUt+1(y −Dt,t − εt,t, it+1,Dt+1) + (1− Pit)Ut+1(z −Dt+1,t, it+1,Dt+1)

]
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y∗t , z
∗
t are given by

y∗t = arg min
y

{
cft (y − wt)− (cst + (1− Pit)ct)y +Ht(y −Dt+1,t) + Eεt

[∑
it+1

Pit,it+1Pit∗

Ut+1(y −Dt+1,t, it+1,Dt+1)
]}

:= arg min
y
Lt(y, wt, it,Dt)

y∗N = arg min
y

{
cfN (y − wN ) +HN+1(y −DN+1,N )

}
z∗n = arg min

z

{
(cst + (1− Pit)ct) + Eεt

[∑
it+1

Pit,it+1(1− Pit)Ut+1(y −Dt,t − εt, t, it+1,Dt+1)
]
+

+ δ(y∗t − z)
[
Lt(z, wt, it,Dt)− Lt(y∗t , wt, it,Dt)

]}
:= arg min

z
Tt(y

∗
t , wt, it,Dt)

where δ(a− t) = 1 when t ≤ a and δ(a− t) = 0 otherwise.

If z∗t ≥ y∗t , based on the definition of y∗t , z
∗
t , we have y∗t = ȳ, z∗t = z̄. So we only discuss the case

where y∗t ≥ z∗t and try to show

cft (y − wt) + cst (z − y) + (1− Pit)ct(z − y) +Ht(y −Dt+1,t) + Eεt
∑
it+1

Pit,it+1∗

∗
[
PitUt+1(y −Dt,t − εt,t, it+1,Dt+1) + (1− Pit)Ut+1(z −Dt,t − εt,t, it+1,Dt+1)

]
≥cft (z∗t − swt) +Ht(z

∗
t −Dt,t − εt,t) + Eεt

∑
it+1

Pit,it+1Ut+1(z∗n −Dt,t − εt,t, it+1,Dt+1).
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For z∗t , we have

cft (z∗t − wt) +Ht(z
∗
t −Dt+1,t) + Eεt

∑
it+1

Pit,it+1Ut+1(z∗t −Dt,t − εt,t, it+1,Dt+1)

=cft (z∗t − wt)− (cst + (1− Pit)ct)z∗t +Ht(z
∗
t −Dt+1,t) + Eεt

∑
it+1

Pit,it+1PitUt+1(z∗t−

−Dt,t − εt,t, it+1,Dt+1)−
[
cft (y∗t − wt)− (cst + (1− Pit)ct)y∗t +Ht(y

∗
t −Dt,t − εt,t)+

+ Eεt
∑
it+1

Pit,it+1PitUt+1(y∗t −Dt,t − εt,t, it+1,Dt+1)

]
+

[
cft (y∗t − wt)− (cst + (1− Pit)ct)y∗t

+Ht(y
∗
t −Dt,t − εt,t) + Eεt

∑
it+1

Pit,it+1PitUt+1(y∗t −Dt,t − εt,t, it+1,Dt+1)

]
+

+ (cst + (1− Pit)ct)z∗t + Eεt
∑
it+1

Pit,it+1(1− Pit)Ut+1(z∗t −Dt+1,t, it+1,Dt+1)

≤
{(
Lt(z, wt, it,Dt)− Lt(y∗t , wt, it,Dt)

)
+ (cst + (1− Pit)ct)z + Eεt

∑
it+1

Pit,it+1(1− Pit)∗

Ut+1(z −Dt+1,t, it+1,Dt+1)

}
+ Lt(y

∗
t , wt, it,Dt) ∀z

=cft (z − wt) +Ht(z −Dt,t − εt,t) + Eεt
∑
it+1

Pit,it+1Ut+1(z −Dt,t − εt,t, it+1,Dt+1),

(C.23)

where

L(y, swt, it,Dt) =cft (y − wt)− (cst + (1− Pit)ct)y +Ht(y −Dt,t − εt,t) + Eεt
∑
it+1

Pit,it+1Pit∗

∗ Ut+1(y −Dt,t − εt,t, it+1,Dt+1).

From the definition of ȳ, z̄, (ȳ, z̄) minimizes

cft (y − wt) + cst (z − y) + (1− Pit)ct(z − y) +Ht(y −Dt,t − εt,t) + Eεt
∑
it+1

Pit,it+1∗

∗
[
PitUt+1(y −Dt,t − εt,t, it+1,Dt+1) + (1− Pit)Ut+1(z −Dt,t − εt,t, it+1,Dt+1)

]
.
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We know that the following function is convex in y,

cft (y − wt)− (cst + (1− Pit)ct)y +Ht(y −Dt+1,t) + Eεt
[∑
it+1

Pit,it+1PitUt+1(y −Dt,t − εt,t,

it+1,Dt+1)
]
.

If ȳ ≤ z̄ ≤ y∗n, then based on the convexity of the above function in y, we know (z̄, z̄) minimizes

the above expression, i.e.,

cft (y − wt) + cst (z − y) + (1− Pit)ct(z − y) +Ht(y −Dt,t − εt,t) + Eεt
∑
it+1

Pit,it+1[
PitUt+1(y −Dt,t − εt,t, it+1,Dt+1) + (1− Pit)Ut+1(z −Dt,t − εt,t, it+1,Dt+1)

]
≥cft (z̄ − wt) +Ht(z̄ −Dt,t − εt,t) + Eεt

∑
it+1

Pit,it+1Ut+1(z̄ −Dt,t − εt,t, it+1,Dt+1)

≥cft (z∗t − wt) +Ht(z
∗
t −Dt+1,t) + Eεt

∑
it+1

Pit,it+1Ut+1(z∗t −Dt+1,t, it+1,Dt+1).

If z̄ > y∗t > z∗t , based on the convexity of (csn + (1 − Pit)ct)z + Eεt
∑

it+1
Pit,it+1(1 − Pit)Ut+1(z −

Dt,t − εt,t, it+1,Dt+1) in z, z̄ is the minimizer of the previous function.

(cst + (1− Pit)ct)z̄ + Eεt
∑
it+1

Pit,it+1(1− Pit)Ut+1(z̄ −Dt,t − εt,t, it+1,Dt+1)

≤(cst + (1− Pit)ct)z + Eεt
∑
it+1

Pit,it+1(1− Pit)Ut+1(z −Dt,t − εt,t, it+1,Dt+1), ∀z

≤(cst + (1− Pit)ct)z + Eεt
∑
it+1

Pit,it+1(1− Pit)Ut+1(z −Dt,t − εt,t, it+1,Dt+1) + δ(y∗n − z)∗

{
Lt(z, swt, it,Dt)− Lt(y∗t , swt, it,Dt)

}
, ∀z,

This contradicts to the assumption that z̄ > z∗n, as z∗n is the minimizer of

(cst + (1− Pit)ct)z + Eεt
∑
it+1

Pit,it+1(1− Pit)Ut+1(z −Dt,t − εt,t, it+1,Dt+1)+

+ δ(y∗n − z)
{
Lt(z, wt, it,Dt)− Lt(y∗t , wt, it,Dt)

}
.

shown in Equation (C.23).
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Proof of Proposition 4.2. We first consider the case y∗t < z∗t . For optimal y∗t , z
∗
t , we have

cs + (1− Pit)c+
∂

∂z
Eεt
∑
it+1

Pit,it+1(1− Pit)Ut+1(z∗t −Dt+1,t, it+1,Dt+1) = 0

⇔ ∂

∂z
Eεt
∑
j

Pit,it+1Ut+1(z∗t −Dt+1,t, it+1,Dt+1) = −c
s + (1− Pit)c

1− Pit
,

cf − cs − (1− Pit)c+
∂

∂y
(Ht(y

∗
t −Dt+1,t)+

+ Eεt
∑
it+1

Pit,it+1PitUt+1(y∗t −Dt+1,t, it+1,Dt+1)) = 0

⇔ ∂

∂y
Eεt
∑
j

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,Dt+1)

= −
cf − cs − (1− Pit)c+ ∂

∂yHt(y
∗
t −Dt+1,t)

Pit
.

Note that Eεt
∑

j Pit,it+1Ut+1(y −Dt+1,t, it+1,Dt+1) is convex in y. We have

y∗t < z∗t

⇔−
cf − cs − (1− Pit)c+ ∂

∂yHt(y
∗
t −Dt+1,t)

Pit
< −c

s + (1− Pit)c
1− Pit

⇔(1− Pit)(cf − cs − (1− Pit)c+
∂

∂y
Ht(y

∗
t −Dt+1,t)) > Pit(c

s + (1− Pit)c)

⇔cf − cs

1− Pit
− c+

∂

∂y
Ht(y

∗
t −Dt+1,t) > 0.

As ∂
∂yUt+1(y, it+1,Dt+1) ≥ −cft+1, at y = y∗t , we have

∂

∂y
Eεt
∑
it+1

Pit,it+1PitUt+1(y −Dt+1,t, it+1,Dt+1) ≥ −Pitc
f
t+1

⇔cf − cs − (1− Pit)c+
∂

∂y
Ht(y −Dt+1,t) ≥ Pitc

f
t+1

⇔(1− Pit)(cf −
cs

1− Pit
− c) +

∂

∂y
Ht(y −Dt+1,t) ≥ 0. (C.24)

Therefore, to have y∗t < z∗t , the sufficient condition is cf − cs

1−Pit
− c > 0.
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We then analyze the case y∗t > z∗t . For optimal y∗t , z
∗
t , we have

cf +
∂

∂z
Ht(z

∗
t −Dt+1,t) +

∂

∂z
Eεt
∑
it+1

Pit,it+1Ut+1(z∗t −Dt+1,t, it+1,Dt+1) = 0

⇔ ∂

∂y
Eεt
∑
it+1

Pit,it+1Ut+1(z∗t −Dt+1,t, it+1,D
′
t + εt) = −(cf +

∂

∂z
Ht(z

∗
t −Dt+1,t))

cf − cs − (1− Pit)c+
∂

∂y
Ht(y

∗
t −Dt+1,t)+

+
∂

∂y
Eεt
∑
it+1

Pit,it+1PitUt+1(y∗t −Dt+1,t, it+1,Dt+1) = 0

⇔ ∂

∂y
Eεt
∑
it+1

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,D
′
t + εt)

= −
cf − cs − (1− Pit)c+ ∂

∂yHt(y
∗
t −Dt+1,t)

Pit
.

Rearranging the terms in the above equalities, we have

∂

∂y
Eεt
∑
it+1

Pit,it+1Ut+1(z∗t −Dt+1,t, it+1,Dt+1) +
∂

∂z
Ht(z

∗
t −Dt+1,t) = −cf ,

∂

∂y
Eεt
∑
it+1

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,Dt+1) +
∂

∂y
Ht(y

∗
t −Dt+1,t)

=− cf + cs + (1− Pit)c
Pit

− (
1

Pit
− 1)

∂

∂y
Ht(y

∗
t −Dt+1,t).

As Eεt
∑

it+1
Pit,it+1Ut+1(y −Dt+1,t, it+1,D

′
t + ε′t) +Ht(y −Dt+1,t) is convex in y, we have

y∗t > z∗t

⇔− cf + cs + (1− Pt)c
Pit

− (
1

Pit
− 1)

∂

∂y
Ht(y

∗
t −Dt+1,t) > −cf

⇔cf − 1

1− Pit
cs − c+

∂

∂y
Ht(y

∗
t −Dt+1,t) < 0.

Since (1− Pit)(cf − cs

1−Pit
− c) + ∂

∂yHt(y
∗
t −Dt+1,t) ≥ 0, cf − cs

1−Pit
− c < 0 is a necessary condition

for y∗t > z∗t .

We then consider the case y∗t = z∗t . With y∗t < z∗t ,

cf − cs

1− Pit
− c+

∂

∂y
Ht(y

∗
t −Dt+1,t) ≤ 0; (C.25)
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with y∗t > z∗t ,

cf − cs

1− Pit
− c+

∂

∂y
Ht(y

∗
t −Dt+1,t) ≥ 0. (C.26)

Therefore in for y∗t = z∗t ,

cf − cs

1− Pit
− c+

∂

∂y
Ht(y

∗
t −Dt+1,t) = 0.

As (1− Pit)(cf − cs

1−Pit
− c) + ∂

∂yHt(y
∗
t −Dt+1,t) ≥ 0, the necessary condition is cf − cs

1−Pit
− c ≤ 0.

To summarize, cf − cs

1−Pit
− c ≤ 0 is the necessary and sufficient condition for y∗t ≥ z∗t .

Finally we show that Tt(z, y
∗
t , wt, it,Dt) is continuous and differentiable at z = y∗t . For z > y∗t ,

the partial derivative of Tt(z, y
∗
t , wt, it,Dt) with respect to z is

∂Tt(z, y
∗
t , wt, it,Dt)

∂z
= (1− Pit)

∂

∂z
Eεt

∑
it+1

Pit,it+1Ut+1(z −Dt+1,t, it+1,Dt+1) + cs + (1− Pit)c.

For z < y∗t , the partial derivative of Tt(z, y
∗
t , wt, it,Dt) with respect to z is

∂Tt(z, y
∗
t , wt, it,Dt)

∂z
=

∂

∂z
Eεt

∑
it+1

Pit,it+1Ut+1(z −Dt+1,t, it+1,Dt+1) + cf +
∂

∂y
Ht(z −Dt+1,t).

It is easy to verify that Tt(z, y
∗
t , wt, it,Dt) is continuous and differentiable on (−∞, y∗t ) and (y∗t ,∞).

Hence,

lim
z→(y∗t )+

= (1− Pit)
∂

∂z
Eεt

∑
it+1

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,Dt+1) + cs + (1− Pit)c

lim
z→(y∗t )−

=
∂

∂z
Eεt

∑
it+1

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,Dt+1) + cf +
∂

∂y
Ht(y

∗
t −Dt+1,t).

Note that for y∗t , we have

cf − cs − (1− Pit)c+
∂

∂y
Ht(y

∗
t −Dt+1,t)+

+ Pit
∂

∂z
Eεt

∑
it+1

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,Dt+1) = 0
(C.27)
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Therefore,

lim
z→(y∗t )+

Tt(z, y
∗
t , wt, it,Dt) = lim

z→(y∗t )−
Tt(z, y

∗
t , wt, it,Dt),

i.e. Tt(z, y
∗
t , wt, it,Dt) is continuous and differentiable at y∗t .

As Eεt
∑

j Pit,it+1Ut+1(y−Dt+1,t, it+1,Dt+1) is convex in y, for y∗t < z∗t and y∗t > z∗t , z∗t −y∗t in-

creases with ∂
∂zEεt

∑
j Pit,it+1Ut+1(z∗t−Dt+1,t, it+1,Dt+1)− ∂

∂yEεt
∑

j Pit,it+1Ut+1(y∗t−Dt+1,t, it+1,Dt+1).

For y∗t < z∗t ,
∂

∂z
Eεt
∑
j

Pit,it+1Ut+1(z∗t −Dt+1,t, it+1,Dt+1)−

− ∂

∂y
Eεt
∑
j

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,Dt+1)

=
cf − cs − (1− Pit)c+ ∂

∂yHt(y
∗
t −Dt+1,t)

Pit
− cs + (1− Pit)c

1− Pit

=
cf − c− cs

1−Pit
Pit

+

∂
∂yHt(y

∗
t −Dt+1,t)

Pit

For y∗t > z∗t ,

∂

∂z
Eεt
∑
j

Pit,it+1Ut+1(z∗t −Dt+1,t, it+1,Dt+1)−

− ∂

∂y
Eεt
∑
j

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,Dt+1)

=
cf − cs − (1− Pit)c+ ∂

∂yHt(y
∗
t −Dt+1,t)

Pit
− (cf +

∂

∂z
Ht(z

∗
t −Dt+1,t))

=
1− Pit
Pit

(cf − c− cs

1− Pit
) +

∂
∂yHt(y

∗
t −Dt+1,t)

Pit
− ∂

∂z
Ht(z

∗
t −Dt+1,t)

In both cases,

∂

∂z
Eεt
∑
j

Pit,it+1Ut+1(z∗t −Dt+1,t, it+1,Dt+1)− ∂

∂y
Eεt
∑
j

Pit,it+1Ut+1(y∗t −Dt+1,t, it+1,Dt+1)

increases with the effective cost difference cf − c − cs

1−Pit
. Therefore z∗t − y∗t increases with the

effective cost difference.

Proof of Theorem 4.2. We prove the results by induction. Note that F t,St record the pipeline

inventory in period t and qt−1 records the disruption of submitted slow orders up to period t− 1.
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Obviously when t = N , this equality holds. Assume that when t = n+ 1, this equality holds. Then

when t = n, we have

Un(wn, in,Dn)

= inf
Fn,Sn≥0

{
cfn(Fn) + csn(Sn) + (1− Pin)cn(Sn) +Hn+lf−1(Xn+lf ) + Eεn

∑
in+1

Pin,in+1

(
PinUn+1(y −Dn+1,n, in+1,D

′
n + ε′n) + (1− Pin)Un+1(z −Dn+1,n, in,D

′
n + ε′n)

)}
= inf
Fn,Sn≥0

{
cfn(Fn) + csn(Sn) + Eεn

∑
in+1

Pin,in+1

(
Pin
(
Un+1(y −Dn+1,n, in,D

′
n + ε′n)+

+Hn+lf−1(Xn+lf )
)

+ (1− Pin)
(
Un+1(z −Dn+1,n, in+1,D

′
n + ε′n) +Hn+lf−1(Xn+lf )+

+ cn(Sn)
))}

= inf
Fn,Sn≥0

{
cfn(Fn) + csn(Sn) + Eεn

∑
in+1

Pin,in+1

(
PinVn+1(Xn+1,F n,Sn, (qn−1, 0), in+1,

D′n + ε′n) + (1− Pin)Vn+1(Xn+1,F n,Sn, (qn−1, 1), in+1,D
′
n + ε′n)

)}
=Vn(xn,F n−1,Sn−1, qn−1, in,D

′
n + ε′n)− qn−1cn−1(Sn−1)

We then show that ls − lf = 1 is the necessary and sufficient condition that the optimal policy

is a two-threshold policy. If ls − lf > 1, we redefine wt = xt +
∑t−1

k=t−lf+1 Fk +
∑t+lf−ls

k=t−ls+1 qkSk,

nt =
∑t−1

k=t+lf−ls+1 qkSk and let y = Ft + wt, z = y + St + nt. Therefore, we modify the value

function as

Ut(wt, nt, it,Dt) =

inf
z≥y+nt,y≥swt

{
Ht+lf−1(y −Dt+1,t) + (1− Pit)ct(z − y − nt) + cft (y − wt) + cst (z − y − nt)+

+ Eεt
∑
it+1

Pit,it+1

[
PitUt+1(wt+1, nt+1, it+1,Dt+1) + (1− Pit)Ut+1(wt+1, n

′
t+1, it+1,Dt+1)

]}
,
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wt+1 = xt+1 +
t∑

k=t−lf+2

Fk +

t+lf−ls∑
k=t−ls+2

qkSk

= xt + Ft−lf+1 −Dt+1,t + qt−ls+1St−ls+1 +
t∑

k=t−lf+2

Fk +

t+lf−ls+1∑
k=t−ls+2

qkSk

= swt + Ft −Dt+1,t + qt+lf−ls+1St+lf−ls+1.

In order to keep wt+1 tractable only based on the decision in period t, we need lf − ls + 1 = 0.

Otherwise, when lf − ls + 1 < 0, we have to keep track of the slow order of period t+ lf − ls + 1 in

period t, which means we need to keep track of all past slow orders. Then we check nt+1, n
′
t+1,

nt+1 =
t∑

k=t+lf−ls+1

qkSk = nt − qt+lf−ls+1St+lf−ls+1,

n′t+1 =
t∑

k=t+lf−ls+1

qkSk = nt − qt+lf−ls+1St+lf−ls+1 + St.

When ls − lf = 1, nt+1 and n′t+1 are tractable only based on the decision in period t. So when we

plug in this equality into the Ut(wt, nt, it,Dt) functions we can directly ignore these nt terms, so

that we have the forms stated in the proposition.

Optimal Policy with Markovian Modulated Demand

Rather than MMFE, previous literature also assumes Markovian modulated demand to model

demand forecast. With Markovian modulated demand, the current demand state provides inform-

ation about the demand in the next period. We consider the discrete demand case of Markovian

modulated demand. The firm observes the demand state kt in the end of period t, which indic-

ates the realized demand, and the demand state evolves following a Discrete Time Markov chain.

Let K denote the set of demand states and M denote the transition matrix of demand states:

Mi,j = Prob{kt+1 = j|kt = i}, t = 1, . . . , N ; i, j ∈ K. With Markovian modulated demand, the

realized demand in every period also infers information of possible demand in the following periods.

Theorem C.1. Consider Markovian modulated demand. Assume cst (x) = cstx, ct(x) = ctx. The

optimal policy is a state-dependent two-threshold base-stock policy with the structure stated in The-

orem 4.1.
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We show that the optimality of the two-threshold type policy is preserved with Markovian

modulated demand. Therefore we focus on the original model to generate insights.

Proof of Theorem C.1. Let dk denote the demand value when demand state is k. Without loss

of generality, we label the states such that for state i < j, di < dj . Let R denote the transition

probability matrix of the DTMC of demand.

Let V m
t (xt, St−1, qt−1, gt−1, it) be the optimal cost function in period t, where gt−1 is the realized

demand state in period t. With the same procedure in Lemma C.6, it is easy to show that the

Bellman’s equations satisfy

V m
t (xt, St−1, qt−1, gt−1, it)

= inf
Ft,St

{
Ht(xt) + cft (Ft) + cst (St) + qt−1ct−1(St−1)+

+
∑
gt

Rgt−1,gt

∑
it+1

Pit,it+1

[
PitV

m
t+1(xt + qt−1St−1 − dgt , St, 0, gt, it+1)+

+ (1− Pit)V m
t+1(xt + qt−1St−1 − dgt , St, 1, gt, it+1)

]}
.

Furthermore following the same procedure in the proof of Proposition 4.1 that, with wt = xt +

qt−1St−1,

Umt (wt, gt−1, it) = inf
z≥y≥swt

{
cft (y − wt) + (cst + (1− Pit)ct)(z − y) +

∑
gt

Rgt−1,gtHt(y − dgt)+

+
∑
gt

Rgt−1,gt

∑
it+1

Pit,it+1

[
Pit∗

∗ Umt+1(y − gt, gt, it+1) + (1− Pit)Umt+1(z − gt, gt, it+1)
]}

UmN (wN , gN−1, iN ) = inf
y≥wN

{
cfN (y − wN ) +

∑
gN

RgN−1,gNHN+1(y − dgN )

}

with Umt (wt, gt−1, it) = V m
t (xt, St−1, qt−1, gt−1, it) − qt−1ct−1(St−1). Assume cst (x) = cstx, ct(x) =
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ctx.

y∗t = arg min
y

{∑
j

Rgt−1,gtHt(y − dgt) + cft (y − wt)− (cst + (1− Pit)ct)y +
∑
gt

∑
it+1

Pit,it+1

Rgt−1,gtPitU
m
t+1(y − gt, gt, it+1)

}
= arg min

y
Lmt (y, gt−1, it) t = 1, 2, . . . , N − 1

y∗N = arg min
y

{∑
j

Rgt−1,gtHt(y − dgt) + cft (y − wt)
}

z∗t = min
z

{
(cst + (1− Pit)ct)z +

∑
gt

∑
it+1

Pit,it+1Rgt−1,gt(1− Pit)Umt+1(z − gt, gt, it+1)
}

+

+ δ(y∗t − z)
{
Lmt (z, gt−1, it)− Lmt (y∗t , gt−1, it)

}
= arg min

z
Tmt (z, y∗t , gt−1, it) t = 1, 2, . . . , N − 1

Following the same argument in the proof of Theorem 4.1, we can prove the optimality of the

state-dependent two-threshold base-stock policy.

Optimal Policy with Random Yield

In practice firms also meet partial supply disruption, i.e., random yield or partial order avail-

ability. In this section we consider supply chain disruption in the form of random yield such that

a probability matrix characterizes the proportion of order the firm would receive for a given dis-

ruption state. Let jt denote the random yield state in period t, t = 1, . . . , N and J denote the

set of random yield states. If the supplier’s random yield state is j, he receives a proportion rj of

the total order. Let Q denote the probability matrix such that with disruption state it = i, the

probability that the random yield state is jt = j is Qi,j = Prob{jt = j|it = i}, t = 1, . . . , N ; j ∈ J .

Theorem C.2. Consider random yield of the slow supplier. Assume cst (x) = cstx, ct(x) = ctx. The

optimal policy is a state-dependent two-threshold base-stock policy. The optimal base-stock levels

y∗t , z
∗
t , z̄
∗
t characterize the optimal ordering decisions as follows:
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y∗t ≤ z∗t

(F ∗t , S
∗
t ) =


(y∗t − wt, z∗t − y∗t ) swt < y∗t

(0, z∗t − wt) y∗t ≤ swt < z∗t

(0, 0) o.w.

y∗t > z∗t

(F ∗t , S
∗
t ) =

 (z̄∗t − wt, 0) swt < z̄∗t

(0, 0) o.w.

With random yield, when y∗t > z∗t , the base-stock level is z̄∗t instead of z∗t , t = 1, . . . , N . As the

optimality of two-threshold policy still preserves with random yield rather than complete disruption,

for the simplicity of the analysis we focus on the complete disruption case to generate insights.

Proof of Theorem C.2. Following exactly the same procedure with the complete disruption case, it

is straight forward to show the optimal cost function satisfies

U rt (wt, it,Dt) = inf
z≥y≥swt

{
cft (y − wt) + cst (z − y) +

∑
j

Qin,jrjcn(z − y) +Ht(y −Dt+1,t)+

+ Eεt
∑
it+1

Pit,it+1

∑
j

Qit,jU
r
t+1(y −Dt+1,t + rj(z − y), it+1,Dt+1)

}
.

and U rt (wt, it,Dt) is convex in wt. Thus the function inside the inf operator is a (jointly) convex

function of (y, z). Therefore with s̃t = (wt, it,Dt), a unique pair of (y, z) minimizes U rt (wt, it,Dt).

The optimal order policy should follow a similar procedure based on y∗n, z
∗
n where y∗n, z

∗
n minimizes

the following function,

Wt(y, z, swt, it,Dt) =cft (y − wt) + cst (z − y) +
∑
j

Qit,jrjct(z − y) +Ht(y −Dt+1,t)+

+ Eεt
∑
it+1

Pit,it+1

∑
j

Qit,jU
r
t+1(y −Dt+1,t + rj(z − y), it+1,Dt+1).

With s̃t = (wt, it,Dt), if y∗t ≤ z∗t , the optimal order policy is the same with part (i) in Theorem 4.1,

i.e., (F ∗t , S
∗
t ) = (y∗t −min(wt, y

∗
t ), z

∗
t −max(y∗t , wt)). When y∗t ≥ z∗t , we define ȳ, z̄ to be the max-

imizer to the above expression with the constraints z̄ ≥ ȳ ≥ swt. However, since Wt(y, z, wt, it,Dt)

139



is (jointly) convex in (y, z). If we only add the constraint z̄ ≥ ȳ, the optimal (ȳ∗, z̄∗) is on the

intersecting line of the surfaces (y, z,Wt(y, z, wt, it,Dt)) and y = z. The optimal solution satisfies

ȳ∗ = z̄∗. Hence the optimal ordering policy should be, ordering up to z̄∗ from the fast supplier if

possible.
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