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ABSTRACT

Sujatro Chakladar: Causal Inference with Partial Interference and Right Censored
Outcomes

(Under the direction of Michael G. Hudgens)

Interference arises when the outcome of one individual depends on the treatment

status of another individual. Partial interference is a special case of interference where

individuals can be partitioned into groups such that no interference occurs between groups

but may occur within groups. In the absence of interference, inverse probability weighted

(IPW) estimators are commonly used to draw inference about causal effect. Tchetgen

Tchetgen and VanderWeele (2012) proposed a modified IPW estimator for different causal

effects in the presence of partial interference. An extension of the Tchetgen Tchetgen and

VanderWeele IPW estimator is proposed for the setting where the outcome is subject to

right censoring using inverse probability of censoring weights (IPCW). Censoring weights

are calculated using parametric frailty models. The large sample properties of the IPCW

estimators are derived and simulation studies are presented demonstrating the estimators’

performance in finite samples. The methods are illustrated using data from a cholera

vaccination trial in Matlab, Bangladesh.

Unfortunately, IPW methods often suffer from a significant disadvantage due to the

instability of propensity scores. The generalized computation algorithm formula (g for-

mula) is a natural alternative for IPW estimators. Robins (1986) proposed the use of

g-computation algorithm in the absence of interference to infer causal estimands of in-

terest. Since then, the parametric g formula has been used for data with time varying

confounding and exposure and also for time to event data (Robins 1987, Taubman et al.

2009, Westreich et al. 2012, Keil et al. 2014). An extension of the parametric g formula

iii



is proposed when there is time to event data with right censoring and possible partial

interference. Parametric frailty models are used to model the probability of an event.

Derivation of large sample properties of the estimator is provided. Simulation studies

show the operating characteristics of the method for finite samples. The cholera vacci-

nation trial in Matlab, Bangladesh is used to illustrate the methods in a real scenario.

But both of these methods rely on the intrinsic assumption that the underlying models

are correctly specified. If the treatment model is incorrect then the IPW/IPCW estima-

tor will be inconsistent. Similarly, if the outcome model is incorrect then the parametric

g formula will not be consistent. A doubly robust method is proposed to incorporate ro-

bustness under model misspecification so that the estimator is consistent even when only

one of the two models is correctly specified. Large sample properties of the estimator are

discussed. Finite sample performance of the method is also observed through simulation

and the results are compared with the IPW/IPCW and parametric g formula. Finally,

the doubly robust method is also applied to the cholera vaccine trial.

iv



ACKNOWLEDGEMENTS

This work was supported by NIH grant R01 AI085073. I would like to start by

thanking my dissertation committee members for their valuable input and support. In

particular, suggestions by Dr. Chirayath M. Suchindran and Dr. Stephen R. Cole about

time dependent censoring and parametric frailty models have been instrumental in my

project. I am also grateful to Dr. Jianwen Cai, especially for her recommendations on

the finite sample behavior of my estimates. Finally, I am also thankful to Dr. Michael

Emch for his comments that have made me appreciative about the implication of my

method on real data and in turn, have helped a great deal to interpret the results of my

work. Apart from my committee members, I would also like to thank Dr. M. Elizabeth

Halloran for her comments and suggestions on my first paper.

During the course of my research work, I have often found myself lost trying to tackle

problems both pertaining to my research work and my personal life. I am eternally

grateful to my adviser Dr. Michael G. Hudgens for always helping me through those

tough times. He has taught me a great deal about how to handle complex problems,

being methodical, and research work in general. I regard him as a great teacher and I

consider myself very fortunate to be one of his students. His unwavering motivation and

support have made my research possible. I sincerely thank him for his guidance.

I had the opportunity to be part of the Causal Inference with Interference (CIWI)

research group which has been a great experience. Suggestions of my group members

have often helped me make progress towards my goal. I would like to thank all CIWI

members: Brian Barkley, Bradley Saul, Wen Wei Loh, Shaina Mitchell, Kayla Kilpatrick,

and Bryan Blette for their contributions which have made research work a lot easier.

v



I would also like to thank my friends in North Carolina who have made my life here

easier and friends outside of North Carolina who have enriched my world. In particular,

to name a few, I am grateful towards Arkopal Choudhury, Arkaprava Roy, Aniket Bera,

Suman Chakraborty, Sujayam Saha, Debraj Das, Pratyaydipta Rudra, Sayan Banerjee,

Sayan Dasgupta, Abhishek Pal Majumder, Jyotishka Datta, Shalini Choudhury, Maxwell

Datta, Subhamay Saha, Sapna Rao, Anwesha Goswami, Rinku Majumder, and Samarpan

Majumder for always being there for me. I am thankful to Delilah for being in my life.

Last but not the least, I am forever grateful to Sohini Raha for her unending support,

constant enthusiasm, and for always guiding me through all the tough times that I

encountered.

Finally, I would like to dedicate my thesis to my parents, Shyamal and Gouri Chak-

ladar, my sister Soumita Das, and my nephew Shreyansh Das. I could not have managed

my journey without their support.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1: LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . 1

1.1 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Inverse Probability Weighting . . . . . . . . . . . . . . . . . . . . 3

1.1.2 G Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Doubly Robust Estimator . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Motivating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 2: CAUSAL INFERENCE WITH PARTIAL
INTERFERENCE AND RIGHT CENSORED OUTCOMES
USING IPCW ESTIMATORS . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Estimands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Proposed Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



2.4.1 Cholera Vaccine Study and Analysis . . . . . . . . . . . . . . . . 25

2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 3: PARAMETRIC G-FORMULA WITH PAR-
TIAL INTERFERENCE AND RIGHT CENSORING . . . . . . . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Estimands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Proposed Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Cholera Vaccine Study and Analysis . . . . . . . . . . . . . . . . 48

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

CHAPTER 4: DOUBLY ROBUST ESTIMATION FOR
DATA WITH PARTIAL INTERFERENCE AND RIGHT
CENSORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Estimands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 IPCW and Parametric G Formula Estimators . . . . . . . . . . . 64

4.2.4 Proposed Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.5 Properties of the Proposed Estimator . . . . . . . . . . . . . . . . 68

4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

viii



4.4.1 Cholera Vaccine Study and Analysis . . . . . . . . . . . . . . . . 78

4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

CHAPTER 5: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2 . . . . . . . 93

APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 3 . . . . . . . 95

APPENDIX C: TECHNICAL DETAILS FOR CHAPTER 4 . . . . . . . 97

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



LIST OF TABLES

2.1 Results from simulation study described in Section 2.3. α
denotes the allocation probability, µ(100, a, α) is the true
value of the target parameter for a = 0, 1; Bias is the aver-
age of µ(100, a, α)−µ̂(100, a, α) for a = 0, 1; ESE is the em-
pirical standard error; ASE is the average of the sandwich
variance estimates; and EC denotes the empirical coverage
of the 95% Wald confidence intervals. . . . . . . . . . . . . . . . . . . . . 34

3.1 Results from simulation study described in Section 3.3. α
denotes the allocation probabilities, µ(100, a, α) is the true
value of the survival probabilities at time point 100 for a =
0, 1; bias is the average of µ(100, a, α)−mint(100, a, α, ω̂),
ESE is the empirical standard error, ASE is the average
of the sandwich variance estimators and EC denotes the
empirical coverage of the 95% Wald type confidence intervals. . . . . . . 56

3.2 AIC (BIC) values for different baseline hazard functions
corresponding to gamma, inverse Gaussian and Positive
stable frailty distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Results from simulation study described in Section 4.3. α
denotes the allocation probabilities, µ(100, a, α) is the true
value of the target parameter for a = 0, 1; Bias is the av-
erage of µ(100, a, α) − F̂DR(100, a, α) for a = 0, 1; ESE
is the empirical standard error, ASE is the average of the
sandwich variance estimates and EC denotes the empirical
coverage of the 95% Wald confidence intervals. . . . . . . . . . . . . . . . 89

4.2 AIC (BIC) values for different baseline hazard functions
corresponding to gamma, inverse Gaussian and positive
stable frailty distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

x



LIST OF FIGURES

2.1 Absolute bias (left) and 95% confidence interval coverage
(right) for different numbers of groups for α = 0.5. The
dotted line in the right plot corresponds to 95% coverage. . . . . . . . . . 31

2.2 Estimated cumulative probability of cholera over time for
vaccinated and unvaccinated for α = 0.3 (left), α = 0.45
(center) and α = 0.6 (right) . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Direct, indirect, total and overall effect estimates (×1000)
for different allocation strategies at time t = 1 year. Indi-
rect, total, and overall effects are with respect to α2 = 0.4.
The shaded regions denote pointwise 95% confidence inter-
vals of the estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Estimated cumulative probability of cholera against time
for vaccine and control for α = 0.3 (left), α = 0.45 (center)
and α = 0.6 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Direct effect, indirect effect, total effect and overall effect
estimates multiplied by 1000 for different allocation strate-
gies at time t = 1 year. Indirect effects, total effects and
overall effects are with respect to α2 = 0.4. The shaded
region denotes the 95% confidence interval of the estimates. . . . . . . . . 55

4.1 Absolute biases of the doubly robust, parametric g and the
IPCW estimators under different model misspecifications
in control group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Absolute biases of the doubly robust, parametric g and the
IPCW estimators under different model misspecifications
in treatment group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Coverages of the doubly robust, parametric g and the IPCW
estimators under different model misspecifications in con-
trol group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Coverages of the doubly robust, parametric g and the IPCW
estimators under different model misspecifications in treat-
ment group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xi



4.5 Direct effect, indirect effect, total effect and overall effect
estimates multiplied by 1000 for different allocation strate-
gies at time t = 1 year. Indirect effects, total effects and
overall effects are with respect to α2 = 0.4. The shaded
region denotes the 95% confidence interval of the estimates. . . . . . . . . 88

xii



CHAPTER 1: LITERATURE REVIEW

1.1 Causal Inference

Association does not always imply causation. Causal inference aims to address causal-

ity in statistical inference. Splawa-Neyman et al. (1923) put forward the idea of potential

outcomes which has become a building block of causal inference. Potential outcomes or

counterfactual outcomes are defined to be all possible outcomes for a study which are

not necessarily observed and can be treated as missing data. For example, consider a

randomized clinical trial with a vaccine and a placebo. Then, the outcome when an indi-

vidual would be administered placebo is not observed if the individual was administered

treatment. This gives rise to the concept of potential outcomes or counterfactuals. In

terms of mathematics, denote by Yi (i = 1, . . . , n), the binary outcome of n individu-

als. Ai represents the binary treatment status of individual i. Ai equals zero if the i-th

individual receives placebo and equals one if said individual receives treatment. The

potential outcome for individual i under treatment a is denoted by Y a
i . So, if individual i

receives placebo then Yi = Y 0
i and Y 1

i is unobserved and if individual i receives treatment

then Yi = Y 1
i and Y 0

i is unobserved. This is termed to be causal consistency formally

defined first in Gibbard and Harper (1976) and discussed in detail by Cole and Frangakis

(2009). Applications of this representation can be found in various literature including

(Haavelmo 1944, Robins and Greenland 1996, Pratt and Schlaifer 1988), epidemiology

(Greenland and Robins 1986, Robins et al. 2000; 1992, Robins 2000) social and behav-

ioral sciences (Sobel 1990; 1995, Willkinson 1999) and statistics (Rubin 2004, Pratt and

Schlaifer 1984).

Rubin (1974, 1977, 1978) defined various causal effects in terms of counterfactuals.
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For example, the average causal effect is defined as E(Y 1) − E(Y 0). He extended the

ideas for randomized experiments to non randomized studies. Most of the causal inference

framework assumes the Stable unit treatment value assumption (SUTVA) put forth by

Rubin (1980). The assumptions are-

1. There is no interference between individuals. That is, the treatment status of one

individual in no way affects the outcome of another individual. Mathematically Ai

has no effect on Yj if i 6= j.

2. There is only one version of treatment and control.

Along with SUTVA, in the case of a conditional randomized experiment or in an obser-

vational setting, it is often assumed that given a set of measured covariates, the potential

outcomes are independent of treatment. Denoting the set of measured confounders by L,

this assumption can be represented as Y a ⊥⊥ A|L. This assumption is often referred to

as conditional exchangeability (Hernán and Robins (2006), Hernan and Robins (2010)).

Conditional exchangeability fails when there exist unmeasured covariates affecting both

the treatment and outcome. Hence this assumption is also known as no unmeasured

confounding. Another assumption that is often found in causal literature is the assump-

tion of positivity discussed by Westreich and Cole (2010). According to this assumption,

Pr(A = a|L = l) > 0 for a ∈ (0, 1) when Pr(L = l) > 0. i.e. if a particular value of the

covariates has a positive probability of being observed in the data then given that value

of the covariate, the probability of an individual being in the treatment as well as in he

control group must be positive. These assumptions are discussed in depth by Hernán

and Robins (2006). Under these assumptions, popular methods for estimating causal

effects for observational studies include inverse probability treatment weighted (IPTW)

estimator, parametric g formula and doubly robust estimator.
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1.1.1 Inverse Probability Weighting

The idea of inverse probability weighting revolves around creating a pseudo population

of individuals by weighting the study population with appropriate weights. The earliest

known use of these IPW type estimators were suggested by Horvitz and Thompson (1952).

These estimates have been used to estimate various causal effects like the average causal

effect. For example, the IPTW estimate of E(Y a) is given to be

1

n

n∑
i=1

I(Ai = a)Yi
Pr(Ai = a|Li)

The weight for individual i is I(Ai=a)
Pr(Ai=a|Li)

. The assumption of positivity ensures that

the term in the denominator Pr(Ai = a|Li) is greater than 0. Hence the estimator is

well defined. Here, Li is the vector of covariates for individual i. Under the assumptions

discussed previously, it has been shown to be an unbiased estimator of the causal quantity

of interest E(Y a) if Pr(Ai = a|Li) is known. The quantity Pr(Ai = a|Li) is termed

as the propensity score (Rosenbaum and Rubin 1983). So, for individuals receiving

treatment, in the estimation of E(Y 0), they are assigned zero weight. Whereas in the

estimation of E(Y 1), they are assigned the weight of the inverse of the probability that

they receive treatment given their individual covariates. However in an observational

setting, the propensity scores are seldom known beforehand. Rosenbaum and Rubin

(1983) suggested estimating the weights using a logit model. IPW estimators suffer from a

serious drawback. When the propensity score is close to zero, then the estimator becomes

large and computation becomes difficult (Little and Rubin 2014, Cole and Hernán 2008).

Inclusion of too many variables in the model might give rise to these problems. Certain

covariates might generate very low probability of treatment. This occurrence is sometimes

called narrow strata in the literature (Lefebvre et al. 2008).
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1.1.2 G Formula

The generalized computation algorithm formula (g formula) provides an alternative

way to compute causal effects and is free from the aforementioned drawback of IPW

estimators discussed in the previous section. Robins (1986) proposed the g formula to

estimate causal effects. Using parametric outcome regression models along with the g

formula gives rise to the parametric g formula. This method is a generalization of stan-

dardization (Hernán and Robins 2006). The assumptions discussed previously facilitate

writing E(Y a) as being equal to
´
E(Y |A = a,L = l)dFL(l). Again, the positivity

assumption ensures that the parameter is well defined. So, an estimate of this causal

quantity of interest Ê(Y a) is obtained by empirically estimating the distribution of L.

The form of the estimator is given as follows-

1

n

n∑
i=1

Ê(Y |A = a,Li)

Ê(Y |A = a,Li) is estimated using an outcome regression model. For example, in case

of a binary outcome, a logit model might be appropriate for modeling Y conditional on

A and L. Parametric g formula has been proven to be particularly useful in adjusting

for time varying confounders for time to event data (Young et al. 2011). Parameters of

interest such as risk ratio (Taubman et al. 2009, Garcia-Aymerich et al. 2013, Cole et al.

2013) and hazard ratio (Westreich et al. 2012, Keil et al. 2014) have been calculated using

this method. In all of these papers, pooled Logistic regression is the choice of parametric

outcome model.

1.1.3 Doubly Robust Estimator

Both the IPW estimator and the parametric g formula operate under the obvious

intrinsic condition that the underlying model is specified correctly. However, if the treat-

ment model is specified incorrectly then the IPW will produce erroneous results (Lefebvre
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et al. 2008, Cole and Hernán 2008). Similarly if the outcome model is specified incorrectly

then the estimates obtained using the parametric g formula can not be trusted (Taubman

et al. 2009). The doubly robust estimator incorporates robustness within the estimator

in the sense that the doubly robust estimator will generate reasonable results even when

only one of the treatment and outcome regression models are specified correctly. Doubly

robust estimators have existed in literature for sample survey data (Cassel et al. 1977,

Särndal et al. 2003). There have been a number of papers on doubly robust estimators

applied for the missing data problem and causal inference (Kang and Schafer 2007, Bang

and Robins 2005). Lunceford and Davidian (2004) put forth a doubly robust estimator

for estimating causal effects. The estimator proposed was a weighted combination of the

IPW estimator and the parametric g estimator. The estimator is as follows

Ẽ[Y 1] = n−1
n∑
i=1

AiYi − {Ai − P̂r(Ai = a|Li)}m̂1(Li)

P̂r(Ai = a|Li)

and

Ẽ[Y 0] = n−1
n∑
i=1

(1− Ai)Yi + {Ai − P̂r(Ai = a|Li)}m̂0(Li)

1− P̂r(Ai = a|Li)

where m̂a(Li) = Ê(Y |A = a,Li) The authors showed large sample results for the doubly

robust estimator. They showed that the estimate is consistent asymptotically normal

and they calculated large sample variance as well. The authors also showed the doubly

robust property of the estimate. Research is still ongoing for doubly robust estimators.

Cao et al. (2009) improved upon the doubly robust estimator. When both the models

are misspecified, doubly robust estimators give rise to significant biases. They also give

rise to biases for the case when the estimated propensity score becomes close to 0. The

authors tried to address this issue by modifying the existing doubly robust estimator and

showed that they perform better in the said situation. Funk et al. (2011) provides a good

theoretical and practical explanation of the properties of the doubly robust estimator for

causal outcomes of interest.
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1.2 Interference

Interference is said to be present in a data when the the treatment status of one indi-

vidual affects the outcome of another individual (Cox 1958). An example of this might be

data on infectious diseases. In this setting, whether a person gets infected or not might

be affected by the treatment status of another individual (Halloran and Struchiner 1991).

Partial interference is a special case of interference. Partial interference occurs when we

have a partition of the data such that interference is observed within the individuals of a

group but not between the individuals in different groups (Sobel 2006). Data might show

traits of partial interference if there is a clear demographic separation between groups

of individuals based on geography, society, or temporality. Therefore, interference can

introduce possible indirect effects of interest which are termed spillover effects, or peer

effects. These effects have been discussed in various fields including criminology (Samp-

son 2010, Verbitsky-Savitz and Raudenbush 2012), developmental psychology (Duncan

et al. 2005, Foster 2010), econometrics (Sobel 2006, Manski 2013), education (Hong and

Raudenbush 2006, Vanderweele et al. 2013), imaging (Luo et al. 2012), political science

(Sinclair et al. 2012, Bowers et al. 2013), social media and network analysis (VanderWeele

and An 2013, Toulis and Kao 2013), (Eckles et al. 2014, Kramer et al. 2014), sociology

(Aronow and Samii 2017), and spatial analyses (Zigler et al. 2012, Graham et al. 2013).

Various literature propose methods for calculating interference effects in a randomized

setting (Rosenbaum 2007, Hudgens and Halloran 2008, Baird et al. 2018, Eckles et al.

2016). Hudgens and Halloran (2008) presented estimands of direct, indirect, total and

overall effects and proved the relations between them which was first discussed by Hallo-

ran and Struchiner (1991). Modifying previous notation, suppose data now has m groups

of individuals, with ni individuals per group for i = 1, . . . ,m. Denote by Aij, the indica-

tor of treatment status of individual j in group i i.e., if individual j in group i receives

treatment then Aij = 1 and otherwise Aij = 0. Also, let the vector of treatment indicator

of group i be denoted by Ai and that of group i except for individual j be denoted by
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Ai,−j. So, Ai = (Ai1, Ai2, ..., Aini
) and Ai,−j = (Ai1, Ai2, ..., Aij−1, Aij+1..., Aini

). Assume

that possible realizations of Ai and Ai,−j are denoted by ai and ai,−j respectively. The

outcome of individual j in group i is denoted by Yij (i = 1, . . . ,m, j = 1, . . . , ni). The

potential outcome for individual j in group i under treatment a for the individual and

treatment vector ai,−j for the rest of the individual in group i is denoted by Yij(a, ai,−j).

Since there are only two versions of treatments, if there are n individuals in a group,

then the set of all possible group treatment assignments consist of 2n elements and that

set is denoted by A(n) for n = 1, 2, . . .. The vector of covariates for subject j in group i

is denoted by Lij and the matrix of covariates for all subjects in group i is denote by Li,

i.e. Li = (Li1,Li2, · · · ,Lini
). Hudgens and Halloran (2008) defined individual average

potential outcome to be

Ȳij(a, α) =
∑

ai,−j∈A(ni−1)

Yij(a, ai,−j)π(ai,−j, α)

and the marginal individual average potential outcome to be

Ȳij(α) =
∑

ai∈A(ni)

Yij(ai)π(ai, α)

where α denotes the group allocation strategies (Hong and Raudenbush 2006, Sobel

2006, Tchetgen and VanderWeele 2012, Hudgens and Halloran 2008). Specifically, ac-

cording to the “Bernoulli" treatment allocation strategy discussed in Tchetgen Tchetgen

and Vanderweele (2012) α can be interpreted as the probability with which an individ-

ual receives treatment independently of others. Also, π(ai,−j, α) denote the conditional

probability that the treatment assignment for the ith group except for the jth individual

is ai,−j given that the jth individual in the ith group receives treatment a under alloca-

tion strategy α. In terms of probability, π(ai,−j, α) = Pr(Ai,−j = ai,−j|Ai,j = a). Then,

7



π(ai,−j, α) = Πni
k=1,k 6=jα

aik(1−α)1−aik . Similarly, let π(ai, α) denote the conditional prob-

ability that the treatment assignment for the ith group is ai under allocation strategy α.

In terms of probability, π(ai, α) = Pr(Ai = ai). Then, π(ai, α) = Πni
k=1α

aik(1 − α)1−aik .

The population average potential outcome is defined as

µ(a, α) = E

{
n−1i

ni∑
j=1

Ȳij(a, α)

}

and the marginal population average potential outcome is defined as

µ(α) = E

{
n−1i

ni∑
j=1

Ȳij(a, α)

}

Then, according to Halloran and Struchiner (1995) and Hudgens and Halloran (2008)

the population average direct causal effect is a measure of the direct difference in effects

between vaccinated and unvaccinated individuals. It is given by µ(0, α) − µ(1, α). The

population average indirect casual effect is a measure of the herd spillover effect and is

the difference between the outcome of two unvaccinated individual under two different

allocation strategies. It is given by µ(0, α1)−µ(0, α2) for allocation strategies α1 and α2.

Population average total effect is a combination of both the direct and the indirect effects.

It is obtained by taking the difference between the population average potential outcome

of untreated individual at allocation level α1 and treated individuals at allocation level

α2, i.e. µ(0, α1)−µ(1, α2). Finally population average overall effect is obtained by taking

the difference between the average potential outcomes of individuals at allocation level

α1 and individuals at allocation level α2, i.e. µ(α1) − µ(α2). If there is no interference

present, then the direct effect would be equal to the total effect and the indirect effect

would be 0. A two stage stratified interference method is applied and unbiased estimates

of the parameters and also the variance estimator given the first stage of randomization

is obtained given various assumptions.

It is not possible to perform randomized experiments in all cases. For example, there
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might be ethical issues in implementing treatments selectively to randomized individuals.

Tchetgen Tchetgen and VanderWeele (TV) (2012) suggested using inverse probability

weighted (IPW) estimators for causal effects for observational data in such cases when

partial interference might be present within the data. The estimators were constructed

using group propensity scores instead of individual propensity scores. Perez-Heydrich

et al. (2014) and Liu et al. (2016) showed large sample properties of these estimates. The

estimate for the group level average potential outcome and marginal group level average

potential outcome are given respectively by

Ŷ TV
i (a, α) = n−1i

n∑
j=1

π(Ai,−j;α)I(Aij = a)Yij
Pr(Ai|Li)

and

Ŷ TV
i (t, α) = n−1i

n∑
j=1

π(Ai;α)Yij
Pr(Ai|Li)

Using the estimators proposed by Tchetgen and VanderWeele (2012), Perez-Heydrich

et al. (2014) went on to calculate group propensity scores via modeling the probability of

participation using a mixed effects model. Using estimating equation representation and

results from Stefanski and Boos (2002), asymptotic variance estimators were calculated

and their estimators were given.

Liu et al. (2018) extends doubly robust estimators to the case with partial interference.

The form of the group average potential outcome estimate is as follows-

Ŷ DR
i (a, α) = n−1i

ni∑
j=1

[
I(Aij = a){Yij(Ai)−mij(Ai, Lij, β̂)}π(Ai,−j;α)

Pr(Ai|Li, ω̂)

+
∑
ai,−j

mij(a, ai,−j, Lij, β̂)π(ai,−j;α)]

Large sample properties of the estimator are also discussed.
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1.3 Censoring

In settings where the outcome of interest is survival time (e.g., time until infection),

the outcome is typically subject to (right) censoring due to study completion or par-

ticipant drop-out. Various semi parametric and parametric methods has been explored

in order to analyze clustered survival data. Glidden and Vittinghoff (2004) provides a

comparison of various methods of formulating the hazard function. Holt and Prentice

(1974) put forth a stratified Cox model with hazard function gij(.) having the following

form

gij(t|Lij) = g0i(t) exp (LT
ijγ),

where the group specific baseline hazards g0i(.) are completely unspecified. Multiple

failure times for a single subject, which can be interpreted as correlated survival data,

has also been analyzed using this method and the asymptotic properties of the estimator

have been provided (Wei et al. 1989). However, this did not facilitate between group

comparisons and Holt and Prentice (1974) suggested separate parameters to be estimated

for the different groups, i.e.,

gij(t|Lij) = ξig0(t) exp (LT
ijγ),

Specifically, the authors considered the model corresponding to g0(t) = 1 (exponential)

and g0(t) = tη−1. Pankratz et al. (2005) considered adding a random effect or frailty

term ei keeping the baseline hazard unspecified as follows

gij(t|Lij) = g0(t) exp (LT
ijγ + ei).

Their method made use of Laplace approximation for calculating the maximum likelihood

estimator for the general random effect proportional hazards model. Vaupel et al. (1979)

first used the term frailty in the context of mortality studies. Other methods used in
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the survival literature for analyzing correlated data use Bayesian techniques (Clayton

1991) like Gibbs sampling (Gauderman and Thomas 1994, Korsgaard et al. 1998), and

Monte-Carlo EM algorithm (Li and Thompson 1997); and frequentist approaches (Li and

Zhong 2002) like penalized likelihood maximization (Therneau et al. 2003).

Parametric frailty models have also been used to draw inference about right censored

correlated data (Lancaster 1979, Hougaard 1984). Gutierrez et al. (2002) gives a detailed

description of the various use of parametric frailty model in literature for analyzing right

censored data. The general form of the parametric frailty model is given by

gij(t|Lij, ei) = g0(λ, t)ei exp (LT
ijγ)

where g0 is the baseline hazard function, λ is the parameter of the baseline hazard

function, ei is a random component following density fe(ei; θr), t is the time to event

and γ is the vector of coefficients (Munda et al. 2012). The baseline hazard function is

assumed to have a parametric form. Various distributions like exponential, Weibull etc.

are used as the distribution of baseline hazard. The random component is known as the

frailty term.

Marginal structural models have been used for estimation of causal effects for right

censored data specifically for time dependent confounders (Robins et al. 2000). The pa-

rameters are typically obtained by IPW. For example, Hernán et al. (2000) used marginal

structural Cox proportional hazards model to estimate the effect of a time varying ex-

posure named zidovudine on the survival of HIV-positive men. Robins and Finkelstein

(2000) used inverse probability censoring weighted (IPCW) version of log rank test statis-

tic to show that bactrim therapy improved survival of AIDS patients. The IPCW method

has been rather popular for causal inference in right censored data (Cole and Hernán 2008,

Cain and Cole 2009, Howe et al. 2011).
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1.4 Motivating Data

A good motivating example for data with interference and right censoring is the

cholera vaccine study in Matlab from a cholera vaccine trial in Matlab, Bangladesh (Ali

et al. 2005). The data from this study were from children between the ages of 2 and

15 and women. The range of years through which data were collected was from 1985

to 1988. There were three available treatment groups and all the participants were

randomized to one of these three groups. These treatment groups are B subunit-killed

whole-cell oral cholera vaccine, killed whole-cell-only cholera vaccine and E. coli K12

placebo. The two vaccines were considered the same here for analysis purposes. The

inclusion of a participant was subject to the condition that the individual received two or

more doses of the vaccine. Non-participants were tracked using a vector of participation.

The participation vector comprised of indicators of participation fro each individual.

The vaccine and placebo were given from January 1985 to May 1985. Three centers

were set up in the Matlab area for administering the dosages and all centers were used

as surveillance centers as well. A total of 121,982 individuals were included. Perez-

Heydrich et al. (2014) have shown in their paper that interference is present. Related

individuals lived in clustered sets of houses called baris. There were a total of 6, 415

baris. Demographic separation was used to categorize all the baris in the study to different

groups (neighborhoods). The total number of these neighborhoods were prespecified to be

700. The assumption of partial interference treated these neighborhoods as groups such

that cholera can be transmitted from one individual to another within a neighborhood

but not between individuals of two separate neighborhoods. Studies discovered that the

probability of cholera among unvaccinated individuals was less for the neighborhoods

with higher vaccination coverage (Ali et al. 2005, Emch et al. 2006).

All of these studies have failed to adjust for censoring. The time of cholera is observed

only for a few individuals in the data and the rest are unobserved. The definition of

censoring, in this case, is if an individual did not observe an event within the study
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period, migrated elsewhere from the study location or died during the follow up period.

1.5 Summary

Methods for estimating various causal effects have been in the literature for random-

ized as well as observational studies under SUTVA. Some of these methods have been

extended for the case where the data show traits of partial interference. Methods have

been proposed for calculating various causal effects of interest when the data exhibit

right censoring. Three popular methods include the IPW method, parametric g formula,

and the doubly robust estimation method. This research aims at extending these ideas

towards the case when there is partial interference as well as right censoring. Section 2,

Section 3, and Section 4 explore corresponding methods using IPW, parametric g formula,

and doubly robust estimation, respectively. The methods are discussed and theoretical

results are given to show that the estimators are consistent and asymptotically normal.

Simulation studies are performed for all the three methods to demonstrate the efficacy of

the methods. All of these methods are applied to the Matlab cholera vaccination study

and the results are compared to previous research.
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CHAPTER 2: CAUSAL INFERENCE WITH PARTIAL
INTERFERENCE AND RIGHT CENSORED OUTCOMES USING

IPCW ESTIMATORS

2.1 Introduction

Interference arises when the outcome of one individual depends on the treatment sta-

tus of another individual (Cox 1958). For example, in the setting of infectious diseases,

whether one individual receives a vaccine may affect whether another individual becomes

infected (Halloran and Struchiner 1991). Partial interference is a special case of inter-

ference where individuals can be partitioned into groups such that interference does not

occur between individuals in different groups but may occur between individuals in the

same group (Sobel 2006). Partial interference might be a reasonable assumption if groups

of individuals are sufficiently separated geographically, socially, and/or temporally. Ef-

fects due to interference, also known as spillover effects or peer effects, are of interest

in many areas, including criminology (Sampson 2010, Verbitsky-Savitz and Raudenbush

2012), developmental psychology (Duncan et al. 2005, Foster 2010), econometrics (Sobel

2006, Manski 2013), education (Hong and Raudenbush 2006, Vanderweele et al. 2013),

imaging (Luo et al. 2012), political science (Sinclair et al. 2012, Bowers et al. 2013), social

media and network analysis (VanderWeele and An 2013, Toulis and Kao 2013, Kramer

et al. 2014, Eckles et al. 2014), sociology (Aronow and Samii 2017), and spatial analyses

(Zigler et al. 2012, Graham et al. 2013).

Inferential methods about spillover effects have been developed for randomized ex-

periments (Rosenbaum 2007, Hudgens and Halloran 2008, Eckles et al. 2016, Baird et al.

2018). However, in some settings it may not be feasible or ethical to randomize groups
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or individuals to different treatment or exposure conditions. In the observational setting,

Tchetgen Tchetgen and VanderWeele (henceforth TV) (2012) proposed inverse probabil-

ity weighted (IPW) estimators for different types of causal effects when there may be

partial interference. Large sample properties of these IPW estimators were considered

by Perez-Heydrich et al. (2014) and Liu et al. (2016).

In settings where the outcome of interest is a time to event, the outcome may be

subject to right censoring due to study completion or participant drop-out. In the absence

of interference, censoring is often accommodated by using inverse probability of censoring

weights along with inverse probability treatment weights (Robins et al. 2000, Hernán et al.

2000, Robins and Finkelstein 2000, Cole and Hernán 2008, Cain and Cole 2009, Howe

et al. 2011). In this section, an extension of the TV IPW estimators is considered for

the setting where there may be partial interference and the outcome is subject to right

censoring using inverse probability of censoring weights (IPCW).

The outline of this section is as follows. The proposed methods are developed in

Section 2.2. In Section 2.3 simulation results are presented demonstrating the empirical

performance of the proposed methods in finite sample settings. In Section 2.4 the meth-

ods are used to analyze a cholera vaccine study of over 90,000 individuals in Matlab,

Bangladesh. Section 2.5 concludes with a discussion.

2.2 Methods

2.2.1 Estimands

Suppose data are observed fromm groups of individuals, with ni individuals per group

for i = 1, . . . ,m. Let Aij = 1 if individual j in group i receives treatment and Aij = 0

otherwise. Let Ai = (Ai1, Ai2, ..., Aini
) and Ai,−j = (Ai1, Ai2, ..., Aij−1, Aij+1..., Aini

). Let

ai and ai,−j denote possible realizations of Ai and Ai,−j, and let A(n) denote the set of

all possible 2n treatments for a group size of n = 1, 2, . . .. Assume partial interference

and denote the potential time to event for individual j in group i if, possibly counter to

15



fact, group i receives treatment ai by Tij(ai). The notation Tij(ai) reflects the partial

interference assumption, i.e., the potential outcome of individual j in group i does not

depend on the treatment of individuals outside group i. Below the notation Tij(a, ai,−j)

is sometimes used to make explicit the treatment for individual j and the treatment for

all other individuals in group i. Let Ti(.) = {Tij(ai) : ai ∈ A(ni), j = 1, 2, · · · , ni}

denote the set of all potential event times for individuals in group i. Suppose the event

times are subject to right censoring, e.g., due to loss to follow-up or study completion.

Let Cij denote the potential censoring times for individual j in group i. Assume that

treatment has no effect on the censoring times, i.e., Cij does not depend on ai. Let

∆ij = 1 if Tij(Ai) ≤ Cij and ∆ij = 0 otherwise, and let Xij = min(Tij(Ai), Cij). Define

Xi = (Xi1, Xi2, · · · , Xini
) and ∆i = (∆i1,∆i2, · · · ,∆ini

). Denote by Lij the vector of

baseline covariates for subject j in group i and by Li, the baseline matrix of covariates

for all subjects in group i, i.e., Li = (Li1,Li2, · · · ,Lini
). The group sizes ni are assumed

to be random variables included in the baseline covariates Lij. Assume that them groups

are randomly sampled from an infinite superpopulation of groups such that the observed

data are m i.i.d. copies of Oi = (Li,Ai,Xi,∆i).

In the absence of interference, treatment effects are typically defined as contrasts in

mean potential outcome for different counterfactual scenarios, e.g., the average treatment

effect is usually defined as the difference in the mean potential outcomes had all individu-

als received treatment versus had no individuals received treatment. Similarly, in the set-

ting where there is partial interference, causal effects may be defined as contrasts in mean

potential outcomes for different counterfactual scenarios (Hong and Raudenbush 2006,

Sobel 2006, Hudgens and Halloran 2008, Tchetgen and VanderWeele 2012). Here we con-

sider counterfactual scenarios where the marginal probability that an individual receives

treatment, Prα(Aij = 1), equals α for different values of α ∈ (0, 1). The notation Prα(·)

indicates that the probability corresponds to the distribution under the counterfactual

scenario. Specifically, we consider the Bernoulli treatment allocation strategy (or policy)
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described in TV is considered wherein individuals independently select treatment with

probability α. Let π(ai, α) denote the probability that group i receives treatment ai under

Bernoulli allocation strategy α. That is, π(ai, α) = Prα(Ai = ai) =
∏ni

k=1 α
aik(1−α)1−aik .

Similarly let π(ai,−j, α) = Prα(Ai,−j = ai,−j|Aij = a) =
∏ni

k=1,k 6=j α
aik(1− α)1−aik .

The causal estimands of interest defined below are contrasts in the risk of having an

event by time t for different combinations of treatment a and allocation strategies α. To

define these estimands, let

F̄ij(t, a, α) =
∑

ai,−j∈A(ni−1)

I{Tij(a, ai,−j) ≤ t}π(ai,−j, α),

and

F̄ij(t, α) =
∑

ai∈A(ni)

I{Tij(ai) ≤ t}π(ai, α).

In words, F̄ij(t, a, α) is the probability that individual j in group i will have an event

by time t when receiving treatment a and the group adopts policy α. Likewise, F̄ij(t, α)

is the probability that individual j in group i will have an event by time t when the

group adopts allocation strategy α. Denote the group average risks by F̄i(t, a, α) =

n−1i
∑ni

j=1 F̄ij(t, a, α) and F̄i(t, α) = n−1i
∑ni

j=1 F̄ij(t, α). Let µ(t, a, α) = Eα{F̄i(t, a, α)}

and µ(t, α) = Eα{F̄i(t, α)} where Eα{.} denotes the expected value under the counterfac-

tual setting when policy α is adopted in the super population of groups. In the cholera

vaccine study described in Section 2.4, µ(t, a, α) denotes the average risk of acquiring

cholera by time t when an individual receives treatment a and other individuals receive

vaccine with probability α. Various effects of treatment can be defined by contrasts in

µ(t, a, α) and µ(t, α). The direct effect is obtained by comparing the probability of an

event when an individual receives treatment versus when not receiving treatment for a

fixed allocation strategy. In particular, the direct effect at time t corresponding to policy

α is defined to be DE(t, α) = µ(t, 0, α) − µ(t, 1, α). The indirect (or spillover) effect

is the difference in the probability of an event by time t for two different policies when
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the individual does not receive treatment. Specifically, the indirect effect is given by

IE(t, α1, α2) = µ(t, 0, α1) − µ(t, 0, α2) for allocation strategies α1 and α2. An indirect

effect can analogously be defined when an individual is vaccinated. The total effect is

defined as the difference between the probability of an event by time t when an individual

does not receive treatment under policy α1 and when an individual receives treatment

under policy α2, i.e., TE(t, α1, α2) = µ(t, 0, α1)− µ(t, 1, α2). Finally, the overall effect is

the difference between the probability of an event by time t for policy α1 versus α2, i.e.,

OE(t, α1, α2) = µ(t, α1)− µ(t, α2).

2.2.2 Assumptions

Assume the following for all ai ∈ A(ni),

I) Conditional independence: Ai ⊥⊥ Ti(.)|Li,

II) Positivity: Pr(Ai = ai|Li = l) > 0 for all ai ∈ A(ni) and l such that Pr(Li = l) > 0,

III) Conditional independent censoring: Ci ⊥⊥ {Ti(.),Ai}|Li.

Assumption I states that the potential event times for individuals within the same

group are conditionally independent of the actual treatment received by the group given

covariates; this is a group-level generalization of the usual individual-level no unmeasured

confounders assumption often made in the absence of interference. Positivity assumes

that each group has a non-zero probability of being assigned every possible treatment

combination given covariates for the group. Assumption III states that the potential

event times for individuals in the same group and the observed group treatment are

conditionally independent of the censoring times given covariates. It is straightforward

to adapt the methods below to allow for a weaker version of assumption III whereby

the censoring times are conditionally independent of the potential outcomes given group

treatment and covariates.
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2.2.3 Proposed Estimator

In the absence of censoring, the IPW estimator proposed by TV can be used to draw

inference about µ(t, a, α) and µ(t, α). In particular, letting Yij = I(Xij ≤ t), the TV IPW

estimators are µ̂TV (t, a, α) = m−1
∑m

i=1 F̂
TV
i (t, a, α) and µ̂TV (t, α) = m−1

∑m
i=1 F̂

TV
i (t, α)

where

F̂ TV
i (t, a, α) = n−1i

ni∑
j=1

π(Ai,−j;α)I(Aij = a)Yij

Pr(Ai|Li, β̂)
, F̂ TV

i (t, α) = n−1i

ni∑
j=1

π(Ai;α)Yij

Pr(Ai|Li, β̂)
,

and β̂ is an estimator of the vector of parameters for the propensity model Pr(Ai|Li,β).

Details of the propensity model are discussed in the next sections.

In the presence of censoring, the following extension of the TV IPW estimators is

proposed: µ̂(t, a, α) = m−1
∑m

i=1 F̂i(t, a, α) and µ̂(t, α) = m−1
∑m

i=1 F̂i(t, α) where

F̂i(t, a, α) = n−1i

ni∑
j=1

π(Ai,−j;α)I(Aij = a)I(∆ij = 1)I(Xij ≤ t)

Pr(Ai|Li, β̂) Pr(∆ij = 1|Li, Xij, γ̂)
,

F̂i(t, α) = n−1i

ni∑
j=1

π(Ai;α)I(∆ij = 1)I(Xij ≤ t)

Pr(Ai|Li, β̂) Pr(∆ij = 1|Li, Xij, γ̂)
,

and γ̂ is an estimator of the vector of the parameters for the censoring model. De-

tails of the censoring model are discussed in the next sections. Estimates of the di-

rect, indirect, total, and overall effects are given by D̂E(t, α) = µ̂(t, 0, α) − µ̂(t, 1, α),

ÎE(t, α1, α2) = µ̂(t, 0, α1) − µ̂(t, 0, α2), T̂E(t, α1, α2) = µ̂(t, 0, α1) − µ̂(t, 1, α2) and

ÔE(t, α1, α2) = µ̂(t, α1)− µ̂(t, α2).

Known Treatment and Censoring Distributions

The proposition below shows that if the group level propensity scores and the individual

censoring probabilities are known, then the proposed IPCW estimators are unbiased. A
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proof of the proposition is given in Section 2.6.

Proposition 1. If Pr(Ai|Li) and Pr(∆ij = 1|Li) are known for all j = 1, 2, . . . , ni, then

E{F̂i(t, a, α)} = F̄i(t, a, α) and E{F̂i(t, α)} = F̄i(t, α).

Unknown Treatment and Censoring Distributions

In observational studies, neither the conditional distribution of treatment given covariates

nor the conditional distribution of censoring given covariates are known. Therefore, we

consider finite dimensional parametric models to estimate the group propensity scores

and conditional probability of censoring; these estimates are then plugged into the IPCW

estimators defined above. The conditional probability of censoring is estimated using a

frailty model (Munda et al. 2012) where the conditional hazard for Cij is assumed to

have the form gij(c|Lij, ei) = g0(c;θh)ei exp (LT
ijθc), where g0 is the baseline hazard

function, θh is the q′- dimensional parameter vector of the baseline hazard function, ei is

a random effect with density fe(ei; θr), and θc is the q-dimensional vector of coefficients.

Let γ = (θc,θh, θr) be the vector of parameters for the frailty model. Maximum likelihood

theory can be used to draw inference about γ. Under assumption III, the contribution

of group i to the marginal log-likelihood is (Munda et al. 2012)

l(Xi,∆i,Li,γ) =

ni∑
j=1

∆ij

[
log{g0(Xij)}+ LT

ijθc
]

+ (−1)diL(di)

ni∑
j=1

G0(Xij) exp (LT
ijθc),

where di =
∑ni

j=1(1 − ∆ij) is the number of censored observations in group i,

G0(ω) =
´ ω
0
g0(κ)dκ, and L(s) is the s-th derivative of the Laplace transform of the frailty

distribution, i.e., L(s) =
´∞
0

exp (−eis)fe(ei; θr)dei. Therefore, the maximum likelihood
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estimator of γ solves the following estimating equations

∑
i

ψck(Xi,∆i,Li,γ) = 0 for k = 1, ..., q + q′ + 1,

where ψck = ψck(Xi,∆i,Li,γ) = ∂l(Xi,∆i,Li,γ)/∂γk and γk is the k-th element of γ.

Below, the baseline hazard for the censoring model is assumed to be constant and

equal to θh such that gij(c|Lij, ei) = θh exp (Lijθc)ei. In addition, the frailty term ei is

assumed to follow a gamma distribution with mean 1 and variance θr. So, the censoring

weight for an uncensored individual equals

Pr(∆ij = 1|Li,γ) =

ˆ
Pr(Cij > Tij(Ai)|Li,γ, ei)fe(ei; θr)dei

=

ˆ
Pr(Cij > Xij|Li,γ, ei)fe(ei; θr)dei

=

ˆ
exp {−θhXij exp (Lijθc)ei}

e
1/θr−1
i e−ei/θr

θ
1/θr
r Γ1/θr

dei

=

{
1

θrθhXij exp (Lijθc) + 1

}1/θr

Following TV (2012), a mixed effects model may be assumed for the treatment allocation,

i.e., Pr(Aij = 1|Lij, bi) = logit−1(Lijθx + bi) where bi is a random effect following density

fb(bi; θs). (In the application below the mixed effects model has a slightly more compli-

cated form owing the particulars of the design of the study analyzed.) Let β = (θx, θs)

denote the (p+ 1) dimensional vector of parameters for the mixed effects model. Again,

maximum likelihood theory can be used to draw The contribution of group i to the

log-likelihood for the mixed effects model is given by

l(Ai,Li,β) = log

[ˆ ni∏
j=1

hij(bi,Li,θx)Aij{1− hij(bi,Li,θx)}(1−Aij)fb(bi; θs)

]
,

where hij(bi,Li,β) = Pr(Aij = 1|Lij, bi). The maximum likelihood estimator of β is the
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solution to the score equations

∑
i

ψxk(Ai,Li,β) = 0 for k = 1, ..., p+ 1,

where ψxk = ψxk(Ai,Li,β) = ∂l(Ai,Li,β)/∂βk, βk is the k-th element of β.

Inference about the causal effects of interest is then based on solving the vector of

estimating equations ∑
i

ψ(Oi,θ) = 0, (2.1)

where θ = (γ,β, θ), ψ(Oi,θ) = (ψc,ψx, ψaα)T , ψc = (ψc1, ψc2, ..., ψcq+q′+1)
T , ψx =

(ψx1, ψx2, ..., ψxp+1)
T ,

ψaα = ψaα(Oi,θ) =
g∗(Oi, a, α,γ)

Pr(Ai|Li,β)
− θ,

and

g∗(Oi, a, α,γ) = n−1i

n∑
j=1

π(Ai,−j;α)I(Aij = a)I(Xij ≤ t)

Pr(∆ij = 1|Lij, Xij,γ)
.

Let θ̂ = (γ̂, β̂, µ̂(t, a, α)) denote the solution to (1). Denote the true value of θ by

θ0 = (γ0,β0, µ(t, a, α)) and note that

ˆ
ψaα(o,γ0,β0, µ(t, a, α))dFO(o) = E

{
g∗(Oi, a, α,γ0)

Pr(Ai|Li,β0)
− µ(t, a, α)

}
= 0,

where FO denotes the joint distribution of the complete observed random variable O

and the last equality follow from the Proposition above. Therefore, assuming the

parametric models above are correctly specified, it follows that
´
ψ(o,θ0)dFO(o) =

0. By M-estimation theory (Stefanski and Boos 2002), θ̂ p→ θ0 and
√
m(θ̂ − θ0)

converges in distribution to a Normal distribution with mean 0 and covariance ma-

trix Σ equal to U(θ0)
−1V (θ0){U(θ0)

−1}T where U(θ0) = E{−ψ̇(Oi,θ0)}, V (θ0) =

E{ψ(Oi,θ0)ψ(Oi,θ0)T}, and ψ̇(Oi,θ) = ∂ψ(Oi,θ)/∂θT . Consistency and asymptotic
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normality of the direct, indirect and total effect estimators follows from the delta method.

Similar techniques can be used to show that µ̂(t, α) and the overall effect estimator are

also consistent and asymptotically Normal. The asymptotic variance Σ can be consis-

tently estimated by Σ̂ = Û(θ̂)−1V̂ (θ̂){Û(θ̂)−1}T where Û(θ̂) = m−1
∑m

i=1{−ψ̇(Oi, θ̂)}

and V̂ (θ̂) = m−1
∑m

i=1{ψ(Oi, θ̂)ψ(Oi, θ̂)T}. The empirical sandwich variance estimator

Σ̂ can be computed using the R package geex (Saul and Hudgens 2017) and can be used

to construct Wald type confidence intervals (CIs).

2.3 Simulation Study

A simulation study was conducted to assess the finite sample bias of the IPCW esti-

mator and coverage of the corresponding Wald confidence intervals. The data generating

model used in the simulation study was motivated by aspects of the cholera vaccine study

analysis presented in the next section. Following Perez-Heydrich et al. (2014), data were

simulated according to the following steps.

i) First, two baseline covariates L1ij and L2ij were randomly generated. In the ap-

plication presented in Section 2.4, conditional exchangeability is assumed given an

individual’s age (in decades) and the distance of their residence to the nearest river.

Motivated by this example, L1ij and L2ij were randomly generated as follows. First,

Vij was randomly generated from an exponential distribution with mean 20. Then

L1ij was set to min(Vij, 100)/10. The second set of covariates L2ij were randomly

sampled such that logL2ij ∼ normal(0, 0.75).

ii) The random effects for the treatment model bi were randomly sampled from a normal

distribution with mean 0 and variance 0.0859.

iii) The treatment indicators Aij were randomly sampled from a Bernoulli distribution

with mean pij = expit(0.2727− 0.0387L1ij + 0.2179L2ij + bi).

23



iv) The potential times to event Tij(ai) were randomly sampled from an exponential

distribution with mean µij = 200 + 100aij − 0.98L1ij − 0.145L2ij + 50
∑

k 6=j aik/ni.

v) The random effects for the censoring model ei were randomly generated from a

gamma distribution with mean 1 and variance θ = 1.25.

vi) Censoring times Cij were randomly sampled from an exponential distribution with

mean 1/λ0 where λ0 = 0.015 exp (0.002L1ij + 0.015L2ij)ei.

vii) Individual censoring indicators were determined i.e., ∆ij = 0 if Cij < Tij(Ai).

Steps i through vii were used to stochastically generate 1000 data sets, with each data

set containing 500 groups with 10 individuals per group. For each simulated data set,

the IPCW estimator of µ(100, a, α) was evaluated for a = 0, 1 and α = 0.1, 0.2, . . . , 0.9.

Estimated standard errors based on the empirical sandwich variance estimator and Wald

95% confidence intervals were also calculated for each simulated data set. Empirical

standard errors were calculated by taking the standard deviation of the point estimates

from all simulations.

The true value of the estimand was obtained by simulating counterfactual outcomes

form = 106 groups of individuals. Note that, according to the model used to generate the

data, potential survival times depend only on
∑

k 6=j aik. So, µ(t, a, α) was approximated

by (Perez-Heydrich et al. 2014)

m−1
m∑
i=1

n−1i

ni∑
j=1

ni−1∑
k=0

(
ni − 1

k

)
I{Tij(a, k) ≤ t}αk(1− α)ni−k−1.

The true value of µ(t, α) was determined in a similar fashion.

Results from the simulation study are presented in Table 2.1. Bias of the IPCW

estimator was negligible for all values of a and α. Likewise, the average estimated stan-

dard error was close to the empirical standard error. Coverage of the 95% Wald CIs was

approximately equal to the nominal level.
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Additional simulation studies were conducted to assess the performance of the pro-

posed methods for different values of m, the total number of groups, ranging from 10

to 500. The number of individuals per group was 10, as in the previous simulations.

For each m ∈ {10, 50, 100, 200, 300, 400, 500}, 1000 data sets were simulated according to

steps i through vii above. Results are depicted in Figure 2.1. Bias of the IPCW estimator

was small and coverage of the Wald CIs was close to the nominal level provided m was

at least 50.

2.4 Data Analysis

2.4.1 Cholera Vaccine Study and Analysis

In this section, the methods described in Section 2.2 are used to analyze a cholera

vaccine study in Matlab, Bangladesh (Ali et al. 2005). Eligible study participants were

children 2–15 years of age and women greater than 15 years old. All 121, 975 eligible

individuals in the population were randomized to one of three vaccination groups: B

subunit-killed whole-cell oral cholera vaccine, killed whole-cell-only cholera vaccine, and

E. coli K12 placebo. As in Perez-Heydrich et al. (2014), no distinction is made between

the two vaccines in the analysis presented here. Individuals were considered to have

participated in the randomized trial component of the study if they received two or more

doses of vaccine or placebo. The primary endpoint of the trial was incident cholera. Three

health centers in the Matlab area served as surveillance centers and collected endpoint

data on all individuals, regardless of whether they participated in the randomized trial.

The analysis presented here includes data from all individuals, i.e., trial participants as

well as those who chose not to participate. Thus an approach which accounts for possible

confounding, such as the IPW method described in Section 2, should be utilized to assess

the effects of vaccination.

Previous analyses of this study suggest the presence of interference (Ali et al. 2005,

Perez-Heydrich et al. 2014). However, these previous analyses did not formally account

25



for censoring. Here individuals are considered right censored if they were not diagnosed

with cholera during the study. Individuals who emigrated from the study location or died

during the follow-up period prior to cholera infection were right censored at the time of

emigration or death. Individuals who did not emigrate or die and who did not develop

cholera during the study were right censored at the end of the study period.

Related individuals in Matlab live in clustered sets of houses called baris. There were

a total of 6,415 baris at the time of the vaccine trial. Perez-Heydrich et al. (2014) used

a clustering algorithm to form groups (neighborhoods) based on the spatial location of

the baris, with the number of groups pre-specified to be 700. The analysis here is based

on the same groups as in Perez-Heydrich et al. and assumes that there is no interference

between individuals in different groups, i.e, the vaccination of an individual in one group

has no effect on whether an individual in another group acquires cholera. When fitting

the propensity model Pr(Ai|Li,β) described below, the largest 15 groups had estimated

group propensity scores that were effectively equal to zero and therefore these groups

were omitted.

Individuals participating in the vaccine trial were not all vaccinated on the same

calendar day, such that the level of vaccine coverage within a group varied over a relatively

brief period of calendar time at the study onset. For simplicity and because the methods

developed above do not accommodate time varying treatment, the start of follow-up

for all individuals in a particular group was set to the latest date of second vaccination

among all individuals in that group. Some observations were excluded because individuals

contracted cholera, died, or emigrated prior to the start of follow-up for their group.

In total, 94,234 individuals were included in the analysis. Among these individuals,

55,413 were unvaccinated, either because they received placebo or they did not partici-

pate, and 38,821 were vaccinated with one of the two vaccines. During follow-up, there

were 280 incident cases of cholera among the unvaccinated individuals and 74 cholera

cases among the vaccinated individuals.
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As in Perez-Heydrich et al., the group propensity score was modeled using a mixed

effects model. The particular form of the model derives from the fact that in order for an

individual to have received a vaccine, they must have (i) chosen to participate in the trial,

and (ii) been randomized to receive one of the two vaccines. To account for (i), a logistic

regression model for participation was assumed. As in Perez-Heydrich et al., covariates in

the participation component of the model were age, squared age, distance to nearest river,

and squared distance to nearest river. Accommodating (ii) in the propensity model is

straightforward because, due to randomization, individuals who elected to participate in

the trial were known to receive one of the two vaccines with probability 2/3. Combining

these two aspects of the model, the propensity score for group i was estimated by

Pr(Ai|Li, β̂) =

ˆ
Πni

j=1{(2/3)hij(bi,Lij, θ̂x)}Aij{1− (2/3)hij(bi,Lij, θ̂x)}(1−Aij)

× fb(bi; θ̂s),

where hij(bi,Li,θx) = Pr(Bij = 1|bi,Lij,θx) = expit(Lijθx + bi), Bij is the indicator

of participation, i.e., Bij = 1 if individual j in group i participated in the randomized

trial and Bij = 0 otherwise, and (θ̂x, θ̂s) is the maximum likelihood estimate of (θx, θs).

Censoring was modeled using the gamma frailty model described above, and only included

age as covariate as no other variables were associated with censoring. Over 70% of

individuals belonged to groups where the vaccine coverage was between 0.3 and 0.6.

Therefore, the analysis was conducted for allocation strategies ranging from 0.3 to 0.6.

2.4.2 Results

Figure 2.2 shows the IPCW estimates of the cumulative probability of cholera over

time for allocation strategies 0.3, 0.45, and 0.6, both when an individual receives a

vaccine and when an individual is unvaccinated. The estimated risk of cholera when an

individual is unvaccinated decreases dramatically as α increases, suggesting the presence
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of interference. This decrease is more modest when an individual is vaccinated, indicating

a stronger indirect effect when unvaccinated. At all time points the estimated risk of

cholera is higher when an individual is unvaccinated, suggesting a beneficial, direct effect

of vaccination, especially at lower coverage levels. For α = 0.3 and α = 0.45, the

estimated risk when unvaccinated increases suddenly between 200 and 300 days, and

then again between 300 and 400 days. These results might be attributable to the known

bimodal seasonality of cholera in Bangladesh (Longini et al. 2002). Note that, because

the study start date varied across groups, the time scale in this analysis does not exactly

coincide with calendar time. Nonetheless, 95% of individuals had a start date within a

two calendar month range, such that there is a strong correlation between the analysis

time scale and calendar time, and thus cholera seasonality may explain these periods of

marked increase in risk.

Direct, indirect, total and overall effect estimates and 95% CIs (×1000) for differ-

ent allocation strategies at time t = 1 year are shown in Figure 2.3. The direct effect

estimates generally decrease as α increases. For example, the direct effect estimate for

α = 0.35 is 3.6 (95% CI 1.1, 6.2) whereas for α = 0.5 the direct effect estimate is 1.5 (95%

CI −0.5, 3.5). The indirect, total, and overall effect estimates in Figure 2.3 compare the

risk of cholera over a range of allocation probabilities α1 ∈ [0.3, 0.6] versus α2 = 0.4.

Here the indirect effect contrasts risk of cholera infection when individuals are unvac-

cinated. For larger values of α1 the 95% CIs for these effects exclude the null value of

zero. For example, for α1 = 0.6 the indirect effect estimate is 2.8 (95% CI 1.1, 4.5),

providing statistical evidence of the presence of interference. These results indicate that

when individuals are unvaccinated, the risk of cholera infection is significantly reduced

by increasing the level of vaccine coverage in their neighborhood. The total effect esti-

mates quantify the combined direct and indirect effects of the vaccine. The overall effect

estimates may be of greatest interest from a public health or policy perspective. For

α1 = 0.6, the overall effect estimate is 2.2 (95% CI 0.9, 3.4); in words, 2.2 fewer cases of
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cholera per 1000 individuals per year are expected if 60% of individuals are vaccinated

compared to if only 40% of individuals receive vaccine.

In previous analyses of these data, Perez-Heydrich et al. also estimated the direct,

indirect, total and overall effects using a binary outcome indicating whether an individual

was infected with cholera during the first year of follow-up. The IPCW estimates for t = 1

are similar to these previous results, e.g., Perez-Heydrich et al. estimated the direct effect

for alpha=0.32 to be 5.3 (95% CI 2.5, 8.1) whereas the IPCW estimate of this effect at

t = 1 is 4.0 (95% CI 1.6, 6.5). However,the Perez-Heydrich et al. estimates may be biased

because they did not account for right censoring.

2.5 Discussion

In this section, the TV IPW estimator for partial interference was extended to allow

for right censored outcomes. The proposed estimator was obtained by weighting the

original TV estimator by censoring weights calculated from a parametric frailty model

of the censoring times. The estimator was shown to be consistent and asymptotically

normal and a consistent estimator of the asymptotic variance was proposed. A simulation

study demonstrated that the proposed methods performed well in finite samples provided

the number of groups is sufficiently large. Analysis of a cholera vaccine study using the

proposed methods suggests vaccination had both a direct and indirect effect against

cholera infection. These results are in accordance with findings by Ali et al. (2005) and

Perez-Heydrich et al. (2014), but are likely more accurate since these previous analyses

did not formally account for right censoring.

There are several areas of possible future research related to the methods developed

here. For example, further research could entail developing estimators which perform

well in settings where the number of groups is small. Alternative IPCW estimators

could be developed which utilize semi-parametric frailty models to estimate the censoring

weights rather than the fully-parametric models employed here. Extensions of the IPCW
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estimator could also be considered for the setting where there is general interference, i.e.,

where interference is not restricted to individuals within the same group. In this paper

only Horwitz-Thompson type IPCW estimators were considered; further research could

entail developing stabilized or Hajek type IPCW estimators which may be more stable

and less variable. Finally, simulations studies (results not shown here) suggest that the

proposed IPCW estimators may be sensitive to model mis-specification. Future research

could entail developing estimators that are robust to model mis-specification, perhaps

by constructing doubly robust estimators which utilize both a treatment model and an

outcome model.
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Figure 2.1: Absolute bias (left) and 95% confidence interval coverage (right) for different
numbers of groups for α = 0.5. The dotted line in the right plot corresponds to 95%
coverage.
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Figure 2.2: Estimated cumulative probability of cholera over time for vaccinated and
unvaccinated for α = 0.3 (left), α = 0.45 (center) and α = 0.6 (right)
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Figure 2.3: Direct, indirect, total and overall effect estimates (×1000) for different allo-
cation strategies at time t = 1 year. Indirect, total, and overall effects are with respect to
α2 = 0.4. The shaded regions denote pointwise 95% confidence intervals of the estimates.
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α µ(100, 0, α) Bias ESE ASE EC α µ(100, 1, α) Bias ESE ASE EC

0.1 0.39 0.02 0.07 0.07 94% 0.1 0.28 0.01 0.08 0.08 92%

0.2 0.38 0.01 0.04 0.04 96% 0.2 0.27 0.01 0.04 0.04 95%

0.3 0.38 0.00 0.03 0.03 96% 0.3 0.27 -0.00 0.03 0.03 95%

0.4 0.37 -0.00 0.03 0.02 95% 0.4 0.27 -0.01 0.02 0.02 94%

0.5 0.36 -0.00 0.03 0.02 94% 0.5 0.26 -0.00 0.02 0.02 93%

0.6 0.36 -0.01 0.03 0.02 94% 0.6 0.26 -0.00 0.02 0.02 93%

0.7 0.35 -0.00 0.03 0.02 94% 0.7 0.26 -0.01 0.02 0.01 94%

0.8 0.35 -0.01 0.03 0.03 94% 0.8 0.25 -0.00 0.02 0.02 93%

0.9 0.34 -0.00 0.05 0.05 92% 0.9 0.25 0.01 0.02 0.02 95%

Table 2.1: Results from simulation study described in Section 2.3. α denotes the alloca-
tion probability, µ(100, a, α) is the true value of the target parameter for a = 0, 1; Bias is
the average of µ(100, a, α)− µ̂(100, a, α) for a = 0, 1; ESE is the empirical standard error;
ASE is the average of the sandwich variance estimates; and EC denotes the empirical
coverage of the 95% Wald confidence intervals.
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CHAPTER 3: PARAMETRIC G-FORMULA WITH PARTIAL
INTERFERENCE AND RIGHT CENSORING

3.1 Introduction

Interference is present when the outcome of one individual depends on the treatment

status of another individual (Cox 1958). An example of this might be data on infectious

diseases. For these types of data, whether a subject becomes infected or not might be

affected by the vaccination status of another individual (Halloran and Struchiner 1991).

Sobel (2006) introduces the notion of partial interference as a subset of interference. If

individuals can be partitioned into groups such that interference can occur within individ-

uals of one group but it cannot occur between individuals from two separate groups, the

data is said to show traits of partial interference. Well defined social, temporal, and/or

geographical difference between groups of people might be a valid reason for assuming

they have partial interference. Interference might produce effects termed spillover effects

or peer effects, which are of importance for various different fields of study.

There are inference methods available for randomized experiments in the presence of

interference (e.g., Rosenbaum 2007, Hudgens and Halloran 2008, Baird et al 2014, Eckles

et al 2016). But it might not always be possible to conduct randomized experiments due

to feasibility and/or ethical issues. Tchetgen Tchetgen and VanderWeele (TV) (2012)

provided consistent estimates for various causal effects in the absence of randomization

i.e. for observational data using inverse probability weighting. However, there are some

significant disadvantages of using IPW estimators. For example, a propensity score close

to zero might make the estimator unstable and difficult to calculate computationally. A

substitute of the inverse probability weighted estimator to calculate causal effects is to use
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the parametric g formula. The generalized computation algorithm formula (g formula)

was first put forward by Robins (1986). G-formula, together with outcome regression

produces the parametric g formula. The theory of parametric g formula is generalized

from standardization (Hernán and Robins 2006). Parametric g formula has been used

mainly in adjusting for time varying confounders for time to event data (Young et al.

(2011)). Many authors used parametric g formula to calculate risk ratio (Taubman et al.

(2009), Garcia-Aymerich et al. (2013), Cole et al. (2013)) and hazard ratio (Westreich

et al. (2012), Keil et al. (2014)). However, all of the authors have used logistic regression

for modeling the probability of outcome.

The rest of the section is organized as follows. Section 3.2 introduces the estimators

and estimands. Results from simulation studies illustrating the finite sample behavior of

the method are presented in Section 3.3. The proposed method is implemented on a real

data consisting of 100,000 individuals in Matlab, Bangladesh in Section 3.4.

3.2 Methods

3.2.1 Estimands

Assume that there are m groups, each group having ni individuals in them for

i = 1, . . . ,m. Depending on whether individual j in group i gets treatment or

placebo, denote Aij = 1 or Aij = 0 respectively. Let Ai = (Ai1, Ai2, ..., Aini
) and

Ai,−j = (Ai1, Ai2, ..., Aij−1, Aij+1..., Aini
) denote the overall group treatment assignment

and the group treatment assignment without individual j for group i respectively. Also,

let Ai and Ai,−j attain possible values ai and ai,−j respectively. The potential time to

event for individual j in group i with treatment ai is denoted by Tij(ai). These potential

times exhibit traits of partial interference in the sense that the potential time to event

Tij(ai) for individual j in group i might be dependent on the treatment status of indi-

vidual j′ in group i even when j′ does not equal j. However, if i 6= i′, then Tij(ai) is

independent of Ai′j for any j. The set of all potential event times for individuals in group

36



i is denoted by Ti(.) = {Tij(ai) : ai ∈ A(ni), j = 1, 2, · · · , ni}. Assume that there is right

censoring within the time to events. Also assume that Cij are censoring time for individ-

ual j in group i. Let ∆ij = I(Tij(Ai) ≤ Cij) and Xij = min(Tij(Ai), Cij). Then ∆ij is

the censoring indicator and Xij is the observed time to event for individual j in group i.

The vector of censoring indicators for group i denoted by ∆i equals (∆i1,∆i2, · · · ,∆ini
)

and the vector of observed time to events denoted by Xi equals (Xi1, Xi2, · · · , Xini
). The

set of every feasible 2n assignments of treatments for n = 1, 2, . . . is denoted by A(n).

Finally, the vector of all the covariates for subject j in group i is termed as Lij and

Li = (Li1,Li2, · · · ,Lini
) denotes the matrix of covariates for group i. Let the baseline

covariates Lij include group sizes ni. The m groups in data is assumed to be sampled

from an infinite superpopulation of groups and the m observations (Li,Ai,Xi,∆i) are

i.i.d..

When there is no possible interference, there is often interest in finding the average

treatment effect. This can be represented as the difference between two counterfactual

outcomes, the first one being the case where all the individuals in the population are

treated and the second one being the case when no individual in the population are

treated. But if interference is present in a data then the group allocation strategies α

might affect the counterfactual outcomes of interest (Hong and Raudenbush 2006, Sobel

2006, Tchetgen and VanderWeele 2012, Hudgens and Halloran 2008). Tchetgen Tchetgen

and Vanderweele (2012) discussed how α can be explained as a “Bernoulli" treatment

allocation strategy. A possible interpretation of α might be the probability of being

assigned treatment independent of others for an individual. Hence, a natural extrap-

olation of the concept of average treatment effect might be calculating the difference

between the counterfactual outcomes corresponding to two different levels of allocation

strategies α and α′. Again, let the conditional probability that the treatment assignment

for group i except for individual j is ai,−j given that the jth individual in the ith group
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receives treatment a under allocation strategy α be denoted by π(ai,−j, α). Mathemat-

ically, this can be denoted as follows π(ai,−j, α) = Pr(Ai,−j = ai,−j|Ai,j = a). Then,

π(ai,−j, α) = Πni
k=1,k 6=jα

aik(1−α)1−aik . Similarly, let π(ai, α) denote the conditional prob-

ability that the treatment assignment for the ith group is ai under allocation strategy

α. In terms of probability, π(ai, α) = Pr(Ai = ai). Then, according to the independent

Bernoulli probability assumption for α, π(ai, α) = Πni
k=1α

aik(1− α)1−aik .

The various contrasts in survival probabilities for different combinations of treatment

and allocation strategies are possible causal estimands of interest. To properly introduce

these estimands, first the following has to be defined,

F̄ij(t, a, α) =
∑

ai,−j∈A(ni−1)

I{Tij(a, ai,−j) ≤ t}π(ai,−j, α),

F̄ij(t, α) =
∑

ai∈A(ni)

I{Tij(ai) ≤ t}π(ai, α),

F̄i(t, a, α) = n−1i
∑ni

j=1 F̄ij(t, a, α) and F̄i(t, α) = n−1i
∑ni

j=1 F̄ij(t, α). F̄i(t, a, α) can be

interpreted as the average probability that an individual will fail by time t in group i when

the individual receives a and the group adopts allocation strategy α. Similarly, F̄i(t, α)

can be interpreted as the average probability that an individual will fail by time t in

group i when the group adopts allocation strategy α . Finally, µ(t, a, α) = E{F̄i(t, a, α)}

is the population average potential cumulative distribution at the point t for treatment

a under allocation strategy α. Similarly µ(t, α) = E{F̄i(t, α)} is the population average

overall potential cumulative distribution at the point t under allocation strategy α. A

possible interpretation of µ(t, a, α) might be as the probability of an individual’s survival

time being less than t under the counterfactual case that an individual receives treatment

a under allocation strategy α,. Again, a possible interpretation of µ(t, α) might be as

the probability of an individual’s survival time being less than t under the counterfactual

case that the group allocation probability of treatment is α.
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The various causal effects of interest are as follows. Comparison of the probability

of event of treated individuals with untreated at a particular allocation level gives rise

to direct effect. The population average direct effect at time t with the data having

allocation probability α is given by DE(t, α) = µ(t, 0, α) − µ(t, 1, α). Subtraction of

the probability of event for two different levels of allocation among the untreated gives

rise to the indirect effect. For allocation strategies α1 and α2, the population average

indirect effect is then given by IE(t, α1, α2) = µ(t, 0, α1) − µ(t, 0, α2). The difference

TE(t, α1, α2) = µ(t, 0, α1)−µ(t, 1, α2) is termed as the total effect. This is the difference

between the probability of event of untreated individual at allocation level α1 and treated

individuals at allocation level α2. The final effect of interest to be discussed is the overall

effect. The calculation of this involves subtracting the probability of event of individuals

at allocation level α1 and individuals at allocation level α2, i.e. OE(t, α1, α2) = µ(t, α1)−

µ(t, α2).

3.2.2 Assumptions

The following assumptions are made:

I) Conditional independence: Ai ⊥⊥ Ti(.)|Li,

II) Positivity: Pr(Ai = ai|Li = l) > 0 for all ai ∈ A(ni) and l such that Pr(Li = l) > 0,

III) Conditional independent censoring: Ci ⊥⊥ {Ti(.),Ai}|Li.

In the absence of interference, assumption I is a standard assumption made for each

individual. When interference is present, this assumption is extended for the group in-

stead of individuals. Under the no interference assumption, assumption (I) is referred

to as no unmeasured confounding. In this case, assumption (I) states that the observed

treatment assignment for a particular group of individuals is conditionally independent

of the counterfactual outcomes of individuals in that group under the possible group

treatment statuses under the condition that there is no other confounders except those
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observed. Assumption II is termed as positivity. Given all possible values of the mea-

sured confounders, the positivity assumption states that given all possible values of the

measured confounders, the probability of a group being assigned a particular vector of

treatment combination is always positive. Assumption III is related to the censoring

distribution. This assumption proposes that the censoring time for an individual is con-

ditionally independent of the counterfactual time to event under and the actual treatment

assignment for the group when all the possible confounders are given.

3.2.3 Proposed Estimator

In the absence of interference and censoring, Hernán and Robins (2006) showed that

standardization can be used to estimate risk ratios. The form of the standardized estimate

of the counterfactual mean E(Y a) in this case is

m(a) =

ˆ
Ê(Y |A = a,L = l)dF̂L(l)

or equivalently,

m(a) =
1

m

m∑
i=1

1

ni

ni∑
j=1

Ê(Y |A = a,Lij)

where Y denotes the indicator that an individual has had an event till a specific time

point of concern and F̂L denotes the empirical joint distribution of the covariates L. In

previous literature, logistic regression has often been used to estimate Ê(Y |A = a,Lij)

(Taubman et al. 2009) and authors had mainly focused on calculating risk ratios or hazard

ratios. However, the parametric g formula might be extended for cases with time to event

data and interference. The proposed estimator for the causal and survival quantities of

interest µ(t, a, α) defined in Section 3.2.1 is as follows-

mint(t, a, α, ω̂) =

ˆ ∑
ai,−k∈A(ni−1)

Pr(Tij ≤ t|L = l, A = a,Ai,−k = ai,−k, ω̂)dFL(l)
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×π(ai,−k, α),

where ω̂ is the estimated value of the parameter for the outcome model Pr(T ≤ t|L =

l, A = a,Ai,−k = ai,−k,ω). The positivity assumption ensures that the probability

Pr(T ≤ t|L = l, A = a,Ai,−k = ai,−k,ω) is well defined. Empirically, the estimator

is given by

mint(t, a, α, ω̂) =
1

m

m∑
i=1

1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

Pr(Tij ≤ t|Li, A = a,Ai,−k = ai,−k, ω̂)

×π(ai,−k, α)

=
1

m

m∑
i=1

mint
i (t, a, α, ω̂)

Similarly, the proposed estimator for the causal and survival quantities of interest µ(t, α)

defined in Section 3.2.1 is as follows-

mint(t, α, ω̂) =

ˆ ∑
ai∈A(ni)

Pr(Tij ≤ t|L = l,Ai = ai, ω̂)dFL(l)π(ai, α)

Empirically, the estimate is given by

mint(t, α, ω̂) =
1

m

m∑
i=1

1

ni

ni∑
j=1

∑
ai∈A(ni)

Pr(Tij ≤ t|Li,Ai = ai, ω̂)π(ai, α)

=
1

m

m∑
i=1

mint
i (t, α, ω̂)

The estimators for Pr(Tij ≤ t|L = l, A = a,Ai,−k = ai,−k,ω) and Pr(Tij ≤ t|L = l,Ai =

ai,ω) can be obtained by fitting parametric models. The estimates of the different effects

can also be obtained from this. The estimates of the direct, indirect, total and overall ef-

fects at a particular time point t are given by D̂E(t, α) = mint(t, 0, α, ω̂)−mint(t, 1, α, ω̂),

ÎE(t, α1, α2) = mint(t, 0, α1, ω̂) − mint(t, 0, α2, ω̂), T̂E(t, α1, α2) = mint(t, 0, α1, ω̂) −

mint(t, 1, α2, ω̂) and ÔE(t, α1, α2) = mint(t, α1, ω̂)−mint(t, α2, ω̂) respectively.
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Known Survival Probability

When the probabilities Pr(Tij ≤ t|L = l, A = a,Ai,−k = ai,−k,ω) and Pr(Tij ≤ t|L =

l,Ai = ai,ω) are known beforehand, then the only parameters that need to be esti-

mated are µ(t, a, α) and µ(t, α). There are no other nuisance parameters. The following

proposition suggests that the proposed estimators are unbiased when the probabilities

Pr(Tij ≤ t|L = l, A = a,Ai,−k = ai,−k,ω) and/or Pr(Tij ≤ t|L = l,Ai = ai,ω) are

known. The proof is given in Section 3.6

Proposition 2. If the outcome probabilities Pr(Tij ≤ t|L = l, A = a,Ai,−k = ai,−k,ω)

are known, then E{mint
i (t, a, α, ω̂)} = µ(t, a, α) and if the outcome probabilities Pr(Tij ≤

t|L = l,Ai = ai,ω) are known, then E{mint
i (t, α, ω̂)} = µ(t, α).

Unknown Survival Probability

For unknown outcome probabilities, the distribution of the outcome can be modeled.

According to Munda et al. (2012) the conditional hazard gORij (t|Lij, Aij,Ai,−j, e
OR
i ) of

Tij(ai) can be assumed to be of the following form according to a parametric frailty

model

gORij (t|Lij, Aij,Ai,−j,ω, e
OR
i ) = gOR0 (ωh, t)e

OR
i

× exp (LT
ijωc(1:p′1) + φ(Ai,−j)ωc(p′1+1:p′) + Aijωc(p′+1)).

Here gOR0 is the baseline hazard function, ωh is the p′′ dimensional vector of parameters of

the baseline hazard function, eORi is a random component following density fORe (eORi ;ωr),

ωc = (ωc(1:p′1),ωc(p′1+1:p′), ωc(p′+1)) is the vector of coefficients having length p′ + 1 and

ωr is a parameter of the random effect model. The nuisance parameter vector ω =

(ωc,ωh, ωr) is to be estimated from the model. The function φ is a function of the

treatment assignment vector possibly included in the model. Under assumption III, the

contribution of group i towards the marginal log-likelihood equals (Berg and Drepper
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2012)

l(Xi,∆i,Li,ω)

=

(
ni∑
j=1

∆ij

[
log{gOR0 (Xij)}+ LT

ijωc(1:p′1) + φ(Ai,−j)ωc(p′1+1:p′) + Aijωc(p′+1)

])
+[

(−1)diL(di)

{
ni∑
j=1

gOR0 (Xij) exp (LT
ijωc(1:p′1) + φ(Ai,−j)ωc(p′1+1:p′) + Aijωc(p′+1))

}]

Where di =
∑ni

j=1 ∆ij denotes the number of uncensored cases, L(q) denotes the q-th

derivative of the Laplace transform of the frailty distribution, i.e.,

L(s) =

ˆ ∞
0

exp (−eORi s)f(eORi , ωr)de
OR
i , s ≥ 0.

The estimation of the parameters of the frailty model can be done by maximizing this

log-likelihood function. This can also be represented in terms of estimating equations.

The maximum likelihood estimate for ω is a solution of the following estimating equations

∑
i

ψORck (Xi,∆i,Li,ω) = 0 for k = 1, ..., p′ + p′′ + 1

Here ψORck = ψORck (Xi,∆i,Li,ω) = ∂l(Xi,∆i,Li,ω)/∂ωk, ωk being the k-th member of ω.

Once these parameters have been estimated, the quantity Pr(T ≤ t|Li, A = a,Ai,−k =

ai,−k, ω̂) required to calculate the proposed estimator can be obtained by integrating out

the effect of the random component. If we assume that the estimated survival function

corresponding to the model for group i is Sg(gORij (t|Li, Aij,Ai,−j, e
OR
i , ω̂)), then,

Pr(Tij ≤ t|Li, A = a,Ai,−k = ai,−k, ω̂)

= 1−
ˆ
Sg(g

OR
ij (t|Li, Aij = a,Ai,−j, e

OR
i , ω̂))fORe (eORi ;ωr)de

OR
i

43



The outcome is assumed to follow a parametric frailty model with a random ef-

fect component. Specifically, in the simulation performed and the data analyzed,

times to events are assumed to have a gamma frailty distribution. i.e. eORi follows

gamma distribution with variance ωr. In this case, a closed form of expression for

Pr(Tij ≤ t|Li, A = a,Ai,−k = ai,−k, ω̂) can be obtained by integration. It can be shown

easily by integration that

Pr(Tij ≤ t|Li,A = a,Ai,−k = ai,−k, ω̂)

= 1−
ˆ

exp {−GOR
0 (Li,Ai,−j, a, ω̂, t)e

OR
i }

(eORi )1/ω̂r−1e−e
OR
i /ω̂r

ω̂r
1/ω̂rΓ1/ω̂r

deORi

= 1−
{

1

ω̂rGOR
0 (Li,Ai,−j, a, ω̂, t) + 1

}1/ω̂r

Where,

GOR
0 (Li,Ai,−j, a, ω̂, t) = exp (LT

ijω̂c(1:p′1) + φ(Ai,−j)ω̂c(p′1+1:p′) + aω̂c(p′+1))

×
ˆ t

0

gOR0 (ω̂h, s)ds

Hence, in this case,

mint
i (t, a,α, ω̂)

= 1− 1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

{
1

ω̂rGOR
0 (Li,Ai,−j, a, ω̂, t) + 1

}1/ω̂r

π(ai,−k, α)

and

mint(t, a, α, ω̂) =
1

m

m∑
i=1

mint
i (t, a, α, ω̂)

Equivalently, it can be shown that

mint
i (t, α, ω̂) = 1− 1

ni

ni∑
j=1

∑
ai∈A(ni)

1∑
a′=0

{
1

ω̂rGOR
0 (Li,Ai,−j, a′, ω̂, t) + 1

}1/ω̂r

π(ai, α)
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and

mint(t, α, , ω̂) =
1

m

m∑
i=1

mint
i (t, α, , ω̂)

Stacking all the estimating equations together, the following vector of estimating

equations are obtained ∑
i

ψOR(Oi,θ
OR) = 0

Here, Oi = (Xi,Ai,∆i,Li) is the observed data and ψOR(Oi,ω) =
(
ψOR

c , ψORaα
)T where

ψOR
c =

(
ψORc1 , ψ

OR
c2 , ..., ψ

OR
c(p′+p′′+1)

)T
, and ψORaα = ψORaα (Oi,ω, θ

OR
aα ) = mint

i (t, a, α,ω) −

θORa,α . The parameters of interest are represented as the vector θOR =
(
ω, θORaα

)
. The

estimating equations have the vector of solutions θ̂OR =
(
ω̂, θ̂ORaα

)
. Denote by

θOR0 = {ω0, µ(t, a, α)}, the true value of the parameter θOR. Then, from proposition

2, E(mint
i (t, a, α,ω0)) = µ(t, a, α) i.e., E

(
ψORaα (Oi,ω0, µ(t, a, α))

)
= 0. This can also be

expressed as
´
ψORaα (o,ω0, µ(t, a, α))dFO(o) = 0. Along with maximum likelihood theory,

this implies the following
´
ψOR(o,θOR0 )dFO(o) = 0.

Using the M-estimation theory put forth by Stefanski and Boos (2002),

θ̂OR
p→ θOR0 and

√
m(θ̂OR − θOR0 ) converges in distribution to a normal distri-

bution with mean 0 and covariance matrix ΣOR for a fixed t. Hence, for a

fixed time point t, the estimate is consistent and asymptotically normal. The

covariance matrix is equal to U(θOR0 )−1V (θOR0 ){U(θOR0 )−1}T where U(θOR0 ) =

E{−ψ̇OR(Oi,θ
OR
0 )}, V (θOR0 ) = E{ψOR(Oi,θ

OR
0 )ψOR(Oi,θ

OR
0 )T}, and ψ̇OR(Oi,θ

OR) =

∂ψOR(Oi,θ
OR)/∂(θOR)T . So m(t, a, α, ω̂) is consistent and asymptotically normal. Sim-

ilar techniques can be used to show that m(t, α, ω̂) is also consistent and asymp-

totically normal. The asymptotic variance ΣOR can be consistently estimated by

Σ̂OR = Û(θ̂OR)−1V̂ (θ̂OR){Û(θ̂OR)−1}T where Û(θ̂OR) = m−1
∑m

i=1{−ψ̇OR(Oi, θ̂
OR)}

and V̂ (θ̂OR) = m−1
∑m

i=1{ψOR(Oi, θ̂
OR)ψOR(Oi, θ̂

OR)T}. The sandwich variance esti-

mator Σ̂OR can be computed using the R package geex (Saul and Hudgens 2017) and

can be used to construct Wald type confidence intervals.
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3.3 Simulation

To demonstrate the efficacy of the methods discussed, a simulation study was per-

formed. The data were simulated using the following steps

1. First, baseline covariate L1ij was generated randomly. Random variables Vij were

generated following an exponential distribution with mean 20. The baseline covari-

ates L1ij were then assigned to be min{Vij, 100}/10.

2. Random effects bi for generating the treatment probabilities were randomly gener-

ated following a normal distribution with mean 0 and variance 1.0859.

3. Treatment indicators were simulated following a Bernoulli distribution with prob-

ability pij where pij = expit(0.2727− 0.0387L1ij + bi).

4. Random components b′i for generating the potential times to event were generated

randomly from a gamma distribution with mean 1 and variance 10.

5. Then the time to events Tij(ai) were randomly sampled from an exponential dis-

tribution with mean µij where 1/µij = b′i exp (−3.1aij − 0.2
∑

k 6=j aik + 5.3L1ij).

6. Next, another set of random effects eORi were generated randomly following a

gamma distribution with mean 1 and variance 0.1

7. Finally, the censoring times Cij were sampled randomly from an exponential dis-

tribution with mean λ0 where where λ0 = 0.1 exp (0.01L1ij)e
OR
i .

8. An individual was censored, i.e. ∆ij = 1 if Cij < Tij(Ai).

Data were simulated from 250 groups with each group having 30 individuals using

the steps of the simulation. Hence each of the simulated data set had 7500 individuals

in the sample. The steps of the simulation were performed 10,000 times. To check the

indirect effects, several different values of the treatment allocation probability α were
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used for estimation. Each of the 10,000 simulations generated estimates of the quantities

of interest. These estimates were compared with the true value of the estimates obtained

using counterfactual data generated for a large data set. It can be observed that since the

allocation probabilities are Bernoulli, whichever values of the vector ai,−j yield the same

value of
∑

k 6=j aik, also produce the same value for the quantity π(ai,−j, α). So, according

to the data generation mechanism, the population average potential cumulative survival

distribution at the time point t for treatment a under allocation strategy α can be

represented as follows (Perez-Heydrich et al. 2014)

m−1
∑
i

n−1i
∑
j

ni−1∑
k=0

(
ni − 1

k

)
I{Tij(a, ai,−j) ≤ t}αk(1− α)ni−k−1

Similarly, the population average marginal potential cumulative survival distribution at

the time point t under allocation strategy α can be represented as follows

m−1
∑
i

n−1i
∑
j

ni∑
k=0

(
ni
k

)
I{Tij(a, ai,−j) ≤ t}αk(1− α)ni−k−1

This representation is possible since the data generation mechanism ensures that the

potential time to events are only dependent on the vector ai,−j through the sum of its

elements. A sandwich variance estimator of the proposed estimators was also obtained

for each of the simulated data. For each value of α, the estimated values of the quantities

of interest are calculated by averaging over all the simulated data set. Asymptotic stan-

dard errors were also calculated by taking the mean of the sandwich variance estimator.

Empirical standard errors were calculated as the standard deviation of the estimates.

95% Wald confidence intervals were constructed and coverage probabilities for each value

of α were calculated by taking the proportion of estimators with values within the con-

fidence interval. Results of the simulation are summarized in Table 3.1, which describes

the results obtained in detail for nine different α values at time point 100 days.
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3.4 Data

3.4.1 Cholera Vaccine Study and Analysis

The methods described in Section 3.2 are applied to a cholera vaccine study in Matlab

from a cholera vaccine trial in Matlab, Bangladesh (Ali et al. 2005). Children of ages 2-15

and women were the participants in the study. The vaccine administered was either B

subunit-killed whole-cell oral cholera vaccine or killed whole-cell-only cholera vaccine and

the placebo administered was E. coli K12 placebo. For analysis, the two versions of the

treatments were assumed to be the same and the study participants were randomized to

receive one of the three treatments with equal probability. An individual was considered

a participant only if he/she received two or more doses of the treatment assigned to

him/her. A participation vector was used to keep track of the participants and non-

participants. The doses of treatment and vaccines were administered during the months

of January to May in the year 1985. Three centers were established for vaccination

purposes and maintained as surveillance centers. The data consisted of a total of 121,982

individuals. Previous studies have managed to establish that interference is present

within the data (Perez-Heydrich et al. 2014). But, the issue of censoring in the data has

not been addressed in any of these studies to date.

The data is right censored because the time to having an event of cholera is not

observed for all the individuals. Censoring could be due to an unobserved event within

the duration of the study, migration from study location or death during the follow up

period.

The data were readied for analysis using the following steps. 7 of the 121,982 observed

individuals appeared to be duplicate values and consequently were removed from the data

giving rise to a data with 121, 975 individuals. As mentioned before, the vaccines were

administered during a five-month window. So, even if the date of entry of individuals in

the study were not exactly the same, they were comparable. So, the same date of entry
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was assigned to all the individuals within a particular group for ease of computation. The

representative start date for a group was assumed to be the most recent date of second

vaccination among all the individuals within that group. In case all of the individuals

failed to receive a second vaccination, the representative start date for a group was then

assumed to be the most recent date of first vaccination among all the individuals within

that group. After assigning start dates to all the individuals, it was observed that 34

individuals could not be assigned any start date. Deleting those 34 data observations

121,941 individuals remained within the data. Among them, the representative start

dates for 60 were after the date of contracting cholera which meant that they had a

negative time to event. So those observations could not be used and were deleted from the

data. Again, from the remaining data, 3617 were lost due to migration and 346 were lost

due to death before the representative start date of their group. The remaining 117,918

individuals constituted the final dataset used for analysis. Placebo was administered to

a total of 69,219 individuals and treatment to 48,699 individuals within the final data.

Only 375 were cases of cholera recorded in the control group and 103 in the treatment

group.

As discussed in Section 3.2.3, for fitting the parametric frailty model to the outcome of

interest, i.e., time to cholera, both the baseline hazard function and the frailty distribution

must be specified. There are several choices for the baseline hazard and frailty model

combination.

Table 3.2 summarizes AIC and BIC values for several baseline hazard function and

frailty distribution combinations. From Table 3.2, it can be observed that both AIC and

BIC are minimum for gompertz baseline hazard with gamma frailty distribution. There-

fore, in order to fit the outcome model to the Matlab cholera data, a parametric frailty

model with baseline hazard distribution gompertz and frailty distribution gamma was

selected. For gompertz baseline hazard, the function gOR0 (ωh, t) equals ωh2exp(ωh1t). The
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covariates included in the outcome model were treatment status, proportion of individ-

uals treated in the group, interaction of treatment status and proportion of individuals

treated within the group, age, distance to river, squared age and squared distance to river.

Also, as shown in Section 3.2.3, both the outcome probability as well as the likelihood

function has a closed form expression in this case. As more than 70% of the individuals

in the data were in groups where the proportion of people treated were in between 0.3

and 0.6, the analysis was restricted for those values of α.

3.4.2 Results

Figure 3.1 shows the estimated cumulative probability distribution obtained using the

parametric g formula compared against the IPCW method over time for three different α

values. Although the parametric g formula and the IPCWmethod do not produce exactly

the same curves, the overall trends of both are quite similar. The jumps in probability

for the IPCW estimators are more pronounced than the parametric g formula estimators

after some time. According to the parametric g formula, the cumulative probability seems

to increase at an exponential rate for both the vaccinated and unvaccinated groups. But

the rate of increase is much larger for the control group compared to the vaccine group.

Therefore, the difference in the cumulative probability of cholera between the control

and vaccine group seems to increase with time. So, it can be deduced that the vaccine

effects get more and more pronounced with time. The direct effect of vaccination becomes

increasingly significant over time. However, changes in the policy α also seem to affect

the cumulative probability of cholera. For a particular time point, it can be observed

from Figure 3.1 that, the cumulative probability of cholera decreases with the increment

of allocation strategy α. This reduction is more prominent in the control group than the

vaccine group. This hints at the presence of an indirect treatment effect which affects

untreated individuals as well. This indirect effect or spillover effect or herd immunity

can be explained through interference.
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Figure 3.2 depicts the direct, indirect, total and overall effects at one year after the

start of the study multiplied by 1000. Among all the effects, only the direct effect has a

decreasing trend with the allocation probability. The rest of the effects show an increasing

trend. The direct effect is greater than 0 for all the policy α in between 0.3 and 0.6. For

example, the estimates of the direct effect of treatment at allocation level α = 0.4 is 2.2

with 95% confidence interval (1.5, 2.9) and the direct effect of treatment at allocation level

α = 0.5 is 1.5 with 95% confidence interval (0.9, 2.1). None of the confidence intervals

contain 0 and the higher value of α gives rise to lesser direct effect. Also, it can be said

that for policy α = 0.4, the expected number of people contracting cholera is 2.2 more

in the unvaccinated group compared to the vaccinated group per 1000 individual. The

indirect, total and overall effects are measures of the spillover effect of the vaccine. From

Figure 3.2 it is apparent that higher allocation probabilities translate to greater spillover

effects. For allocation probabilities less than 0.4, the indirect and overall effects are less

than 0 and they are greater than 0 for allocation probabilities greater than 0.4. As an

example, the estimate of the overall effect corresponding to allocation levels α1 = 0.4 and

α2 = 0.6 is 1.5 with confidence 95% confidence interval (1.0, 2.1). So, 1.5 more individuals

are expected to contract cholera if they belong to a neighborhood with policy α = 0.4

compared to a neighborhood with policy α = 0.6 per 1000 individuals.

The Matlab cholera vaccine data has been analyzed previously and causal effects

were calculated at one year of follow up. (Perez-Heydrich et al. 2014) used an inverse

probability weighted method using group weights instead of individual weights. But they

failed to account for the right censoring present within the data. However, the effect plots

show a somewhat similar trend. As an example, for policy level α = 0.32, estimate of

the direct effect according to Perez-Heydrich et al. was calculated to be 5.3 and the 95%

confidence interval was given to be (2.5, 8.1). The parametric g estimate of the direct

effect at allocation level α = 0.32 as shown in Figure 3.2 is 2.8 having 95% confidence

interval (1.7, 3.9). Even though the confidence interval is much wider for the estimate
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provided by Perez-Heydrich et al., still none of the confidence intervals include 0 and

both the effects are greater than 0 again signifying significant direct effect of the vaccine.

3.5 Discussion

In this section, a new method of calculating causal effect for data with interference

and right censoring has been proposed. The method involves fitting an outcome regres-

sion model and using standardization to get a parametric g formula estimate for various

causal effects. The outcome model fitted was a parametric frailty model and the out-

come probability was calculated by integrating out the random effect. The causal effects

discussed in this section are direct effects, indirect effects, total effects and overall effects.

It was proved that the parametric g formula estimator is consistent and asymptotically

normal. Also, the variance matrix was estimated consistently using a sandwich variance

estimator. 95% confidence intervals were also constructed for the point estimates using

these sandwich variance estimators. A simulation study was performed and results were

compared to the true values of the parameters to observe the finite sample performance

of the methods. Finally, causal effect estimates and 95% confidence intervals were calcu-

lated using the parametric g formula methods for a cholera vaccine study conducted in

Matlab, Bangladesh.

The outcome model in this section is specified to be a parametric frailty model.

However, it might be possible to extend these methods and use a Cox proportional

hazards model with a random component instead. Also, a possible future direction of

research might be to try an extend the methods discussed in this section for general

interference instead of partial interference. For analyzing the real data, the outcome

model was selected based on AIC and BIC. It might be possible to come up with a better

method of model selection. The calculation of parametric g formula involves computing

the sum
∑

ai∈A(ni)
Pr(T ≤ t|Li,Ai = ai, ω̂). Summing over all possible values of ai might

be computationally difficult. In that case, a Monte-Carlo approach used by Liu et al.
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(2018) might be used to relieve the computational burden. Another shortcoming of this

method is that the outcome model is sensitive to model misspecification. The estimates

can be misleading if the model is not specified correctly. Therefore, one possible direction

for future work might be to explore doubly robust estimators which might be stable under

model misspecification under some regularity conditions.
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Figure 3.1: Estimated cumulative probability of cholera against time for vaccine and
control for α = 0.3 (left), α = 0.45 (center) and α = 0.6 (right)
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Figure 3.2: Direct effect, indirect effect, total effect and overall effect estimates multiplied
by 1000 for different allocation strategies at time t = 1 year. Indirect effects, total effects
and overall effects are with respect to α2 = 0.4. The shaded region denotes the 95%
confidence interval of the estimates.
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α µ(100, 0, α) Bias ESE ASE EC α µ(100, 1, α) Bias ESE ASE EC

0.1 0.348 -0.000 0.025 0.023 94% 0.1 0.469 -0.000 0.025 0.023 94%

0.2 0.368 -0.000 0.023 0.022 94% 0.2 0.494 -0.000 0.022 0.020 94%

0.3 0.391 -0.000 0.022 0.020 94% 0.3 0.519 -0.000 0.019 0.018 94%

0.4 0.413 -0.000 0.020 0.019 95% 0.4 0.543 0.000 0.017 0.016 95%

0.5 0.437 -0.000 0.019 0.018 95% 0.5 0.566 -0.000 0.016 0.015 95%

0.6 0.461 -0.000 0.018 0.018 95% 0.6 0.589 -0.000 0.015 0.014 95%

0.7 0.486 -0.000 0.019 0.018 95% 0.7 0.611 -0.000 0.015 0.014 95%

0.8 0.510 -0.000 0.019 0.018 94% 0.8 0.631 -0.000 0.016 0.015 94%

0.9 0.535 -0.000 0.021 0.020 94% 0.9 0.651 -0.000 0.017 0.016 94%

Table 3.1: Results from simulation study described in Section 3.3. α denotes the allo-
cation probabilities, µ(100, a, α) is the true value of the survival probabilities at time
point 100 for a = 0, 1; bias is the average of µ(100, a, α)−mint(100, a, α, ω̂), ESE is the
empirical standard error, ASE is the average of the sandwich variance estimators and EC
denotes the empirical coverage of the 95% Wald type confidence intervals.
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Gamma Inverse Gaussian Positive Stable

Exponential 5946.42 (6033.51) 5955.73 (6042.83) 5992.52 (6079.61)

Weibull 5888.98 (5985.76) 5898.34 (5995.12) 5935.18 (6031.96)

Gompertz 5858.04 (5954.82) 5867.50 (5964.28) 5904.57 (6001.35)

Loglogistic 5889.35 (5986.13) 5898.70 (5995.48) 5935.41 (6032.19)

Lognormal 7296.60 (7393.38) 7641.41 (7738.18) 6559.83 (6656.61)

Table 3.2: AIC (BIC) values for different baseline hazard functions corresponding to
gamma, inverse Gaussian and Positive stable frailty distributions.
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CHAPTER 4: DOUBLY ROBUST ESTIMATION FOR DATA WITH
PARTIAL INTERFERENCE AND RIGHT CENSORING

4.1 Introduction

Interference is present if the treatment status of an individual affects the outcome

of another individual in a data (Cox 1958). Interference can often be observed in data

pertaining to infectious diseases. That is because more often than not, the disease status

of an individual depends not only on the vaccination status of that particular individual

but also on the vaccination status of other individuals (Halloran and Struchiner 1991).

When the data can be partitioned into groups such that the members of a group can

interfere within themselves but there is no interference between members of any two dif-

ferent groups then this is a sub-case of interference termed as partial interference Sobel

(2006). The groups can be based on social, temporal and/or geographical similarities

which are apparent from the data. The effect that one might be concerned with due

to a data having interference is termed as peer effect or spillover effect. Examples of

areas concerned with these effects are criminology (Sampson 2010, Verbitsky-Savitz and

Raudenbush 2012), developmental psychology (Duncan et al. 2005, Foster 2010), econo-

metrics (Sobel 2006, Manski 2013) education (Hong and Raudenbush 2006, Vanderweele

et al. 2013), imaging (Luo et al. 2012), political science (Sinclair et al. 2012, Bowers et al.

2013), social media and network analysis (VanderWeele and An 2013, Toulis and Kao

2013, Eckles et al. 2014, Kramer et al. 2014), sociology (Aronow and Samii 2017), and

spatial analyses (Zigler et al. 2012, Graham et al. 2013).

Various methods of inference has been suggested for randomized experiments under

the partial interference setting (e.g., Rosenbaum 2007, Hudgens and Halloran 2008, Baird
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et al 2014, Eckles et al 2016). However, randomized experiments might not always be

feasible to construct or there might be ethical issues arising in performing a randomized

trial. In that case, for observational data, methods proposed by Tchetgen Tchetgen and

VanderWeele (TV) has been proven to be useful. TV provided consistent estimators for

various causal effects of concern using inverse probability weighting (IPW). But, IPW

methods are known to suffer from some serious drawbacks. When the propensity scores

required to calculate the inverse probability weights become small, the estimator is highly

unstable and difficult to compute numerically. The parametric g formula bypasses this

issue and might be used in place of the IPW estimators. Robins (1986) first suggested

the use of g-computation algorithm. Using outcome regression with g-computation gives

rise to the parametric g formula which is calculated using standardization techniques

(Hernán and Robins 2006).

However, both the IPW method and parametric g formula are based on a strong

assumption. The assumption is that the model used in each case is specified correctly.

Otherwise, the estimators will not be consistent. For the IPW estimator, the treatment

model must be correct and for the parametric g formula, the outcome model must be

specified correctly. The doubly robust estimator tries to address this issue by incorpo-

rating robustness. For these estimators, only one of the treatment and outcome model

must be specified correctly for getting consistent estimators. In that sense, the estimator

is robust under model misspecification.

The rest of this section is organized as follows- Section 4.2 discusses the doubly

robust method in detail and develops large sample properties of the estimator, Section

4.3 provides results for various simulation scenarios implemented, data from a cholera

vaccine study conducted in Matlab, Bangladesh is analyzed in Section 4.4, and finally,

in Section 4.5, a brief discussion of the whole section is provided.
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4.2 Methods

4.2.1 Estimands

Suppose that the data consists of m groups with group i having ni individuals for

i = 1, . . . ,m. The treatment status indicator Aij equals 1 when individual j in group i

receives treatment and Aij = 0 if said individual receives placebo. Represent the vector

(Ai1, Ai2, ..., Aini
) by Ai and the vector (Ai1, Ai2, ..., Aij−1, Aij+1..., Aini

) by Ai,−j. The

random variables Ai and Ai,−j can take values ai and ai,−j respectively. The notation

Tij(ai) represents the potential time to event for individual j in group i with treatment

ai. Let Ti(.) = {Tij(ai) : ai ∈ A(ni), j = 1, 2, · · · , ni} denote the set of all potential

event times for individuals in group i. Also assume that because of loss to follow up,

completion of study or other reasons, the time to events might be right censored for some

observations. Then the censoring times for individual j in group i might be denoted by

Cij. Further assume that the indicator of censoring ∆ij = I(Tij(Ai) ≤ Cij) and the

observed time to events Xij = min(Tij(Ai), Cij). Denote Xi = (Xi1, Xi2, · · · , Xini
) and

∆i = (∆i1,∆i2, · · · ,∆ini
). The set containing all 2ni combinations of treatments in a

group with ni observations, is termed as A(ni) for ni = 1, 2, . . .. Consider the vector of

possible covariates to be Lij for individual j in group i. Assume the group sizes ni to be

random variables included in the vector of baseline covariate Lij. For a particular group

i, the matrix of all possible covariates combining all the covariates of the individuals

in the group i is denoted by Li. The overall observed data can be viewed as m i.i.d

observations of (Li,Ai,Xi,∆i) for i = 1, 2, . . . ,m.

There are various causal effects that are of interest. These causal effects are often

represented as different contrasts of expected potential outcomes. When interference is

absent, a popular causal effect of interest is the average causal effect which is defined as

the difference of the expected potential outcomes for treated and untreated individuals.
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In case of interference, various causal effects can be defined along similar lines by con-

sidering contrasts under various counterfactual outcomes (Hong and Raudenbush 2006,

Sobel 2006, Hudgens and Halloran 2008, Tchetgen and VanderWeele 2012). An additional

term of concern for data with interference is the spillover effect or herd immunity which

is not taken into consideration for data without interference. These gives rise to various

casual effects which are not of concern in absence of interference. To define these addi-

tional causal effects, first, the allocation probability α needs to be introduced. Allocation

probability or policy α is defined as the probability of receiving treatment for an indi-

vidual independent of the others. TV interpreted this term as the independent Bernoulli

probability α for individuals being assigned treatment. So, under ithis counterfactual

scenario, everyone receives treatment independently f others with probability α. Accord-

ing to the Bernoulli probability assignment, the probability of a group treatment vector

can be calculated using independence of treatment assignment. So, denoting by π(ai, α),

the probability that group i has treatment vector ai under allocation policy α, it can be

deduced that π(ai, α) = Prα(Ai = ai) =
∏ni

k=1 α
aik(1 − α)1−aik . Similarly, denoting by

π(ai,−j, α), the probability that group i except for individual j has treatment vector ai,−j,

it can be said that π(ai,−j, α) = Prα(Ai,−j = ai,−j|Ai,j = a) =
∏ni

k=1,k 6=j α
aik(1− α)1−aik .

Here Prα(·) corresponds to the probability under this counterfactual setting.

The causal effects of interest at a particular time point t are defined as contrasts

of population average potential cumulative probability or population average marginal

potential cumulative probability of an event before time t. To define these, first the

average probability of individual j in group i observing an event by time t when said

individual receives treatment a and the allocation strategy of group i is α has to be

defined as follows

F̄ij(t, a, α) =
∑

ai,−j∈A(ni−1)

I{Tij(a, ai,−j) ≤ t}π(ai,−j, α).
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Similarly, the marginal average probability of individual j observing an event in group i

by time t when said individual receives treatment a and the allocation strategy of group

i is α can be defined as

F̄ij(t, α) =
∑

ai∈A(ni)

I{Tij(ai) ≤ t}π(ai, α).

Then, let F̄i(t, a, α) = n−1i
∑ni

j=1 F̄ij(t, a, α) and F̄i(t, α) = n−1i
∑ni

j=1 F̄ij(t, α). The quan-

tity F̄i(t, a, α) is the representation of the average probability of an individual observing

an event in group i by time t when said individual receives a and the allocation strategy of

group i is α. Similarly, F̄i(t, α) is the representation of the marginal average probability

of an individual observing an event in group i by time t when the allocation strategy of

group i is α. Hence, µ(t, a, α) = E{F̄i(t, a, α)} can be termed as the population average

potential cumulative distribution at time point t for treatment a under allocation strat-

egy α. Similarly, µ(t, α) = E{F̄i(t, α)} can be termed as the population average marginal

potential cumulative distribution at time point t under allocation strategy α. The term

µ(t, a, α) has the interpretation as the probability of an individual’s time to event be-

ing less than t under the counterfactual scenario that an individual receives treatment

a with the group allocation probability being α. For example, in the Matlab cholera

vaccine study described in section 4.4, µ(t, a, α) equals the population average potential

cumulative probability of an individual to get infected with cholera before time t when

the individual receives treatment a and the group treatment allocation probability is α.

Finally, the causal effects of interests can be defined in terms of contrasts of µ(t, a, α)

and µ(t, α). The primary effects of treatment on the outcome is measured through di-

rect effect which is defined as the contrast between the population average potential

cumulative probability for treatment and control for a particular time point and pol-

icy. Mathematically, the direct effect of treatment on the outcome at time point t for

allocation level α can be given by DE(t, α) = µ(t, 0, α) − µ(t, 1, α). The rest of the
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causal effects are concerned with the spillover effect or herd immunity in addition to

the direct effect of treatment. For example, the indirect effect is defined as the contrast

between the population average potential cumulative probability for two different allo-

cation levels under no treatment for a particular time point. This effect measures how

treatment indirectly affects the outcome through herd immunity in the unvaccinated

group and is given by IE(t, α1, α2) = µ(t, 0, α1) − µ(t, 0, α2) for allocation strategies

α1 and α2. The total effect is defined as the contrast between the population aver-

age potential cumulative probability for two different allocation levels under treatment

and no treatment for a particular time point. This effect can be interpreted as an ag-

gregate measure of the direct and indirect effects of treatment. Mathematically, the

total effect of treatment on the outcome at time point t for allocation level α1 and

α2 can be given by TE(t, α1, α2) = µ(t, 0, α1) − µ(t, 1, α2). So, it can be seen that

TE(t, α1, α2) = DE(t, α2) + IE(t, α1, α2). Lastly, the overall effect is used to measure

the overall effect of the allocation strategy irrespective of the treatment status. Defined

as the contrast between the population average marginal potential cumulative proba-

bility for two different allocation levels at a particular time point, the overall effect

can be viewed as a combination of direct and indirect effects. The overall effect can

be written as OE(t, α1, α2) = µ(t, α1) − µ(t, α2). It can be seen that since µ(t, α) =

(1− α)µ(t, 0, α) + αµ(t, 1, α), OE(t, α1, α2) = IE(t, α1)− α1DE(t, α1) + α2DE(t, α2).

4.2.2 Assumptions

Assume the following,

I) Conditional independence: Ai ⊥⊥ Ti(.)|Li,

II) Positivity: Pr(Ai = ai|Li = l) > 0 for all ai ∈ A(ni) and l such that Pr(Li = l) > 0,

III) Conditional independent censoring: Ci ⊥⊥ {Ti(.),Ai}|Li.
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Assumptions I and II are generalizations of individual level assumptions for inter-

ference. Both of these are assumed in case of no interference as well. However, for

no interference the assumptions are made on individuals whereas with interference the

assumptions must be extended for groups instead of individuals. For example, for no

interference, assumption I, commonly referred to as no unmeasured confounding states

that the potential outcome for each individual under each particular treatment is inde-

pendent of the actual treatment assignment of the individual given all of the measured

confounders for the individual. A simple extension states that the potential outcome for

all individuals of a group is independent of the actual treatment assignment of the group

given all of the measured confounders for the group. Similarly, assumption II, termed

as positivity, signifies that each group has a positive probability of being assigned every

possible treatment combination given all of the measured confounders for the group. As-

sumption III pertains to the censoring distributions. It states that for each individual,

given the set of measured confounders for the individual’s group, the potential outcome of

a group and the observed group treatment assignment are jointly conditionally indepen-

dent of the censoring time of for that group given covariates. It can be shown that this

assumption can be relaxed further to make the censoring times depend on the treatment

status.

4.2.3 IPCW and Parametric G Formula Estimators

For interference, the TV IPW estimators with group propensity scores can be ex-

tended with censoring weights to formulate IPCW estimators with group propensity

scores to estimate µ(t, a, α) and µ(t, α) as follows- µ̂(t, a, α) = m−1
∑m

i=1 F̂i(t, a, α) and

µ̂(t, α) = m−1
∑m

i=1 F̂i(t, α) where

F̂i(t, a, α) = n−1i

ni∑
j=1

π(Ai,−j;α)I(Aij = a)I(∆ij = 1)I(Xij ≤ t)

Pr(Ai|Li, β̂) Pr(∆ij = 1|Li, Xij, γ̂)
,

64



and

F̂i(t, α) = n−1i

ni∑
j=1

π(Ai;α)I(∆ij = 1)I(Xij ≤ t)

Pr(Ai|Li, β̂) Pr(∆ij = 1|Li, Xij, γ̂)
.

The estimated parameters β̂ and γ̂ are used to calculate the group propensity scores

Pr(Ai|Li, β̂) and censoring weights Pr(∆ij = 1|Li, Xij, γ̂) respectively. Methods for cal-

culating the propensity score model and censoring model are discussed later. From

these IPCW estimates ,the various causal effects can also be estimated as follows-

D̂E(t, α) = µ̂(t, 0, α)− µ̂(t, 1, α), ÎE(t, α1, α2) = µ̂(t, 0, α1)− µ̂(t, 0, α2), T̂E(t, α1, α2) =

µ̂(t, 0, α1) − µ̂(t, 1, α2) and ÔE(t, α1, α2) = µ̂(t, α1) − µ̂(t, α2). Under the assumptions

discussed before and when the treatment and censoring models are correctly specified,

the IPCW estimator can be shown to be consistent and asymptotically normal.

The group propensity scores Pr(Ai|Li, β̂) required to calculate the IPCW estimators

might become too small for large groups and numerical calculation might become unfea-

sible. One way to circumvent this problem might be to use parametric g formula to find

estimators for µ(t, a, α) and µ(t, α). The parametric g formula estimator for µ(t, a, α), in

this case, can be given by

mint(t, a, α, ω̂) =

ˆ ∑
ai,−k∈A(ni−1)

Pr(T ≤ t|L = l, A = a,Ai,−k = ai,−k, ω̂)dFL(l)

× π(ai,−k, α).

The outcome probability Pr(T ≤ t|L = l, A = a,Ai,−k = ai,−k, ω̂) can be estimated by

fitting a parametric model which is discussed in detail in the following sections. Here ω̂

is an estimator of the parameter for the outcome model. The quantity Pr(T ≤ t|L =

l, A = a,Ai,−k = ai,−k,ω) is well defined because of assumption II. The integral in

the estimator can be replaced by sum and the parametric g formula estimator can be
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empirically calculated based on the empirical distribution of L as-

mint(t, a, α, ω̂) =
1

m

m∑
i=1

1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

Pr(T ≤ t|Li, A = a,Ai,−k = ai,−k, ω̂)

× π(ai,−k, α)

=
1

m

m∑
i=1

1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

mij(a, ai,−j, t,Li, ω̂)

=
1

m

m∑
i=1

mint
i (t, a, α, ω̂)

where mij(a, ai,−j, t,Li, ω̂) = Pr(T ≤ t|Li, A = a,Ai,−k = ai,−k, ω̂). Similarly, the

parametric g formula estimator for µ(t, α) is given as-

mint(t, α, ω̂) =

ˆ ∑
ai∈A(ni)

Pr(T ≤ t|L = l,Ai = ai, ω̂)dFL(l)π(ai, α)

and empirically the estimator is calculated as-

mint(t, α, ω̂) =
1

m

m∑
i=1

1

ni

ni∑
j=1

∑
ai∈A(ni)

Pr(T ≤ t|Li,Ai = ai, ω̂)π(ai, α)

=
1

m

m∑
i=1

1

ni

ni∑
j=1

∑
ai∈A(ni)

mij(ai, t,Li, ω̂)

=
1

m

m∑
i=1

mint
i (t, α, ω̂)

where mij(ai, t,Li, ω̂) = Pr(T ≤ t|Li,Ai = ai, ω̂). Based on these parametric g estima-

tors, the causal effect estimates are given by D̂E(t, α) = mint(t, 0, α, ω̂)−mint(t, 1, α, ω̂),

ÎE(t, α1, α2) = mint(t, 0, α1, ω̂) − mint(t, 0, α2, ω̂), T̂E(t, α1, α2) = mint(t, 0, α1, ω̂) −

mint(t, 1, α2, ω̂) and ÔE(t, α1, α2) = mint(t, α1, ω̂) − mint(t, α2, ω̂). Under the assump-

tions discussed before and when the outcome model is correctly specified, the parametric

g formula estimator can be shown to be consistent and asymptotically normal.
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4.2.4 Proposed Estimator

An important intrinsic assumption for both the IPCW estimator and the parametric

g formula is that the underlying models are specified correctly. If this does not hold

true then the consistency and asymptotic normality of the estimators are not valid. The

doubly robust estimator provides an alternative to these methods where the estimator is

supposedly robust under some model misspecifications. Liu et al. (2018) extended doubly

robust estimators to the case of partial interference. The estimators put forth by them

has the following form-

F̂LAN(a, α) = m−1
m∑
i=1

n−1i

ni∑
j=1

[
I(Aij = a){Yij −mij(Ai,Li, ω̂)}π(Ai,−j;α)

Pr(Ai|Li, β̂)

+
∑
ai,−j

mij(a, ai,−j,Li, ω̂)π(ai,−j;α)

]
where Yij is the potential outcome of interest and mij(ai,Li,ω) = E(Yij|ai,Li,ω). Ex-

tending Liu et al.’s estimate for data with right censoring, considering Yij = I(Xij ≤ t)

the proposed doubly robust estimate for µ(t, a, α) is given by

F̂DR(t, a, α)

= m−1
m∑
i=1

n−1i

ni∑
j=1

[
I(Aij = a)I(∆t

ij = 1){I(Xij ≤ t)−mij(Ai, t,Li, ω̂)}π(Ai,−j;α)

Pr(Ai|Li, β̂) Pr(∆t
ij = 1|Li, Xij, γ̂)

+
∑
ai,−j

mij(a, ai,−j, t,Li, ω̂)π(ai,−j;α)

]
.

Along the same lines, the doubly robust estimator for µ(t, α) adjusting for censoring is

given by-

F̂DR(t, α) = m−1
m∑
i=1

n−1i

ni∑
j=1

[
I(∆t

ij = 1){I(Xij ≤ t)−mij(Ai, t,Li, ω̂)}π(Ai;α)

Pr(Ai|Li, β̂) Pr(∆t
ij = 1|Li, Xij, γ̂)
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+
∑
ai

mij(ai,−j, t,Li, ω̂)π(ai;α)

]
,

where ∆t
ij = 1 if T tij(Ai) ≤ Cij and ∆t

ij = 0 otherwise and T tij(.) = min(Tij(.), t).

Using the time dependent censoring indicator ∆t
ij instead of the original censoring indi-

cator ∆ij yields a more efficient estimator in this case because individuals censored after

time t will contribute the information in the estimator. And as before, the estimates

for the causal effects can be given as follows- D̂E(t, α) = F̂DR(t, 0, α) − F̂DR(t, 1, α),

ÎE(t, α1, α2) = F̂DR(t, 0, α1)−F̂DR(t, 0, α2), T̂E(t, α1, α2) = F̂DR(t, 0, α1)−F̂DR(t, 1, α2)

and ÔE(t, α1, α2) = F̂DR(t, α1)− F̂DR(t, α2).

4.2.5 Properties of the Proposed Estimator

The definition of the doubly robust estimator entails the estimation of three sets of

nuisance parameter β, γ, and ω. For observational data, these parameters are not known

beforehand and must be estimated from the observed data to calculate the value of the

estimate.

Following the parametric frailty models formulated by Munda et al. (2012), the cen-

soring times cij were assumed to follow a parametric frailty model. The conditional

hazard for the censoring times is given by gij(c|Lij, ei) = g0(c;θh)ei exp (LT
ijθc). Here,

the baseline hazard function is denoted by g0, θh is the q′- dimensional vector of param-

eters for the baseline hazard function, the random effect ei is assumed to follow density

fe(ei; θr), and the vector of parameters corresponding to the covariates are denoted by

θc, which is is q-dimensional. So, the overall vector of parameters for the parametric

frailty model γ is given as γ = (θc,θh, θr). The vector of parameters γ is estimated

using maximum likelihood estimators. Hence, following assumption III, the contribution

of group i to the marginal log-likelihood is (Munda et al. 2012)

l(Xi,∆i,Li,γ) =

ni∑
j=1

∆t
ij

[
log{g0(X t

ij)}+ LT
ijθc
]

+ (−1)d
∗
iL(d∗i )

ni∑
j=1

G0(X
t
ij) exp (LT

ijθc).
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Here, X t
ij = min(T tij(Ai), Cij), Xt

i = (X t
i1, X

t
i2, · · · , X t

ini
), ∆t

i = (∆t
i1,∆

t
i2, · · · ,∆t

ini
),

dti =
∑ni

j=1(1 − ∆t
ij) is the number of censored observations in group i at time t,

G0(ω) =
´ ω
0
g0(κ)dκ, and L(s) is the s-th derivative of the Laplace transform of the

frailty distribution, i.e., L(s) =
´∞
0

exp (−eis)fe(ei; θr)dei. In terms of estimating equa-

tion theory, the maximum likelihood estimator of γ can be formulated as solution of the

following estimating equations

∑
i

ψck(Xi,∆i,Li,γ) = 0 for k = 1, ..., q + q′ + 1,

where ψck = ψck(Xi,∆i,Li,γ) = ∂l(Xt
i,∆

t
i,Li,γ)/∂γk and γk is the k-th element of γ.

The calculation of censoring weight can be simplified by the choice of baseline hazard

and frailty distribution. Specifically, in this section, a constant value equal to θh is

used as the baseline hazard for the censoring model.Then the conditional hazard is given

as gij(c|Lij, ei) = θh exp (Lijθc)ei. Also, it is assumed that the frailty term ei follows

a gamma distribution with mean 1 and variance θr. Under these specifications, the

censoring weights can be obtained exactly using the closed form obtained below-

Pr(∆t
ij = 1|Li, Xij,γ) =

ˆ
Pr(Cij > X t

ij|Li,γ, ei)fe(ei; θr)dei

=

ˆ
exp {−θhX t

ij exp (Lijθc)ei}
e
1/θr−1
i e−ei/θr

θ
1/θr
r Γ1/θr

dei

=

{
1

θrθhX t
ij exp (Lijθc) + 1

}1/θr

Next, the group propensity weights must be estimated. TV (2012), used a mixed

effects model for the treatment indicator, i.e., Pr(Aij = 1|Lij, bi) = logit−1(Lijθx + bi) to

estimate the group propensity scores. Here, θx corresponds to the covariate parameters

and bi is a random effect following density fb(bi; θs). Then, the vector of parameters for

the mixed effects model is give by β = (θx, θs). Maximum likelihood theory is again

employed for the estimation of the parameter vector β. The contribution of group i to
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the log-likelihood for the mixed effects model is given by

l(Ai,Li,β) = log

[ˆ ni∏
j=1

hij(bi,Li,θx)Aij{1− hij(bi,Li,θx)}(1−Aij)fb(bi; θs)

]
,

where hij(bi,Li,β) = Pr(Aij = 1|Lij, bi). The likelihood for group i is obtained by inte-

grating over the random effect for group i. Similarly as before, the maximum likelihood

estimator of β can be formulated as the solution to the vector of estimating equations

∑
i

ψxk(Ai,Li,β) = 0 for k = 1, ..., p+ 1,

where ψxk = ψxk(Ai,Li,β) = ∂l(Ai,Li,β)/∂βk, βk is the k-th element of β.

Finally, the time to events must be modeled. According to Munda et al. (2012), again

a parametric frailty model can be employed for this purpose. For the outcome model,

the conditional hazard gORij (t|Lij, Aij,Ai,−j, e
OR
i ) for Tij(ai) is given by

gORij (t|Lij, Aij,Ai,−j,ω, e
OR
i ) = gOR0 (ωh, t)e

OR
i

× exp (LT
ijωc(1:p′1) + φ(Ai,−j)ωc(p′1+1:p′) + Aijωc(p′+1)).

Again, as before, gOR0 denotes the baseline hazard function, the p′′ dimensional parameter

vector corresponding to the baseline hazard function is given by ωh, eORi is the frailty term

following density fORe (eORi ;ωr), ωc = (ωc(1:p′1),ωc(p′1+1:p′), ωc(p′+1)) is a p′ + 1 dimensional

vector of coefficients corresponding to the covariates and ωr is a parameter of the random

effect model. The overall vector of parameters corresponding to the outcome model is

then ω = (ωc,ωh, ωr). This vector of nuisance parameter is not known beforehand and

must be estimated from the data. The treatment assignment vector is incorporated in

the model through the function φ. For example, in this section, φ is assumed to be the

proportion of treated individuals in each group. As before, the contribution of group

i, due to assumption III, towards the marginal log-likelihood equals (Berg and Drepper
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2012)

l(Xi,∆i,Li,ω)

=

(
ni∑
j=1

∆ij

[
log{gOR0 (Xij)}+ LT

ijωc(1:p′1) + φ(Ai,−j)ωc(p′1+1:p′) + Aijωc(p′+1)

])
+[

(−1)diL(di)

{
ni∑
j=1

gOR0 (Xij) exp (LT
ijωc(1:p′1) + φ(Ai,−j)ωc(p′1+1:p′) + Aijωc(p′+1))

}]
.

Here di =
∑ni

j=1 ∆ij denotes the number of uncensored cases, L(q) denotes the q-th

derivative of the Laplace transform of the frailty distribution, i.e.,

L(s) =

ˆ ∞
0

exp (−eORi s)f(eORi , ωr)de
OR
i , s ≥ 0.

The parameters are estimated using maximum likelihood. For obtaining these, the cor-

responding score equations must be maximized. Hence, these score equations can be

represented as a set of estimating equations and the maximum likelihood estimate for ω

can be interpreted as the solution of the following estimating equations

∑
i

ψORck (Xi,∆i,Li,ω) = 0 for k = 1, ..., p′ + p′′ + 1,

where ψORck = ψORck (Xi,∆i,Li,ω) = ∂l(Xi,∆i,Li,ω)/∂ωk, ωk being the k-th member of

ω. For calculating the estimators proposed in Section 4.2.4, quantity Pr(T ≤ t|Li, A =

a,Ai,−k = ai,−k, ω̂) must be calculated. Using the estimated values of ω̂, the term can

be calculated easily and the proposed estimator can be obtained by integrating out the

effect of the random component. If the estimated survival function corresponding to the
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model for group i is given by Sg(gORij (t|Li, Aij,Ai,−j, e
OR
i , ω̂)), then,

Pr(T ≤ t|Li, A = a,Ai,−k = ai,−k, ω̂) =

1−
ˆ
Sg(g

OR
ij (t|Li, Aij = a,Ai,−j, e

OR
i , ω̂))fORe (eORi ;ωr)de

OR
i

So, to estimate the probability Pr(T ≤ t|Li, A = a,Ai,−k = ai,−k, ω̂), a parametric

frailty model is assumed for the time to events and the conditional survival probabilities

must be integrated with respect to the random component. In all the analysis performed

in this section, the parametric frailty model employed is assumed to have a frailty distri-

bution. of gamma. Specifically, eORi follows gamma distribution with variance ωr. For a

gamma frailty, the quantity Pr(T ≤ t|Li, A = a,Ai,−k = ai,−k, ω̂) can be obtained as a

closed form by computing the exact integral mathematically. Using integral calculus we

can show the following-

Pr(T ≤ t|Li,A = a,Ai,−k = ai,−k, ω̂)

= 1−
ˆ

exp {−GOR
0 (Li,Ai,−j, a, ω̂, t)e

OR
i }

(eORi )1/ω̂r−1e−e
OR
i /ω̂r

ω̂r
1/ω̂rΓ1/ω̂r

deORi

= 1−
{

1

ω̂rGOR
0 (Li,Ai,−j, a, ω̂, t) + 1

}1/ω̂r

Here,

GOR
0 (Li,Ai,−j, a, ω̂, t) = exp (LT

ijω̂c(1:p′1) + φ(Ai,−j)ω̂c(p′1+1:p′) + aω̂c(p′+1))

×
ˆ t

0

gOR0 (ω̂h, s)ds
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So, it follows that

mint
i (t, a,α, ω̂)

= 1− 1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

{
1

ω̂rGOR
0 (Li,Ai,−j, a, ω̂, t) + 1

}1/ω̂r

π(ai,−k, α)

and

mint(t, a, α, ω̂) =
1

m

m∑
i=1

mint
i (t, a, α, ω̂).

Similarly,

mint
i (t, α, ω̂) = 1− 1

ni

ni∑
j=1

∑
ai∈A(ni)

1∑
a′=0

{
1

ω̂rGOR
0 (Li,Ai,−j, a′, ω̂, t) + 1

}1/ω̂r

π(ai, α)

and

mint(t, α, , ω̂) =
1

m

m∑
i=1

mint
i (t, α, , ω̂)

Therefore, considering the estimation of all the aforementioned parameters as well as

the parameters of interest for obtaining the causal effects, the overall vector of estimating

equations are obtained by stacking all of the estimating equations and can be denoted

by ∑
i

ψDR(Oi,θ
DR) = 0,

where, Oi = (Xi,∆i,Ai,Li), ψ(Oi,θ
DR) =

(
ψc,ψx,ψ

OR
c , ψDRaα

)T , ψc =

(ψc1, ψc2, ..., ψcq+q′+1)
T , ψx = (ψx1, ψx2, ..., ψxp)

T , ψOR
c =

(
ψORc1 , ψ

OR
c2 , ..., ψ

OR
c(p′+p′′+1)

)T
,

and ψDRaα = ψDRaα (Oi,θ
DR) = F̂DR(t, a, α) − θDRaα . The vector of parameters to be es-

timated from the estimating equations is θDR =
(
θc,θh, θr,θx, θs,ω, θ

DR
aα

)
. The overall

vector of solutions are obtained using maximum likelihood theory and using the proposed

estimators and is given by θ̂ = (θ̂c, θ̂h, θ̂r, θ̂x, θ̂s, ω̂, θ̂
DR
aα ). Finally, the true value of the

parameters are denoted by of β, γ, and ω by β0, γ0, and ω0.
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Proposition 3. If either (i) the propensity model and the censoring model are cor-

rectly specified or (ii) the outcome model is correctly specified then
√
m{F̂DR(t, a, α) −

µ(t, a, α)} converges to a normal distribution with mean 0 and variance ΣDR as

m → ∞ where ΣDR = τU(θDR)−1V (θDR){U(θDR)−1}T τT where U(θDR) =

E{−ψ̇DR(Oi,θ
DR)}, V (θDR) = E{ψDR(Oi,θ

DR)ψDR(Oi,θ
DR)T}, ψ̇DR(Oi,θ

DR) =

∂ψDR(Oi,θ
DR)/∂(θDR)T , and τ = (0, 0, . . . , 0, 1).

The proof of Proposition 3 is given in Section 4.6. The asymptotic variance ΣDR can

be consistently estimated by Σ̂DR = Û(θ̂DR)−1V̂ (θ̂DR){Û(θ̂DR)−1}T where Û(θ̂DR) =

m−1
∑m

i=1{−ψ̇DR(Oi, θ̂
DR)} and V̂ (θ̂DR) = m−1

∑m
i=1{ψDR(Oi, θ̂

DR)ψDR(Oi, θ̂
DR)T}.

The sandwich variance estimator Σ̂DR can be computed using the R package geex (Saul

and Hudgens 2017) and can be used to construct Wald type confidence intervals.

4.3 Simulation

To demonstrate the efficacy of the methods discussed, a simulation study was per-

formed. The data was simulated using the following steps

1. First, baseline covariates L1ij, L2ij, L3ij, and L4ij was generated randomly as fol-

lows. L1ij was generated following a standard normal distribution, L2ij was gener-

ated following a Bernoulli distribution with probability of success 0.5, and L3ij was

generated following a chi-square distribution with 1 degree of freedom. To gener-

ate L4ij, first, random variables Vij were generated following an inverse Gaussian

distribution with mean 1. The baseline covariates L4ij were then assigned to be

V 2
ij + L3ij.

2. Random effects bi for generating the treatment probabilities were randomly gener-

ated following a normal distribution with mean 0 and variance 1.

3. Treatment indicators were simulated following a Bernoulli distribution with proba-

bility pij where pij = expit(1−β|L1ij|+ bi). The value of β is varied from 0.1 to 1.0
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with an increment of 0.1 to get 10 sets of simulated data. The different simulation

settings are denoted by alphabets a through j respectively.

4. Random components eORi for generating the potential times to event were generated

randomly from a gamma distribution with mean 1 and variance 0.1.

5. Then the time to events Tij(ai) were randomly sampled from

an exponential distribution with mean µij where 1/µij =

0.6eORi exp (−7.4aij − 12.7
∑

k 6=j aik/ni + 10|L1ij| − 7.4L2ij + 20L1ijL2ij).

6. Next, another set of random effects ei were generated randomly following a gamma

distribution with mean 1 and variance 10

7. Finally, the censoring times Cij were sampled randomly from an exponential distri-

bution with mean λ0 where where 1/λ0 = 0.01ei exp (2|L1ij| − 10L2ij + 5L1ijL2ij).

8. An individual was censored, i.e. ∆ij = 1 if Cij < Tij(Ai).

9. The misspecified outcome model was obtained by fitting a parametric frailty model

to the time to events with the covariates treatment,
∑

k 6=j aik/ni, |L1ij|, and L2ij.

10. The misspecified treatment model was obtained by fitting a logistic mixed effects

model to the treatment indicators with covariates L4ij.

11. Finally, the misspecified censoring model was obtained by fitting a parametric

frailty model to the censoring times with covariate L1ij.

The steps from 1 to 8 were performed iteratively a large number of times. For each of the

simulated data, the number of groups was fixed to be 200 and the number of individuals

in each group was fixed to be 30. So, for every set of simulation, the total number of

individuals was 6000. The true values of the parameters of interest were obtained from

the simulated data by using the complete simulated data on the counterfactuals for a

large data set. The allocation probabilities used ranged from 0.1 to 0.9 with an increment
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of 0.1. So, the total number of allocation probabilities explored was 9. The estimates of

the parameters of interest were also obtained for each of the simulated data set. These

estimates were compared with the true value of the estimates. Note that the Bernoulli

allocation probabilities, in this case, have the following property: if
∑

k 6=j aik is the same

for two different values of the vector ai,−j, then π(ai,−j, α) will also be the same for those

two treatment vectors. Hence, in this case, the population average potential cumulative

survival distribution at the time point t for treatment a under allocation strategy α can

be simplified as (Perez-Heydrich et al. 2014)

m−1
∑
i

n−1i
∑
j

ni−1∑
k=0

(
ni − 1

k

)
I{Tij(a, ai,−j) ≤ t}αk(1− α)ni−k−1

An equivalent explanation yields that the population average marginal potential cu-

mulative survival distribution at the time point t under allocation strategy α can be

represented as

m−1
∑
i

n−1i
∑
j

ni∑
k=0

(
ni
k

)
I{Tij(a, ai,−j) ≤ t}αk(1− α)ni−k−1

This is a special case of partial interference and this representation is possible because

of the fact that the contribution of the vector ai,−j towards the time to events is only

through the sum of its elements
∑

k 6=j aik. The estimated asymptotic standard errors were

also obtained using the sandwich variance estimator discussed in the previous section for

each of the simulated data for each α. The representative value of the estimate and

the asymptotic standard error were calculated as the average over all the simulated data

set. Standard errors were also calculated empirically from the estimates obtained from

each of the simulated data set. The asymptotic standard errors were used to construct

95% Wald confidence intervals. Finally, for each value of α, coverage percentages were

calculated by observing the percentage of estimated values lying within the confidence

interval over all the simulated data set.
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Fitting all the correctly specified models, 1000 iterations of simulation setting e were

performed. The results are summarized in Table 4.1, which describes the results obtained

in detail for nine different α values at time point 100 days. From the table, it can be

observed that the bias is close to 0 in general. Also, the Wald type 95% confidence

intervals seem to attain the nominal level.

Figure 4.1 and Figure 4.2 show the absolute biases of the estimates F̂DR(t, a, α) for the

different simulation settings a through j for untreated and treated individuals respectively

for α = 0.5. Similarly, Figure 4.3 and Figure 4.4 show the coverages of the 95% Wald

type confidence intervals for the different simulation settings a through j for untreated

and treated individuals respectively for α = 0.5. These plots contain results for IPCW,

parametric g as well as doubly robust estimators under four different scenarios. These

are, i) when the outcome model, treatment model, and censoring model are all specified

correctly, ii) when the outcome model is specified incorrectly but the treatment and cen-

soring models were specified correctly, iii) when only the outcome model was specified

correctly but both the treatment and censoring model were specified correctly, and iv)

when all the three models are specified incorrectly. The IPCW estimators were particu-

larly sensitive towards the actual distribution of the propensity scores. Depending on how

the propensity scores were distributed, the IPCW estimators were either always unbiased

or always biased irrespective of the models being correctly or incorrectly specified. Simu-

lation scenarios a through j were used to compare the estimators for different propensity

distributions. From the figures, note that the bias of the IPCW method for incorrectly

specified treatment and censoring models is quite close to 0 for simulation setting a and

increases from simulation setting b through j. However, if only one set of models are in-

correctly specified, then, across all the simulations, the doubly robust estimator performs

uniformly better in terms of bias as well as coverage than the corresponding estimator for

which the model(s) has(have) been misspecified thus demonstrating the doubly robust

property of the estimator.
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4.4 Data Analysis

4.4.1 Cholera Vaccine Study and Analysis

In order to show the performance of the methods described in Section 4.2, data from

a cholera vaccine study in Matlab, Bangladesh (Ali et al. 2005) are analyzed. The study

participants consisted of children of ages 2-15 and women. There were two versions of

vaccine administered. They were B subunit-killed whole-cell oral cholera vaccine or killed

whole-cell-only cholera vaccine. The placebo used on the participants for this study was

E. coli K12 placebo. However, according to SUTVA, it is assumed that there is only one

version of treatment and control. Hence, the two treatments are considered to be the

same treatment. Individuals in the study randomly received one of the three treatments.

Participation in the study was based on whether an individual received two or more

doses of the treatment or vaccine assigned to him/her. Since non participants were also

included in the analysis of the study, a matrix with information on whether an individual

participated in the study or not was maintained. The assignment of treatment or control

to an individual in the Matlab study was irrespective of their participation status. The

dates of vaccination ranged from January to May 1985. Three centers for vaccination

were established in the Matlab area and later, these were used as surveillance centers

for end point data collection. The total number of individuals in the data consisted was

121,982. The presence of interference has been established by a number of studies of the

data in the past (Perez-Heydrich et al. 2014). However, in all of those studies, the issue

of right censoring was ignored.

Not all the individuals in the study observe an event of cholera. For those who do

not, the time to incidence of cholera is censored. Hence, the presence of right censoring

is evident in the data. There are a number of causes of censoring like migration from

study location or death during the follow up period.

Before proceeding with the analysis, the data was prepared accordingly as follows.
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7 duplicate values were observed in the 121,982 observed individuals. These observa-

tions were removed from the data and there remained a total of 121, 975 individuals.

Note that, the date of vaccination was not the same for all individuals as previously

mentioned. However, since the range of vaccination was only five months, the date of

vaccination of individuals were quite close to each other. Therefore, for convenience of

analysis, individuals within the same group were assigned the same date of entry into the

study. The entry date for an individual was defined to be the most recent date of second

vaccination among all the individuals within the group to which that particular individ-

ual belonged. There were some groups in which none of the individuals received a second

vaccination. For those groups, the start date was defined as the most recent date of first

vaccination among all the individuals within that group. During the process of assigning

start dates to individuals, it was observed that 34 individuals could not be assigned any

start date as nobody in their group were given a single dose of either vaccine or placebo.

These observations were also removed giving rise to 121,941 individuals. After that, it

was again observed that 60 of the observations had start dates assigned to them which

were before the date of them contracting cholera. Since time to contract cholera cannot

be negative, those observations were deleted. Along similar lines, the dates of migration

of 3617 individuals and the dates of death for 346 individuals were were observed to be

before their group’s start date and hence they had to be removed as well and 117,918 in-

dividuals remained. This is the dimension of the final data that was ultimately analyzed.

Within this, there were 69,219 individuals who received placebo and there were 48,699

individuals who received treatment. The number of cases of cholera was very small, i.e.,

in the control and treatment group, there were 375 and 103 cases of cholera reported

respectively.

While calculating the propensity score for the estimator, the largest 15 groups posed a

problem as their group propensity scores were very close to 0. Because of this, the weights

were abnormally large and numerical calculations could not be performed using those
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weights. So, these groups had to be be omitted as well. The probability of vaccination

was 2/3 in the data if the two groups of vaccines were merged together. The probability

of participation was modeled using a mixed effects model following Perez-Heydrich et.

al.. Age, squared age, distance to nearest river, and squared distance to nearest river were

all included as covariates in the model. The propensity score for group i was estimated

by

Pr(Ai|Li, β̂) =

ˆ
Πni

j=1{(2/3)hij(bi,Lij, θ̂x)}Aij{1− (2/3)hij(bi,Lij, θ̂x)}(1−Aij)

× fb(bi; θ̂s),

where hij(bi,Li,θx)} = Pr(Bij = 1|bi,Lij,θx)) = expit(Lijθx + bi), and (θ̂x, θ̂s) is the

maximum likelihood estimate of (θx, θs). For the censoring model, checking individually

for statistically significant predictors of censoring, age was chosen as the most significant

predictor. Specifically, the censoring times were modeled using a parametric frailty model

as exponential random variables with mean θhci exp (ageijθc), where ci was assumed to

follow a gamma distribution with mean 1 and variance θr.

Following Section 4.2, a parametric frailty model is fitted to the outcome of interest,

i.e., time to Cholera. For completely specifying the outcome model, there must be a

baseline hazard function and a frailty distribution given. Many different combinations of

choices were considered for this model.

The AIC and BIC values for several baseline hazard function and frailty distribution

combinations are provided in Table 4.2. Both the AIC and BIC values seem to reach their

minimum value corresponding to baseline hazard distribution gompertz and frailty distri-

bution gamma. So, the times to incidence of cholera were assumed to follow a parametric

frailty model with baseline hazard distribution gompertz and frailty distribution gamma.

For gompertz baseline hazard, the function gOR0 (ωh, t) equals ωh2exp(ωh1t). Treatment

status, proportion of individuals treated in the group, interaction of treatment status
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and proportion of individuals treated within the group, age, distance to river, squared

age and squared distance to river were all used as explanatory variables in the outcome

model. Note that, from Section 4.2.5, we can obtain a closed form expression for both

the outcome probability as well as the likelihood function since the frailty is gamma. The

allocation probabilities that were used for analysis ranged from 0.3 and 0.6 because over

70% of individuals had values of α within that range.

4.4.2 Results

The direct, indirect, total and overall effects at one year per thousand persons ob-

tained from the cholera vaccine study are summarized in Figure 4.5. From the figure, it

can be observed that the direct effect is a function of the policy α. The direct effect seems

to be inversely related to the allocation probability. Also, the 95% confidence interval for

the direct effect includes 0 only for α greater than 0.55. So, for α less than or equal to

0.55, there exists a statistically significant direct effect of vaccine on cholera. To illustrate

this, it can be seen that the direct effects and 95% confidence intervals corresponding to

α = 0.45 and α = 0.6 are 4.3 (1.8, 6.9) and 1.6 (−0.4, 3.7) respectively. So, it can be said

that in a population of 1000 individuals, 7.8 more individuals are expected to be infected

with cholera if they are not vaccinated compared to if they are vaccinated. Unlike the

direct effect, all three of the indirect, total and overall effects seem to increase with pol-

icy α. All of these three effects provide different measures of the spillover effect and the

trend suggests a positive spillover effect of the vaccination on the incidence of cholera.

for example, the estimate of the overall effect corresponding to α1 = 0.55 and α2 = 0.4

turns out to be 2.7 with a 95% confidence interval of (1.3, 4.1). This means that almost

3 more individuals are expected to be infected with cholera in a region with allocation

probability 0.4 compared to a region with allocation probability 0.55 irrespective of their

individual treatment status.
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Perez-Heydrich et al. (2014) provided IPW estimates for the direct, indirect, total

and overall effects using group propensity scores instead of individual propensity scores.

The estimates from the doubly robust estimate compare well with the previous results.

The plots of the effects look to be quite similar and the trend is similar as well. For

example, the direct effect (and 95% CI) provided by Perez-Heydrich et. al. is given by

4.03 (2.48, 8.12). Whereas the doubly robust method suggested in this section produces

a point estimate (and 95% CI) of 7.13 (4.06, 10.20). However, the estimators provided

by Perez-Heydrich et. al. suffered from two serious drawbacks that have been addressed

in the methods of this section. The first drawback is that for the IPW estimator, the

propensity model must be correctly specified. But for the doubly robust method, even

if the propensity model and the censoring models are both specified incorrectly, the

estimator might be consistent if the outcome model can be specified correctly. Also, the

IPW estimators do not adjust for censoring.

4.5 Discussion

In this chapter, the doubly robust estimator proposed by Liu et al. (2018) was ex-

tended for data with right censoring. A censoring weight was incorporated in the esti-

mator proposed by them to calculate the new estimator. Using M-estimation theory, the

estimator was shown to be consistent and asymptotically normal when either the treat-

ment model and censoring model are correctly specified or only the outcome model is

correctly specified, validating its doubly robust property. A sandwich variance estimator

was used to construct 95% confidence interval for the estimates. Results from simulation

studies showed that the estimator performed well for finite samples, i.e. the estimator

was robust under model misspecification, it had a low bias, and the coverage was close

to the nominal level of 95%.

The methods were implemented on the cholera vaccine trial and various causal effects
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were estimated. Results were compared with previous studies (Ali et al. 2005, Perez-

Heydrich et al. 2014). In agreement with these studies, it was observed that there was

an inverse relationship of incidence of cholera with the allocation probability. The effects

were obtained as a function of both time and policy. However, none of the previous

studies adjusted for censoring hence being susceptible to selection bias. (Perez-Heydrich

et al. 2014) used an IPW estimator which is sensitive to model misspecification. Results

corresponding to time point one year were discussed in detail in this chapter.

The doubly robust estimator suffers from some of the drawbacks of both the IPCW

and the parametric g formula. For example, large groups might yield a very small value

of group propensity score resulting in an unstable estimator. One way around this issue

can be to use standardized estimator instead of the original one proposed in this chapter.

The parametric g formula estimate might prove to be mathematically cumbersome to

compute as it involves summing over all possible ai. Liu et al. (2018) used a Monte-

Carlo approach to carry out calculations which might be employed n this case as well. A

future direction of work might be to adopt a semi parametric Cox proportional hazard

model instead of the parametric frailty model for the censoring as well as the outcome

model. Naimi and Kennedy (2017) showed that doubly robust methods perform well

when used in conjunction with non-parametric models. This is another avenue worth

exploring in the future. Finally, the methods discussed here might be extended from

partial interference to general interference.
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Figure 4.1: Absolute biases of the doubly robust, parametric g and the IPCW estimators
under different model misspecifications in control group.
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Figure 4.2: Absolute biases of the doubly robust, parametric g and the IPCW estimators
under different model misspecifications in treatment group.
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Figure 4.3: Coverages of the doubly robust, parametric g and the IPCW estimators under
different model misspecifications in control group.
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Figure 4.4: Coverages of the doubly robust, parametric g and the IPCW estimators under
different model misspecifications in treatment group.
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Figure 4.5: Direct effect, indirect effect, total effect and overall effect estimates multiplied
by 1000 for different allocation strategies at time t = 1 year. Indirect effects, total effects
and overall effects are with respect to α2 = 0.4. The shaded region denotes the 95%
confidence interval of the estimates.
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α µ(100, 0, α) Bias ESE ASE EC α µ(100, 1, α) Bias ESE ASE EC

0.1 0.10 0.02 0.36 0.03 95% 0.1 0.43 0.00 0.13 0.02 97%

0.2 0.14 0.02 0.36 0.04 97% 0.2 0.48 0.00 0.18 0.03 95%

0.3 0.20 0.01 0.13 0.03 96% 0.3 0.53 0.00 0.09 0.03 95%

0.4 0.25 -0.01 0.03 0.02 94% 0.4 0.57 0.00 0.03 0.02 95%

0.5 0.31 -0.01 0.01 0.01 93% 0.5 0.61 0.00 0.01 0.01 95%

0.6 0.37 0.00 0.01 0.01 94% 0.6 0.65 0.00 0.01 0.01 94%

0.7 0.43 0.00 0.01 0.01 95% 0.7 0.68 0.00 0.01 0.01 94%

0.8 0.48 0.00 0.01 0.01 95% 0.8 0.71 0.00 0.01 0.01 95%

0.9 0.53 0.00 0.05 0.03 96% 0.9 0.74 0.00 0.03 0.01 96%

Table 4.1: Results from simulation study described in Section 4.3. α denotes the allo-
cation probabilities, µ(100, a, α) is the true value of the target parameter for a = 0, 1;
Bias is the average of µ(100, a, α) − F̂DR(100, a, α) for a = 0, 1; ESE is the empirical
standard error, ASE is the average of the sandwich variance estimates and EC denotes
the empirical coverage of the 95% Wald confidence intervals.

89



Gamma Inverse Gaussian Positive Stable

Exponential 5946.42 (6033.51) 5955.73 (6042.83) 5992.52 (6079.61)

Weibull 5888.98 (5985.76) 5898.34 (5995.12) 5935.18 (6031.96)

Gompertz 5858.04 (5954.82) 5867.50 (5964.28) 5904.57 (6001.35)

Loglogistic 5889.35 (5986.13) 5898.70 (5995.48) 5935.41 (6032.19)

Lognormal 7296.60 (7393.38) 7641.41 (7738.18) 6559.83 (6656.61)

Table 4.2: AIC (BIC) values for different baseline hazard functions corresponding to
gamma, inverse Gaussian and positive stable frailty distributions.
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CHAPTER 5: CONCLUSION

In the field of public health, interest often lies in estimating the effect of a treatment

on an outcome of interest. In the causal inference framework, under the stable unit

treatment value assumption (SUTVA), the causal effect of a treatment on the outcome

can be used as a metric for the effect of treatment. One of the assumptions in SUTVA

states that there is no interference. Interference is said to be present when the outcome

of one individual is affected by the treatment status of another individual. A special case

of interference is partial interference where it is assumed that interference can occur only

between individuals within particular pre-specified groups but not between individuals

of separate groups. In this document, we propose three different methods for estimating

various effects of treatment on outcomes of interest in the presence of partial interference

and right censoring. The different effects include direct effect of treatment as well as

spillover effects due to partial interference.

Tchetgen and VanderWeele (2012) (TV) proposed IPW estimators for causal effects

in the presence of partial interference. But they did not consider the nuances of censoring

in their paper. We considered an extension of the TV IPW estimators by introducing

a censoring weight along with the group propensity weights, previously used by TV.

Following TV, the group propensity scores were obtained by assuming a mixed effects

model for the treatment. The censoring weights were obtained by fitting a parametric

frailty model to censoring times. Using the M-estimation theory, we proved that the

estimator is consistent and asymptotically Normal. We performed simulation studies to

show that the estimator had a very small bias for finite samples. Also, the sandwich

variance estimator of the asymptotic standard error achieved the expected level of 95%
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coverage.

The second method proposed for estimating causal effects was parametric g formula.

The times to events were assumed to follow a parametric frailty model. Standardization

was used to calculate the marginal survival probabilities. Consistency and asymptotic

Normality of the estimator was proved as before using M-estimation theory. Again, sim-

ulation studies showed that the bias of the estimator was small and a sandwich variance

estimator of the asymptotic standard error achieved nominal coverage.

Finally, we combined the IPW and parametric g formula estimators to propose a dou-

bly robust estimator. The doubly robust estimator in the presence of partial interference

and right censoring was obtained by extending the doubly robust estimator proposed

by Liu et al. (2018) in the presence of partial interference only. We showed that the

estimator was robust under model misspecification, i.e., the estimator was consistent and

asymptotically Normal even if only one of the two sets of models were specified correctly,

the outcome model or the censoring and treatment models. Simulation studies were again

useful in showing the finite sample efficacy of the method as before.

All of the three methods discussed in the document were applied to a cholera vaccine

study performed in Matlab, Bangladesh. Different methods yielded slightly different

results but all of the methods suggested the presence of significant direct as well as

spillover effects in the data. The methods also agreed upon the fact that the effect of

treatment gets more pronounced over time. So, in accordance with previous studies, we

conclude that vaccination has direct as well as indirect effect on the incidence of cholera

in a particular neighborhood. Keeping everything else fixed, more vaccination should

yield a lower number of cholera infections in a region.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

Proof of proposition 1. From the definition of the IPCW estimator,

E{F̂i(t, a, α)} = E

{
ni∑
j=1

π(Ai,−j;α)I(Aij = a)I(∆ij = 1)I(Xij ≤ t)

Pr(∆ij = 1|Li, Xij) Pr(Ai|Li)ni

}
(1)

By the law of total expectation and causal consistency, the right side of (1) can be

expressed as

ETij(Ai),Ai,Li
ECij |Tij(Ai),Ai,Li

[
ni∑
j=1

π(Ai,−j;α)I(Aij = a)I{Cij > Tij(Ai)}I(Tij(Ai) ≤ t)

Pr{Cij > Tij(Ai)|Li, Tij(Ai)}Pr(Ai|Li)ni

]

Moving the inner expectation inside the summation and taking out terms that are

constant with respect to that expectation, it follows that

E{F̂i(t, a, α)} = ETij(Ai),Ai,Li

[∑ni

j=1 π(Ai,−j;α)I(Aij = a)I{Tij(Ai) ≤ t}
Pr(Ai|Li)ni

×

ECij |Tij(Ai),Ai,Li
I{Cij > Tij(Ai)}

Pr{Cij > Tij(Ai)|Li, Tij(Ai)}

] (2)

Next note that Assumption III implies that Cij ⊥⊥ {Tij(Ai),Ai}|Li, which implies Cij ⊥⊥

Ai|{Tij(Ai),Li}. Therefore,

ECij |Tij(Ai),Ai,Li
I{Cij > Tij(Ai)} = ECij |Tij(Ai),Li

I{Cij > Tij(Ai)}

= Pr{Cij > Tij(Ai)|Li, Tij(Ai)}

implying (2) simplifies to

E{F̂i(t, a, α)} = ETij(Ai),Ai,Li

[∑ni

j=1 π(Ai,−j;α)I(Aij = a)I{Tij(Ai) ≤ t}
Pr(Ai|Li)ni

]
(3)
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Then, as in Tchetgen Tchetgen and VanderWeele (2012), it follows that

E{F̂i(t, a, α)} = ETi(.),Li
EAi|Ti(.),Li

[∑ni

j=1 π(Ai,−j;α)I(Aij = a)I{Tij(Ai) ≤ t}
Pr(Ai|Li)ni

]

= ETi(.),Li

[
n−1i

ni∑
j=1

∑
s∈A(ni−1 )

π(s;α)I{Tij(aij = a, ai,−j = s) ≤ t}×

{
Pr(Aij = a,Ai,−j = s|Ti(.),Li)

Pr(Aij = a,Ai,−j = s|Li)

}]

By assumption I, Pr(Aij = a,Ai,−j = s|Ti(.),Li) = Pr(Aij = a,Ai,−j = s|Li). Therefore

E{F̂i(t, a, α)} = E

n−1i ni∑
j=1

∑
s∈A(ni−1 )

π(s;α)I{Tij(aij = a, ai,−j = s) ≤ t}


= E{F̄i(t, a, α)} = µ(t, a, α).

A similar proof can be used to show E{µ̂(t, α)} = µ(t, α).
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 3

Proof of proposition 2. According to the definition of the parametric g estimator

mint
i (t, a, α,ω) =

1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

Pr(Tij ≤ t|Lij, A = a,Ai,−j = ai,−k,ω)π(ai,−j, α)

Using causal consistency,

Pr(Tij ≤ t|Li, A = a,Ai,−j = ai,−j,ω)

= Pr(Tij(a, ai,−j) ≤ t|Li, A = a,Ai,−j = ai,−j,ω)

Then, using the conditional independence assumption,

Pr(Tij(a, ai,−k) ≤ t|Li, A = a,Ai,−j = ai,−j,ω) = Pr(Tij(a, ai,−j) ≤ t|Li,ω)

= ETi(.)|Li
I(Tij(a, ai,−k) ≤ t)

So,

ELi
{mint

i (t, a, α,ω)} = ELi

1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

ETi(.)|Li
I(Tij(a, ai,−k) ≤ t)π(ai,−j, α)

= ELi
ETi(.)|Li

1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

I(Tij(a, ai,−k) ≤ t)π(ai,−j, α)

= ETi(.),Li

1

ni

ni∑
j=1

∑
ai,−j∈A(ni−1)

I(Tij(a, ai,−k) ≤ t)π(ai,−j, α)

= µ(t, a, α)

Hence,

E{mint
i (t, a, α,ω)} = µ(t, a, α)
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Similar calculations will yield

E{mint
i (t, α,ω)} = µ(t, α)
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APPENDIX C: TECHNICAL DETAILS FOR CHAPTER 4

Proof of proposition 3. Assume β∗, γ∗, and ω∗ to be such that

E{ψck(Xi,∆i,Li,γ
∗)} = E{ψxk(Ai,Li,β

∗)} = E{ψORck (Xi,∆i,Li,ω
∗)} = 0 where

the expectation is taken over the true parameter values. The following proof shows

that E(ψDRaα (Oi,θ
DR∗)) = 0 when either ω∗ = ω0 or β∗ = β0 and γ∗ = γ0 where

θDR∗ = (β∗,γ∗,ω∗, µ(t, a, α)). Now,

E

(
n−1i

ni∑
j=1

[
I(Aij = a)I(∆t

ij = 1){I(Xij ≤ t)−mij(Ai, t,Li,ω
∗)}π(Ai,−j;α)

Pr(Ai|Li,β∗) Pr(∆t
ij = 1|Li,γ∗, Xij)

+
∑
ai,−j

mij(a, ai,−j, t,Li,ω
∗)π(ai,−j;α)

])

Using the law of total expectation and taking out terms that are constant with respect

to the expectation ECij |Tij(Ai),Ai,Li
,

= ETij(Ai),Ai,Li

(
n−1i

ni∑
j=1

[I(Aij = a){I(Tij(Ai) ≤ t)−mij(Ai, t,Li,ω
∗)}π(Ai,−j;α)

Pr(Ai|Li,β∗)

×
ECij |Tij(Ai),Ai,Li

I{Cij > T tij(Ai)}
Pr{Cij > T tij(Ai)|Li, Tij(Ai),γ∗}

])

+ E

n−1i
ni∑
j=1

∑
ai,−j

mij(a, ai,−j, t,Li,ω
∗)π(ai,−j;α)

 (4)

Correct treatment and censoring models

Note that Assumption III implies that Cij ⊥⊥ {Tij(Ai),Ai}|Li, which implies Cij ⊥⊥

Ai|{Tij(Ai),Li}. If γ∗ = γ0 then

ECij |Tij(Ai),Ai,Li
I{Cij > T tij(Ai)}

Pr{Cij > T tij(Ai)|Li, Tij(Ai),γ∗}
= 1
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because

ECij |T t
ij(Ai),Ai,Li

I{Cij > T tij(Ai)} = ECij |Tij(Ai),Li
I{Cij > Tij(Ai)}

= Pr{Cij > T tij(Ai)|Li, Tij(Ai), γ0}

So, the term in (4) equals

= ETij(Ai),Ai,Li

(
n−1i

ni∑
j=1

[I(Aij = a){I(Tij(Ai) ≤ t)−mij(Ai, t,Li,ω
∗)}

Pr(Ai|Li,β∗)

× π(Ai,−j;α)
])

+ E

n−1i
ni∑
j=1

∑
ai,−j

mij(a, ai,−j, t,Li,ω
∗)π(ai,−j;α)


Again using the law of total expectation and exchanging sums,

= ETij(Ai),Li

(
n−1i

ni∑
j=1

EAi|Tij(Ai),Li

[I(Aij = a){I(Tij(Ai) ≤ t)−mij(Ai, t,Li,ω
∗)}

Pr(Ai|Li,β∗)

× π(Ai,−j;α)
])

+ E

n−1i
ni∑
j=1

∑
ai,−j

mij(a, ai,−j, t,Li,ω
∗)π(ai,−j;α)


Replacing the expectation with sum,

= ETi(.),Li

(
n−1i

ni∑
j=1

∑
s∈A(ni−1 )

π(s;α)
[
I {Tij(aij = a, ai,−j = s) ≤ t}

−mij(a, s, t,Li,ω
∗)
]{Pr(Aij = a,Ai,−j = s|Ti(.),Li,β0)

Pr(Aij = a,Ai,−j = s|Li,β∗)

})

+ E

n−1i
ni∑
j=1

∑
ai,−j

mij(a, ai,−j, t,Li,ω
∗)π(ai,−j;α)

 (5)
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If β∗ = β0, then using conditional independence, the term in (5) equals,

= ETi(.),Li

(
n−1i

ni∑
j=1

∑
s∈A(ni−1 )

π(s;α)
[
I {Tij(aij = a, ai,−j = s) ≤ t}

−mij(a, s, t,Li,ω
∗)
])

+ E

n−1i
ni∑
j=1

∑
ai,−j

mij(a, ai,−j, t,Li,ω
∗)π(ai,−j;α)


= ETi(.),Li

(
n−1i

ni∑
j=1

∑
s∈A(ni−1 )

π(s;α)I {Tij(aij = a, ai,−j = s) ≤ t}

)

= µ(t, a, α)

So, E(ψDRaα (Oi,θ
DR∗)) = 0 when β∗ = β0 and γ∗ = γ0.

Correct outcome model

As shown before, the term in (4.1) can be written as,

= ETij(Ai),Ai,Li

(
n−1i

ni∑
j=1

[I(Aij = a){I(Tij(Ai) ≤ t)−mij(Ai, t,Li,ω
∗)}π(Ai,−j;α)

Pr(Ai|Li,β∗)

×
Pr{Cij > T tij(Ai)|Li,γ0}
Pr{Cij > T tij(Ai)|Li,γ∗}

])
+ E

n−1i
ni∑
j=1

∑
ai,−j

mij(a, ai,−j, t,Li,ω
∗)π(ai,−j;α)


Again using law of total expectation as before and replacing the expectation with sum,

= ELi

(
n−1i

ni∑
j=1

∑
s∈A(ni−1 )

π(s;α)
[
ETi(.)|Li

{I {Tij(aij = a, ai,−j = s) ≤ t}}

−mij(a, s, t,Li,ω
∗)
]
×
{

Pr(Aij = a,Ai,−j = s|Li,β0)

Pr(Aij = a,Ai,−j = s|Li,β∗)

}
×

Pr{Cij > T tij(Ai)|Li,γ0}
Pr{Cij > T tij(Ai)|Li,γ∗}

)

+ E

n−1i
ni∑
j=1

∑
ai,−j

mij(a, ai,−j, t,Li,ω
∗)π(ai,−j;α)

 (6)

If ω∗ = ω0 then mij(a, s, t,Li,ω
∗) = ETi(.)|Li

{I {Tij(aij = a, ai,−j = s) ≤ t}}. So, the
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term in (6) equals

E

n−1i
ni∑
j=1

∑
ai,−j

mij(a, ai,−j, t,Li,ω0)π(ai,−j;α)

 = µ(t, a, α)

So, E(ψDRaα (Oi,θ
DR∗)) = 0 when ω∗ = ω0 or when β∗ = β0 and γ∗ = γ0. By

M-estimation theory (Stefanski and Boos 2002),
√
m(θ̂ − θDR∗) converges in dis-

tribution to a normal distribution with mean 0 and covariance matrix ΣDR equal

to U(θDR∗)−1V (θDR∗){U(θDR∗)−1}T where U(θDR∗) = E{−ψ̇(Oi,θ)}, V (θDR∗) =

E{ψ(Oi,θ
DR∗)ψ(Oi,θ

DR∗)T}, and ψ̇(Oi,θ) = ∂ψ(Oi,θ)/∂θT when ω∗ = ω0 or when

β∗ = β0 and γ∗ = γ0. Consistency and asymptotic normality of the direct, indirect and

total effect estimators follows from the delta method. Similar techniques can be used to

show that µ̂(t, α) and the overall effect estimator are also consistent and asymptotically

normal.
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