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ABSTRACT

WANYI CHEN: A Data-Driven Approach for Operational Improvement in Emergency
Departments

(Under the direction of Nilay Argon and Serhan Ziya)

Emergency departments (EDs) in the US are experiencing significant stress from crowding, of

which one of the main contributors is the lengthy boarding process, which is the process of to-be-

admit patients waiting in the ED for the hospital to ready beds for them. We explored ways to

reduce crowding by initiating hospital bed request (BeRT) early on for likely to-be-admit patients.

In Chapter 2, we modeled the ED patient flow as a Markov decision process. With the objective

of balancing the tradeoff between waiting cost and the cost of false early BeRTs, we found the

optimal early BeRT policy to be of threshold type, where the threshold is a function of census and

patients probability of admission. Chapter 3 built a fluid model, where patients flow into the ED

(a fluid tank) as continuous fluid flowing at a time-dependent deterministic rate. To control the

number of false early BeRTs, we imposed a constraint on the length of time for the early BeRT

option. The optimal policy that minimizes the fluid level (congestion level) in the ED dictates that

when ED is under heavy traffic regime, one should BeRT early as early, and as long, as allowed. In

chapter 4, we looked at several early BeRT heuristics that are inspired by the theoretical optimal

policies found previously. We tested and compared their performances in terms of length-of-stay

and waiting time using a simulation model built for the UNC ED based on 2012 patient data.

We observed that as the admission probability distributions of the patient population became less

variable, the heuristics that take more information into account performed better. Lastly, we offered

a different perspective on ED crowding in Chapter 5, where we explored the association between

ED cencus and providers’ triage and admission decisions. We found that the more crowded the ED

was, the more conservative providers were, in that nurses tend to triage more patients as critical,

and physicians tend to admit more patients into the hospital.
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CHAPTER 1

Introduction

Emergency departments (EDs) are gateways to hospitals and play a critical role in the US

healthcare system. The majority of them are experiencing significant operational stress caused by

overcrowding. Failure to serve on time can put patients at risk for suboptimal care and potential

health harm. Researchers have been seeking to identify primary causes of ED overcrowding and

ways to reduce its adverse effects to the extent possible (Olshaker, 2009), (Hoot and Aronsky,

2008), (Welch et al., 2011).

One of the main contributors to ED crowding is the lengthy process of transferring an admit-

ted patient from the ED to an inpatient department. It has been suggested that if the hospital

admissions of ED patients can be predicted early during triage and communicated to different de-

partments of a hospital, then necessary steps can be taken earlier to reduce transfer delays (Peck

et al., 2012a). Typically, a patient visiting the ED is first triaged, i.e., examined to determine the

complexity of the condition, where some basic information is collected and the patient is assigned a

priority level. Patients then wait to be seen by an ED physician, who decides on the treatment and

whether the patient needs to be admitted to the hospital or be discharged. Normally, request for a

hospital bed and preparations to receive the patient are delayed until the admission decision by the

doctor is ascertained. If hospital admission decisions can be predicted in advance (i.e., upon triage

or soon after), then this information can be passed on to the target inpatient ward where staff can

begin preparations early on and thereby reduce patient transfer delays and boarding. Our research

is motivated by the aforementioned idea and seeks to find efficient ways to take advantage of early

prediction of hospitalizations and thus enable an earlier start for the boarding process to shorten

total length of stays at the ED. From this point on, we term this early request for a hospital bed

as early BeRT (bed request).
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With this motivation, we formulated a queueing model in Chapter 2 that approximates the

patient flow in the ED in a stylized fashion. Each job (patient) that arrives to the queueing system

(i.e., the ED) belongs to one of two types. Type 1 jobs need only a primary service given by a single

server while type 2 jobs need an additional secondary service. The primary service corresponds to

the lump sum service patients receive at the ED and the secondary service refers to the inpatient

admission procedure (the secondary service time corresponds to boarding). The type of a patient

determines whether he/she will be admitted to the hospital. Secondary service is conducted by

servers that are always available when it is initiated. However, primary server cannot serve a new

job until secondary service of a job is over. Jobs incur waiting costs and there is an option of starting

primary and secondary services at the same time with an extra cost. The decision is whether or

not to use that option for each job given the probability that the job is of type 1. We formulate

this problem as a Markov decision process and prove that the optimal policy that minimizes the

long-run average cost is of threshold-type.

In Chapter 3, we take an alternative approach and build a deterministic and continuous fluid

model aiming to capture the general behavior of patient flow in the ED. As mentioned earlier, when

implementing early bed requests in the ED one needs to carefully manage the tradeoff between the

cost of overcrowding associated with holding hospital admitted patients in the ED and the cost

of wasting hospital resources by making too many early bed requests based on false admission

prediction. Of course, knowing the relative magnitude of these two counteracting costs can aid in

our decision making yet it might be unrealistic to estimate the cost of a false early bed request.

Hence, in this alternative formulation, we impose a constraint on the length of time during which

one can make early bed requests and thus speed up service. To be more specific, we treat the

patients arriving to an ED as fluid flowing into a tank. The fluid is pumped out of the tank at some

deterministic outflow rate as patients receive service at the ED. There is an option to speed up the

outflow rate, which corresponds to the option of starting preparing the hospital bed for patients

early on based on their predicted probability of admission to hospital. Using this fluid model we

identify the optimal period of time during each day to use that option given the aforementioned

operational constraint on the total amount of time early bed requests can be made.

In Chapter 4, we evaluate several different heuristic policies that are motivated by our math-

ematical models discussed in Chapter 2 and Chapter 3. With the accessibility of a dataset that

2



consists of 12 months of all patient encounters at the UNC ED in 2012, we built a simulation model

of the ED. We utilize this simulation model to evaluate the heuristics considered in terms of the

improvement they bring in reducing patients’ length-of-stay, waiting, and boarding times.

While the primary focus on ED crowding has been its influence on patient outcomes (e.g.,

patient mortality) there has been emerging research that pays attention to the operational responses

to a congested ED such as the changes in rates of admission. Many ED patients fall into a gray area

as to their needs for admission, and coming up with an appropriate discharge plan for these patients

may require significant cost of staff time and physical resources. Consequently, ED physicians may

choose to admit these patients as a safe alternative (Miller, 1960). (Gorski et al., 2017) explored

the association between crowding, which is measured by the occupancy level, and likelihood of

admission in a US ED and found there to be a positive correlation. Similarly, since the amount of

time and resources needed to be invested in patients with different acuity levels vary dramatically,

it is natural to conjecture that ED crowding might have an effect on the operational strategies

being adopted at the forefront of the entire patient flow, i.e., triage area, as well. Following this

stream of research ideas, in Chapter 5 we examine the impact of census, i.e., the occupancy level in

the ED, on nurses’ triage decisions, i.e., categorization of patients into acuity levels, and physicians’

admission decisions. More specifically, we performed a retrospective analysis on all 2012 patients

encounter data in the UNC ED. We employed a cumulative logistic regression model to assess

the association between census and triage levels. To evaluate the relationship between census and

admission decisions we used a logistic regression model.

3



CHAPTER 2

Dynamic Decision Making in a Queueing System with Secondary Service

2.1 Introduction

Emergency departments (EDs) are complex service systems, most of them deal with operational

problems that are caused by high congestion, and seek novel ways of reducing patient waiting times

and length-of-stay. In a typical emergency department, an arriving patient first goes through triage,

which determines the patient’s criticality and priority level. Then, once the patient is admitted

to the emergency department, the patient is seen by a physician who makes a diagnosis. In some

cases, it might be necessary for the physician to order some tests before finalizing his/her decision.

After diagnosis, the patient is either discharged from the emergency department or is admitted to

the hospital. While most emergency departments typically work in this fashion, some have been

experimenting with or considering making some changes. One idea, which has been implemented

in a number of departments, is to predict whether or not a patient would need a diagnostic test at

the time of triage and possibly order tests at that time. It is possible that the patient might end

up not needing a test but if the test is needed, having the test results available sooner will reduce

the time the patient will keep the emergency department bed occupied. Another proposed idea,

which faces some implementation challenges, is to predict whether or not a patient will eventually

be admitted to the hospital at the time of triage and request a bed from the hospital at that time.

This has the potential to significantly reduce the time an admitted patient occupies a bed since

the hospital bed the patient will transfer to might already be available by the time the “admit”

decision for the patient is given or at least would be available soon after. However, if the patient for

whom an “admit” prediction is made ends up being discharged from the emergency department,

that would mean that hospital resources were unnecessarily used to make the bed available, which

would also turn into a problem between the emergency department and the hospital.
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Mainly motivated by these novel practices, we consider a queueing system in which each arriving

customer is either of type-1 or type-2. Customers of either type require primary service, which is

provided by a single server (we will refer to this server as the server throughout the paper) while

type-2 customers additionally require the secondary service. This secondary service is provided

by another collection of servers, which are assumed to be infinitely many. All customers queue in

front of the server. When the server picks up the next customer to serve, it cannot observe the

type of the customer but can observe the probability that the customer is of type-2, i.e., that the

customer will need the secondary service. Only after completion of the primary service, the server

knows with complete certainty whether the customer will need the secondary service. However,

there is nothing that prevents the primary and the secondary services to proceed simultaneously

and thus the system controller can order the secondary service to start at the same time as the

server starts the primary service even though the secondary service for that particular customer

could be unnecessary.

If the controller does not initiate the secondary service together with the primary service, the

server proceeds with the primary service and by the end of the service, it determines whether the

customer needs the secondary service. If s/he does not (meaning a type-1 customer), the customer

leaves right away and the server picks up the next customer. If the customer is of type-2, and thus

needs the secondary service, the customer starts receiving the secondary service right away from

the pool of infinitely many servers. However, the server cannot serve a new customer. It remains

blocked until the secondary service of the customer is over. If the controller initiates the secondary

service together with the primary service, the server again proceeds with the primary service and

it determines whether the customer needs the secondary service. If she does not or if she does

but the secondary service, which started earlier together with the primary service, is already over,

then the customer leaves right away and the server picks up the next customer. Each customer

incurs a waiting cost, which is linearly increasing with the time s/he spends waiting. Without loss

of generality, there is no cost associated with the primary service but the secondary service has a

cost and this cost is smaller when it is started after the primary service is over.

By choosing to start the secondary service together with the primary service, the controller

hopes to shorten the time the server is occupied with the customer and makes the server available

for other waiting customers more quickly. However, by doing that, the controller not only pays
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more for the secondary service but is also taking a risk because the secondary service may in

fact be completely unnecessary for that customer. Thus, the goal of the controller is to carefully

manage this trade-off. More specifically, the objective of the controller is to minimize the long-run

average cost the system incurs by identifying whether the secondary service should be initiated

together with the primary service given the number of customers waiting and the probability that

the customer who is about to start the primary service is of type-2.

The model broadly described above is stylized and is not meant to capture the motivating

applications at a highly detailed, realistic level. Our goal in this paper is to provide some general

insights and possibly pave the way for the analysis of more advanced formulations in the future.

However, it might be necessary to provide some explanations for the reasons behind some of our

modeling choices. It is likely clear to the reader that the customers in the model correspond to

the patients arriving at the emergency department and the type of a customer determines whether

the patient needs a diagnostic test in the first setting described above and whether the patient will

eventually be admitted to the hospital in the second setting. Somewhat more difficult to see is

what exactly the server corresponds to and what exactly it means to have an infinite collection of

servers for the secondary service.

In EDs, patients are mainly served by the attending physician and other medical personnel

including the residents and nurses but particularly for crowded EDs, one can also view each ED

bed as a server as well. Until a bed is physically vacated and cleaned, a new patient cannot be

admitted. In our model, the server should be seen as a physician-bed pair. It is the physician who

is performing the primary service but the bed cannot be vacated until the whole service, which

possibly includes the secondary service (corresponding to a diagnostic test or the hospital bed

preparation time), is over and the server remains blocked. While this is the case in reality as well,

the limitation of our formulation is that it assumes that there is a single physician-bed pair serving

the patients, which is almost never the case. However, particularly for highly crowded EDs, which

experience long waiting times, our analysis would provide useful insights as one can view waiting

patients as being preassigned to each bed at the time of their arrivals and each bed having its own

queue.
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2.2 Literature Review

There are three streams of research relevant to the study undertaken in this paper, one con-

cerned with the dynamic control of queues, and in particular the control imposed on the service pro-

cess, one concerned with Business Process Management (BPM) and the evaluation of the changes in

service structure along the dimension of cost, and the final one concerned with service outsourcing.

With regard to dynamic control of queues via varying service rates, one commonality found in

most literature, a similarity to our paper, is that the decision making is typically centered around

the tradeoff between two kinds of costs, namely, the cost of holding customers in the queue, which

is nondecreasing with respect to the queue length, and the cost of applying faster service rates,

which is nondecreasing with respect to the service rates applied. Additionally, among the papers

dealing with the characterization of optimal policies most of them show that they have certain

monotonicity structure in terms of the queue lengths.

Crabill and Thomas B. (Crabill, 1972) derive the form of a minimal cost rate stationary op-

erating policy for an M/M/1 queueing system with K possible service rates, where the optimal

service rate is shown to be nondecreasing in the state of the system. The two costs of the system

are a general cost rate dependent on the state of the system and a cost rate associated with each

of the possible service rates. Weber et al. (Weber and Stidham, 1987) prove a monotonicity result

for the problem of optimal service rate control in certain queueing networks. As an illustrative

example, they show that for a number of G/M/1 queues arranged in a cycle with some number of

customers moving around the cycle, the policy that minimizes the expected total discounted cost

has a monotone structure: namely, that by moving one customer from the current queue to the fol-

lowing queue, the optimal service rate in the current queue is not increased and the optimal service

rates elsewhere are not decreased. In their setting the cost is charged for holding customers in the

queues and for each unit of time the service rate is in effect in the queues. Later, Stidham Jr. et al.

(Stidham Jr and Weber, 1989) present a unified, simple method for proving that an optimal policy

is monotonic in the number of customers in the system. Compared to (Crabill, 1972) they consider

weaker and more general conditions and both exponential and nonexponential models. George et

al. (George and Harrison, 2001) consider the problem of minimizing average cost per time unit over

an infinite horizon for a single-server queue where the queue length evolves as a birth-and-death
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process with constant arrival rate and state-dependent service rates that can be chosen from a fixed

subset. There is a nondecreasing cost-of-effort function on the subset of values that service rates

can be chosen from and holding costs are continuously incurred as a nondecreasing function of the

queue length. They find that the optimal service rates are nondecreasing as a function of queue

length. They also present a method for computing the minimum achievable average cost.

As to the redesign of the underlying mechanics of business processes, Buzacott and John A.

(Buzacott, 1996) gives a comprehensive review of different kinds of system structure reengineering

and explores conditions under which such changes are beneficial. In general, a high degree of

variability in task times seems to be necessary. In his paper, the scenario where several tasks are

combined into one is a similar version of our problem in the sense that for both the purpose is to

reduce or eliminate subdivision of the overall processing requirements into individual tasks, each

performed by a different facility, person or machine. To be more specific, our model assumes there

is the option of starting stage-2 service together with stage-1 service with a resulting service time

of the maximum of the two. This is in parallel with the use of case teams, suggested by Hammer

and Champy and summarized in the paper, where in our case the team corresponds to the team

formed by stage-1 and stage-2 servers. Similar to their setting, each job is not complete until both

tasks are complete and the next job cannot begin until the previous job is complete. The difference

lies in the fact that with no collaboration, which in our case corresponds to starting stage-2 service

after stage-1 service is complete, the next job cannot enter stage-1 service until both tasks on

the previous job are complete. To our knowledge, most BPM research is primarily concentrated

upon identifying the objective and developing heuristic policies for business processes through a

qualitative perspective. Interested readers can refer to (Van Der Aalst, 2013) for a comprehensive

review of the state-of-the-art in BPM research. On the other hand, this paper starts with a redesign

of the service flow, namely, to conduct second stage service together with first stage service at the

same time, and focuses on finding the dynamically optimal way to apply this control.

Outsourcing refers to the act to procure (as some goods or services needed by a business

or organization) under contract with an outside supplier. In this paper, due to the availability

of outside servers that can perform stage-2 service one has the option of starting stage-2 service

together with stage-1 service, and the motive for doing this is that arrivals might need a second stage

of service on top of one, which will lengthen the total service time, add to the congestion, and thus
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increase the holding cost. Hence the act of starting stage-2 service can be considered as outsourcing,

and the decision-making is centered around balancing in-house holding cost and outsourcing cost

(starting ahead is more expensive than starting on-demand). In relation to the literature on service

outsourcing, our paper is most similar to (Koçağa et al., 2015). Most papers in this literature

study contracting issues in the context of call center outsourcing, where a firm (which we will call

the user) that sends some or all of its calls to an outside server (which we willl call the vendor)

must determine appropriate terms for the contract to induce the vendor to make system-optimal

decisions and the vendor must make decisions about staffing level and effort level. Unlike these

papers, (Koçağa et al., 2015) focus on real-time routing decisions instead. They are faced with the

issue of under/over-staffing in call centers when arrival rates are uncertain. To mitigate this issue,

they find a joint policy for staffing and real-time call co-sourcing, i.e., by sometimes outsourcing

calls, that minimizes long run average cost when there is staffing cost and costs associated with

abandoments and outsourcing. They formulate a Markov decision process and propose a policy

that uses a square-root safety staffing rule, and outsources calls in accordance with a threshold rule

that is dependent on the queue length. They show that this policy is asymptotically optimal. Both

the optimality of a threshold-type policy and the cost structure that influences dynamic decision

making is very similar to our work presented here.

2.3 Model Description

Customers arrive at a queueing system according to a Poisson process with rate λ. Each cus-

tomer is one of two types. Type-1 customers need only primary service while type-2 customers

need both primary and secondary services. Arriving customers line up for primary service, which

is provided by a single server. There is no queue for the secondary service. It is provided by one of

infinitely many secondary servers and can be performed either immediately after primary service or

simultaneously with primary service depending on the system controller’s decision. For any given

customer, if secondary service follows the completion of primary service or if they are started simul-

taneously but primary service finishes first and it is revealed that the customer does indeed need

the secondary service (i.e., a type-2 customer) the single server, which performs primary services

remains blocked and cannot serve a new customer until the secondary service of the customer is
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complete. (In the rest of the paper, unless otherwise specified, “the server” will always refer to

the server performing the primary service.) However, if primary service and secondary service are

started simultaneously and primary service finishes first but it is revealed that secondary service is

in fact not needed, the customer leaves right away and the server becomes immediately available

for the next customer.

The system controller cannot observe the type of the customers before they go through primary

service but it can observe the probability of any given customer being of type-2. The type of the

customer is revealed with certainty only after the completion of primary service. Let Zk denote

the random variable representing the probability that the kth customer to arrive to the system is

of type-2. We assume that {Zk}∞k=1 is a sequence of independent and identically distributed (iid)

random variables with the common discrete probability distribution specified as P{Zk = αi} = qi}

for αi ∈ Ω and k ∈ {1, 2, . . . }, where Ω = {α1, α2, . . . , } is the set of possible values Zk can take.

Without loss of generality, we assume that αi is increasing in i. We also let α =
∑∞

i=1 qiαi so that

α represents the probability that a randomly chosen customer is of type-2.

Let X1k denote the primary service time for the kth customer and X2k denote the secondary

service time for the kth customer to receive this service. We assume that {X1k}∞k=1 is a sequence

of iid random variables with exponential distribution with rate γ1 and {X2k}∞k=1 is a sequence of

iid random variables with exponential distribution with rate γ2. To clearly describe the service

time an arriving customer experiences, let X1 and X2 denote generic random variables respectively

representing the time it takes for primary service and secondary service. Consider a customer whose

probability of being type-2 is z. The system controller can either choose to serve this customer by

performing primary and secondary services together starting them simultaneously (called “parallel

service”) or can choose to have the server perform primary service first, and only then initiate

secondary service if primary service reveals that secondary service is needed (called “service in

sequence”). Note that the customer may eventually turn out to be type-1 and not need secondary

service but the system controller might still choose the parallel service option in hopes of making

server-1 available for other customers more quickly considering the possibility of the customer being

type-2. Let Szp denote the total time the customer keeps the server busy under parallel service and
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let Szs denote the same time if the services are performed in stage. Then,

Szp =


max(X1, X2) w.p. z

X1 w.p.1− z
,

and

Szs =


X1 +X2 w.p. z

X1 w.p. 1− z
.

Thus, the benefit of choosing the parallel service option is that with probability z, the service time

of the customer shortens to max(X1, X2) from X1 + X2. As we explain, next, however, there are

costs associated with taking different actions and therefore choosing this option for all the customers

may not be desirable.

Specifically, we assume that the system incurs a holding cost of Cw for each waiting customer

per unit of time. The cost of performing secondary service after the completion of primary service

is denoted by Cs and the cost of performing secondary service in parallel with primary service is

denoted by Cp. Note that any cost of primary service is irrelevant and is thus ignored because all

customers have to go through primary service. We assume throughout the paper that αiCs ≤ Cp

for all i, which implies that for any single customer in isolation the cost of performing parallel

service is larger than the expected cost of performing service in sequence. An obvious sufficient

condition for this assumption to hold is that Cs ≤ Cp, i.e., service in sequence does not cost more

than service in parallel, which is likely to hold in our motivating applications where the cost under

either service option would likely be about the same. The objective of the service controller is to

minimize the long-run average cost for this system by determining when to choose parallel service

and when to choose service in sequence depending on the system state.

We model this problem as a Markov decision process (MDP). The state space X can be described

as X = {0} ∪ {(m,n) | m ∈ {αi}∞i=1 ∪ {2, 3}, n ∈ Z+} where state (0) is the state where the system

is empty, states (m,n) are the states in which there are n customers in the system including the

customer with the server with m = αi corresponding to the state in which the server is performing

a primary service on a customer with probability αi of being type-2, m = 2 corresponding to the

state in which the server is performing a primary service and secondary service has been completed,
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and m = 3 corresponding to the state in which the server has already completed primary service

and the customer is now going through secondary service. We restrict ourselves to the policy set

Π, where any π ∈ Π is a stationary, non-idling, state-dependent policy, and is a mapping from

the system state X to the action space A = {0, 1} where 0 corresponds to the decision of starting

a “service in sequence”, i.e., not initiating a secondary service together with primary service and

1 corresponds to the decision of starting a parallel service with the restriction that no action is

available in state (0) and action 1 is only available in states x where x = (αi, n ≥ 1), for some i, i.e.

when there is at least one customer and either a primary or a secondary service has not already

been completed for the customer because of a parallel service decision made earlier. Note that the

policies we consider here can be seen as preemptive in the sense that the system controller can

switch from “parallel service” to “service in sequence” at a decision epoch, which can correspond

to either an arrival time or a service completion time, as long as neither primary nor secondary

service is complete for the customer or from “service in sequence” to “parallel service” as long as

the primary service of the customer is still in progress.

Using uniformization, the continuous-time MDP formulation can equivalently be written as a

discrete-time MDP. Let β = λ+ γ1 + γ2 denote the uniformization constant. We set β = 1 without

loss of generality. For any x ∈ X, h(x) denotes the relative value or bias for state x. For expositional

convenience below, we further define h(αj , 0) = h(0) for j = 1, 2, . . . as the relative value function

although (αj , 0) is not an element of the state space X. Finally, let g denote the long-run average

cost under an optimal policy. Then, the optimality equations can be written as follows:

h(0) = λ
∑
j

qjh(αj , 1) + (γ1 + γ2)h(0). (2.1)

For all n ≥ 1, and αi ∈ Ω,

h(αi, n) = nCw + λh(αi, n+ 1) + (1− αi)γ1

∑
j

qjh(αj , n− 1)

+ αiγ1h(3, n) + γ2 min{h(αi, n) +
αiγ1

γ2
Cs, h(2, n) +

γ1 + γ2

γ2
Cp}, (2.2)
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where h(αj , 0) = h(0) =
∑

j qjh(αj , 0), for all j. For all n ≥ 1,

h(2, n) = nCw + λh(2, n+ 1) + γ1

∑
j

qjh(αj , n− 1) + γ2h(2, n), (2.3)

h(3, n) = nCw + λh(3, n+ 1) + γ2

∑
j

qjh(αj , n− 1) + γ1h(3, n). (2.4)

We know that if there is a solution to the optimality equations above, then there exists a

stationary, deterministic policy, π∗ ∈ Π under which the long-run average cost is g = g∗ and the

policy is described by the action that minimizes the right hand side of the optimality equation for

each state x ∈ X.

2.4 Existence of a Stationary Optimal Policy

In this section, we show that under a particular condition on the arrival and service rates,

the solution to the optimality equations exist and thus there exists an optimal stationary policy.

The condition we need is that λ
(

1
γ1

+ α
γ2

)
< 1. Recall that α is the probability that a randomly

chosen customer is of type-2 and thus the term in the parentheses,
(

1
γ1

+ α
γ2

)
is the total expected

time the server will be occupied with a random customer if a decision is made to perform the two

stages of service in sequence and the condition is basically the stability condition for the queueing

system if all customers are served in a service-in-sequence fashion. It is important to note that this

a sufficient condition and that there could be solutions to the optimality equations if it does not

hold.

Theorem 1. Suppose λ
(

1
γ1

+ E[α]
γ2

)
< 1, then there exists a finite constant J and a finite function

h that satisfy the ACOE (average cost optimality equalities):

J + h(i) = min
a

C(i, a) +
∑
j

Pij(a)h(j)

 , i ∈ S.

Let f be a stationary policy realizing the equality in the ACOE. Then f is average cost optimal with

average cost J .

Proof. According to Theorem 7.2.3 in Sennott (Sennott, 2009) the (SEN) Assumptions ensures the

existence of a finite constant J and a finite function h that satisfy the ACOI (average cost optimal
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inequalities)

J + h(i) ≥ min
a

C(i, a) +
∑
j

Pij(a)h(j)

 , i ∈ S.

Also, there exists an average cost optimal policy f that achieves the minimum in the ACOI. Accord-

ing to Theorem 7.5.6 (Sennott, 2009), the (BOR) Assumptions ensure that the (SEN)s Assumptions

hold and that the ACOE is valid. Hence we only need to show that (BOR) Assumptions hold under

the condition that λ
(

1
γ1

+ E[α]
γ2

)
< 1.

We consider the stationary policy d that always chooses the parallel service option. Then under

the assumption that λ
(

1
γ1

+ E[α]
γ2

)
< 1, the Markov chain induced by d is a M/G/1 with service

time distribution:

S =


X1 w.p. 1− E[α]

max(X1, X2) w.p. E[α]

.

Thus

E[S] = (1− E[α]) � E[X1] + E[α] � E[max(X1, X2)]

≤ (1− E[α]) � E[X1] + E[α] � E[X1 +X2]

= (1− E[α]) �
1

γ1
+ E[α] �

(
1

γ1
+

1

γ2

)
=

1

γ1
+

E[α]

γ2
.

The utilization of the system is

ρ = λE[S] ≤ λ
(

1

γ1
+

E[α]

γ2

)
< 1.

Hence the Markov chain induces by d is stable and induces a positive recurrent class Rd. It is easy

to see that Rd = S = {(0)}∪{(αi, n), 1 ≤ i ≤ K,n ≥ 1}∪{(s, n), s = 2 or 3}. Suppose we choose a

distinguished state z = 0. By Definition 7.5.1 (Sennott, 2009) and Definition C.2.5 (Sennott, 2009),

d is a z standard policy because the MC under d is positive recurrent, and hence the expected first

passage time and associated total expected cost from one state to another are both finite. Hence

(BOR1) holds. In fact, d is a z standard policy for any z ∈ Rd = S.
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Next, since the MC under d is positive recurrent, the long run average cost under d, denoted

by Jd, is finite. Choose ε = 1. Define D = {s | C(s; a) ≤ Jd + 1 for some a} as in (BOR2), where

C(0) = 0; C(2, n) = C(3, n) = nCw, ∀n ≥ 1,

and for 1 ≤ i ≤ K and n ≥ 1,

C(αi, n; 0) = nCw + αiγ1Cs, C(αi, n; 1) = nCw + γ2Cp.

then D = {0} ∪A ∪B, where

A = {(αi, n) | 1 ≤ i ≤ K and 1 ≤ n ≤
⌊

1

Cw
(Jd + 1−min{αiγ1Cs, γ2Cp})

⌋
.

B = {(2, n) and (3, n) | 1 ≤ n ≤
⌊
Jd + 1

Cw

⌋
}.

It is easy to see that D is a finite set since Jd is finite, meaning that (BOR2) holds. Finally, (BOR3)

holds because D −Rd = ∅.

2.5 Structure of the Optimal Policy

This section is devoted to proving that if λ
(

1
γ1

+ α
γ2

)
< 1, i.e., under the condition with which

we can ensure the existence of an optimal policy, the optimal policy has a threshold structure.

More specifically, the optimal policy is such that for any given value of αi, the probability for the

customer to be of type-2, the parallel service option is chosen if and only if the number of customers

in the system is above a particular threshold value. We start with the statement of the theorem.

Theorem 2. Suppose that λ
(

1
γ1

+ α
γ2

)
< 1. Then, the optimal policy, which minimizes the long-

run average cost, is of threshold type. More specifically, there exists an integer N(αi) such that if

the system is in state (αi, n), i.e., there are n customers in the system and the customer who is

already receiving primary service or is about to start receiving service has a probability αi of being

type-2, then the optimal action is to perform parallel service if and only if n ≥ N(αi). Furthermore,

N(αi) := inf{n : h(αi, n)− h(2, n) >
γ1 + γ2

γ2
Cp −

αiγ1

γ2
Cs}.

15



From (2.2), one can see that the optimal action in state (αi, n) is to perform parallel service if

and only if h(αi, n)−h(2, n) > γ1+γ2
γ2

Cp− αiγ1
γ2
Cs. Therefore, if the right hand side of this inequality,

h(αi, n)−h(2, n), is non-decreasing in n, Theorem 2 immediately follows. In the rest of this section,

we prove that is indeed the case.

First, we introduce the finite-horizon version of the uniformized, discrete-time version of our

problem described in Section 2.3. Let V π
m(x) denote the total expected cost under policy π over a

period of m stages starting from state x. The optimal expected m-stage cost then can be expressed

as

Vm(x) = inf
π∈Π

V π
m(x),

and satisfies the following finite horizon optimality equations: For m ≥ 1,

Vm(0) = λ
∑
j

qjVm−1(αj , 1) + (γ1 + γ2)Vm−1(0). (2.5)

For all m ≥ 1, n ≥ 1, and αi ∈ Ω,

Vm(αi, n) = nCw + λVm−1(αi, n+ 1) + (1− αi)γ1

∑
j

qjVm−1(αj , n− 1)

+ αiγ1Vm−1(3, n) + γ2 min{Vm−1(αi, n) +
αiγ1

γ2
Cs, Vm−1(2, n) +

γ1 + γ2

γ2
Cp}, (2.6)

where Vm(αj , 0) = Vm(0) =
∑

j qjVm(αj , 0), for all j. For all m ≥ 1 and n ≥ 1,

Vm(2, n) = nCw + λVm−1(2, n+ 1) + γ1

∑
j

qjVm−1(αj , n− 1) + γ2Vm−1(2, n), (2.7)

Vm(3, n) = nCw + λVm−1(3, n+ 1) + γ2

∑
j

qjVm−1(αj , n− 1) + γ1Vm−1(3, n). (2.8)

Next, we show that the optimality operator preserves certain conditions as stated in the follow-

ing lemma. It is important to note that while only some of the conditions stated in the lemma will

be key to establishing the threshold result, the proof of those essential conditions requires showing

all of them together.
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Lemma 1. Suppose for any m ≥ 1 we have that

1) Vm(2, n)−
∑

j qjVm(αj , n− 1) is a non-negative non-decreasing function of n for all n ≥ 1.

2) Vm(αi, n) −
∑

j qjVm(αj , n − 1) is a non-decreasing function of n for all i and n ≥ 1 and

Vm(αi, 1)−
∑

j qjVm(αj , 0) ≥ αiCs.

3) min{Vm(αi, n) + αiγ1
γ2
Cs, Vm(2, n) + γ1+γ2

γ2
Cp}−Vm(2, n) is a non-decreasing function of n for all

i and n ≥ 1.

Then we have

Condition 1. min{Vm(αi, n)+ αiγ1
γ2
Cs, Vm(2, n)+ γ1+γ2

γ2
Cp}−

∑
j qjVm(αi, n−1) is a non-decreasing

function of n for all i and n ≥ 1, and min{Vm(αi, 1)+αiγ1
γ2
Cs, Vm(2, 1)+γ1+γ2

γ2
Cp}−

∑
j qjVm(αi, 0) ≥

αi(γ1+γ2)
γ2

Cs for all i.

The proof of this lemma is provided in the appendix.

Lemma 2. Suppose for any m ≥ 1 we have that Vm(αi, n)− Vm(2, n) is a non-decreasing function

of n for all i and n ≥ 1. Then we have

Condition 2. Vm(αi, n)−min{Vm(αi, n) + αiγ1
γ2
Cr, Vm(2, n) + γ1+γ2

γ2
Ce} is a non-decreasing function

of n for all i and n ≥ 1, and Vm(αi, 1) −min{Vm(αi, 1) + αiγ1
γ2
Cr, Vm(2, 1) + γ1+γ2

γ2
Ce} ≥ −αiγ1

γ2
Cr

for all i.

Condition 3. min{Vm(αi, n) + αiγ1
γ2
Cr, Vm(2, n) + γ1+γ2

γ2
Ce} − Vm(2, n) is a non-decreasing function

of n for all i and n ≥ 1.

The proof of this lemma is provided in the appendix.

Lemma 3. Let αiCs ≤ Cp, for all αi ∈ Ω and suppose that the following six conditions all hold for

0 ≤ k ≤ m− 1 where m ≥ 1:

Condition 4. Vk(αi, n)− Vk(2, n) is a non-decreasing function of n for all i and n ≥ 1.

Condition 5. Vk(3, n) −
∑

j qjVk(αj , n − 1) is a non-negative non-decreasing function of n for all

n ≥ 1.

Condition 6. Vk(αi, n)− (1− αi)
∑

j qjVk(αj , n− 1)− αiVk(3, n) is a non-decreasing function of n

for all i and n ≥ 1, and Vk(αi, 1)− (1− αi)
∑

j qjVk(αj , 0)− αiVk(3, 1) ≥ αiCs.

Condition 7. Vk(2, n) −
∑

j qjVk(αj , n − 1) is a non-negative non-decreasing function of n for all

n ≥ 1.
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Condition 8. Vk(αi, n) −
∑

j qjVk(αj , n − 1) is a non-decreasing function of n for all i and n ≥ 1

and Vk(αi, 1)−
∑

j qjVk(αj , 0) ≥ αiCs.

Condition 9. Vk(αi, n) is a non-decreasing function of i for all n ≥ 1.

Then Condition 4 through 9 also hold for k = m, i.e., Condition 4 through 9 are preserverd under

the optimality equations.

The proof of this lemma is provided in the appendix. Now, we choose the terminating costs

so that V0(αi, n) = nCs for n ≥ 0 and αi ∈ Ω, V0(2, n) = V0(3, n) = (n − 1)Cs for n ≥ 1. One

can then easily check that all the conditions of Lemma 3 hold for m = 1. Then, repeated use of

Lemma 3 implies that all the conditions of the lemma hold for any integer m ≥ 1. We also know

from Theorem 1 that there exists an optimal policy for the long-run average cost problem with bias

function h(·) satisfying the ACOEs (2.1) through (2.4). Thus, we must have

h(αi, n)− h(2, n) = lim
m→∞

[Vm(αi, n)− Vm(2, n)]

for αi ∈ Ω and n ≥ 1. Then, because we know that all the conditions of Lemma 3 holds for any m

and in particular Condition 1, i.e., Vm(αi, n) − Vm(2, n) is a non-decreasing function of n, we can

conclude that h(αi, n) − h(2, n) is also non-decreasing in n for n ≥ 1 and αi ∈ Ω. This completes

the proof of Theorem 2.

2.6 Monotonicity of the Optimal Threshold

In Section 2.5, we showed that the optimal policy is such that for a customer who is about

to receive service or already receiving a preliminary service the parallel service option is chosen

if and only if the number of customers in the system n at the decision time is greater than some

threshold value N(αi) where αi is the probability that the customer is of type-2. Recall that type-

2 customers are those who must have the secondary service and thus the incentive for choosing

the parallel service option is stronger when this probability is larger. In other words, it would be

reasonable to expect the minimum number of customers in the system that would justify parallel

service to be smaller when this probability is larger. In this section, we prove that that is indeed

the case.
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Theorem 3. The optimal threshold N(αi) is a non-increasing function of αi.

Proof. The proof follows along the lines of the proof of Theorem 2. First, we choose the terminating

costs so that V0(αi, n) = nCs for n ≥ 0 and αi ∈ Ω, V0(2, n) = V0(3, n) = (n − 1)Cs for n ≥ 1.

One can then easily check that the conditions of Lemma 3 hold for m = 1. Then, repeated use of

Lemma 3 implies that all the conditions of the lemma hold for any integer m ≥ 1. We also know

from Theorem 1 that there exists an optimal policy for the long-run average cost problem with bias

function h(·) satisfying the ACOEs (2.1) through (2.4). Thus, we must have

h(αi, n)− h(2, n) = lim
m→∞

[Vm(αi, n)− Vm(2, n)]

for αi ∈ Ω and n ≥ 1. Then, because we know that the conditions of Lemma 3 hold for any

m and in particular Condition 4, i.e., Vm(αi, n) − Vm(2, n) is a non-decreasing function of αi, we

can conclude that h(αi, n) − h(2, n) is also non-decreasing in αi. This completes the proof of the

theorem.
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CHAPTER 3

Optimal Timing for Early Bed Request for Admitted Patients in an Emergency
Department

3.1 Introduction

In this chapter, we are interested in implementing as well as evaluating the efficacy of early bed

requests in EDs to reduce patient sojourn times. The idea is to predict whether or not a patient

will eventually be admitted to the hospital at his/her time of arrival, rather than later when the

ED service is completed for the patient, and request a bed from the hospital at that time. From

now on, we term this operational strategy as early bed request, or BeRT. BeRT could possibly

reduce the time an admitted patient occupies a bed in the ED, because by the time the service

at the ED is completed for the patient, the bed at the hospital might have already been prepared

for him, or at least will be soon after, since it was called ahead earlier on at the time of arrival as

opposed to at the end of the ED service according to the usual practice. However, if the patient for

whom a BeRT is made turns out to be a discharged patient, i.e., the prediction is a false positive,

that would mean that the hospital resources were unnecessarily employed to make the BeRT, which

could turn into a problem between the hospital and the emergency department. To incorporate

this fact into our model, we assume in this chapter that there is a limit on the maximum number

of BeRTs per day, and this limit is derived based on discussions with the ED management about

the hospital management’s tolerance for the number of false BeRTs per day, and the sensitivity of

the admission prediction.

Most emergency departments lack a valid and well-performing admission prediction tool. As

part of a UNC Healthcare Innovations project, we have developed a logistic regression model that

can predict each individual patient’s probability of being admitted based on his/her demographic

characteristics and clinical information that are available during triage (Travers et al., 2017). We

term this logistic regression model as APT (Admission Prediction Tool). Although APT is not
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at the center of our discussion in this chapter, it is important to know the performance metrics

derived from it, and we will discuss it later to aid in our primary discussion.

To implement BeRT, we first need to come up with a tool that guides us with when to initiate

the bed preparation process at the hospital each day and for which patients in the ED. Because

of the cost of potentially wasting hospital resources due to incorrect prediction of admission, there

has to be a limit on the number of times one can use the option of BeRT on ED patients. To find

a decision rule that dictates when to implement BeRT during the day, we propose a mathematical

fluid model to approximate the behavior of the patient flow and service process in an ED. In this

model, we regard patients arriving to an ED as fluid flowing into a tank with unlimited capacity

according to a deterministic inflow (arrival) rate. Upon arrival, the tank (ED) will immediately

start emptying the fluid (serving the patient) at a deterministic rate. There are two options for

outflow (service) rate. The minimum outflow rate corresponds to the overall service rate, which

is the inverse of mean sojourn time at the ED, under normal operating conditions, i.e., with no

BeRT applied to any patient. The maximum outflow rate corresponds to the overall service rate

at the ED when BeRT is applied to all patients for whom the predicted admission probabilities are

above a certain threshold. Our problem is to determine the optimal time at which one should start

applying the maximum service rate to the system and the length during which one should keep

applying the maximum service rate so as to minimize the time averaged fluid level in the system

subject to a constraint on the maximum length during which the maximum service rate can be

applied. Although the model broadly described here is stylized and is not meant to capture the ED

operations at a highly detailed and realistic level, the main purpose here is to shed light on how to

apply the BeRT strategy at an actual emergency department optimally depending on its operating

conditions such as daily arrival volumes and its service capacities, as well as to evaluate the benefit

that this novel strategy can bring to the ED in reducing patient sojourn times.

To evaluate the optimized decision rule suggested by the mathematical fluid model, we will

test the optimal policy on a simulation model developed for the ED at the UNC Medical Center

in Chapel Hill. The preliminary version of the simulation model is developed by previous graduate

students based on a smaller dataset. As part of my dissertation, this simulation model is currently

being refined and validated based on the 2012 hospital data. We are not going to explain details

about how different components of the simulation model was built and the rationale behind it.
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Instead, our focus is on testing the optimal policy found by the mathematical fluid model on the

simulation model, evaluating the system performance in terms of the sojourn times, and getting

insights into how to implement this policy in the real ED.

3.2 Literature Review

Our research relies on a logistic regression model that we developed as part of an UNC Health-

care Innovations Grant to predict the probability of admissions for ED patients (Travers et al.,

2017). The recent published literature offers a handful of classification tools to predict admissions

of ED patients. Peck et al. (Peck et al., 2012b) evaluated three models (expert opinion, naive

Bayes and a generalized linear regression model) that predict the number of ED patients that will

be admitted and introduced a methodology for implementing these models in a hospital setting.

Barack-Corren et al. (Barak-Corren et al., 2017) developed a logistic regression model to predict

patient disposition (hospitalization vs. discharge) at three progressive time points throughout the

ED visit using clinical, operational and demographic data retrospectively collected in an Israeli

hospital. LaMantia et al. (LaMantia et al., 2010) focuses on elderly patients, and derived and val-

idated a triage-based model that predicts hospital admission of elderly patients and probabilities

of them returning to the ED. Despite different modeling techniques, whether it is statistics based

or it relies on solely the judgement of experienced nurse and/or physicians, the similarity we found

is that most of the aforementioned work favor simple probabilistic models using only a minimal

number of predictors available at triage and renders reasonable accuracy.

More recent studies seek means to actually employ the predicted information to reduce the

boarding time of ED patients. Peck et al. (Peck et al., 2012b) recommends starting bed coordination

early on while patients are still receiving the ED treatment to reduce the boarding delays. While

they recognize the potential benefit of introducing admission prediction into the ED setting on

reducing boarding time they do not have a model that is used to optimize this decision process as

their focus is on developing a good model for prediction. Qiu et al. (Qiu et al., 2015) proposed a

cost sensitive bed reservation policy that recommends optimal bed reservation times for patients.

Their policy is cost sensitive in that it accounts for costs associated with admission prediction

misclassification as well as costs associated with incorrectly selecting the reservation time. However,
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unlike our work, which considers the ED as a queueing system and evaluates the total “cost”

incurred for the system through all customers (patients) waiting, they do not have a queueing

model and only assess costs at an individual patient level.

Our work is novel in the sense that we study the ED as a queueing system and use a fluid model

to approximate the patient flow in the ED in a continuous and deterministic manner to optimize

the early bed request decision. And not only are we able to draw conclusions about the optimal

timing and length of time to take advantage of admission prediction, which speeds up the patient

flow, we will also use a simulation model tailored to the operating conditions at the UNC ED to

validate as well as evaluate the optimal policy found by the mathematical fluid model.

3.3 The Fluid Model

We consider the ED as a fluid system, where the patient flow coming into the ED is characterized

by a deterministic function of time, λ(t), which is the inflow rate at time t ≥ 0, i.e., the number of

patients arriving per unit of time. The system has a fixed, s, number of servers. Let µ(t) be the

per server service rate at time t, i.e., the number of patients served per unit of time. µ(t) can take

two values at any time point: γ(t), which denotes the maximum service rate per server at time t,

and γ(t), which denotes the minimum service rate per server at time t. The decision is about how

to switch µ(t) between these two values at any given point in time.

We study the problem over a finite horizon t ∈ [0, T ]. One needs to decide when to use the

maximum service rate in order to minimize the time average fluid level under a constraint on the

length of time during which we can apply the maximum service rate. We let x(t) denote the fluid

level at time t. The time average fluid level, i.e., our objective function, can be expressed as

A =
1

T

∫ T

0
x(t)dt.

We let δ denote the upper bound on the length of time during which we can apply the maximum

service rate. For this problem to be interesting and realistic, we assume that 0 < δ < T . Let I(t)

be the indicator function representing whether the maximum service rate is applied at time t, i.e.,
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for t ∈ [0, T ], let

I(t) =


1 if µ(t) = γ(t),

0 if µ(t) = γ(t).

Note that I(t) is our decision variable. Based on the definition of I(t), the constraint can be

expressed as ∫ T

0
I(t)dt ≤ δ.

Also, we can express µ(t) in terms of I(t) as

µ(t) = γ(t)I(t) + γ(t) [1− I(t)] .

We can also express x(t) using µ(t) as (Harrison, 1985)

x(t) = sup
0≤t′≤t

max{x0 +

∫ t

0
[λ(u)− sµ(u)]du,

∫ t

t′
[λ(u)− sµ(u)]du},

where x0 denotes the initial fluid level at time zero, i.e., x0 = x(0). Then our problem can be

formulated as

min
I(t): t∈[0,T ]

∫ T

0
x(t)dt

s.t.
x(t) = sup0≤t′≤t max{x0 +

∫ t
0 [λ(u)− sµ(u)]du,∫ t

t′ [λ(u)− sµ(u)]du}
, ∀t ∈ [0, T ],

µ(t) = γ(t)I(t) + γ(t) [1− I(t)] ,∀t ∈ [0, T ],∫ T

0
I(u)du ≤ δ,

I(t) = 0 or 1, ∀t ∈ [0, T ].

The optimal solution to our problem should be dependent on the actual form of the rate

functions λ(t), γ(t) and γ(t). Using the 2012 patient data from UNC ED we can make some

reasonable assumptions for the rate functions. Figures 3.1 and 3.2 show how the arrival and service

rates (under normal operating conditions, i.e., without any BeRT) change over the course of a day

at the UNC ED during 2012.
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Figure 3.1: Arrival rate (number of arrivals per hour) vs. hour-of-day based on UNC ED 2012 data

Figure 3.2: Service rate (number of patients served per hour) per server under normal operating
conditions vs. hour-of-day based on UNC ED 2012 data
The arrival rate for each hour of day is taken to be the number of patients who arrived to the

UNC ED during that hour divided by the total number of that hour in the year of 2012, which was

366. The service rate per server under normal operating conditions for each hour of day is taken

to be the inverse of the mean sojourn time of all patients who start being served during that hour.

It is easy to see that service rate is approximately constant over time. Based on this observation,

we assume that both γ(t) and γ(t) aare constant over time, and we denote γ(t) = γ and γ(t) = γ.

Further, we observe that the arrival rate, λ(t), although is not constant over time, approximately
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grows linearly from early morning to noon, and then stay constant at its peak for a couple hours

during the daytime, and then linearly declines. We call the period during which the arrival rate

stays constantly high the peak hours (9am to 5pm). Upon discussing with the ED staff we reached

the agreement that at current stage it is only necessary to BeRT during the peak hours because

the ED is usually not crowded in other time of the day. Since the arrival rate is approximately

constant over time during the peak hours, we also assume that λ(t) = λ for our problem. With the

assumptions that all rates are constant over time we can re-express the previous formulation of our

problem as below

min
I(t): t∈[0,T ]

∫ T

0
x(t)dt

s.t.
x(t) = sup0≤t′≤t max{x0 +

∫ t
0 [λ− sµ(u)]du,∫ t

t′ [λ− sµ(u)]du}
,∀t ∈ [0, T ],

∫ T

0
I(t)dt ≤ δ,

I(t) = 0 or 1, ∀t ∈ [0, T ].

3.4 The Optimal Policy

Even after the assumptions that λ(t), γ(t) and γ(t) stay constant during [0, T ], the optimization

problem is still challenging as there can be infinitely many solutions where I(t) takes the value 1/0

during infinite number of intervals that reside within [0, T ]. To simplify the problem further, we limit

the BeRT option to a single interval within [0, T ]. Another reason for doing so is that implementing

BeRT in the ED would entail a big change for the ED management team. We thus want to make

it as easy to implement as possible. This way, the ED management will only need to implement

BeRT during a single interval throughout the day. Under this case, we can fully characterize a

BeRT policy using two values. Let t0 = min0≤t≤T {I(t) = 1} be the first time one starts to BeRT
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and ts = max0≤t≤T {I(t) = 1} be the time BeRT ends. Then µ(t) can be re-expressed as

µ(t) =


γ if t0 ≤ t ≤ ts,

γ if t ∈ [0, T ]\[t0, ts].

Also, the constraint on the total amount of time during which BeRT can be applied can be re-written

as

ts − t0 ≤ δ.

Hence the optimization problem becomes

min
t0,ts

∫ T

0
x(t)dt

s.t.
x(t) = sup0≤t′≤t max{x0 +

∫ t
0 [λ− sµ(u)]du,∫ t

t′ [λ− sµ(u)]du}
, ∀t ∈ [0, T ],

µ(t) =


γ if t0 ≤ t ≤ ts,

γ if t ∈ [0, T ]\[t0, ts],

ts − t0 ≤ δ,

0 ≤ t0 ≤ ts ≤ T.

(3.1)

The next lemma further reduces the number of decision variables to only one.

Lemma 4. It is suboptimal to let t0 > T − δ and ts − t0 < δ.

Although Lemma 4 is intuitive, it still requires a rigorous proof, which is provided in the

Appendix. Based on Lemma 4, the problem reduces to finding only the optimal starting point for

the BeRT interval, denoted by t∗0, which should be searched in [0, T − δ].

Theorem 4. The optimal policy π∗ that solves constrained problem (3.1) is to let t∗0 = 0 except

when δ > t1 and t3 ≥ 0, we have t∗0 = min{t2, t3, T − δ}, where

t1 =
x0

sγ − λ
,
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t2 =
δ(sγ − λ)− x0

λ− sγ
,

and

t3 =
T − δ − s(γ−γ)

(sγ−λ)(λ−sγ)x0

2 +
λ−sγ
sγ−λ

.

The proof of Theorem 4 is provided in the Appendix.
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CHAPTER 4

Numerical Study

4.1 Introduction

As mentioned briefly in previous chapters, one proposed idea to reduce ED congestion is to

predict whether or not a patient will eventually be admitted to the hospital upon or shortly after

arrival and request a bed from the hospital at that time. We term this strategy early BeRT (bed

request) or call-ahead. Calling ahead has the potential to significantly reduce the time an admitted

patient occupies a bed since the hospital bed the patient will transfer to might already be available

by the time the “admit” decision for the patient is given or at least would be available soon after.

However, if the patient for whom an “admit” prediction is made ends up being discharged from the

emergency department, that would mean that hospital resources were unnecessarily used to make

the bed available, which would also turn into a problem between the emergency department and

the hospital.

In this chapter, we will conduct numerical studies to evaluate the performances of several

early BeRT heuristic policies using a discrete-event simulation model built for the UNC ED. The

measurements we use to compare the efficacy of different heuristics are the long-run average length-

of-stay, waiting time, and daily number of false early BeRTs. A good heuristic policy will balance

the trade-off between the length-of-stay and waiting time, and daily counts of false early BeRTs.

The primary purpose of performing the numerical studies is that we could identify heuristics that

are easy to implement in a real ED setting and perform reasonably well.

The results in Chapter 2 show that the optimal policies are of threshold type, where the

threshold is on the admission probability and occupancy level. In light of this fact, we consider

heuristic policies that decide whether to call ahead based on certain thresholds, which are either

functions of the admission probability, or the queue length, or a combination of both. Note that

in Chapter 2, we used the terminology “type-2 probability”, “sequential/parallel service”. In the
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context described above, here type-2 probability corresponds to an individual patient’s admission

probability, parallel service option corresponds to requesting a hospital bed early on and starting

the bed preparation process in parallel with serving the patient in the ED, and sequential service

option corresponds to waiting until the patient finish being served at the ED to request a hospital

bed, if the patient turns out to be an admit. Chapter 3, on the other hand, employs a fluid

model approximation and constrains the option of early BeRT to a single time interval, for which

the start and end times are determined by system parameters. We are also going to consider a

heuristic policy that is motivated by this fluid model solution.

This chapter is organized as follows: First, we will discuss heuristic policies considered in this

chapter. Second, we will describe the simulation model that we used to represent the UNC ED.

Third, we will discuss our experimental setting and then present the results that we found by

implementing the aforementioned heuristics on the simulation model.

4.2 Heuristic Policies

4.2.1 The Current System

The simulation model we use to approximate the UNC ED system was built using the patient

data for calendar year 2012. From this point on, we refer to the simulation model under the 2012

operating condition the current system. In the current system, no early BeRT is implemented for

any patient that visits the ED. We refer the policy that does not call ahead for anyone Hcurrent.

In later sections, we will compare the performance of other heuristic policies to Hcurrent and focus

on how much improvement we can get for length-of-stay and waiting time, given certain tolerance

for daily false call-aheads.

4.2.2 Fixed Threshold Policy (FT)

FT simply uses a constant threshold on the admission probability, denoted as T , to make a

decision for calling ahead. When a patient enters service, one checks the patient’s probability of

admission α, and calls ahead if and only if

α ≥ T,
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where T is a constant between 0 and 1.

4.2.3 Time-Dependent Threshold Policy (TT)

TT is a myopic policy that only takes into account the cost associated with one single patient,

despite of the system’s state of crowding, where we use the cost structure described in Chapter 2.

For a single patient, if one does not call ahead for a bed, the expected total cost incurred from the

time when the patient enters service to the time the patient leaves the system is

Cw

(
1

γ1
+
α

γ2

)
+ αCs,

while if one chooses to make an early BeRT for the patient, the expected total cost is

Cw

(
1

γ1
+
α

γ2
− α

γ1 + γ2

)
+ Cp.

TT says that to make an early BeRT for each individual patient if and only if

Cw

(
1

γ1
+
α

γ2
− α

γ1 + γ2

)
+ Cp ≤ Cw

(
1

γ1
+
α

γ2

)
+ αCs,

or equivalently,

α ≥ Cp

Cs + Cw
γ1+γ2

. (4.1)

The policy can be time-dependent because both γ1 and γ2 can be dependent on time of day,

and the patient type.

4.2.4 Census and Time-dependent Threhold Policy (CTT)

CTT chooses actions differently depending on whether the system has a queue or not. When

the system has no queue, then CTT follows what TT does, i.e., to call ahead if and only if (4.1)

holds.

The action that CTT takes when the system has patient(s) waiting is motivated by the optimal

policy we found for the clearing model as described in the Appendix of this chapter. Simply put,

all assumptions for the clearing model are the same as for the queueing model described in Chapter
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2, except that the system does not have any arrivals from the beginning of time, but starts with

a fixed number of customers to be served until empty. All the terminology and notations used in

Chapter 2 carry over therein. For the clearing model, our objective is to minimize the total cost

until the system is emptied by choosing which customers we apply the early BeRT option. The

optimal policy we found there is to start early BeRT for the customer if and only if

nCw
α

γ1 + γ2
≥ Cp − αCs,

where n denotes the number of patients present in the system at the decision epoch and α denotes

the admission probability of the patient for whom we are making an admit decision. To apply the

intuition of this formula in a real ED setting where there are multiple servers and random arrivals

to the system, we replace n in the formula, which represents the number of customers left in the

clearing model system at the decision epoch, by the expected number of patients that will be served

until the queue is first emptied, denoted by ne, given the current number of patients in the queue,

denoted by m. Additionally, assuming the number of servers is denoted by K, then the service rate

is K(γ1 + γ2) instead of γ1 + γ2.

It is straightforward to see that ne is a function of m, and is also dependent on how one serves

the patients because the total service time distribution for a patient is different if one chooses to

early BeRT. That being said, we approximate the system behavior through a way which leads to

CTT, which assumes that given m, the current number of patients in the queue, ne is approximately

equal to the number of patients served until the queue reaches empty state for the first time with

the system behaving as a M/G/1 queue, where the service time distribution is the same if early

BeRT is applied to everyone being served during that cycle.

Using the well-known formula in classic queueing theory for the first-passage time from any

state m to state 0 for a M/G/1 system with arrival rate λ and mean service time τ we have that,

one chooses to early BeRT for a patient with admission probability α when there are m patients

in the queue if and only if

ne(m)Cw
α

K(γ1 + γ2)
≥ Cp − αCs,
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where ne(m) = m
1−λτ , and τ =

(
1
γ1

+ α
γ2

)−1
K−1. Let N denote the number of patients in the

system, then m = N −K. By rearranging the terms and substituting it into the above formula we

have

α ≥ Cp

Cs +
(

Cw
γ1+γ2

)(
m

K(1−λτ)

) .
Now we are one step away from formulating CTT. Notice that at this point, our policy is to

call ahead if and only if

α ≥ Cp

Cs + Cw
γ1+γ2

.

when there is no queue, or N ≤ K. And to call ahead if and only if

α ≥ Cp

Cs +
(

Cw
γ1+γ2

)(
N−K

K(1−λτ)

) .
when there is a queue, or N > K.

However, we want to make CTT continuous in the sense that substituting N = K into the

formula for the case when N > K gives a threshold the same as that for the case when N ≤ K. To

achieve this, we simply add a constant to the right hand side of the above formula, and thus CTT

dictates that when N > K,

α ≥ Cp

Cs +
(

Cw
γ1+γ2

)(
N−K

K(1−λτ)

) +
Cp

Cs + Cw
γ1+γ2

− 1.

4.2.5 Constrained Fixed Threshold Policy (CFT)

CFT is inspired by the optimal policy found for the fluid model described in Chapter 3. Unlike

other heuristic policies, CFT has two control parameters, a fixed threshold for admission, and a

length-of-time during the peak hours (9am-5pm), as defined in Chapter 3, for the early BeRT

option. Let 0 < T < 1 denote the cutoff for admission, and 1 ≤ δ ≤ 8 denote the length-of-time

during the peak hours when call-ahead is allowed, then CFT dictates that one will call ahead for

a patient if and only if s/he arrives during 9am to (9 + δ), and her/his admission probability is no

less than T .
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Keep in mind that the higher service rate as assumed in the fluid model is achieved, in a real

ED setting, by calling ahead for a group of patients that are identified as to-be-admits. This is done

by setting a threshold for admission, and categorize a patient to the admit group if and only if the

patient’s admission probability, which is generated upon arrival in the simulation model according

to certain distributions, exceeds the preset threshold. As mentioned briefly in Chapter 3, we are

only going to implement early BeRT during the peak hours, which is taken to be 9am to 5pm based

on Figure 3.1 where it is a period of time when the arrival rate seems to be constant over time.

When implementing Theorem 3.4.1 shows that to the structure of the optimal policy depends on

the values for x0, λ, s, γ, γ, and δ. We assume that x0 = 0, i.e., the number of patients in the

queue at 9am, because before the peak hours the arrival rate is constantly small, which implies

that there will not be much accumulation in the queue before 9am. We discussed the method of

estimating λ and γ in Section 3.3. While here, since we have a simulation model that is validated

using the 2012 UNC ED data, we use the simulation to re-estimate all the parameters in a similar

vein. To be more specific, for the peak hours during each day of a week, λ is taken to be the mean

number of hourly total patient arrivals during the peak hours. γ is the inverse of the mean sojourn

time (service + boarding) of all patients that entered service during the peak hours. Additionally,

here we take sγ as the mean number of hourly total patient departures during the peak hours, and

thus ŝ = ŝγ
γ̂ .

Table 4.1 below shows the estimated λ, sγ, γ, ans s using the simulation model under normal

operating conditions (without call-aheads).

Sun Mon Tue Wed Thur Fri Sat

λ̂ 10.1 12.3 10.9 10.9 10.9 10.8 10.1

ŝγ 6.8 7.1 7.2 6.9 6.9 6.8 7.1

γ̂ 0.211 0.198 0.200 0.197 0.197 0.197 0.211

ŝ = ŝγ
γ̂ 32.2 35.9 36.0 35.0 35.0 34.5 33.6

Table 4.1: Estimated for 9am to 5pm
The estimation of γ should depend on the threshold we use for admission. This is because, the

higher the threshold, the less patients we are going to categorize as admit patients, and thus the

less early BeRTs one will make, hence the less improvement one can obtain for the service rate γ.
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Once we fix the threshold for early BeRT, then one can estimate γ the same way as one estimates

γ.

Table 4.2 below shows the estimated γ under different thresholds for admission.

Sun Mon Tue Wed Thur Fri Sat

γ̂ (0.9) 0.212 0.200 0.200 0.200 0.200 0.200 0.211

γ̂ (0.8) 0.212 0.201 0.202 0.201 0.200 0.201 0.212

γ̂ (0.7) 0.214 0.204 0.204 0.204 0.203 0.204 0.214

γ̂ (0.6) 0.216 0.206 0.206 0.206 0.205 0.207 0.216

γ̂ (0.5) 0.218 0.209 0.209 0.208 0.208 0.208 0.218

γ̂ 0.211 0.198 0.200 0.197 0.197 0.197 0.211

Table 4.2: Estimated γ under different admission thresholds for 9am-5pm

The estimation of δ takes a bit more effort. First, keep in mind that δ in our fluid model

formulation represents the maximum amount of time one can use the maximum service rate. In a

real ED setting, managers care about the number of false positive early BeRT per day, which we

will use to determine δ. Additionally, δ is also dependent upon the admission threshold because

the higher the threshold, the less patients we will categorize as admits, and the less false positives

we will cause daily.

Let Λ denote the number of incorrect call-aheads the ED managers can tolerate per day. λ′

being the peak-hour number of incorrect call-aheads per hour, which is dependent on the cutoff for

admission, then

λ′ =peak-hour number of incorrect call-aheads

=peak-hour number of arrivals per hour× impact× fp

=λ× impact× fp.

Where impact is the percentage of patients who have predicted admission probabilities no less

than the BeRT cutoff. And fp is the percentage of patients who are incorrectly called ahead out of
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those who have predicted admission probabilities no less than the BeRT cutoff. Consequently, we

have

δ =
Λ

λ′
.

Given our APT and a threshold for admission, one can find the corresponding impact and fp.

Tables 4.3 through 4.6 below present the estimated δ under different given Λ and thresholds for

admission. If the estimated δ is greater than the length of the peak hour, i.e., 8 hours, then we

automatically let δ = 8, because we do not call ahead outside of the peak hours. Also, we round

up δ to the nearest integer for simplicity of implementation.
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cutoff Su(9-17) M(9-17) Tu(9-17) W(9-17) Th(9-17) F(9-17) Sa(9-17)

0.5 1 1 1 1 1 1 1

0.6 2 1 2 2 2 2 2

0.7 3 3 3 3 3 3 3

0.8 7 6 7 7 7 7 7

0.9 8 8 8 8 8 8 8

Table 4.3: Estimated δ under different admission thresholds for Λ = 0.5

cutoff Su(9-17) M(9-17) Tu(9-17) W(9-17) Th(9-17) F(9-17) Sa(9-17)

0.5 1 1 1 1 1 1 1

0.6 3 3 3 3 3 3 3

0.7 6 5 6 6 6 6 6

0.8 8 8 8 8 8 8 8

0.9 8 8 8 8 8 8 8

Table 4.4: Estimated δ under different admission thresholds for Λ = 1

cutoff Su(9-17) M(9-17) Tu(9-17) W(9-17) Th(9-17) F(9-17) Sa(9-17)

0.5 2 2 2 2 2 2 2

0.6 5 4 5 5 5 5 5

0.7 8 8 8 8 8 8 8

0.8 8 8 8 8 8 8 8

0.9 8 8 8 8 8 8 8

Table 4.5: Estimated δ under different admission thresholds for Λ = 1.5

cutoff Su(9-17) M(9-17) Tu(9-17) W(9-17) Th(9-17) F(9-17) Sa(9-17)

0.5 3 2 2 2 2 2 3

0.6 7 6 6 6 6 6 7

0.7 8 8 8 8 8 8 8

0.8 8 8 8 8 8 8 8

0.9 8 8 8 8 8 8 8

Table 4.6: Estimated δ under different admission thresholds for Λ = 2
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4.3 Simulation Model

This section discusses the simulation model that we employ to evaluate the efficacy of different

heuristic policies in terms of their impact on reducing ED crowding. The simulation model is an

extension of an early version, which was built and consistently refined by previous graduate students

working on other projects related to UNC ED. Interested readers can refer to (Ahalt et al., 2016)

for the first version of the simulation model and the project where it was used. Since many of

our assumptions for the mathematical models are drawn from the 2012 UNC ED patient data, the

earlier version of the simulation model needs to be updated so that the input parameters reflects

the operating conditions at the ED during that time. The content of this section is organized as

follows: First, input parameter analysis using the 2012 UNC ED data; Second, validation of the

simulation model based on the 2012 UNC ED data.

The simulation model captures the patient flow going through the UNC ED at a highly detailed

level, which can be viewed as a queueing process that consists of five components: arrival, triage,

service, boarding, and departure. Figure 4.1 gives a general overview of this queueing process:

Figure 4.1: Patient flow at The ED
In the simulation model, patient arrivals are generated based on nonhomogeneous Poisson

processes for which the arrival rates are dependent on hour of the day, day of the week, and the

patient type. Patients are divided into groups based on their age, ESI (Emergency Severity Index)

levels, and disposition categories. A patient is classified as a pediatric patient if he/she is younger

than 18, otherwise he/she is an adult patient. Adult patients can be admitted to one of three wards:

A, B, or D where A and B are open 24/7 and D is open from 9am to 2am. Pediatric patients are

generally served in a pediatrics ward which is open from 9am to 2am. Pediatric patients can,
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however, be admitted to ward A or B during after hours. Table 4.7 summarizes the hours of four

wards’ and bed capacities.

Ward Hours Bed Capacity

A 24/7 19

B 24/7 16

D 9am-2am 15

Peds 9am-2am 9

Table 4.7: Ward hours and bed capacity
ESI measures the severity of a patient’s medical condition. There are five ESI levels ranging

from 1 to 5 with lower numbers indicating higher criticality. Finally, there are two disposition

categories: admitted and discharged. Admitted patients will be hospitalized after their ED visits

while discharged patients leave the hospital system immediately after their ED visit.

Arriving patients join the queue for triage where they get assigned an ESI level. There are

typically two triage nurses at triage and their service times are assumed to follow i.i.d. triangular

distribution. We make this assumption on the distribution and its parameters based on experience

of ED managers that we collaborate with since our data does not have triage times.

After triage, patients join a queue to wait for ED bed assignment. In the simulation model, we

do not explicitly model the attending physicians or any other medical personnel. Instead, we regard

each ED bed as a server. The first part of service a patient will receive at the ED starts when the

patient is assigned to an ED bed and ends when a disposition decision is made for him/her.

The second part of ED service starts when a disposition decision is made for the patient and

ends when the patient leaves the ED, during which time the patient will remain in his/her ED bed,

keeping it blocked from being used by other patients. If it is decided that the patient does not

need hospitalization, then the patient is of a discharge type, and he/she leaves the ED (and thus

free the ED bed) shortly after the disposition decision is made. Otherwise, the patient is an admit

type patient and the patient will wait a longer time (boarding) for the hospital to prepare a bed

for him/her. For both parts of the service process, we estimate the service time distributions based

on the data, where the distribution is dependent upon time and patient type (i.e., age, acuity level,

and disposition categories).
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4.3.1 Input Analysis

I performed input parameter estimations using the 2012 UNC ED patient data. The information

available for each visit includes the patient’s age, gender, ESI, disposition, arrival time, ED bed

assignment time, disposition decision time and departure time. Entries with missing data or out-of-

order time stamps are deleted. The cleaned data has approximately 56,000 entries (corresponding

to 56,000 patient visits).

As mentioned earlier, the parameters that needed to be estimated are the arrival rates, service

time, and boarding time distributions. Arrival rates are dependent on hour of the day, day of the

week, and patient type broken down by age (adult vs. pediatric), ESI and disposition (admitted

vs. discharged). Figure 3.1 displays the hourly average arrival rate for all patient types combined.

Note that this is just a demonstration of the time varying nature of the arrival rate. In the actual

simulation model the patients arrive according to time-varying arrival rates based on their types.

The service times are dependent on hour of the day and patient type broken down by age (adult

vs. pediatric) and ESI. Lastly, boarding times are dependent on hour of the day and patient type

broken down by age (adult vs. pediatric), ESI and disposition (admitted vs. discharged).

Tables 4.8 through 4.11 below present the fitted service time and boarding time distributions.

When fitting the distribution, we use Kolmogorov-Smirnov test (KS test) to determine the best fit.

The p-values associated with all tests are provided in the tables. A large p-value means that the

fitted distribution does not deviates from the empirical distribution significantly. Most fittings are

good with a p-value greater than 0.05. For those that are not so good we also report the MSEs

(Mean Squared Error) associated with the tests. In all cases where the p-value is not indicative

of a good fit the MSE is in the order of 0.001, which means that the fitting is acceptable. In

tables 4.8 through 4.11 the following notation is used to distinguish between patient types. The

first letter can take two values A and P which correspond to Adult and Pediatric, respectively.

The second letter can take two values A and D which correspond to Admitted and Discharged,

respectively. And finally the numbers 1 through 5 represent ESI level. For example, a pediatric

admitted patient with ESI level being 3 is abbreviated by PA3. And the following notation is

used to represent random distributions. GAMM, ERLA and WEIB each stands for the Gamma,

Erlang and Weibull distribution respectively, where the first and second parameters are the scale
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and shape parameters. EXP stands for the Exponential distribution where the parameter is the

mean. N stands for the Normal distribution where the first and second parameters represent the

mean and standard variance. And finally, we use the notation EXP(pN(µ1, σ1) + (1− p)N(µ2, σ2))

to represent a random variable Y , such that log Y follows a mixed Normal distribution. To be

more specific, with probability p, log Y follows N(µ1, σ1), and with probability 1− p, log Y follows

N(µ2, σ2). Also in the tables, p-value is based on KS test that examines the closeness between the

fitted and empirical distribution.

Patient type Hour Service time distribution P-value MSE

A1 0-23 1+GAMM(101,0.952) >0.15

A2 2-9 1+GAMM(185,1.37) 0.022 0.00443

A2 9-14 4+ERLA(125,2) 0.027 0.00183

A2 14-20 EXP(0.68N(5.45,0.54)+0.32N(5.14,0.24)) >0.15

A2 20-2 EXP(0.97N(5.41,0.82)+0.03N(2.63,0.90)) 0.060

A3 2-9 EXP(0.9N(5.43,0.60)+0.1N(4.31,0.96)) 0.059

A3 9-20 1+ERLA(83.9,3) ¡0.01 0.00026

A3 20-2 EXP(0.92N(5.38,0.58)+0.08N(4.23,1.02)) >0.15

A4 2-9 1+GAMM(95.5,1.49) 0.090

A4 9-14 1+GAMM(90.4,1.47) 0.070

A4 14-20 1+GAMM(80.6,1.54) 0.134

A4 20-2 1+ERLA(71.3,2) 0.028 0.00082

A5 0-5 1+EXP(105) >0.15

A5 5-23 EXP(0.8N(4.00,0.84)+0.2N(2.96,1.06)) >0.15

Table 4.8: Service time distributions for adult patients
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Patient type Hour Serivce time distribution P-value MSE

P1 0-23 2+EXP(78.7) >0.15

P2 2-9 7+WEIB(240,1.06) >0.15

P2 9-14 6+WEIB(305,1.38) >0.15

P2 14-2 EXP(0.95N(5.25,0.86)+0.05N(2.82,0.86)) 0.116

P3 0-23 2+GAMM(79.7,2.33) 0.050 0.00026

P4 0-23 1+GAMM(50.9,2.37) 0.095

P5 0-23 1+GAMM(36.8,2.27) >0.15

Table 4.9: Service time distributions for pediatric patients

Patient type Hour Boarding time distribution P-value MSE

AA1 2-9 17+WEIB(122,0.935) >0.15

AA1 9-12 WEIB(180,1.05) >0.15

AA1 20-2 WEIB(153,0.955) 0.0423 0.00706

AA2 5-16 EXP(0.95N(5.47,0.634)+0.05N(3.77,1.31)) >0.15

AA2 16-5 EXP(0.61N(5.03,0.440)+0.39N(5.20,1.22)) >0.15

AA3 5-16 EXP(0.93N(5.50,0.563)+0.07N(4.43,0.998)) >0.15

AA3 16-5 EXP(0.63N(5.05,0.419)+0.37N(5.37,1.00)) >0.15

AA45 0-5 2+GAMM(188,1.18) 0.069

AA45 5-0 11+ERLA(99.2,2) >0.15

AD12 3-8 1+943BETA(0.183,2.11) 0.001 <0.001

AD12 8-3 WEIB(34,0.616) <0.01 0.00328

AD3 5-11 WEIB(33.6,0.663) <0.01 0.00693

AD3 11-5 WEIB(25.1,0.657) <0.01 0.00256

AD4 2-9 EXP(25.6) <0.01 0.00583

AD4 9-2 EXP(19.9) <0.01 0.00061

AD5 2-9 EXP(23.1) 0.046 0.00997

AD5 9-2 EXP(15.9) <0.01 0.00435

Table 4.10: Boarding time distributions for adult patients
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Patient type Hour Boarding time distribution P-value MSE

PA12 2-14 EXP(0.87N(4.81,0.923)+0.13N(5.17,0.233)) >0.15

PA12 14-2 EXP(0.78N(4.79,0.543)+0.22N(4.25,1.45)) >0.15

PA3 2-14 EXP(0.97N(5.06,0.666)+0.03N(2.04,0.829)) >0.15

PA3 14-2 EXP(0.81N(4.87,0.496)+0.19N(4.72,1.24)) >0.15

PA45 0-23 GAMM(92,1.79) >0.15

PD12 9-14 EXP(30.8) <0.01 0.00432

PD12 14-20 EXP(26) 0.081

PD12 20-9 EXP(28.3) 0.020 0.00507

PD3 4-10 EXP(25.4) 0.019 0.01015

PD3 10-4 EXP(20.6) <0.01 0.00158

PD45 5-12 EXP(20.8) >0.15

PD45 12-5 EXP(18) <0.01 0.00217

Table 4.11: Boarding time distributions for pediatric patients

4.3.2 Calibration and Validation

To validate that the simulation model we developed reflects the operating condition of the UNC

ED in 2012, we compare the output of the simulation model with that estimated from the UNC ED

2012 data directly. The three metrics we consider are mean service time over the course of a day,

mean boarding time by hour of day, and mean total length-of-stay by hour of day. Note that service

time and boarding time distributions are estimated from the data and are direct input parameters

in the simulation model, hence one should expect the output of them to be closely aligned with

those from the data. Total length-of-stay is the sum of triage time, waiting time, service time, and

boarding time. For triage time, since we do not have any data we impose an artificial triangular

distribution with mean being based on ED nurses’ suggestion. Waiting time is an organic product

of running the simulation. This is because once the simulation is running, there will be limited

number of servers (ED beds), with capacities changing by time of the day, and infinite arrivals

to the system. Thus patients who arrive to a busy system where all servers are occupied will

experience certain amount of waiting. Consequently, by comparing total length-of-stay from two
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the simulation model and that of the original data, we will be able to see whether our assumptions

on the bed capacities, arrivals, work together perfectly to produce a simulation model that mimics

the behavior of the original system in 2012.

One important thing to note here is that in the simulation model, the notion of servers is

modeled as ED bed resources. However, in the data we have available, the beginning of service

time is defined as the first time that a patient was attended by an ED provider, which is not

necessarily the first time that the patient gets assigned an ED bed. Because of the discrepancy,

we had to calibrate bed capacity to achieve a match between the output of the simulation model

and that estimated from the data for the three time measurements we consider. The resulting bed

capacity is different from that of Table 4.7, and is summarized in Table 4.12.

Ward Hours Bed Capacity

A 24/7 12

B 24/7 16

D 11am-11pm 17

Peds 9am-2am 9

Table 4.12: Ward hours and bed capacity
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After the aforementioned calibration, we arrive at a simulation model that accurately represent

the operating condition of the UNC ED in 2012, as measured by service time, boarding time, and

sojourn time. Figure 4.2 shows the result.

Figure 4.2: Sojourn Times Validation

4.4 Numerical Study

In this section, we will present results of a numerical study on the aforementioned heuristic

policies, and compare their performances in terms of long-run average length-of-stay (LOS), where

the average is taken over all patients. Keep in mind that all the heuristic policies we considered

compare individual patient’s probability of admission with a certain threshold, which can be a fixed

constant (as in FT), or dependent on time (as in TT), or both the time and the system state (as

in CTT). Consequently, depending on our assumptions on the admission probability distributions

for all patients, each heuristic policy shall perform differently.
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A natural assumption on the admission probability distribution would be to use the empirical

distributions, as estimated by our APT. To be more specific, we applied APT on the 2012 UNC ED

data, obtained a predicted admission probability for each individual patient, and fit an empirical

distribution for each individual patient group broken down by their acuity, age (adult vs. pediatric),

and disposition category (admit vs. discharge). According to the histograms of patients’ predicted

admission probabilities, we observe only a few distinct bars in all the histograms, meaning that for

each individual patient group, the predicted admission probabilities tend to occur at a few distinct

values most frequently. Based on this observation, for the empirical distributions we fit, we assumed

uniform distributions between those most frequent values.

We examined the performance of all four aforementioned heuristic policies under the setting of

empirical distribution. Figure 4.3 through Figure 4.5 present the result of our numerical study, and

each compares the LOS under CTT with one other heuristic policy. Each point on the lines under

the FT policy is obtained by varying the control parameter T , our fixed threshold for admission.

For TT and CTT policies, the points are obtained by varying the cost parameter Cw, i.e., the

waiting cost rate. Under CFT, we vary two control parameters, which are T , the fixed threshold

for calling ahead, and δ, the length of time we call ahead during the peak hour. Each pair of

parameters gives us one resulting length-of-stay and daily false positives. For each fixed daily false

positives, we handpicked the threshold that renders the shortest length-of-stay, which corresponds
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to each point in the plots. Notice that in the figures we also provide the 95% confidence interval

(CI) bands around the mean values.

Figure 4.3: Length-of-stay (LOS) under CTT and FT

Figure 4.4: Length-of-stay (LOS) under CTT and TT

Figure 4.5: Length-of-stay (LOS) under CTT and CFT
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4.5 Discussion

As is shown in Figure 4.3 through Figure 4.5, we looked at cases where the daily counts of

false early BeRTs are between the value of 0 and 3. The general pattern is that the higher the

daily counts of false positives, the larger the improvement on LOS and waiting time one achieves.

Under the current system, the average LOS is 358min. It is evident that as the variances of the

distributions decreases, larger improvement on the LOS can be expected given certain level of daily

false positives. When one allows for 3 daily false positives, the heuristics result in a LOS in the

range of 346min to 347min, corresponding to 11 to 12min reduction.

In addition, the three figures all show that the curve under CTT is always at or below the curve

under other policies. This means first, given a fixed LOS, CTT results in less daily false positives.

Note that in the figures we omit the vertical confidence intervals because they are almost neglegible

compared to the horizontal ones. Second, given a fixed daily false positive, CTT results in a LOS

that is no greater than that under other heuristic policies, in a statistically significant sense. This

pattern is even stronger for a daily false positive that is greater than 1.5. For these two reasons,

we conclude that CTT dominates the other heuristics in a statistically significant sense. And we

project that the dominance could even be more significant if one allows for even more daily false

positives.
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CHAPTER 5

Impact of Census on Emergency Department Providers’ Triage and Admission
Decisions

5.1 Introduction

Emergency Departments (EDs) are busy places. In 2015 there were 136.9 million ED visits in the

United States. This high volume often leads to ED crowding that has been associated with numerous

negative patient outcomes including delays in lifesaving care that result in increased mortality and

low patient satisfaction (George and Evridiki, 2015), (McCarthy et al., 2009), (Richardson et al.,

2006), (McCusker et al., 2014).

It has been suggested that crowding of the emergency department can lead to difficulties with

clinician decision-making and potentially impact equity in care (Hwang et al., 2011). Two such

vital decision points that are tied to care quality and equity are the triage level assignment decision

made by nursing staff and the disposition decision made by providers.

Nationally, emergency departments represent a significant source of hospital admissions ac-

counting for nearly all the growth of hospital admissions in recent years (Morganti et al., 2013).

The decision to admit a patient is made by emergency providers based upon available individual

patient data, however recent research suggests that this decision may also be influenced by crowding

of the ED itself (Gorski et al., 2017). This recently published study at a single academic medical

center finds a statistical association between the likelihood of hospital admission and increased ED

census. It was suspected that as EDs become busier there is a cognitive offloading that occurs for

the physician by admitting patients rather than spending time and mental energy arranging safe

discharges for patients who may be in a “gray area”.

Making a disposition decision sooner during an individual patient’s visit rather than waiting to

see if a patient improves during the ED stay allows physicians to move on to see the next patient or

complete the next task. There is some evidence from literature that as load increases in a system,
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workers speed up their service rate (Kc and Terwiesch, 2009) and this effect may be what is being

observed during times of high ED volume. Physicians may be, in effect, speeding up their services

and increasing their “productivity” by choosing admission over discharge for patients who are in

the gray area and for whom the right decision is not clear. Another study found that as the ED

becomes more crowded the number of patients who are admitted to the hospital and have less than

a 24-hour hospital stay increases; suggesting that some of these admissions that occur during times

of high census may be avoidable (Freeman et al., 2017).

In other areas of healthcare, this relationship between decision making and crowding has also

been found. One study found a correlation between ICU occupancy level and the rate of ICU

discharges (Kc and Terwiesch, 2012). Another study found a similar relation in obstetrics, where

midwives were more likely to refer high complexity patients to obstetricians at times of increased

congestion as opposed to when census levels are much lower (Freeman et al., 2016).

This change in decision-making seems to occur even though it further contributes to system

congestion. Ironically, boarding of admitted patients is thought to be a sizable contributor to

crowding itself resulting in throughput delays of both admitted and discharged patients at an ED

(Fogarty et al., 2014), (Kang et al., 2014). Understanding the relationship between ED census and

individual provider and nurse decision-making may provide opportunity for operational changes in

workflow to prevent decision fatigue at times of high census. Previous work has demonstrated the

existence of a safety tipping point (Kuntz et al., 2014). Knowing that such a point exists and where

it lays can aid in operational planning.

In addition to the admission decision, another critical decision that is made during a patient’s

ED visit is the triage classification. This is often the first important decision made during a patient’s

ED visit affecting how quickly the patient is evaluated by a provider. Only one other study has

investigated the relationship between ED crowding and triage decisions and they concluded that

there was no association (Richardson, 1998). Note that this study used the Australasian National

Triage scale at a single tertiary care hospital in Australia. Furthermore, it treated patient census as

a binomial categorical factor of “busy” or “non-busy” utilizing a single value to separate the two.

A “busy” weekday in this study was defined as > 140 visits whereas ≤ 139 visits would constitute

a “non-busy” weekday.
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The aim of our study was to use statistical methods to test the hypotheses that ED census was

associated with changes in triage and disposition decisions at an academic hospital in Southeastern

US. To the best of our knowledge, our study is the first to look at ED census and triage assignment

decisions by using the census level directly in the analysis rather than introducing arbitrary binary

classifications (e.g., busy vs. non-busy) for the census level. Therefore, our modeling framework

supports the exploration of how census count is associated with triage or admission decisions along

the complete range of observed census levels.

5.2 Methods

5.2.1 Study Design and Setting

Following approval from the institutional review board, we performed a retrospective study

using a data set of patient visits collected at the ED of an academic hospital in the Southeastern

US. During the study period, which covered the year 2012, this ED received approximately 184

patient arrivals per day (67,203 patient visits per year). The triage system in place was the 5-level

Emergency Severity Index (ESI) triage system, with levels from ESI 1 (patient dying) to ESI 5 (no

ED resources needed) (Gilboy et al., 2012). At the time of the study the ED had 59 beds spread

across five adult pods: A, B, C, D, and a behavioral health ED (BHED), as well as a pediatric

pod. Pods A and B operated 24 hours a day seeing acute adult patients while pod D operated

during peak hours and cared for primarily lower acuity patients. Pod C and BHED were dedicated

to behavioral health patients although occasionally other patients were housed in these areas. Due

to the non-homogeneity and inconsistent nature of their visits to the ED and hospital, behavioral

health patients were excluded from our statistical analysis.

5.2.2 Data Analysis

The data available for each patient included demographic information (age, gender, and race),

clinical information (triage acuity/ESI and chief complaint), disposition category (admit or dis-

charge), and place of treatment (pod). Our goal was two-fold, to investigate the association between

census and nurses’ triage decision, and similarly the association between census and physicians’ ad-

mission decision. We also considered other available variables as potential control variables in
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the model (e.g., a patient’s age may impact either the triage nurses’ assessment or the admission

decision by the provider) with reference to the relevant literature.

The data were cleaned before use in the statistical models. We deleted questionable data

elements including but not limited to obviouserroneousentries, patient walkouts, behavioral health

visits, or timeelements thatoccurred innon-chronologicorder. Additionally, we excluded patients

with invalid or missing acuity scores. Duplicate records and those with missing or insufficient

entries for the variables of interest were also excluded from the study. Whereas the original data

had approximately 67,203 entries, after cleaning the data set contained 65,065 validated patient

encounters eligible for statistical modeling.

Patient age was categorized into 8 clinically meaningful groups: <3month(m) old, 3m to 3, 3

to 8, 8 to 18, 18 to 40, 40 to 55, 55 to 70, and ≥70. These age groups were included as the levels

of a categorical variable in subsequent statistical modeling. All other variables were also treated

as categorical with the exception of census level, which was included in all models as a continuous

variable, enabling us to associate any observed census count with the likelihood of admission or

triage decisions. For race and pod, we combined categories that have less than 10 outcomes of each

type of response (Agresti, 2003) to a single category named “Other”.

Exploratory analysis confirmed that a patient’s chief complaint could be highly predictive of

admission and hence was a desirable component to include in the model. To control the complexity

of the model, we selected the 45 most common chief complaints (out of 8,000), which had sufficient

numbers of occurrences as to be informative. These 45 chief complaints were included explicitly

in the model as levels of the “chief complaint” factor. (For a list of these 45 chief complaints, see

Table A.1. All other chief complaints were included in the “Other” category. This way, we retained

much of the information contained in the chief complaint data while limiting the complexity of the

model.

Census, which was our primary control variable of interest, refers to the total number of patients

in the ED, i.e., the number of patients in the waiting room and those occupying a bed. For our

analysis of triage decisions, the census level used for each triage decision was the census level at

the time of the corresponding patient’s arrival, whereas for the analysis of disposition decisions,

the census level was computed at the disposition decision time of the corresponding patient. Table

5.1 illustrates the breakdown of characteristics of all the patients in the cleaned data set with
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the exception of chief complaints (due to its large number of categories) and census (because it

is treated as a continuous variable). Prior to model fitting, we performed an exploratory data

analysis to assess the univariate association between the control variables and the outcomes, i.e.,

triage level/ESI and disposition (admit and discharge). Also, we have not found any significant

multicollinearity among control variables as we explain in more detail in Appendix. All data and

statistical analysis in this work was performed in R.

Table 5.1: Breakdown of patient characteristics for variables of interest.

Characteristics Percent in data set

Disposition

Admit 29.6

Discharge 70.4

ESI

1 0.9

2 13

3 57

4 24.9

5 4.2

Gender

Female 54.6

Male 45.4

Race

African American 30.0

Asian 1.1

Caucasian 53.8

Native American 0.4

Other 12.3

Unknown 2.4

Continued on next page
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Table 5.1 – continued from previous page

Characteristics Percent in data set

Age group

< 3m 0.8

3m to 3 5.2

3 to 8 4.7

8 to 18 7.5

18 to 40 34.3

40 to 55 21.6

55 to 70 15.3

≥ 70 10.6

Pod

A 27.8

B 23.4

C 2.8

D 27.2

Pediatrics 15.7

BHED 3.1

5.2.3 Statistical Modeling

Association between census and triage decision: To investigate how census might impact

triage nurses’ assignment of acuity levels, we fit a cumulative logit model (Agresti, 2003). We

collapsed the five level ESI scale into three acuity groups: low (ESI 4/5), medium (ESI 3) and high

(ESI 1/2). This reduced the complexity of the response variable in the model (acuity assignment)

without losing much information as relatively few patients in the data set were assigned an ESI

1 or ESI 5 score. This resulted in a three-level cumulative logit model with low, medium or high

acuity group as the response variable, which depended on census and the other relevant independent
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variables discussed previously. Specifically, the cumulative logit modeling approach enabled us to

understand how an independent variable (such as census) may be associated with the likelihood of

a patient being placed into each of the categories of interest (such as low, medium or high acuity).

After the exploratory analysis, we conducted likelihood ratio tests between several candidate

models (with different sets of independent variables) to identify a final model sufficient for testing

the following hypothesis: ED census count has an impact on the likelihood of a patient being triaged

in the low, medium or high category by the triage nurse. Table 5.2 provides the control variables

of the resulting cumulative logit model for acuity group (low, medium, high) as the dependent

variable and the p-value results of the likelihood ratio tests for each control variable. Note that all

independent variables included in this cumulative logit model are significantly associated with the

dependent variable at a 0.01 level of confidence.

Association between census and admission decision: In this part of the study, we fit a mul-

tivariate logistic regression model to assess the association between the disposition decision and

census, which is calculated at the time a disposition decision is made for the corresponding patient.

The logistic regression model is similar to the cumulative logit model, but only has two categories

(admit or discharge) for the dependent variable. We considered multiple models and conducted

likelihood ratio tests to identify which control variables to include in the final model. The control

variables in the final model and the corresponding p-value results of the likelihood ratio tests for

model selection are provided in Table 5.2. Note that all independent variables included in the final
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logistic regression model are significantly associated with the dependent variable at a 0.05 level of

confidence.

Cumulative Logit Model for Triage Decision

Control variable P-Value

Race <0.01

Gender <0.01

Age group <0.01

Chief complaints <0.01

Census <0.01

Multivariate Logistic Regression Model for Disposition Decision

Control variable P-Value

Race <0.01

Gender <0.01

Age group < 0.01

Acuity <0.01

Pod <0.01

Census 0.014

Chief complaint <0.01

Interaction between age and acuity <0.01

Table 5.2: P-values from likelihood ratio tests for all independent variables included in the selected cumu-
lative logit model for triage decisions and multivariate logistic regression model for disposition.

5.3 Results

To estimate the impact of census on triage acuity assignment and disposition decision, we

calculated odds ratios (OR) (Agresti, 2003) for both statistical models discussed in the statistical

modeling section above. Specifically, in this case, the OR indicates how changes in a control variable

(such as census) may increase or decrease the likelihood (odds) being assigned to a higher acuity

level or being admitted. We next discuss our findings from each model separately.
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Association between census and triage decision: We found by fitting the cumulative logit model

with partial proportional odds that the relationship between nurses’ triage decision and census (at

time of arrival) was statistically significant. The OR for a patient being triaged as high acuity

versus low or medium is 1.011 times greater when census is increased by one unit (95% CI = [1.009,

1.012]). We also found that for triaging a patient as medium or high versus low acuity is 1.009

times higher when census is increased by one unit (95% CI = [1.008, 1.010]). Results on odds ratios

for all variables are reported in Table 5.3 except for chief complaints, which are provided in Table

A.1 in Appendix. Using the cumulative logit model, we also calculated the marginal probabilities

of being assigned each acuity level (low, medium, and high) at different census levels for a common

group of patients (Caucasian females aged between 18 to 40 who had abdominal pain as their chief

complaints); see Figure 5.1. Such a framework is useful for interpreting results for key patient

subpopulations.

Association between census and admission decision: In the multivariate logistic regression model

fitting, we found that there was a statistically significant association between providers’ admission

decision and census at the time when disposition decisions are made. The OR for admission

per patient increase in census was 1.007 (95% CI = [1.006, 1.008]). ORs from the multivariate

logistic regression analysis are reported in Table 5.4 except for chief complaints and interaction

terms, which are provided in Table A.2 and A.3, respectively, in Appendix. For an example of

the logistic regression model, we computed the probability of admission for a common group of

patients: Caucasian females who are aged between 18 and 40, categorized as ESI3, with a chief

complaint of abdominal pain and treated in Pod A, at different levels of census. The result is shown

in Figure 5.2. The slope of the line is the same for all patients in the model however the probability

of admission is higher or lower based on individual patient characteristics.

Table 5.3: Odds ratios of Prob(high acuity) versus Prob(low or medium acuity) and Prob(medium or
high acuity) versus Prob(low acuity), and corresponding 95% confidence intervals for intercept, census, race,
gender, and age group.

P(high)/P(low or medium) P(medium or high)/P(low)

Intercept

Continued on next page
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Table 5.3 – continued from previous page

P(high)/P(low or medium) P(medium or high)/P(low)

.057 [.052, .063] 1.403 [1.315, 1.496]

Census

1.011 [1.009, 1.012] 1.009 [1.008, 1.010]

Race (contrast: Caucasian)

African American .699 [.661, .739] .693 [.665, .722]

Asian .792 [.628, 1.002] .898 [.759, 1.062]

Native American 1.219 [.847, 1.752] 1.387 [.998, 1.928]

Other .540 [.493, .592] .778 [.735, .822]

Unknown .994 [.852, 1.160] .898 [.800, 1.007]

Gender (contrast: Female)

Male 1.345 [1.282, 1.410] .901 [.869, .935]

Age Group (contrast: 18 to 40)

< 3m 2.143 [1.683, 2.729] .970 [.799, 1.178]

3m to 3 .644 [.554, .749] .422 [.390, .457]

3 to 8 .794 [.687, .918] .462 [.426, .500]

8 to 18 1.741 [1.591, 1.905] .812 [.760, .868]

40 to 55 1.165 [1.088, 1.247] 1.401 [1.334, 1.470]

55 to 70 1.551 [1.445, 1.664] 2.494 [2.343, 2.655]

≥ 70 1.705 [1.577, 1.844] 5.601 [5.076, 6.181]

Table 5.4: Odds ratios of Prob(admit) versus Prob(discharge) and corresponding 95% confidence intervals
for intercept, census, race, gender, acuity, age group, and pod.

Prob(admit)/Prob(discharge)

Intercept

3.188 [2.763, 3.679]

Continued on next page
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Table 5.4 – continued from previous page

Prob(admit)/Prob(discharge)

Census

1.007 [1.006, 1.008]

Race (contrast: Caucasian)

African American 1.033 [.985, 1.084]

Asian .892 [.729, 1.093]

Native American 2.138 [1.556, 2.938]

Other .823 [.764, .887]

Unknown .807 [.695, .938]

Gender (contrast: Female)

Male 1.218 [1.167, 1.271]

Acuity (contrast: ESI3)

ESI1 20.891 [12.519, 34.861]

ESI2 3.687 [3.313, 4.104]

ESI3 .115 [.095, .139]

ESI4 .018 [.006, .055]

Age Group (contrast: 18 to 40)

< 3m 3.179 [2.358, 4.285]

3m to 3 1.279 [1.072, 1.525]

3 to 8 1.199 [.999, 1.439]

8 to 18 1.252 [1.077, 1.456]

40 to 55 1.697 [1.587, 1.816]

55 to 70 2.913 [2.714, 3.125]

≥ 70 4.325 [4.002, 4.676]

Pod (contrast: BHED)

A .661 [.587, .744]

B .561 [.498, .631]

Continued on next page
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Table 5.4 – continued from previous page

Prob(admit)/Prob(discharge)

C 4.381 [3.680, 5.217]

D .216 [.190, .247]

Pediatrics .397 [.339, .465]
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Figure 5.1: Marginal probabilities of different acuity levels versus census for a patient subgroup:
Caucasian female, aged between 18 to 40, with abdominal pain.

Figure 5.2: Probability of admission versus census (with 95% CI) for Caucasian female patients
aged between 18 and 40, categorized as ESI3, presented with abdominal pain, and treated in Pod
A.

5.4 Discusssion

To the best of our knowledge, there is only one other study that investigated the relationship

between nurses’ triage decision and ED census at the decision time and we are the first to consider

census as a continuous variable (as opposed to a binary variable as in the prior work) and to use
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a cumulative logit modeling to do so. In contrast to that previous study from (Richardson, 1998),

we found a statistically significant association between ED census and nurses’ triage decisions.

Specifically, as can be seen from Figure 1, as census increases from 25 to 70 patients in the ED

(representing, respectively, 10% and 90% quantiles of census from the data set), the probability of

a patient being triaged as high acuity increases by about 50%, while the probability of a patient

being triaged as low acuity decreases by approximately 25%. On the other hand, the probability

of a patient being triaged as medium acuity (ESI 3) seems to change only slightly with census.

The relationship between physicians’ admission decision and ED census at the decision time was

observed in a prior work: (Gorski et al., 2017) performs a retrospective analysis using 18 months

of all adult patient encounters seen in the main ED of an academic tertiary care center, and finds

that there is a positive association between the likelihood that a patient would be admitted and

the waiting room census and physician load census. Our results firmly support this earlier study in

that we found a similar odds ratio for admission that increases as census does. From Figure 5.2, we

can see that as census increases from 25 to 75 patients in the ED, the probability of a patient being

categorized as admit increases by around 25%. Note that our study includes pediatric patients in

addition to adults unlike (Gorski et al., 2017) that only considered adults and yet we still observed

similar results.

Establishing an association does not prove cause and effect. Nevertheless, the correlations we

found support what ED providers, nurses, and managers have suspected all along: As the ED

becomes more crowded, there may be a tendency among providers and nurses to change their

behavior in decision making towards being more risk averse. It may be that as the executive and

cognitive function is taxed by the load, the clinicians of care make the decision that appears to be

the safest choice for the individual patient. In the case of providers, they may opt for admission

over a discharge in cases where the best disposition is in doubt. The same may hold true for triage

nurses. As decisions become more pressured triage nurses may err on the side of caution and triage

the patient a higher acuity than they otherwise would have. Work outside of health care has found

similar decision fatigue in parole hearings (Danziger et al., 2011). Parole decisions made late in

the day or long after a meal are more likely to result in the parolee staying in prison, the decision

that is viewed as more cautious. As more and more decisions are made a decision maker tends to
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pick what is considered the less risky of two choices even though this may not always be the best

decision for the directly affected individual or others in the system.

5.5 Conclusion

This study includes data from a single academic center. The findings on relation between census

and disposition are similar to a previous study at an academic center but it may be that academic

centers have unique patient populations or organizational structures differing from community

settings. Processing of admitted patients does tend to provide a greater challenge in academic

centers (Horwitz et al., 2010). Also, our findings on relation between census and triage decisions

should not be generalized to EDs that use a triage system other than ESI. Finally, a prospective case-

control study would allow better identification of factors that affect nurses’ triage and providers’

admission decisions in the ED.

In this study, we found a correlation between overall ED census and likelihood of admission

as well as changes in triage decisions that result in more patients being triaged to higher acuity

levels. This supports a growing body of evidence that situational stressors such as high census may

influence decisions made by nurses and physicians in the ED.
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CHAPTER 6

Conclusion

This dissertation was centered around emergency department operations. Being an essential

part of the US healthcare system, the majority of them are experiencing severe congestion issues.

Motivated by some novel practices of streaming patient flow in the ED via re-engineering the

service process, we studied the congestion problem through different angles. Chapter 2 and 3

targeted reducing crowding by seeking operational strategies that stream the patient flow in the

ED, where the ED was modeled in stylized fashions. Chapter 4 employed a simulation model built

for the UNC ED to evaluate the performances of several heuristic policies, which have structural

forms inspired by the theoretical optimal policies found in previous two chapters. Chapter 5, on the

other hand, offered a different perspective on the congestion problem. We were mainly interested

in how ED providers’ decision making would change according to fluctuations in congestion levels

in the ED. Using two statistical models, we were able to get a sense of the potential impact of

ED congestion level, as measured by census, on physicians’ admission decision and nurses’ triage

decision making.

To be more specific, in Chapter 2, we modeled the ED as a single-server queueing system where

there are two types of Poisson arrivals. Type-1 jobs only need a single stage of service (primary

service). Type-2 jobs need an extra stage of service. One has the option to initiate secondary

service, given the probability of a job being type-2 and the system state, at the time of arrival.

For a job that is truly a type-2, doing so will shorten its sojourn time because by the time primary

service is completed, secondary service for the job might have already been finished as well, or

will be soon after. However, if we made a false judgement, then we waste the resources needed

for starting secondary service in advance. With the purpose of balancing the tradeoff between

the waiting cost and cost of false positives, we found the optimal policy to be of threshold type,

where the threshold is a monotone decreasing function of both the system state, and the type-2
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probability of the job for which we are making a decision. Although our model can fit into a few

different settings in the ED, we have been focusing on its application to the boarding process. In

particular, in our model, primary service corresponds to the lump sum service patients receive at

the ED, while the secondary service corresponds to the boarding process. Additionally, type-2

probability corresponds to a patient’s probability of being admitted to the hospital, and the server

in our model represents the provider-bed pair in an ED. Given that EDs are mostly crowded, our

single server assumption can be well justified under the heavy-traffic regime, despite the fact that

they generally have multiple beds (servers).

Bearing in mind that the lengthy process of boarding serves as one of the main contributors to

ED crowding, we continued to explore ways of shortening boarding via mathematical modeling and

optimization. In Chapter 3, we modeled the patient flow in the ED as a deterministic fluid model.

Instead of viewing the patients that arrive to an ED as discrete random arrivals, we treated them

as continuous fluid flowing at a time-dependent rate. The ED, is a tank that receives the fluid that

flows in and pumps it out at certain rate that is time-dependent, and controllable by the decision

maker. Faster service rate is achieved, in a real ED context, by initiating hospital bed preparation

for patients that we predict to be admit patients (early BeRT). As emphasized repeatedly, when

implementing early BeRT in the ED one needs to carefully manage the tradeoff between the cost of

overcrowding associated with holding patients in the ED and the cost of wasting hospital resources

by making too many early BeRTs based on false admission prediction. In our fluid model, we

managed to balance the tradeoff by imposing a constraint on the length of time during which one

can make early BeRTs and thus speed up service. With our objective being to minimize the time

averaged fluid level, which corresponds to the ED census, our fluid model then took the form of

a constraint optimization problem. Based on this formulation, we identified the optimal period

of time during each day to use the option of early BeRTs given the aforementioned operational

constraint on the total amount of time that early BeRTs can be made. In cases when the arrival

rate is larger than the maximum service rate that one can achieve, which is exactly the case during

the ED’s peak hours, we found that the optimal solution to the fluid model is to start early BeRT

as early as possible, and for as long as possible, while keeping the operational constraint satisfied.

Following the lines of research in Chapter 2 and 3, we evaluated the performances of several

heuristics that make early BeRTs based on different measurements of the system state, which
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have structural forms inspired by the theoretical optimal policies found in previous chapters. We

employed a simulation model built for the UNC ED and tested the performances of our heuristic

policies on the simulation model in terms of the average length-of-stay and waiting time. We

considered four sets of admission probability distributions, which vary in variances, as to evaluate

the heuristics under different settings of prediction accuracy. Our results show that as the variance

of distribution decreases, which corresponds to scenarios where admission prediction are more

accurate, CFT (constraint fixed threshold) policy and CTT (census and time-dependent) policy

began to dominate the other two heuristics that either uses a constant threshold (FT), or only

time-dependent threshold (TT). This is to be expected, because the more information we take into

account, the better we will do in shortening the sojourn times while keeping the daily counts of

false positives unchanged.

Instead of focusing on resolving ED crowding, Chapter 5 offered another perspective and fol-

lowed the stream of research that pays attention to operational responses to a congested ED such

as the changes in rates of admission. As as far as we know, few have looked into the relationship

between nurses’ triage decision and ED census at the decision time. In Chapter 5, we are the first

to apply a cumulative logit model to examine such an association. Our study shows that nurses

tend to triage more patients into more critical categories when the ED is more congested. Further,

as census increases from 0 to 100, the probability of a patient being triaged as high acuity doubles,

while the probability of a patient being triaged as low acuity decreases by half. Some have already

examined the relationship between physicians’ admission decision and ED census at the decision

time. By fitting a logistic regression model to the 2012 UNC ED data, we found result that firmly

supports an earlier work (Gorski et al., 2017) that the odd ratio (OR) for admission is very similar

in terms of magnitude and sign. Additionally, there is significant statistical evidence which sug-

gests that as ED census increases, physicians tend to categorize more patients as admit patients.

Further, our study is the first to include pediatric in addition to adult patients.
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APPENDIX: PROOF OF THEOREMS, LEMMA, AND SUPPLEMENTARY TABLES A

A.1 Proof of Lemma 1

For the first part of Condition 1, we first write

min{Vm(αi, n) +
αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp} −

∑
j

qjVm(αj , n− 1)

=

[
min{Vm(αi, n) +

αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp} − Vm(2, n)

]

+

Vm(2, n)−
∑
j

qjVm(αj , n− 1)

 .
Then, the first part of the condition immediately follows by noting that the right hand side is a

non-decreasing function of n for all αi ∈ Ω and n ≥ 1 using 3) and 1) for Vm.

To show the second part of Condition 1, let Nm(αi) = inf{n : Vm(αi, n) + αiγ1
γ2
Cs > Vm(2, n) +

γ1+γ2
γ2

Cp}. First suppose that Nm(αi) = 1. Then

min{Vm(αi, 1) +
αiγ1

γ2
Cs, Vm(2, 1) +

γ1 + γ2

γ2
Cp} −

∑
j

qjVm(αj , 0)

=

Vm(2, 1)−
∑
j

qjVm(αj , 0)

+
γ1 + γ2

γ2
Cp

≥ γ1 + γ2

γ2
Cp ≥

αi(γ1 + γ2)

γ2
Cs,

where for the first inequality, we used 1) for Vm. Now, suppose that Nm(αi) ≥ 2. Then

min{Vm(αi, 1) +
αiγ1

γ2
Cs, Vm(2, 1) +

γ1 + γ2

γ2
Cp} −

∑
j

qjVm(αj , 0)

=

Vm(αi, 1)−
∑
j

qjVm(αj , 0)

+
αiγ1

γ2
Cs

≥ αiCs +
αiγ1

γ2
Cs =

αi(γ1 + γ2)

γ2
Cs,

67



where the inequality follows from 2) for Vm. This completes the proof for the condition.

A.2 Proof of Lemma 2

Proof of Condition 2. The second part of the condition is immediate by noting that

Vm(αi, n)−min{Vm(αi, n) +
αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp} ≥

Vm(αi, n)−
[
Vm(αi, n) +

αiγ1

γ2
Cs

]
= −αiγ1

γ2
Cs.

To prove the first part of the condition, we need to show that for all i and n ≥ 1

Vm(αi, n+ 1)−min{Vm(αi, n+ 1) +
αiγ1

γ2
Cs, Vm(2, n+ 1) +

γ1 + γ2

γ2
Cp}

≥ Vm(αi, n)−min{Vm(αi, n) +
αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp}.

Now, let Nm(αi) = inf{n : Vm(αi, n) + αiγ1
γ2
Cs > Vm(2, n) + γ1+γ2

γ2
Cp}. Then, since Vm(αi, n)−

Vm(2, n) is a non-decreasing function of n for all i and n ≥ 1 we have that Vm(αi, n) + αiγ1
γ2
Cs >

Vm(2, n) + γ1+γ2
γ2

Cp if and only if n ≥ Nm(αi). Consequently, for 1 ≤ n ≤ Nm(αi)− 2 we have

[
Vm(αi, n+ 1)−min{Vm(αi, n+ 1) +

αiγ1

γ2
Cs, Vm(2, n+ 1) +

γ1 + γ2

γ2
Cp}

]
−
[
Vm(αi, n)−min{Vm(αi, n) +

αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp}

]
=[

Vm(αi, n+ 1)− Vm(αi, n+ 1)− αiγ1

γ2
Cs

]
−
[
Vm(αi, n)− Vm(αi, n)− αiγ1

γ2
Cs

]
= 0 ≥ 0.
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For n ≥ Nm(αi) we have

[
Vm(αi, n+ 1)−min{Vm(αi, n+ 1) +

αiγ1

γ2
Cs, Vm(2, n+ 1) +

γ1 + γ2

γ2
Cp}

]
−
[
Vm(αi, n)−min{Vm(αi, n) +

αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp}

]
=[

Vm(αi, n+ 1)− Vm(2, n+ 1)− γ1 + γ2

γ2
Cp

]
−
[
Vm(αi, n)− Vm(2, n)− γ1 + γ2

γ2
Cp

]
= [Vm(αi, n+ 1)− Vm(2, n+ 1)]− [Vm(αi, n)− Vm(2, n)] ≥ 0,

because Vm(αi, n)−Vm(2, n) is a non-decreasing function of n by assumption. For n = Nm(αi)− 1

we have

[
Vm(αi, Nm(αi))−min{Vm(αi, Nm(αi)) +

αiγ1

γ2
Cs, Vm(2, Nm(αi)) +

γ1 + γ2

γ2
Cp}

]
− [Vm(αi, Nm(αi)− 1)−

min{Vm(αi, Nm(αi)− 1) +
αiγ1

γ2
Cs, Vm(2, Nm(αi)− 1) +

γ1 + γ2

γ2
Cp}

]
=

[
Vm(αi, Nm(αi)) +

αiγ1

γ2
Cs

]
−
[
Vm(2, Nm(αi)) +

γ1 + γ2

γ2
Cp

]
≥ 0,

by definition of Nm(αi). Thus we have proved Condition 2.

Proof of Condition 3. We need to show that for all n ≥ 1

min{Vm(αi, n+ 1) +
αiγ1

γ2
Cs, Vm(2, n+ 1) +

γ1 + γ2

γ2
Cp} − Vm(2, n+ 1) ≥

min{Vm(αi, n) +
αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp} − Vm(2, n).
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Again, let Nm(αi) be as defined previously in the proof of Condition 2. For 1 ≤ n ≤ Nm(αi)−2

we have

[
min{Vm(αi, n+ 1) +

αiγ1

γ2
Cs, Vm(2, n+ 1) +

γ1 + γ2

γ2
Cp} − Vm(2, n+ 1)

]
−
[
min{Vm(αi, n) +

αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp} − Vm(2, n)

]
=

[
Vm(αi, n+ 1) +

αiγ1

γ2
Cs − Vm(2, n+ 1)

]
−
[
Vm(αi, n) +

αiγ1

γ2
Cs − Vm(2, n)

]
= [Vm(αi, n+ 1)− Vm(2, n+ 1)]− [Vm(αi, n)− Vm(2, n)] ,

because by assumption, Vm(αi, n)− Vm(2, n) is non-decreasing with respect to n. For n ≥ Nm(αi)

we have

[
min{Vm(αi, n+ 1) +

αiγ1

γ2
Cs, Vm(2, n+ 1) +

γ1 + γ2

γ2
Cp} − Vm(2, n+ 1)

]
−
[
min{Vm(αi, n) +

αiγ1

γ2
Cs, Vm(2, n) +

γ1 + γ2

γ2
Cp} − Vm(2, n)

]
=
γ1 + γ2

γ2
Cp −

γ1 + γ2

γ2
Cp = 0 ≥ 0.

When n = Nm(αi)− 1 we have

[
min{Vm(αi, Nm(αi)) +

αiγ1

γ2
Cs, Vm(2, Nm(αi)) +

γ1 + γ2

γ2
Cp} − Vm(2, Nm(αi))

]
−
[
min{Vm(αi, Nm(αi)− 1) +

αiγ1

γ2
Cs, Vm(2, Nm(αi)− 1) +

γ1 + γ2

γ2
Cp}

−Vm(2, Nm(αi)− 1)]

=

[
γ1 + γ2

γ2
Cp + Vm(2, Nm(αi)− 1)

]
−
[
Vm(αi, Nm(αi)− 1) +

αiγ1

γ2
Cs

]
≥ 0,

by definition of Nm(αi). Thus we’ve proved Condition 3.

70



A.3 Proof of Lemma 3

To show each of the properties we use induction in a similar manner. Let m ≥ 1 and suppose

that condition 4 through 9 as given in the statement of the lemma all hold for 0 ≤ k ≤ m− 1. We

will show that the same conditions then also hold for k = m.

Proof of Condition 4: For n ≥ 1, we have

Vm(αi, n)− Vm(2, n) =

λ [Vm−1(αi, n+ 1)− Vm−1(2, n+ 1)] + αiγ1

Vm−1(3, n)−
∑
j

qjVm−1(αj , n− 1)


+ γ2

[
min{Vm−1(αi, n) +

αiγ1

γ2
Cs, Vm−1(2, n) +

γ1 + γ2

γ2
Cp} − Vm−1(2, n)

]
.

From Conditions 4, 5 and 3 (with k = m − 1), we know that the right hand side of the above

equation is non-decreasing in n for n ≥ 1 and thus we can conclude that Condition 4 also holds for

k = m.

Proof of Condition 5: For n ≥ 2, we have

Vm(3, n)−
∑
j

qjVm(αj , n− 1) = Cw + λ

Vm−1(3, n+ 1)−
∑
j

qjVm−1(αj , n)


+ γ1

Vm−1(3, n)−
∑
j

qjVm−1(αj , n− 1)


+ γ1

∑
j

qj

[
Vm−1(αj , n− 1)− (1− αj)

∑
k

qkVm−1(αk, n− 2)− αjVm−1(3, n− 1)

]

+ γ2

∑
j

qj [Vm−1(αj , n− 1)−

min{Vm−1(αj , n− 1) +
αjγ1

γ2
Cs, Vm−1(2, n− 1) +

γ1 + γ2

γ2
Cp}

]
.

From Conditions 5, 6 and 2 (with k = m − 1), we know that the right hand side of the above

equation is non-decreasing in n for n ≥ 2 and thus we can conclude that Condition 5 also holds for

k = m but when n ≥ 2. To establish the conditions for the case of n = 1, we need to show that

Vm(3, 1)−
∑

j qjVm(αj , 0) ≥ 0 and Vm(3, 2)−
∑

j qjVm(αj , 0). To establish the first inequality, we
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can write

Vm(3, 1)−
∑
j

qjVm(αj , 0)

= Cw + λ

Vm−1(3, 2)−
∑
j

qjVm−1(αj , 1)

+ γ1

Vm−1(3, 1)−
∑
j

qjVm−1(αj , 0)

 ,
which is non-negative by Condition 5 (with k = m− 1). To establish the second inequality, we can

write

Vm(3, 2)−
∑
j

qjVm(αj , 1)

−
Vm(3, 1)−

∑
j

qjVm(αj , 0)

 =

λ


Vm−1(3, 3)−

∑
j

qjV (αj , 2)

−
Vm−1(3, 2)−

∑
j

qjV (αj , 1)


+ γ1


Vm−1(3, 2)−

∑
j

qjVm−1(αj , 1)

−
Vm−1(3, 1)−

∑
j

qjVm−1(αj , 0)


+ γ1

∑
j

qj

[
Vm−1(αj , 1)− (1− αj)

∑
k

qkVm−1(αk, 0)− αjVm−1(3, 1)

]

+ γ2

∑
j

qj

[
Vm−1(αj , 1)−min{Vm−1(αj , 1) +

αjγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp}

]
≥

γ1

∑
j

qj

[
Vm−1(αj , 1)− (1− αj)

∑
k

qkVm−1(αk, 0)− αjVm−1(3, 1)

]

+ γ2

∑
j

qj

[
Vm−1(αj , 1)−min{Vm−1(αj , 1) +

αjγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp}

]
≥

γ1

∑
j

qjαjCs − γ2

∑
j

qj
αjγ1

γ2
Cs = 0,

where we used the fact that Conditions 5, 6 and 2 hold for k = m − 1. Hence, Condition 5 also

holds for k = m.
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Proof of Condition 6: For n ≥ 2, we have

Vm(αi, n)− (1− αi)
∑
j

qjVm(αj , n− 1)− αiVm(3, n) = (1− αi)Cw

+ λ

Vm−1(αi, n+ 1)− (1− αi)
∑
j

qjVm−1(αj , n)− αiVm−1(3, n+ 1)


+ γ2

min{Vm−1(αi, n) +
αiγ1

γ2
Cs, Vm−1(2, n) +

γ1 + γ2

γ2
Cp} −

∑
j

qjVm−1(αj , n− 1)


+ (1− αi)γ1

∑
j

qj [Vm−1(αj , n− 1)

−(1− αj)
∑
k

qkVm−1(αk, n− 2)− αjVm−1(3, n− 1)

]

+ (1− αi)γ2

∑
j

qj [Vm−1(αj , n− 1)−

min{Vm−1(αj , n− 1) +
αjγ1

γ2
Cs, Vm−1(2, n− 1) +

γ1 + γ2

γ2
Cp}

]
.

From Conditions 6, 1 and 2 (with k = m−1), we know that the right hand side of the above equation

is non-decreasing in n for n ≥ 2 and thus we can conclude that the first part of Condition 6 also

holds for k = m but when n ≥ 2. To complete the proof for Condition 6, it then remains to show

that Vm(αi, 1)−(1−αi)
∑

j qjVm(αj , 0)−αiVm(3, 1) ≥ αiCs and Vm(αi, 2)−(1−αi)
∑

j qjVm(αj , 1)−

αiVm(3, 2) ≥ Vm(αi, 1)− (1− αi)
∑

j qjVm(αj , 0)− αiVm(3, 1).

To establish the first inequality, first, from (2.6) (with n = 1), we have

Vm(αi, 1) = Cw + λVm−1(αi, 2) + (1− αi)γ1

∑
j

qjVm−1(αj , 0)

+ αiγ1Vm−1(3, 1) + γ2 min{Vm−1(αi, 1) +
αiγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp},

and from (2.5), we have

(1− αi)
∑
j

qjVm(αj , 0) = (1− αi)Vm(0)

= λ(1− αi)
∑
j

qjVm−1(αj , 1) + (γ1 + γ2)(1− αi)
∑
j

qjVm−1(αj , 0).

73



Using (2.8) (with n = 1) we can write

αiVm(3, 1) = αiCw + λαiVm−1(3, 2) + γ2αi
∑
j

qjVm−1(αj , 0) + γ1αiVm−1(3, 1),

where we used the fact that
∑

j qjVm(αj , 0) = Vm(0) for all m ≥ 0. It then follows that

Vm(αi, 1)− (1− αi)
∑
j

qjVm(αj , 0)− αiVm(3, 1) = (1− αi)Cw

+ λ

Vm−1(αi, 2)− (1− αi)
∑
j

qjVm−1(αj , 1)− αiVm−1(3, 2)


+ γ2

min{Vm−1(αi, 1) +
αiγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp} −

∑
j

qjVm−1(αj , 0)

 .
Then, using Condition 6 and 1 (with k = m− 1), we have

Vm(αi, 1)− (1− αi)
∑
j

qjVm(αj , 0)− αiVm(3, 1) ≥ λαiCs + γ2 �
γ1 + γ2

γ2
� αiCs = αiCs.
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For the second inequality, we can write

Vm(αi, 2)− (1− αi)
∑
j

qjVm(αj , 1)− αiVm(3, 2)


−

Vm(αi, 1)− (1− αi)
∑
j

qjVm(αj , 0)− αiVm(3, 1)

 =

λ


Vm−1(αi, 3)− (1− αi)

∑
j

qjVm−1(αj , 2)− αiVm−1(3, 3)


−

Vm−1(αi, 2)− (1− αi)
∑
j

qjVm−1(αj , 1)− αiVm−1(3, 2)


+ γ2


min{Vm−1(αi, 2) +

αiγ1

γ2
Cs, Vm−1(2, 2) +

γ1 + γ2

γ1
Cp} −

∑
j

qjVm−1(αj , 1)


−

min{Vm−1(αi, 1) +
αiγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp} −

∑
j

qjVm−1(αj , 0)


+ (1− αi)γ1

∑
j

qj

[
Vm−1(αj , 1)− (1− αj)

∑
k

qkVm−1(αk, 0)− αjVm−1(3, 1)

]
+

(1− αi)γ2

∑
j

qj

[
Vm−1(αj , 1)−min{Vm−1(αj , 1) +

αjγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp}

]

≥ (1− αi)γ1

∑
j

qj

[
Vm−1(αj , 1)− (1− αj)

∑
k

qkVm−1(αk, 0)− αjVm−1(3, 1)

]
+

(1− αi)γ2

∑
j

qj

[
Vm−1(αj , 1)−min{Vm−1(αj , 1) +

αjγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp}

]

≥ (1− αi)

γ1

∑
j

qjαjCs − γ2

∑
j

qj
αjγ1

γ2
Cs

 = 0,

where we used Condition 6, 1 and 2 for k = m− 1. Thus Condition 6 for k = m follows.
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Proof of Condition 7: For n ≥ 2, we have

Vm(2, n)−
∑
j

qjVm(αj , n− 1) = Cw + λ

Vm−1(2, n+ 1)−
∑
j

qjVm−1(αj , n)


+ γ2

Vm−1(2, n)−
∑
j

qjVm−1(αj , n− 1)


+ γ1

∑
j

qj

[
Vm−1(αj , n− 1)− (1− αj)

∑
k

qkVm−1(αk, n− 2)− αjVm−1(3, n− 1)

]

+ γ2

∑
j

qj [Vm−1(αj , n− 1)

−min{Vm−1(αj , n− 1) +
αjγ1

γ2
Cs, Vm−1(2, n− 1) +

γ1 + γ2

γ2
Cp}

]
.

Then, using Condition 7, 6 and 2 (with k = m − 1), we can conclude that the right hand side

of the above equation is non-decreasing in n for n ≥ 2 and thus Vm(2, n) −
∑

j qjVm(αj , n − 1) is

also non-decreasing in n for n ≥ 2. To complete the proof for Condition 7, we need to show that

Vm(2, 1)−
∑

j qjVm(αj , 0) ≥ 0 and Vm(2, 2)−
∑

j qjVm(αj , 1) ≥ Vm(2, 1)−
∑

j qjVm(αj , 0).

To establish the first inequality, first, using (2.7) for n = 1, we can write

Vm(2, 1) = Cw + λVm−1(2, 2) + γ1

∑
j

qjVm−1(αj , 0) + γ2Vm−1(2, 1),

and using (2.5), we can write

∑
j

qjVm(αj , 0) = Vm(0) = λ
∑
j

qjVm−1(αj , 1) + (γ1 + γ2)
∑
j

qjVm−1(αj , 0),

where we used the fact that
∑

j qjVm(αj , 0) = Vm(0). Thus, we have

Vm(2, 1)−
∑
j

qjVm(αj , 0) = Cw + λ

Vm−1(2, 2)−
∑
j

qjVm−1(αj , 1)


+ γ2

Vm−1(2, 1)−
∑
j

qjVm−1(αj , 0)

 .
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From Condition 7 (with k = m − 1), we can then see that Vm(2, 1) −
∑

j qjVm(αj , 0) ≥ 0. To

establish the second inequality, first we can write

Vm(2, 2)−
∑
j

qjVm(αj , 1)

−
Vm(2, 1)−

∑
j

qjVm(αj , 0)

 =

λ


Vm−1(2, 3)−

∑
j

qjVm−1(αj , 2)

−
Vm−1(2, 2)−

∑
j

qjVm−1(αj , 1)


+ γ2


Vm−1(2, 2)−

∑
j

qjVm−1(αj , 1)

−
Vm−1(2, 1)−

∑
j

qjVm−1(αj , 0)


+ γ1

∑
j

qj

Vm−1(αj , 1)− (1− αj)
∑
j

qjVm−1(αj , 0)− αjVm−1(3, 1)


+ γ2

∑
j

qj

[
Vm−1(αj , 1)−min{Vm−1(αj , 1) +

αjγ1Cs
γ2

, Vm−1(2, 1) +
γ1 + γ2

γ2
Cp}

]
≥

γ1

∑
j

qj

Vm−1(αj , 1)− (1− αj)
∑
j

qjVm−1(αj , 0)− αjVm−1(3, 1)

− γ2

∑
j

qj
αjγ1Cs
γ2

≥ γ1

∑
j

qjαjCs −
∑
j

qjαjγ1Cs = 0,

where we used Conditions 7, 6 and 2, which we know holds for k = m − 1. Thus Condition 7 for

k = m follows.

Proof of Condition 8: First, we can write

Vm(αi, n+ 1)−
∑
j

qjVm(αj , n)

−
Vm(αi, n)−

∑
j

qjVm(αj , n− 1)

 =

{[Vm(αi, n+ 1)− Vm(2, n+ 1)]− [Vm(αi, n)− Vm(2, n)]}

+


Vm(2, n+ 1)−

∑
j

qjVm(αj , n)

−
Vm(2, n)−

∑
j

qjVm(αj , n− 1)

 .

Then, using Conditions 4 and 7 (with k = m), which we have already established, we can conclude

that for all n ≥ 1, Vm(αi, n+1)−
∑

j qjVm(αj , n) ≥ Vm(αi, n)−
∑

j qjVm(αj , n−1). It then remains

to show that Vm(αi, 1)−
∑

j qjVm(αj , 0) ≥ αiCs. We are left to show Vm(αi, 1)−
∑

j qjVm(αj , 0) ≥
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αiCr. Using (2.6) (with n = 1), we have

Vm(αi, 1) = Cw + λVm−1(αi, 2) + (1− αi)γ1

∑
j

qjVm−1(αi, 0)

+αiγ1Vm−1(3, 1) + γ2 min{Vm−1(αi, 1) +
αiγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp},

and using (2.5), we have

∑
j

qjVm(αj , 0) = Vm(0) = λ
∑
j

qjVm−1(αj , 1) + (γ1 + γ2)
∑
j

qjVm−1(αj , 0),

where we used the fact that
∑

j qjVm(αj , 0) = Vm(0). Then, we have

Vm(αi, 1)−
∑
j

qjVm(αj , 0) = Cw + λ

Vm−1(αi, 2)−
∑
j

qjVm−1(αj , 1)


+ αiγ1

Vm−1(3, 1)−
∑
j

qjVm−1(αj , 0)


+ γ2

min{Vm−1(αi, 1) +
αiγ1

γ2
Cs, Vm−1(2, 1) +

γ1 + γ2

γ2
Cp} −

∑
j

qjVm−1(αj , 0)

 .
Hence

Vm(αi, 1)−
∑
j

qjVm(αj , 0) ≥ λαiCs + 0 + γ2 �
αi(γ1 + γ2)

γ2
Cs

= λαiCs + (γ1 + γ2)αiCs = αiCs,

where we used Conditions 8, 5 and 1 for k = m− 1. Thus, Condition 8 for k = m follows.

Proof of Condition 9: Using (2.7), we have, for n ≥ 1

Vm(αi, n) = λVm−1(αi, n+ 1) + γ1Vm−1(3, n)

+ αiγ1

Vm−1(3, n)−
∑
j

qjVm−1(αj , n− 1)


+ γ2 min{Vm−1(αi, n) +

αiγ1

γ2
Cs, Vm−1(2, n) +

γ1 + γ2

γ2
Cp},
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where the first term is non-decreasing in i using Condition 9 (with k = m − 1). The second term

is invariant in i. The third term is increasing in i because αi is increasing in i and Vm−1(3, n) −∑
j qjVm−1(αj , n − 1) is non-negative from Condition 5 (with k = m − 1). The last term is also

non-decreasing in i from the fact that minimization preserves monotonicity and using Condition 9

(with k = m− 1). Then, we can conclude that Vm(αi, n) is non-decreasing in i for all n ≥ 1. This

completes the proof of the lemma.

A.4 Proof of Lemma 4

We show this via two steps. First, we argue that for two policies which start applying γ at the

same time, the one that applies for a longer interval is superior than the other. Second, we argue

that it is suboptimal to start applying γ after T − δ. Let δ = ts − t0, i.e., δ represents the total

length of time one BeRTs.

1. Consider two policies π and γ with tπ0 = tγ0 = t0 and δπ < δγ . We are going to show

that Aπ ≥ Aγ . First, since tπ0 = tγ0 and δπ < δγ , xπ(t) = xγ(t) for 0 ≤ t ≤ t0 + δπ. And thus∫ t0+δπ

0 xπ(t)dt =
∫ t0+δπ

0 xγ(t)dt. Hence

Aπ −Aγ =

∫ T

t0+δπ
xπ(t)dt−

∫ T

t0+δπ
xγ(t)dt.

=

[∫ t0+δγ

t0+δπ
(xπ(t)dt− xγ(t)) dt

]
+

[∫ T

t0+δγ
(xπ(t)dt− xγ(t)) dt

]
:=∆1 + ∆2.

We evaluate the positivity of ∆1 and ∆2 respectively next. For t0 + δπ ≤ t ≤ t0 + δγ , we have

xπ(t) = max{0, x(t0 + δπ) + (λ− sγ)(t− t0)},

xγ(t) = max{0, x(t0 + δπ) + (λ− sγ)(t− t0)}.

Hence xπ(t) ≥ xγ(t). And thus ∆1 ≥ 0. For t0 + δγ ≤ t ≤ T , we have

xπ(t) = max{0, xπ(t0 + δγ) + (λ− sγ)(t− t0)},
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xγ(t) = max{0, xγ(t0 + δγ) + (λ− sγ)(t− t0)}.

Since xπ(t0 + δγ) ≥ xγ(t0 + δγ) we have xπ(t) ≥ xγ(t). Thus ∆2 ≥ 0. Consequently, we have

Aπ ≥ Aγ . Thus we have completed our first step. A natural consequence of step 1 is that it is

optimal to let ts = t0 + δ. Hence our decision variable reduces to t0 alone.

2. It is suboptimal to let t0 ≥ T − δ, i.e., to start after T − δ.

Consider two policies π and γ where tπ0 = T − δ and T − δ < tγ0 < T . Based on step 1. we can

assume that δπ = δ and δγ = T − tγ0 < δ. We are going to show that Aπ ≤ Aγ . First since tπ0 < tγ0 ,

xπ(t) = xγ(t) for 0 ≤ t ≤ tπ0 . And thus
∫ tπ0

0 xπ(t)dt =
∫ tπ0

0 xγ(t)dt. We have

Aπ −Aγ =

∫ T

tπ0

xπ(t)dt−
∫ T

tπ0

xγ(t)dt

=

∫ tγ0

tπ0

[xπ(t)− xγ(t)] dt+

∫ T

tγ0

[xπ(t)− xγ(t)] dt

:=∆1 + ∆2.

Next we evaluate the positivity of ∆1 and ∆2 respectively. For tπ0 ≤ t ≤ t
γ
0 we have

xπ(t) = max{0, x(tπ0 ) + (λ− sγ)(t− tπ0 )},

xγ(t) = max{0, x(tπ0 ) + (λ− sγ)(t− tπ0 )}.

Hence xπ(t) ≤ xγ(t), and ∆1 ≤ 0. For tγ0 ≤ t ≤ T we have

xπ(t) = max{0, xπ(tγ0) + (λ− sγ)(t− tγ0)},

xγ(t) = max{0, xγ(tγ0) + (λ− sγ)(t− tγ0)}.

Since xπ(tγ0) ≤ xγ(tγ0) we have xπ(t) ≤ xγ(t), thus ∆2 ≤ 0. Thus we have completely step 2.

Combining the above two results we can easily see that it is suboptimal to start after T − δ.

And as long as one starts before T − δ the maximum length of time one can apply γ is δ, and by

step 1 we know that it is suboptimal to let δ < δ, or ts − t0 < δ. This completes the proof of the

lemma.
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A.5 Proof of Theorem 4

Case 1 sγ < sγ < λ

For any 0 ≤ t0 ≤ T − δ, we have

A =

∫ t0

0

[
x0 + (λ− sγ)t

]
dt+

∫ t0+δ

t0

[x(t0) + (λ− sγ)(t− t0)] dt

+

∫ T

t0+δ

[
x(t0 + δ) + (λ− sγ)(t− t0 − δ)

]
dt,

where

x(t0) = x0 + (λ− sγ)t0,

x(t0 + δ) = x0 + (λ− sγ)t0 + (λ− sγ)δ,

subsituiting into the expression for A we get

A =
1

2

{
−s(γ − γ)δ(2t0 + δ) + 2T (x0 + s(γ − γ)δ) + T 2(−sγ + λ)

}
= 2s(γ − γ)δt0 + 2T (x0 + s(γ − γ) + δ) +

1

2
T 2(−sγ + λ),

which is minimized at t∗0 = 0. Hence we have

t∗0 = 0.

Case 2 λ < sγ < sγ

Let t1 be the time it takes to clear the system if one starts applying γ from time 0 and is

allowed to apply as long as possible. Then t1 satisfies

x0 +

∫ t1

0
(λ− sγ)dt = 0,

which gives us t1 = x0
sγ−λ .

First, if δ > t1 then whenever we start, i.e., whatever t0 we choose, we will be able to clear out

the system before t0 + δ. Second, if δ ≤ t1, then there exists an interval [0, t2] with t2 > 0 such
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that for any 0 ≤ t0 < t2 we will have x(t0 + δ) > 0, and for any t0 ≥ t2 we will have x(t0 + δ) = 0.

Hence t2 satisfies

x0 +

∫ t2

0
(λ− sγ)dt+

∫ t2+δ

t2

(λ− sγ)dt = 0,

which gives us

t2 =
x0 − (sγ − λ)δ

sγ − λ
.

Lastly, let t3 be the time it takes to clear the system if one uses γ at all times, then t3 satisfies

x0 +

∫ t1

0
(λ− sγ)dt = 0,

which gives us t3 = x0
sγ−λ . We consider three scenarios based on the definition of t1 and t2.

Case 2.1 δ < t1 and T < t2 + δ, i.e., δ < min{ x0
sγ−λ ,

x0
s(γ−γ) −

T (sγ−λ)

s(γ−γ) }.

In this situation, whatever t0 one chooses, one will not be able to clear the system by T . Hence,

for any 0 ≤ t0 ≤ T − δ, we have

A =

∫ t0

0

[
x0 + (λ− sγ)t

]
dt+

∫ t0+δ

t0

[x(t0) + (λ− sγ)(t− t0)] dt

+

∫ T

t0+δ

[
x(t0 + δ) + (λ− sγ)(t− t0 − δ)

]
dt,

where

x(t0) = x0 + (λ− sγ)t0,

x(t0 + δ) = x0 + (λ− sγ)t0 + (λ− sγ)δ,

subsituiting into the expression for A we get

A =
1

2

{
−s(γ − γ)δ(2t0 + δ) + 2T (x0 + s(γ − γ)δ) + T 2(−sγ + λ)

}
= 2s(γ − γ)δt0 +

1

2

{
−s(γ − γ)δ

2
+ 2T (x0 + s(γ − γ)δ) + T 2(−sγ + λ)

}
,

which is minimized at t∗0 = 0. Hence we have t∗0 = 0.

Case 2.2 δ < t1 and T > t2 + δ, i.e., x0
s(γ−γ) −

T (sγ−λ)

s(γ−γ) < δ < x0
sγ−λ .
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This is the situation where if t0 < t2 then x(t0 + δ) > 0 while if t0 ≥ t2 the fluid will drop to

zero before t0 + δ and stays there until T .

First we argue that it is suboptimal to let t0 > t2. Consider two policies π and γ. tπ0 = t2 and

t2 < tγ0 ≤ min{T − δ, t3} (It is obvious that one shall not choose t0 to be later than t3). And for

both π and γ we have δπ = δγ = δ. We are going to show that Aπ ≤ Aγ . Since tγ0 > tπ0 = t2,

xπ(t) = xγ(t) for 0 ≤ t ≤ t2. Thus

Aπ −Aγ =

∫ T

t2

xπ(t)dt−
∫ T

t2

xγ(t)dt.

Let t4 be the time when the fluid drops to zero under policy γ, then

xγ(t4) = x0 + (λ− sγ)tγ0 + (λ− sγ)(t3 − tγ0) = 0,

which gives us

t4 =
x0 + (sγ − sγ)tγ0

sγ − λ
,

and ∫ T

t2

xπ(t)dt =

∫ t2+δ

t2

[x(t2) + (λ− sγ)(t− t2)] dt,

∫ T

t2

xγ(t)dt =

∫ tγ0

t2

[
x(t2) + (λ− sγ)(t− t2)

]
dt+

∫ t4

tγ0

[xγ(tγ0) + (λ− sγ)(t− tγ0)] dt.

Since by definition of t2, xπ(t) = 0 for t ≥ t2 + δ, and by definition of t4, xγ(t) = 0 for t ≥ t4, we

also have

xγ(tγ0) = x(t2) + (λ− sγ)(tγ0 − t2),
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using this in
∫ T
t2
xγ(t)dt we get

∫ T

t2

xγ(t)dt =

∫ tγ0

t2

[x(t2) + (λ− sγ)(t− t2)] dt+

∫ tγ0

t2

(sγ − sγ)(t− t2)dt

+

∫ t4

tγ0

[x(t2) + (λ− sγ)(t− t2)] dt+

∫ t4

tγ0

[
(λ− sγ)(tγ0 − t2)

]
dt

+

∫ t4

tγ0

[(λ− sγ)(t2 − tγ0)] dt

=

(∫ t4

t2

[x(t2) + (λ− sγ)(t− t2)] dt

)
+

(sγ − sγ)(tγ0 − t2)2

2

+ (sγ − sγ)(tγ0 − t2)(t3 − tγ0) >

∫ t4

t2

[x(t2) + (λ− sγ)(t− t2)] dt,

comparing this with the expression for
∫ T
t2
xπ(t)dt, if we can show that t4 > t2 + δ we are done.

Now

t4 =
x0 + (sγ − sγ)tγ0

sγ − λ
>
x0 + (sγ − sγ)t2

sγ − λ
= t2 +

x0 + (λ− sγ)t2

sγ − λ

=t2 +
1

sγ − λ

[
x0 + (λ− sγ)

x0 − (sγ − λ)δ

sγ − λ

]
=t2 + δ.

This completes the argument. Thus it is suboptimal to start after t2.

Now consider a policy that chooses 0 ≤ t0 ≤ t2, let t5 be the time the system is cleared, then

t5 satisfies

x0 + (λ− sγ)t0 + (λ− sγ)δ + (λ− sγ)(t5 − t0 − δ) = 0,

which gives us

t5 = δ +
x0 − δ(sγ − λ)

sγ − λ
,

and hence

A =

∫ t1

t0

[
x0 + (λ− sγ)t

]
dt+

∫ t0+δ

t0

[x(t0) + (λ− sγ)(t− t0)] dt

+

∫ t5

t0+δ

[
x(t0 + δ) + (λ− sγ)(t− t0 − δ)

]
,
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where

x(t0) = x0 + (λ− sγ)t0,

x(t0 + δ) = x0 + (λ− sγ)t0 + (λ− sγ)δ,

subsituiting into the expression for A we get

A =
x2

0 + 2sx0(γ − γ)δ − s(γ − γ)δ
[
s(2t0γ + γδ)− (2t0 + δ)λ

]
2sγ − 2λ

= s(γ − γ)δt0 +
x2

0 + 2sx0(γ − γ)δ − s(γ − γ)δ
2
(sγ − λ)

2sγ − 2λ
,

which is minimized at t∗0 = 0.

Case 2.3 δ > t1 = x0
sγ−λ .

This is the situation where whatever 0 ≤ t0 ≤ T − δ one chooses, one will be able to clear the

system before t0 + δ. Let t6 be the time when the fluid is cleared if one starts at t0, then t6 satisfies

x0 + (λ− sγ)t0 + (λ− sγ)(t6 − t0) = 0,

which gives us t6 =
x0+(sγ−sγ)t0

sγ−λ . Hence for any 0 ≤ t0 ≤ min{T − δ, t3}, we have

A =

∫ t0

0

[
x0 + (λ− sγ)t

]
dt+

∫ t6

t0

[x(t0) + (λ− sγ)(t− t0)] dt,

where

x(t0) = x0 + (λ− sγ)t0,

substituiting into the expression of A we get

A =
x2

0 + 2st0x0(−γ + γ) + st20(γ − γ)(sγ − λ)

2sγ − 2λ
,

which is minimized at t∗0 = 0.

Case 3 sγ < λ < sγ
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Let t1 ≥ 0 denote the time it takes to clear the system if one starts to apply γ from 0 and is

allowed to apply it for as long as possible. Then t1 satisfies

x0 + (λ− sγ)t1 = 0,

which gives us t1 = x0
sγ−λ .

Let t2 ≥ 0 be the point such that if one applies γ from [0, t2] and γ from [t2, t2 + δ] then the

fluid will drop to zero at t2 + δ. Then t2 satisfies

x(t2 + δ) = x0 + (λ− sγ)t2 + (λ− sγ)δ = 0,

which gives us t2 = δ(sγ−λ)−x0
λ−sγ . We consider three scenarios based on the definitions of t1 and t2.

Case 3.1 T < t1 or T > t1 and δ < t1.

This is the situation where no matter where one starts to apply γ for a maximum length of δ

one will not be able to clear the system before T . For any 0 ≤ t0 ≤ T − δ, we have

A =

∫ t0

0

[
x0 + (λ− sγ)t

]
dt+

∫ t0+δ

t0

[x(t0) + (λ− sγ)(t− t0)] dt

+

∫ T

t0+δ

[
x(t0 + δ) + (λ− sγ)(t− t0 − δ)

]
dt,

where

x(t0) = x0 + (λ− sγ)t0,

x(t0 + δ) = x0 + (λ− sγ)t0 + (λ− sγ)δ,

subsituiting into the expression for A we get

A =
1

2

{
−s(γ − γ)δ(2t0 + δ) + 2T

[
x0 + s(γ − γ)δ

]
+ T 2(−sγ + λ)

}
= 2s(γ − γ)δt0 + T

[
x0 + s(γ − γ)δ

]
+

1

2
T 2(−sγ + λ),

which is minimized at t∗0 = 0.

Case 3.2 δ > t1 (hence T > t1) and T > t2 + δ
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This is the case where if and only if one chooses t0 ≤ t2 then one will be able to clear the

system at some point before T . First we show that it is suboptimal to let t0 > t2. We consider two

policies π and γ for which tπ0 = t2 and t2 < tγ0 < T − δ. And for both π and γ we have δπ = δγ = δ.

We are going to show that Aπ < Aγ . First, it is easy to see that xπ(t) = xγ(t) for 0 ≤ t ≤ tπ0 = t2.

Hence

Aπ −Aγ =

∫ T

t2

xπ(t)dt−
∫ T

t2

xγ(t)dt.

Also, xπ(t2) = xγ(t2) = x0 + (λ− sγ)t2. To compute
∫ T
t2
xπ(t)dt we write

∫ T

t2

xπ(t)dt =

∫ t2+δ

t2

[x(t2) + (λ− sγ)(t− t2)] dt+

∫ T

t2+δ
(λ− sγ)(t− t2 − δ)dt,

where we have used the fact that that xπ(t2 + δ) = 0, by definition of t2. To compute
∫ T
t2
xγ(t)dt

we write

∫ T

t2

xγ(t)dt =

∫ tγ0

t2

[x(t2) + (λ− sγ)(t− t2)]dt+

∫ tγ0+δ

tγ0

[xγ(tγ0) + (λ− sγ)(t− tγ0)]dt

+

∫ T

tγ0+δ
[xγ(tγ0 + δ) + (λ− sγ)(t− tγ0 − δ)]dt,

where

xγ(tγ0) = x(t2) + (λ− sγ)(tγ0 − t2) = x(t2) + (λ− sγ)∆.

xγ(tγ0 + δ) =xγ0(tγ0) + (λ− sγ)δ

=x(t2) + (λ− sγ)∆ + (λ− sγ)δ

=(λ− sγ)∆,

where we denote ∆ = tγ0−t3. Notice that we have used the fact that xπ(t2+δ) = x(t2)+(λ−sγ)δ = 0,

by definition of t2, and the fact that for tγ0 > t2, one must have xγ(tγ0 + δ) > 0. Substituiting the
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above two equations into that of
∫ T
t2
xγ(t)dt we have

∫ T

t2

xγ(t)dt =

∫ tγ0

t2

[x(t2) + (λ− sγ)(t− t2)dt+

∫ tγ0+δ

tγ0

[x(t2) + (λ− sγ)∆ + (λ− sγ)(t− tγ0)]dt

+

∫ T

tγ0+δ
[(λ− sγ)∆ + (λ− sγ)(t− tγ0 − δ)]dt

=

∫ tγ0

t2

[x(t2) + (λ− sγ)(t− t2)]dt+

∫ tγ0

t2

s(γ − γ)(t− t2)dt

+

∫ t2+δ

tγ0

[x(t2) + (λ− sγ)(t− t2)]dt+

∫ t2+δ

tγ0

[(λ− sγ)∆− (λ− sγ)∆]dt

+

∫ tγ0+δ

t2+δ
[x(t2) + (λ− sγ)∆ + (λ− sγ)(t− tγ0)]dt

+

∫ T

t2+δ
(λ− sγ)(t− t2 − δ)dt−

∫ tγ0+δ

t0+δ
[(λ− sγ)∆ + (λ− sγ)(t− tγ0 − δ)]dt

=

∫ t2+δ

t2

[x(t2) + (λ− sγ)(t− t2)]dt+

∫ T

t2+δ
(λ− sγ)(t− t2 − δ)dt

+ s(γ − γ)
∆2

2
+ s(γ − γ)∆(δ −∆) + x(t2)∆ + (λ− sγ)∆2

+ (λ− sγ)∆(δ − ∆

2
)− (λ− sγ)∆2 + (λ− sγ)

∆2

2

=

∫ T

t2

xπ(t)dt+ ∆[(λ− sγ)δ + x(t2)] >

∫ T

t2

xπ(t)dt,

and thus Aπ < Aγ . It is suboptimal to start after t2.

Now We have shown that one shall choose 0 ≤ t0 ≤ t2. We find out the optimal t0 by expressing

A as a function of t0 and minimize it. Since t0 ≤ t2, by definition of t2 we will be able to clear the

system at some point before T . Let t3 be such point, then t3 satisfies

x0 + (λ− sγ)t0 + (λ− sγ)(t3 − t0) = 0,

which gives us t3 =
(sγ−sγ)t0+x0

sγ−λ . It is easy to see that t3− t0 < δ, hence we will be able to keep the

fluid level at 0 for a positive amount of time until t4, and t4 = t3+(δ−(t3−t0)) = t0+δ < t2+δ < T .

Hence from t4 and on until T the fluid level will build up by a rate of λ − sγ per unit of time.

Based on the discussion we can write

A =

∫ t0

0

[
x0 + (λ− sγ)t

]
dt+

∫ t3

t0

[x(t0) + (λ− sγ)(t− t0)] dt+

∫ T

t4

(λ− sγ)(t− t4)dt,
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where x(t0) = x0 + (λ− sγ)t0. Substituiting into the expression of A we get

A = at20 + bt0 + c,

where

a = −sγ + λ+
(−sγ + λ)2

2(sγ − λ)
= (λ− sγ)

(
1 +

λ− sγ
2(sγ − λ)

)
.

b = x0 − T (−sγ + λ) + δ(−sγ + λ) +
x0(−sγ + λ)

sγ − λ
=
sγ − sγ
sγ − λ

x0 − (λ− sγ)(T − δ).

Hence we have

− b

2a
=
T − δ − sγ−sγ

(sγ−λ)(λ−sγ)x0

2 +
λ−sγ
sγ−λ

.

If − b
2a < 0, then

t∗0 = 0.

If − b
2a > t2, then

t∗0 = t2 =
δ(sγ − λ)− x0

λ− sγ
.

else

t∗0 = − b

2a
=
T − δ − sγ−sγ

(sγ−λ)(λ−sγ)x0

2 +
λ−sγ
sγ−λ

.

Case 3.3 δ > t1 and T < t2 + δ.

By the condition T < t2+δ we get T−δ < t2. Since we have already shown that it is suboptimal

to t0 > T − δ. For any 0 ≤ t0 ≤ T − δ < t2, let t3 and t4 be as defined in Case 3.2, they shall have

the same expressions. The fluid will drop to zero at t3, stay there until t4 and then build up at a

rate of λ− sγ until T , which is because t4 = t0 + δ < T − δ + δ = T . And hence A take the same

expression as in Case 3.2. Hence if − b
2a < 0, then t∗0 = 0; If − b

2a > T − δ, then t∗0 = T − δ; else

t∗0 = − b
2a , where a and b take the same expressions as in Case 3.2.

Summarizing the results from all cases considered, we end up with the result of the theorem.

This completes the proof.
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A.6 Single-Server Clearing Model

We consider a single-server clearing model for which all model assumptions are the same as

those for the queueing model discussed in Chapter 2, except that there is no external arrivals to

the system and the system starts with a fixed number of customers, denoted by N , where N ≥ 1.

We also assume without loss of generality that the first customer in queue enters service at the

beginning of time. Our objective is to minimize total expected cost until the system is emptied.

We formulate the problem as a Markov decision process. The state space X can be described

as X = {0} ∪ {(m,n) | m ∈ {αi}∞i=1 ∪ {2, 3}, 1 ≤ n ≤ N}. The state definition has the same format

and meanings as that for the main model in discussion except that the number of customers in

the system cannot exceed N , the initial number of customers presented, since there is no external

arrivals from time 0 and onwards. As before, We restrict ourselves to the policy set Π, where

any π ∈ Π is a stationary, non-idling, state-dependent policy, and is a mapping from the system

state X to the action space A = {0, 1} where 0 corresponds to the decision of starting a sequential

service and 1 corresponds to the decision of starting a parallel service under the constraint no

action is available in state (0) and action 1 is only available in states x = (αi, n), for some i

and 1 ≤ n ≤ N . Again, here the policies we consider can be seen as preemptive in the sense

that the system controller can switch from “parallel service” to “service in sequence” at a decision

epoch, which can correspond to either an arrival time or a service completion time, as long as

neither primary nor secondary service is complete for the customer or from “service in sequence”

to “parallel service” as long as the primary service of the customer is still in progress.

We apply uniformization with uniformization constant β = γ1 + γ2. Without loss of generality

we assume β = 1. Thus, instead of considering a continuous-time problem defined above we can

look at a discrete-time equivalent. The finite horizon total cost optimality equations (FHTCOE)

for the single server clearing model are

V (0) = 0. (A.1)
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For 1 ≤ n ≤ N ,

V (αi, n) = nCw + (1− αi)γ1

∑
j

qjV (αj , n− 1) + αiγ1V (3, n)

+ γ2 min{V (αi, n) +
αiγ1

γ2
Cs, V (2, n) +

γ1 + γ2

γ2
Cp}, (A.2)

where we define V (αi, 0) = V (0) = 0 for all i for convenience of representation. And (αi, 0)s are

not in the state space.

V (2, n) = nCw + γ1

∑
j

qjV (αj , n− 1) + γ2V (2, n). (A.3)

V (3, n) = nCw + γ2

∑
j

qjV (αj , n− 1) + γ1V (3, n). (A.4)

Next we show that the optimal policy can be characterized by a simple formula. Notice that

from the optimality equations, it is optimal to use the parallel service option if and only if V (αi, n)+

αiγ1
γ2
Cs > V (2, n) + γ1+γ2

γ2
Cp at state (αi, n) where the system has n customers and the customer

who is currently receiving stage-1 service and for whom no stage-2 service has ever been completed

has type-2 probability being αi. The next theorem shows when the inequality is satisfied and thus

prescribes the structure of the optimal policy.

Theorem 5. For the single-server clearing model, it is optimal to call ahead if and only if

nCw
αi

γ1+γ2
≥ Cp − αiCs.

Proof. We only need to show that V (αi, n) + αiγ1
γ2
Cs ≥ V (2, n) + γ1+γ2

γ2
Cp, or V (αi, n)− V (2, n) ≥

γ1+γ2
γ2

Cp − αiγ1
γ2
Cs if and only if nCw

αi
γ1+γ2

≥ Cp − αiCs. Subtracting (A.3) from (A.2) we get

V (αi, n)− V (2, n) =αiγ1

V (3, n)−
∑
j

qjV (αj , n− 1)


+ I{V (αi,n)−V (2,n)≤ γ1+γ2

γ2
Cp−αiγ1γ2

Cs}γ2

[
V (αi, n) +

αiγ1

γ2
Cs − V (2, n)

]
+ I{V (αi,n)−V (2,n)>

γ1+γ2
γ2

Cp−αiγ1γ2
Cs}(γ1 + γ2)Cp.
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Due to (A.4) we have V (3, n)−
∑

j qjV (αj , n− 1) = nCw
γ2

, substituiting into the above we get

V (αi, n)− V (2, n) =
nαiγ1

γ2
Cw

+ I{V (αi,n)+
αiγ1
γ2

Cs≤V (2,n)+
γ1+γ2
γ2

Cp}γ2

[
V (αi, n) +

αiγ1

γ2
Cs − V (2, n)

]
+ I{V (αi,n)+

αiγ1
γ2

Cs>V (2,n)+
γ1+γ2
γ2

Cp}(γ1 + γ2)Cp.

This means if V (αi, n)− V (2, n) ≤ γ1+γ2
γ2

Cp − αiγ1
γ2
Cs, then

V (αi, n)− V (2, n) =
nαiγ1

γ2
Cw + γ2

[
V (αi, n) +

αiγ1

γ2
Cs − V (2, n)

]
≤ γ1 + γ2

γ2
Cp −

αiγ1

γ2
Cs ⇐⇒

V (αi, n)− V (2, n) =
nαi
γ2

Cw + αiCs ≤
γ1 + γ2

γ2
Cp −

αiγ1

γ2
Cs ⇐⇒

nCw
αi

γ1 + γ2
< Cp − αiCs.

While if V (αi, n)− V (2, n) > γ1+γ2
γ2

Cp − αiγ1
γ2
Cs then

V (αi, n)− V (2, n) =
nαiγ1

γ2
Cw + (γ1 + γ2)Cp ≥

γ1 + γ2

γ2
Cp −

αiγ1

γ2
Cs

⇐⇒ nCw
αi

γ1 + γ2
< Cp − αiCs.

A.7 Tables for Chapter 5

Table A.1: Odds ratios of Prob(high acuity)/Prob(low or medium acuity) = Prob(medium or high acu-
ity)/Prob(low acuity) for chief complaint (contrast: other) from the model for the association between ED
census and triage decisions. (A model where the two odds ratios were not necessarily the same for chief
complaints provided similar results.)

P(high)/P(low or medium) 95% CI for OR

abdominal pain 1.982 [1.858,2.114]

abdominal swelling 1.486 [.678,3.258]

Continued on next page
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Table A.1 – continued from previous page

P(high)/P(low or medium) 95% CI for OR

abnormal electrocardiogram 3.331 [1.589,6.982]

abnormal laboratory test 2.287 [1.594,3.282]

altered mental status 10.690 [9.126,12.522]

anorexia .959 [.566,1.625]

atrial fibrillation 6.865 [4.502,10.470]

back pain .212 [.193,.234]

blood in stool 1.416 [1.004,1.997]

cancer 4.550 [3.560,5.817]

chest pain 3.798 [3.522,4.096]

confusion 2.776 [1.264,6.097]

cough .447 [.377,.530]

crohns flare 2.245 [1.120,4.502]

dehydration 2.074 [1.413,3.044]

dialysis 1.118 [.695,1.800]

dyspnea 2.962 [2.393,3.666]

fever 1.292 [1.181,1.412]

gastrointestinal bleed 3.223 [2.039,5.092]

headache 1.167 [1.051,1.297]

hemoptysis 1.564 [.882,2.774]

high blood sugar 2.463 [1.795,3.379]

hypotension 11.655 [6.642,20.452]

jaundice 1.406 [.679,2.913]

lethargic 2.869 [1.466,5.615]

loss of consciousness 2.229 [1.061,4.683]

overdose 68.729 [37.241,126.839]

palpitations 2.107 [1.323,3.354]

Continued on next page
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Table A.1 – continued from previous page

P(high)/P(low or medium) 95% CI for OR

pancreatitis 1.795 [.978,3.295]

pneumonia 2.433 [1.716,3.450]

pulmonary embolus 7.302 [3.453,15.439]

rapid heart rate 6.345 [3.820,10.540]

rectal bleed 1.852 [1.424,2.409]

respiratory distress 17.610 [12.175,25.471]

seizure 3.854 [3.012,4.932]

shortness of breath 3.324 [2.993,3.692]

slurred speech 3.958 [1.967,7.963]

stroke 14.250 [9.885,20.544]

syncope 2.541 [2.155,2.995]

tachycardia 5.246 [2.609,10.549]

transient ischemic attack 4.825 [2.330,9.991]

unable to walk 1.547 [0.666,3.591]

vomiting blood 2.278 [1.520,3.415]

weakness 2.129 [1.771,2.559]

wheezing 1.671 [1.144,2.442]

Table A.2: Odds ratios of Prob(admit) versus Prob(discharge) for chief complaint (contrast: other) from
the model for the association between ED census and disposition decisions.

Prob(admit)/Prob(discharge) 95% CI for OR

abdominal pain 1.155 [1.068,1.248]

abdominal swelling 1.913 [.816,4.488]

abnormal electrocardiogram .668 [.292,1.528]

abnormal laboratory test 3.273 [2.185,4.902]

Continued on next page
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Table A.2 – continued from previous page

Prob(admit)/Prob(discharge) 95% CI for OR

altered mental status 1.974 [1.625,2.398]

anorexia 3.987 [2.001,7.946]

atrial fibrillation 2.911 [1.627,5.207]

back pain .450 [.367,.551]

blood in stool 1.303 [.888,1.912]

cancer 2.977 [2.210,4.010]

chest pain 1.511 [1.387,1.645]

confusion 1.078 [.454,2.561]

cough .676 [.503,.910]

crohns flare 3.252 [1.523,6.942]

dehydration 1.792 [1.182,2.716]

dialysis 2.241 [1.314,3.820]

dyspnea 1.226 [.945,1.590]

fever 1.429 [1.260,1.620]

gastrointestinal bleed 4.417 [2.386,8.178]

headache .452 [.380,.539]

hemoptysis 5.894 [2.892,12.012]

high blood sugar 1.136 [.807,1.601]

hypotension 1.534 [.781,3.014]

jaundice 3.263 [1.331,8.000]

lethargic 1.774 [.826,3.809]

loss of consciousness .812 [.341,1.934]

overdose 1.866 [1.180,2.951]

palpitations .379 [.204,.701]

pancreatitis 8.739 [4.062,18.804]

pneumonia 3.281 [2.175,4.949]

Continued on next page
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Table A.2 – continued from previous page

Prob(admit)/Prob(discharge) 95% CI for OR

pulmonary embolus 1.315 [.559,3.091]

rapid heart rate .716 [.396,1.295]

rectal bleed 1.619 [1.217,2.155]

respiratory distress 4.801 [2.766,8.335]

seizure .799 [.598,1.067]

shortness of breath 2.096 [1.857,2.365]

slurred speech 1.947 [.877,4.322]

stroke 1.801 [1.131,2.869]

syncope 1.074 [.896,1.288]

tachycardia 1.233 [.552,2.752]

transient ischemic attack 1.078 [.487,2.386]

unable to walk 2.389 [.989,5.772]

vomiting blood 1.678 [1.069,2.634]

weakness 1.892 [1.548,2.311]

wheezing 1.511 [.913,2.502]

Table A.3: Odds ratios of Prob(admit) versus Prob(discharge) for interaction terms between ESI and age
group (contrast: ESI3 and Age Group 18 to 40) from the model for the association between ED census and
disposition decisions. (Some of the interaction terms are omitted due to small sample sizes.)

Prob(admit)/Prob(discharge) 95% CI for OR

ESI2 and 3m below 1.150 [.642,2.059]

ESI4 and 3m below .760 [.350,1.649]

ESI2 and 3m to 3 1.382 [.993,1.923]

ESI4 and 3m to 3 .481 [.307,.753]

ESI5 and 3m to 3 .743 [.076,7.213]

Continued on next page
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Table A.3 – continued from previous page

Prob(admit)/Prob(discharge) 95% CI for OR

ESI1 and 3 to 8 .971 [.197,4.775]

ESI2 and 3 to 8 1.119 [.808,1.550]

ESI4 and 3 to 8 .829 [.544,1.262]

ESI1 and 8 to 18 3.197 [.403,25.367]

ESI2 and 8 to 18 .731 [.590,.907]

ESI4 and 8 to 18 .811 [.555,1.187]

ESI5 and 8 to 18 3.170 [.630,1.596]

ESI1 and 40 to 55 .564 [.260,1.228]

ESI2 and 40 to 55 .854 [.732,.995]

ESI4 and 40 to 55 .832 [.617,1.123]

ESI5 and 40 to 55 .944 [.157,5.684]

ESI1 and 55 to 70 .644 [.266,1.560]

ESI2 and 55 to 70 .888 [.751,1.050]

ESI4 and 55 to 70 1.101 [.812,1.494]

ESI5 and 55 to 70 .667 [.069,6.465]

ESI1 and 70 and above 1.015 [.331,3.119]

ESI2 and 70 and above .871 [.717,1.059]

ESI4 and 70 and above 1.317 [.905,1.915]

ESI5 and 70 and above 6.992 [1.113,4.394]

We used three criteria to check multicollinearity between control variables as suggested in

(Belsley et al., 2005). First, we calculated the Variance Inflation Factors (VIF), which are the

diagonal entries of the standardized design matrix. It is generally considered that variance inflation

factors greater than 10 are indicative of significant multicollinearity. In our data, the largest VIF

is only 0.002. Second, we checked the condition indices as denoted by ηk = µmax

µk
, where µk’s are

the singular values of the standardized design matrix and max is their maximum. According to
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(Belsley et al., 2005), a rough guide is that condition indices of the order 5-10 are associated with

weak dependencies, but those in the range 30-100 imply moderate to strong association. In our

data, ηk’s corresponding to the interaction terms between acuity and age, and are generally within

the range of 5-10, hence indicative of a weak dependency between the age and acuity interaction

terms but those for all the other variables are very small not indicative of any multicollinearity.

Finally, we checked the quantity πkj ’s, which measure the proportion of the variance of the jth

parameter estimate that is accounted for by the kth singular value. (Belsley et al., 2005) suggest

to look for instances in which a k with large ηk gives rise to at least two large values of πkj and

that proportions of the order of 0.999 are not uncommon in cases of serious multicollinearity. In

our data, we did not find any such instance. In summary, based on the three criteria we checked,

we did not find any severe multicollinearity between any control variables of interest in this study.
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