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ABSTRACT

Jingwen Zhang: Advanced Methods for Discovering Genetic Markers
Associated with High Dimensional Imaging Data

(Under the direction of Joseph G. Ibrahim and Hongtu Zhu)

Imaging genetic studies have been widely applied to discover genetic risk factors of inherited

neuropsychiatric diseases and neurodevelopmental abnormalities. Despite the notable contribution

of genome-wide association studies (GWAS) in neuroimaging research, it has always been difficult

to efficiently perform association analysis on imaging phenotypes. There are several challenges

arising from this topic, such as the large dimensionality of both imaging data and genetic data, the

potential spatial dependency of imaging phenotypes and the computational burden of the GWAS

problem. All the aforementioned issues motivate us to investigate new statistical methods in

neuroimaging genetic analysis.

In the first project, we develop a hierarchical functional principal regression model (HFPRM) to

simultaneously study diffusion tensor bundle statistics on multiple fiber tracts. The model consists

of three key components, (i) a varying coefficient model to characterize functional data, (ii) a latent

factor model to jointly analyze multiple fiber bundles, and (iii) a multivariate regression model to

study the effects of interest using common factors. A hierarchical estimation procedure is proposed

and a global statistic is introduced to test hypotheses of interest. Theoretically, the asymptotic

distribution of the global test statistic on the common factors has been studied. Simulations are

conducted to evaluate the finite sample performance of HFPRM. Finally, we apply our method to a

genome-wide association study of a neonate population to explore important genetic architecture in
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early human brain development.

In the second project, we consider the problem of performing an association test between

functional data and scalar variables in a varying coefficient model setting. We propose a functional

projection regression model and an associated global testing statistic to aggregate relatively weak

signals across the domain of functional data, while reducing the dimension. An optimal functional

projection direction is selected to maximize the signal-to-noise ratio with ridge penalty.

Theoretically, we examine the asymptotic distribution of the global testing statistic and provide a

strategy to adaptively select the tuning parameter. We use simulations to show that the proposed test

outperforms existing state-of-the-art methods in functional statistical inference. We also apply the

proposed method to a genome-wide association analysis of imaging genetic data in the UK Biobank

dataset.

In the third project, the aim is to develop an adaptive projection regression model (APRM)

to perform statistical inference on high dimensional imaging responses in the presence of high

correlations. We reduce the dimension of the phenotypes through a projection regression model that

maximizes the asymptotic signal-to-noise ratio. Independent screening is applied to control noise

in non-signal dimensions and a flexible covariance estimation is introduced to account for major

dependency within the data. We also implement an adaptive inference procedure to detect signals at

multiple levels. Numerical simulations demonstrate that APRM outperforms many state-of-the-art

methods in high dimensional inference. Finally, we apply APRM to a genome-wide association

analysis of volumetric data on 93 regions of interest in the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) dataset.

iv



To my parents Jinxi Zhang and Yanzhen Ma.
To Lesheng Li.

v



ACKNOWLEDGEMENTS

First, I would like to thank my advisors and mentors, Dr. Hongtu Zhu and Dr. Joseph Ibrahim,

for their guidance and support during my study at UNC. Their expertise, encouragement and

enthusiasm guided me during my research and showed me the way to become a scientist. I am

grateful for the opportunity to collaborate with Dr. Rebecca Knickmeyer and Dr. Kai Xia. They

have taught me valuable experiences in real data analysis and have provided important inspirations

to my research. I would also like to thank Dr. Steve Marron and Dr. Michael Love for their

insightful comments and valuable advice on this dissertation.

Moreover, I would like to thank my lab mates and my friends, Dr. Chao Huang, Dr. Leo Yufeng

Liu, Dr. Zhengwu Zhang, Dr. Tengfei Li, Dr. Baiguo An, Dr. Zhaohua Lu, Dr. Dehan Kong, Dr.

Eunjee Lee, Dr. Hojin Yang, Dr. Mihye An, Dr. Wensheng Zhu, Jasmine Yang, Bingxin Zhao and

Yue Wang for their kind help during my stay at the UNC biostatistics and imaging analysis lab and

the Big-S2 group. I feel lucky to work with and learn from these smart and passionate researchers.

Finally, I would like to thank my parents, Jinxi Zhang and Yanzhen Ma, for their love,

understanding and advice. They have supported me wholeheartedly to pursue my dreams and

persistently encouraged me not to give up when facing difficulties. I would like to thank my fiance,

Lesheng Li, who have always been there for me with love and a listening ear. I could never make it

without his company. I also want to acknowledge my best friends, Lili Wei, Zezhe Li, Yujie Xue

and Wenhui Gou. Our friendship has helped me through many down moments.

vi



TABLE OF CONTENTS

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Functional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Varying Coefficient Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Functional Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Statistical Inference for Functional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 High Dimensional Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Two-Sample Tests for High Dimensional Means with Thresholding . . . . . 11

2.2.2 Adaptive Sum of Powered Score (aSPU) Test . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Projection Regression Model and Heritability Ratio . . . . . . . . . . . . . . . . . . 14

2.3 Latent Factor Model and Parallel Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Latent Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Parallel Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

CHAPTER 3: HIERARCHICAL FUNCTIONAL PRINCIPAL REGRESSION
MODEL FOR DIFFUSION TENSOR BUNDLE STATISTICS . . . . . . . . . . . . . . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



3.2.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Model Formulation and Problem of Interest . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Dimension Reduction through Functional Principal Component Analysis
(fPCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.4 Latent Factor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.5 Multivariate Linear Model on Common Factors . . . . . . . . . . . . . . . . . . . . . 29

3.2.6 Estimation and Inference Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Early Human Brain Development Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Data Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER 4: A POWERFUL GLOBAL TEST STATISTIC FOR FUNCTIONAL
STATISTICAL INFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Functional Projection Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Theoretical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



4.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Main Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Application: the UK Biobank Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 UK Biobank Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.2 Statistical Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

CHAPTER 5: ADAPTIVE PROJECTION REGRESSION MODEL FOR HIGH
DIMENSIONAL DATA WITH DEPENDENT COVARIANCE STRUCTURE. . . . 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Adaptive Projection Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Optimal Projection Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Independent Screening Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.3 Block-wise Covariance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.4 Projected Test Statistics and an Adaptive Inference Procedure . . . . . . . . . . 71

5.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Alzheimer’s Disease Neuroimaging Initiative Data Analysis . . . . . . . . . . . . . . . . . . 76

5.4.1 Alzheimer’s Disease Neuroimaging Initiative . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 Data Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

APPENDIX A: TECHNICAL DETAILS OF CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . . 80

A.1 Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

APPENDIX B: TECHNICAL DETAILS OF CHAPTER 4 . . . . . . . . . . . . . . . . . . . . . . . 93

B.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x



LIST OF TABLES

3.1 The UNCEBDS neonate data: A list of fiber tracts in the simulation experiments
and the real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Application of HFPRM to the LSEBD Neonate Data: Top SNPs from GWAS and
their nearest genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Application of PFGT to the UK Biobank data: Top 10 SNPs from GWAS and their
nearest genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Application of APRM to the ADNI data: Top 10 SNPs from GWAS and their
nearest genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



LIST OF FIGURES

3.1 A schematic overview of the hierarchical functional principal regression model
(HFPRM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Simulation results of HFPRM: panels (a) and (b) show the rejection rate of HFPRM
and FADTTS in experiment I and experiment II respectively. . . . . . . . . . . . . . . . . . 39

3.3 Application of HFPRM to the UNCEBDS neonate data: panel (a) shows the scree
plot of the factor analysis, the p-values of the first five factors form the parallel
analysis and the percent of variation explained by the significant factors. Panel
(b) shows the percent of variation of explained by the significant factors on each
individual tract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Application of HFPRM to the UNCEBDS neonate data: Manhattan plot and QQ
plot of the − log10(p-values) from GWAS on the common factor. . . . . . . . . . . . . . 44

3.5 Application of HFPRM to the UNCEBDS neonate data: heatmap of relative
expression level of the identified genes in fetal tissues. The expression level of
SCAPER, SETBP1, B3GAT1 and MAP3K13 in brain tissues is higher than the
average expression level in all tissues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Simulation settings for PFGT: panels (a)−(d) demonstrate the signal-to-noise ratios
under alternative hypothesis for case I and case II. Panels (e)−(f) visualize the
covariance function of simulated responses along the curve. . . . . . . . . . . . . . . . . . . 56

4.2 Simulation results for PFGT: panels (a)−(b) present the type I error for PFGT-λn,
PFGT-optimal, FADTTS and FLMTest. Panels (c)−(f) present the power under
alternative hypotheses for case I and case II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Application of PFGT to the UK Biobank data: histograms of wild bootstrap statistics
of different MAF intervals when λn = 10−2, along with their density approximations
by mixed χ2 distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Application of PFGT to the UK Biobank data: QQ plots of wild bootstrap statistics
of different MAF intervals when λn = 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Application of PFGT to the UK Biobank data: Manhattan plot and QQ plot of the
− log10 p-values of 450,899 SNPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xii



5.1 Simulation results of APRM for independent structure Σe = Iq: PRM is evaluated
under four choices of maximum block size B = 1,2,5,10, as well as by adaptive
selection strategy (APRM). Results for aSPU and CQT are also presented as
comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Simulation results of APRM for block-wise compound structure Σe = (0.6151T
5 +

0.4I5)⊗ I80: PRM is evaluated under four choices of maximum block size B =
1,2,5,10, as well as by adaptive selection strategy (APRM). Results for aSPU and
CQT are also presented as comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Simulation results of APRM for AR-1 structure Σe = (0.8|i− j|): PRM is evaluated
under four choices of maximum block size B = 1,2,5,10, as well as by adaptive
selection strategy (APRM). Results for aSPU and CQT are also presented as
comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Application of APRM to the ADNI data: Manhattan plot and QQ plot of the
− log10(p-values) of 501,584 SNPs from GWAS. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiii



CHAPTER 1: INTRODUCTION

Genome-wide association study (GWAS) is a scientific approach to search for common genetic

variations associated with a particular trait or a specific disease across the whole genome. It has

illuminated enormous biological discoveries in the understanding of human diseases [1, 2, 3].

Particularly, it has been successfully applied to identify genetic risk factors for a number of

neuropsychiatric disorders, such as schizophrenia, major depression, autism and ADHD [4, 5, 6].

Despite many valuable findings, there is a substantial gap between the estimated heritability and the

proportion of variation explained by significant loci identified in GWAS [7, 8]. Moreover, directly

investigating the association between genotypes and diagnosis outcomes is not helpful to reveal the

underlying pathways of how genetic factors influencing disease risk.

In recent decades, a number of large-scale neuroimaging cohort studies have been launched,

such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [9], the Philadelphia

Neurodevelopmental Cohort (PNC) [10], the Pediatric Imaging Neurocognition and Genetics

(PING) study [11], the Human Connectome Project (HCP) [12, 13] and many others. These

projects have provided a rich source of information to systematically study the structure and

function of the human brain and to investigate the influence of genetic, environmental and

behavioral factors. Among them, secondary imaging traits serve as essential intermediate

phenotypes to study neurological disorders [14]. Biologically, such phenotypes are closer to the

primary gene action level, and are expected to have a simpler genetic architecture than clinical and

behavior symptoms [15]. Compared with diagnosis outcome, neuroimaging measures are able to
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quantify disease risk more accurately, in which phenotypic heterogeneity and ambiguity are

reduced [8, 16, 17]. Therefore, investigating the association between genetic variants and imaging

phenotypes, known as the imaging genetic analysis, becomes increasingly popular. It provides a

better understanding of the pathology of inherited neuropsychiatric abnormalities, which should

eventually inspire novel therapies in disease prevention, diagnosis and clinical treatment. Moreover,

identification of genetic variants associated with imaging traits that are sensitive to disease risk is

very likely to improve detection power [18].

Imaging genetic analysis poses four major challenges to current statistical methods. First of all,

for complex inherited diseases, each genetic variant may only have small or moderate contribution

to imaging traits. The effect might be too weak to be detected in a genome-wide association study

(GWAS). A promising approach to overcome such difficulty is to aggregate information from

multiple phenotypes and to reduce the search space for genetic markers. Secondly, due to the large

number of genetic variants, real-time analysis of GWAS requires extensive computation. A fast,

efficient and robust statistical procedure should be proposed to deal with this problem. Moreover,

imaging phenotypes also tend to have extremely high dimensionality, and proper dimension

reduction techniques should be considered. Finally, the development, functioning and degeneration

of brain tissues are not independent in different brain regions and at different time points. Spatial

and temporal dependency within imaging data is a critical feature and should be carefully addressed

in the statistical model. All these challenges motivate us to develop new statistical methods for

imaging genetic analysis. In this dissertation, we consider two types of imaging data, functional

imaging data and multivariate imaging data, and propose three novel models to perform association

analysis in different scenarios.

Functional data have been commonly observed in neuroimaging studies to characterize the
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structure and function of the human brain. For example, diffusion properties are measured along

neurofiber bundles in diffusion tensor imaging (DTI) to quantify white matter microstructure

[19, 20]. In functional magnetic resonance imaging (fMRI), blood-oxygen-level dependent (BOLD)

changes are detected across time to characterize brain activity [21]. Moreover, histogram analysis

has been widely used in diffusion tensor imaging and magnetic resonance imaging to delineate

distributional alterations in brain tissues [22, 23]. In the framework of functional data analysis, we

consider two different hypothesis testing problems designed for different scientific aims. In Chapter

3, a hierarchical functional principal regression model (HFPRM) is proposed to jointly analyze

diffusion statistics along multiple fiber bundles. In Chapter 4, we study functional phenotypes on a

single curve and introduce a powerful test procedure for association analysis.

Brain segmentation classifies imaging voxels into anatomical or functional regions. Imaging

measures for different regions or region pairs, such as volume, thickness, surface area and

connectivity measures, can be calculated to characterize local brain properties. Compared with

voxel-wise measures, region-based statistics have lower dimensions and higher signal-to-noise

ratios, and are expected to give more reliable results in association analysis. However, the number

of region-based responses typically ranges from hundreds to tens of thousands, which is still high

dimensional compared to sample size. Furthermore, brain regions are organized into structural or

functional communities. Local measures of the regions within the same community tend to be

highly correlated [24]. The potential dependency structure within the phenotypes should be

properly adjusted. Therefore, in Chapter 5, we use a high dimensional linear model to characterize

region-based data and introduce an efficient global test procedure that allows capture of a flexible

covariance-signal structure.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we review existing models and statistical techniques related to our topic. In

Section 2.1, we give a brief overview of functional data analysis. In Section 2.2, we introduce

some state-of-the-art methods in high dimensional inference. In Section 2.3, we review a popular

dimension reduction method in multivariate analysis, the latent factor model.

2.1 Functional Data Analysis

2.1.1 Varying Coefficient Model

Let yi(s) be a functional outcome of interest and xi be a p×1 vector of covariates for subject i,

where i = 1, · · · ,n, the following varying coefficient model, first introduced in [25], has been widely

used to delineate a linear relation between yi(s) and xi:

yi(s) = xT
i β(s)+ ei(s), s ∈ [0,S]. (2.1)

In the above equation, β(s) = (β1(s), · · · ,β j(s), ·,βp(s))T is composed of functional coefficients

characterizing covariate effects, and ei(s) represents the error term following SP{0,Σe(s, t)}, in

which SP{µ(s),Σ(s, t)} denotes a stochastic process with mean function µ(s) and covariance

function Σ(s, t). The varying coefficient model can be considered as a natural generalization of the

linear model to functional data, in which the response yi(s), the covariate effects β(s) and the error

term ei(s) are allowed to change with s over a continuous domain [0,S].

In real data, yi(s) can only be observed on a set of discrete points in [0,S], which is denoted
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as S = {s1, · · · ,sw, · · · ,sW}. There are two popular methods to estimate β(s) from finite samples.

One is a spline-based method, in which the functional coefficients β(s) are first expanded by a set

of basis functions, and penalized regression is then applied to perform curve fitting. A number of

regularization methods have been developed within this framework to perform estimation, statistical

inference and to address the penalty choices [26, 27, 28]. The other method uses a kernel smoothing

technique, in which model (2.1) is fitted by imposing local smoothness. We will introduce this

method here in detail, since it is more suitable to deal with the intrinsic local smoothness of the

varying coefficient model, and the estimators are easier to compute.

When the functional coefficients β(s) in (2.1) have continuous derivations up to order ν , β(sw)

can be approximated by Taylor expansion at each observed point sw as

β(sw) ≈ β(s)+
ν

∑
k=1

∂
kβ(s)

(sw− s)k

k!
, (2.2)

:= A(s)z(sw− s), (2.3)

where z(sw− s) = (1,sw− s,(sw− s)2/2!, · · · ,(sw− s)ν/ν!)T , A(s) = (β(s),∂β(s), · · · ,∂ νβ(s)).

Let K(u) be a predetermined smoothing kernel on a closed interval [−1,1] and

Kh1(u) = h1
−1K(u/h1) be the rescaled kernel with bandwidth h1, A(s) can be estimated by the

minimizer of the weighted least squares (WLS) function

n

∑
i=1

W

∑
w=1

[yi(sw)− xT
i A(s)z(sw− s)]Kh1(sw− s). (2.4)

In the above varying coefficient model (2.1), the error term ei(s) incorporates the total variation

that can not be explained by xi. To further disentangle the sources of variation in ei(s), [29]
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introduced the following varying coefficient model that differentiates between low frequency spatial

variation and independent measurement error:

yi(s) = xT
i β(s)+ηi(s)+ ei(s), (2.5)

where the individual function ηi(s) is modeled as a random function following SP{0,Ση(s, t)} and

ei(s) follows SP{0,σ2
e (s)I{s = t}}, in which I(·) is the indicator function. It is further assumed

that ηi(s) and ei(s) are mutually independent, and that Ση(s, t) has continuous partial derivatives of

order ν , i.e., Ση(s, t) ∈Cν [0,S]⊗2.

Similar to (2.3), ηi(s) can also be approximated by Taylor expansion at point sw with

ηi(sw)≈ ηi(s)+
ν

∑
k=1

∂
k
ηi(s)

(sw− s)k

k!
:= Qi(s)Tz(sw− s), (2.6)

where Qi(s) = (ηi(s),∂ηi(s), · · · ,∂ νηi(s))T . Subsequently, for a given bandwith h2, the WLS

estimate of ηi(s) can be obtained from

Q̂i(s) = argmin
W

∑
w=1

[yi(sw)−xT
i Â(s)z(sw− s)−Qi(s)Tz(sw− s)]Kh2(sw− s). (2.7)

The asymptotic properties of β̂(s) and η̂i(s) have been carefully studied in the literature [30, 31,

32, 33, 34, 29, 35]. Estimation consistency has been constructed and convergence rates have been

derived under mild conditions, which provides theoretical support for the kernel smoothing method.

In (2.4) and (2.7), the choice of bandwidths (h1,h2) controls the trade-off between bias and

variance of the estimates. Theoretical bounds for this problem have been investigated by previous

works [29, 35]. In practice, the optimal bandwidths are usually determined in a data-driven way, for
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example, by using generalized cross validation (GCV) [30, 36] or Bayesian approaches [37, 38].

2.1.2 Functional Principal Component Analysis

Given a consistent estimator of an individual function ηi(s), a question arises to explore

variables contributing to the unspecified variation. For example, in GWAS, scientists are interested

in searching for mutations associated with ηi(s) from millions of genotyped markers. Further

dimension reduction is required on ηi(s) in order to give an efficient analysis. Functional principal

component analysis, which is considered as a generalization of principal component analysis (PCA)

to functional data, has been developed for this purpose. The primary goal of functional PCA

is to capture the dominant variation pattern of the infinite-dimensional functional data in a low

dimensional space.

In this section, we provide an overview of functional PCA by taking individual functions

{ηi(s)}n
i=1 as an example. Let {ηi(s)}n

i=1 be independent and identical copies from a zero-mean,

square-integrable stochastic process indexed on a closed and bounded intervel [0,S]. When the

covariance function Ση(s, t) is continuous on [0,S]⊗2, Ση(s, t) has the following spectral

decomposition from Mercer’s Theorem

Ση(s, t) =
+∞

∑
l=1

τlφl(s)φl(t), (2.8)

where {τl}+∞

l=1 are nonnegative eigenvalues in descending order that satisfy ∑
∞
l=1 τl < ∞, and

{φl(s)}+∞

l=1 are the corresponding orthonormal eigenfunctions. Then ηi(s) admits a functional

principal component decomposition given by the Karhunen-Loeve expansion [39, 40]

ηi(s) =
+∞

∑
l=1

ξi,lφl(s), (2.9)
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where {ξi,l}+∞

l=1 are functional principal component (fPC) scores calculated from

ξi,l =

ˆ S

0
ηi(s)φl(s)ds. (2.10)

The fPC scores {ξi,l}+∞

i=1 are mutually uncorrelated random variables that satisfy Eξi,l = 0 and

Eξ 2
i,l = τl .

As given by (2.9), ηi(s) can be equivalently represented by a series of uncorrelated univariate

random variables {ξi,l}+∞

l=1. When ∑
∞
l=1 τl < ∞, the majority of variation can be captured by a finite

number of fPCs, i.e., ηi(s)≈ ∑
L
l=1 ξi,lφl(s) when L is large enough. The extracted features {ξi,l}L

l=1

can then be studied in univariate or multivariate analysis, such as classification [41, 42], regression

[43] and prediction [44]. More importantly, when multivariate functional responses are observed,

it is of great interest to study multiple functional features comprehensively in a joint model. The

heterogeneity in sample domain S and the potential inter-correlation among various traits are

major difficulties of a joint analysis. Functional PCA has provided a strategy to map heterogeneous

features to a common coordinate system, which allows us to merge all features together in a unified

model.

2.1.3 Statistical Inference for Functional Data

In the varying coefficient model, we are interested in a global hypothesis testing problem of the

following general form:

H0 : Cβ(s) = c(s), ∀s ∈ [0,S] v.s. H1 : Cβ(s) 6= c(s), ∃s ∈ [0,S], (2.11)
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where C is a k× p matrix of rank k and c(s)= (c1(s), · · · ,cr(s))T is a k×1 vector of functions. (2.11)

covers a wide range of testing problems in applications, including the global genetic association

test across [0,S] as a special case. Many statistics have been proposed to test this problem. Here,

we introduce two of them, an integration of local statistics from functional analysis of diffusion

tensor tract statistics (FADTTS) [29, 36] and an F-type statistics from linear models of functional

responses (FLMtest) [45, 46], as examples.

In FADTTS, a local test statistic at each s ∈ [0,S] is computed as

Tn(s) = [Cβ̂(s)−c(s)]T{C[Σ̂η(s,s)⊗ (
n

∑
i=1
xix

T
i )
−1]CT}−1[Cβ̂(s)−c(s)]

:= d̂(s)T{C[Σ̂η(s,s)⊗ (
n

∑
i=1
xix

T
i )
−1]CT}−1d̂(s), (2.12)

where β̂(s) and Σ̂η(s, t) are consistent estimators of β(s) and Ση(s, t) respectively. Then a global

statistic can be calculated by an integration of Tn(s) across [0,S], i.e.,

Sn =

ˆ S

0
Tn(s)ds. (2.13)

The asymptotic distribution of Sn is difficult to derive and a wild bootstrap procedure has been

proposed in [36] to estimate the p-value.

In the FLMtest, an F-type statistic has been generalized to functional data as

Fn =

ˆ S

0
d̂(s)T [C(

n

∑
i=1
xix

T
i )
−1CT ]−1d̂(s)ds/k

ˆ S

0

n

∑
i=1

[yi(s)−xT
i β̃(s)]

2ds/(n− p)
, (2.14)
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in which β̃(s) = (∑n
i=1xix

T
i )
−1

∑
n
i=1xiyi(s). The null distribution of Fn can be approximated by

an F-distribution F [κk,κ(n− p)], where κ is a degree-of-freedom adjustment factor that can be

estimated from the covariance function of yi(s).

The above two statistics are easy to compute, and have been widely used in the global test

(2.11). A common feature of FADTTS and FLMtest is, when calculating the global test statistics,

an underlying "uniform weight" has been assigned to each point in [0,S]. It can be expected that

neither of them gives optimal power when the signal under test is heterogeneous across [0,S].

2.2 High Dimensional Inference

To study multivariate imaging traits with dependent structure, we consider a multivariate linear

model given by

yi = BTxi +ei, (2.15)

where i = 1, · · · ,n is the subject index, yi is a q× 1 vector of phenotypes, xi = (xi,1, · · · ,xi,p)
T

is a p×1 vector of covariates, B = (b1, · · · ,bq) = (βT
1 , · · · ,βT

p )
T is a p×q matrix of regression

coefficients, and ei is a q×1 vector of error terms such that E(ei) = 0 and Cov(ei) = Σe. Compared

with sample size n, it is assumed that q is large and p is small in the above model. To perform

association analysis, we are interested in testing genetic effects on all phenotypes simultaneously,

which can be formulated by the following problem in general,

H0 : CB = C0 v.s. H1 : CB 6= C0, (2.16)

where C is a k× p matrix with rank k and C0 is a k× q matrix. For “large q, small n” problem,

multivariate test statistics tend to be unreliable. As pointed in [47, 48] and many others, traditional

methods suffer from substantial power loss even for the simplest testing questions when q/n→ ∞.
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Although dimension reduction techniques such as principal component analysis (PCA), canonical

correlation analysis (CCA) and partial least square regression (PLSR) can be applied, the solutions

bear dramatic deviation from the ground truth due to severe noise contamination. A number of

regularization methods have been introduced in high dimensional setting by imposing a sparsity

assumption [49, 50, 51, 52], yet most of them did not provide a standard inference procedure.

Alternatively, some pooled association tests have been proposed to conduct univariate analysis, and

to combine marginal statistics in a global test [53, 54]. Among those tests, we will introduce two

state-of-the-art methods in detail. Both of them are computationally efficient and have included an

adaptive strategy to detect signal at multiple levels.

2.2.1 Two-Sample Tests for High Dimensional Means with Thresholding

In [55], a two-sample test has been proposed in high dimensional setting to study a special case

of (2.16), the equality of two sample means.

Let {z1,1, · · · ,z1,i, · · · ,z1,n1} and {z2,1, · · · ,z2,i′, · · · ,z2,n2} be two groups of independent and

identically distributed (i.i.d) samples from RV(µ1,Σ ) and RV(µ2,Σ ) respectively, where

zm,i = (z(1)m,i, · · · ,z
(q)
m,i)

T is a q× 1 vector of random variables with m = 1,2 and i = 1, · · · ,nm,

µ1 = (µ1,1, · · · ,µ1,q)
T and µ2 = (µ2,1, · · · ,µ2,q)

T are q×1 vectors denoting multivariate means, Σ

is a q×q matrix denoting multivariate covariance, and RV(µ,Σ) represents multivariate random

variables with mean µ and covariance Σ . The primary interest is to test the equality of µ1 and µ2,

i.e.,

H0 : µ1 = µ2 v.s. H1 : µ1 6= µ2. (2.17)
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For each dimension j in {1, · · · ,q}, a U-statistic that test marginal hypothesis

H j,0 : µ1, j = µ2, j v.s. H j,1 : µ1, j 6= µ2, j, (2.18)

is calculated as

Tn, j =
1

n1(n1−1)

n1

∑
i 6=i′

z( j)
1,i z( j)

1,i′+
1

n2(n2−1)

n2

∑
i6=i′

z( j)
2,i z( j)

2,i′−
2

n1n2

n1

∑
i

n2

∑
i′

z( j)
1,i z( j)

2,i′. (2.19)

A thresholding test is then proposed as follows:

LCQT (λn) = n
q

∑
j=1

Tn, jI{nTn, j > λn}, (2.20)

where n = n1n2
n1+n2

.

When marginal null hypothesis H j,0 holds for a large number of dimensions in {1, · · · ,q}, it has

been theoretically demonstrated in [55] that an appropriate λn can substantially boost statistical

power by reducing the noise level introduced from non-signal dimensions. To deal with the unknown

signal density, a multi-level inference procedure is further proposed to adopt different thresholds

and a data-driven strategy is introduce to choose λn, which is given by

λ̂n = max
λ

LCQT (λ )−ELCQT (λ )√
EL2

CQT (λ )−E2LCQT (λ )
. (2.21)

When the off-diagonal elements of Σ is sparse, along with certain mild conditions, it is proved

that LCQT (λ ) has asymptotic normal distribution. And (2.21) is selecting λn that maximizes the

asymptotic power.
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2.2.2 Adaptive Sum of Powered Score (aSPU) Test

For each j = 1, · · · ,q, let U j be a univariate statistic designed for marginal hypothesis problem

H j,0 : Cb j = c0, j v.s. H j,1 : Cb j 6= c0, j, (2.22)

where C is the k× p matrix defined by (2.16), b j is the j-th column of coefficient matrix B and c0, j

is the j-th row of matrix C0. In [56], a sum of powered score (SPU) test statistic has been proposed

for a given positive integer ν ,

T (ν) =
q

∑
j=1

Uν
j . (2.23)

With different choices of power index ν , SPU form a class of statistics that is able to detect flexible

signal patterns. When ν = 1, SPU is the analog of burden test that assess the cumulative effect of

multiple weak signals. As ν increases, T (ν) put larger weights on sharp signals. In an extreme

case when ν →+∞, T (ν) is equivalent to the supremum statistic, i.e., max1≤ j≤qU j. An optimal

choice of ν depends on the underlying signal pattern under test. And a data-driven strategy has

been introduced in [56] to determine ν . Specifically, the p-value of each T (ν), denoted as P(ν),

is estimated from permutation or bootstrap resampling. Then the minimum p-value is used as an

adaptive test score, i.e.,

TaSPU = min
ν

P(ν). (2.24)

Intuitively, the above equation is selecting ν that gives the largest statistical power. Since TaSPU is

considered as a test statistic rather than a genuine p-value, resampling is also required to approximate

its null distribution in order to control type I error. Instead of running double permutation or

bootstrap, the p-value of TaSPU can be obtained in the same procedure when calculating P(ν)s.
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2.2.3 Projection Regression Model and Heritability Ratio

Most of the existing tests in high dimensional inference are derived from independent responses,

such as the two methods mentioned above. The correlation within yi is either ignored or handled

inappropriately. For example, in presence of high correlations, one commonly used strategy is to

transform the data by the precision matrix Σ−1
e [55, 57, 58], in which model (2.15) can be written as

y
Σ
−1
e ,i = Σ

−1
e yi = BT

Σ
−1
e
xi +eΣ

−1
e ,i, (2.25)

where B
Σ
−1
e

= BΣ−1
e and e

Σ
−1
e ,i = Σ−1

e ei with E(e
Σ
−1
e ,i) =  and Cov(e

Σ
−1
e ,i) = Σ−1

e . Precision

matrix transformation is expected to increase statistical power when the signal is sparse. However,

the structure of B has been ignored in the transformation. In some cases, it may cause severe power

loss. A toy example below can clearly demonstrate this problem.

Example 2.2.1. Consider a special case of (2.15) that q ≥ 2, yi = µ + ei, in which

µ = (µ1,µ2,µ0)
T , where µ1,µ2 are scalar values and µ0 is a (q − 2) × 1 vector, and

Σe =
(Σe,1 0

0 Σe,2

)
with Σe,1 =

( 1 ρ

ρ 1

)
and Σe,2 being arbitrary (q−2)× (q−2) covariance matrix. We

test a simple zero-mean hypothesis problem, i.e., H0 : µ= 0 v.s. H1 : µ 6= 0. Particularly, we focus

on the signal-to-noise ratios (SNRs) of the first two dimensions. In the original space, SNRs of yi,1

and yi,2 can be give by

SNR(yi,1) = |µ1| and SNR(yi,2) = |µ2|.

By applying precision matrix transformation, the signal-to-noise ratios become

SNR(y∗i,1) =
|µ1−ρµ2|√

1−ρ2
and SNR(y∗i,2) =

|µ2−ρµ1|√
1−ρ2

,
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where y∗i,1 =(yi,1−ρyi,2)/(1−ρ2) and y∗i,2 =(yi,2−ρyi,1)/(1−ρ2). Then we consider the following

two signal patterns:

• (i) when ρ 6= 0, µ1 6= 0 and µ2 = 0, we have SNR(y∗i,1)/SNR(yi,1) =
√

1−ρ2. The signal-to-

noise ratio increases substantially when the correlation between yi,1 and yi,2 is large.

• (ii) when ρ → 1 and µ1 = µ2 = µ , we have SNR(y∗i,1)/SNR(yi,1) = SNR(y∗i,2)/SNR(yi,2)

=
√

1−ρ/
√

1+ρ → 0. The signal-to-noise ratio is reducing dramatically.

For most of the existing methods using the precision matrix transformation, it is commonly

assumed that both the signals and the off-diagonal elements of Σ−1
e are sparse, and that the active

dimensions are randomly distributed in {1, · · · ,q}. Such assumptions naturally implicate that a

signal pattern similiar to case (i) holds with large probability, which is hard to verify in real data.

Therefore, the precision matrix transformation does not guarantee to increase power in general. We

should seek for other strategies to deal with covariance structure that take into account the signal

pattern appropriately in the data.

To properly address the signal-covariance structure in yi, a projection regression model (PRM)

on (2.15) has been introduced by [59] as

wTyi , yw,i = BT
wxi +ew,i, (2.26)

where w is a q× 1 vector of linear projection direction, Bw = Bw is the transformed regression

coefficient matrix and ew,i = wTei is the tranformed error term with E(ew,i) = 0 and Cov(ew,i) =

wT Σew. To illustrate the key idea of [59], we consider a simplified unit-rank hypothesis question,
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given as follows:

H0 : β1 = 0 v.s. H1 : β1 6= 0, (2.27)

where β1 is a q×1 vector composed of the first row from B. In the projection regression model

(2.26), the testing problem in the projected space is

Hw,0 : βw,1 = 0 v.s. Hw,1 : βw,1 6= 0, (2.28)

where βw,1 = wTβ1. Given a projection direction w, univariate test can be directly applied for the

above problem.

One remaining question for PRM now is how to determine the projection direction w that

achieves the best statistical power. In [59], a generalized heritability ratio has been introduced for

this purpose. Specifically, the signal-to-noise ratio of wTyi can be given as

SNRi =
|wTβ1xi,1|√

wT Σew
. (2.29)

A generalized heritability ratio is introduced as the average of SNR2
i s across all subjects, i.e.,

GHR(w) = n−1
n

∑
i=1

SNR2
i =

(wTβ1)
2

nwT Σew

n

∑
i=1

x2
i,1

p−→
(wTβ1)

2σ2
x1

wT Σew
. (2.30)

where σ2
x1
= Ex2

i,1. GHR(w) is expected to dominate the asymptotic power of testing problem (2.27)

under H1. Therefore, an oracle projection direction is proposed as

w∗ = argmax
w∈Rq

GHR(w) = argmax
w∈Rq

(wTβ1)
2

wT Σew
∝ Σ

−1
e β1. (2.31)
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To estimate w, we need to obtain valid estimators of Σ−1
e and β1, which is a challenging issue in

high dimensional setting. To solve this problem, [59] introduced an L1 penalty to impose sparsity

on w. Specifically, let Σ̂e and β̂1 be two regularized estimators of Σe and β1, ŵ is calculated as

ŵ = argmin
1
2

wT
Σ̂ew−wTβ1 +λ‖w‖1, (2.32)

where ‖ · ‖1 denote the L1 norm. After ŵ is obtained, standard test statistics, such as the wald test

statistic, can be used on yŵ,i for problem (2.28).

In the presence of high correlations and sparse signals, [59] achieves better statistical power

than some regularized methods designed for independent responses. However, there are two major

problems. First of all, the generalized heritability ratio defined by (2.30) is problematic. Covariance

between xi,1 and other covariates has been ignored, which might potentially introduce bias in the test

statistics. Also, the proposed method shows no advantage when dealing with weak effect compared

with aSPU and CQT. A flexible test procedure should be considered to detect signals at multiple

levels.

2.3 Latent Factor Model and Parallel Analysis

2.3.1 Latent Factor Model

Latent factor model provides a useful perspective to understand multivariate responses and time

series data. It allows us to characterize the correlation structure of a large number of variables on

lower dimensions. For multivariate observations yi = (yi,1, · · · ,yi, j, · · · ,yi,q)
T with zero means, a

latent factor model is given by

yi, j = λ
T
j fi +ui, j, for j = 1, · · · ,q, (2.33)
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where fi is an r×1 vector of common factors, λ j is an r×1 vector of factor loadings for the j-th

response, and ui, j is the error term uncorrelated with fi. Then yi can be modeled as

yi = Λfi +ui, (2.34)

where Λ = (λ1, · · · ,λq)
T and ui = (ui,1, · · · ,ui,q)

T . Let Σ f and Σu denote the covariance matrix of

fi and ui respectively, the covariance of yi can be written as

Σy = ΛΣ f Λ
T +Σu. (2.35)

With the above equation, we are decomposing the covariance of yi into two parts, a common

factor component ΛΣ f Λ
T and an idiosyncratic component Σu. Generally, decomposition (2.35) is

not identifiable, since only Σy can be estimated from observations. However, when ΛΣ f Λ
T has

diverging eigenvalues relative to Σu, the common factor component can be recovered from Σy using

principal component analysis. Let {τ j}r
j=1 be the first r eigenvalues of Σy in decreasing order and

V = (v1, · · · ,vr) be a q× r matrix composed of the corresponding eigenvectors, let {τ f , j}r
j=1 be

the eigenvalues of ΛΣ f Λ
T in decreasing order and let the columns of V f = (v f ,1, · · · ,v f ,r) be the

corresponding eigenvectors, the following conclusion can be proved using the Weyl’s Theorem and

the sinθ Theorem [60]:

Proposition 2.3.1. Assume the following conditions hold:

τ f ,1 ≥ ·· · ≥ τ f ,r > qε0 and ‖Σu‖2 < c1 <+∞, (2.36)
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where ε0,c1 are fixed positive values. As q is large enough and r is fixed, we have

1
q

max
1≤ j≤r

|τ j− τ f , j| ≤ ‖Σu‖2/q = Op(q−1). (2.37)

When {τ f , j}r
j=1 are distinct eigenvalues that satisfy 1

q min1≤ j≤r−1 |τ f , j− τ f , j+1|> ε1 > 0, we have

max
1≤ j≤r

‖v j−v f , j‖2 = Op(q−1). (2.38)

Under regularized condition that Σ f = Ir and Λ T Λ = diag{τ f ,1, · · · ,τ f ,r}, it can be proved that

‖fi−T−1/2VTyi‖2 = Op(q−1/2). (2.39)

The above statement implies that the common factors can be accurately recovered as q→+∞.

The assumption that {τ f , j}r
j=1 are distinct eigenvalues can be weakened to allow multiplicity greater

than one, and fi can be recovered up to an orthogonal rotation. The key assumption given by (2.36)

is known as the pervasiveness assumption in [61]. It requires that the variation in yi explained by

any non-negligible proportion of common factors should grow at the rate of O(q).

2.3.2 Parallel Analysis

To solve the latent factor model (2.33), determining the number of common factors is a critical

issue. Parallel analysis has been considered as a popular method for this purpose using permutation

strategy [62]. In the framework of parallel analysis, it is further assumed that individual factors
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{ui, j}q
j=1 are mutually uncorrelated. Suppose we have n observations denoted as

Y = [y1, · · · ,yi, · · · ,yn]
T =


y1,1 y1,2 · · · y1,q

...
...

...
...,

yn,1 yn,2 · · · yn,q

 . (2.40)

Let Sn =
1
nYT Y be the sample covariance matrix and let {τ̂ j}min{n,q}

j=1 be the eigenvalues of Sn in

decreasing order. To determine the number of significant factors, we simulate the distribution of

eigenvalues under null hypothesis, i.e., Σy is diagonal matrix and all correlations equal to 0, as

follows:

Algorithm 2.3.1.

(i) For each permutation replicate g, consider q− 1 random permutations of N = {1, · · · ,n},

denoted as π(g)
j = [π

(g)
j (1),π(g)

j (2), · · · ,π(g)
j (n)] for each j = 2, · · · ,q, the permuted variables are

generated as

Y
π(g) =


y1,1 y

π
(g)
2 (1),2

· · · y
π
(g)
q (1),q

...
...

...
...,

yn,1 y
π
(g)
2 (n),2

· · · y
π
(g)
q (n),q

 . (2.41)

(ii) Calculate the eigenvalues of the sample covariance matrix of Y
π(g) , which are denoted as

{τ̂
π(g), j}

min{n,q}
j=1 .

(iii) Repeat steps (i) and (ii) G times and calculate the p-value for each eigenvalue as

p(τ̂ j) =
1
G

G

∑
g=1

I{τ̂
π(g), j ≥ τ̂ j}. (2.42)
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(iv) Given a p-value cutoff p0, the number of significant factors is chose as r̂(p0) = #{ j : 1≤ j ≤

q,max1≤ j′≤ j p(τ̂ j′)≤ p0}, where #{·} denotes the cardinality of a given set.

Extensive numerical experiments have shown that parallel analysis is superior to many standard

methods [63, 64], such as Kaiser′s 1-cutoff [65] and Bartlett′s test [66]. When n,q→ ∞ and

q/n→ ε > 0, there are some theoretical results justifying the consistency of parallel analysis in

multiple scenarios [67], including the case when ΛΣ f Λ
T has spiked eigenvalues.

21



CHAPTER 3: HIERARCHICAL FUNCTIONAL PRINCIPAL REGRESSION
MODEL FOR DIFFUSION TENSOR BUNDLE STATISTICS

3.1 Introduction

Scientifically, investigation in the connectional organization of human brain and its variation

across subjects and time is a critical step for the understanding of pathology of many neuro-related

disorders [68, 69], such as autism, schizophrenia and bipolar disorder. Diffusion-weighted MRI

(dMRI) offers a non-invasive approach to study the underlying tissue structure of brain white matter

in vivo, including both geometric shape and diffusion properties [70, 71, 72, 73, 74, 75, 76, 77, 78].

Delineating fiber bundle statistics may help identify structural connectivity abnormalities across

different spatial and temporal scales in many neuro-related disorders. It could eventually inspire

new approaches for disease preventions, diagnoses, and clinical treatments.

Group analysis of fiber bundle statistics poses remarkable computational and mathematical

challenges to existing statistical methods. The first challenge is to efficiently and simultaneously

study multiple fiber bundles with heterogeneous geometric structures and variation patterns. The

second challenge is to correlate fiber bundle statistics with a large number of covariates, such as

millions of genetic markers. This challenge is motivated by the demand to carry out a genome-wide

association study. Voxel-wise methods [71] and single tract analysis [76, 29, 79] suffer from

performing massive multiple comparison adjustments, which would severely reduce the detection

power. The third challenge is to properly handle the potential correlation among multiple tracts and

to disentangle common variation shared by a large portion of fiber bundles.
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Figure 3.1: A schematic overview of the hierarchical functional principal regression model
(HFPRM)

In this chapter, we propose a hierarchical functional principal regression model (HFPRM)

framework to address the three challenges discussed above. The HFPRM consists of three statistical

methods, including a varying coefficient model (VCM), a latent factor analysis (LFA) procedure,

and a multivariate regression model (MRM). The path diagram of HFPRM is displayed in Figure 3.1.

The VCM not only captures the functional spatial feature of the fiber bundle statistics, but also maps

the heterogeneous geometric structure onto a common coordinate system. The LFA is applied to

characterize potential inter-tract correlation across multiple fibers. It allows us to explicitly extract

common latent features on a lower dimension. The integration of VCM and LFA can dramatically

reduce the dimension of fiber bundle statistics of multiple tracts. Finally, by using MRM, we are

able to examine the effect of interest and to perform statistical inference on the extracted common

features.

In Section 3.2, we introduce the general framework of HFPRM and propose a two-stage

estimation-testing procedure to study common features. In Sections 3.4 and 3.5, we use simulation
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studies and an imaging genetic example to examine the finite sample performance of HFPRM.

Section 3.6 concludes with some remarks.

3.2 Methods

3.2.1 Data Structure

In a typical DTI study, we observe functional diffusion properties, such as fractional anisotropty,

mean diffusivity and axial diffusivity, along M fiber bundles, some clinical variables as well as

genetic variants for n subjects. On the m-th fiber bundle where m = 1, · · · ,M, let sm ∈ [0,Sm] denotes

the arc length of any point relative to a fixed end point, where Sm is the longest tract arc length. For

the i−th subject where i = 1, · · · ,n, functional diffusion property yi,m(sm) is observed at the point

with arc-length sm. And xi is a p×1 vector of variables including demographic variables, clinical

biomarkers and genetic variants.

3.2.2 Model Formulation and Problem of Interest

To delineate the association between observed variables xi and functional response yi,m(sm) on

a specific tract m, the following varying coefficient model has been widely used,

yi,m(sm) = µm(sm)+x
T
i βm(sm)+ηi,m(sm)+ ei,m(sm), (3.1)

where µm(sm) is the mean function, βm(sm) = (βm,1(sm), · · · ,βm,p(sm))
T is a p× 1 vector of

functions representing covariate effects, ηi,m(sm) characterizes spatial variation that cannot be

explained by xi and ei,m(sm) is the measurement error. Furthermore, {ηi,m(sm)}n
i=1 and

{ei,m(sm)}n
i=1 are assumed to be i.i.d copies from stochastic processes SP{0,Σηm(sm, tm)} and

SP{0,σ2
ε (s)I(sm = tm)} respectively, in which SP{µ(s),Σ(s, t)} denotes a stochastic process with

mean function µ(s) and covariance function Σ(s, t), and I(·) is the indicator function. It is also
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assumed that ηi,m(sm) and ei,m(sm) are mutually independent.

In the above varying coefficient model, the primary question we are interested in is to identify

genetic variants associated with diffusion properties from all available tracts, which can be

formulated as the following hypothesis testing problem in general:

H0 : Cβm(sm) = 0, ∀m = 1, · · · ,M v.s. H1 : Cβm(sm) 6= 0, ∃m ∈ {1, · · · ,M}, (3.2)

where C is a k× p matrix with rank k.

Most testing methods in the literatures focus on individual tract, such as FADTTS and FLMtest

introduced in Section 2.1.3. A global test is performed using massive multiple comparison

adjustment, which tends to be too conservative. More importantly, these methods usually ignore the

potential inter-correlations among different tracts. Such correlations can be helpful to increase

statistical power in a joint analysis [80]. Also, directly performing statistical inference on the

varying coefficient model (3.1) often requires large number of resampling in order to estimate the

p-values, which is very time consuming for GWAS problem.

Addressing these issues requires the development of a robust and efficient dimensional reduction

and testing framework on functional traits from multiple tracts. However, a joint analysis of multiple

tracts is nontrivial. One major difficulty is how to appropriately account for the between-bundle

correlations. In addition, the heterogeneity of different fiber bundles in geometric properties, such

as length, curvature and sampled grid points, makes it more difficult to include all tracts in a unified

model. Therefore, we first perform a dimension reduction procedure on each individual tract and

the aim is to extract some key features for further analysis.
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3.2.3 Dimension Reduction through Functional Principal Component Analysis (fPCA)

To perform dimension reduction only, we focus on the following varying coefficient model

without specifying any fixed effect,

yi,m(sm) = µm(sm)+ η̃i,m(sm)+ ei,m(sm). (3.3)

Compared with (3.1), η̃i,m(sm) represents spatial variation introduced by both xi and ηi,m(sm),

i.e., η̃i,m(sm) = x
T
i βm(sm)+ηi,m(sm). When xi are mean-zero random variables with covariance

Σx and are independent from ηi,m(sm) and ei,m(sm), η̃i,m(sm) is a sample from stochastic process

SP{0,Ση̃m(sm, tm)}, in which Ση̃m(sm, tm) is the covariance of η̃im(sm) given by

Ση̃m(sm, tm) = Σηm(sm, tm)+βm(sm)
T

Σxβm(tm), (3.4)

Since η̃i,m(sm) incorporates all the variations of interest, our primary goal is to extract important

features from it. Functional principal component analysis introduced in Section 2.1.2 is adopted

here to reduce the dimension of η̃i,m(sm).

Let Ση̃m(sm, tm) be a continuous covariance function on [0,Sm]
⊗2, Mercer’s theorem suggests

the following eigen-decomposition:

Ση̃m(sm, tm) =
+∞

∑
l=1

τm,lφm,l(sm)φm,l(tm), (3.5)

where {φm,l(sm)}+∞

l=1 are orthonormal eigenfunctions in L2[0,Sm] that correspond to eigenvalue
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sequence {τm,l}+∞

l=1 in decreasing order. Given (3.5), η̃i,m(sm) admits Karhunen-Loeve expansion as

η̃i,m(sm) =
+∞

∑
l=1

ξi,mlφm,l(sm), (3.6)

where ξi,ml =

ˆ Sm

0
η̃i,m(sm)φm,l(sm)dsm is the l-th functional principal component score of subject

i on tract m, and {ξi,ml}+∞

l=1 are mutually uncorrelated variables with mean zero and variances

{τm,l}+∞

l=1.

Through functional PCA, each individual function η̃i,m(sm) can be equivalently represented by

a sequence of functional PC scores {ξi,ml}+∞

l=1. When ∑
+∞

l=1 τm,l <+∞ and {τm,l}+∞

l=1 are decreasing

quickly, a relatively small number of fPCs would be enough to account for the majority of variation

in η̃i,m(s). In other words, we are able to approximate η̃i,m(s) through a finite fPC vector with

dimension Ln, i.e., ξi,m = (ξi,m1, . . . ,ξi,mLn)
T ∈ RLn . For notational simplicity, Ln is assumed

to be the same across all M bundles. The choice of Ln depends on both sample size n and

eigenvalue sequence {τm,l}+∞

l=1. There are several ad hoc procedures to determine Ln. An analog

of model selection techniques have been generalized for this purpose, such as Akaike information

criterion (AIC), Bayesian information criterion (BIC) [43] and cross-validation (CV). In practice,

the percentage of explained variation has been widely used as an appropriate cut-off. For the rest of

this section, we assume that the dimension of selected features Ln has been fixed.

Functional PCA not only extracts low dimensional feature from η̃i,m(sm), but also maps the

heterogeneous geometric structure onto a common coordinate system. It allows us to merge all

extracted features in a joint model. Specifically, we can get the following multivariate linear model
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from (3.1):

ξi,m = xT
i bm +δi,m, (3.7)

ξi = xT
i B+δi, (3.8)

where B = (b1, · · · ,bM) with bm =

ˆ Sm

0
βm(sm)Φm(sm)dsm, Φm(sm) = [φm,1(sm), · · · ,φm,Ln(sm)],

and δi = (δi,1, · · · ,δi,M)T with δi,m =

ˆ Sm

0
ηi,m(sm)Φm(sm)dsm.

Correspondingly, the testing question (3.2) lead to the following problem,

H0,ξ : CB = 0 v.s. H1,ξ : CB 6= 0. (3.9)

When M is large and Ln goes to infinity, direct analysis on (3.8) and (3.9) encounters the challenge

of high dimensionality. Therefore, further dimension reduction is required.

3.2.4 Latent Factor Model

Diffusion tensor properties from different tracts are known to have strong correlation that cannot

be ignored. To characterize such dependency, we assume a latent factor structure on {η̃i,m(sm)}M
m=1,

which is given as

η̃i,m(sm) = f
T
c,iγm(sm)+ui,m(sm), (3.10)

where fc,i is an r×1 vector of common latent factors that contribute to the variation in multiple

tracts, γm(sm) = (γm,1(sm), · · · ,γm,r(sm))
T is composed of the functional loading coefficients, and

ui,m(sm) represents tract-specific variation of bundle m that is uncorrlated with fc,i. It is further

assumed that {ui,m(sm)}M
m=1 are mutually uncorrelated among different tracts. yi,m(sm) in (3.3) can
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then be rewritten as

yi,m(sm) = µm(sm)+f
T
c,iγm(sm)+ui,m(sm)+ ei,m(sm). (3.11)

Given the above formulation, the extracted features ξi can be also expressed with a latent factor

models as

ξi,m = λT
mfc,i +ui,m, (3.12)

ξi = Λfc,i +ui, (3.13)

where Λ = (λ1, · · · ,λM)T with λm =

ˆ Sm

0
γm(sm)Φm(sm)dsm and ui = (ui,1, · · · ,ui,M)T with

ui,m =

ˆ Sm

0
ui,m(sm)Φm(sm)dsm. Without loss of generality, it is assumed that Cov(fc,i) = Ir. As

discussed in Section 2.3, the common factors can be recovered through principal component

analysis when M is large enough and a pervasiveness assumption (2.36) is satisfied.

3.2.5 Multivariate Linear Model on Common Factors

Finally, when the common factors fc,i are obtained, the following multivariate linear regression

is applied:

fc,i = xT
i Bc +δc,i. (3.14)

To study the hypothesis of interest on fc,i, we consider testing problem

Hc,0 : CBc = 0 v.s. Hc,1 : CBc 6= 0, (3.15)
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which can be tested by using a wald-type statistic

Tn(Fc) = tr{FT
c HT

x CT [C(XT X)−1CT ]−1CHxFc}, (3.16)

where X = (x1, · · · ,xn)
T , Fc = (fc,1, · · · ,fc,n)

T and Hx = (XT X)−1XT .

Let D0 = {B : CB = 0}, D1 = {B : CB 6= 0}, Dc,0 = {B : CBc = 0} and Dc,1 = {B : CBc 6= 0},

we have D0 ⊂Dc,0 and Dc,1 ⊂D1. It is possible that test on the common factors under H1 would

incur power loss, for example, when Cβm(sm) 6= 0 holds for only a few tracts. In such cases,

individual tract analysis can be used to achieve a better detection power. However, when the effects

of interest are commonly shared by multiple tracts, the proposed common factor analysis allows

us to perform a computationally efficient test on a much lower dimensional space, which would

potentially increase statistical power.

3.2.6 Estimation and Inference Procedure

In practice, DTI properties are observed on discrete points. For the m-th tract, let Sm =

{sm,1, . . . ,sm,w, . . . ,sm,Wm} be the sample grid point of yi,m(s), we first rescale the responses so that

Sm
Wm

∑
Wm
w=1 ∑

n
i=1[yi,m(sm,w)− ȳ·,m(sm,w)]

2 = n, where ȳ·,m(·) = 1
n ∑

n
i=1 yi,m(·). The following two-stage

procedure is then adopted to estimate functional PCA scores {ξi}n
i=1 and common factors {fc,i}n

i=1:

• Stage I: For each individual tract, µm(s) and η̃i,m(s) are estimated from (3.3) using local

polynomial kernel smoothing technique introduced in Section 2.1.1. Functional principal

component analysis is then performed to estimate ξi,m.

• Stage II: We merge the estimated fPCs, denoted as ξ̂i,m, from all tracts together and use

principal component analysis to estimate common factors f̂c,i. Regression and hypothesis

testing can then be performed on f̂c,i.
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Details of these two stages are given below.

In Stage I, to estimate the mean curve from model (3.3), we apply the local linear kernel

smoothing method given by (2.2) when ν = 0. Specifically, let h1,m be a given bandwidth for tract

m, µm(sm,w) can be approximated by

µm(sm,w)≈ µm(sm), as |sm,w− sm| ≤ h1,m. (3.17)

Given a smoothing kernel K(s) on [−1,1], µ̂m(sm) can be estimated as the minimizers of the

following weighted least square function:

n

∑
i=1

Wm

∑
w=1

[yi,m(sm,w)−µm(sm)]
2Kh1,m(sm,w− sm), (3.18)

where Kh1,m(s) =
1

h1,m
K(s/h1,m). The solution to (4.5) can be explicitly written as

µ̂m(sm) =
∑

Wm
w=1 ȳ·,m(sm,w)Kh1,m(sm,w− sm)

∑
Wm
w=1 Kh1,m(sm,w− sm)

, ∀sm ∈ [0,Sm]. (3.19)

The estimated µ̂m(sm) is a curve with local constant smoothness. More complicated local polynomial

structure can be obtained by using higher order expansion if necessary.

Similarly, we can estimate each individual function η̃i,m(sm) through approximation

η̃i,m(sm,w)≈ η̃i,m(sm), as |sm,w− sm| ≤ h2,m, (3.20)

where h2,m is a given bandwidth that controls smoothness of the estimated individual functions of

31



tract m. The corresponding weighted least square function and the solution are respectively given as

Wm

∑
w=1

[yi,m(sm,w)− µ̂m(sm,w)− η̃i,m(sm)]
2Kh2,m(sm,w− sm), (3.21)

and

̂̃η i,m(sm) =
∑

Wm
w=1[yi(sm,w)− µ̂m(sm,w)]Kh2,m(sm,w− sm)

∑
Wm
w=1 Kh2,m(sm,w− sm)

, ∀sm ∈ [0,Sm]. (3.22)

For different tracts, the bandwidths are not necessarily equal. We use a leave-one-out cross-validation

proposed in [36] to determine the choices of h1,m and h2,m. When smoothed individual functions

are obtained, we calculate empirical covariance function as Σ̂η̃m(sm, tm) = 1
n ∑

n
i=1
̂̃η i,m(sm)̂̃η i,m(tm).

And eigenbases {φ̂m,l(sm)}+∞

l=1 can be estimated from spectral decomposition

Σ̂η̃m(sm, tm) =
+∞

∑
l=1

τ̂m,l φ̂m,l(sm)φ̂m,l(tm). (3.23)

Then individual random effect η̂i,m(sm) is projected onto basis functions {φ̂m,l(sm)}+∞

l=1 to get

functional PC scores, i.e.,

ξ̂i,ml =
Sm

Wm

Wm

∑
w=1

η̂i,m(sm,w)φ̂ml(sm,w), (3.24)

for l = 1, · · · ,Ln and m = 1, · · · ,M. Here, Ln is chosen as

L̂n = min{L : 1≤ L≤ n, min
1≤m≤M

∑1≤l≤L τ̂m,l

∑1≤l≤n τ̂m,l
}> α} (3.25)

where α is a given value close to 1. The above choice of L̂n requires us to extract the minimal

number of fPCs which include at least 100α% of variation in each tract.
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In Stage II, fPC scores from all tracts are merged together as

ξ̂i = (ξ̂i,11, · · · , ξ̂i,1Ln, · · · , ξ̂i,m1, · · · , ξ̂i,mLn, · · · , ξ̂i,M1, · · · , ξ̂i,MLn)
T . (3.26)

Principal component analysis is then applied on the merged features to identify common factors.

Let {τ̂ξ ,1, · · · , τ̂ξ ,r} be the first r eigenvalues of sample covariance matrix Σ̂ξ = 1
n ∑

n
i=1 ξ̂iξ̂

T
i in

decreasing order and let v̂1, . . . , v̂r be the corresponding eigenvectors. The common factors are

estimated as

f̂c,i = T̂−1/2V̂T
r ξ̂i, (3.27)

where V̂r = (v̂1, · · · , v̂r) and T̂ = (τ̂ξ ,1, · · · , τ̂ξ ,r). The dimension of common factors r is determined

using parallel analysis. Such a procedure is similar to algorithm 2.3.1, except that the permutation

is applied to the indices of tracts, i.e., {1, · · · ,M}, rather than all dimensions in ξ̂i.

Finally, we plug in F̂c to (3.16) to calculate the test statistic Tn(F̂c). It is proved in Section 3.3

that under H0, Tn(F̂c) converges to a mixed χ2 distribution. The corresponding p-value is then

calculated by bootstrap.

3.3 Theoretical Results

In this section, we study the asymptotic distribution of the proposed test statistic Tn(F̂c) under

both null hypothesis and alternative hypothesis.

3.3.1 Assumptions

Throughout the section, we assume the following assumptions hold. Some of the conditions can

be weakened without changing the main conclusion, yet is beyond our interest in this work.
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Assumption 3.1. The arc lengths of M tracts have a universal upper bound, i.e., maxm Sm < c1 <

+∞. For each tract m, the observed grid point set Sm is composed of Wm equidistant points in

[0,Sm].

Assumption 3.2. Smoothing kernel K(u) is a symmetric positive function with continuous first

order derivative, i.e., K(u) ∈C1[−1,1]. It is further assumed that K(u) and its derivative satisfy

supu∈[−1,1] |∂K(u)/K(u)|< c2 <+∞.

Assumption 3.3. The covariates {xi}n
i=1 are independent and identically distributed bounded

variables that satisfy ‖xi‖2 < c3 < +∞ almost surely, with Exi = 0 and Exix
T
i = Σx, where

‖Σx‖2 +‖Σ−1
x ‖2 < c4 <+∞.

Assumption 3.4. Mean functions µm(sm) are functions in C1[0,Sm] with universally bounded first

order derivatives, i.e., maxm supsm
|∂ µm(sm)|< c5 <+∞.

Assumption 3.5. Fixed effects βm(sm) are functions in C1[0,Sm] with universally bounded first

order derivatives, i.e., maxm supsm
‖∂βm(sm)‖∞ < c6 <+∞.

Assumption 3.6. For each m, {ηi,m(sm)}n
i=1 are independently and identically distributed copies

from a bounded process. The sample path of each ηi,m(sm) has continuous and universally bounded

first order derivative on [0,Sm], i.e., maxm supsm
|∂ηi,m(sm)|< c7 <+∞ holds almost surely. The

covariance function Σηm(sm, tm) is assumed to belong to C1[0,Sm]
⊗2 with uniformly bounded first

order derivative, i.e., maxm supsm,tm |∂smΣηm(sm, tm)|< c8 <+∞. In addition, the eigenfunctions of

Σηm(sm, tm) are assumed to be universally bounded, i.e., maxm,l supsm
|φm,l(sm)|< c9 <+∞.

Assumption 3.7. For all m = 1, · · · ,M, {ei,m(sm)}n
i=1 are mutually independent and have a

universal bound, i.e., maxm supsm
|ei,m(sm)| < c10 < +∞. In addition, we assume that

E[ei,m(sm)|xi] = 0 and E[e2
i,m(sm)|xi] = 0 hold almost surely.
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Assumption 3.8. Let {τ j}r
j=1 be the eigenvalues of an r× r positive definite matrix Ωγ = (γ j, j′)r×r

in decreasing order, where γ j, j′ = ∑
M
m=1

ˆ Sm

0
γm, j(sm)γm, j′(sm)dsm for 1≤ j, j′ ≤ r. It is assumed

that τr
M > ε1 > 0 and 1

M min1≤ j≤r−1{τ j− τ j+1}> ε2 > 0.

Assumption 3.9. The number of grid points Wm and the smoothing bandwidths h1,m, h2,m are

equal for all m = 1, · · · ,M, i.e., Wm =W, h1,m = h1 and h2,m = h2. The following conditions are

satisfied: (i) n, W and M→ +∞ with M/n < c11 < +∞; (ii) h2
1
√

logM and h2
√

logM→ 0; (iii)

Wh2
1, Wh2

2→+∞, (Wh2)
−1 logM→+∞ and max{Wh1,Wh2}/

√
n≤ c12 <+∞.

Assumption 3.10. For all m = 1, · · · ,M, there exists a uniform sequence of functional PCA cutoffs

{Ln}+∞

n=1 such that, as n→ +∞, we assume that maxm ∑
+∞

l=Ln+1 τm,l → 0 and n−1 logLn→ 0. Let

ω0 =
√

logM max{h2
1,h2,(Wh2)

−1/2,(logM/n)−1/2}, it is required that ω2
0

M ∑
M
m=1 ∑

Ln
l=1 τ

−2
m,l → 0.

Assumption 3.11. Under alternative hypothesis, it is assumed that CBc = n−
1
2 C0, where C0 =

(c0,1, · · · ,c0,r) is a k× r matrix with ‖C0‖F > ε3.

Assumptions 3.1−3.7 are standard conditions required to obtain consistent estimates of µm(sm)

and Ση̃m(sm, tm) with uniform convergence rates for all tracts. Assumption 3.8 is an analog to the

pervasiveness condition (2.36) for model (3.11). It is required to guarantee that the common latent

factors can be accurately recovered from the observations as M→+∞. Assumption 3.9 specifies

the rates of h1, h2, W and M when n→+∞. The condition that all tracts have the same bandwidth

and sample point size is not necessary, as long as h1,m, h2,m and Wm have the same rate with h1, h2

and W respectively, and is only required to simplify the proof. Assumption 3.10 specifies the range

of Ln, which depends on the decay rate {τm,l}+∞

l=1 for all m = 1, · · · ,M. To see this, we consider

two decay rates as examples. For an exponential decay rate, i.e., c13α
−l
1 ≤ τm,l ≤ c13α

−l
2 holds

for all m with 1 < α2 < α1 < +∞ and 0 < c13 < +∞, Assumption 3.10 requires that Ln → +∞
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and Ln = logα1
[o(ω−2

0 )]. For a polynomial decay rate, i.e., c14l−r1 ≤ τm,l ≤ c14l−r2 holds for

all m with 1 < r2 < r1 < +∞ and 0 < c14 < +∞, Assumption 3.10 requires that Ln → +∞ and

Ln = o[ω−2/(r1+1)
0 ]. Assumption 3.11 specifies an alternative hypothesis in which the effect of

interest is a common effect implied by the latent common factors.

3.3.2 Main Results

The following theorem establishes the asymptotic distribution of the proposed test statistic under

both null hypothesis and the alternative hypothesis.

Theorem 3.3.1. Let Σ f |x be the covariance of fc,i conditioned on xi, let {τ f |x, j}r
j=1 be the

eigenvalues of Σ f |x in decreasing order, and let {v f |x, j}r
j=1 be the corresponding eigenvectors.

When Assumptions 3.1 - 3.10 hold, Tn(F̂c) has the following asymptotic distribution under H0:

Tn(F̂c)
d−→

r

∑
j=1

τ f |x, jχ
2
j (k),

where {χ2
j (k)}r

j=1 denote r independent χ2 distributions with degree-of-freedom k.

Under the alternative hypothesis specified by Assumption 3.11, Tn(F̂c) converges to a non-

central mixed χ2 distribution given by:

Tn(F̂c)
d−→

r

∑
j=1

τ f |x, jχ
2
j (ν j,k),

where {χ2
j (ν j,k)}r

j=1 are r independent non-central χ2 distributions with non-central parameters

{ν j}r
j=1, in which ν j = vT

f |x, jC
T
0 (CΣ−1

x CT )−1C0v f |x, j/τ f |x, j, and degree-of-freedom k.

The above theorem also shows that the asymptotic distribution of Tn(F̂c) is the same as that of

Tn(Fc) under both null hypothesis and alternative hypothesis. It is implied that using the proposed
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procedure to study testing problem (3.15) is asymptotically equivalent to directly working on latent

common factors as if they are observed.

3.4 Simulations

In this section, we apply HFPRM to simulation examples. Simulation data is generated from a

clinical study. It is a twin study designed to understand the genetic influence on brain development

in early childhood. Detailed description can be found in Section 3.5

3.4.1 Setup

We selected 40 major fiber bundles with fractional anisotropy (FA) value from DTI tractography

and extracted 100 uncorrelated subjects from the dataset. The following model was used to generate

simulation data, and gestational age (Gage) and gender (G) were included as covariates:

yi,m(sm) = µm(sm)+ cβm,1(sm)Gagei +βm,2(sm)Gi +ηi,m(sm)+ ei,m(sm), (3.28)

in which model parameters βm,2(sm),Σηm and Σem were estimated from real data, and coefficient

βm,1(sm) was rescaled so that all tracts had comparable effect sizes.

In the first simulation experiment, we aim to examine the influence of total tract number M to

the performance of HFPRM when common effect exists. In each simulation run, M tracts were

randomly chosen from all 40 bundles and simulation data was generated from model (3.28). M

was set to take value from 10,20,30 and 40. The second simulation experiment is to study the

performance of HFPRM when different proportions of tracts have real effect. M was set to 40 and

M0 took value from {10,20,30,40}. In each simulation run, M0 tracts were randomly selected from

all 40 bundles to have c = c0, with c0 > 0 under alternative hypothesis. For other tracts, c was set to

0. In both experiments, we tested the significance of the gestational age effect.
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When applying HFPRM, varying coefficient model (3.3) was first fitted to estimate individual

functions. Functional principal components were then extracted so that at least 85% of total

variation was included for each tract. In factor analysis, parallel analysis was applied and factors

with p-values less than 0.05 were selected as common factors. Type I error and statistical power

were calculated at significance level α = 0.05 based on 1000 simulation replications. FADTTS was

also applied on each single tract. The results of multi-tract test with Bonferroni correction were

reported as a comparison.

3.4.2 Results

The rejection rate of simulation experiment I is demonstrated in Figure 3.2(a). When M = 10,

the common factor analysis of HFPRM slightly outperforms single tract analysis with multiple

comparison adjustment. When M = 20,30 and 40, HFPRM shows notable power increase compared

to single tract analysis when detecting common effect. When M becomes larger, the improvement

becomes more substantial. Such results are expected since common effect tends to accumulate in

the common factor as M grows.

The rejection rate of simulation experiment II is shown in Figure 3.2(b). When M0 = 10, i.e.,

25% of the tracts have real effect, HFPRM and FADTTS have comparable performance. As M0

increases to 20,30 and 40, HFPRM shows notably higher power compared with FADTTS. The

power gain becomes larger as M0 grows. It indicates that the proportion of tracts with true effect

is critical to the performance of the common factor analysis in HFPRM. When the proportion is

relatively low, HFPRM does not give much power improvement. As the proportion increases, the

power gain of HFPRM becomes more substantial.
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Figure 3.2: Simulation results of HFPRM: panels (a) and (b) show the rejection rate of HFPRM and
FADTTS in experiment I and experiment II respectively.

3.5 Early Human Brain Development Study

To investigate how genetic factors influence brain structure in prenatal and early postnatal stage,

we conducted a genome-wide association study on fiber bundle statistics in a unique cohort of

infants from the UNC Early Brain Development Study (UNCEBDS) [81].

3.5.1 Data Acquisition and Preprocessing

MRI scans were acquired either on a 3T Siemens Allegra head-only scanner (N = 566) or

on a 3T Siemens TIM Trio 3T scanner (N = 96). For the Allegra model, diffusion weighted

images were acquired from 339 subjects by a single shot EPI DTI sequence with the following

parameters: TR/ TE = 5200/73 ms, voxel resolution = 2×2×2 mm3, 6 non-collinear directions

with b = 1000 s/mm2 and 1 baseline image with b = 0. For the remaining subjects scanned on

Allegra, DWI was acquired with the following parameters: TR/ TE = 7680/82 ms, voxel resolution

= 2× 2× 2 mm3, 42 non-collinear directions with diffusion gradients of b = 1000 s/mm2 in
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addition to 7 baseline images. Quality control was applied on raw DWIs using DTIPrep [82], and

FSL [83, 84] was performed for skull stripping and brain masking. We used a weighted least squares

method [76] to estimate diffusion tensors and followed the UNC-Utah NA-MIC framework [85]

to create a study-specific atlas. Subsequently, a total number of 44 fiber tracts listed in Table 3.1

were reconstructed in the atlas space using a streamline algorithm [86]. For each subject, a scalar

diffusion property fractional anisotropy (FA) was calculated at each sample point along each tract

using neighboring diffusion tensors.

Table 3.1: The UNCEBDS neonate data: A list of fiber tracts in the simulation experiments and the
real data analysis

Bundle Group Tract Segments

Arcuate Fasciculus
right temporo-parietal (ARTP)*, left fronto-temporal (ALFT)*,
right fronto-temporal (ARFT)*, left fronto-parietal (ALFP)*,
right fronto-parietal (ARFP)*

Corpus Callosum
motor body (CCMB)*, occipital splenium (CCOS)*, parietal
body (CCPB)*, premotor body (CCPMB)*, rostrum (CCR)*,
temporal tapetum (CCTT), genu (CCG)*

Cingulum
left cingulate gyrus (CLC)*, right cingulate gyrus (CRC)*, right
hippocampal (CRH)*

Corticothalamic

left motor (CTLM)*, right motor (CTRM)*, left premotor
(CTLPM)*, right premotor (CTRPM)*, left parietal (CTLP)*,
right parietal (CTRP)*, left prefrontal (CTLPF)*, right
prefrontal (CTRPF)*

CorticoFugal
left motor (CFLM)*, right motor (CFRM)*, left parietal
(CFLP)*, right parietal (CFRP), left prefrontal cortex
(CFLPFC)*, right prefrontal cortex (CFRPFC)*, left premotor
(CFLPM)

Others

left fornix (FL)*, right fornix (FR)*, left inferior fronto-
occipital fasciculi (IFOFL), right inferior fronto-occipital
fasciculi (IFOFR), left inferior longitudinal fasciculi (ILFL)*,
right inferior longitudinal fasciculi (ILFR)*, left medial
lemniscus (ML)*, right medial lemniscus (MR)*, left optic
(OTL)*, right optic (OTR)*, left superior longitudinal fasciculus
(SLFL)*, right superior longitudinal fasciculus (SLFR)*,
left uncinate fasciculus (UNCL)*, right uncinate fasciculus
(UNCR)*

* marks the 40 selected tracts in the simulation experiments
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Genotyping of single nucleotide polymorphisms (SNPs) was conducted on Affymetrix Axiom

genome-wide LAT Array. Samples with call rates less than 95%, outliers for homozygosity, ancestry

outliers and unexpected relatedness were excluded from the study. We also removed genetic markers

with Hardy-Weinberg equilibrium p-value less than 10−8, call rate less than 95% and Mendelian

error rate larger than 10%. Population stratification was assessed using principal component analysis

[87]. Imputation was performed with MaCH-Admix [88] using 1000G reference panel [89]. To

evaluate the quality of imputed SNPs, we computed the mean R2 under varying minor allele

frequency (MAF) categories and selected R2 cutoffs as described in [90]. SNPs with MAF less

than 0.01 were excluded from imputed dataset. Eventually, 471 twin subjects (31 MZ pairs, 75 DZ

pairs and 260 singletons or unpaired twin subjects) and 8,538,562 genetic markers were retained for

further analysis.

3.5.2 Data Analysis

Our primary interest is to perform GWAS on the neonate samples in order to find important

genetic variants influencing the development of human brain at early life stage. The fractional

anisotropy statistics on 44 major fiber bundles are the primary phenotypes under analysis, since FA

value is an important diffusion measure that quantifies the extent of local directional water diffusion

and partially reflects the degree of bundle maturation in premature brains and neonatal brains [91].

For a twin study, an ACE model was fitted instead of (3.14) on each common factor to account for

correlation within twin subjects. For a twin pair i, a univariate common factor is modeled as

fc,i j = µc +x
T
i jβc,x +βc,ggi j +ac,i j + cc,i + ec,i j, (3.29)
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where j = 1,2 represent twin subject indices, xi j are covariates and gi j is additive genetic effect

for a specific variant coded as {0,1,2}. Seven variables were added as covariates in xi j, including

gestational age at birth, gender, DTI direction type, scanner type and the first three genetic principal

component to adjust for population stratification. For variance components, it is assumed that

additive genetic variation ac,i j follows normal distribution N(0,σ2
a ) with cor(ac,i1,ac,i2) = 0.5+

0.5IMZ,i, in which IMZ,i = 1 if twin pair i are monozygotic, that common environmental variation cc,i

follows normal distribution N(0,σ2
c ) and that unique environmental variation ec,i j follows normal

distribution N(0,σ2
e ).
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Figure 3.3: Application of HFPRM to the UNCEBDS neonate data: panel (a) shows the scree
plot of the factor analysis, the p-values of the first five factors form the parallel analysis and the
percent of variation explained by the significant factors. Panel (b) shows the percent of variation of
explained by the significant factors on each individual tract.

3.5.3 Results

In functional PCA, the first 5 functional principal components are extracted for each tract to

include more than 70% of variation. As shown in Figure 3.3(a) and (b), factor 1−4 were significant

in parallel analysis (p-value < 0.001). Among these four factors, factor 1 was able to explain 47.9%
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of total variation of all tracts and more than 20% of individual variation in most tracts, while each

of the factor 2−4 explained less than 5% of total variation and less than 8% of individual variation

in most tracts. This indicates that factor 1 is able to capture common variation shared by most tracts.

Therefore, we applied GWAS analysis on factor 1 only.

The results of GWAS are visualized in Figure 3.4. From the Manhattan plot, one genome-

wide significant loci with p-value less than 5× 10−8 was observed on the proteasome inhibitor

subunit 1 (PSMF1) gene on chromosome 19. PSMF1 gene is a member in ubiquitin-proteasomal

pathway, which is known to play an important role in developmental axonal pruning and synaptic

plasticity [92] and is suspected to be a contributor of a wide range of neurophysiological and

neuropathological processes [93]. Additionally, 13 locus were observed exceeding the suggestive

genome-wide significance threshold (p-value < 5×10−6). These top snps are summarized in Table

3.2 and the nearest genes to the variants are presented. We also examined the gene expression level

of these top genes in fetal tissue using a publicly available gene expression atlas [94]. Figure 3.5

shows the scaled expression level for 12 out of 14 identified genes with available data. SCAPER,

SETBP1, B3GAT1,MAP3K13 genes are predominantly expressed in fetal brain tissues than in other

fetal tissues, suggesting active involvement in genesis and differentiation of the central nervous

system.
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Manha%an	Plot	 QQ	Plot	

Figure 3.4: Application of HFPRM to the UNCEBDS neonate data: Manhattan plot and QQ plot of
the − log10(p-values) from GWAS on the common factor.
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Figure 3.5: Application of HFPRM to the UNCEBDS neonate data: heatmap of relative expression
level of the identified genes in fetal tissues. The expression level of SCAPER, SETBP1, B3GAT1
and MAP3K13 in brain tissues is higher than the average expression level in all tissues.
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Table 3.2: Application of HFPRM to the LSEBD Neonate Data: Top SNPs from GWAS and their
nearest genes

SNP Chr p-value Gene
rs6077860 20 4.61E-08 PSMF1
rs1446965 1 7.60E-08 APCS

rs72830077 5 3.32E-07 TENM2
rs6777575 3 5.21E-07 MAP3K13

11:134773378 11 1.08E-06 B3GAT1
rs78070351 20 1.78E-06 UQCC1
rs28627209 18 2.26E-06 NFATC1
rs2216360 3 3.32E-06 MECOM

rs17004715 21 3.34E-06 ITGB2
rs7366960 1 3.84E-06 SLC27A3

rs114172604 6 3.94E-06 MAN1A1
rs11876680 18 4.39E-06 SETBP1
rs79045984 15 4.61E-06 SCAPER
rs2002371 1 4.62E-06 CNIH3

3.6 Conclusion

We developed a Hierarchical Principal Regression Model (HFPRM) to efficiently conduct joint

analysis on diffusion tensor bundle statistics from multiple neurofiber tracts. A varying coefficient

model was introduced and functional PCA was applied to characterize tract variation. Factor

analysis was then adopted to extract common features and a standard multivariate test procedure

was applied to study common effect. Simulation results have demonstrated that HFPRM is powerful

to detect common effect shared by multiple tracts. Finally, the proposed method has been applied to

a genome-wide association study on neonatal diffusion tensor images. We have identified some

important genetic architecture related to early human brain development.
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CHAPTER 4: A POWERFUL GLOBAL TEST STATISTIC FOR FUNCTIONAL
STATISTICAL INFERENCE

4.1 Introduction

Functional regression modeling with a functional response y = {y(s) : s ∈S } and multivariate

covariates x ∈ Rp is a popular statistical tool in modern high-dimensional inference, with wide

applications in various medical imaging studies [95, 96, 97, 98, 99, 100]. Among them, imaging

genetic analysis on functional phenotypes is an important topic [101]. The primary interest is to

identify genetic variants x associated with functional phenotypic variation y in human brain, which

may ultimately lead to discoveries of genes for neuropsychiatric and neurological disorders.

Suppose that we observe functional responses yi(s) and a set of clinical variables (e.g., age,

genetic markers, and gender) xi ∈ Rp for n unrelated subjects. Without loss of generality, we assume

S = [0,S] for a positive scalar S. Throughout this chapter, we consider n independent observations

(yi,xi) and a varying coefficient model given by

yi(s) = xT
i β(s)+ηi(s)+ ei(s), (4.1)

where β(s) is a p× 1 vector of functional coefficients, ηi(s) is random effect that characterizes

subject-specific spatial variation, and ei(s) represents measurement error. It is assumed that ηi(s)

and ei(s) are mutually independent and identical copies of SP{0,Ση(s, t)} and SP{0,σ2
e (s)I(s = t)},

respectively, where SP(µ,Σ) denotes a stochastic process with mean function µ(s) and covariance
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function Σ(s, t), and I(·) is the indicator function of an event. Many hypothesis testing problems of

interest, such as GWAS, can be formulated as a unit-rank global testing problem across S , which

is given by

H0 : Cβ(s) = b0(s) ∀s ∈S v.s. H1 : Cβ(s) 6= b0(s) ∃s ∈S . (4.2)

where C is a 1× p vector and b0(s) is an scalar value. Without loss of generality, we center the

covariates, standardize the responses, and assume b0(s) = 0.

The key problem is how to design a powerful global test statistic that can efficiently aggregate

weak signals across S , while achieving high statistical power for testing problem (4.2). To the

best of our knowledge, such problem has not been fully solved yet. We focus on a specific setting

that all components in β(s) lie in an infinite-dimensional functional space, but p is relatively small.

Existing testing methods fail to detect moderate or weak signals due to two major challenges,

(i) infinite-dimensional functional parameters and (ii) complicated covariance structure Ση(s, t).

Popular pooled global test statistics are proposed to conduct univariate analysis at each sample

grid point of S and then to combine their results [36, 101]. However, since most of such tests

ignore the correlation structure of yi(s), they may suffer from severe power loss in presence of

high correlation. Moreover, testing at each grid point individually in the mass univariate analysis

requires a substantial penalty of controlling for multiplicity. The Hotelling’s T 2 type test is also not

well-defined for our problem of interest, since the sample estimate of Ση is not invertible. Although

dimension reduction techniques, such as principal component analysis (PCA), are considered to

reduce the dimension of functional response, most of the methods ignore the variation of covariates

and their associations with responses. Thus, such methods can be sub-optimal for our problem.

Finally, some recent developments in regularization methods, such as multiple task learning, do not
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provide a post-inference tool (e.g., p-values) [102, 103].

The proposed method has three major contributions given as follows:

• A novel functional projection regression model and its associated global test statistic are

introduced to aggregate relatively weak signals across S , while reducing the dimension

of functional data. An optimal functional projection direction is calculated by maximizing

statistical power with ridge penalty.

• The asymptotic distribution of the global test statistic is studied systematically under both

null and alternative hypotheses and a data-driven strategy is provided to adaptively select

optimal tuning parameter.

• Numerical simulations show that the proposed test outperforms all existing state-of-the-art

methods in functional statistical inference.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the functional

projection regression model and its associated global test statistic. In Section 4.3, we derive the

asymptotic distribution of the test statistic under both null and alternative hypotheses. In Sections

4.4 and 4.5, we use numerical simulations and a real data example to examine the finite sample

performance of the proposed test. Section 4.6 concludes with some remarks.

4.2 Method

4.2.1 Functional Projection Regression Model

We propose a functional projection regression model as follows. Specifically, let ω(s) be a

weight function in L2(S ), we project yi(s) onto the functional direction ω(s) such that

yω,i = x
T
i βω +ηω,i, (4.3)
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in which βω =

ˆ
S
β(s)ω(s)ds, and ηω,i =

ˆ
S

ηi(s)ω(s)ds. The term associated with ei(s) would

converges to 0 in probability through local kernel smoothing, therefore is asymptotically ignorable.

The projected model (4.3) transforms the functional response to a univariate response. Let β̂ω and

Σ̂η be the estimates of βω and Ση , respectively. Thus, a standard wald-type statistic can be given by

Tn(ω) = β̂T
ωCT [C(XT X)−1CT ]−1Cβ̂ω/{

¨
Σ̂η(s,s′)ω(s)ω(s′)dsds′}. (4.4)

We calculate β̂ω and Σ̂η by using local constant kernel smoothing with weighted least square

method [29]. Assume functional responses {yi(s)}n
i=1 are observed on W discrete sample points

S = {s1, · · · ,sW} and h1 is a given smoothing bandwidth, a smooth estimate of β(s) can be

calculated as

β̂h1(s) = argmin
β(s)

n

∑
i=1

W

∑
w=1

[yi(sw)− xT
i β(s)]

2Kh1(sw− s), (4.5)

Similarly with bandwidth h2, the random function ηi(s) can be estimated by

η̂i,h2(s) = argmin
ηi(s)

W

∑
w=1

[yi(sw)− xT
i β̂(sw)−ηi(s)]2Kh2(sw− s). (4.6)

With {η̂i,h2(s)}n
i=1, we can obtain a consistent estimate of Ση(s, t) as follows,

Σ̂η(s, t) =
1
n

n

∑
i=1

η̂i,h2(s)η̂i,h2(s
′). (4.7)

We address the problem of determining ω(s) in order to achieve optimal power. Specifically,

we consider the signal-to-noise ratio of test statistic Tn(ω), which dominates the asymptotic power,
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as follows:

L1(ω) =
βT

ωCT [C(XT X)−1CT ]−1Cβω¨
Ση(s, t)ω(s)ω(t)dsdt

. (4.8)

An optimal projection direction is the maximizer of L1(ω). However, when plugging in the estimates

of β(s) andΣη , maximizing L1(ω) can be an ill-conditioned problem. The eigenvalues of Σ̂η(s, t)

usually decrease to zero very fast and the maximum value of L1(ω) tend to be ∞. To solve this

issue, we add a ridge penalty term, which leads

ω̂λ (·) = argmax
ω(·)

β̂T
ω,h1

CT [C(XT X)−1CT ]−1Cβ̂ω,h1¨
Σ̂η(s, t)ω(s)ω(t)dsdt +λ‖ω(s)‖2

2

, (4.9)

where λ > 0 is a tuning parameter and ‖ω(s)‖2
2 =
´
S ω2(s)ds.

For a given λ , we calculate ω̂λ (·) as follows. Let {τ̂l}+∞

l=1 be the eigenvalues of Σ̂η(s, t) in a

decreasing order and let {φ̂l(s)}+∞

l=1 be the corresponding eigenfunctions. Assume that the underlying

ω(s) ∈ span{φl(s)}+∞

l=1 such that ω(s) = ∑
+∞

l=1 ωlφl(s), we search ω̂(s) in the space spanned by the

estimated eigenfunctions span{φ̂l(s)}+∞

l=1. Then (4.9) can be equivalently formulated as

ω̂λ = (ω̂1,λ , · · · , ω̂l,λ , · · ·) = argmax
ω

[∑+∞

l=1 d̂l,h1ωl]
2

∑
+∞

l=1 ω2
l (τ̂l +λ )

, (4.10)

in which ω̂l,λ =

ˆ S

0
ω̂λ (s)φ̂l(s)ds and d̂l,h1 =

ˆ S

0
Cβ̂h1(s)φ̂l(s)ds are the projections of functional

direction ω̂λ (s) and estimated signal Cβ̂h1(s) on the estimated eigenfunctions {φ̂l(s)}∞
l=1. The

solution to (4.10) can be explicitly expressed as,

ω̂l,λ = d̂l,h1/(τ̂l +λ ). (4.11)

50



Finally, we obtain a global test statistic based on the optimal projection direction

ω̂λ (s) = ∑
+∞

l=1 ω̂l,λ φ̂l(s) as follows:

Tn(ω̂λ ) =
(∑+∞

l=1 d̂l,h1ω̂l,λ )
2

[C(XT X)−1CT ]∑+∞

l=1 τ̂lω̂
2
l,λ

. (4.12)

An unsolved question is how to choose the tuning parameter λ , which will be answered in Section

4.3.

To approximate the distribution of Tn(ω̂λ ) under null hypothesis, we adopt a wild-boostrap

procedure described as follows.

Algorithm 4.2.1.

(i) Fit the varying coefficient model under the null hypothesis and get the estimate of β̂0(s), η̂i,0(s)

and êi,0(s) for i = 1, · · · ,n and s ∈ [0,S].

(ii) For g = 1, · · · ,G, generate independent random numbers ν
(g)
i and ν

(g)
i (sw) from N(0,1), and

the wild bootstrap sample on each grid point can be calculated as

ŷ(g)i (sw) = β̂0(sw)
Txi +ν

(g)
i η̂i,0(sw)+ν

(g)
i (sw)êi,0(sw). (4.13)

(iii) Repeat the test procedure and generate G samples of Tn(ω̂
(g)
λ

) under the null hypothesis.

(iv) The p−value is approximated by p = G−1
∑

G
g=1 I{Tn(ω̂λ )≥ Tn(ω̂

(g)
λ

)}.

Approximation of the null distribution requires repeated calculations of the estimation-test

procedure by G times, and G must be large enough to guarantee approximation accuracy.
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4.3 Theoretical Result

In this section, we study the asymptotic distribution of test statistic Tn(ω̂λ ) and consider the

problem of determining the tuning parameter λ for optimally testing (4.2).

4.3.1 Assumptions

Throughout this section, the following assumptions are used to facilitate the technical details.

Some of the assumptions might be weakened but the current version simplifies the proof.

Assumption 4.1. Smoothing kernel K(u) is a symmetric positive function with compact support

[−1,1] and upper bound c1. Moreover, K(u) has continuous first order derivative satisfying

supu |K̇(u)|< c2 <+∞.

Assumption 4.2. Variable of interest xi are identically and independently distributed variables

with mean µx and positive definite covariance Σx, and ‖xi‖∞ < c3 <+∞.

Assumption 4.3. Sample grid point set S is composed of M equidistant points on [0,S].

Assumption 4.4. Fixed effects β(s) are continuous functions in C1[0,S] with universally bounded

first order derivatives, i.e., sups ‖∂β(s)‖∞ < c4 <+∞.

Assumption 4.5. Random functions {ηi(s)}n
i=1 are i.i.d copies from a gaussian process and the

sample path has continuous first-order derivative on [0,S]. We further assume that ∂ηi(s) is

also a gaussian process and its covariance function has continuous first-order derivatives, i.e.,

Σ∂η(s, t) ∈C1[0,S]⊗2.

Assumption 4.6. Error terms {ei(s)}n
i=1 are i.i.d copies from a universally upper bounded process,

i.e., sups |ei(s)|< c7 <+∞.
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Assumption 4.7. Let Ση(s, t) = ∑
+∞

l=1 τlφl(s)φl(t) be the spectral expansion of Ση(s, t).

τ1 > · · · > τl > · · · ≥ 0 are eigenvalues with simple multiplicity that satisfy

min j 6=l |τ j− τl|/τl > ε0 > 0. Additionally, we assume that one of the two conditions holds,

(i) {τl} follows polynomial decay rate, i.e., τl � l−r with r > 1, it is assumed that λ
1− 1

r
n Mh1→+∞

and λ
3− 1

r
n min{h−2

1 ,h−2
2 ,Mh2,n/ logn}→+∞.

(ii) {τl} follows exponential decay rate, i.e., τl � α−l with α > 1, it is assumed that

Mh1λn logλ−1
n →+∞ and λ 3

n logλ−1
n min{h−2

1 ,h−2
2 ,Mh2,n/ logn}→+∞.

Assumption 4.8 (Local Alternative Hypothesis). A sequence of local alternative hypotheses are

defined as, H1n : Cβ(s) = n−1/2d0(s), where d0(s) ∈C1[0,S]∩ span{φl(s))}+∞

l=1.

Assumptions 4.1−4.6 are standard conditions in functional data analysis, which are required

to guarantee that the estimates of β(s) and Ση(s, t) are consistent. Assumption 4.7 is required in

order to specify the bound of tuning parameter λn according to different decay rates of {τl}. Here,

we only consider distinct eigenvalues. It is assumed that the distances between one eigenvalue

and other eigenvalues can not be too large compared to itself. Conclusions for multiplicity greater

than one could be reached, yet is beyond the discussion in this work. Assumption 4.8 specifies a

sequence of local alternative hypotheses from which we will derive the asymptotic power.

4.3.2 Main Theoretical Results

We present the key results below according to different decay rates of {τl}+∞

l=1. The proof of the

theorem is given in Appendix B.

Theorem 4.3.1. When Assumptions 4.1 − 4.6 and 4.7(i)/4.7(ii) hold, as n,M→+∞, for sequence

of {λn} satisfying λn ↓ 0, Tn(ω̂λn) has the following asymptotic normality distribution under the
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null hypothesis,

Tn(ω̂λn)
d−→ N{µ0,σ

2
0}, (4.14)

where d−→ denotes convergence in distribution and µ0 and σ2
0 are given by,

µ0 =
a2

1
a2

and σ
2
0 =

8a2
1

a2
+

2a4
1a4

a4
2
−

8a3
1a3

a3
2

, (4.15)

in which a1,a2,a3, and a4 are defined as,

a1 =
+∞

∑
l=1

τl

τl +λn
, a2 =

+∞

∑
l=1

(
τl

τl +λn
)2, a3 =

+∞

∑
l=1

(
τl

τl +λn
)3, a4 =

+∞

∑
l=1

(
τl

τl +λn
)4.

When the local alternative hypothesis holds, let δ0,l =

ˆ S

0
d0(s)φl(s)ds and σ2

c = CΣ−1
x CT , Tn(ω̂λn)

has the following asymptotic distribution given by

Tn(ω̂λn)
d−→ N{µ1,σ

2
1}, (4.16)

where µ1 and σ2
1 are defined as,

µ1 =
(a1 +d1)

2

a2 +d2
,

σ
2
1 =

8(a1 +d1)
2(a2 +2d2)

(a2 +d2)2 +
2(a1 +d1)

4(a4 +2d4)

(a2 +d2)4 − 8(a1 +d1)
3(a3 +2d3)

(a2 +d2)3 ,
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and d1,d2,d3, and d4 are given by

d1 =
+∞

∑
l=1

δ 2
l,0

σ2
c (τl +λn)

, d2 =
+∞

∑
l=1

τlδ
2
l,0

σ2
c (τl +λn)2 , d3 =

+∞

∑
l=1

τ2
l δ 2

l,0

σ2
c (τl +λn)3 , d4 =

+∞

∑
l=1

τ3
l δ 2

l,0

σ2
c (τl +λn)4 .

Theorem 4.3.1 establishes the asymptotic distribution of the proposed test statistics for fixed λn

under both null and alternative hypotheses. It also provides a data-driven criterion to select tuning

parameter λn in order to achieve optimal power. Specifically, we propose to choose λn as

λ̂n = argmax[µ̂1/σ̂1− µ̂0/σ̂0], (4.17)

in which µ̂0, µ̂1, σ̂0, σ̂1 are calculated by plugging in their corresponding estimates.

4.4 Numerical Simulation

4.4.1 Setup

In this section, we use numerical simulation to evaluate the finite-sample performance of the

proposed global test statistic. Data was generated from the following varying coefficient model

yi(s) = β0(s)+ xi,1β1(s)+ηi(s)+ ei(s), s ∈ [0,1], i = 1, · · ·n,

where xi,1 ∼ N(0,1). We set n = 200 and S = 1 and put the number of grid points M = 100 even in

[0,1]. Our primary goal is to test the following hypothesis,

H0 : β1(s) = 0 ∀s ∈ [0,1] v.s. H1 : β1(s) 6= 0 ∃s ∈ [0,1].

In this experiment, we simulated two types of signals under alternative hypothesis. In case
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I, we chose β1(s) as a relatively homogenous signal that spread along the whole curve. In case

II, β1(s) was simulated as a spatially heterogenous function with signal concentrated in a small

interval. Other model parameters were estimated from the UK Biobank dataset introduced in

Section 4.5. Two types of decay rates of {τl}+∞

l=1 were considered, including a polynomial decay

rate with τl = l−3/2 and an exponential decay rate with τl = 0.75l . The signal-to-noise ratios under

alternative hypothesis are shown in Figure 4.1(a)-(d) for the two cases and the structure of the

covariance functions are presented in Figure 4.1(e)-(f).Simula'on	Se,ngs	
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Figure 4.1: Simulation settings for PFGT: panels (a)−(d) demonstrate the signal-to-noise ratios
under alternative hypothesis for case I and case II. Panels (e)−(f) visualize the covariance function
of simulated responses along the curve.

For the choice of tuning parameter, we considered both fixed quantities where logλn takes

values from [−2,0] with an equal increment of 0.1 (PFGT-λn) and an optimal λn selected by (4.17)

in each run (PFGT-optimal).
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As a comparison, we also applied the two standard methods of FADTTS [36] and FLMtest

[46] as reviewed in Section 2.1.3. In each scenario, 1000 simulation replicates were generated

to evaluate type I and II error rates respectively. To calculate p-value, G = 1000 wild-bootstrap

samples were generated in each run.

4.4.2 Results

Simulation results are summarized in Figure 4.2. In both exponential decay case and polynomial

decay case, FADTTS controls type I error rates well. Although our global test has slightly inflated

false positive rate as λn is relatively large, the optimal λ̂n does not show inflation. For FLMtest,

type I error is slightly inflated.
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Figure 4.2: Simulation results for PFGT: panels (a)−(b) present the type I error for PFGT-λn, PFGT-
optimal, FADTTS and FLMTest. Panels (c)−(f) present the power under alternative hypotheses for
case I and case II.

Under alternative hypothesis, the proposed method has slightly lower power than FADTTS and
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FLMtest in case I, as the signal is relatively homogenous. In case II, our global test substantially

outperforms FADTTS and FLMtest for both exponential decay and polynomial decay scenarios.

The performance of our data driven strategy for choosing λn is comparable to fixed λn with the best

power.

4.5 Application: the UK Biobank Data Analysis

4.5.1 UK Biobank Study

UK Biobank is a large-scale cohort in the United Kingdom designed to investigate the influences

of genetic susceptibility, environmental exposures and lifestyle factors to a wide range of health-

related outcomes and disorders in middle aged and elderly population. In this section, we perform

GWAS on the functional neuroimaging phenotypes from this study.

Diffusion weighted images (DWI) were acquired for 8751 subjects in total. We ran the TBSS-

ENIGMA pipeline [104] on DWIs with the FSL tool set [84] to perform quality control and

registration. The ENIGMA skeleton was then projected onto the registered FA images and FA

statistics on 26,334 voxels from 21 regions of interest (ROIs) were obtained. The primary phenotype

of interest is the distributional density of voxel-wise FA statistics of the whole brain. As the

density function is constrained by the normalization condition, we applied a log quantile density

transformation introduced in [105] and took the output as the functional phenotypes for further

analysis.

The Affymetrix Axiom platform was used to genotype 8057 subjects from the full population

with imaging data, which resulted in a set of 784,256 single-nucleotide polymorphisms (SNPs).

The SNP data were preprocessed by standard quality control steps including dropping any SNP that

has more than 5% missing data, imputing the missing values in each SNP with its mode, dropping

SNPs with minor allele frequency < 0.01, and screening out SNPs violating the Hardy-Weinberg
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equilibrium (p-value < 10−6). Eventually, 459,588 SNPs were remained in the dataset for further

analysis.

4.5.2 Statistical Analysis and Results

Our problem of interest is to perform GWAS on the log quantile curve of the FA measure. We

fitted model (4.1) with covariates including an intercept term, a specific SNP, age, gender, and the

top 5 genetic principal components.

To reduce the computational cost of wild bootstrap, we developed an efficient strategy to

approximate the p-value of each SNP with different MAFs. In the real data analysis, we considered

a pool of SNPs consisting of 7 MAF groups including MAF∈ (0.01,0.03], MAF∈ (0.03,0.05],

MAF∈ (0.05,0.1], MAF∈ (0.1,0.2], MAF∈ (0.2,0.3], MAF∈ (0.3,0.4] and MAF∈ (0.4,0.5]. Each

MAF group contains 100 SNPs. For each SNP, we generated 100 wild bootstrap samples. In total,

we obtained 10,000 bootstrapped test statistics for each category. Based on the pooled bootstrapped

samples, we adopted the method proposed in [106] to approximate the null distribution of the test

statistics by a mixed χ2 distribution of form aχ2(ν)+b. Specifically, we matched the first three

moments of the bootstrap statistics and those of the mixed chi-square distribution.
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Figure 4.3: Application of PFGT to the UK Biobank data: histograms of wild bootstrap statistics
of different MAF intervals when λn = 10−2, along with their density approximations by mixed χ2

distribution.

Figure 4.4: Application of PFGT to the UK Biobank data: QQ plots of wild bootstrap statistics of
different MAF intervals when λn = 10−2.

The histograms of wild bootstrap statistics with fitted mixed χ2 distributions and the QQ-plots

for λn = 10−2 are shown in Figure 4.3 and Figure 4.4 as an example. The approximation for other λn
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values shows very similar pattern. It can be seen that the mixed χ2 approximation works reasonably

well for a wide range of MAFs. To obtain a single p-value in GWAS analysis, we first matched

each SNP to its closest MAF group in the pool. Then the corresponding p-value is calculated using

the approximated distribution of that MAF group with λn chosen through (4.17).

We demonstrate the Manhattan plot and the QQ plot of the GWAS results in Figure 4.5. The

top 10 loci along with their p-values are summarized in Table 4.1. As can be seen, no genome-

wide significant marker (p-value < 1.08× 10−7) is observed. Additionally, five locus exceed

the suggestive genome-wide association threshold (p-value < 5× 10−6). Among the top locus,

CAMK2N1 plays an important role in long-term potentiation, which is a process closely related

to learning and memory [107]. ZFP36L1, CEP128, HAS2 and EVI5 are risk genes implicated by

certain neurodegenerative diseases [108, 109, 110, 111]. MSI2 gene is known to be related to the

proliferation and maintenance of stem cells in the central nervous system [112].

Manha%an	Plot	 QQ	Plot	

Figure 4.5: Application of PFGT to the UK Biobank data: Manhattan plot and QQ plot of the
− log10 p-values of 450,899 SNPs.
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Table 4.1: Application of PFGT to the UK Biobank data: Top 10 SNPs from GWAS and their
nearest genes

SNP Chr p-value Gene
rs6663450 1 5.15E-07 CAMK2N1

rs11158764 14 5.37E-07 ZFP36L1
rs2339157 15 1.45E-06 FMN1

rs143406098 14 3.87E-06 CEP128
rs17821769 17 4.93E-06 MSI2
rs79320696 8 9.47E-06 HAS2
rs72722496 1 9.61E-06 EVI5
rs893282 8 1.61E-05 RALYL

rs73086843 7 1.74E-05 HERPUD2
s55783991 7 2.10E-05 CPA4

4.6 Discussion

We developed a powerful global test statistic for functional responses (PFGTS) to efficiently

perform genome-wide association analysis on functional traits. A varying coefficient model was

adopted to characterize the spatial smoothness and correlation structure. Then we introduced a

functional projection model to reduce dimension. An optimal functional projection direction was

selected to maximize the asymptotic signal-to-noise ratio with ridge penalty, which was derived from

the hypothesis of interest. The asymptotic distribution of the test statistic was studied systematically

and we provided a strategy to adaptively select the optimal tuning parameter to maximize the

statistical power. Simulation examples showed that the proposed method outperformed existing

state-of-the-art methods in functional data inference. We also applied the method to a genome-wide

association analysis of DTI data in UK Biobank dataset.

As a continuation of this work, it is interesting and important to investigate optimal test

procedures for other statistical inference problems of parametric and nonparametric models using

dimension reduction techiniques and power maximization framework, for example, inference on the

transformed measurements [113], test of distributional differences [114], test of independence
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[115, 116], test of goodness-of-fit [117] and many others [118, 119].
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CHAPTER 5: ADAPTIVE PROJECTION REGRESSION MODEL FOR HIGH
DIMENSIONAL DATA WITH DEPENDENT COVARIANCE STRUCTURE

5.1 Introduction

Multivariate responses are frequently acquired in neuroimaging research to characterize brain

structure and function [120, 71]. For instance, in a region-of-interest (ROI) analysis, brain measures

are calculated for different regions/region pairs, which delineates local brain features/connectivity

properties [19, 121]. In this chapter, our primary interest is to identify genetic risk variants associated

with multivariate imaging phenotypes. To address the problem in a general framework, we consider

a popular multivariate linear model given by

yi = BT xi + ei, (5.1)

where i = 1, · · · ,n is the subject index, yi is a q× 1 vector of imaging phenotypes, xi is a p× 1

vector of predictors including genetic markers and other covariates, B = (b1, · · · ,bq) is a p× q

matrix of regression coefficients, and ei is the error term following multivariate normal distribution

N(0,Σe). Large-scale imaging genetic studies have posed some big data challenges to solve model

(5.1). The dimension of imaging phenotype q usually ranges from thousands to millions, and the

number of SNPs p in a genomewide study is typically around 6 million. In this chapter, we focus

on the case when q is large and p is small compared to sample size n. In other words, we study the

effect of a single genetic marker at each time and include only a few number of covariates in xi in
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model (5.1). Particularly, we are interested in the following unit-rank hypothesis testing problem

which takes the single variant association test as a special case:

H0 : CB = c0 versus H1 : CB 6= c0, (5.2)

where C is an 1× p matrix and c0 = (c1,0, · · · ,cq,0) is an 1×q matrix.

Existing statistical methods for multivariate phenotypes suffer from some major limitations when

the number of response variables is large compared with the sample size [122, 123, 53, 124, 125].

In many dimension reduction method, such as the pseudo trait method and envelop methods, (5.1)

are limited to relatively small q, i.e., q� n [126, 127, 128, 129, 130]. Some recent developments

in regularization methods, such as multiple task learning, do not provide a post-inference tool (e.g.,

p-values) for association analysis [49, 50, 51, 131, 132]. Alternatively, pooled association tests are

designed to conduct univariate analysis on each trait and then combine marginal statistics to study

global inference problems [53, 54]. Among them, Pan and co-authors have developed a class of

sum of powered score (SPU) tests with good finite-sample performance in various settings [56, 133].

Most of these tests are derived under the assumption that the responses are mutually uncorrelated.

However, presence of high correlation is a key feature of brain imaging phenotypes, and directly

applying such methods would still suffer from power loss in certain cases. Although there are some

attempts to account for the correlation structure, such as precision matrix transformation discussed

in Section 2.2.3, the methods are not guaranteed to increase power.

Therefore, we develop an adaptive projection regression model (APRM) to perform statistical

inference on high dimensional imaging responses with dependent structure. The major contribution

of this work is,
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• A projection regression model framework is introduced to reduce dimension and a global

testing method is proposed to perform statistical inference on a low dimensional space.

• A multi-level test procedure is applied, which allows for flexible signal and covariance

structure.

• A data-driven strategy is proposed to choose the tuning parameters for the purpose of

maximizing power under alternative hypothesis.

In Section 5.2, we introduce the projection regression model (PRM) framework and propose

a novel adaptive procedure (APRM) to extract the most informative directions to test (5.2). In

Sections 5.3, we use simulation studies to examine the finite sample performance of APRM and

compare it with existing state-of-the-art methods. In Section 5.4, we apply APRM to a GWAS

analysis on the ADNI dataset. Section 5.5 concludes with some remarks.

5.2 Adaptive Projection Regression Model

As has been reviewed in Section 2.2.3, the projection regression model introduced in [59]

provides a reliable framework to handle signal-covariance structure of multivariate responses yi. In

this section, we generalize the method in [59] and propose an adaptive procedure to detect signals

at multiple levels.

5.2.1 Optimal Projection Direction

Let w be a q×1 vector denoting a projection direction, the projection regression model is given

by

yw,i = BT
wxi +ew,i, (5.3)

where

yw,i = wTyi, Bw = Bw and ew,i = wTei. (5.4)
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The key problem is to determine the choice of w. An optimal projection direction is supposed

to give the best power under alternative hypothesis. Therefore, we will take a closer look at the

influence of projection direction w to the asymptotic properties of the test statistic.

For a given w, we consider a projected hypothesis testing question

Hw,0 : CBw = c0w versus Hw,1 : CBw 6= c0w. (5.5)

Let Y = (y1, · · · ,yn)
T and X = (x1, · · · ,xn)

T be matrices of responses and covariates of all samples

respectively, the ordinary least square estimate of Bw is given by

B̂w = (XT X)−1
n

∑
i=1

XT Yw. (5.6)

A wald-type statistic for hypothesis testing problem (5.5), denoted by Tn(w) can be given as

Tn(w) =
wT δ̂T Σ

−1
C δ̂w

wT Σew
, (5.7)

where δ̂ = CB̂− c0 and ΣC = C(XT X)−1CT . Under alternative hypothesis, let δ = CB− c0, the

signal to noise ratio of Tn(w) can be calculated as

SNR[Tn(w)] =
E[Tn|(w)|X]√
Var[Tn(w)|X]

=
1+(wTδT Σ

−1
C δw)/(wT Σew)−1√

2+4(wTδT Σ
−1
C δw)/(wT Σew)−1

, (5.8)

in which E[·|X] and Var[·|X] denote expectation and variance conditional on X. In equation (5.8),
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SNR[Tn(w)] increases with the following quantity

wTδT Σ
−1
C δw

wT Σew
. (5.9)

Therefore, an optimal projection direction w for the testing problem (5.2) can be given as

w∗ = max
w

wTδT Σ
−1
C δw

wT Σew
. (5.10)

For unit-rank problem, the above equation has a unique solution up to a scalar factor given by

w∗ ∝ Σ
−1
e δ. (5.11)

The estimates of δ and Σe are critical to calculating the optimal projection direction. However,

consistently estimating regression coefficients and the covariance matrix is a challenging issue

in high dimensional setting due to noise contamination. Therefore, we consider the following

procedures to obtain reliable estimates of δ and Σe for the testing problem.

5.2.2 Independent Screening Procedure

As discussed in [134, 52, 135, 136] and many others, the ordinary least square estimate δ̂

contains a lot of noise in high dimensional models. When the true signal is sparse, using δ̂ directly

in the test statistic may cause severe power loss. To deal with this issue, sparse regularization

method should applied to remove the non-signal dimensions in δ̂. Here, we adopt a fast independent

screening procedure as introduced in [137] using marginal test statistics. For a given dimension j,

68



where j = 1, · · · ,q, a univariate statistic to test marginal hypothesis

H j,0 : Cb j = c j,0 v.s. H j,1 : Cb j 6= c j,0 (5.12)

is calculated as

Fn, j =
δ̂ T

j Σ
−1
C δ̂ j

σ̂2
e, j j

, (5.13)

where δ̂ j = Cb̂ j−c j,0 and σ̂2
e, j j is the j-th diagonal component of sample covariance matrix Σ̂e.

For a given threshold λn, we select the candidate signal index set as,

S1 = { j : 1≤ j ≤ q,Fn, j > λn}, (5.14)

and denote the non-signal index set as S0 = {1, · · · ,q}\S1. To select signals in δ at multiple levels,

it is not necessary to try all possible thresholds. Alternatively, we sort the marginal statistics in

decreasing order as {Tn,(1) ≥ Tn,(2) ≥ ·· · ≥ Tn,(q)}, and select the top L dimensions to construct

candidate signal set,

Ŝ1,L = { j : 1≤ j ≤ q,Fn, j ≥ Tn,(L)}. (5.15)

Then a thresholded estimate of δ can be given as

δ̂L = (δ̂1,L, · · · , δ̂ j,L, · · · , δ̂q,L) with δ̂ j,L = δ̂ jI{ j ∈ Ŝ1,L}. (5.16)

It should be emphasized that, even though S0 do not contain useful signal for the testing problem

(5.2), we still need to include these dimensions in the optimization equation (5.10) to calculate

projection direction w∗. Their contribution can be demonstrated by the following example:
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Example 5.2.1. Let δ = (δ1,0q0) where δ1 is a q1×1 vector of true signals and 0q0 is a q0×1 zero

vector. Let w = (w1,w0) and Σe =
(

Σ11 Σ10
Σ01 Σ00

)
denote the index partition of w and Σe respectively, the

optimization equation (5.10) can be rewritten as

w∗1 = argmax
w1

wT
1 δ

T
1 Σ
−1
C δ1w

wT
1 Σ11·0w1

and w∗0 =−Σ
−1
00 Σ01w1, (5.17)

where Σ11·0 = Σ11−Σ10Σ
−1
00 Σ01 is the conditional covariance matrix.

When the responses from signal set S1 are highly correlated with responses from non-signal set

S0, w∗0 helps to reduce the variance of Tn(w∗).

5.2.3 Block-wise Covariance Estimation

The precision matrix Σ−1
e plays an essential role to reduce noise level in the projection test

statistic Tn(w). Consistently estimating the precision matrix in high dimensional space is a difficult

problem in general. Many regularization techniques have been proposed for this purpose, which

usually require certain structural conditions, such as sparsity assumption or factor model assumption

[138, 139, 140, 61], and the methods tend to introduce too much bias in finite sample estimation.

Here, we develop a sequential estimation procedure to identify index blocks with limited size.

Although an optimal projection may not be obtained, this procedure allows us to capture the major

dependent structure in Σe for noise shrinkage and to reduce the total number of parameters to

be estimated. For a given value B representing the maximum block size allowed, we estimate a

block-wise covariance structure as follows:

Algorithm 5.2.1.

(i) Let S = {1, · · · ,q} denote the responses index. An initial thresholding [141] is applied to

the sample correlation matrix R̂ = (ρ̂ j, j′) to remove noisy terms and weak correlations. Let
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I0 = (1|ρ̂ j, j′ |>2s logq/n) be the indexing matrix for thresholding, then the post-screening correlation

matrix can be calculated as R̃ = (ρ̃ j, j′)q×q = R̂ · I0.

(ii) Start from the pair j, j′ ∈ S = {1, · · · ,q} with the largest absolute correlation value |ρ j, j′| larger

than 0, and take them as the first two elements in index set I(1).

(iii) When the number of elements is not larger than B, find the largest nonnegative ‖ρ̃ j, j′‖ among

all pairs satisfying j ∈ S\I(1) and j′ ∈ I(1) and include j in I(1).

(iv) Repeat step 3 until the size of I(1) reaches B or no element can be added.

(v) Remove I(1) from S. Then repeat step(ii) - step(iv) to sequentially obtain I(2), I(3), · · · until S

becomes empty set.

Finally, we obtain an estimate of covariance matrix with block-diagonal structure as

Σ̂e,B = (σ̂e, j, j′[∑
k

I{ j ∈ I(k)∩ j′ ∈ I(k)}])q×q. (5.18)

When B is relatively small, Σ̂
−1
e,B can be used to calculate w∗ in (5.11).

The above algorithm uses marginal correlation to construct covariance blocks. There are other

methods designed to estimate block-wise covariance structure more accurately [141, 142, 143], but

such improvement is not the major focus of this chapter.

5.2.4 Projected Test Statistics and an Adaptive Inference Procedure

Given the number of selected responses L and maximum block size B, the projection direction

is estimated as

ŵL,B = Σ̂
−1
e,B δ̂L. (5.19)

71



Then a projected test statistic induced by ŵL,B can be calculated as

Tn(L,B) = Tn(ŵL,B) =
δ̂T

L Σ̂
−1
e,B δ̂L

σ2
C

, (5.20)

where σ2
C is a scalar value equals to ΣC.

To detect signal at multiple levels and to allow a flexible covariance structure, different choices

of L and B are applied. We then introduce an adaptive framework similar to the aSPU method as

reviewed in Section 2.2.2 to select optimal L and B. The specific inference procedure is summarized

as follows:

Algorithm 5.2.2.

(i) Marginal test statistics are calculated and sorted in decreasing order as {Tn,(1) ≥ ·· · ≥ Tn,(q)}.

Independence screening is applied and the top L responses are selected to form candidate signal

set Ŝ1,L. Then a thresholded estimate δ̂L = (δ̂1,L, · · · , δ̂q,L) is calculated with δ̂ jI{ j ∈ Ŝ1,L}, where

j = 1, · · · ,q and I{·} is the indicator function.

(ii) A block structure is imposed on covariance matrix Σe with maximum block size B, and covariance

Σe is estimated by algorithm 5.2.1 as Σ̂e,B.

(iii) For fixed L and B, the projection directions {ŵL,B} is estimated from (5.19) by replacing δ and

Σe with δ̂L and Σ̂e,B and the projected test statistic is calculated as Tn(ŵL,B).

(iv) Permutation resampling is performed to obtain G samples under null distribution {y(g)i }.

Permutation statistics Tn(ŵ
(g)
L,B) are calculated by repeating step(i) and step(iii) while using Σ̂e,B

estimated from original samples. The p-value of Tn(ŵL,B) is then given as ∑
G
g=1 I{Tn(ŵ

(g)
L,B) ≥

Tn(ŵL,B)}/G.
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(v) The minimum p-value among all Tn(ŵL,B)s is taken as the adaptive global test statistic, i.e.,

aTn = min
l,B

P̂[Tn(ŵL,B)], (5.21)

where P̂(·) denotes the estimated p-value of a statistic from permutation.

The null distribution of (5.21) can be approximated by the same set of permutation samples

directly.

5.3 Simulation Studies

5.3.1 Setup

In this section, we use numerical simulations to evaluate the performance of the proposed method

by testing the difference in two sample means in high dimensional setting. Data is generated from

model xi1∼N(0,Σe), i= 1, · · · ,n1 and x j2∼N(µ,Σe), j = 1, · · · ,n2 with sample size n1 = n2 = 100,

trait dimension q = 400. The hypothesis question is to test H0 : µ = 0 versus H1 : µ 6= 0. The

number of nonzero elements in µ takes value r = 2,40,100, representing sparse, moderate and

dense signal respectively, and the specific location of nonzero entry are generated randomly from

discrete uniform distribution on {1, · · · ,q}. To evaluate APRM for different covariance structures,

the following three types of Σ are considered,

• Case 1: (Independent Structure) Σe = Iq.

• Case 2: (Block-wise Compound Structure) Σe = (0.6151T
5 +0.4I5)⊗ I80.

• Case 3: (AR-1 Structure) Σe = (0.8|i− j|).

In each setting, we will evaluate the performance of PRM with both fixed block size B = 1,2,5,10

and with the adaptive selection strategy (APRM). CQT and aSPU are also examined in our simulation
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as a comparison. In each scenario, 1000 simulated data sets are generated to evaluate type I and

type II error. To calculate p-values, 1000 permutation samples are generated in each run.
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Figure 5.1: Simulation results of APRM for independent structure Σe = Iq: PRM is evaluated
under four choices of maximum block size B = 1,2,5,10, as well as by adaptive selection strategy
(APRM). Results for aSPU and CQT are also presented as comparisons.

5.3.2 Results

Rejection rate of the three cases are given in Figure 5.1 − Figure 5.3. For independent case,

all three methods have comparable power, and aSPU performs slightly better than the other two

methods. Among all choices of block sizes for PRM, B = 1 gives the best performance, which is

consistent with the ground truth. Moreover, it can be observed that a large B does not have much

influence on the results even when the block size is misspecified. In case 2 and case 3, APRM has

the best performance in all scenarios, especially when the signal is non-sparse. The multi-level
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adaptive strategy (APRM) has slight lower power than largest power achieved, yet still shows

substantial power increase compared with aSPU and CQT. This indicate the effectiveness of our

methods to detect signal of interest in presence of high correlations.
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Figure 5.2: Simulation results of APRM for block-wise compound structure Σe = (0.6151T
5 +

0.4I5)⊗ I80: PRM is evaluated under four choices of maximum block size B = 1,2,5,10, as
well as by adaptive selection strategy (APRM). Results for aSPU and CQT are also presented as
comparisons.
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Figure 5.3: Simulation results of APRM for AR-1 structure Σe = (0.8|i− j|): PRM is evaluated
under four choices of maximum block size B = 1,2,5,10, as well as by adaptive selection strategy
(APRM). Results for aSPU and CQT are also presented as comparisons.

5.4 Alzheimer’s Disease Neuroimaging Initiative Data Analysis

To illustrate the usefulness of APRM, we considered anatomical MRI data collected at the

baseline by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Our primary interest is

to perform a genome-wide search for snp sets that are significantly associated with the brain volume

of 93 regions of interest (ROIs).

5.4.1 Alzheimer’s Disease Neuroimaging Initiative

Alzheimer’s disease (AD) is a chronic, irreversible neurodegenerative disease that results in fatal

deterioration of brain tissues and loss of mental functions. The primary aim of Alzheimer’s Disease

Neuroimaging Initiative (ADNI) study is to investigate the influence of genetic predispositions and
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environmental exposures to the development of the disease and to identify biomarkers that can

predict the risk and progress of AD. These would eventually inspire novel inventions in disease

prevention, diagnosis and effective treatments. For the most up-to-date information, please find at

www.adni.loin.usc.edu.

Magnetic resonance imaging (MRI) scans were acquired for 708 subjects (164 patients with

Alzheimer’s disease, 346 patients with mild cognitive impairment, and 198 normal control subjects)

in the ADNI-1 dataset, from a 1.5 TMRI scanners using a sagittal MPRAGE sequence. The image

data was processed with standard quality control steps including anterior commissure (AC) and

posterior commissure (PC) correction, skull-stripping, cerebellum removal, intensity inhomogeneity

correction, registration and segmentation [144]. Then 93 region of interests (ROIs) were labeled

using the atlas of the human brain provided by [145] and the volume of each region was computed

for each subject.

The Human 610-Quad BeadChip was used to genotype 620,901 SNPs for 818 subjects. The

genetic data was processed by standard quality control procedure using PLINK. Samples with call

rates less than 90%, Caucasian ancestry outliers and unexpected relatedness were excluded from the

dataset. We also removed genetic markers with Hardy-Weinberg equilibrium p-value less than 10−6,

call rate less than 95% and minor allele frequency (MAF) smaller than 5%. Population stratification

was assessed using PCA [87]. Eventually, 747 subjects and 501,584 SNPs remained in the dataset.

5.4.2 Data Analysis and Results

Our primary goal is to perform a genome-wide search for SNPs significantly associated with

brain volumn trait. In model (5.1), volumetric measure of 93 ROIs were taken as yi and several

demographic, clinical and genetic variables were added as covariates, including an intercept, age,

gender, whole brain volume and the genotype of a bi-allelic SNP coded as 0,1 or 2. The first five
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genetic principal components were also included in xi to adjust for population stratification. The

maximum block size B is allowed to take value from 1,2,5,10,20. To accurately estimate the tail

distribution of aTn in (5.21) in a GWAS problem, the bootstrap sample size is typically around

108. To reduce computational cost, we gradually increase the number of permutation samples with

G = 103,104,105,106,107, and 108. A larger G is adopted only to SNPs with p-values less than

5/G.

We present the Manhattan plot and the QQ plot of the GWAS results in Figure 5.4. SNP

rs2075650 on the chromosome 19 achieved genome-wide significance (p-value < 1.00×10−7). It

is an intronic variant of the Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) gene,

which is a well-known gene associated with Alzheimer’s disease [146]. 9 additional loci exceeded

the suggestive genome-wide association threshold (p-value < 5×10−6), as summarized in Table

5.1. Besides TOMM40, SOCS3 and TMEM106B are also risk genes implicated by Alzheimer’s

disease [147, 148]. FBXL17, SEMA3D and PLA2G4E are suspected to be associated with other

neuropsychiatric disorders as well [149, 150, 151].

Table 5.1: Application of APRM to the ADNI data: Top 10 SNPs from GWAS and their nearest
genes

SNP Chr p-value Gene
rs2075650 19 7.10E-08 TOMM40
rs3818698 6 3.80E-07 LOC105378146
rs8074003 17 4.40E-07 SOCS3

rs10058163 5 6.50E-07 FBXL17
rs2178115 7 1.50E-06 SEMA3D

rs10247990 7 3.00E-06 TMEM106B
rs776691 15 8.40E-06 PLA2G4E

rs11941079 4 7.30E-06 DCK
rs34298746 12 4.50E-06 PARP11
rs7001747 8 4.96E-06 KHDRBS3
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Manha%an	Plot	 QQ	Plot	

Figure 5.4: Application of APRM to the ADNI data: Manhattan plot and QQ plot of the
− log10(p-values) of 501,584 SNPs from GWAS.

5.5 Discussion

In this chapter, we developed an adaptive projection regression model (APRM) to perform

hypothesis testing on a set of covariates in multivariate regression modeling for a large number

of responses with dependent covariance structure. We proposed a dimension reduction strategy

by taking advantage of correlations among multivariate responses. A fast and efficient screening

procedure base on marginal statistics was first performed to select candidate signal set. Then

projection transformation was adopted to maximize asymptotic signal-to-noise ratio. Numerical

simulations showed that APRM outperforms many other state-of-the-art methods when dealing

with dependent data structure.
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APPENDIX A: TECHNICAL DETAILS OF CHAPTER 3

In this chapter, we give the proof to the main theoretical results.

A.1 Lemmas

First, we give several lemmas as the foundation. Positive constants C1, C2, C3, · · · appeared in

the lemmas may vary at each occurrence.

For two positive definite symmetric matrices of size L×L, denoted as Σ and Σ̂ respectively,

let {τ}L
l=1 and {τ̂}L

l=1 be their eigenvalues in decreasing order, then τl− τ̂l can be bounded by the

following lemma:

Lemma A.1.1. Weyl′s Theorem

max
1≤l≤L

|τl− τ̂l| ≤ ‖Σ − Σ̂‖2. (A.1)

In addition, let {vl}L
l=1 and {v̂l}L

l=1 be the corresponding eigenvectors, vl− v̂l can be bounded

by the following sinθ theorem [60]:

Lemma A.1.2. Davis-Kahan′s sinθ Theorem

max
1≤l≤L

‖vl− v̂l‖2 ≤
√

2‖Σ − Σ̂‖2

min{|τ̂l−1− τl|, |τl− τ̂l+1|}
. (A.2)

We also need the following lemmas from [152] to bound the estimation error of β̂m(s) and

η̂i,m(s).

Lemma A.1.3. For a bounded function class F composed of functions f : X 7→ [0,1], if there
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exist a positive constant K and an integer v such that,

sup
Q

N[ε,F ,L2(Q)]≤ (
K
ε
)v,∀0 < ε < ε0, (A.3)

then for every x >C1,

P( sup
f∈F

√
n|1

n

n

∑
i=1

f (xi)−E f (X)| ≥ x)≤C2K2v(
x√
v
)v exp{−C3x2},

where C1,C2,C3 are positive constants depending on v and ε0.

Lemma A.1.4. Let F = { f : X 7→ [0,1]} be a class of bounded functions that satisfy (A.3). Then

for every σ with sup f∈F Var[ f (X)]≤ σ2 <+∞ and x/σ >C1, we have

P( sup
f∈F

√
n|1

n

n

∑
i=1

f (xi)−E f (X)| ≥ x)≤C2K2v
σ
−2v(

x
σ
)4v exp{− C3x2

2σ2 +(3+ x)/
√

n
},

where C1,C2,C3 are positive constants depending on v and ε0.

Lemma A.1.5. For function class F indexed by set [0,S], i.e., F = { fs : s ∈ [0,S]}, if there exist a

distance measure d on [0,S] and a constant F such that,

| fs(x)− ft(x)| ≤ Fd(s, t), ∀s, t ∈ [0,S],

then we have the following uniform bound for the covering number of F ,

sup
Q

N[ε,F ,L2(Q)]≤ N(ε/F, [0,S],d).
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The following lemma establishes a uniform convergence bound for µ̂m(sm) for all m = 1, · · · ,M.

Lemma A.1.6. When assumptions 3.1 - 3.10 hold, ∆ µ̂m(sm) = µ̂m(sm)−µm(sm) can be bounded

by

max
m

sup
sm

|∆ µ̂m(sm)| = O(h1)+Op(

√
logM

n
)+Op(

√
logh−1

1
n

) (A.4)

de f
= Op(ω1).

Proof. Let x̄= 1
n ∑

n
i=1xi, η̄·,m(sm) =

1
n ∑

n
i=1 ηi,m(sm) and ē·,m(sm) =

1
n ∑

n
i=1 ei,m(sm), ∆ µ̂m(sm) can

be decomposed as

∆ µ̂m(sm) =
W

∑
w=1

[µm(sm,w)−µm(sm)]Kh1(sm,w− sm)/
W

∑
w=1

Kh1(sm,w− sm)

+
W

∑
w=1

x̄Tβm(sm,w)Kh1(sm,w− sm)/
W

∑
w=1

Kh1(sm,w− sm)

+
W

∑
w=1

η̄·,m(sm,w)Kh1(sm,w− sm)/
W

∑
w=1

Kh1(sm,w− sm)

+
W

∑
w=1

ē·,m(sm,w)Kh1(sm,w− sm)/
W

∑
w=1

Kh1(sm,w− sm)

de f
= ∆ µ̂

(1)
m (sm)+∆ µ̂

(2)
m (sm)+∆ µ̂

(3)
m (sm)+∆ µ̂

(4)
m (sm).

Then the above four terms can be bounded respectively as follows.

max
m

sup
sm

|∆ µ̂
(1)
m (sm)| ≤ h1 max

m
sup
sm

|∂ µm(sm)|.
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max
m

sup
sm

|∆ µ̂
(2)
m (sm)| = max

m
sup
sm

|x̄T
W

∑
w=1

βm(sm,w)Kh1(sm,w− sm)/
W

∑
w=1

Kh1(sm,w− sm)|

≤ ‖x̄‖2 max
m

sup
sm

‖
W

∑
w=1

βm(sm,w)Kh1(sm,w− sm)/
W

∑
w=1

Kh1(sm,w− sm)‖2

= Op(n−1/2).

To bound ∆ µ̂
(3)
m (sm), we introduce a bounded functional class F = { fsm : sm ∈ [0,Sm]} with

fsm = ∑
W
w=1 ηi,m(sm,w)Kh1(sm,w− sm)/∑

W
w=1 Kh1(sm,w− sm). There exists a positive constant C1

such that

max
m

sup
sm

|∂ fsm

∂ sm
| ≤C1h−1

1 .

Lemma A.1.5 shows that

sup
Q

N[ε,F ,L2(Q)]≤ C2

εh1
.

Then Lemma A.1.3 gives the following bound

P(max
m

sup
sm

|∆ µ̂
(3)
m (sm)| ≥ x)≤C3Mh−2

1
√

nt exp{−C4nt2},

which leads to

max
m

sup
sm

|∆ µ̂
(3)
m (sm)|= Op[

√
logh−1

1 ∨ logM
n

].

Similarly for ∆ µ̂
(4)
m (sm), we define a bounded functional class as G = {gsm : sm ∈ [0,Sm]} with

gsm = ∑
W
w=1 ei,m(sm,w)Kh1(sm,w− sm)/∑

W
w=1 Kh1(sm,w− sm). Then we have

sup
Q

N[ε,G ,L2(Q)]≤ C4

εh1
and max

m
sup
sm

Var[gsm ] = O[(Wh1)
−1].
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Then Lemma A.1.4 gives the following bound

P(max
m

sup
sm

|∆ µ̂
(4)
m (sm)| ≥ x) ≤ C5Mh−2

1 (Wh1)
3(
√

nt)4 exp{− C6nx2

2(Wh1)−1 +(3+
√

nx)/
√

n
}.

Then we have

max
m

sup
sm

|∆ µ̂
(4)
m (sm)|= Op[

√
logM∨ logWh1

n
(

√
1

Wh1
∨ logM

n
)].

Finally, bound (A.4) can be obtained with some simplification.

The following lemma establishes a uniform bound for Σ̂η̃m(sm, tm)−Ση̃m(sm, tm) for all m =

1, · · · ,M.

Lemma A.1.7. When assumptions 3.1 - 3.10 hold, ∆Ση̃m(sm, tm) = Σ̂η̃m(sm, tm)−Ση̃m(sm, tm) can

be bounded as

max
m

sup
sm,tm
|∆Ση̃m(sm, tm)| = O(h2

1)+Op(

√
logM

n
)+Op(

logh−1
1

n
)+Op(h2)+Op(

√
1

Wh2
)

de f
= Op(ω2). (A.5)

Proof. ∆Ση̃m(sm, tm) can be bounded by the following terms:

max
m

sup
sm,tm
|∆Ση̃m(sm, tm)| = max

m
sup
sm,tm
|1
n

n

∑
i=1

η̃i,m(sm)η̃i,m(tm)−Ση̃m(sm, tm)|

+ 2max
m

sup
sm,tm
|1
n

n

∑
i=1

[̂̃η i,m(sm)− η̃i,m(sm)]η̃i,m(tm)|

+ max
m

sup
sm,tm
|1
n

n

∑
i=1

[̂̃η i,m(sm)− η̃i,m(sm)][̂̃η i,m(tm)− η̃i,m(tm)]|.
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To bound the first term, we consider {η̃m(sm)η̃m(tm)} as a functional class indexed by (sm, tm) ∈

[0,Sm]
⊗2, lemma A.1.3 leads to,

max
m

sup
sm,tm
|1
n

n

∑
i=1

η̃i,m(sm)η̃i,m(tm)−Ση̃m(sm, tm)|= Op(

√
logM

n
).

To bound the second term and the third term, we consider the following decomposition of ̂̃η i,m(sm)−

η̃i,m(sm),

∆ηi,m(sm) = ̂̃η i,m(sm)− η̃i,m(sm)

=
W

∑
w=1

[µm(sm,w)− µ̂m(sm,w)]Kh2(sm,w− sm)/
W

∑
w=1

Kh2(sm,w− sm)

+ xT
i

W

∑
w=1

[βm(sm,w)−βm(sm)]Kh2(sm,w− sm)/
W

∑
w=1

Kh2(sm,w− sm)

+
W

∑
w=1

[ηi,m(sm,w)−ηi,m(sm)]Kh2(sm,w− sm)/
W

∑
w=1

Kh2(sm,w− sm)

+
W

∑
w=1

ei,m(sm,w)Kh2(sm,w− sm)/
W

∑
w=1

Kh2(sm,w− sm)

de f
= ∆η̃

(1)
i,m (sm)+∆η̃

(2)
i,m (sm)+∆η̃

(3)
i,m (sm)+∆η̃

(4)
i,m (sm).

Then the last two terms can be bounded as

max
m

sup
sm,tm
|1
n

n

∑
i=1

∆η̃i,m(sm)η̃i,m(tm)| ≤ max
m

sup
sm,tm
|1
n

n

∑
i=1

∆η̃
(1)
i,m (sm)η̃i,m(tm)|

+ Op(1){max
m

sup
sm

1
n

n

∑
i=1

∆η̃
(2)2
i,m (sm)

+ max
m

sup
sm

1
n

n

∑
i=1

∆η̃
(3)2
i,m (sm)max

m
sup
sm

1
n

n

∑
i=1

∆η̃
(4)2
i,m (sm)]}1/2,
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and

max
m

sup
sm,tm
|1
n

n

∑
i=1

∆η̃i,m(sm)∆η̃i,m(tm)| ≤ max
m

sup
sm

1
n

n

∑
i=1

∆η̃
(1)2
i,m (sm)+max

m
sup
sm

1
n

n

∑
i=1

∆η̃
(2)2
i,m (sm)

+ max
m

sup
sm

1
n

n

∑
i=1

∆η̃
(3)2
i,m (sm)+max

m
sup
sm

1
n

n

∑
i=1

∆η̃
(4)2
i,m (sm).

We then investigate the above terms individually. The term maxm supsm,tm |
1
n ∑

n
i=1 ∆η̃

(1)
i,m (sm)η̃i,m(tm)|

can be bounded as,

max
m

sup
sm,tm
|1
n

n

∑
i=1

∆η̃
(1)
i,m (sm)η̃i,m(tm)|

≤ max
m

sup
sm

|
W

∑
w=1

∆ µm(sm,w)Kh2(sm,w− sm)/
W

∑
w=1

Kh2(sm,w− sm)|max
m

sup
tm
|1
n

n

∑
i=1

η̃i,m(tm)|

= Op(ω1)Op(

√
logM

n
).

The term maxm supsm
1
n ∑

n
i=1 ∆η̃

(1)2
i,m (sm) can be bounded as

max
m

sup
sm

1
n

n

∑
i=1

∆η̃
(1)2
i,m (sm) = Op(ω

2
1 ).

Terms maxm supsm
1
n ∑

n
i=1 ∆η̃

(2)2
i,m (sm) and maxm supsm

1
n ∑

n
i=1 ∆η̃

(3)2
i,m (sm) can be bounded as

max
m

sup
sm

1
n

n

∑
i=1

∆η̃
(2)2
i,m (sm) = Op(h2

2),

max
m

sup
sm

1
n

n

∑
i=1

∆η̃
(3)2
i,m (sm) = Op(h2

2).

Finally, we consider the term maxm supsm
1
n ∑

n
i=1 ∆η̃

(4)2
i,m (sm). Let F = { fsm : sm ∈ [0,Sm]} with
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fsm = ∆η̃
(4)2
i,m (sm), we have E fsm ≤ O( 1

Wh2
), E f 2

sm
≤ O( 1

Wh2
) and

sup
Q

N[ε,F ,L2(Q)]≤ C1

εh1
.

Then maxm supsm
1
n ∑

n
i=1 ∆η̃

(4)2
i,m (sm) can be bounded through Lemma A.1.4 as

max
m

sup
sm

1
n

n

∑
i=1

∆η̃
(4)2
i,m (sm) ≤ Op(

1
Wh2

)+Op(

√
logM∨ logWh2

n
)Op(

√
1

Wh2
∨
√

logM
n

)

= Op(
1

Wh2
)+Op(

logM
n

).

The bound (A.1.7) can be obtained with some simplification.

The following lemma establishes a uniform bound for Σ̂ξ −Σξ .

Lemma A.1.8. When assumptions 3.1 - 3.10 hold, ∆Σξ = Σ̂ξ −Σξ can be bounded as

‖∆Σξ‖2 = Op(M

√
logMLn

n
)+Op(Mh1)+Op(Mh2)+Op(M

√
logh−1

1
n

)+Op(
M√
Wh2

)

+ Op(Mω
2
2 )Op(

1
M

M

∑
m=1

Ln

∑
l=1

τ
−2
m,l )

de f
= MOp(ω3). (A.6)

Proof. We have the following decomposition for ‖∆Σξ‖2 as

‖∆Σξ‖2 ≤ ‖1
n

n

∑
i=1
ξiξ

T
i −Σξ‖F +‖1

n

n

∑
i=1
ξ̂iξ̂

T
i −

1
n

n

∑
i=1
ξiξ

T
i ‖F .
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The first term can be bounded as

‖1
n

n

∑
i=1
ξiξ

T
i −Σξ‖2

F ≤
M

∑
m=1

Ln

∑
l=1

M

∑
m′=1

Ln

∑
l′=1
|1
n

n

∑
i=1

ξi,mlξi,m′l′−Eξi,mlξi,m′l′|2

≤ Op(
logMLn

n
)

M

∑
m=1

Ln

∑
l=1

M

∑
m′=1

Ln

∑
l′=1

(Eξi,mlξi,m′l′)
2.

= Op(M2 logMLn

n
).

Let ∆ξi = ξ̂i−ξi, the second term can be bounded as

‖1
n

n

∑
i=1
ξ̂iξ̂

T
i −

1
n

n

∑
i=1
ξiξ

T
i ‖F ≤ ‖

1
n

n

∑
i=1

∆ξi∆ξ
T
i ‖F +2‖1

n

n

∑
i=1

∆ξiξ
T
i ‖F .

We consider a decomposition of ∆ξi,ml = ξ̂i,ml−ξi,ml as follows:

∆ξi,ml =

ˆ Sm

0

̂̃η i,m(sm)φ̂m,l(sm)dsm−
ˆ Sm

0
η̃i,m(sm)φm,l(sm)dsm

=

ˆ Sm

0
[∆η̃

(1)
i,m (sm)+∆η̃

(2)
i,m (sm)+∆η̃

(3)
i,m (sm)+∆η̃

(4)
i,m (sm)]φ̂m,l(sm)dsm

+

ˆ Sm

0
η̃i,m(sm)[φ̂m,l(sm)−φm,l(sm)]dsm

de f
= ∆ξ

(1)
i,ml +∆ξ

(2)
i,ml +∆ξ

(3)
i,ml +∆ξ

(4)
i,ml +∆ξ

(5)
i,ml.

‖1
n ∑

n
i=1 ∆ξi∆ξ

T
i ‖F and ‖1

n ∑
n
i=1 ∆ξiξ

T
i ‖F can be decomposed respectively as

‖1
n

n

∑
i=1

∆ξi∆ξ
T
i ‖F ≤

M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
2
i,ml.
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and

‖1
n

n

∑
i=1

∆ξiξ
T
i ‖F ≤

√√√√ M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ 2
i,ml

√√√√ M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

ξ 2
i,ml = Op(

√
M)

√√√√ M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ 2
i,ml.

Therefore, we only need to bound the term ∑
M
m=1 ∑

Ln
l=1

1
n ∑

n
i=1 ∆ξ 2

i,ml , which is given by

M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
2
i,ml ≤ 5

M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

[∆ξ
(1)2
i,ml +∆ξ

(2)2
i,ml +∆ξ

(3)2
i,ml +∆ξ

(4)2
i,ml +∆ξ

(5)2
i,ml ].

We then investigate the above terms individually. For ∑
M
m=1 ∑

Ln
l=1

1
n ∑

n
i=1 ∆ξ

(1)2
i,ml , we have

M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
(1)2
i,ml ≤ 1

n

n

∑
i=1

M

∑
m=1

ˆ Sm

0
∆η̃

(1)2
i,m (sm)dsm = Op(Mω

2
1 ).

For ∑
M
m=1 ∑

Ln
l=1

1
n ∑

n
i=1 ∆ξ

(2)2
i,ml , we have

M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
(2)2
i,ml ≤ 1

n

n

∑
i=1

M

∑
m=1

ˆ Sm

0
∆η̃

(2)2
i,m (sm)dsm

= Op(Mh2
2).

For ∑
M
m=1 ∑

Ln
l=1

1
n ∑

n
i=1 ∆ξ

(3)2
i,ml , we have

M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
(3)2
i,ml ≤ 1

n

n

∑
i=1

M

∑
m=1

ˆ Sm

0
∆η̃

(3)2
i,m (sm)dsm = Op(Mh2

2).

For ∑
M
m=1 ∑

Ln
l=1

1
n ∑

n
i=1 ∆ξ

(4)2
i,ml , we have

M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
(4)2
i,ml ≤ 1

n

n

∑
i=1

M

∑
m=1

ˆ Sm

0
∆η̃

(4)2
i,m (sm)dsm.
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Since maxmE∆η̃
(4)2
i,m (sm) = O( 1

Wh2
) and maxmE∆η̃

(4)4
i,m (sm)≤O( 1

Wh2
), Bernstein inequality shows

that

P(max
m
|1
n

n

∑
i=1

M

∑
m=1

ˆ Sm

0
∆η̃

(4)2
i,m (sm)dsm−max

m
E∆η̃

(4)2
i,m (sm)|)≤ 2M exp{− nx2

2/(Wh2)+2C1t/3
},

which leads to
M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
(4)2
i,ml = Op(

M logM
n

∨ M
Wh2

).

Finally, for ∑
M
m=1 ∑

Ln
l=1

1
n ∑

n
i=1 ∆ξ

(5)2
i,ml , we have

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
(5)2
i,ml ≤ 1

n

n

∑
i=1
‖η̃i,m(sm)‖2

2

Ln

∑
l=1
‖φ̂m,l(sm)−φm,l(sm)‖2

2

≤ Op(1)
Ln

∑
l=1

τ
−2
m,l‖Σ̂η̃m−Ση̃m‖

2
2,

which leads to
M

∑
m=1

Ln

∑
l=1

1
n

n

∑
i=1

∆ξ
(5)2
i,ml = Op(ω

2
2 )

M

∑
m=1

Ln

∑
l=1

τ
−2
m,l .

The bound (A.1.8) can be obtained with some simplification.

A.2 Proof of Theorem 3.1

Proof. Let τ f ,1, · · · ,τ f ,r be the eigenvalues of ΛΣ f Λ
T in decreasing order, the following inequalities

hold through Wely’s Theorem,

max
1≤ j≤r

|τ f , j− τ j| ≤ ‖ΛΣ f Λ
T −Ωγ‖2 ≤ ‖ΛΣ f Λ

T −Ωγ‖F = o(M).

max
j
|τ̂ξ , j− τ f , j| ≤ ‖Σ̂ξ −ΛΣ f Λ

T‖2 ≤ ‖Σ̂ξ −Σξ‖2 +‖Σξ −ΛΣ f Λ
T‖2

= MOp(ω3)+Op(1) = o(M).

90



Let v f ,1, · · · ,v f ,r, we can also prove the following inequality using Davis-Kahan’s sinθ Theorem

max
1≤ j≤r

‖v̂ j−v f , j‖2 ≤ O(M−1)‖Σ̂ξ −ΛΣ f Λ
T‖2 = Op(ω3)+Op(M−1).

To derive the asymptotic distribution, we only need to prove that there exist an r× r orthogonal

matrix O such that

‖CHxF̂c−CHxFcO‖F = op(n−1/2).

To show this, we consider a decomposition of F̂c−FcO as

F̂c−FcO = ξ̂V̂rT̂−1/2−ξV f ,rT
−1/2
f O

= (ξ̂−ξ)V̂rT̂−1/2 +ξV̂r(T̂−1/2−T−1/2
f )+ξ(V̂r−V f ,r)T

−1/2
f .

where ξ̂ = (ξ̂1, · · · , ξ̂n)
T , ξ = (ξ1, · · · ,ξn)

T , Tf = diag{τ f ,1, · · · ,τ f ,r} and V f ,r = (v f ,1, · · · ,v f ,r).

Under both null hypothesis and alternative hypothesis (defined by Assumption 3.11), we have the

following conclusions,

‖CHxξV̂r(T̂−1/2−T−1/2
f )‖F = Op(n−1/2)‖T̂−1/2−T−1/2

f ‖F = Op(n−1/2M−1/2),

‖CHxξ(V̂r−V f ,r)T
−1/2
f ‖F = Op(n−1/2)‖V̂r−V f ,r‖2Op(M−1/2)

= Op(n−1/2)max
j
|τ̂ξ , j− τ f , j|Op(1)

= Op(n−1/2)[Op(ω3)+Op(M−1)].
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For CHx(ξ̂−ξ)V̂rT̂−1/2, using a similar derivation to that in Lemma A.1.8, we can show that

‖CHx(ξ̂−ξ)V̂rT̂−1/2‖F = {Op(ω1)+Op(h2)+Op[h2

√
logM logh−1

2 ∨
logM logWh2√

n
]

+ Op[ω2

√√√√ logM
M

M

∑
m=1

Ln

∑
l=1

τ
−2
m,l ]

+ Op[

√
logM∨ logWh2

Wh2
∨ logM∨ logWh2√

n
]}Op(n−1/2)

= op(1)Op(n−1/2),

which finishes the proof.
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APPENDIX B: TECHNICAL DETAILS OF CHAPTER 4

B.1 Proof of Theorem 4.1

Tn(ω̂λ ) can be explicitly expressed as,

Tn(ω̂λn) =
n[∑+∞

l=1
d̂2

l,h1
τ̂l+λn

]2

σ̂2
c ∑

+∞

l=1
τ̂l d̂2

l,h1
(τ̂l+λn)2

. (B.1)

Let Wn,1 =
n

σ̂2
c

∑
+∞

l=1
d̂2

l,h1
τ̂l+λn

and Wn,2 =
n

σ̂2
c

∑
+∞

l=1
τ̂l d̂2

l,h1
(τ̂l+λn)2 , Tn(ω̂λn) can be expressed as Tn(ω̂λn) =

W 2
n,1

Wn,2
.

Then we need to study the asymptotic distribution of (Wn,1,Wn,2).

The proof of theorem consists of two parts. In the first part, we prove that

Wn,1 =
+∞

∑
l=1

(
√

τlzl +δl,0/σc)
2

τl +λn
{1+op(1)}, (B.2)

Wn,2 =
+∞

∑
l=1

τl(
√

τlzl +δl,0/σc)
2

(τl +λn)2 {1+op(1)}, (B.3)

where {zl}+∞

l=1 are independent variables following N(0,1).

Here we show the derivation of (B.2) in detail. (B.3) can be obtained in a similar way.

Note that d̂l,0 =

ˆ S

0
Cβ̂h1(s)φ̂l(s)ds, we first examine the major terms in Cβ̂h1(s). For arbitrary

point s in [0,S], let η(s) = [η1(s), · · · ,ηn(s)]T and E(s) = [e1(s), · · · ,en(s)]T , Cβ̂h1(s) can be
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expressed as,

Cβ̂h1(s) = Cβ(s)+ ∑
M
m=1 Kh1(sm− s)[β(sm)−β(s)]

∑
M
m=1 Kh1(sm− s)

+ C(XT X)−1XTη(s)+
∑

M
m=1 Kh1(sm− s)C(XT X)−1XT [η(sm)−η(s)]

∑
M
m=1 Kh1(sm− s)

+
∑

M
m=1 Kh1(sm− s)C(XT X)−1XT E(s)

∑
M
m=1 Kh1(sm− s)

= Cβ(s)+∆ β̂h1,1(s)+∆ β̂h1,2(s)+∆ β̂h1,3(s)+∆ β̂h1,4(s).

Let dl,0 =

ˆ S

0
[Cβ(s)+C(XT X)−1XTη(s)]φl(s)ds, we have

n
σ̂2

c

+∞

∑
l=1

d2
l,0

τl +λn

d−→
+∞

∑
l=1

(
√

τlzl +δl,0/σc)
2

τl +λn
�

{
Op(logλ−1

n ), τl � α−l,

Op(λ
− 1

r
n ), τl � l−r.

(B.4)

Then we only need to show that n
σ̂2

c
∑
+∞

l=1
d̂2

l,0−d2
l,0

τ̂l+λn
and n

σ̂2
c

∑
+∞

l=1[
d2

l,0
τ̂l+λn

− d2
l,0

τl+λn
] are ignorable compared

to n
σ̂2

c
∑
+∞

l=1
d2

l,0
τl+λn

. The second term can be bounded by,

| n
σ̂2

c

+∞

∑
l=1

[
d2

l,0

τ̂l +λn
−

d2
l,0

τl +λn
]| = | n

σ̂2
c

+∞

∑
l=1

d2
l,0

τl− τ̂l

(τl +λn)(τ̂l +λn)
|

≤ n
σ̂2

c

+∞

∑
l=1

d2
l,0

τl +λn
max

l
|τl− τ̂l

λn
|

≤ n
σ̂2

c

+∞

∑
l=1

d2
l,0

τl +λn

‖Σ̂η −Ση‖2

λn
.

Following a similar derivation of Theorem 3(i) in [36], we can show that

‖Σ̂η − Ση‖2 = Op[(Mh2)
− 1

2 + h1 + h2 + (logn/n)
1
2 ], which gives
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n
σ̂2

c
∑
+∞

l=1[
d2

l,0
τ̂l+λn

− d2
l,0

τl+λn
] = op(

n
σ̂2

c
∑
+∞

l=1
d2

l,0
τl+λn

).

For the first term, we consider a decomposition of d̂l,0−dl,0,

d̂l,0−dl,0 =

ˆ S

0
Cβ̂h1(s)[φ̂l(s)−φl(s)]ds+

ˆ S

0
C∆ β̂h1,1(s)φl(s)ds

+

ˆ S

0
C∆ β̂h1,3(s)φl(s)ds+

ˆ S

0
C∆ β̂h1,4(s)φl(s)ds

= d̂l,1 + d̂l,2 + d̂l,3 + d̂l,4.

Then we only need to show n
σ2

c
∑
+∞

l=1
d̂2

l,r
τ̂l+λn

= op{ n
σ2

c
∑
+∞

l=1
d2

l,0
τl+λn
} for r = 1,2,3,4.

As β(s) are composed of functions with bounded first-order derivatives, ‖C∆ β̂h1,1(s)‖2
2 =

O(n−1h2
1). Then we have,

n
σ2

c

+∞

∑
l=1

d̂2
l,2

τ̂l +λn
= Op(h2

1λ
−1
n ).

For n
σ2

c
∑
+∞

l=1
d̂2

l,3
τ̂l+λn

, following Proposition A.2.7 in [152], it can be shown that

sup
s
|C∆ β̂h1,3(s)|= sup

s
|C(XT X)−1XT

∂η(s)|h1 = Op(n−1/2h1).

Then n
σ2

c
∑
+∞

l=1
d̂2

l,3
τ̂l+λn

= Op(h2
1λ−1

n ). Following Theorem 2.14.16 in [152], we can also show that,

sup
s
|C∆ β̂h1,4(s)|= Op(

√
1

nMh1
) and

n
σ2

c

+∞

∑
l=1

d̂2
l,3

τ̂l +λn
= Op[(λnMh1)

−1].

Therefore, n
σ2

c
∑
+∞

l=1
d̂2

l,r
τ̂l+λn

= op{ n
σ2

c
∑
+∞

l=1
d2

l,0
τl+λn
} for r = 2,3,4.
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We decompose d̂l,1 as,

d̂l,1 =

ˆ S

0
[Cβ(s)+C∆βh1,2(s)][φ̂l(s)−φl(s)]ds+

ˆ S

0
C∆βh1,1(s)[φ̂l(s)−φl(s)]ds

+

ˆ S

0
C∆βh1,3(s)[φ̂l(s)−φl(s)]ds+

ˆ S

0
C∆βh1,4(s)[φ̂l(s)−φl(s)]ds

= d̃l,1 + d̃l,2 + d̃l,3 + d̃l,4.

Similar to previous derivations, it can be shown that n
σ2

c
∑
+∞

l=1
d̃2

l,r
τ̂l+λn

= op{ n
σ2

c
∑
+∞

l=1
d2

l,0
τl+λn
} for r =

2,3,4. For n
σ2

c
∑
+∞

l=1
d̃2

l,1
τ̂l+λn

, we consider the summation of the first Ln terms first, where Ln satisfy

τLn � λn. To quantify φ̂l(s)−φl(s), we use the L2 expansion in [35],

φ̂l(s)−φl(s) = ∑
j 6=l

〈∆φ j,φ j〉φ j

τl− τ j
+O(‖Σ̂η −Ση‖2

2), (B.5)

where ∆φ j(s) =
¨

[Σ̂η(s, t)−Ση(s, t)]φ j(t)dt. Since d̃2
l,1 ≤ ‖Cβ(s)+C∆βh1,2‖2

2‖φ̂l(s)−φl(s)‖2
2,

it follows that,

n
σ2

c

Ln

∑
l=1

d̃2
l,1

τ̂l +λn
≤ Op(1)O(

Ln

∑
l=1

‖∆φ j‖2
2/τ2

l +‖Σ̂η −Ση‖2
2

τ̂l +λn
)

= Op(1)[O(
Ln

∑
l=1

‖∆φ j‖2
2

τ2
l (τ̂l +λn)

)+O(
Ln

∑
l=1

‖Σ̂η −Ση‖2
2

τ̂l +λn
)]

= Op(1)[O(
1

λ 3
n

Ln

∑
l=1
‖∆φ j‖2

2)+op(1)] = O(
‖Σ̂η −Ση‖2

2
λ 3

n
) = op(

n
σ2

c

+∞

∑
l=1

d2
l,0

τl +λn
).
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n
σ2

c
∑
+∞

l=Ln+1
d̃2

l,1
τ̂l+λn

can be bounded by,

n
σ2

c

+∞

∑
l=Ln+1

d̃2
l,1

τ̂l +λn
=

n
λnσ2

c

+∞

∑
l=Ln+1

d̃2
l,1 ≤

n
λnσ2

c

+∞

∑
l=Ln+1

[dl,0 +

ˆ S

0
(Cβ(s)+C∆βh1,2(s))φ̂l(s)ds]2

≤ 2n
λnσ2

c

+∞

∑
l=Ln+1

d2
l,0 +

2n
λnσ2

c

+∞

∑
l=Ln+1

[

ˆ S

0
(Cβ(s)+C∆βh1,2(s))φ̂l(s)ds]2

≤ 4n
λnσ2

c

+∞

∑
l=Ln+1

d2
l,0 +

2n
λnσ2

c

Ln

∑
l=1

d̃2
l,1 +

4n
λnσ2

c

Ln

∑
l=1

d̃l,1dl,0

≤ O(
4n

λnσ2
c

+∞

∑
l=Ln+1

d2
l,0)+O(

2n
λnσ2

c

Ln

∑
l=1

d̃2
l,1)

= O(
4n
σ2

c

+∞

∑
l=Ln+1

d2
l,0

τl +λn
)+O(

‖Σ̂η −Ση‖2
2

λ 3
n

) = op(
n

σ2
c

+∞

∑
l=1

d2
l,0

τl +λn
).

Then the proof of the first part is finished.

In the second part, we calculate the asymptotic distribution of Tn(ω̂λn).

With (B.2) and (B.3), as λn→ 0, the following distribution can be achieved under null hypothesis

[153],

 Wn,1

Wn,2

 d−→ N{

 a1

a2

 ,2

 a2 a3

a3 a4

}.

Using delta method, the asymptotic distribution of Tn(ω̂λn) =W 2
n,1/Wn,2 is given by,

Tn(ω̂λn)
d−→ N{

a2
1

a2
,
8a2

1
a2

+
2a4

1a4

a4
2
−

4a3
1a3

a3
2
}.
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Under alternative hypothesis, as λn→ 0, the following distribution can be achieved [153],

 Wn,1

Wn,2

 d−→ N{

 a1 +d1

a2 +d2

 ,2

 a2 +2d2 a3 +2d3

a3 +2d3 a4 +2d4

}.

Using delta method, the asymptotic distribution of Tn(ω̂λn) =W 2
n,1/Wn,2 is given by,

Tn(ω̂λn)
d−→ N{(a1 +d1)

2

a2 +d2
,
8(a1 +d1)

2(a2 +2d2)

(a2 +d2)2 +
2(a1 +d1)

4(a4 +2d4)

(a2 +d2)4 − 4(a1 +d1)
3(a3 +2d3)

(a2 +d2)3 }.
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