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ABSTRACT

Crystal T. Nguyen: Design and Analysis for Precision Medicine Subgroup Identification
(Under the direction of Michael Kosorok)

In 2015 President Barack Obama announced the launch of the Precision Medicine Initiative,

spurring an out pour of interest into research regarding patient-specific health. Precision medicine

is the reproducible research from which health care professionals can provide targeted treatments

to their patients. Two objectives in precision medicine include (i) identifying treatment-response

subgroups and (ii) identifying disease subgroups. In this manuscript, we will consider a place for

traditional study designs in the new age of precision medicine by presenting the machine learning

tools and statistical theory necessary to do so.

We begin with a newly proposed method for estimating the individualized treatment regime

from crossover studies. This method expands generalized outcome weighted learning into the 2× 2

crossover study framework by considering the difference in treatment response as the observed

reward and correcting for carryover effects, estimated through regression methods. After, we

propose a new technique for identifying disease subgroups by applying hierarchical clustering

techniques to what can be interpreted as a set of denoised outcomes. These values are weighted

averages of the observed and fitted outcomes, estimated by regressing on a set of features. Finally,

we return to identifying treatment-response subgroups, but, in the realm of case-control studies.

We again expand on generalized outcome weighted learning in addition to accounting for the

difference in the covariate distribution between the selected study sample and the total population.

Between this method and electronic health data, advancements for rare and expensive to study

diseases may be closer than we think.
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To my parents.

At least you can still call me “Doctor.”
But this way I can’t kill anyone. Probably.
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CHAPTER 1: INTRODUCTION

Precision medicine is the field of research that aims to personalize treatment based on patient-

specific factors in a reproducible way. While the field has been up and coming for some time now,

the Precision Medicine Initiative announced by President Obama has led to a surge in precision

medicine research. Thanks to great advancements in technology, we now have a plethora of

data at our fingertips, but developments in rigorous, peer-reviewed methods for various study

aims and designs are still required. It is of particular interest in precision medicine to estimate

an optimal individualized treatment regime (ITR) that recommends treatment decisions based

on patient characteristics to maximize the mean of some outcome. Many methods have been

proposed and used to address this aim, but they primarily focus on randomized clinical trial

data and large cohort studies, both of which may be expensive to carry out or difficult to recruit

for. Another objective of precision medicine is to identify disease subgroups or phenotypes that

are defined by some outcome of interest, but none of the existing methods are well-equipped to

handle multivariate outcomes or especially noisy data. In this manuscript, we will introduce three

topics for the purpose of subgroup identification in precision medicine that take advantage of easy

to implement study designs and/or the pre-existing wealth of data from previous observational

studies and electronic health records (EHRs).

Little work has been done in the area of ITR estimation from correlated observations, like

those that arise from crossover study designs. Such designs naturally lend themselves to precision

medicine, because they allow for observing the response to multiple treatments for each patient.

Chapter 2 introduces a method for estimating the optimal ITR using data from a 2× 2 crossover

study with or without carryover effects. The proposed method is a policy search method, similar
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to outcome weighted learning (OWL); however, we take advantage of the crossover design by

considering the difference in response under each treatment as the observed reward. We establish

Fisher and global consistency, present numerical experiments, and analyze data from a nutritional

feeding trial using the proposed method to demonstrate its improved performance compared to

standard methods for a parallel study design.

We then shift gears into discussing a new disease subgroup identification method in Chapter

3. In semi-supervised clustering, it may be desirable to produce clusters that are associated with

some outcome of interest. However, current methods approach this problem by clustering on the

feature space, guided by a univariate outcome. Instead, we propose clustering on a weighted av-

erage of the observed outcomes and smoothed outcomes, estimated conditionally on the features,

thereby guiding the clusters by these set of features. By doing so, the clusters are more directly

informed by the outcomes of interest. In cases where the outcomes are noisy surrogates for some

latent class of phenotypes, the proposed method can produce a more accurate clustering than

traditional methods. Chapter 3 presents this method alongside simulations and an application to a

large cohort study.

The final topic presented in Chapter 4 again deals with estimating the optimal ITR, this time

from case-control studies. While there exist a number of methods for optimal ITR estimation

from observational studies, such studies are not always feasible for a given disease group. For

example, rare diseases require studies with large sample sizes and long follow-up periods, putting

the studies at increased risk for patient drop-out and missing data. Thus, case-control studies

become an obvious choice, especially in the age of EHRs when such data are so readily available.

However, their use in the world of precision medicine is limited because of selection bias. Of

course, this is by design: patients with rare diseases are over-sampled into the study. However,

the selection bias must be accounted for to maintain a generalizable optimal ITR. The method

proposed in Chapter 4 offers a solution by modifying outcome weighted learning with a selection

factor, easily estimated with regression methods.
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The remainder of this dissertation is organized as follows. A new method for identifying

treatment-response subgroups from 2 × 2 crossover data is presented in Chapter 2. Chapter 3

introduces a novel clustering technique for identifying disease subgroups based on outcomes

of interest, guided by a set of features. Identifying treatment-response subgroups is revisited in

Chapter 4, but this time from case-control studies. Finally, Chapter 5 provides a brief discussion

on future research goals for the topics presented in this manuscript as well as potential future

topics. The relevant technical details have been deferred to the corresponding appendices.

3



CHAPTER 2: ESTIMATING INDIVIDUALIZED TREATMENT REGIMES FROM
CROSSOVER DESIGNS

2.1 Introduction

Personalized medicine is the practice of tailoring treatment to account for patient hetero-

geneity (Chakraborty and Murphy, 2014). Physicians and other health care providers have prac-

ticed personalized medicine by adjusting doses or prescriptions based on a patient’s medical

history or demographics for centuries (Ashley, 2015; Zhao and Zeng, 2013). Precision medicine

is an emerging field that aims to support personalized medicine decisions with reproducible re-

search (Collins and Varmus, 2015). Such research is imperative, particularly when diseases are

expressed with great heterogeneity across patients. A topic of interest in precision medicine is

the individualized treatment regime (ITR): a set of decision rules for one or more decision time

points that can be used to assign patients to treatment tailored by their patient-specific factors

(Lavori and Dawson, 2014; Moodie et al., 2007; Petersen et al., 2007). One objective in pre-

cision medicine is to estimate the optimal ITR, or the ITR that maximizes the mean of some

desirable outcome (Kosorok and Moodie, 2015; Laber et al., 2014). Crossover clinical trials are

uniquely suited to precision medicine, because they allow for observing responses to multiple

treatments for each patient. This paper introduces a method to estimate optimal ITRs using data

from a crossover study by extending generalized outcome weighted learning (GOWL) (Chen

et al., 2018) to deal with correlated outcomes.

In a crossover study, patients are randomized to a sequence of treatments rather than a single

treatment. Thus, multiple outcomes are observed, one per subject from each treatment period,

and each subject acts as his or her own control for reduced between-subject variability (Machin

4



and Fayers, 2010; Turner, 2010; Wellek and Blettner, 2012). Therefore, crossover designs natu-

rally lend themselves to precision medicine; estimating the optimal ITR from a crossover design

can utilize all counterfactual outcomes. In contrast, estimating the optimal ITR from traditional

parallel group designs, where patients are assigned to a single treatment, can only utilize the

subset of counterfactual outcomes that are observed.

There have been many developments in machine learning methods for answering precision

medicine questions from parallel study designs. For example, Qian and Murphy (2011) indirectly

estimate the decision rule using L1 penalized least squares; Zhang et al. (2012a) maximize a dou-

bly robust augmented inverse probability weighted estimator for the population mean outcome;

Athey and Wager (2017) maximize a doubly robust score that may take into account instrumental

variables; Kallus (2018) employs a weighting algorithm similar to inverse probability weighting

but minimize the worst case mean square error; Laber and Zhao (2015) propose the use of deci-

sion trees, which prove to be both flexible and easily interpretable; Zhao et al. (2012), Zhang et al.

(2012b), Zhou et al. (2017), and Chen et al. (2018) directly estimate the decision rule by viewing

the problem from a weighted classification standpoint.

However, little work has been done to develop precision medicine methods that handle cor-

related observations in the single-stage decision setting such as those that arise from crossover

designs. (Kulasekera and Siriwardhana, 2018) propose a weighted ranking algorithm to estimate

a decision rule that maximizes either the expected outcome or the probability of selecting the best

treatment, but they assume that there are no carryover effects present. Because the intended ef-

fect of the washout period can be difficult to achieve in practice (Wellek and Blettner, 2012), it is

imperative that methods for crossover designs can be applied when carryover effects are present.

In this paper, we show that the difference in response to two treatments from a 2 × 2 crossover

trial can be used as the reward in the GOWL objective function to estimate an optimal ITR. We

introduce a plug-in estimator that can be used with the proposed method to account for carryover

effects. Additionally, we show that using a crossover design with the proposed method results in
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improvements in misclassification rate and estimated value when compared to standard methods

for a parallel design at the same sample size.

As a clinical example, consider nutritional recommendations surrounding the intake of di-

etary fiber for the purpose of weight loss. Although increased fiber is recommended across the

population for a myriad of health benefits (Anderson et al., 1994, 2009; Marlett et al., 2002; US

Department of Agriculture, 2010), evidence of the impact of the consumption of dietary fiber for

improved satiety and reduction in body weight is mixed (Halliday et al., 2018; Slavin, 2005). Het-

erogeneity in response to dietary fiber may be leveraged to develop targeted fiber interventions to

promote feelings of satiety. We use data from a crossover study in which Hispanic and African

American adolescents who are overweight and obese were fed breakfast and lunch under a typical

western high sugar diet and a high fiber diet. From these data, we estimate a decision rule with

which clinical care providers can input patient characteristics, including demographics and clin-

ical measures, and receive a recommendation to maximize the change in measures of perceived

satiety from before breakfast to after lunch. This type of analysis could be useful in identifying a

subgroup of at-risk adolescents for which targeting specific dietary recommendations is expected

to lead to an increase in patient-reported satiety, helping to decrease caloric intake in a population

with great clinical need for effective weight loss strategies.

The rest of this paper is organized as follows. In Section 2.2, we review outcome weighted

learning (OWL) (Zhao et al., 2012) and present the proposed method for estimating an optimal

ITR from a crossover study regardless of the presence of carryover effects. Section 2.3 estab-

lishes Fisher and global consistency. Section 2.4 demonstrates the performance of the proposed

method in simulation studies, with results on misclassification rate and estimated value. Sec-

tion 2.5 displays an analysis of data from a feeding trial with overweight and obese Latino and

African American adolescents, and we conclude with a discussion in Section 2.6.
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2.2 Methodology

In this section, we provide a brief overview of existing methods for estimating the optimal

ITR using weighted classification. We then provide the justification and means to implement our

proposed method, which we will from here refer to as “crossover GOWL.”

2.2.1 Existing Methods

Consider a parallel, two-arm clinical trial in which we have i.i.d. observations (Xi, Ai, Yi)

for i = 1, . . . , n, where A ∈ A = {−1, 1} is binary treatment assignment,X ∈ X is a p-

dimensional vector of covariates, and Y ∈ R is a reward, bounded by M0 <∞, for which greater

values are desired. Assume that Y is of the form

Y = µ(X) + Ac(X) + ε,

where µ(X) is the main effect of the covariates, c(X) is the treatment-covariate interaction, and

ε has mean 0 and variance σ2
ε . Denote Y ∗(a) as the counterfactual outcome under treatment a.

We then make three causal assumptions (Rubin, 1978) to connect the counterfactual outcomes to

the observed data: P (A = a|X) > 0 with probability 1, {Y ∗(1), Y ∗(−1)} is independent of A

conditional onX , and Y = Y ∗(a). These are known as positivity, conditional exchangeability,

and consistency, respectively.

An ITR, D, comes from the set of all functions, D, that map the covariate space, X , to the

treatment space, A. Our objective is to estimate the optimal ITR, denoted D0, which maximizes

the value function (Qian and Murphy, 2011),

V(D) = E

[
Y 1{A = D(X)}

P (A|X)

]
, (2.1)
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where P (A|X) = Pr(A = a|X = x) is the propensity score for treatment. Equivalently, D0 may

be defined as

D0 = argmin
D∈D

E

[
Y 1{A 6= D(X)}

P (A|X)

]
. (2.2)

Zhao et al. (2012) propose OWL to solve this problem: each misclassified observation is

weighted by its observed outcome, Y , and the hinge loss is used to bring the problem into the

support vector machine framework (Cortes and Vapnik, 1995). Unfortunately, OWL assumes Y

is nonnegative; when negative values are observed, OWL shifts all outcomes to be nonnegative,

since (2.2) is invariant to such a transformation. The objective function in OWL, however, does

not have this property. Therefore, the estimated decision function in OWL depends on the chosen

shift in the outcomes. Chen et al. (2018) propose GOWL, an extension of OWL, which handles

negative rewards by modifying the hinge loss to be piecewise and weighting the misclassified

observations by |Y |. With GOWL, there is no need to shift rewards.

However, neither Zhao et al. (2012) nor Chen et al. (2018) considered correlated outcomes,

such as those that arise from a crossover design setting. We now introduce crossover GOWL, a

method that combines the observed treatment response difference with GOWL to estimate the

optimal ITR from 2× 2 crossover data.

2.2.2 Crossover Generalized Outcome Weighted Learning

In a crossover design, patients are randomly assigned to a sequence of treatments rather than

a single treatment. For the 2 × 2 design, patients are randomized to receive either the (−1, 1) or

the (1,−1) sequence, with some prespecified washout period between treatments. The washout

period is a break between treatments which serves to remove any carryover effects, i.e., residual

effects remaining from a previous treatment at the start of the next treatment. Keeping most of

the notation from before, we now introduce sequential treatments and outcomes Ak and Yk for

periods k = 1, 2, respectively. Thus, Yk is the observed outcome after receiving treatment Ak in
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period k. Furthermore, we assume the model

Yk = µ(X) + Akc(X) + δA1(X) 1{k = 2}+ εk

where ε = (ε1, ε2)
> has mean 0 and a positive definite covariance matrix, Σε, and δA1(X) is the

carryover effect which may depend on A1 andX . Note that in a 2× 2 crossover study, the period

effects, or temporal effects, are nonseparable from the carryover effects (Fleiss, 1989), so δA1(X)

encompasses both period and carryover effects.

Let R = Y1 − [Y2 − δA1(X)]. Given the observed data (X, A1,Y ), where Y = (Y1, Y2), we

propose the following as a substitute for the value function to be maximized:

E

[
R

P (A1|X)
1{A1 = D(X)}

]
, (2.3)

where P (A1|X) is the probability of being assigned to the sequence (A1,−A1) conditional on

X . Under Lemma 2.1, maximizing (2.3) is equivalent to minimizing (2.2); the proof is left to

Appendix A

Lemma 2.1. Under the given assumptions,

D0 = argmin
D∈D

E

[
R

P (A1|X)
1{A1 6= D(X)}

]
.

Following (2.3), we use an approach similar to GOWL but weight misclassified observations

by the treatment response difference, and we minimize the objective function (2.4) for f in F , a

class of functions, e.g., a reproducing kernel Hilbert space. Let ψ(u, v) = max{1− sign(u)v, 0},

λn be a tuning parameter, and ||f || be the L2 norm of f . For details on solving the optimization

problem in (2.4), we defer to Chen et al. (2018) and Kimeldorf and Wahba (1970).

argmin
f∈F

1

n

n∑
i=1

|Ri|
P (Ai,1|Xi)

ψ{Ri, Ai,1f(Xi)}+ λn||f ||2, (2.4)
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In practice, the true value of δA1(X) is unknown. In traditional analyses, we are concerned

with testing the null hypothesis that δ−1(X) = δ1(X). Here, we are instead interested in whether

or not either treatment has a nonzero carryover effect. Investigators may determine whether carry-

over effects are present any number of ways, including two-sample t-tests for the null hypotheses

H0,1: E[δ1(X)] = 0 and H0,−1: E[δ−1(X)] = 0 by comparing mean responses to each treatment

at each time point. An estimator for δA1(X), denoted δ̂A1(X), can be computed using Algorithm

2.1.

Algorithm 2.1: Estimating δA1(X)
1. Estimate g(x, a1) = E[Y1|X = x, A1 = a1] by regressing Y1 onX and A1.
2. Set Ŷ2 = ĝ(X, A2).
3. Estimate δA1(X) by regressing Y2 − Ŷ2 onX and A1.

In short, one model is fit to predict what would have been observed in period 2 in the absence

of carryover effects, and another model is fit to predict the residual from the first model. While

any regression technique may be used here, we use reinforcement learning trees (RLT) in our

implementation. RLT is a nonparametric tree-based machine learning method that considers

future splits or branches in the model when determining the best split at any node (Zhu et al.,

2015).

We can now correct the observed reward with the estimated carryover effects. Letting R̂ =

Y1 −
[
Y2 − δ̂Ai,1

(X)
]
, the estimated decision function is

f̂ ∗n = argmin
f∈F

1

n

n∑
i=1

|R̂i|
P (Ai,1|Xi)

ψ
{
R̂i, Ai,1f(Xi)

}
+ λn||f ||2, (2.5)

and our proposed estimator of the optimal ITR is D̂∗(X) = sign
{
f̂ ∗n(X)

}
, where

D∗ = argmax
D∈D

E

[
|R|

P (A1|X)
ψ{R,A1f(X)}

]
.
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2.3 Theoretical Results

In this section, we establish both Fisher and global consistency. First, define the risk under

0-1 loss to beR(f) = E[Y 1{A 6= sign[f(X)]}/P (A|X)]. The risk under the modified loss

function with the reward defined as the treatment response difference is then

Rψ(f) = E

[
|R̂|

P (A1|X)
ψ
{
R̂, A1f(X)

}]
.

Let f ∗(X) = argminf∈F Rψ(f), so that the corresponding ITR under the modified loss for the

treatment response difference is D∗(X) = sign{f ∗(X)}. Under Theorem 2.1, Fisher consistency

for D∗(X) is derived.

Theorem 2.1. Under the given assumptions, D∗(X) = D0(X).

Consider that F = {k(·,x) : x ∈ X} for some kernel function k, and let F be the closure of

F . Define f0 to be the minimizer over all functions f forR(f), and define f ∗0 to be the same for

Rψ(f).

Theorem 2.2. Let λn > 0 be a sequence such that λn → 0 and λnn → ∞ with probability

going to 1 as n → ∞. Assume ∃M1 < ∞ such that P
(
|δ̂A1(X)| < M1

)
→ 1 as n → ∞ and

|δA1(X)| < M1 almost surely. If P
[
1{sign[R̂] 6= sign[R]}

]
= oP (λn), then, for any distribution

P of (X, A1,Y ), limn→∞Rψ(f̂ ∗n)→P Rψ (f ∗). Furthermore, if f ∗0 ∈ F ,

lim
n→∞

R(f̂ ∗n)→P R (f0) .

Derivation of Theorems 2.1 and 2.2 may be found in Appendix A.
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2.4 Simulation Studies

To illustrate the benefits of using crossover GOWL, we present simulation studies with com-

parisons to standard methods. The standard methods are impelemented on period 1 data alone,

resembling analysis on a parallel design. Simulated data sets were generated as follows. The

covariates,X1, . . . ,X50, are i.i.d. variables drawn from a U(−1, 1) distribution. Subjects were

randomized to treatment −1 or 1 for the parallel design or to sequence (−1, 1) or (1,−1) for the

crossover design with equal probability. The response for the parallel design, Y, is normally dis-

tributed with a mean of µ(X) + c(X)A and a variance of 1. For the crossover design, responses

were simulated per the model Yk = µ(X) +Akc(X) + δA1(X) 1{k = 2}+ εk, for k = 1, 2, where

ε was drawn from a multivariate normal distribution with mean 0, Var[ε1] = Var[ε2] = 1, and

Cov[ε1, ε2] = 0.5. µ(X) was fixed to be 1 +X1 + 2X2 + 0.5X3 +X4 for all simulation scenarios.

Table 2.1 describes choices of c(X) and δA1(X) defining four scenarios.

Table 2.1: The interactive and carryover effects for the five simulation scenarios.

Scenario c(X) δ−1(X) δ1(X)

1 1.12(0.3−X1 −X2) 0 0
2 1.15(X1 − 1.25X2

2 ) 0 0

3 1.12(0.3−X1 −X2)
∣∣∣µ(X)+c(X)

4

∣∣∣ ∣∣∣µ(X)−c(X)
2

∣∣∣
4 1.15(X1 − 1.25X2

2 ) 0.4X2
1 + 0.3X2 1− 2X1 −X2

2

Scenarios 1 and 3 are linear inX , whereas Scenarios 2 and 4 are nonlinear. Note that sce-

nario pairs (1, 3) and (2, 4) are similar, but Scenarios 3 and 4 include carryover effects. The op-

timal ITR was estimated via crossover GOWL using a Gaussian kernel. The penalty parameter,

λn, and the Gaussian kernel bandwidth parameter, σn, were selected using 5-fold cross-validation

on the grids [0.1, 0.5, 1, 5, 10, 50, 100, 500]/n and [0.1, 0.2, . . . , 5.0], respectively. In scenarios

where carryover effects are present, RLT (Zhu et al., 2015) was used to fit both models to esti-

mate δ̂A1(X) using Algorithm 2.1.

A testing data set of size ntest = 10, 000 was generated similarly with period 1 data only.

The misclassification rate, or Pntest1
{
D̂∗(X) 6= D0(X)

}
, of the estimated ITR applied to the
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Figure 2.1: Boxplots of mean square error for RLT predicted δA1(X) on the testing set compared
with the true carryover.

testing set was calculated, where Pntest is the empirical mean in the test set. We also calculated

the estimated value of the estimated ITR, V̂
(
D̂∗
)

(Qian and Murphy, 2011), where

V̂(D) =
Pntest [Y 1{A = D(X)}/P (A1|X)]

Pntest [1{A = D(X}/P (A1|X)]
. (2.6)

Note that P (A1|X) = 0.5 is constant here. The estimated value is the average reward observed

under the estimated optimal ITR when applied to the testing set. Figure 2.1 displays the mean

square error from estimating the carryover effects with RLT for Scenarios 3 and 4.

Simulations were repeated 1,000 times at training set sample sizes of 30, 75, 150, 300, and

600. Comparisons to OWL, GOWL, and ridge regression methods in the parallel setting were

made. For OWL and GOWL, a Gaussian kernel was used, and the aforementioned grids for

λn and σn are considered in 5-fold cross-validation. For ridge regression, the model includes

all covariates and treatment-covariate interactions without any higher order terms or between-

covariate interactions. 5-fold cross-validation was used to determine a value for the the ridge

penalty parameter, where the same values for λn in the OWL methods are considered. All simu-
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lations were performed with R version 3.4.3 (R Core Team, 2017). RLT was implemented with

the RLT package, version 3.2.1 (Zhu, 2017), and all OWL methods were implemented with the

DynTxRegime package, version 3.2 (Holloway et al., 2018). While the DynTxRegime package

does not currently support GOWL, the inputs for OWL can be recoded to implement GOWL.

Ridge regression was carried out with the glmnet package (Friedman et al., 2010).

Figure 2.2 displays the average misclassification rates across all sample sizes, methods, and

scenarios. Figure 2.3 displays the mean square error of the estimated value from the true value,

i.e., Pntest

{[
V̂
(
D̂∗
)
− V̂ (D0)

]2}
from period 1 data. On average, crossover GOWL yields

lower misclassification rates and higher estimated values at smaller sample sizes across all sce-

narios, despite the potential for a high mean square error when estimating δA1(X). Crossover

GOWL shows marked improvement in both misclassification and estimated value for small n.

When n is large, ridge regression yields competitive results with that from crossover GOWL, but

crossover GOWL still appears to have marginal gains. Although GOWL in the parallel setting

does not perform as well as OWL in any of the presented scenarios, Chen et al. (2018) discuss

scenarios where improvements in misclassification and estimated value are observed when using

GOWL as opposed to OWL.
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Figure 2.2: Mean misclassification rate of 1,000 simulations for estimating the optimal ITR,
applied to a testing set of size 10,000 for each of 4 simulation scenarios.
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Figure 2.3: Mean square error of the estimated value compared to the true value from 1,000
simulations for estimating the optimal ITR, applied to a testing set of size 10,000 for each of 4
simulation scenarios.
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2.5 Optimizing Satiety from the Food, Adolescents, Mood and Exercise Trial

We present the application of crossover GOWL to data from the Food, Adolescents, Mood

and Exercise (FAME) crossover feeding trial, conducted at the University of Southern California

(USC) (O’Reilly et al., 2015). The FAME trial included African American and Latino adoles-

cents who were overweight or obese. African American and Latino adolescents are disproportion-

ately affected by overweight and obesity outcomes compared to their non-Hispanic counterparts

(Ogden et al., 2014; O’Reilly et al., 2015; Taveras et al., 2013). Dietary intake is a major modi-

fiable risk factor and represents a key intervention point in improving weight loss (Bleich et al.,

2017; Kipping et al., 2008). One promising approach is to modify dietary components to improve

satiety to indirectly reduce caloric intake (Anderson et al., 2009). In epidemiologic studies of

adults in the US, fiber intake is inversely associated with body weight and body fat (Slavin, 2005),

even after adjusting for confounding factors such as dietary fat intake. However, results from in-

tervention studies are mixed: increased dietary fiber intake has been shown to have varied effects

on body weight among adults who are overweight or obese, with limited research in pediatric or

adolescent populations (Rössner et al., 1987; Ryttig et al., 1989; Slavin, 2005; Thompson et al.,

2005; Tucker and Thomas, 2009). Given the heterogeneity in the effects of dietary fiber intake on

body weight, it is essential to identify the subgroups of overweight and obese adolescents who

may benefit from tailored clinical advice to increase fiber intake. We estimate a decision rule to

identify a subgroup of adolescents who are overweight or obese that experiences larger increases

in patient-reported satiety from a high fiber diet as opposed to the more common high sugar diet.

This study was conducted at the USC Health Sciences campus in Los Angeles, California

from 2008 to 2011. Eighty-six Latino and African American adolescents (ages 14 to 17 years

of age) who were overweight or obese (body mass index (BMI) percentile > 85%) were re-

cruited. Race was self-reported, and subjects were included if all four grandparents were Latino

or African American. Subjects were excluded if they had type 2 diabetes, were in a weight loss

program within the past 6 months, or used medications that influenced insulin or body compo-
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sition. Informed written parental consent and participant assent were acquired before all testing

procedures. The Institutional Review Board of USC approved all study procedures.

Participants received either a high sugar/low fiber (HSLF) meal plan or a high fiber/low

sugar (HFLS) meal plan for breakfast and lunch on two separate visit days. Participants were

randomized with equal probability to receive the HSLF/HFLS or HFLS/HSLF sequence with

a minimum 2 week washout period between visits. The meals were isocaloric and matched for

macronutrients except sugar and fiber content. Participants initially attended a baseline visit at the

Clinical Trials Unit at the USC University Hospital where insulin sensitivity, Tanner stage via ex-

amination by a medical professional, BMI percentile for age, sex, ethnicity, waist circumference,

and hemoglobin A1c (HbA1c) were collected. Insulin sensitivity was assessed via a frequently

sampled intravenous glucose tolerance test and calculated using the minimal model (Bergman

et al., 1979; Yang et al., 1987). At the subsequent test meal visits, participants received either a

HSLF or HFLS breakfast after a 10 hour overnight fast. At noon, the participants received the

same meal condition for lunch. Participants rated their hunger and fullness via a 100 mm-visual

analog scale (VAS) prior to breakfast and 45 minutes after the start of lunch (300 minutes after

breakfast). Participants were provided with age appropriate activities between meals (e.g., video

games, crafts, books, etc.).

The satiety outcomes are formally defined as the negative change in hunger, since lower

values of hunger are desired, and the observed change in fullness between 8:00 AM and 1:00

PM (before breakfast and after lunch). Due to the nature of the outcomes, the required 10 hour

overnight fast, and the implemented minimum 2 week washout period, we assumed no carryover

effects were present. Of the 86 subjects who completed the study, 20 were removed for missing

outcomes, and 1 was removed for missing insulin sensitivity. Participants that did not return

within 5 weeks were also removed (n = 54). We compared crossover GOWL with OWL, GOWL,

and ridge regression using data from period 1 only. Methods were implemented as described in

Section 2.4. 5-fold cross-validated value estimates were obtained, but rather than using Equation

(2.6) which uses only period 1 data, the value for each observation i = 1, . . . , nm in the mth
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Table 2.2: Mean (sd) 5-fold cross-validated estimated values for feeding trial data compared with
the observed value from period 1.

Outcome
Fullness Hunger

Ridge 3.00 (4.53) 5.60 (8.15)
OWL 3.07 (3.88) 5.45 (7.42)
GOWL 3.85 (4.97) 8.29 (7.93)
Crossover GOWL 6.39 (3.57) 10.50 (8.36)
Observed 0.96 4.66

fold’s testing set was computed as Yi,11
{
A1 = D̂0(X)

}
+ Yi,21

{
A2 = D̂0(X)

}
where nm is the

size of the mth fold for m = 1, . . . , 5. Although OWL, GOWL, and ridge regression were trained

on period 1 data, data from both periods were used to improve accuracy in the value estimate

because the testing set size for each fold is quite small.

Resulting estimated values, averaged across folds, are presented in Table 2.2 along with the

mean outcome observed from period 1. For both outcomes, all methods show improvement in

the estimated value in comparison to randomization, but crossover GOWL yields the highest im-

provement. For self-reported fullness, crossover GOWL also yields the smallest standard devia-

tion. When training crossover GOWL on the full dataset, 92% (51%) of participants are assigned

to the HFLS to maximize the change in fullness (hunger). A more detailed clinical interpretation

of the estimated ITR along with the distribution of features across the groups assigned to HFLS

and HSLF from crossover GOWL for both outcomes are presented in Appendix A. Dietary fiber

is recommended to improve overall health in the general population (Marlett et al., 2002); how-

ever, the estimated ITRs from hunger and fullness may inform the development of tailored dietary

intake advice for subgroups of at-risk adolescents.

2.6 Discussion

Precision medicine is an emerging field with rapid developments in analysis methods; how-

ever, these advancements typically revolve around parallel designs. This paper proposes the

combined use of crossover designs and generalized outcome weighted learning for the purpose
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of estimating optimal ITRs. The proposed method addresses a key gap in the literature; little to

no work has been done to better involve crossover designs in precision medicine, despite how

naturally crossover studies lend themselves to the field. Kulasekera and Siriwardhana (2018)

propose a ranking method to estimate the optimal ITR from a crossover study but provide no

recommendations on how to deal with carryover effects. In contrast, crossover GOWL is able to

handle such effects. Furthermore, regardless of the presence of carryover effects, the proposed

method shows improvements in the estimated value and misclassification rate, especially at the

smaller sample sizes typical of crossover designs compared to standard methods with the parallel

group design.

An alternative to GOWL that has been developed is residual weighted learning (RWL) (Zhou

et al., 2017). RWL is an extension of OWL that weights the misclassification error by residu-

als from a model fit to the outcome instead of the observed rewards themselves. Unlike GOWL,

RWL uses a non-convex loss function that does not guarantee global minimization (Tao, 2005).

In the proposed method, there is no need to include residuals in the weight, because the resid-

uals would cancel when taking the difference between responses to each treatment. Thus, the

proposed method avoids specifying a model for the main effect of the covariates.

We note that when the distribution of Ã1 = sign {R}A1 is poorly allocated, the cross-

validation mechanism for estimating λn and σ2
n may fail. If there is prior knowledge on the distri-

bution of sign{R}, investigators could adjust randomization probabilities when assigning patients

to treatment sequences accordingly. Otherwise, it is possible for a training set to not observe at

least one Ã1 = 1 or Ã1 = −1. Lastly, there may be low power in testing H0 : E[δA1(X)] = 0 at

smaller sample sizes.

Several extensions of estimating the optimal ITR from crossover data are yet to be explored.

For example, only the 2× 2 design was studied in this paper. For larger design schemes, the pro-

posed method could be implemented in a series of binary classifiers as in Dietterich and Bakiri

(1994). Alternatively, one could expand crossover GOWL to multi-category classification. There

have been several developments in multi-category support vector machines (Lee et al., 2004;
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Zhu et al., 2004). More recently, Liang et al. (2018) propose an outcome weighted deep learning

method to estimate the optimal ITR for multiple treatments. Another possible extension is to

consider the residual from modeling the treatment response difference as the observed reward.

Fu et al. (2016) and Zhou et al. (2017) have seen favorable results using residual weights, but

further improvements may come from using the residuals in outcome weighted learning with the

piece-wise hinge loss from GOWL. Finally, the proposed method could be improved upon with

methods for variable selection. For example, the L1 penalty could be imposed during optimiza-

tion to simultaneously restrict model complexity and perform variable selection as suggested by

Chen et al. (2018), Song et al. (2015), Xu et al. (2015), and Zhou et al. (2017).
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CHAPTER 3: FEATURE-GUIDED CLUSTERING

3.1 Introduction

We now discuss a different objective of precision medicine: identifying a subset of homoge-

nous disease subgroups within a heterogeneous population using clinical presentation rather

than treatment-response. These subgroups may be conceptualized as disease phenotypes, or co-

horts of patients who share a disease diagnosis but are distinct with regards to their genomic,

biochemical, or clinical data (Haendel et al., 2018). For example, there is general aggrement in

the medical community that there exist somewhere from 2-9 phenotypes of asthma that may be

defined by biomarkers and/or patient history (Kosorok and Moodie, 2015; Lötvall et al., 2011;

Lowe et al., 2005; Wenzel, 2006). Characterizing the different asthma phenotypes aids in specify-

ing aspects of the asthma pathophysiology that are most relevant to a given patient and allow for

more precise prediction of disease prognosis or assignment to therapeutic regimes. The definition

of disease phenotypes is specific and relies heavily on domain knowledge to define phenotypic

subgroups that are meaningfully different whilst sufficiently homogenous, such that differenti-

ated recommendation or therapies may be provided to each stratus that is effective, cost-effective,

and minimizes the prevention of harm (Burton et al., 2012; Haendel et al., 2018). In this chapter,

we propose a novel clustering method that leverages the information in patient-specific factors

that may correlate with the phenotypes of interest to guide the clustering method. This approach

is particularly useful in settings where the disease phenotypes are expressed with great patient

heterogeneity.

For example, type 1 diabetes (TID) is an autoimmune disease in which patients no longer

produce insulin and are tasked with daily insulin administration and self-management of blood
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glucose levels (American Diabetes Association, 2014; Hood et al., 2009). Diabetes management

is particularly challenging in youth and adolescence (Miller et al., 2015). An unintended side-

effect of insulin therapy is weight gain, and recent data shows that the prevalence of overweight

and obesity is increasing in this population (Liu et al., 2010; DuBose et al., 2015). As a result,

T1D patients present with a wide range of weight status and glycemic control, as measured by

body mass index z-score (BMIz) and hemoglobin A1c (HbA1c), respectively. This profound

heterogeneity in clinical presentation complicates the use of standard approaches to co-optimize

weight and glycemic control across the population. Therefore, the identification and characteriza-

tion of subgroups of youth with T1D who have a similar weight status and level of blood glucose

control as distinct ‘weight-glycemia phenotypes’ of T1D could enable better outcomes across the

population, as these subgroups would likely benefit from distinct therapeutic strategies and can

be targeted more efficiently as groups for clinical recommendations. Although there exist clinical

cut-points for BMIz and HbA1c (Petitti et al., 2009; Wang and Chen, 2012), these cut-points

have not been validated in conjunction to jointly characterize subgroups based on weight status

and glycemic control. Moreover, an exploratory approach is better suited for identifying real-life

phenotypes to emerge rather than forcing a fit based on a-priori clinical cut-points for weight and

glycemic control.

Some investigators approach subgroup identification as a clustering problem (Deliu et al.,

2016; Jang et al., 2013; Park et al., 2015), by forming groups of observations such that members

within the same group are more similar than members across different groups (Friedman et al.,

2001; Hartigan and Wong, 1979; Ward Jr, 1963). There are only a few existing methods for a

subclass of clustering, known as semi-supervised clustering, where clusters are associated with

some outcome of interest. With semi-supervised clustering, the outcome is believed to be a noisy

label or surrogate variable for the true underlying class (Bair, 2013). Bair and Tibshirani (2004)

and Koestler et al. (2013) propose methods that perform variable selection among a set of fea-

tures believed to be correlated with the outcome prior to clustering, and variables found to be

most associated with the outcome are selected for cluster analysis while the remaining variables
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are discarded. Gaynor and Bair (2017) combine this idea with sparse clustering (Witten and Tib-

shirani, 2010) by proposing preweighted sparse clustering to down-weight the “less significant”

variables from variable selection rather than discarding them entirely. Preweighted sparse clus-

tering thus induces sparsity in the set of clustered features while maximizing the between-cluster

sum of squares. However, when the outcome is particularly noisy, conventional clustering and

semi-supervised clustering methods may not accurately identify the true underlying disease sub-

groups (Gaynor and Bair, 2017). Moreover, the existing methods do not cluster directly on the

phenotypic outcomes of interest, nor do they account for multivariate outcomes, which is often

the case in clinical settings where positive outcomes and adverse events must be co-optimized.

We therefore propose a new class of semi-supervised clustering in which a set of feature vari-

ables may be used to denoise, or smooth, the surrogate outcomes; clustering algorithms are then

applied to a weighted average of the observed and denoised outcomes.

3.2 Methodology

Assume we observe i.i.d. data (Xi,Yi), for i = 1, . . . , n, whereX ∈ X ⊂ Rp is a matrix of

feature or predictor variables, and Y ∈ Y ⊂ Rq is a matrix of continuous outcomes believed to

define the disease phenotypes.

We propose calculating a weighted average of the observed and fitted outcomes, or

Ỹ = YW + Ŷ (Iq −W ), subject to 0 ≤ wm ≤ 1,

for m = 1, . . . , q. Here, Ŷ are the predicted values of Y , obtained from regressing each Ym on

X . Any regression technique for which consistency holds may be used. In this chapter, we will

use random forests (Breiman, 2001) for all displays of implementation. Iq is the q × q identity

matrix, andW = diag(w1, . . . , wq) is a diagonal matrix of weights, allowing each variable

to be assigned a distinct weight in the case that some outcomes are noisier than others. Cluster

methods may then be applied to Ỹ , such as k-means (Hartigan and Wong, 1979) or hierarchical
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clustering (Ward Jr, 1963). Using Ỹ informs the clustering algorithm not only by the smoothed

outcomes, Ŷ , but also by the residual information in Y .

To specifyW , we recommend maximizing the average silhouette width (Rousseeuw, 1987),

an internal validation of a given clustering that represents a non-linear combination of within-

cluster connectivity and between-cluster separation (Brock et al., 2011), in a grid search. How-

ever, the user may choose any method of cluster validation, e.g., the Dunn Index (Dunn, 1974),

connectivity (Handl et al., 2005), or average proportion of non-overlap (Yeung et al., 2001). We

also recommend standardizing Y and Ŷ prior to clustering to prevent outcomes with higher

means and variances to be considered equally in the clustering process.

Note that Y need not be continuous. A logistic regression may be used for binary or ordered

outcomes, and classification methods may be used for unordered categorical outcomes. Relevant

cluster methods may then be applied for mixed outcomes, such as those proposed by Ahmad and

Dey (2007), Chiu et al. (2001), or Hsu and Huang (2008). The choice of k is beyond the scope of

this chapter.

3.3 Numerical Experiments

To demonstrate the performance of the proposed method, we performed simulations varying

the sample size, n, and the number of feature variables correlated with the true clustering, pe. The

true classification contained three classes, with 25% of the observations in each of the first two

classes, and the remaining 50% in the third class. Three outcomes were generated from normal

distributions with means (1, 1,−1), (0, 1,−1), and (0, 0, 0) for each class, respectively, and a

standard deviation of 1 (Figure 3.1). The features were generated as follows

Xij =


1 + εij, if i ≤ n1, j ≤ pe

−1 + εij, if i > (n1 + n2), j ≤ pe

εij, otherwise,
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Figure 3.1: Scatter plots showing the bivariate distributions of a simulated Y , colored by the true
underlying class labels.

where nh is the size of class h = 1, 2, 3, pe < p = 50, and εij ∼ N(0, 1).

Ŷ was estimated via random forest (Breiman, 2001), and both Y and Ŷ were standard-

ized. Average silhouette width was calculated across the grid [0.0, 0.1, . . . , 1.0] for each wm,

m = 1, 2, 3 to determine the optimal choice of weights. The proposed method was applied

in conjuction with both k-means and hierarchical clustering, and comparisons were made to

traditional k-means and hierarchical clustering alone. For both proposed and traditional hier-

archical clustering, complete linkage and Euclidean distance were used to determine cluster

assignments. Resulting clusters were evaluated by the adjusted Rand index (ARI) (Hubert and

Arabie, 1985), a measure for how well cluster assignments match with the truth; values closer to

1 are desired. For all analyses, k was fixed to be correctly chosen as 3, but n and pe were varied

across [50, 100, 250, 500, 1000, 1500, 2000] and [5, 10, 15, 20], respectively.

Examples of a solution under each method with n = 500 and pe = 25 are displayed in Fig-

ures 3.2-3.5. Visually, the conventional methods are unable to capture the degree of overlap that

is true to the data generation. In contrast, the proposed methods allow the cluster assignments to

be “friendlier” and more generous with the potential overlap.

Each simulation was replicated 1,000 times, and the mean ARI is displayed in Figure 3.6. On

average, the proposed method performs much better than traditional methods alone. In the best

case scenario, with a large sample size and large pe, the proposed method on average yields an

ARI that is 0.769 points higher than traditional methods. k-means tends to perform slightly better
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Figure 3.2: Example cluster assignments from a single simulation using traditional hierarchical
clustering.

Figure 3.3: Example cluster assignments from a single simulation using the proposed method
with hierarchical clustering.

Figure 3.4: Example cluster assignments from a single simulation using traditional k-means
clustering.
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Figure 3.5: Example cluster assignments from a single simulation using the proposed method
with k-means clustering.

on average than hierarchical clustering, except for the proposed method when pe = 5 where the

two methods are more or less equivalent. Figure 3.7 depicts the mean of the optimized weights

in the proposed method for both hierarchical and k-means clustering. Overall, the two methods

agree on weights, signifying stability in the choice of weights, and there is a monotone decreas-

ing trend as n and pe increase. Thus, there is less and less reliance on the observed outcomes Y ,

and more on the fitted outcomes Ŷ as the signal inX increases.
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Figure 3.6: Mean ARI across 1,000 replications, comparing the proposed method to traditional
methods at varying sample sizes and values of pe.
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Figure 3.7: Mean of chosen weights across 1,000 replications, comparing hierarchical and
k-means clustering weights at varying sample sizes and values of pe.
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3.4 Weight-Glycemia Subtypes of Type 1 Diabetes

Since the widespread adoption of intensified insulin therapy for the prevention of diabetes

complications (e.g., heart disease, neuropathy, retinopathy, and nephropathy) in 1993 (Orchard

et al., 2015), the clinical care of T1D has centered around achieving tight glycemic control. How-

ever, recent evidence show that many patients with T1D do not meet clinical targets for HbA1c

levels, particularly among youth and young adults (Foster et al., 2019). Additionally, the tech-

nologies meant to keep blood glucose normal may promote weight gain in some individuals

(Purnell et al., 2017, 1998). The increasing prevalence of obesity in T1D has been attributed to

decreased glucosuria with tighter glucose control, increased caloric intake to treat hypoglycemia,

increased lipogenesis and fat accumulation, and decreased catabolism associated with peripheral

hyperinsulinemia, which are needed to suppress hepatic glucose production (Corbin et al., 2018;

Driscoll et al., 2017). Since the obesity- and glycemia- associated risk factors for cardiovascular

disease and other diabetic complications begin to accumulate early in life, it is imperative for

clinical strategies to promote and support youth and young adults with T1D in maintaining tight

glycemic control as well as a healthy weight.

The evolution of T1D to include overweight and obesity, combined with the complicated

physiologic relationships between weight and glycemia, pose a challenge to understand the

population-level associations between BMIz and HbA1c in a way that informs meaningful strate-

gies to co-optimize both outcomes. For example, it is not well understood how overweight and

obesity distribute across levels of glycemic control, and whether weight status can be used to

universally infer information about glycemic control, or vice versa, and how these outcomes

interact to form more nuanced clinical phenotypes of T1D. Weight-glycemia phenotypes may

confer information about goals for treatment and effectiveness of specific therapeutic strategies

for optimizing outcomes simultaneously, especially given that weight gain may be an unintended

consequence of intensive insulin therapy in some individuals (Purnell et al., 2017).
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We therefore aim to identify weight-glycemia subtypes of T1D using data from the SEARCH

for Diabetes in Youth Study, a large nationally-representative observational cohort study of child-

hood diabetes in the US (Hamman et al., 2014; Liu et al., 2010). A subset of participants with

newly diagnosed diabetes who attended both baseline and cohort visits, had a diagnosis of di-

abetes for at least 5 years, and were at least 10 years of age were included in the analysis. The

proposed method was guided by a select set of features including sociodemographic characteris-

tics (age, gender, race, maximum parental education, etc.), clinical characteristics (insulin dose,

insulin regimen, history of severe hypoglycemia or diabetic ketoacidosis, etc.), and psychosocial

or behavioral characteristics (e.g., quality of life and smoking status).

Data from the cohort 1 visit were used. Figure 3.8 displays the distribution of BMIz and

HbA1c for all included study participants. Multiple densities are not apparent from this figure,

so traditional clustering techniques are likely to fail at accurately classifying patients together in

T1D weight-glycemia phenotypes. Four subjects were excluded for having inconsistent answers

to certain questionnaire items, e.g., responding “No” to having any hypoglycemic events in the

past 6 months but also reporting values greater than 0 for the number of hypoglycemic events in

the last 6 months. 183 subjects were removed for missing at least one of the outcome variables

(BMIz and HbA1c), yielding a sample size of n = 1, 817 for analysis. At most, 15% of any one

feature variable was missing, and the missForest algorithm was implemented to impute those

missing values (Stekhoven and Bühlmann, 2012; Stekhoven, 2013).

We partitioned the data into a training and testing set, 70% and 30%, respectively. We then

applied the proposed method to the training set in R, version 3.4.1 (R Core Team, 2017), using

the randomForest (Liaw and Wiener, 2002) to obtain Ŷ and the cluster package (Maechler et al.,

2017) to calculate average silhouette width when choosingW and k. The grids for selecting k

and each wm were [4, . . . , 9] and [0.0, 0.1, . . . , 1.0], respectively. Y and Ŷ were standardized

prior to optimization. Data were clustered using hierarchical clustering with complete linkage

and Euclidean distance in both the proposed and traditional methods. For hierarchical cluster-
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Figure 3.8: Scatter plot of weight and glycemia outcomes for type 1 diabetic adolescents.

ing, the number of clusters, k, was chosen by average silhouette width in the NbClust package

(Charrad et al., 2014a).

To assess the clusters, a random forest classifier was fit for both methods, and cluster assign-

ments were predicted in the test dataset for evaluation. Clustering by the traditional approach

produced four clusters, but the sample size of the fourth cluster in the training data was very

small (n4 = 2). None of the testing data were assigned to the fourth cluster. The traditional

method also produced very “clean” clusters (Figure 3.9); although the outcomes are very noisy,

hierarchical clustering achieves clear separation in the estimated clusters. While visually attrac-

tive, this finding is concerning given the inability of the algorithm to separate meaningful vari-

ability (i.e., clinical heterogeneity) from measurement error. Meanwhile, the proposed method

yielded a total of six clusters with a larger amount of visual overlap in BMIz and HbA1c (Figure

3.10). The weights chosen were 0.2 for HbA1c and 0.3 for BMIz, further suggesting that there is

great patient heterogeneity in the two measures such that a greater weight on the fitted values is

necessary. The means for BMIz and HbA1c for both methods are presented in Table 3.1. The pro-
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Figure 3.9: Scatter plot of weight-glycemia phenotypes in test dataset individuals, identified by
traditional hierarchical clustering. Vertical lines denote cut-offs in age and sex adjusted BMIz for
underweight, normal weight, overweight, and obese (Petitti et al., 2009). Horizontal lines denote
cut-offs in HbA1c for normal, moderate, poor, and very poor glycemic control (Wang and Chen,
2012).

posed method outperforms traditional hierarchical clustering in its ability to find more granular

subgroups with clinically distinct weight-glycemia phenotypes of T1D. Although the outcomes

under the traditional method appear to be distinct across the three groups, a fourth group was

negligible, and the remaining subgroups identified are no more clinically informative than a priori

cut-offs used independently. However, outcomes under the proposed method suggest there are a

variety of weight-glycemia combinations that comprise the T1D make up in adolescents.

Descriptive statistics on each cluster from the proposed method are reported in Table 3.2.

Cluster weight status was classified as underweight, normal weight, overweight, or obese using

cut-offs for mean BMIz of −1.64, 1.04, and 1.64, respectively (Wang and Chen, 2012). Clus-

ter glycemic control was defined as good, moderate, poor, or very poor using cut-offs for mean

HbA1c of 58, 75, and 108, respectively (Petitti et al., 2009). Cluster 2 is typified by underweight
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Figure 3.10: Scatter plot of weight-glycemia phenotypes in test dataset individuals, identified by
the proposed clustering method. Vertical lines denote cut-offs in age and sex adjusted BMIz for
underweight, normal weight, overweight, and obese (Petitti et al., 2009). Horizontal lines denote
cut-offs in HbA1c for normal, moderate, poor, and very poor glycemic control (Wang and Chen,
2012).
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Table 3.1: Mean (sd) body mass index z-score (BMIz) and hemoglobin A1c (HbA1c, %) for
weight-glycemia phenotypes in the testing dataset, derived using traditional and proposed hi-
erarchical clustering methods. Four clusters were identified in the training dataset using the
traditional hierarchical clustering method, but none of the testing data were assigned to the fourth
cluster.

Cluster
Traditional Method hiProposed Methodh
BMIz HbA1c BMIz HbA1c

1 0.16 (0.80) 8.11 (1.14) -0.04 (0.53) 7.88 (1.18)
2 0.43 (0.95) 11.82 (1.30) -1.01 (0.72) 9.48 (1.45)
3 1.57 (0.44) 8.80 (1.35) 0.43 (0.61) 9.91 (1.66)
4 – – -0.21 (0.95) 12.24 (1.92)
5 – – 1.18 (0.48) 0.85 (1.26)
6 – – 1.79 (0.37) 9.83 (1.67)

and high HbA1c, suggestive of hypo-insulinemia and energy wasting through excessive gluco-

suria associated with sustained hyperglycemia, while Cluster 6 shows similarly elevated HbA1c

that presents concurrently with elevated mean BMIz classified as obesity, which may be reflective

of insulin resistance and poor metabolic health. Together, the clusters show that overweight and

obesity present with varying degrees of glycemic control in the T1D patient population, impli-

cating different therapeutic and clinical strategies to concurrently address weight and glycemia

across subgroups.
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Table 3.2: Selected feature variables according to weight-glycemia clusters in the SEARCH for Diabetes in Youth Study testing data.
Table values represent means (sd) or counts (proportions) within each cluster.

Total Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
n 546 (1.00) 39 (0.07) 27 (0.05) 109 (0.20) 140 (0.26) 140 (0.26) 89 (0.16)
BMIz 0.61 (0.97) -0.04 (0.53) -1.01 (0.72) 0.43 (0.62) -0.21 (0.95) 1.18 (0.48) 1.79 (0.37)
HbA1c 9.09 (1.90) 7.88 (1.18) 9.48 (1.95) 9.91 (1.66) 12.20 (1.92) 8.05 (1.26) 9.83 (1.67)
Female 287 (0.53) 46 (0.42) 14 (0.36) 85 (0.61) 12 (0.44) 70 (0.49) 60 (0.67)
Age at Cohort Visit (years) 17.68 (4.34) 16.94 (5.09) 17.31 (4.47) 17.85 (4.05) 17.25 (3.29) 18.24 (4.64) 17.70 (3.39)
Age at Diagnosis (years) 9.89 (4.00) 9.31 (4.62) 10.09 (4.17) 9.83 (3.61) 9.25 (2.82) 10.41 (4.31) 9.99 (3.41)
Diabetes Duration (years) 7.74 (1.90) 7.59 (1.92) 7.18 (1.87) 7.97 (1.90) 7.95 (2.00) 7.79 (1.94) 7.67 (1.75)
Non-Hispanic White Race/Ethnicity 424 (0.78) 105 (0.96) 28 (0.72) 92 (0.66) 20 (0.74) 127 (0.89) 52 (0.58)
Parental Bachelor’s degree or more 286 (0.53) 83 (0.76) 19 (0.49) 52 (0.37) 7 (0.26) 95 (0.67) 30 (0.34)
Private Health Insurance 398 (0.73) 101 (0.93) 26 (0.67) 94 (0.67) 8 (0.30) 122 (0.86) 47 (0.53)
Insulin Pump 306 (0.56) 84 (0.77) 25 (0.64) 54 (0.39) 7 (0.26) 97 (0.68) 39 (0.44)
Blood Glucose Monitoring > 4×per day 376 (0.69) 98 (0.90) 26 (0.67) 70 (0.50) 13 (0.48) 113 (0.80) 56 (0.63)
Physical Activity 302 (0.55) 71 (0.65) 17 (0.44) 67 (0.48) 10 (0.37) 96 (0.68) 41 (0.46)
Physical Inactivity 277 (0.51) 37 (0.34) 20 (0.51) 84 (0.60) 20 (0.74) 65 (0.46) 51 (0.57)
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Examination of clusters in relation to clinical cut-points for BMIz and HbA1c suggest that

single outcome cut-points may be used to distinguish between certain subgroups (i.e., overweight

and obese subgroups versus normal weight subgroups), but subgroups were not well delineated

by both cut-points simultaneously. In fact, operation of cut-points for both weight status and

glycemic control may split the identified weight-glycemia clusters and may not be as well-suited

to identify subgroups sharing clinically significant, yet more nuanced, weight-glycemia pheno-

types.

The weight-glycemia clusters identified show clinically significant differences in other in-

dividual characteristics according to phenotypic subgroups. For example, there were significant

differences in the racial and ethnic breakdown across clusters (Table 3.2). Clusters 3-6 had the

poorest glycemic control and were comprised of a higher proportion of non-Hispanic black youth

(18.6%, 22.2%, and 21.4%, respectively, compared with 0.9% in Cluster 1). Meanwhile, Cluster

6, marked as the obese cluster, is comprised of the highest proportion of Hispanic youth (16.7%

compared to 2.8% in Cluster 1). These patterns are consistent with previous studies showing that

African-American, American Indian, Hispanic, and Asian/Pacific Islander youth with T1D are

more likely to have higher HbA1c levels compared with non-Hispanic white youth (Kahkoska

et al., 2018; Petitti et al., 2009) and the highest prevalence of overweight and obesity in the set-

ting of T1D has been reported among those of Hispanic/Latino descent at approximately 46.1%

(Minges et al., 2017). Cluster 1, which showed the most clinically favorable weight-glycemia

phenotype (i.e. mean BMIz and HbA1c levels closest to clinical targets), also showed the high-

est markers of socioeconomic position, including maximum parental education and use of pri-

vate health insurance. Subgroups with overweight and obesity comprised a higher proportion

of females, consistent with multiple studies showing that females with T1D are more likely to

be overweight and/or obese than males (Fröhlich-Reiterer et al., 2014; Manyanga et al., 2016;

Minges et al., 2016, 2017). Additionally, these subgroups exhibit higher insulin pump use, which

has been reported previously in the literature (Boucher-Berry et al., 2016; Fröhlich-Reiterer et al.,

2014) but with mixed evidence (Garg et al., 2017; Mehta et al., 2017; Pańkowska et al., 2008).
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Together, these findings confirm the heterogeneity in clinical presentation as well as underlying

factors that may drive that presentation of disease, and the identified differences between sub-

groups may serve as key intervention points in future work to target treatment to the different

needs across subgroups in precision medicine interventions.

3.5 Discussion

Cluster analysis remains a common choice in the identification of disease subgroups. How-

ever, to our knowledge, there are no proposed methods that cluster directly on the outcomes of

interest with guidance from other patient factors. The proposed method takes this direct approach

and, in contrast to semi-supervised clustering methods (Bair and Tibshirani, 2004; Gaynor and

Bair, 2017; Koestler et al., 2013), accepts multivariate outcomes. The clinical significance of the

proposed method lies in the use of multivariate outcomes as well as the applicability in scenarios

where the outcomes are suspected to be extremely noisy surrogates for a true underlying class.

Especially in the precision medicine setting, the proposed method shows promise in identifying

clinically relevant disease subtypes, as we have shown in both simulation and analysis of the

SEARCH for Diabetes in Youth dataset.

It is worth noting that such clinical applications require a great deal of guidance from a

subject-matter expert. The outcomes Y must be carefully selected using subject-matter knowl-

edge in contrast to traditional methods where several variables are clustered upon even though

only a small subset of them may be important (Gaynor and Bair, 2017; Witten and Tibshirani,

2010). Additionally, to retain clinical interpretation of the resulting cluster assignments, it is not

recommended to include high dimensional Y .

There exist many avenues for future research with the proposed method. For example, se-

lection of the number of clusters k remains a difficult task (Charrad et al., 2014b). Comparison

to a multivariate version of preweighted sparse clustering may also be of interest to investigate

whether it is more efficient to identify clusters using the sparse version ofX or the guided ver-

sion of Y . Finally, there may be more information regarding the disease-subtypes lying in the
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within-patient variances and/or longitudinal outcomes. For example, the KmL algorithm was de-

veloped to identify clusters from repeated measures (Genolini and Falissard, 2010), and Gaussian

mixture models have been used to cluster observations based on differing means and variances

(Banfield and Raftery, 1993). These methods may also benefit from feature-guidance prior to

applying clustering techniques when the observations are especially noisy.
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CHAPTER 4: ESTIMATING INDIVIDUALIZED TREATMENT REGIMES FROM
CASE-CONTROL DESIGNS

4.1 Introduction

Finally, we return to the problem setting in which we wish to estimate the optimal individu-

alized treatment regime (ITR) as in Chapter 2, thereby identifying treatment-response subgroups.

However, rather than a randomized controlled trial or crossover design, we are now interested in

the case-control design where sampling is stratified by disease status. In today’s world of rapid

technological advances, big data, and electronic health records (EHR), case-control studies have

proven to be useful designs to analyze the wealth of information available to us for precision

medicine objectives (Adams et al., 2014; Palen et al., 2012; Wu et al., 2010). For example, case-

control studies from biobanks, or collections of biological samples, health information, and/or

DNA (Olson et al., 2014), and EHRs (Smith et al., 2005) have led to the identification of various

genetic biomarkers for elevated risk in coronary heart disease (Keavney et al., 2004), lung cancer

(Zhou et al., 2002), and alzheimer’s (Khachaturian et al., 2004; Qiu et al., 2004). In this chapter,

we propose implementing the generalized outcome weighted learning (GOWL) framework, ad-

justed by a selection factor, to estimate the optimal ITR from case-control data. This selection

factor is principal in accounting for the selection bias inherent in case-control data which are not

representative of the total population.

In a case-control study, patients are randomly selected in a stratified manner from disease

case and healthy control groups (Armenian, 2009; Keogh and Cox, 2014). Case-control studies

are particularly useful in settings where the disease of interest is rare or expensive to study or

it is unethical to randomize individuals to the observed treatments being studied (e.g., smoking

41



status on health outcomes) (Breslow and Day, 1980). Unfortunately, case-control designs have re-

mained widely unexplored as a reasonable option for estimating the optimal ITR, namely because

they do not generalize well to the overall population (Breslow, 1996; Glicksberg et al., 2018;

Hernán and Robins, 2018).

Consider the Vascular Quality Initiative (VQI) infrainguinal bypass module (Woo et al.,

2015) which includes data on over 45,000 patients with peripheral artery disease (PAD), a cardio-

vascular disease in which patients’ narrowed arteries result in reduced blood flow to the limbs,

leading to claudication, or discomfort when walking (Hiatt, 2001). PAD may be further compli-

cated in the presence of atherosclerosis, when a buildup of plaque in the blood vessels addition-

ally restrict blood flow (Hirsch et al., 2001). Current guidelines for symptomatic PAD patients

undergoing bypass recommend pre-operative antiplatelets and statin drugs (Gerhard-Herman

et al., 2017); however, in practice, patients often times receive neither, much less both (Cambou

et al., 2010). Thus, it is of interest to identify the optimal ITR among symptomatic PAD patients

undergoing bypass to inform clinical recommendations in the case where prescription of only

one drug is applicable. A randomized controlled trial may apply here, but data on the disease

and treatments of interest are readily available and a cohort or case-control study may be more

suitable.

Modifications to Q-learning and outcome weighted learning (OWL) have been made to es-

timate the optimal ITR from observational data. For example, Moodie et al. (2012) examines

methods for eliminating confounding variables for the treatment-effect in the observational set-

ting. Wang et al. (2016) adjust for confounding via propensity scores fit by random forest to

handle high-dimensional electronic health record data commonly used for observational studies.

However, to our knowledge, no work has been established for estimating the optimal ITR from

case-control studies where the study sample may be quite distinct from the total population.

The rest of this chapter is organized as follows. In Section 4.2, we review OWL and gener-

alized outcome weighted learning (GOWL) before introducing the proposed method for case-

control studies. We then provide the theoretical properties of the proposed method in Section
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4.3. Sections 4.4 and 4.5 present the performance of the proposed estimator through numerical

experiments and application to a dataset on cardiovascular disease patients with comparisons to

naive and cohort methods.

4.2 Methodology

In this section, we will first review some existing methods for estimating the optimal ITR

from a weighted classification standpoint. We then introduce the proposed method, which we will

from here refer to as “case-control GOWL.”

4.2.1 Existing Methods

Assume we observe i.i.d. data (Xi, Ai, Yi) for i = 1, . . . , n, from either a randomized clinical

trial or an observational cohort study. A ∈ A = {−1, 1} denotes binary treatment assignment or

observed exposure,X ∈ X is a p-dimensional vector of covariates, and Y ∈ R is a univariate

reward, bounded by M < ∞, for which greater values are desired. Assume further that Y is of

the form

Y = µ(X) + Ac(X) + ε,

where µ(X) is a main effect of the covariates, c(X) is the treatment-covariate interaction, and

ε has mean 0 and variance σ2
ε . Note that under this model, the reward is maximized whenever

sign{A} = c(X). Next, denote Y ∗(a) as the counterfactual outcome under treatment a. We

then make three causal assumptions (Rubin, 1978) to connect the counterfactual outcomes to

the observed data: P (A = a|X) > 0 with probability 1, {Y ∗(1), Y ∗(−1)} is independent of A

conditional onX , and Y = Y ∗(a). These are known as positivity, conditional exchangeability,

and consistency, respectively.

Formally defined, any ITR, D is a decision rule which maps from the covariates space to the

treatment space. The optimal decision rule D0 is the ITR from the class of all decision rules D
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that maximizes the value function (Qian and Murphy, 2011),

V(D) = E

[
Y 1{A = D(X)}

P (A|X)

]
, (4.1)

where P (A|X) = Pr(A = a|X = x) is the propensity score for treatment. Therefore, we may

define D0 as

D0 = argmin
D∈D

E

[
Y 1{A 6= D(X)}

P (A|X)

]
. (4.2)

OWL views the problem as one of weighted classification, where the class labels are Ai and

the weights are Yi (Zhao et al., 2012). By doing so, support vector machine methods (Cortes and

Vapnik, 1995) may be applied by using the hinge loss in place of 0-1 loss in (4.2). Unfortunately,

estimates of D0 from OWL tend to assign patients to their observed Ai when Yi is negative (Chen

et al., 2018; Wang et al., 2016; Zhou et al., 2017), spurring the development of improvements

to OWL which better handle negative rewards such as GOWL (Chen et al., 2018). GOWL alter-

natively uses |Yi| as the weights and Aisign{Yi} as the class labels with a piece-wise hinge loss

function.

4.2.2 Case-Control Generalized Outcome Weighted Learning

In a case-control design, n1 patients are randomly drawn from the control or healthy popula-

tion, and n0 patients are randomly drawn from the cases or the diseased population for a total of

n = n1 + n0 in the sample. Because of the stratified sampling in case-control studies, the study

sample is not representative of the overall population, particularly in the scenario where the dis-

ease is rare (Glicksberg et al., 2018). In some scenarios, n0 may include all cases from a dataset.

Due to the nature of a case-control design, the outcome is binary, i.e., Y ∈ {0, 1}. Contrary to

popular convention, we will denote cases as Y = 0 and controls as Y = 1 so that higher values

of Y are still desirable. Otherwise, we will retain the same notation from before. Oftentimes, a

matched selection process is used whereby patients are matched on some subset ofX . For the

proposed method, matching is not necessary.
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Next, let us define q(X) and p(X) as the density ofX in the study sample and the overall

population, respectively. Because of selection bias, maximization of (4.1) from the empirical data

may not provide a consistent estimator for D0. Thus, we propose inclusion of a “selection factor,”

namely θ(X) = p(X)/q(X) such that we instead minimize

E

[
|θ(X)Y |
P (A|X)

1{A 6= D(X)}
]
. (4.3)

Under Lemma 4.1, optimization of (4.3) is equivalent to optimization of (4.2); the proof is left to

Appendix B.

Lemma 4.1. Under the given assumptions,

D0 = argmin
D∈D

Eq

[
θ(X)Y

P (A1|X)
1{A1 6= D(X)}

]
.

To estimate D0, we then minimize the objective function given in (4.4) for f ∈ F , a repro-

ducing kernel Hilbert space. Here, ψ(u, v) = max{1− sign(u)v, 0}, λn is a tuning parameter, and

|| · || is the L2 norm. For details on solving the minimization problem in (4.4), we defer to Chen

et al. (2018) and Kimeldorf and Wahba (1970).

argmin
f∈F

1

n

n∑
i=1

|θ(Xi)Yi|
P (Ai1|Xi)

ψ{Yi, Aif(Xi)}+ λn||f ||2, (4.4)

Especially with large p, estimation of θ(X) can be very difficult using typical kernel den-

sity estimation (Parzen, 1962; Rosenblatt, 1956; Silverman, 2018). However, by Lemma 4.2, we

may more easily estimate θ(X) from estimates of P (A = a|X) and P (Y = y|X, A = a), for

a ∈ {−1, 1} and y ∈ {0, 1}, obtained through regression (e.g., random forests). We further as-

sume knowledge of P (Y ), either from previous literature or a representative database. Although

selection bias is present in the sample, we may still obtain valid estimates for P (Y |X, A) (Van

Der Laan, 2008), and a weighted model for P (A|X) may be fit (Walsh et al., 2012). Particularly,
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in our implementation with random forests, each individual may be weighted for sampling into

each bootstrapped tree.

Lemma 4.2. Let rk = nk/n for k = 0, 1. Under the given assumptions,

θ(X) =

 ∑
a∈{−1,1}

P (A = a|X)

[
r0P (Y = 0|X, A = a)

P (Y = 0)
+
r1P (Y = 1|X, A = a)

P (Y = 1)

]
−1

.

Thus, we define our estimated decision function as

f̂ ∗n = argmin
f∈F

1

n

n∑
i=1

|θ̂(Xi)Yi|
P (Ai|Xi)

ψ {Yi, Aif(Xi)}+ λn||f ||2, (4.5)

and our proposed estimator of the optimal ITR is D̂∗(X) = sign
{
f̂ ∗n(X)

}
, where

D∗ = argmin
D∈D

E

[
|θ(X)Y |
P (A|X)

ψ{Y,Af(X)}
]
.

4.3 Theoretical Results

LetR(f) = E[Y 1{A 6= sign[f(X)]}/P (A|X)] be the risk under 0-1 loss andRψ(f) =

E
[
θ̂(X)|Y | ψ {Y,Af(X)} /P (A|X)

]
be that under ψ-loss with the estimated adjustment for

selection bias. Under Theorem 4.1, we have Fisher consistency for D∗(X) = sign{f ∗(X)},

where f ∗(X) = argminf∈F Rψ(f).

Theorem 4.1. Under the given assumptions, D∗(X) = D0(X).

Next, let F be the closure of F and f0 and f ∗0 be the minimizers ofR(f) andRψ(f), respec-

tively, over all functions f . Theorem 4.2 then provides us with global consistency.

Theorem 4.2. Let λn > 0 be a sequence such that λn → 0 and λnn → ∞ with probability

going to 1 as n → ∞. For any distribution P of (X, A,Y ), limn→∞Rψ(f̂ ∗n) →P Rψ (f ∗).

Furthermore, limn→∞R(f̂ ∗n)→P R (f0) whenever f ∗0 ∈ F .
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4.4 Numerical Experiments

To demonstrate the performance of the proposed method, we present results from a set of

simulations. The covariates were generated as 50 i.i.d. variables from a U(−1, 1) distribution.

A was sampled from {−1, 1} with probability expit{3(1 + X1 + X2)} of being 1. Y was sam-

pled with probability expit{5 − X1 − 2X2 + X3 + 5A[1 + 3(X1 + X2)]} from a binomial

distribution. A population dataset of size npop = 100, 000 was generated. Under the data gener-

ation described, the population dataset contained a 9.1% prevalence of cases. The allocation of

the true optimal ITR, i.e. sign{1 + 3(X1 + X2)}, was 34.7% to A = −1 and 65.3% to A = 1.

Simulations were repeated 1,000 times each, varying the sample size of the study dataset across

n = 50, 100, 200, 500, 1000 where cases and controls were sampled at a 1:1 ratio.

A random forest was fit for P (Y |X, A) and a weighted random forest was fit for P (A|X)

(Breiman, 2001; Ishwaran et al., 2008) using the randomForestSRC R package (Ishwaran and

Kogalur, 2007), cases were weighted by P (Y = 0) and controls were weighted by P (Y =

1). P (Y ) was assumed to be known from the population dataset. The proposed method was

compared to the “naive” approach in which a case-control sample is analyzed but there is no

correction for selection bias. A “cohort” method was also performed for comparison in which

data of size 2n were randomly sampled from the population dataset. For all methods, GOWL was

performed using the DynTxRegime package in R, version 3.4.1 (Holloway et al., 2018; R Core

Team, 2017). The kernel was correctly specified to be linear, and λn was selected from the grid

[0.1, 0.5, 1, 5, 10, 50, 100, 500]/n via 5-fold cross validation.

Figure 4.1 displays the average classification accuracy and

Pnpop [Y 1{A = D̂∗(X)}]/P (A|X)

Pnpop [1{A = D̂∗(X)}/P (A|X)]
,

the estimated mean value (Qian and Murphy, 2011) where Pn is the empirical mean. At smaller

sample sizes, the proposed and naive methods perform similarly in accuracy, with some advan-

tage over the cohort method. With larger n, however, the proposed method performs somewhere
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Figure 4.1: Average classification accuracy (A) and estimated value (B) across 1,000 replications
at each sample size n in simulation.

between the naive and cohort approaches in terms of classification accuracy. The estimated value

for the three methods appear to be parallel as n increases, with the proposed method performing

somewhere in between the naive and cohort methods. These results show promise for the pro-

posed method at certain sample sizes, although the exact scenario in which the proposed method

will greatly outperform the others is still unclear. We believe the data generation mechanism must

produce data which are sufficiently different in p(X) and q(X) while maintaining a reasonable

difference in treatment effect.

Results on the mean square error (MSE) across all simulations are provided in Table 4.1 for

estimating θ(X). Although the estimates decrease with n, the rate of convergence toward 0 may

be of concern. These results merit further investigation into the algorithm for estimating θ(X).

It is known that tree-based methods produce non-smooth estimates (Friedman et al., 2001); in

the future, we may instead use a different regression technique such as multivariate adaptive

regression splines (Friedman, 1991).

Table 4.1: Mean (sd) mean square error for estimating θ(X).

n 50 100 200 500 1000
MSE 0.44 (0.07) 0.52 (0.05) 0.38 (0.04) 0.34 (0.02) 0.31 (0.02)
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4.5 Treatment Subgroups for Peripheral Artery Disease

Over 200 million people worldwide have peripheral artery disease (PAD) including estimates

of between 8 and 12 million people in the United States alone (Mozaffarian et al., 2015). PAD

disproportionately affects older adults, including up to 20% of those aged 65 and older in the US.

Significant individual- and health care system-level consequences result if PAD is not managed

appropriately (Hirsch et al., 2008). Much of the burden is preventable by way of modifiable risk

factors such as diabetes and smoking (Gerald R. Fowkes et al., 1992; Kannel, 1973; Muntner

et al., 2005; Navas-Acien et al., 2004; Selvin et al., 2006; Wattanakit et al., 2005). Poor risk fac-

tor management causes adverse events including limb- and life-threatening sequelae (Dormandy,

2000). As guidelines for PAD have been implemented, evaluation of adherence to these recom-

mendations have shown reductions of adverse events by nearly 50% (Armstrong et al., 2014).

Thus, there is tremendous benefit to using evidence-based practices in the management of PAD in

order to limit downstream morbidity and mortality and associated health care costs.

The American College of Cardiology/American Heart Association (AHA/ACC) release up-

dated guidelines on managing lower extremity PAD (Gerhard-Herman et al., 2017) every five

years. These guidelines provide a “Class of Reccomendation” that is meant to describe the “mag-

nitude and certainty of benefit in proportion to risk” where Class I recommendations are consid-

ered best practices meant to indivate true guideline-directed management and therapy. Guidelines

are unique to patients believed to be at risk for PAD, those with symptomatic PAD being medi-

cally managed, and those being considered for revascularization. Among patients being consid-

ered for/undergoing revascularization, Class I recommendations define best practices for medical

management, imaging methods to assess anatomy, and specific operative techniques. All patients

undergoing surgical bypass should receive antiplatelet (e.g., aspirin) and statin therapy to reduce

the risk of subsequent major adverse events. However, many are not prescribed one or either in

real world practice, and patterns often stray from the recommended guidelines (Cambou et al.,

2010). It is compelling to consider the combination of these treatments and whether patients may
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benefit from receiving antiplatelet or statin drugs alone. Therefore, a precision medicine approach

could be helpful in identifying the relevant treatment-subgroups of PAD to reduce the occurrence

of adverse events..

The Vascular Quality Intiative (VQI) was designed to improve the quality, safety, effective-

ness, and cost of vascular helath care. As of January 2019, the VQI has 536 participating centers

and includes 5,215 physicians. The VQI infrainguinal bypass module was used to identify adult

patients (≥ 18 years) who underwent bypass for symptomatic PAD between 2007 and 2018. Pri-

mary outcomes included major adverse limb events (MALE), ipsilateral amputation and mortality.

MALE includes those returning to the operating room for thrombosis, thrombectomy/lysis revi-

sion of the graft, graft failure, or ipsilateral major limb amputation. Patients may be prescribed

a statin, antiplatelets, neither, or a combination treatment prior to the bypass procedure. The out-

come Y was coded to be a case if any of the aforementioned adverse events occurred. Covariates

included in the model were diabetes, gender, age, prior history of coronary heart failure (CHF),

chronic obstructive pulmonary disease (COPD), dialysis, and living status (home, nursing home,

or homeless).

Case-control GOWL was fit alongside the naive case-control and cohort methods, with n =

500. A linear kernel was used in all methods, searching the grid [0.1, 0.51, 5, 10, 50, 100, 500]/n

for λn in 10-fold cross validation. The dataset was constrained to the 9, 716 patients receiving

only one of the two treatments, and patients were selected via stratified sampling for the case-

control methods at a 1:1 ratio and via random sampling with equal probability for the cohort

method. The observed value in the constrained dataset was 38.50%, i.e., we observed 38.50% of

individuals to have an adverse event occur. The estimated value following the estimated optimal

ITR from case-control GOWL was 36.67%, while that from the naive and cohort methods were

37.16% and 37.50%, respectively. Although all methods lead to rather marginal improvements on

the observed prevalence, the proposed method leads to the greatest decrease in the prevalence of

adverse events.
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Table 4.2 provides the proportional make up or average of covariates in each subgroup, as

observed in the dataset and among those who followed the case-control GOWL estimated optimal

ITR. In the observed dataset, those prescribed statin did not greatly differ from those prescribed

antiplatelets; however, 54% of those prescribed statin were diabetic compared to 39% of those

prescribed antiplatelets. In contrast, according to the estimated optimal ITR, the subgroup for

which statin is recommended over antiplatelets were older and contained a much larger propor-

tion of females, diabetics, and individuals with history of CHF and/or COPD. The statin sub-

group also had a slightly different proportion of patients on dialysis, in nursing homes, or who

were homeless.

Table 4.2: Proportional make up for each subgroup or mean (sd) for age.

Case-Control GOWL extra1Observedextra1
Antiplatelets Statin Antiplatelets Statin

Age (years) 56.69 (7.85) 73.84 (7.38) 66.70 (11.89) 67.49 (10.75)
Female 0.18 0.37 0.68 0.68
Diabetes 0.38 0.55 0.39 0.54
CHF 0.04 0.24 0.14 0.16
COPD 0.13 0.36 0.25 0.28
Dialysis 0.06 0.09 0.07 0.07
Home Living 0.97 0.97 0.96 0.96
Nursing Home Living 0.02 0.03 0.04 0.03
Homeless 0.01 < 0.01 < 0.01 < 0.01

Results from this analysis corroborate the findings from other studies such as Mortensen

et al. (2016) that statin drugs performed better in reducing the number of cardiovascular disease

events in individuals with increased levels coronary artery calcium and carotid plaque burden,

risk factors for coronary heart failure and comorbidities with diabetes and dialysis. Targetting

treatment of PAD patients with statin or antiplatelets is a first step in minimizing adverse events.

Future work should confirm these findings and investigate on the effects of combination therapy

in comparison to statin or antiplatelet drugs only.
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4.6 Discussion

In this chapter, we have proposed a weighted classifier for estimating the optimal ITR from

case-control data. The classifier accounts for selection bias in the form of a selection factor,

θ(X), which may easily be estimated from the study sample using regression methods. The

estimator is simple to implement using the existing R packages, and, in simulation, competes

well with the naive estimator. Case-control GOWL can perform well in some real world settings,

such as the PAD example given in this chapter.

Case-control GOWL stands to show improvement both in simulation and in the real data

setting, however. Further numerical experiments where p(X) and q(X) are sufficiently different

are necessary to observe the potential in accuracy and estimated value gains that case-control

GOWL may have over the naive method. Furthermore, simulation scenarios varying rarity of

the outcome and with more complicated treatment-covariate interactions (solved by a Gaussian

kernel) are necessary, as case-control studies are not always in the setting of rare outcomes or

linear treatment-covariate interactions. Finally, both the numerical experiments and analysis on

PAD patients were limited in computational performance. Increasing the sample size became

computationally inefficient, and, with smaller sample sizes, an issue of computational singularity

could occur quite often. This is typically due to limitations in R regarding its quadratic solver.

Attempting the analysis in Python would be of interest, particularly with multiple replications in

the PAD analysis to assess the stability of the results.

Aside from the aforementioned future steps, there are several extensions on the proposed

method that may be explored. For example, the proposed method considers only binary treat-

ment options. In the case of more than 2 treatment options, a series of binary classifiers may be

implemented (Dietterich and Bakiri, 1994). In the PAD example discussed here, we may next

compare the combination of treatments, statin and antiplatelets, to the optimal option between

statin and antiplatelets alone. Alternatively, a single multi-category classifier may be used, as in

multi-category support vector machines (Lee et al., 2004; Liang et al., 2018; Zhu et al., 2004).
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Additionally, the residual from fitting a model for E[Y |X] may be used in place of Y in the clas-

sifier, as proposed by Fu et al. (2016) and Zhou et al. (2017), who have seen favorable results

using residual weights. Finally, methods such as those suggested by Chen et al. (2018), Song

et al. (2015), Xu et al. (2015), and Zhou et al. (2017) may be incorporated for variable selec-

tion, e.g., an L1 penalty could be imposed during optimization to simultaneously restrict model

complexity and perform variable selection.
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CHAPTER 5: DISCUSSION AND FUTURE RESEARCH

With advancements in medicine, the need for precision medicine has become abundantly

clear. Diseases and treatment-response may present with great heterogeneity from patient to pa-

tient, and a “one size fits all” approach can no longer be considered appropriate in all situations.

This dissertation presents work to expand pre-existing methodology into new frameworks to

make more efficient use of the data that investigators collect or have already collected. Chapters

2 and 4 discuss bringing generalized outcome weighted learning, a weighted classification tech-

nique, into the realms of two study designs that have been, to date, unexplored for ITR estimation.

The theoretical groundwork for these methods have been laid, and the method for crossover stud-

ies appears to perform well in comparison to competing methods. While the method proposed

in Chapter 4 has greater room for improvement, current simulations and application to a dataset

on peripheral artery disease patients show promising results in comparison to the naive method.

Lastly, we proposed a novel clustering technique in Chapter 3 which we believe may be incorpo-

rated with nearly any pre-existing method wherein the variables are believed to contain a high

degree of noise. The method performs quite well in simulation, and the resulting clusters from

application to SEARCH for Diabetes in Youth cohort 1 visit data revealed clinically meaning-

ful separation of individuals, both in weight-glycemia phenotypic differences and demographic

differences. We now discuss the current and future challenges ahead; next steps for the work

presented in this dissertation to take in the months or years to come.

As mentioned in Section 2.6, there are a number of potential extensions for estimating the

ITR from a crossover study. One of the largest drawbacks of all OWL techniques is the restriction

to two treatment arms. Liang et al. (2018) propose using an outcome weighted deep learning
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method to consider, not only multiple treatment arms, but also cross-arm combinations of treat-

ments. With proper adjustment for carryover effects, the concepts from outcome weighted deep

learning and the crossover design could together be very powerful in estimating ITRs from a vari-

ety of settings. This extension would additionally address another drawback to crossover GOWL

by being able to consider data from a crossover study with more than 2 periods and more than

2 treatments. Eventually, such work could also lead to application to cluster randomized trials

and longitudinal study designs. Further simulations may also be considered with more scenarios

and comparison methods. For example, scenarios in which c(X) contain complex interactions or

extreme non-linearity are of interest for comparison.

While the numerical experiments presented in Section 3.3 shows promise, further simula-

tions are required to examine the effect of varying the noise in bothX and Y . Comparison to

clustering onX alone andX and Y together would provide additional evidence to the validity

of the proposed method. Finally, comparisons to other semi-supervised clustering methods, such

as preweighted sparse clustering (Gaynor and Bair, 2017), are of interest. However, at the present

time, R packages for such methods are still in preparation.

The clustering method proposed in Chapter 3 may be continue to be explored in a variety of

contexts. For example, application to categorical, repeated measure, or ordinal outcomes would

prove the versatility of the proposed method. Additionally, we may explore the potential gains

from using other clustering methods such as combinatorial or mixture model methods. Lastly, it

is of interest to revisit the original idea, as presented in the preliminary dissertation document,

wherein the variance and correlation estimates of the outcomes are included as cluster variables.

The results from Chapter 3 are encouraging, but the proper scenario in which clustering on the

variance and correlation estimates in addition to the mean estimates remains unclear.

Similarly, the setting in which the estimator proposed in Chapter 4 will exhibit significant

gains over other methods also remains unclear. We believe the density ofX must differ greatly

between the sample and true populations, but the data propagation technique to do so while main-

taining a reasonable treatment effect has proven difficult thus far. In the future, we hope to inves-
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tigate this issue alongside the performance of the estimation technique for θ(X). Again, applica-

tion to multiple treatments, like that proposed by Liang et al. (2018), would prove highly useful.

For example, with the data on symptomatic PAD patients, we may further research into whether

the combination of antiplatelet and statin drugs can reduce the overall prevalence of adverse

events compared with either of the drugs alone. Other improvements on the proposed method in-

clude considering multiple treatments and decision time points. Additionally, BOWL and SOWL

(Zhao and Zeng, 2013) have been developed as extensions of OWL to estimate a sequence of de-

cisions as the optimal ITR. With the wealth of data available with EHRs and biobanks, methods

to combine case-control GOWL with BOWL or SOWL could become powerful tools in estimat-

ing the multiple time point optimal ITR.

Finally, the simulations performed in Chapters 2 and 4 were greatly limited by the poor

quadratic solver in R version 3.4.1 (R Core Team, 2017). Other software in programming lan-

guages such as Python and MATLAB are known to have more efficient solvers with fewer prob-

lems of singularity. Reprogramming the simulations in one of these languages may provide great

improvements in the computational efficiency.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

Clinical Details for the FAME Estimated ITR

92% of study participants, (n = 49) were assigned to the HFLS diet according to crossover

GOWL to maximize change in fullness from baseline. To characterize the subgroup that, on aver-

age, experiences a larger increase in patient reported fullness, Figure A.1 displays the distribution

of continuous features across the estimated subgroups. Those assigned to the HFLS diet tend to

be older with higher A1c. Because the HSLF group is small (n = 4), two-sample t-tests would

not be appropriate to test for significant differences between groups, and trends observed in Fig-

ure A.1 should be confirmed in future studies. However, sex (p = 0.1131), ethnicity (p = 1), and

Tanner stage (p = 0.4427) were tested using Fisher’s exact tests. All tests were non significant at

the 0.05 level.

Figure A.1 also displays the distribution of continuous features across the estimated sub-

groups to minimize the change in hunger from baseline. 51% (n = 27) of participants were

assigned to HFLS. Those assigned to HFLS tend to be older, but differences in other covariates

are not apparent. Although the sample in the HSLF is larger when we consider hunger as the

outcome, both samples are still rather small. For this reason, two-sample t-tests are still not ap-

propriate. Fisher’s exact tests again did not yield any significant differences in sex (p = 0.5857),

ethnicity (p = 1), or Tanner stage (p = 0.7040).

In conclusion, using crossover GOWL appears to be effective for estimating the optimal ITR

to maximize the change in satiety. Future research should confirm these subgroups in large sam-

ple sizes to better compare differences across features. If verified, future recommendations for

adolescent minorities can be tailored by age and A1c levels to improve weight loss. Studies on

overweight and obese minority adolescents are still needed to research alternative interventions

for those that report feeling more satiated from the typical Western diet (HSLF).
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Figure A.1: Distribution of features across the crossover GOWL estimated diet-outcome sub-
groups for both fullness and hunger outcomes

Theoretical Details for Crossover GOWL

A.0.1 Assumptions

The following assumptions are made for the theory behind the method proposed in Chapter

2.

1. Positivity: P (A1 = a|X = x) ≥ π0 > 0 with probability 1

2. Conditional Exchangeability: {Y ∗(−1), Y ∗(1)} ⊥ A1|X

3. Consistency: Yk = Y ∗(ak)− δA1(X)1{k = 2}

4. Outcomes follow the model

Yk = µ(X) + Akc(X) + δA1(X)1{k = 2}+ εk,

for periods k = 1, 2. ε = (ε1, ε2)
> has a semi-definite covariance matrix, Σε.
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5. There exist M0,M1 <∞ such that |Yk| < M0 almost surely, |δA1(X)| < M1 almost surely,

and P
(
|δ̂A1(X)| < M1

)
→ 1 as n→∞

6. P
[
1{sign[R̂] 6= sign[R]}

]
= oP (λn)

A.0.2 Proof of Lemma 2.1

The optimal ITR is D0 = argmaxD∈D E[Y ∗{D(X)}]. Note that, under Assumption (4),

D0(X) = sign{c(X)}. The expected treatment response difference between treating according

to D0 and treating opposite to D0 is

E [Y ∗{D0(X)} − Y ∗{−D0(X)}] = E[Y ∗{sign[c(X)]} − Y ∗{−sign[c(X)]}]

= 2|c(X)|

≥ E[Y ∗{D(X)} − Y ∗{−D(X)}],

for all D ∈ D. Thus, the optimal ITR also maximizes the treatment-response difference, or

D0 = argmaxD∈D E[Y ∗{D(X)} − Y ∗{−D(X)}]. Therefore, it can be seen that

D0 = argmax
D∈D

E [{Y ∗(1)− Y ∗(−1)}D(X)]

= argmax
D∈D

E

[
1{A1 = D(X)}

P (A1|X)
[Y1 − Y2 + δA1(X)]

+
1{A1 6= D(X)}

P (A1|X)
[Y2 − δA1(X)− Y1]

]
= argmin

D∈D
E

[
Y1 − Y2 + δA1(X)

P (A1|X)
1{A1 6= D(X)}

]
= argmin

D∈D
E

[
R

P (A1|X)
1{A1 6= D(X)}

]
,

where the second equality follows from Assumption (3). This proves the result.
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A.0.3 Proof of Theorem 2.1

This proof follows from Lemma 2.1 and results from Lin (2002). Recall that ψ(u, v) =

max{1 − sign(u)v, 0}. Minimizing the risk,Rψ(f) is equivalent to minimizing the conditional

risk,

Rψ(f,x) = E

[
|R|

P (A1|X)
ψ{R,A1f(X)}

∣∣∣X = x

]
,

for every fixed x ∈ X . Let R+ = R1{R ≥ 0} and R− = R1{R < 0}. By the law of total

expectation, the conditional risk becomes

Rψ(f,x) = E
[
|R| ψ{R, f(X)}

∣∣∣X = x, A1 = 1
]

+ E
[
|R| ψ{R,−f(X)}

∣∣∣X = x, A1 = −1
]

= E
[
R+ max{1− f(X), 0} −R−max{1 + f(X), 0}

∣∣∣X = x, A1 = 1
]

+ E
[
R+ max{1 + f(X), 0} −R−max{1− f(X), 0}

∣∣∣X = x, A1 = −1
]
.

Next, note thatRψ{sign(f),x} < Rψ(f,x) whenever f(x) 6∈ [−1, 1]. For example, when

f(x) < −1, the conditional risk reduces to

[1− f(x)]
{
E
[
R+
∣∣∣X = x, A1 = 1

]
− E

[
R−
∣∣∣X = x, A1 = −1

]}
,

which is monotonically increasing as f(x) → −∞. A similar argument is made for when

f(x) > 1. Thus, we restrict our search to f(x) ∈ [−1, 1]. Then,

Rψ(f,x) = E
[
R+ −R−

∣∣∣X = x, A1 = 1
]

+ E
[
R+ −R−

∣∣∣X = x, A1 = −1
]

+ f(X)
{
−E

[
R+ −R−

∣∣∣X = x, A1 = 1
]

+ E
[
R+ +R−

∣∣∣X = x, A1 = −1
]}

= E
[
|R|
∣∣∣X = x, A1 = 1

]
+ E

[
|R|
∣∣∣X = x, A1 = −1

]
+ f(X)

{
E
[
R
∣∣∣X = x, A1 = −1

]
− E

[
R
∣∣∣X = x, A1 = 1

]}
.
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If f ∗(x) minimizes the conditional risk, then f ∗(x) must have the sign opposite of the expres-

sion E
[
R
∣∣∣X = x, A1 = −1

]
− E

[
R
∣∣∣X = x, A1 = 1

]
, and thus D0(X) = sign{f ∗(X)}

A.0.4 Proof of Theorem 2.2

First, define the loss functions

Lψ(f) =
|R|

P (A1|X)
ψ{R,A1f(X)}

and

L̂ψ(f) =

∣∣∣R̂∣∣∣
P (A1|X)

ψ{R̂, A1f(X)}.

Next, we show that ||f̂ ∗n|| is bounded. For any f ∈ F ,

PnL̂ψ(f̂ ∗n) + λn||f̂ ∗n||2 ≤ PnL̂ψ(f) + λn||f ||2,

by definition of f̂ ∗n. If we choose f = 0, then, for all n large enough,

PnL̂ψ(f̂ ∗n) + λn||f̂ ∗n||2 ≤ PnL̂ψ(0) + λn||0||2

= Pn

{
|R̂i|

P (Ai,1|Xi)

}

≤ π−10 (2M0 +M1),

where the last inequality holds because of Assumptions (1), (5), and (6). Define M = π−10 (2M0 +

M1) <∞. Then, because PnL̂ψ(f̂ ∗n) ≥ 0, we have that λn||f̂ ∗n||2 ≤M.

For any bounded f , such as f̂ ∗n, we may show that
∣∣∣Pn {Lψ(f)− L̂ψ(f)

}∣∣∣ = oP (1) :
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∣∣∣Pn {Lψ(f)− L̂ψ(f)
}∣∣∣ ≤ P

∣∣∣Lψ(f)− L̂ψ(f)
∣∣∣+ oP (1)

≤ π−10 P
∣∣∣|R|ψ{R,A1f(X)} − |R̂|ψ

{
R̂, A1f(X)

}∣∣∣+ oP (1)

≤ π−10 P
∣∣∣max{|R|, |R̂|}

[
ψ{R,A1f(X)} − ψ

{
R̂, A1f(X)

}]∣∣∣+ oP (1)

≤ π−10 (2M0 +M1)P
∣∣∣ψ{R,A1f(X)} − ψ

{
R̂, A1f(X)

}∣∣∣+ oP (1)

≤ 2M(π0λn)−1(2M0 +M1)P
∣∣∣1{sign[R] 6= sign[R̂]}

∣∣∣+ oP (1)

= 2M2λ−1n oP (λn) + oP (1)

= oP (1)

Next, we have

PnLψ(f̂ ∗n) = PnLψ(f̂ ∗n) + PnL̂ψ(f̂ ∗n)− PnL̂ψ(f̂ ∗n)

≤ PnL̂ψ(f̂ ∗n) +
∣∣∣Pn {Lψ(f̂ ∗n)− L̂ψ(f̂ ∗n)

}∣∣∣+ λn||f̂ ∗n||2

≤ PnL̂ψ(f ∗) + λn||f ∗||2 +
∣∣∣Pn {Lψ(f̂ ∗n)− L̂ψ(f̂ ∗n)

}∣∣∣
≤ PnLψ(f ∗) + λn||f ∗||2 +

∣∣∣Pn {Lψ(f̂ ∗n)− L̂ψ(f̂ ∗n)
}∣∣∣+

∣∣∣Pn {Lψ(f ∗)− L̂ψ(f ∗)
}∣∣∣ .

Taking the lim sup on both sides, we find

lim sup
n→∞

PnLψ(f̂ ∗n) ≤ PLψ(f ∗) + oP (λn) ≤ PLψ(f̂ ∗n) + oP (λn)

Thus, it suffices to show that PnLψ(f̂ ∗n)−PLψ(f̂ ∗n)→P 0. Because λn||f̂ ∗n||2 is bounded by M ,

{
√
λnf : ||

√
λnf || ≤

√
M} is contained in a Donsker class. Note that ψ(u, v) is Lipschitz con-

tinuous with respect to v, and, thus, Lψ(f) is Lipschitz continuous with respect to f . Therefore,

{
√
λnLψ(f) : ||

√
λnf || ≤

√
M} is also Donsker. This gives us

√
nλn{Pn − P}Lψ(f̂ ∗n) = Op(1),

which implies {Pn − P}Lψ(f̂ ∗n) = oP (1). We finally arrive at
∣∣∣Rψ(f ∗)−Rψ(f̂ ∗n)

∣∣∣ = oP (1).
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Furthermore, when f ∗0 ∈ F , f ∗0 = f ∗, and

∣∣∣R(f̂ ∗n)−R(f0)
∣∣∣ ≤ ∣∣∣Rψ(f̂ ∗n)−Rψ(f ∗0 )

∣∣∣ = oP (1),

where the first inequality holds from Bartlett et al. (2006).
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 4

Assumptions

The following assumptions are made for case-control GOWL.

1. Positivity: P (A = a)|X = x) > 0 with probability 1

2. Conditional Exchangeability: {Y ∗(−1), Y ∗(1)} ⊥ A|X

3. Consistency: Y = Y ∗(ak)

4. Outcomes follow the model

Y = µ(X) + Ac(X) + ε,

where ε has variance σ2
ε

Proof of Lemma 4.1

Note that the optimal ITR may be expressed as

D0 = argmin
D∈D

E

[
Y

P (A|X)
1{A 6= D(X)}

]
= argmin

D∈D

∫
X
p(X

Y

P (A|X)
1{A 6= D(X)}dX

= argmin
D∈D

∫
X

q(X)

q(X)
p(X)

Y

P (A|X)
1{A 6= D(X)}dX

= argmin
D∈D

Eq

[
p(X)

q(X)

Y

P (A|X)
1{A 6= D(X)}

]
= argmin

D∈D
Eq

[
θ(X)Y

P (A|X)
1{A 6= D(X)}

]
.
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Proof of Lemma 4.2

Let r0 and r1 be the sample proportions of Y = 0 and Y = 1, respectively. Then, using

Bayes rule, we have

q(X, A) = r0P (X, A|Y = 0) + r1P (X, A|Y = 1)

=
r0p(X, A, Y = 0)

P (Y = 0)
+
r1p(X, A, Y = 1)

P (Y = 1)

=
r0P (Y = 0|X, A)p(X, A)

P (Y = 0)
+
r1P (Y = 1|X, A)p(X, A)

P (Y = 1)

= P (A|X)p(X)

[
r0P (Y = 0|X, A)

P (Y = 0)
+
r1P (Y = 1|X, A)

P (Y = 1)

]
.

Summing across A, we obtain

q(X) =
∑

a∈{−1,1}

P (A = a|X)p(X)

[
r0P (Y = 0|X, A = a)

P (Y = 0)
+
r1P (Y = 1|X, A = a)

P (Y = 1)

]
.

Finally, we see that

θ(X) =

[
q(X)

p(X)

]−1

=

 ∑
a∈{−1,1}

P (A = a|X)

[
r0P (Y = 0|X, A = a)

P (Y = 0)
+
r1P (Y = 1|X, A = a)

P (Y = 1)

]
−1

.

Proof of Theorem 4.1

This proof follows from Lemma 4.1 and results from Lin (2002). Recall that ψ(u, v) =

max{1 − sign(u)v, 0}. Minimizing the risk,Rψ(f) is equivalent to minimizing the conditional

risk,

Rψ(f,x) = E

[
θ̂(X)

|Y |
P (A|X)

ψ{Y,Af(X)}
∣∣∣X = x

]
,
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for every fixed x ∈ X . Let Y + = Y 1{Y ≥ 0} and Y − = Y 1{Y < 0}. By the law of total

expectation,

Rψ(f,x) = E
[
θ̂(X)|Y | ψ{Y, f(X)}

∣∣∣X = x, A = 1
]

+ E
[
θ̂(X)|Y | ψ{Y,−f(X)}

∣∣∣X = x, A = −1
]

= θ̂(X)E
[
Y + max{1− f(X), 0} − Y −max{1 + f(X), 0}

∣∣∣X = x, A = 1
]

+ θ̂(X)E
[
Y + max{1 + f(X), 0} − Y −max{1− f(X), 0}

∣∣∣X = x, A = −1
]
.

Next, note thatRψ{sign(f),x} < Rψ(f,x) whenever f(x) 6∈ [−1, 1]. For example, when

f(x) < −1, the conditional risk reduces to

θ̂(x)[1− f(x)]
{
E
[
Y +
∣∣∣X = x, A = 1

]
− E

[
Y −
∣∣∣X = x, A = −1

]}
,

which is monotonically increasing as f(x) → −∞. A similar argument is made for when

f(x) > 1. Thus, we restrict our search to f(x) ∈ [−1, 1]. Then,

Rψ(f,x) ∝ E
[
Y + − Y −

∣∣∣X = x, A = 1
]

+ E
[
Y + − Y −

∣∣∣X = x, A = −1
]

+ f(X)
{
−E

[
Y + − Y −

∣∣∣X = x, A = 1
]

+ E
[
Y + + Y −

∣∣∣X = x, A = −1
]}

= E
[
|Y |
∣∣∣X = x, A = 1

]
+ E

[
|Y |
∣∣∣X = x, A = −1

]
+ f(X)

{
E
[
Y
∣∣∣X = x, A = −1

]
− E

[
Y
∣∣∣X = x, A = 1

]}
.

If f ∗(x) minimizes the conditional risk, then f ∗(x) must have the sign opposite of the expres-

sion E
[
Y
∣∣∣X = x, A = −1

]
− E

[
Y
∣∣∣X = x, A = 1

]
, and thus D0(X) = sign{f ∗(X)}
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Proof of Theorem 4.2

Define the loss function under ψ-loss to be

Lψ(f) =
θ̂(X)|Y |
P (A|X)

ψ{Y,Af(X)}.

For any f ∈ F ,

PnLψ(f̂ ∗n) + λn||f̂ ∗n||2 ≤ PnLψ(f) + λn||f ||2.

In particular, if we choose f = 0 and large enough n,

PnLψ(f̂ ∗n) + λn||f̂ ∗n||2 ≤ PnLψ(0) + λn||0||2

= P

{
θ̂(X)|Y |
P (A|X)

}
≤ π−10 M <∞

Because PnLψ(f̂ ∗n) ≥ 0, λn||f̂ ∗n||2 is bounded by π−10 M . Next, consider that

PnLψ(f̂ ∗n) ≤ PnLψ(f̂ ∗n) + λn||f̂ ∗n||2 ≤ PnLψ(f) + λn||f ||2,

and taking the lim sup yields the following inequality.

lim sup
n→∞

PnLψ(f̂ ∗n) ≤ PLψ(f ∗) + oP (λn) ≤ PLψ(f̂ ∗n) + oP (λn)

Thus, it suffices to show that PnLψ(f̂ ∗n) − PLψ(f̂ ∗n) →P 0. λn||f̂ ∗n||2 is bounded which im-

plies that {
√
λnf : ||

√
λnf || ≤

√
π−10 M} is contained in a Donsker class. ψ(u, v) is Lips-

chitz continuous with respect to v. Therefore, Lψ(f) is Lipschitz continuous with respect to

f , which further implies that {
√
λnLψ(f) : ||

√
λnf || ≤

√
π−10 M} is also Donsker. We now

have that
√
nλn{Pn − P}Lψ(f̂ ∗n) = Op(1) and therefore {Pn − P}Lψ(f̂ ∗n) = oP (q). Thus,
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|Rψ(f ∗)−Rψ(f̂ ∗n)| = oP (1). Furthermore, whenever f ∗0 ∈ F , f ∗0 = f ∗, and

|R(f̂ ∗n)−R(f0)| ≤ |Rψ(f̂ ∗n)−Rψ(f ∗0 )| = oP (1),

where the first inequality holds from Bartlett et al. (2006)
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