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ABSTRACT 

 
Uma Shankar: Projecting Wildfire Emissions and Their Air Quality Impacts in the Southeastern 

U. S. from 2010 to Mid-century 
(Under the direction of William Vizuete) 

 
 

 Wildfires can severely impair the health of ecosystems, life forms and regional economies. In 

the rapidly changing U. S. Southeast, both climate and socioeconomic factors (e.g., population 

and income) drive wildfires, and need to be represented in wildfire inventories to assess the air 

quality (AQ) impacts and health risks of wildfires long-term. This motivated the development of 

a wildfire emissions projection methodology leveraging published models of annual areas burned 

(AAB) based on county-level socioeconomic and climate projections for 2011-2060. It is applied 

to project two sets of AAB with different climate downscaling approaches, to estimate wildfire 

emissions for 2010 and four mid-century years. These are compared with emissions estimated 

using 18-year historical mean AAB without changes in climate and socioeconomics. Competing 

climate and socioeconomic factors result in 7% - 32% lower projected AAB than historical 

values, and 13% - 62% lower fine particulate matter (PM2.5) emissions than estimated from 

historical AAB in the selected years, with climate driving their temporal variability.  

 Evaluation of the emissions projection methods in air quality (AQ) simulations against those 

using the National Emissions Inventory (NEI), and network observations for 2010 show little 

difference among the methods in ozone (0.08% - 0.93%) and PM2.5 (1% - 8%). Larger, 

comparable biases relative to observations in all three methods for secondary species, especially 

in winter, are attributable to non-wildfire emissions or secondary chemical production. The 
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projection methods predict primary wildfire PM better than the NEI, providing confidence that 

they can assess current wildfire AQ impacts, while enabling longer-term AQ assessments 

unachievable with static inventories.  

 AQ simulations using the projected wildfire emissions, and projected emission reductions in 

SOx and NOx from energy and transportation (by ~80% at mid-century) show peak periods and 

locations of wildfire impacts on ozone and PM shifting from autumn in Midwestern locations in 

2010, to warmer and drier summers east and south by mid-century, following the AAB 

spatiotemporal patterns. Although considerably lower than 2010 levels, summertime PM2.5 

increases by 4%-5% in 2040-2060 in this emission scenario, driven by increases in OC and 

unspeciated other PM.  
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CHAPTER 1: INTRODUCTION 

 

 

Assessing the Impacts of Wildfire on Future Air Quality: Rationale  

 The adverse impacts of wildfires on the health of ecosystems, life forms and regional 

economies cannot be overstated. The loss of forested areas in catastrophic wildfires could 

increase their climate impacts through a reduction in the forest carbon sink depending on 

whether or not fire activity outpaces their ability to regenerate (Liu et al., 2011; King et al., 

2012). Black carbon emitted in wildfires adds to the positive radiative forcing on climate, which 

was estimated to be as high as 1.1 W m-2 in a comprehensive review of the radiative impacts of 

black carbon (Bond et al., 2013). Climate change in turn has an impact on wildfires, due to an 

increase in conditions such as widespread drought coupled with warmer and drier weather 

patterns (Littell et al., 2010, 2016). These can increase the risk of fire recurring in the next 

wildfire season, particularly in the case of rainfall during the growing season that promotes new 

forest growth (Littell et al., 2010, 2016). Even when there is no further growth of vegetation to 

supply fuel for another fire, there is an increased risk of mudslides in sloping terrain denuded by 

fire, as happened in 2017 in the week following the Thomas Fire, one of the largest in California 

history; mudslides following wildfires resulted in 66 deaths in that year (Balch et al., 2018).  

 These adverse impacts are not limited to terrestrial ecosystems. The atmospheric emissions 

of particulate black and brown carbon in fire plumes have adverse consequences for air quality, 

which can be felt thousands of miles away, as evidenced by the fire season of 2017 (Balch et al., 

2018) among many others. The health impacts from the toxicity of wildfire emissions are not 
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only on first responders (Wegesser et al., 2009), but on vulnerable populations exposed to the 

pollutant plumes in downwind areas (Fann et al., 2018; Rappold et al., 2011). These populations 

often lack the means for adequate protection measures and healthcare, adding to the wildfire 

health risks (Gaither et al., 2011). The extent of the wildland-urban interface (WUI) is increasing 

(USGCRP, 2018) alongside increasing wildfire, exacerbating the health risks of smoke exposure.  

 In this context, the economic costs associated with wildfires go far beyond those of fire 

suppression and recovery of values at risk. In a study of the health impacts of wildfires over the 

Northwestern and Southeastern U.S., Fann et al. (2018) estimated the economic impacts of 

wildfires in the form of additional premature deaths and hospital admissions between 2008 and 

2012 in the range of $11B - $20B (2010$) per year, and far in excess of the cost of fire 

suppression. Using data from the 2008 Evans Road Fire in eastern North Carolina, Rappold et al. 

(2014) estimated the economic benefits of avoided short-term healthcare costs through 

interventions such as public health forecasts of smoke events to be a fraction ($1M) of the 

avoided long-term costs of additional mortality ($42M).  

 Given the evolving landscape of wildfires brought on at least in part by climate change, 

climate adaptation and resilience pivots on the availability of methods to project future impacts 

reliably over a longer time horizon than is typical for forecasting weather-related incidents. 

While climate change has been implicated as a driver of wildfires, society and economic factors 

are also important drivers (Syphard et al., 2017; Viedma et al., 2018). In their study of 37 

counties across the U.S. by Syphard et al. (2017) found human presence and climate to have a 

complementary relationship in explaining fire activity in certain geographic areas, and in some 

areas, completely offset the climate drivers of wildfire. Balch et al. (2018) also cite human 

presence as a major switch for fire ignitions, responsible for starting 89% of the fires during the 
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2017 wildfire season. Human-ignited fires are closely related to socioeconomic drivers such as 

population and income (Prestemon et al., 2013, 2016), especially in the Southeastern U.S., where 

humans both cause and suppress a majority of wildfires (Mercer and Prestemon, 2005; 

Prestemon et al., 2013; Balch et al., 2017). As climate change is interconnected with changes in 

some of these socioeconomic drivers of wildfire, e.g., population and land use, integrated 

assessment methods that allow a simultaneous examination of their impacts on wildfires and 

downstream effects on ecosystems become even more important. Faced with fire activity 

patterns that are responding to evolving climate drivers as well as regional demographics, forest 

resource and air quality managers in the Southeast have a critical need to use such methods to 

develop effective plans for protecting the health and welfare of the public and the environment. 

The research described here is aimed at addressing this need. 

Research Goal, Hypotheses, and Objectives 

Background 

 Under the requirements of the Forest and Rangeland Renewable Resources Planning Act 

(RPA) of 1974, the U.S. Forest Service (USFS) and other federal agencies, along with 

researchers from several universities, generate a national RPA Assessment report every ten 

years. The report includes the current conditions of the US forest and rangeland, the drivers of 

changes in these resources, and the projections of these resources for the next 50 years (2011 - 

2060). As part of its RPA Assessment the USDA Forest Service Southern Research Station 

(SRS) developed projections of annual area(s) burned (AAB) over the Southeast from 2011-2060 

(Prestemon et al., 2016). The development of these AAB projections was the starting point for 

the wildfire emissions projections to mid-century done in this research (Shankar et al., 2018).  
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 SRS had previously developed statistical models (Prestemon and Butry, 2005; Mercer and 

Prestemon, 2005) to estimate AAB by broad cause (lightning- and human-ignited) to mid-

century. These models were updated using inputs of monthly-averaged climate variables for 

temperature, precipitation, and fuel aridity from nine different climate realizations remapped to a 

column-row grid over the Southeastern U.S. at 12-km x 12-km resolution, with the goal of 

eventually using the AAB projections in air quality applications (Prestemon et al., 2016). In 

addition to the climate model inputs, the AAB projection models used socioeconomic inputs of 

income and population growth rates, and population density, projected over the Southeast from 

the 2010 county-level data to 2060 and beyond, under the same greenhouse gas (GHG) emission 

scenarios as were used in the climate realizations. These same GHG emission scenario 

assumptions were also used to project county-level changes in the forest, cropland, pasture, and 

urban land use inputs to the AAB projections (Wear, 2013).  

 Human-caused ignitions are responsible for five times more wildfire AAB in the Southeast 

than lightning ignitions (Prestemon et al., 2016). Accordingly, annual fire activity was especially 

concentrated in the Western part of the Southeast, in Oklahoma, Arkansas and Missouri, along 

the Gulf coast, in Florida, up the Southeast Coast, and in the Appalachian region, where there are 

both an abundance of fuels, and human populations living near them. Lightning-ignited wildfires 

are projected to increase by 34%, with little or no response to socioeconomic changes in the 

Southeast, but human-ignited fires are projected to decrease by 6%, and are highly correlated 

with socioeconomic factors. The net effect is a 4% increase in AAB from their 2016-20 values to 

mid-century (2056-60) in the Southeast, with their temporal variability attributable to that of the 

climate system (Prestemon et al., 2016).  
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 In addition to being used in long-term regional resource planning and land management, 

AAB projections such as these provide a critical input for estimating wildfire emissions that can 

be used to drive air quality simulations for long-term wildfire health risk assessments. However, 

current AAB projection methods lack the ability to allocate AAB to wildfire emissions even on 

monthly timescales. The need to bridge this gap to estimate wildfire emissions for assessing their 

future air quality impacts and health burden provides the impetus for this research. 

Research Goal 

 The main goal of this research is to support effective land and air quality management 

practices in the coming decades in the Southeastern U.S. by developing reliable methods that 

include projected changes in the climate, socioeconomic and land use drivers of wildfires to 

estimate their emissions and assess their air quality impacts from the present to mid-century. The 

choice of the Southeast is not only motivated by changes evident in the climate system, but also 

by the rapid growth of this region, the expansion of the WUI, and the attendant increased access 

of populations to fuels as well as their increased risk of exposure to wildfire smoke.  

Research Hypotheses 

 The following research hypotheses are tested in Chapters 2-4 of this dissertation. 

 Hypothesis 1: Expected changes in the climate and socioeconomic drivers of wildfires in the 

Southeast will cause wildfire emissions estimated with time-varying wildfire activity projection 

approaches to deviate significantly by mid-century from those estimated with (static) historical 

wildfire activity.  

 Hypothesis 2: AQ predictions with the dynamic wildfire emissions will be within published 

criteria for acceptable AQ model performance compared to retrospective observations, and will 

be comparable to those using a standard (empirical) inventory.  
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 Hypothesis 3: Inclusion of climate and socioeconomic factors in the dynamic wildfire 

emissions estimation methods will result in considerably different ozone and PM2.5 spatial 

distributions and seasonal-average concentrations by mid-century from their 2010 levels. 

Objectives 

 The research hypotheses are tested by modeling wildfire emissions and air quality under 

scenarios for the Southeast that include projected changes in climate and socioeconomic factors 

from the present to mid-century, and by comparing those results with estimates of wildfire 

activity, emissions and air quality using static inventories based on historical or current data, and 

with observations for applicable periods. These studies address the following objectives: 

1. Examine how wildfire emissions over the Southeast evolve relative to their historical 

levels under potential changes in climate and socioeconomic factors.  

2. Evaluate how air quality predictions using the wildfire emissions projection methodology 

compare with those using benchmark (static) methods, and with observations when applied to a 

retrospective period. 

3. Investigate the impacts of the projected wildfire emissions on air quality trends by mid-

century relative to the retrospective period. 

 These objectives are addressed using an adaptation of the integrated modeling framework 

(Figure 1.1) of McKenzie et al. (2014). Wildfire emissions estimation methods have been 

developed leveraging the AAB projections of Prestemon et al. (2016) that take into account, for 

the first time, the simultaneous impacts of climate and socioeconomic factors on fire activity in 

the Southeast from 2011 to 2060. In the first study (Chapter 2), wildfire emissions are estimated 

at a spatial resolution suitable for annual air quality simulations for a contemporary year (2010), 

and four future years selected from 2040 – 2060 (Shankar et al., 2018). These emissions are 
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compared with emissions estimated using a static inventory based on 18-year historical mean 

AAB (1992-2010) that do not consider future changes in climate and socioeconomics. The 

second study (Chapter 3) evaluates the wildfire emissions projection methods by using their 

emissions estimates in AQ simulations of the criteria pollutants (ozone and particulate matter 

less than 2.5 µm in diameter, denoted PM2.5) for 2010. The simulation results are compared to 

those using the (empirical) U. S. National Emissions Inventory (NEI) for 2010 wildfires, and to 

available network observations for 2010 (Shankar et al., 2019). The third study in this 

assessment (Chapter 4) examines the response of atmospheric concentrations of PM2.5 and ozone 

to the projected emissions from wildfire and other anthropogenic sources by mid-century.  
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Figure 1.1. From McKenzie et al. (2014) (Fig. 3). Master flowchart for a modeling system to 
predict the smoke consequences of changing fire regimes in a warming climate. RCPs: 
Representative Concentration Pathways; GHGs: Greenhouse gases; LSFs: Land-surface 
feedbacks.  
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CHAPTER 2: PROJECTING WILDFIRE EMISSIONS OVER THE SOUTHEASTERN 

UNITED STATES TO MID-CENTURY1 

 

 

Introduction 

 Wildfires have serious consequences for human health due to the dramatic increase in the 

concentrations of pollutants of known toxicity emitted in wildfire smoke. There have been 

several studies (Wegesser et al., 2009; Rappold et al., 2011; Fann et al., 2013) on the adverse 

health impacts of wildfire-emitted particulate matter (PM) and ozone. Wegesser et al., (2009) 

found the inherent toxicity of PM from wildfires to be greater than equal doses of PM in ambient 

air. These researchers have also attributed the toxicity of PM collected from Alaska wildfire sites 

in their study, in part, to reactive metals as a major source of carbon-centered free radicals, 

following the findings of Leonard et al., (2000, 2007). Toxic polychlorinated dibenzodioxins and 

dibenzofurans, and aromatic compounds are also emitted from forest and grassland fires (Gullett 

et al., 2008). In addition to their adverse health impacts, wildfires can cause extensive damage to 

human communities and structures and threaten the integrity of some ecosystems that are 

sensitive to disturbance. For example, in 2016, nearly $2 billion of federal funds were spent 

suppressing wildfires that totaled more than 2.2 million ha (5.5 million ac) on lands managed by 

                                                 

 

 

1 This chapter previously appeared as an article in the International Journal of Wildland Fire. The original citation is 
as follows: Shankar, U. Prestemon, J. P., McKenzie, D., Talgo, K., Xiu, A., Omary, M., Baek, B. H., Yang, D., and 
Vizuete, W.: Projecting wildfire emissions over the south-eastern United States to mid-century, Int. J. Wildland Fire, 
27, 313-328, https://doi.org/10.1071/WF17116, 2018. 
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the USDA Forest Service and the Department of the Interior (National Interagency Fire Center, 

2017a). Of these, the overall South-wide costs in 2016 of wildfire suppression of more than 

494,000 ha (1.22 million ac) burned were reported at $121 million (National Fire and Aviation 

Management, 2017). Wildfires in Smoky Mountain National Park, TN, alone caused up to 

$2 billion in damages by some estimates (National Park Service, 2017) in late November that 

year. These are not the only costs of wildfires, however. A large part of the economic impact of 

wildfires is due to the human health impacts of smoke exposure. Fann et al. (2018) estimate the 

present combined healthcare costs of mortality and morbidity due to exposure to wildfire-

attributable PM below 2.5 µm in aerodynamic diameter (termed PM2.5) to be $63 billion (2010$) 

for short-term exposures, and $495 billion for long-term exposures nationwide. Rappold et al. 

(2011, 2012, 2014) came to similar conclusions in their study of the health costs of a 45-day peat 

bog fire in 2008 at the Pocosin Lakes National Wildlife Refuge in rural North Carolina, which 

was ignited by lightning following a long drought. Rappold et al. (2014) put the costs of 

emergency department visits during the fire due to excess asthma and congestive heart failure at 

over $1M, but their estimated costs of general health outcomes, predominantly premature 

mortality, were $48.4 M, far in excess of the medical costs to treat short-term health outcomes.  

 Climate change has been increasingly implicated in the rise in the frequency and magnitude 

of large wildfires in the Western US due to the increasing frequency and severity of droughts 

(Dennison et al., 2014; Stavros et al., 2014; Abatzoglou and Williams, 2016). This increasing 

trend in total area burned has been observed even while the absolute numbers of wildfires has 

demonstrated a declining trend since the 1960s (National Interagency Fire Center, 2017b). 

Climate change is also expected to lead to longer fire seasons in the south-eastern US by mid-

century, as shown in the regional climate model analyses of Liu et al., (2013). However, 
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wildfires in this region are more strongly connected to human factors (Prestemon et al., 2002; 

Mercer and Prestemon, 2005; Syphard et al., 2017). Humans both ignite more fires in this region 

(Balch et al., 2017) and actively participate in their suppression (Prestemon et al., 2013). Half of 

the major wildfires in late 2016 in and around Gatlinburg, TN, were attributed to human causes, 

punctuating the role of humans on wildfire occurrence in this region. Human factors also play a 

role in wildfire impacts via the demographics and income levels of the exposed populations 

(Gaither et al., 2011; Rappold et al., 2011, 2014). Increased urbanization and expansion of the 

Wildland-Urban Interface (WUI) is only expected to increase in the South in the coming 

decades, increasing the vulnerability of populations to wildfire smoke exposure. In their study of 

37 regions across the continental US, Syphard et al., (2017) find wide geographical variability in 

both the fire-climate relationship, and the role of human presence in fire regimes; their study 

suggests a geographically complementary role for the two. Thus, region-specific methods of 

constructing wildfire emissions inventories that account for changes in both climate and societal 

factors are a critical need for better estimating how wildfire emissions and their air-quality 

impacts will change in the Southeast and managing wildfires and their associated health risks 

long-term.  

 Current wildfire-emissions inventories (EIs), like those used to provide high-resolution 

inputs (at 12-km x 12-km grid spacing or finer) required for air-quality simulations, are typically 

constructed from the most current data of fire activity and fuel loads selected for their 

completeness, reliability, and accessibility. Empirical data of fire counts for these inventories are 

provided at the county level in Situation Reports archived and maintained by the USDA Forest 

Service. They are often augmented by data from satellite remote sensing (RS) of fire pixels 

detected by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, served 



 

 
12

through the NOAA Hazard Mapping System (Ruminski et al., 2006) and reconciled with ground-

based fire reports in the SMARTFIRE emissions processing system (Larkin et al., 2009). The 

EPA’s National Emissions Inventory (NEI), for example, includes a fire-emissions inventory that 

is updated yearly for its base-year air-quality assessments and forecasting applications using fire 

activity from the USDA Forest Service Situation Reports, MODIS fire counts from HMS, and 

fire perimeters from the Monitoring Trends in Burn Severity project (Eidenshink et al., 2007), all 

of which are processed in SMARTFIRE (Pouliot et al., 2012; Larkin et al., 2014). On-the-ground 

data that are reported by state and local agencies can also be included once every three years, 

during the NEI release.  

 Wildfire-emissions inventories used in global and regional air-quality modeling characterize 

the atmospheric loadings due to wildfire emissions of pollutants and their precursors under 

current conditions. Using these inventories in future-year wildfire impact assessments will be 

wrong from the start (McKenzie et al., 2014) because they do not account for changes in climate, 

land use, population density, or income levels (which may affect emissions exposures—e.g., 

Rappold et al., 2012). All of these factors are regional drivers in initiating and sustaining 

wildfires (Mercer and Prestemon, 2005) as well as in suppressing them (e.g., Butry et al., 2001). 

Yet, wildfire inventories used in future-year air quality simulations are based very often on 

historical wildfire records, without accounting for how changes in climate and other factors 

could affect future wildfire activity. Future air-quality estimates need to address changes in 

weather patterns in future years to estimate daily area burned, and methods do exist to do so. For 

example, McKenzie et al. (2006) projected future daily wildfire activity in the Pacific Northwest 

region of the United States using a stochastic fire ignition model that estimates daily area burned. 

These estimates are based on fire weather indices calculated from a mesoscale meteorological 
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model simulation for the future modeling period. The results of McKenzie et al. (2006) showed 

that this stochastic method estimated area burned in a historical fire season (2003) over the 

Pacific Northwest to within 8% of actual burned areas. These estimations as such do not include 

the influences that future changes in population and income could have on wildfire activity. Such 

changes have been shown (Prestemon et al., 2002, 2016) to be important for the human factors 

dominating wildfire areas burned in the Southeast. Furthermore, these estimates were applied for 

a visibility assessment using the CALPUFF dispersion model, and were not designed for use in 

regional-scale grid-based air quality simulation models. 

 The statistical models developed by Prestemon et al. (2016) take into account the combined 

impacts of climate and socioeconomic factors on wildfire occurrence to estimate AAB at the 

county level. These multi-stage regression models of historical AABs over the Southeast were 

used to make multi-decadal projections of future AAB for the region, with fine-scale projections 

of future climate, socioeconomic factors and land use change as inputs. The statistical models 

were validated in each stage of their construction against out-of-sample historical observations to 

eliminate bias. These models of AAB thus provide a framework for the construction of wildfire 

EIs that allow air quality and exposure assessments to be based on an evolving landscape of 

natural and human factors influencing fire occurrence, and to project future air quality in the 

coming decades more realistically in response to potential changes in climate and society.  

 In this work, we leverage the AAB projection models of Prestemon et al. (2016) that 

incorporate regional changes in climate, population, income, and land use to project daily 

wildfire emissions in the Southeast, and present the results herein for selected years in 2010-

2060. We hypothesize and show that wildfire-emissions inventories for the Southeast, if based 

on historical AABs, will yield significantly different emission levels for criteria pollutants from 
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inventories that do account for these changes. Consequently, we suggest that historical AABs 

cannot be used to represent the impacts of projected changes in climate and society in the region 

over the next four decades adequately. Given the uncertainties in the climate change estimates, 

and the importance of human influences on south-eastern US wildfires, both present and future 

(Prestemon et al., 2016), realistic emissions inventories for the Southeast require an integrated 

method that accounts for expected changes in both climate and society. Model projections of 

changes in fire activity and fuel loads due to climate change, coupled with projections of human-

caused wildfire, could lead to more effective land and wildfire management in a manner that 

reduces the adverse air-quality impacts of wildfires in future years (McKenzie et al., 2014; 

Prestemon et al., 2016). The research presented here proposes and tests such a methodology in 

the south-eastern US. This work is not intended to be an exhaustive study of climate and 

socioeconomic drivers of wildfires in the Southeast, but rather the description of a feasible, 

scientifically sound, and regionally relevant methodology of constructing wildfire emissions 

projections that include the impacts of those drivers, and how they might change in the future. 

 The emissions projection methodology developed in this work addresses the stochastic 

process of wildfires. Although prescribed burning accounts for more ignitions in the Southeast 

than wildfires, these are, by definition, planned fires that therefore need very different projection 

methodologies, e.g., incorporating demographic and socioeconomic factors explicitly rather than 

implicitly through the AABs, as is done here, as well as incorporating different criteria for 

selecting the burn days. We address these and related issues in the “Conclusions” section. 

Methods 

 This section describes a dynamic approach to constructing inventories of daily future wildfire 

emissions by leveraging a readily available statistical model that estimates AAB accounting for 
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changes in climate and society over the five decades from 2010-2060. It describes our 

application of the statistical AAB estimation model of Prestemon et al., (2016) and of the Fire 

Scenario Builder (FSB) model (McKenzie et al., 2006), which uses these AABs as constraints to 

estimate daily areas burned based on wildfire ignition probabilities. The daily burned areas are 

then used in the BlueSky fire emissions model (Larkin et al., 2009) to estimate daily wildfire 

emissions that are needed as inputs for future air-quality simulations. Figure 2.1 shows a 

schematic of these various models and data flows in constructing a wildfire emissions inventory.  

Annual area burned estimation  

 To evaluate the effects of including changes in regional climate and socioeconomics on 

wildfire activity in the Southeast, our current- and future-year AAB estimates using two different 

climate downscaling methods are compared against a base case of AABs over the region with no 

projections of climate or societal influences. A summary of the three AAB estimation methods is 

provided in Table 2.1. These are (1) a base case of historical mean AABs at the county-level 

calculated with data from 1992 to 2010; (2) a case with AABs that were estimated with the 

published statistical model of Prestemon et al. (2016) using statistically downscaled 

meteorological inputs, and (3) a case with AABs estimated with the statistical model of 

Prestemon et al. (2016) using dynamically downscaled meteorological inputs. The base case, 

hereafter called “historical”, consists of historical mean AABs from the wildfire burned areas 

compiled from Situation Reports at the county level for 1992-2011 (Short 2014; 2015), because 

in this first-time application of the FSB to the south-eastern US, we aimed for as similar an 

implementation to its north-western applications (McKenzie et al., 2006) as feasible. The 

historical data also provided the AABs used in a static case, i.e., one that does not include 

changes in climate and socioeconomic factors, to contrast with the other two AAB estimation 
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methods. As empirically accounted for in Prestemon et al. (2016), some counties and years of the 

1992-2010 historical had potentially invalid observations of wildfire areas burned in the Short 

(2014) database (K.C. Short, private communication). Gap-filling of these invalid observations 

of historical data was done by replacing potentially invalid observations in the Short (2014) 

database with in-sample predictions of AAB generated with the statistical models of Prestemon 

et al. (2016). Gap-filling accounted for 35.1% of the observations in the region, 1992-2010. The 

county-level historical mean AABs were remapped using a GIS tool on a column-row grid at 

12-km x 12-km grid spacing over the south-eastern US modeling domain (D02) shown in Figure 

2.2 for the wildfire inventory development; their sum over this domain is estimated at 450 499 ha 

(Figure 2.3). The historical case is equivalent to a projection of future wildfires in the Southeast 

that ignores changes in climate and socioeconomic factors, and the 19-year historical mean of 

AAB (1992-2010) is used as its representative constant value, as shown in the time slices in 

Figure 2.3. For reference, the actual-year AAB for 2010 is also shown in the figure. 

 To compare against the historical case, two AAB projections were made that do account for 

changes in climate and socioeconomic factors. Both of them projected the statistical models of 

Prestemon et al. (2016) onto both 2010 and to future climatology. The first case, hereafter called 

“statistical d-s”, used monthly average values of daily maximum temperature, minimum 

temperature and potential evapotranspiration (PET – Linacre, 1977), and monthly total 

precipitation as meteorological inputs to the statistical models of Prestemon et al. (2016). In that 

work, these inputs were taken from historical and projected climate data that were statistically 

downscaled at 5´ x 5´ resolution (Joyce et al., 2014) using the downscaling relationship of Daly 

et al. (2002) from each of nine general circulation model (GCM) realizations. The downscaled 

climate model inputs were remapped using a Lambert Conformal Conic (LCC) map projection 
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over the south-eastern US, to domain D02 (Figure 2.2) at 12-km x 12-km grid spacing, and 

aggregated to the required monthly values. 

 Other key inputs for the statistical model are income and population growth. Projections of 

these variables were based on three of the greenhouse gas (GHG) emission scenarios 

(Nakicenovic and Steward, 2000) formulated by the Intergovernmental Panel on Climate Change 

(IPCC) in support of its Third Assessment Report (AR3), which were used in the nine climate 

realizations (3 GCMs x 3 GHG emission scenarios) reported in Prestemon et al. (2016). The 

emissions scenarios A1B, representing high economic growth and low population growth, A2, 

representing moderate economic growth and high population growth, and B2, representing 

moderate economic growth and low population growth, provided the basis for the income and 

population growth rates used by Prestemon et al. (2016) for the Southeast from the 2010 county-

level data to 2060. Historical data needed for projecting population growth at the county level 

were obtained from the US Census Bureau (2012). Historical annual personal income data by 

county came from the US Bureau of Economic Analysis (2013a) and were converted to real 

values (in constant 2005 dollars) using the US gross domestic product deflator (US Bureau of 

Economic Analysis 2013b). Projections of population and income at 5-year increments for each 

scenario were obtained from the USDA Forest Service (2014), and linearly interpolated for the 

intervening years. Finally, inputs to the statistical model of changes in land use expected under 

the future climate scenarios, including those due to changes in the use of forest, cropland, 

pasture, and urban lands, were estimated at the county level by Wear (2013).  

 Prestemon et al. (2016) provide justification for using the AR3 scenarios rather than the more 

currently used Representative Concentration Pathways (RCPs) developed under the IPCC’s Fifth 

Assessment Report (AR5): unlike the RCPs, the AR3 emission scenarios are directly and 
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mechanistically linked to projections of economic and population growth. These internally 

consistent socioeconomic projections were also the basis for the county-level projections used by 

Prestemon et al. (2016) for income and population growth and by Wear (2013) for land uses, 

which provided the input variables known to be connected to wildfires in the Southeast. 

Updating those projections to be consistent with the RCPs would have required a complete 

revamp of these region-specific projection data, and was beyond the scope of their work. 

 The second AAB projection used dynamical, rather than statistical, downscaling of climate 

model results to provide the meteorological inputs to the AAB estimator, and is hereafter called 

“dynamical d-s”. Meteorological fields for this projection were simulated by a mesoscale 

meteorological model, the Advanced Research Weather Research and Forecasting (WRF) model 

version 3.4.1 (Skamarock et al., 2008), forced by dynamically downscaled climate model inputs 

at its lateral boundaries. The dynamical d-s projection was motivated by the need to examine the 

effects of using consistent meteorological inputs throughout the inventory development, 

beginning with the annual area burned projections, and continuing on to the daily wildfire 

emissions estimates, as they would also be used later in the hourly air quality impact 

assessments. Dynamical, rather than statistical, downscaling has been the practice over the past 

few decades for generating meteorological inputs for air quality models, because it provides a 

complete and consistent framework of hourly, 3-D meteorological fields needed to process 

emissions from all the meteorologically-driven sectors (e.g., vegetation, dust, sea spray, fires) 

and drive the air quality simulations, at the spatiotemporal scales appropriate for tropospheric 

chemistry and transport of trace pollutants. It is, therefore, important to understand its 

performance and its limitations to improve the reliability of its projections of wildfire activity 

and emissions. For comparison with statistical d-s AAB projections, the relevant hourly 
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meteorological fields (minimum and maximum daily temperature, PET and precipitation) from 

WRF were aggregated to the temporal resolution (monthly) of the predictor variables in the 

statistical model. Due to its high computational cost, the dynamical downscaling for this 

comparative study could be done only in selected years over the south-eastern US (domain D02 

in Figure 2.2), whereas the statistical downscaling could be done for every year from 2010-2060.  

 The GCM realization used for the dynamical downscaling and comparison with the statistical 

d-s results was selected from the publicly available outputs in the North American Regional 

Climate Change Assessment Program (NARCCAP – Mearns et al., 2009) archive. Provided in 

this archive were GCM outputs that had been dynamically downscaled with WRF at 50-km x 50-

km horizontal resolution over the conterminous US (CONUS) domain D01 in Figure 2.2. We 

examined the NARCCAP archive for parent GCM/GHG scenario combinations that matched 

those used for the statistical downscaling from Joyce et al. (2014), finding only one, the 

Canadian General Circulation Model version 3 (CGCM3) using the A2 GHG emission scenario, 

which best fit this criterion. The WRF model results in NARCCAP downscaled from this GCM 

realization were then used to provide the lateral boundary conditions (LBCs) for a nested WRF 

simulation at 12-km x 12-km horizontal grid spacing over the Southeast domain. To the extent 

possible, the same physics options were chosen in WRF 3.4.1 for domain D02 as were used in 

NARCCAP for domain D01; these options are listed in Table 2.2. There were differences in the 

shortwave and longwave radiation schemes and the microphysics parameterizations, due to 

updates to the WRF model options since the time of the NARCCAP simulations. However, our 

Southeastern WRF simulations were performed using the nest-down feature in WRF, i.e., using 

archived boundary inputs extracted from the D01 simulation, rather than as part of a two-way 
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nested multi-domain simulation with D01. The nest-down feature eliminates the possibility of 

undesired feedbacks from inconsistent schemes between the two domains.  

 Wildfire emissions for the three cases were estimated for a historical year, 2010, for eventual 

use in air quality simulations that will be evaluated against ambient observations. Since no 

downscaled data were available for the 2020-2040 period in NARCCAP, the future fire 

emissions were projected every five years beginning with an arbitrarily selected future year close 

to the beginning of the 2040-2060 period– in our case, 2043 – providing inventories for 2043, 

2048, 2053 and 2058 (thus the data gap 2010-2043). The random year selection seems 

reasonable in light of the interannual variability seen in the AAB projections of Prestemon et al. 

(2016), which nevertheless showed a small but significant increase in projected median AAB 

over the region, 2056-2060, relative to 2016-2020. 

 To ensure a robust comparison between the statistical and dynamical d-s methodologies, the 

AAB projections for statistical d-s were then redone in this work using only the downscaled 

inputs from the CGCM31/A2 climate model realization. The AABs presented here for the 

statistical d-s therefore differ somewhat from those published in Prestemon et al. (2016), who 

reported projected median and uncertainty bands of AABs calculated using all nine climate 

realizations, even though the underlying statistical models remain the same.  

Fire Scenario Builder  

 The Fire Scenario Builder model (McKenzie et al., 2006) is a stochastic model that estimates 

daily areas burned at the spatial scales associated with regional climate and air-quality models. 

The FSB was designed specifically to provide coarse-scale fire areas (as opposed to individual 

fire perimeters) as inputs to current and future projections of daily fire emissions and smoke 

dispersion. A detailed schematic of the FSB model is provided in supplemental Figure 2.S1. Two 
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key assumptions of the FSB are (a) that a fire event in a grid cell will only occur once in a fire 

season (assuming that fuels cannot return to the landscape within the season), and (b) that a fire 

season is entirely contained within the calendar year. Using mean AAB associated with some 

baseline climatology, which is usually historical but not necessarily, the FSB samples a fire-start 

day randomly from the fire season based on an assigned probability distribution of fire 

likelihood. This is typically uniform unless informed by particular fire-start data. Here, we use 

our three estimates of mean AAB – historical, statistical d-s, and dynamical d-s – as baselines for 

the historical case and the two projections. Although changes in socioeconomic variables are not 

explicitly input to the FSB, it implicitly includes the response of wildfires to changes in 

socioeconomic factors via the AAB projections. For each model grid cell, the FSB constructs a 

cumulative distribution of area burned with the AAB for that grid cell as the mean, using a mixed 

model that is a negative exponential up to the 95th percentile and a truncated Pareto distribution 

beyond that value. The beginning and end dates of the fire season appropriate for the Bailey 

ecoregion province (Bailey, 1995) allocated to each model grid cell are read from a national 

database maintained by the USDA Forest Service. Fires are further constrained to burn only if 

precipitation is less than 5 mm/day. If it is above that, another fire-start day is sampled. 

 A fire-weather metric from the historical climatology that can be simulated for the future is 

chosen as an indicator of potential fire size. The fire-weather metric used in this study is the fire 

weather index (FWI – Van Wagner and Pickett, 1985) from the Canadian Forest Fire Danger 

Rating System (CFFDRS), and the calculation of this metric is accomplished through its 

Canadian Forest Fire Weather Index system shown schematically in supplemental Figure 2.S2. 

FWI is a comprehensive metric that incorporates several measures of heat and dryness, and is 

used in fire-danger projections in forests within and outside Canada (Liu et al., 2010; Stavros et 
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al., 2014). It is computed from the dynamically downscaled daily meteorology for all selected 

years. We note that the use of this metric necessitated the use of dynamically downscaled 

meteorological data in all daily fire emissions estimates, even in the case where the AABs were 

estimated with statistically downscaled meteorological inputs, because the temporal aggregation 

(monthly) at which the statistical d-s inputs were available was too coarse to calculate daily FWI. 

Area burned on the randomly selected fire-start day for each case is calculated as the quantile 

from the cumulative distribution of AAB that corresponds to the quantile of the FWI from the 

climatology for that case matching that day’s FWI. Fires as treated by the FSB can burn up to 

4047 ha (10 000 acres) per day; larger fires are modeled as multiday fires. 

 At first glance, the use of our 12-km x 12-km spatial resolution may seem too coarse for the 

FSB, but our selection of this resolution can be understood as follows. The FSB is really 

simulating annual fire activity as a surrogate for real fire simulation. Actual fires do not burn 

contiguously for 144 km2 except in extreme events, but the coarse scale (relative to that of 

typical fires) of the FSB application for air quality modeling requires a stochastic representation 

of AAB, the relevant fire metric. Therefore, the area burned in a single year (“fire”) is simulated 

by the FSB, constrained probabilistically by the historical mean (or a future-year annual mean). 

Lumping all possible “fires” in a year into a single “event” would cause drastic information loss 

at the scale of fire-spread models, but at our coarser scale it is the only tractable way to represent 

AAB, and actually limits the error propagation that would ensue from attempts to partition 

burned area into individual “fires” (somewhere within a 12-km x 12-km grid cell). 

BlueSky fire emissions model 

 Using the results from the FSB, daily fire emissions were estimated using the BlueSky smoke 

emissions modeling framework (Larkin et al., 2009) for each of the cases discussed (historical, 
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statistical d-s, and dynamical d-s). The BlueSky model accomplishes this by using the gridded 

daily burned areas in conjunction with fuel load data available in the Fuel Characteristic 

Classification System (FCCS) database (McKenzie et al., 2007) to estimate daily fire emission 

rates. BlueSky is a highly modular framework that links state-of-the-science models of 

meteorology, fuels consumption, and emissions, and provides flexibility in the data sources for 

fire activity and fuel load inputs. Fuels consumption in BlueSky is based on the CONSUME 

model version 3.0 (Ottmar et al., 2006), the default modeling option, which is an empirical 

model developed by the USDA Forest Service based on 106 different pre- and post-burn plots 

covering several vegetation types and fire conditions. Emissions are estimated as daily rates by a 

fire emissions module for CO, CO2, CH4 and PM2.5. In our application, BlueSky is used at the 

latitude-longitude location of each fire strictly for estimating total emission magnitudes of the 

various emitted species. The fire emissions estimated in BlueSky for the “fire” modeled by the 

FSB are processed in the SMOKE emissions processing system similarly to other point sources, 

which are vertically distributed in the air-quality model simulation in a later step (not presented 

here), using the plume-rise algorithm within that model.  

Results  

 This section presents the comparisons of the historical mean AABs from a retrospective 

period against those estimated using the climate downscaling approaches described previously, 

examining both time slices of AABs aggregated over the south-eastern modeling domain, and 

their spatial distributions in each modeled year. Similar analyses are then presented of the 

wildfire emissions of PM2.5 estimated using each set of these AABs.  
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Comparisons of AAB estimation methods 

 The purpose of these analyses is to examine the sensitivity of the statistical model estimates 

of AABs to the downscaling method used to provide their meteorological inputs, since the AABs 

are used as constraints on the daily burned area estimates needed to calculate wildfire emissions. 

AABs from the historical mean over a 19-year period, 1992-2010 (inclusive), provide a 

benchmark to compare against the modeled estimates of AABs using the downscaled climate 

inputs. These historical mean AABs summed over the domain D02 add up to 450 499 ha, shown 

as a constant value in Figure 2.3 for all years modeled. The spatial pattern of the historical mean 

AABs is shown in Figure 2.4. Prestemon et al. (2016) found that human-caused ignitions, 

whether accidental or intentional, dominate over lightning-caused ignitions in the peak locations 

shown in Figure 2.4. These occur in the Western part of the domain, in Oklahoma, Arkansas and 

Missouri, along the Gulf coast, in Florida, up the Southeast Coast, and in the Appalachian region. 

These are regions where there are both an abundance of fuels and ample human populations with 

access to those fuels.  

 The domain-total AAB estimate in 2048 is much lower than in the other modeled years for 

the case of statistically downscaled meteorology (Figure 2.3). This low estimate can be explained 

through the interannual variability of the AAB from 2010-2060 shown in supplemental Figure 

2.S3. As previously noted, the years for our study were selected at an arbitrary interval of five 

years beginning at a randomly chosen 2043. In a random year such as 2048, there can be as much 

as ±50 000 ha difference from the domain-total mean AAB value. The statistical d-s AAB 

estimates summed over the D02 domain are distributed around, and fall within ±7% of the 

historical mean AABs, but there are larger negative deviations from the historical mean in 2048 

(-20%), and 2058 (-13%). Given the excellent agreement seen in Figure 2.3 for this case with the 
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actual AAB value for 2010, the deviation of its AABs projections from the historical mean is a 

clear consequence of the influences of climate and socioeconomic factors, each with its own 

variability.  

 The spatial differences in AAB for the statistical d-s case from the historical case (Figure 2.5, 

left panels) show that in 2010, the positive and negative differences are smaller than those in 

other years, and largely offset each other. In 2043, there are large negative differences (i.e., 

historical AABs are much greater than the statistical d-s estimates) in the ecoregion provinces to 

the north in northern Missouri, offset by a large positive difference in ecoprovinces in Florida 

and along the Gulf coast. In 2048, the positive differences in these coastal ecoprovinces are not 

large enough to offset the negative differences in the interior of the domain, and the domain-wide 

difference is a net negative, consistent with the time-slice plot in Figure 2.3. In 2053, the small 

net positive difference is due to the positive AAB differences in these coastal ecoregion 

provinces and much of Texas, outweighing the negative differences in the interior of the domain. 

Finally, in 2058, the spatial pattern once again shows negative differences dominating over 

larger areas of the domain, and to a greater extent than in 2010, with little or no contribution 

from Texas. The net result overall is a negative difference, i.e., lower AAB values in the 

statistical d-s case than in the historical.  

 AAB estimates for the dynamical d-s case are significantly lower than in the other two cases 

in each of the five modeled years (Figure 2.3). The temporal variability in AAB is also quite 

different between the two downscaling methods, with the closest agreement in 2048 (a difference 

of 10 814 ha), and the greatest differences in 2053 and 2010 (182 591 ha and 148 249 ha, 

respectively). Spatial differences in AAB for the dynamical d-s case relative to the historical case 

(Figure 2.5, right panels) show less temporal variability than for the statistical d-s case (Figure 
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2.5, left panels). The greatest negative differences are seen to occur along the Gulf coast and 

Eastern seaboard, while the portion of the domain west and northwest of Missouri is the main 

contributor to positive differences. These positive differences offset the negative differences 

across the domain significantly in 2048, consistent with the smallest domain-wide difference in 

all the years shown in Figure 2.3 between the historical and dynamical d-s AAB estimates. 

Similar spatial offsets of positive and negative differences occur to a lesser degree in 2043 and 

2053, although the net result domain-wide in each of these years is still a negative difference 

(i.e., the historical AABs are greater than dynamical d-s estimates). Unlike the case of the 

statistical d-s, the Appalachian region in the right panels has a persistent large negative 

difference, as do parts of the Gulf coast; these are also areas where the historical mean AABs had 

the largest values (see Figure 2.4). As both the downscaling methods used the same parent 

climate model realization, these differences in the spatial patterns in Figure 2.5 are a result of the 

differences in the downscaling methods themselves.  

 The right panels of Figure 2.5 indicate that dynamical downscaling leads to much less 

wildfire activity in the Southeast, relative to the 19-year historical mean, while statistical 

downscaling preserves more of the large-scale circulation patterns in the region in the future 

decade and shows smaller differences from the historical fire activity. Liu et al. (2013) also 

found such spatial differences in their analyses of future wildfire activity in the dynamically 

downscaled results with the HRM3 regional climate model (RCM) compared to the HadCM3 

climate model used in their previous analysis (Liu et al., 2010). Their study over North American 

regions used the Keetch-Byram Drought Index (KBDI – Keetch and Byram, 1968) as the 

indicator of fire potential and compared the results of the KBDI calculation from RCM results 

for the different GCM/RCM downscaling combinations in NARCCAP. While the climate system 
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showed a warming overall in the 2041-2070 period over North America relative to the 1971-

2000 period, there were pronounced differences in the locations of peak precipitation and 

temperature between the HRM3 and the HadGCM. It is worth noting that their 2013 results are 

at a coarser resolution (50-km x 50-km) for the various regions, and used a different GCM/RCM 

combination to calculate future climate change from the one used in our study (CGCM3/WRFG) 

over the Southeast. The HRM3 model that they used for their Southeast assessments had the 

smallest KBDI increase of all the RCMs in NARCCAP in the future decades in the Central 

Plains and Deep South, the region of our study. By comparison, the WRFG, used to provide 

boundary inputs for our Southeast WRF simulation, showed more mixed results, with a moderate 

KBDI increase from warming and drying in the Deep South, but a KBDI decrease in the Central 

Plains due to increased precipitation in the future. However, our WRF model results for the 

Southeast are from a nest-down simulation at a 12-km x 12-km spatial resolution from the 

dynamically downscaled WRFG model results in NARCCAP. Any biases, particularly in 

precipitation, relative to the GCM will be propagated in the boundary inputs extracted from those 

results and input to our Southeast WRF simulations. Another major difference in our method 

from the Liu et al., (2013) study is that their study did not consider county-level socioeconomic 

factors, and used a different indicator of wildfire, the KBDI, from our fire weather metric (FWI) 

and would be expected to produce different results. We explain this further under “Discussion”. 

PM2.5 predictions from wildfires 

 The AABs estimated from the three cases described previously were used to develop wildfire 

emission inventories suitable for air quality model simulations needed in impact assessments of 

ambient PM2.5. Figure 2.6 shows the variability of PM2.5 emissions from wildfires among the 

selected years. For this figure, the emission rate of total PM2.5 calculated for each point fire by 
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the BlueSky fire emission model was mapped to the south-eastern US domain (D02) modeling 

grid using the Sparse Matrix Operator Kernel Emissions (SMOKE) processor (Houyoux et al., 

2000, Baek and Seppanen, 2018), and the gridded daily emissions were vertically integrated and 

summed over the year in each grid column for each year modeled. Consistent with the AAB 

estimates from the three cases shown in Figure 2.3, the PM2.5 emissions estimates are highest for 

the historical case, followed by the cases using AABs estimated with statistically and 

dynamically downscaled meteorology. The historical and statistical d-s total PM2.5 emission 

trends follow each other closely in 2010 and 2043, while the dynamical d-s trends are 50% and 

20% lower in these years, and even lower in the later years, except for the maximum in 2048 

leading to good agreement with a correspondingly low value mentioned previously in the 

statistical d-s case. The dynamical d-s estimates of PM2.5 emissions are also the closest of all 

three cases to the NEI 2010 emission levels from point wildfires, which are shown here for 

reference. There is slightly less variability in the time slices of wildfire PM2.5 emissions using the 

historical mean AABs than in the case using statistically downscaled meteorology. As the AAB 

estimates used to constrain the daily burned areas are constant for the historical case, this 

emissions variability can be attributed to the mesoscale model calculation of the daily FWI. The 

tendency of the WRF meteorology is to lower the daily wildfire activity, and therefore the 

emissions, and this is once again evident in these emissions estimates for the historical case, 

albeit to a far lesser degree than in the dynamical d-s case.  

 Figure 2.7 compares the spatial distributions of PM2.5 emissions using the historical AABs 

(left panels) against those estimated using dynamical d-s (right panels). For simplicity, the 

statistical d-s results are not included here, but the comparison of the domain-wide historical vs. 

statistical d-s estimates of wildfire PM2.5 emissions is available as supplemental Figure 2.S4. The 
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PM2.5 emissions for the historical (and statistical) case show greater spatial variability within a 

given year than for the dynamical d-s case and higher values in the interior Southeast due to the 

underlying higher wildfire activity in this case. Significant differences in the spatial distributions 

of emissions can be seen between the two cases in any year along the Southeast coastal areas, the 

Appalachian region, eastern Texas and Oklahoma, and Arkansas and Missouri. Of these, the 

states to the west (the southern part of ‘Central Plains’ in Liu et al., 2013, 2014) were part of the 

region where the NARCCAP model combination of CGCM3/WRFG tended to predict more 

seasonal precipitation in the future years (2041-2070), in both summer and winter, compared to 

the historical period (1970-2000). The remaining regions, which roughly map to the ‘Deep 

South’ of Liu et al., (2013, 2014), saw a decrease in precipitation in the summer in the future 

years, but this decrease was among the lowest for all the model combinations in the NARCCAP 

suite. These spatial differences in wildfire PM2.5 emissions distributions between the statistical 

and the dynamical d-s cases therefore suggest that precipitation increases have an overriding 

influence on emissions compared to the temperature increases seen in future years. 

 The spatial distributions of PM2.5 emissions in Figure 2.7 in each of the future years are 

generally consistent with the trends of annual total AABs shown in Figure 2.3. The much lower 

AABs in 2048 for the dynamical d-s case translate into smaller, albeit more numerous, wildfires 

with lower annual total PM2.5 emissions in Figure 2.7. The biggest spatial differences in 2048 

relative to the historical case are seen to occur in Appalachia, North and Central Florida, in 

eastern Texas and Oklahoma, and around the Arkansas-Missouri state boundary.  

 Figure 2.8 shows the total seasonal PM2.5 emission estimates for spring, summer and fall in 

each selected year using the historical mean AABs, and those estimated with dynamically 

downscaled meteorology. Differences in each season between the historical and dynamical d-s 
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cases show the impact of the AAB constraints imposed on the PM2.5 emission rates. Furthermore, 

the impact of the dynamically downscaled meteorology is seen in the seasonal variability of 

these emissions. Both the historical AABs and those from the dynamical d-s yield the lowest 

emissions of PM2.5 in the spring and the highest in the summer, while the NEI estimates for 2010 

had the lowest emissions in the summer and higher PM2.5 emissions in both spring and fall. 

These seasonal plots indicate that the common feature among the historical and dynamical d-s 

cases, which is the WRF meteorology used to calculate daily FWI, dictates the seasonal 

variability in wildfire activity in any given year, as well as the variability among the modeled 

years in each season. In all years, there is also a consistently more pronounced summer high in 

PM2.5 emissions in the historical than in the dynamical d-s case due to its (constant) higher AAB 

values. The variability of PM2.5 emissions among the modeled years also somewhat reflects the 

AAB difference patterns shown in Figure 2.5.  

Discussion 

 Prestemon et al., (2016) showed that the statistical d-s estimates of AAB reflected the 

counteracting influences of the climate and socioeconomic variables driving wildfire activity in 

the Southeast. According to those analyses, the 2056-2060 average annual wildfire areas burned 

in the Southeast due to human causes would decrease by 6% over the 2016-2020 average in 

response to changes in socioeconomic influences, but a comparison of the averages over the 

same periods would show a 34% increase due to lightning-ignited fires, which were minimally 

influenced by socioeconomic factors. As a majority of areas burned in the Southern US are from 

human causes, the conclusion in that work was that the projected average AAB for 2056-2060 

would be higher by about 4% relative to that for 2016-2020 from all causes, with its temporal 

variability attributable mainly to that of the climate system (see supplemental Figure 2.S3). This 
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variability can also be seen in this work, in the frequency distributions of Figure 2.9 of domain-

wide totals around the annual mean of the gridded AABs in each year for each of the estimation 

methods. Due to the wide range of the data, values of AAB below 10 ha are not shown so that 

the trends around the median values can be seen more clearly. The historical mean AABs used to 

represent 2010 have a higher median value than either of the other two estimation methods, 

consistent with the time slices shown in Figure 2.3. The statistical d-s AAB distributions have 

higher maxima than the dynamical d-s distributions in every year, even though their median 

values are slightly lower than for the dynamical d-s in 2048 and 2058. The higher statistical d-s 

AABs are also consistent with the domain-total AAB time slices for these two cases (Figure 2.3). 

The effects of competing climate and socioeconomic factors in the AABs for the statistical d-s 

are also clear in Figure 2.3: any biases due to the dynamically downscaled meteorological inputs 

are not applicable in these AABs. Those biases would therefore also have a smaller impact on 

the PM2.5 emissions in this case (Figure 2.6) than in the dynamical d-s case.  

 The WRF model used in the dynamical downscaling yields very different spatial patterns of 

AAB from the statistical d-s AAB estimates. The differences between the AABs estimated from 

statistical and dynamical d-s are a consequence of differences between the downscaling methods 

themselves, as they are both using the same climate model (CGCM3.1), as well as GHG, 

population, and income growth assumptions, corresponding to IPCC AR3 scenario A2.  

 The role of the GCM/GHG scenario in the differences seen in the AAB estimates with 

climate downscaling can be better understood through an examination of their mean changes in 

temperature and precipitation. Figure 2.10 shows the expected changes in precipitation and 

temperature from 2000 to 2060 from the GCM/emission scenario combinations for the 

conterminous US, and for the Southeast. In this figure, the CGCM3.1 scenario A2 shows an 
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increase in precipitation from 2000 to 2060 in both the US and the Southeast, of ~ 4% and ~ 6% 

respectively, over the ensemble mean for scenario A2. Although this GCM simulation shows a 

higher-than-mean increase in temperature US-wide, it also shows a slightly smaller-than-mean 

increase in temperature in the Southeast from 2000 to 2060, compared to the “SE A1B&A2” 

value. These changes are small for the five-decade period. The change in precipitation is in the 

correct direction toward explaining the changes seen in the dynamical d-s estimates relative to 

the historical case, as well as the statistical case, but would likely not be the sole cause of the 

dramatically lower AAB values for the dynamical d-s case compared to the other two cases.  

 A more likely explanation of these lower AAB values is two-fold. One possible reason is the 

difference between the mesoscale and synoptic-scale predictions, as shown in the regional 

analyses of wildfire regimes by Liu et al., (2013, 2014). In their work, the dynamical 

downscaling of climate showed increases in summertime precipitation in the future decades 

(2041-2070) for the Southeast region (moderate), and South Central region (small) compared to 

the historical period (1971 -2000). This was different from the predictions of the GCM used in 

their previous studies (Liu et al. 2010). The second likely explanation is the known high bias in 

precipitation in WRF (Alapaty et al., 2012; Spero et al., 2014), which would also tend to lower 

the AAB estimates. Dynamical d-s is also used in the D01 domain to produce the lateral 

boundary conditions for the Southeast domain, and thus inherits biases in the NARCCAP 

downscaling with WRF; thus, the influence of the high bias in precipitation in WRF could 

become magnified, producing consistently lower AABs. This may also account for the 

differences in our results from those of Liu et al., (2013) for the Southeast, which showed 

increases in the fire potential indicator (KBDI) by at least one level, and an increase in the length 

of the fire season in nearly all months. Of note, the Liu et al., (2013) analyses used a single level 
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of dynamical downscaling from the GCM, i.e., only for domain D01, a coarser resolution (50-km 

x 50-km), a different fire potential index, the KBDI, from that of our work (FWI), and did not 

include county-level socioeconomic changes.  

 The historical case, which uses historical mean AABs to constrain daily area burned, 

estimates higher total PM2.5 emissions than the dynamical d-s case for every year and season 

except in the fall of 2043. These higher values could be partly because of the much higher AABs 

in some years in the 19-year fire history (e.g., in 2000 and 2006) than in the future projections, as 

indicated by the lower actual-year AAB for 2010 compared to the 19-year historical mean shown 

in Figure 2.3. Equally important, the historical mean AABs do not include the socioeconomic 

changes projected in the dynamical d-s case, which were shown to offset the influences of 

climate warming on the AAB projections in the Southeast (Prestemon et al., 2016). The 

projected variability in climate and socioeconomic factors from the CGCM3 scenario A2 climate 

simulation influences the dynamical d-s AAB projections but has no role in the historical AABs. 

The effects of a wet bias in WRF on the AABs would also be compounded in the PM2.5 

emissions by those on the daily FWI inputs to the FSB, leading to lower annual totals and peak 

values in spatial distributions of PM2.5 emissions in the dynamical d-s than in the historical case. 

 The fall wildfire emission levels are lower than summer levels in all years and cases 

modeled. The possible WRF v3.4.1 overprediction of precipitation and underprediction of 

temperature appear to have the greatest impact in the fall season fire activity, translating into 

lower wildfire PM2.5 emissions. Overall, we would expect PM2.5 trends to follow those of the 

AABs, although the relationship is clearly nonlinear, due to the stochastic nature of the daily 

disaggregation of the AABs in the FSB as well as the spatiotemporal variability in the 
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downscaled predictions of fire weather. It is clear that the latter will, at a minimum, introduce 

variability that cannot be inferred from the historical data.  

Conclusions and Future Work 

 Wildfire area burned, and the resulting emissions of PM2.5 in the Southeast for the period 

2010-2060 are seen to be a result of two competing drivers, climate and socioeconomics, each 

with its own spatiotemporal variability. This may not always lead to uniform increases in 

wildfire activity and emissions in future climate regimes. The historical mean AABs are higher 

than those estimated from statistically downscaled meteorology in most of the years modeled, 

and higher in all years than those estimated with dynamically downscaled meteorology. 

Historically based estimates of wildfire emissions in the Southeast are consistently higher (by 

13% - 62%) for PM2.5 than those estimated by either of the projection methodologies. The large 

differences in the temporal variability and spatial patterns of PM2.5 emissions in future years 

compared to their historical values are attributable in part to the temporal variability of the future 

climate and socioeconomics underlying the annual area burned projections, and to the 

dynamically downscaled meteorology used to estimate future daily fire activity. The wildfire 

emissions estimated from a historical mean of areas burned, even for the most recent 19-year 

period, do not appear to be representative of how the climate and socioeconomic variables 

driving wildfire activity and emissions could change in future decades. Our results therefore 

suggest that the use of historical AABs is not sufficient to construct wildfire emission inventories 

for simulating future-year air quality by mid-century, be they for climate change impact 

assessments, or for projecting population health risks from wildfire smoke.  

 This work also shows significant variability among the modeled years in the AABs and the 

corresponding wildfire PM2.5 emissions as a result of the natural variability of the climate system. 
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Better inferences of temporal trends can be obtained in the dynamical downscaling by ensemble 

simulations that bracket the extremes in climate and societal change over the 2010-2060 period 

using representative high- and low-fire frequency years from among a number of GCM/GHG 

emission scenarios.  

 Another finding of this work is that the high bias in precipitation in the WRF model could be 

the reason for significantly lower wildfire emissions estimates from dynamical downscaling than 

from statistical downscaling of climate in the AAB estimation model inputs. The impact of the 

dynamical downscaling of climate on wildfire emissions is important, because this is the most 

consistent method in current use to calculate meteorological inputs for estimating daily wildfire 

activity and wildfire emissions, and for driving the air-quality simulations. Thus, we need to 

understand and correct biases in the dynamical downscaling, particularly as regards precipitation 

in the Southeast, because of its strong influence on fire weather, and soil and fuel conditions. 

Less biased downscaling would provide more reliable support of natural resource management 

and wildfire health risk assessments.  

 Future contributions from ongoing work will examine the current (2010) and future-year air 

quality impacts based on these emissions estimates. Furthermore, fuel loads are expected to 

respond both to climate and to evolving fire suppression activities in the Southeast. Excessive 

fuel buildup, for example, has been cited as the cause of the large wildfires in the past two fire 

seasons in the south-eastern and western US. Fuel load changes were not explicitly included in 

the modeled wildfire emission estimates, although the land use changes included in the AAB 

projections do indirectly account for them in the aggregate. Decisions on where and what to burn 

in managed fires may benefit from tools that incorporate fuel load changes in these dynamic 

estimates of wildfire emissions. 
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Table 2.1. Annual area burned data used in the wildfire inventories for the south-eastern 

US 

Note: “Statistical model” refers to the statistical AAB projection model of Prestemon et al. 
(2016). The modeling domains D01 and D02 are shown in Figure 2.2. CGCM3, CGCM31, 
Canadian General Circulation Model, ver. 3, ver. 3.1; WRF, Weather Research and Forecasting 
model 

Case 

Name 

Annual Area  

Burned  

Climate 

Scenario 

Time 

 Dependence  

Spatial Resolution 

of Meteorology 

Historical County-level 
historical mean of 
1992-2010 
Situation Report 
data remapped to  
domain D02  

None Static N/A  

Statistical 
d-s 

Estimated from 
statistical model 
with statistically 
downscaled 
climate, county-
level projections of 
socioeceonomics 
for domain D02  

CGCM3, 
scenario A2 

Varies yearly  5´ x 5´ (lat-long) 
from climate model, 
remapped to 
domain D02 at 
12-km x 12-km  

Dynamical 
d-s 

Estimated from 
statistical model 
with dynamically 
downscaled 
climate, county-
level projections of 
socioeceonomics 
for domain D02 

CGCM3, 
scenario A2, 
dynamically 
downscaled 
with WRFG 
over domain 
D01 

Varies yearly  Dynamically 
downscaled over 
domain D02 at 
12-km x 12-km 
from domain D01 
WRFG output at 
50-km x 50-km  
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Table 2.2. WRF model physics options for the D01 and D02 modeling domains 

Domain 

 

Long-
wave 
radiation 

Short-
wave 
radiation 

Micro-
physics 

Cumulus 
Scheme  

Boundary 
layer 
scheme 

Land 
Surface 
Model 

D01  
(CONUS) 

CAM33 CAM3 Prognostic 

cloud liquid 
and ice, rain, 
snow4 

Grell 3D 
ensemble5 

Yonsei 
University 
explicit 
entrain-
ment 
scheme6 

Noah7 

D02 
(Southeast) 

RRTMG8 RRTMG WRF Single- 
Moment  
6-Class 
(WSM6) 
microphysics 
w/ graupel9  

Grell 3D 
ensemble 

Yonsei 
University 
explicit 
entrain-
ment 
scheme 

Noah 

 
  
                                                 

 

 

3 Collins et al., 2004 
 

4 Hong et al., 2004 
 

5 Grell, 1993; Grell and Devenyi, 2002 
 

6 Hong et al., 2006 
 

7 Niu et al., 2011; Yang et al., 2011 
 

8 Iacono et al., 2008 
 

9 Hong and Lim, 2006 
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Figure 2.1. Flow diagram of various models and data needed for estimating benchmark (2010) 
and future wildfire emissions. AAB, annual area burned; FWIs, fire weather indices. 
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Figure 2.2. Modeling domains: D01 at 50-km x 50-km grid spacing; D02 at 12-km x 12-km grid 
spacing. 
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Figure 2.3. Time slices of total annual area burned (AAB) domain-wide (105 ha) in domain D02 
of Figure 2.2: historical (triangles) – historical mean value for 1992-2010 replicated in all years; 
statistical d-s (squares) – estimated using statistically downscaled meteorology from the Canadian 
General Circulation Model, ver. 3.1 (CGCM3.1) and A2 scenario realization; dynamical d-s 
(diamonds) – estimated with dynamically downscaled meteorology from the Canadian General 
Circulation Model, ver. 3 (CGCM3) and A2 scenario realization; open circle – historical 2010-
only data. 

 

 

Figure 2.4. Spatial distribution of historical mean AAB (ha) for 1992-2010. 
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Figure 2.5. Annual area burned (AAB) differences (ha) in future years above the historical mean 
of Figure 2.4 for (L) statistical d-s (i.e., statistical d-s - historical) and (R) dynamical d-s (i.e., 
dynamical d-s - historical): Row 1, 2010; Row 2, 2043; Row 3, 2048; Row 4, 2053; Row 5, 2058.  
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Figure 2.6. Time slices of annual domain-wide total wildfire PM2.5 emissions (108 kg) for domain 
D02 of Figure 2.2 using historical (triangles), statistical d-s (squares) and dynamical d-s 
(diamonds) estimates of annual area burned (AAB). Shown for reference is the annual domain-
wide total PM2.5 emissions level from point wildfires only in the 2010 NEI (circles), replicated in 
all other years. 
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Figure 2.7. Spatial distribution of annual column total wildfire PM2.5 emissions (103 kg) based on 
two AAB estimation methods: historical means (left panels) and dynamical d-s (right panels), for 
the future years: 1st row, 2043; 2nd row, 2048; 3rd row, 2053; 4th row, 2058. 
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(a)

  

(b)

  

(c)

  

 

Figure 2.8. Variability of seasonal domain-wide total wildfire PM2.5 emissions (106 kg) for domain 
D02 of Figure 2.2 for (a) spring, (b) summer, and (c) fall, in the modeled years, shown for two sets 
of annual areas burned (AAB), historical (triangles), and dynamical d-s (diamonds). Shown for 
reference are the seasonal domain-wide total wildfire PM2.5 emissions in the 2010 NEI (circles), 
which are replicated in future years. 
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Figure 2.9. Spread of domain-wide AAB values around the annual mean for the AAB estimation 
methods in each of the modeled years: red: historical; green: statistical d-s; and blue: dynamical 
d-s. Note that the 2010 value for the historical mean represents a multiyear average (1992-2010). 

 

 

Figure 2.10. Precipitation and temperature differences between 2000 and 2060 decadal averages 
for the conterminous US and the Southeast from nine downscaled climate models (L. Joyce, 
private communication; updated from Joyce et al. 2014). US data are represented by red squares 
and open diamonds, and the Southeast data, by black triangles and open circles. 
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Supplemental Material for Chapter 2 

 

Figure 2.S1. Schematic of the Fire Scenario Builder; FWI, Fire weather index; AAB, annual area 
burned. 

 

 

Figure 2.S2. Schematic of the Canadian Forest Fire Danger Rating System’s Fire Weather Index 
System. Reproduced from Stavros et al. (2014). Numbers at the lower right corner of the modules 
denote the number of days that any given calculated index has an effect on subsequent calculated 
indices. (Note: T, temperature; P, pressure; RH, relative humidity) 

Daily 

Meteorology

FWI

quantiles 

Gridded AAB 

2010-2060

Canadian Forest 

Fire Weather 

Index (FWI) 

System 

Ecoregion Province

Database

Gridded Fire Season 

Start/end Dates

Sample fire season for 

random fire start day

Find percentile

of fire start day’s

FWI

Area burned quantiles

Find area burned in fire start 

day’s FWI’s percentile

= area burned in that fire

(limited to 4047 ha/day) 

Fire    Weather    

Module Fire    Season    

Module

Gridded FWIs

Daily    Burned    Area    Module    (executed for each grid cell)

Construct cumulative

FWI distribution for cell

Precip <= 5 mm?

Yes

No

Construct area burned mixed 

model with cell’s AAB as mean



 

 
48

 

Figure 2.S3. From Prestemon et al., 2016 (Figure 4). Projections of all wildfires combined for the 
south-eastern US in aggregate (i.e., sum of all areas burned for all counties in the region) for 2006, 
and 2010 – 2060, including upper and lower 90% bounds of 2250 Monte Carlo iterations of models 
under nine climate model realizations. Note: No projections were made for 2005, 2007, 2008, or 
2009.  
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Figure 2.S4. Spatial distribution of annual column total wildfire PM2.5 emissions (103 kg) based 
on two annual area burned (AAB) estimation methods: historical means (left panels), and statistical 
d-s, (right panels) for the future years: 1st row, 2043; 2nd row, 2048; 3rd row, 2053; 4th row, 2058. 
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CHAPTER 3: EVALUATING WILDFIRE EMISSIONS PROJECTION METHODS IN 

COMPARISONS OF SIMULATED AND OBSERVED AIR QUALITY10 

 

 

Introduction 

 Wildfires can have catastrophic impacts on air quality and health in the United States and 

around the world. At this writing, the death toll from the Camp Fire that destroyed the town of 

Paradise, California in November 2018 is still mounting. Earlier, in the summer of 2018, 

catastrophic wildfires in Sweden required international aid for their mitigation, while Mendocino 

county in Northern California saw the largest wildfire in that state’s history. In October 2017, 

multiple wildfires in Northern California burned 850 km2 of a fragile ecoregion, causing at least 

44 fatalities and nearly 200 hospitalizations. Only two months later, the Thomas Fire in Ventura 

County in Southern California burned more than 300 km2 in its first week alone, with a total area 

burned exceeding 1,100 km2. These events underscore the human, economic, and environmental 

toll of large wildfires. In addition to damaging human and wildlife communities, structures, and 

ecosystems sensitive to disturbance, wildfires can also have adverse health consequences for 

vulnerable populations through exposure to the emitted pollutants, notably particulate matter 

                                                 

 

 

10 This chapter previously appeared in an article in Atmospheric Chemistry and Physics Discussions. The original 

citation is as follows: Shankar, U., McKenzie, D., Prestemon, J., Baek, B., Omary, M., Yang, D., Xiu, A., Talgo, K., 
and Vizuete, W.: Evaluating emissions projection methods in comparisons of simulated and observed air quality, 
Atm. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1296, in review, 2019. 
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(PM) below 2.5 µm in diameter, denoted PM2.5, and ozone. In a study of the health impacts of 

wildfires over the Northwestern and Southeastern U.S., Fann et al. (2018) estimated the 

economic impacts of wildfires in the form of additional premature deaths and hospital 

admissions between 2008 and 2012 to be $11B - $20B (2010$) per year. In the Southeastern 

U.S., the economically disadvantaged populations in rural areas are most vulnerable to these 

health impacts, due to limited resources for preventive healthcare and wildfire mitigation 

(Gaither et al., 2011; Rappold et al., 2011, 2012, 2014). In their study of the Pocosin Lakes peat 

bog fire in eastern North Carolina in 2008, Rappold et al. (2014) estimated the long-term 

healthcare costs of the fire at ~ $48 M, far in excess of their estimates for short-term exposure 

(~ $1 M). 

 Climate change leading to prolonged droughts that affect soil and fuel conditions has been 

implicated as a driver in many Western wildfires (Dennison et al., 2014; Stavros et al., 2014; 

Abatzoglou and Williams, 2016). Statistical analysis of nearly a century of wildfires in 19 

ecoprovinces in the western U.S. (Littell et al., 2009; 2018) found that climate variables 

(precipitation, temperature and drought severity) were able to explain up to 94% of the 

variability in annual areas burned (AAB). In a climate-limited ecosystem (no limitation due to 

fuel availability), the current fire season’s climate was the biggest driver of wildfires in a given 

year (Littell et al., 2009, 2018). In analyses of regional climate model predictions over the 

continental U.S. from 2000 - 2070, Liu et al (2013) also projected increases in the length of the 

wildfire season by mid-century, and found increasing temperatures to be the main driver of 

increasing fire potential, outweighing the mitigating effects of increases in precipitation in some 

regions.  
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 Wildfire occurrences vary widely geographically in response not only to these climate 

drivers, but also to human factors (Prestemon et al., 2002, Mercer and Prestemon, 2005; Syphard 

et al., 2017). Humans both ignite and suppress the majority of wildfires, especially in the 

Southeastern U. S. (Prestemon et al., 2013; Balch et al., 2017). Analyses by Syphard et al. (2017) 

of over 37 regions across the continental U.S. suggest that human populations and climate may 

play complementary roles in determining the spatial patterns of wildfire in the Southeastern U.S., 

currently considered among the fastest-growing regions in the country (U.S. Census Bureau, 

2018). Fire regimes in the Southeast may be responding to both a changing climate and 

population shifts. Thus, there is a critical need in Southeastern land and air quality management 

to consider both these drivers to plan effectively for protecting the public and the environment. 

This has motivated the recent development of methodologies that include these drivers in 

projections of wildfire activity (Prestemon et al., 2016) from the present to 2060, and their use in 

assessing not only current, but also future air quality (Shankar et al., 2018).  

 Prestemon et al. (2016) estimated annual areas burned (AAB) over 13 states in the U.S. 

Southeast using county-level projections of the major wildfire drivers in the Southeast (climate, 

population and income, and land use). These projected drivers of their statistical models of AAB 

were based on the Intergovernmental Panel on Climate Change emissions scenarios 

(Nakicenovic and Steward, 2000). Their median projection of aggregate wildfire activity in the 

Southeast over hundreds of iterations in a Monte Carlo framework shows an increase, albeit by a 

small amount (4%), from 2011 to 2060 due to the combined influences of these climate and 

socioeconomic factors (Prestemon et al., 2016). Shankar et al. (2018) leveraged the AAB 

projections of Prestemon et al. (2016) to estimate wildfire emissions over a Southeastern 

modeling grid at 12-km x 12-km spatial resolution suitable for air quality impact assessments. 



 

 
53

They applied the methodology in that first study to project daily wildfire emissions, which 

include the influence of both climate and socioeconomic changes in selected years from 2011 to 

2060. The study also compared their wildfire emissions projections to those using 19-year 

historical mean AAB. Because the future AAB of Prestemon et al. (2016) that were used in their 

wildfire emissions projection method were lower (7% - 38%) than the historical mean AAB in 

the years selected, future wildfire emissions were also lower (by 13% - 62%) than those based on 

the historical AAB. The offsetting influences of socioeconomic variables, which decreased AAB, 

and climate variables, which increased AAB, played an important role in these lower projected 

AAB and emissions in the selected years. 

 Various methods are available to derive the climate inputs for the AAB estimation models 

that provide the basis of these regional-scale wildfire emissions projections. Prestemon et al. 

(2016) used statistically downscaled outputs of nine general circulation model (GCM) 

realizations to provide the needed meteorological inputs at a fine spatial resolution (12-km x 12-

km) for their statistical model estimates of AAB at the county-level. These meteorological 

inputs, however, do not include all the variables needed for an air quality simulation; nor are the 

available variables at the temporal resolution (hourly) needed for such simulations (Shankar et 

al., 2018). Thus, the use of AAB estimated with statistically downscaled climate inputs in air 

quality studies requires additional mesoscale meteorological modeling. An alternative approach 

is to use a mesoscale meteorological model to downscale these climate variables dynamically 

from one or more GCMs to start with. This provides the spatial resolution needed to project the 

AAB, along with a higher temporal resolution of all the prognostic meteorological variables, 

allowing for a consistent set of inputs from AAB estimates to air quality simulations. An 

evaluation of both methods, through air quality simulations and a comparison of the modeled air 



 

 
54

quality against observations, would provide insights into how well (or poorly) these projection 

methods represent real-world conditions, their effects on the modeled fire emissions, and their air 

quality impacts. Retrospective model performance evaluations have a long history of use in 

atmospheric modeling (see, e.g., Fox, 1981; Appel et al., 2007, 2008; Wong et al., 2012; 

Katragkou et al., 2015). They are critical for evaluating models used for predictive applications, 

and for establishing the baseline against which future modeled trends can be compared. Issues to 

be considered in evaluating the performance of a model or modeling system have been reviewed 

by several authors (see, e.g., Chang and Hanna, 2004; Dennis et al., 2010; McKenzie et al., 2014, 

and references therein).  

 In this study, we examine the model performance of retrospective air quality (AQ) 

simulations using wildfire emissions (Shankar et al., 2018) that are a function of changes in 

climate and socioeconomic factors, with both the statistical and the dynamical climate 

downscaling methods for the underlying AAB estimates. We compare the AQ model results 

using these two emissions estimates to those with a standard wildfire inventory compiled from 

observed daily fire activity without considering changes in climate and socioeconomic factors. 

The performance of all three wildfire emissions methods is also evaluated by comparing these 

model results to ground-based air quality observations for 2010. This year was chosen for the 

retrospective evaluation because it provided the latest historical year of AAB that was used by 

Prestemon et al. (2016) to calibrate their statistical AAB projection models. Thus, the choice of 

this year both ensured the robustness of the underlying AAB data used in the wildfire emissions 

estimates, and allowed the use of reliable and relatively recent emissions inventories for the non-

wildfire sectors in the AQ simulations.  
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 Our evaluations compare selected outputs from the AQ models for ozone and speciated 

PM2.5, to observations from long-term monitoring networks, seasonally and spatially across the 

Southeast. If results based on either our emissions modeling or the standard inventory, or both, 

show systematic departures or bias with respect to the observations, it will provide critical 

feedback for improvements in national emissions inventories and modeling techniques designed 

for future AQ projections. For example, if the wet bias in our dynamical downscaling (Shankar 

et al., 2018) were to persist into predictions of ozone and PM2.5, it would signal the need for re-

evaluation of the mesoscale meteorological model’s usefulness for projecting air-quality changes 

from wildfire. Similarly, if model output based on the standard inventory departs significantly 

from observations, it might suggest specific changes in some of the many assumptions that go 

into national wildfire emissions inventories (see, e.g., Pouliot et al., 2008). Based on our initial 

analyses of our wildfire emissions projection methods (Shankar et al., 2018), we hypothesize that 

they will yield results within published criteria for acceptable AQ model performance with 

respect to observations, and that their predictions will closely match those using the benchmark 

inventory for the historical period. 

Methods 

 Predictions of ozone and PM2.5 were generated for 2010 using version 5.0.2 of the 

Community Multiscale Air Quality model (CMAQ – Byun and Schere, 2006) using emissions 

estimates from each of the two wildfire projection methods of Shankar et al. (2018) in 

combination with emissions from other sectors. We compared the AQ model results for these 

two cases with those using the National Emissions Inventory (NEI) compiled and distributed by 

the U.S. Environmental Protection Agency (EPA), and also against AQ network observations. 
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Emissions Inventories 

 We used two projected wildfire emission inventories from Shankar et al. (2018), and one 

from 2010 compiled by the EPA, hereafter “NEI benchmark”. The projected inventories were 

developed using AAB estimated by the statistical models of Prestemon et al. (2016) with input 

meteorological variables either from (a) statistically interpolated output of a GCM (hereafter 

“statistical d-s”) or (b) dynamically downscaled from a GCM using a mesoscale meteorological 

model (hereafter “dynamical d-s”). Regardless of the climate downscaling method used to 

project AAB, the distinguishing feature of our emissions projection methods compared to the 

NEI (and other empirical inventories) is that they can estimate future-year wildfire emissions 

based on expected county-level changes in climate and socioeconomics built into the underlying 

AAB estimates.  

 The statistical d-s case was based on output from a realization of the Canadian General 

Circulation Model version 3.1 (CGCM31 – Gachon et al., 2008) using the A2 greenhouse gas 

(GHG) emissions scenario (Nakicenovic and Steward, 2000) characterized by moderate 

economic growth and high population growth. Selected outputs from this climate model 

realization were statistically downscaled following Daly et al. (2002) over the Southeastern U. S. 

(domain D02 in Figure 3.1) at 5´ x 5´ resolution to provide the meteorological inputs required for 

the AAB projections (Joyce et al., 2014). These included maximum and minimum daily 

temperature, monthly cumulative precipitation and potential evapotranspiration. These data were 

then remapped to a 12-km x 12-km grid over the D02 domain and aggregated or averaged to the 

required monthly values.  

 The dynamical d-s case provided meteorological inputs for the AAB estimates from the 

Weather Research and Forecasting model (WRF -- Skamarock et al., 2008) over domain D02. 
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This involved the use of WRFG (WRF with an improved scheme for convective parameters -- 

Grell and Devenyi, 2002) model outputs archived in the North American Climate Change 

Assessment Program (NARCCAP – Mearns et al., 2009) database for the D01 domain (Figure 

3.1) at 50-km x 50-km spatial resolution from the dynamic downscaling of a CGCM version 3.0 

(Flato, 2005; Jeong et al., 2012) realization with the same A2 scenario for GHG emissions as in 

the previous case. These D01 WRFG outputs were used at the boundaries of domain D02 for a 

WRF version 3.4.1 simulation using its nest-down feature at 12-km x 12-km resolution to 

calculate the meteorological inputs needed for the AAB estimates. The model differences 

between WRFG and WRF version 3.4.1 and their implications for the dynamical d-s wildfire 

emissions inventory are discussed in Shankar et al. (2018). 

 Each set of estimated AAB was used to calculate daily wildfire emissions (Shankar et al., 

2018) with the BlueSky/CONSUME fire consumptions and emissions model (Larkin et al., 

2009). A critical step in this process is the disaggregation of the AAB estimates into daily fire 

activity with a daily metric of ignition probability, the fire weather index (FWI -- Stavros et al., 

2014), using the Fire Scenario Builder (McKenzie et al., 2006). Due to the finer (daily) temporal 

resolution of the meteorological data needed to calculate the FWI than is available from 

statistical downscaling, the same WRF model outputs were used to disaggregate the AAB to 

daily area burned for both statistical d-s and dynamical d-s (Shankar et al., 2018).  

 As a baseline inventory, the 2010 NEI for wildfire emissions draws on a variety of data 

sources, including fire counts, i.e., fire pixels at 1-km2 resolution, from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites, available in the 

National Oceanic and Atmospheric Administration’s Hazard Mapping System. These are 

matched in the SMARTFIRE system (SMARTFIRE -- Pouliot et al., 2012, and references 
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therein) to ground-based wildfire activity data reported in Incident Status Summary (denoted ICS 

209) reports by the National Interagency Fire Center. The daily areas burned estimated by 

SMARTFIRE are input to the Fire Emissions Processing System (FEPS) in BlueSky (Larkin et 

al., 2009) to estimate daily point wildfire emissions for the NEI (Pouliot et al., 2008). Being an 

empirical inventory, the NEI does not include changes in climate and socioeconomic variables, 

and is intended for use in AQ simulations close to the time period of the inventory data.  

 Each of the three wildfire inventories was processed in the Sparse Matrix Operator Kernel 

Emissions (SMOKE) processing system (Houyoux et al., 2000; Baek and Seppanen, 2018) to 

provide the necessary spatiotemporal wildfire emission magnitudes for the respective AQ 

simulation, which were then vertically allocated inline by the AQ model. The diurnal profiles 

and fire emissions speciation for PM used in the NEI benchmark inventory were also applied in 

processing the other two inventories, to avoid any artifacts from them in the inventory 

comparisons. Emissions for all other source sectors were provided by the EPA’s 2005 NEI for all 

three cases. Table 3.1 summarizes these details.  

Air Quality Simulations 

 The CMAQ v5.0.2 model simulations for the 2010 evaluation study were performed over the 

Southeastern U. S. domain shown in Figure 3.1 (D02) at a 12-km x 12-km horizontal grid 

spacing. Representative hourly chemical boundary inputs at the lateral boundaries of the domain 

were extracted from an annual simulation for the conterminous U. S. (CONUS) at 36-km x 36-

km grid spacing (Vennam et al., 2014) for all three simulations. All simulations also used the 

same aerosol and gas-phase chemical mechanisms. The Carbon Bond 05 gas-phase mechanism 

(cb05tucl) used in our simulations includes updates to toluene chemistry, homogeneous 

hydrolysis rate constants for N2O5, and updates to the chlorine chemistry (Sarwar et al., 2011; 
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Whitten et al., 2010). The aerosol mechanism, AERO6, includes a primary organic aerosol aging 

scheme (Simon and Bhave, 2012), and an improved representation of fugitive dust; primary 

speciated emissions needed to model dust are based on Reff et al. (2009). 

Observational Networks 

 Observations for ozone and speciated PM2.5 for 2010 were extracted from three long-term 

monitoring networks: the Air Quality System (AQS -- https://www.epa.gov/aqs), a national 

network of over 1000 sites maintained by the EPA; the Interagency Monitoring of Protected 

Visual Environments (IMPROVE – Sisler et al., 1993), a network of mostly rural sites 

concentrated in the western half of the U. S.; the EPA’s Chemical Speciation Network (CSN -- 

https://www3.epa.gov/ttnamti1/speciepg.html) of mostly urban sites. AQS consolidates and 

distributes data on samples taken at hourly and daily intervals. The IMPROVE and CSN 

observations are for two 24-hour periods per week, with many collocated sites so that they 

provide observations of rural vs. urban air sheds in close proximity. We also compared 

simulations results to available observations of hourly ozone and daily-averaged speciated PM 

from the Southeast Aerosol Research and Characterization (SEARCH – Blanchard et al., 2013, 

and references therein) network for the continuous monitoring of particulate matter (PM) over a 

limited set of 8 sites in the Southeast.  

Model Evaluation Tools and Data 

 The Atmospheric Model Evaluation Tool (AMET -- Appel et al., 2011) was used to compare 

the modeled cases against each other, and against the network observations, using Mean 

Fractional Error (MFE), Mean Fractional Bias (MFB), Normalized Mean Error (NME) and 

Normalized Mean Bias (NMB) as the key indicators of model performance. In model-to-

observation comparisons all four metrics are meaningful, but in intermodel comparisons AMET 
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also calculates “bias” of one model with respect to another, which is useful for testing our 

hypothesis regarding the performance of our projection methods with respect to the NEI 

benchmark. The AMET version used here (version 1.2.2) contains several updates to the tool 

since the initial distribution, along with corrections to the observational data originally 

distributed with the software. In our intermodel comparisons, we filtered the model results to 

display only monitored grid cells that had wildfires, defined as those with non-zero AAB 

estimated for the statistical d-s case described in Shankar et al. (2018). This case was deemed to 

have the most number of grid cells with fires among the three inventories, and to have AAB most 

similar to the gap-filled AAB data (Prestemon et al., 2016) created for the historical period 1992-

2010. Most model grid cells in this dataset had some fires, and therefore our analyses apply to 

most of the domain. 

Results  

Ozone 

Model evaluation against observations 

 In this section, we compare the performance of the two downscaling methods to observations 

for ozone. We also provide results using the NEI benchmark wildfire inventory for reference. We 

evaluate the ozone model performance against AQS observations over all of 2010. Boylan and 

Russell (2006) provide the performance guidelines in current use in AQ model evaluation for 

MFB and MFE with respect to observations for ozone and PM that are considered good, 

acceptable or needing further investigation. We apply their ozone performance measures also for 

monthly-averaged NMB and NME, shown in Table 3.S1 in the Supplement along with mean 

modeled and observed ozone. We compare the Southeast-wide MFB and MFE for modeled 

monthly-averaged 1-h ozone relative to AQS measurements in the soccer goal plots of Figure 
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3.2, with the performance goals and criteria of Boylan and Russell (2006) shown as dotted lines. 

The ozone performance statistics show very small differences in the CMAQ results from the 

three sets of wildfire emissions. Table 3.S1 shows that in all three modeled cases, ozone is 

overestimated in all months of the fire season (March – November), and the ozone model 

performance falls outside the performance goals of NME ≤ +35% and NMB ≤ ±15% in all 

except March and April. MFB and MFE in Figure 3.2 are in the acceptable range of performance 

for ozone (≤ 50% and ≤ ±30%, respectively) from March to July, but fall just outside of it from 

August to November. The overprediction is greatest in the summer, especially August, being 8.4 

ppb for the statistical d-s, while the best agreement with observations within the fire season is for 

April in all three cases (Table 3.S1). However, differences among the three cases are negligible. 

Of the three cases, the statistical d-s case has the largest MFB, albeit by a very small margin, in 

October. There is virtually no disagreement between the dynamical d-s and NEI benchmark 

cases throughout the fire season except in September. It is important to note that there are no 

wildfires in January, February and December in any of the inventories, and thus the emissions 

for these months are the same across all three modeled cases, corresponding to the NEI 2005 

(default) inventory. 

 Based on the statistics in Table 3.S1 and Figure 3.2 there are no discernible differences in 

their monthly average performance over all sites and hours in any month, with a small exception 

in October for the statistical d-s. This is confirmed by the lack of distinction among the cases in 

the seasonal spatial distributions of MFB (Figure 3.S1 in the Supplement), with the exception of 

one AQS site on the Kentucky-Illinois border in autumn (Figure 3.S1, bottom row). The MFB 

has some of its largest values in the eastern half of the domain in spring, and is lowest in autumn 

domain-wide. Comparing hourly ozone across networks in Figure 3.S1, the SEARCH network 
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sites (four rural, four urban) in the deep South show lower biases than the AQS sites across the 

three cases and seasons. The lack of distinction across the modeled cases for either network is 

consistent with the results for the absolute difference in hourly ozone between the two 

downscaling methods in the 24-hour domain-wide trend (Figure 3.S2 in the Supplement), that is, 

at most hours of a given day over the whole domain, 75% of the values modeled by these two 

methods differ by ~0.1 ppb or less.  

 To better understand the relative contributions of the magnitude and location of the wildfire 

emissions to the October 1-h ozone performance differences among our three methods, we 

filtered the three sets of modeled data over the range of values showing the largest differences, at 

all grid cells that contained monitors and also had some fire during the fire season. We then 

examined the hourly O3 for October at a few of these selected locations (Figure 3.S3 in the 

Supplement). The top four panels of Figure 3.S3 show the time series of ozone mixing ratios and 

bias with respect to observations for all three modeled cases at two AQS sites, 2105900005 and 

210910012, close to the Kentucky (KY) –Ohio (OH) border, respectively labeled KY-OH (1) 

and KY-OH (2). The bottom four panels display the time series for the same metrics at AQS sites 

291831002 and 295100085 farther west, on the Missouri (MO) –Illinois (IL) border (labeled 

MO-IL (1) and MO-IL (2), respectively). These four sites had some of the largest differences in 

the statistical d-s case relative to the other two cases in the low-to-middle range of values (0-70 

ppb) during the fire season (see Table 3.2). With the exception of short periods of large positive 

differences in the statistical d-s case from the other two cases on specific days in October, they 

are all closely aligned; some smaller differences are also seen between the dynamical d-s and the 

NEI benchmark. At the KY-OH sites, all model simulations underpredict the ozone peaks during 

October 9-11 with the NEI having the greatest underprediction, while all models have an equally 
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high bias during October 24-26. The statistical d-s case shows a large overprediction on October 

30. The similarity of the temporal trends at these two proximal sites suggests similar sources of 

the biases. The two sites at the MO-IL border show less negative bias in the models relative to 

AQS observations, but once again the statistical d-s has large positive biases with respect to the 

other cases and to AQS for short periods mid-month and at the end of the month; its negative 

biases with respect to observations also tend not to be as large as in the other two cases, e.g., on 

October 11 at KY-OH (1) site. This would be expected, as this case had the largest AAB values 

of the three inventories (Shankar et al., 2018). 

 Results of our time series analyses at these and other AQS sites are tabulated in Table 3.2, 

highlighting periods and locations of large differences either between the two downscaled cases, 

or between one or the other case and AQS observations. Most of these occurred in October 2010, 

but there were also a few outlier locations/times in early September. Ozone is underpredicted at 

half the locations and times in the statistical d-s case, and at 76% of them in the dynamical d-s. 

The model biases with respect to AQS vary between -49 ppb and +47 ppb for statistical d-s, and 

between -62 ppb and +13 ppb for dynamical d-s. The largest intermodel differences occur in grid 

cells on days with little or no fire activity within, or near the cells; most of the grid cells 

indicated as no-fire locations in Table 3.2 had fewer than 5 ha burned annually. Thus, the biases 

are not proportional to daily fire activity within the grid cell, but in general, when there is a large 

difference in ozone between the two modeled cases, there is a comparable difference between 

them in daily area burned in an adjacent cell upwind, which is larger for the statistical d-s due to 

its larger AAB as noted previously. There are also some dates, e.g., October 30, on which the 

model biases with respect to observations are comparably large at multiple monitor locations, 
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suggesting the impact of the same upwind fire event(s) at these locations. We explore this further 

in the next section. 

Intermodel comparisons 

(a) Hourly ozone 

 The modeling bias with respect to AQS observations is shown in the previous analyses to be 

very comparable among the three wildfire emission estimation methods; this may mask 

intermodel differences and prevent understanding of important sources of modeling 

uncertainties. Therefore, we compare the differences in modeled 1-h O3 mixing ratios between 

each pair of the three CMAQ simulations at AQS sites for the whole fire season (March 1 – 

November 30) and for the months with the maximum differences (Figure 3.3). For the whole 

wildfire season, the statistical d-s ozone values are the highest, and the NEI values are the 

lowest. The maximum difference with respect to the NEI exceeds 45 ppb for both downscaling 

methods (Figure 3.3, rows 1 and 2). Of these, statistical d-s has the largest maximum difference 

compared to the other cases (> 67 ppb), and systematically positive domain-wide mean 

differences (denoted MB in the figure) compared to dynamical d-s and NEI, of 0.12 ppb and 0.23 

ppb respectively over the fire season (Figure 3.3, top and bottom left panels). Comparable 

maximum differences of > 67 ppb between the statistical d-s and either of the other cases occur 

on October 29 (Figure 3.3, top and bottom right panels) due to an outlier value in the statistical 

d-s predictions at AQS station 291893001, and nearly identical low ozone values there in the 

dynamical d-s and the NEI cases for that hour. The maximum difference between the dynamical 

d-s and the NEI of 45.7 ppb occurs on July 6 at a different station (540390010), and even with a 

positive mean difference with respect to the NEI of 0.1 ppb over the fire season (0.17 ppb in 

July), most of the dynamical d-s values are within 50% of the NEI (Figure 3.3, middle row).  
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 To better distinguish between outlier values and more systematic biases in ozone, we 

compared the three cases in each season (Figure 3.4). Seasonally, the springtime differences are 

the smallest between each pair of cases compared, as would be expected due to low fire activity. 

Summer ozone differences between each pair of cases (Figure 3.4, middle panels) have a smaller 

range and lower values (0.12 ppb – 0.28 ppb) than in autumn (0.11 ppb – 0.32 ppb; Figure 3.4, 

right panels). Comparing across modeled cases, the systematic positive mean ozone differences 

in either downscaling method compared to the NEI persist in each season (Figure 3.4, left and 

middle panels). The largest seasonal mean difference from NEI is in autumn in the case of 

statistical d-s (0.32 ppb), and in summer in the case of dynamical d-s (0.15 ppb); the latter 

difference is likely due to a few outlier locations, as autumn actually shows a greater range of 

differences from NEI for this case. Over all seasons, there is better agreement between the 

dynamical d-s and NEI than between the statistical d-s and NEI. The previously noted positive 

mean difference in the statistical d-s results relative to the dynamical d-s increases progressively 

from 0.05 ppb to 0.21 ppb from spring to autumn (Figure 3.4, bottom row).  

(b) Daily maximum 8-h average ozone 

 Although hourly ozone performance is a good indicator of the robustness of the gas-phase 

chemical mechanism in the model, in regulatory compliance modeling in the U.S., the maximum 

value of the 8-h running average of ozone mixing ratio over a given day (denoted MDA8) is the 

metric of relevance. Its calculation is a requirement for state-level demonstrations of attainment 

of the annual ozone standard (U.S. EPA, 2007). Our comparisons of MDA8 between each pair of 

CMAQ simulations (Figure 3.S4 and Figure 3.S5 in the Supplement) show similar characteristics 

to those for 1-h ozone. Overall, most of the MDA8 values show better agreement between the 

cases than the 1-h values (within ± 50% of each other), as might be expected from the longer 
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averaging periods for this metric. However, as for 1-h ozone, the mostly positive differences 

remain for either downscaling case with respect to NEI, and for the statistical d-s with respect to 

the dynamical d-s case. There is also more variability in the timing and location of these 

maximum intermodel differences (Figure 3.S4, right panels). They occur on July 6 for the 

statistical d-s case vs. NEI (33.4 ppb), on September 3 for the dynamical d-s vs. NEI (30.2 ppb), 

and on October 16 for the statistical d-s vs. dynamical d-s (28.3 ppb). Seasonally (Figure 3.S5), 

both downscaling cases have large differences from the NEI at the upper end of the range in 

autumn, an indication of their higher wildfire emissions estimates than in the NEI in this season.  

(c) Ozone modeling uncertainties  

 Table 3.2 and Figure 3.S3 illustrate the large differences among the downscaled inventories 

in relatively fire-free locations, possibly due to a greater impact in these environments from the 

transport of precursors and ozone from fires upwind. This is supported by the spatial distribution 

of the maximum absolute difference in O3 and its precursor emissions between statistical d-s and 

dynamical d-s in each modeled grid cell over the entire fire season (Figure 3.5). In this 

comparison “fire season” is defined as April 23 – November 30, 2010, because that was the 

period of occurrence of these maximum differences. The spatial pattern for O3 (Figure 3.5, right 

panel) shows that the geographic areas of greatest difference in O3 are in the Appalachian region 

centered in West Virginia, and also in “plumes” into the Southwestern corner of Missouri and 

out of its eastern border. The spatial pattern of these differences appears to be aligned with an 

underlying circulation, suggestive of transport from upwind source regions. This possibility is 

borne out by the spatial patterns of the maximum absolute difference in the column totals of 

VOC and NOx point emissions between the two respective wildfire inventories (Figure 3.5, left 

and middle panels, respectively) over the same period. Column emission totals, rather than 
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emissions in model layer 1 are used in this comparison, because they constitute the wildfire 

emissions from each inventory, including what is allocated to aloft layers and transported 

downwind in the AQ simulation, and which would be missed if the comparison had been limited 

to emissions in layer 1. The largest differences are seen in VOC emissions due to their much 

greater magnitude than those of NOx, but both precursors have similar spatial patterns of 

maximum absolute difference between the inventories. Peak differences occur in both species 

emissions from the Southwestern corner of Missouri and across its lower third, as well as at the 

KY-OH border in Appalachia, south and east of the ozone difference peak in West Virginia seen 

in the right panel of Figure 3.5. 

Discussion 

 Overall, our analyses of ozone model performance over the fire season show very little 

difference among the three modeled cases with respect to each other, but a consistent and near-

identical overprediction of ozone across all three, with the largest MFE (55%) occurring in the 

winter. The sharp differences seen in our results at individual locations and times in the 

intermodel comparisons (Figure 3.3, Figure 3.4, Figure 3.S4 and Figure 3.S5) between the two 

downscaled cases do not translate into major differences in the overall 1-h and MDA8 ozone 

model performance, with the possible exception of statistical d-s in October. In all cases the 

largest MFEs occur in winter, outside the fire season (Figure 3.2). As the three inventories used 

in the simulations differ only in the wildfire emissions, the occurrence of the maximum MFE in 

winter indicates that those emissions are not the major contributor to the ozone biases for any of 

the cases. This is consistent with the findings of Wilkins et al. (2018), whose brute-force zero-out 



 

 
68

analyses of wildfire emissions impacts on air quality showed only a 1% increase in ozone due to 

wildfire from 2008 – 2012 over the CONUS.  

 Despite the very slight differences in error statistics among the three modeled cases for 

hourly ozone during the fire season, our intermodel comparisons do show sporadic large 

differences between the statistical d-s and the other two cases, and somewhat smaller ones 

between the dynamical d-s and the NEI. Differences in model formulations used in the two 

meteorological downscaling methods, which can lead to spatiotemporal differences in their 

predictions of peaks and troughs in wildfire emissions, are discussed in Shankar et al. (2018). 

The biases between the two downscaling methods are due to fundamentally different 

formulations of the underlying models used to provide the climate inputs for the AAB 

estimation. Statistical downscaling is a closer representation of the large-scale circulations 

modeled by the GCM used in the climate downscaling, while the dynamical d-s captures more of 

the prevailing local meteorological features, which may be quite different in a given period from 

the large-scale circulation. Furthermore, the WRF 3.4.1 model used in the AAB estimates for the 

dynamical d-s inventory has a known high precipitation bias (Alapaty et al., 2012; Spero et al., 

2014). The prediction of too much precipitation in the AAB estimation model inputs could be 

another reason for the lower wildfire emissions overall in the dynamical d-s case (Shankar et al., 

2018); this would account for its lower ozone precursor emissions and mixing ratios compared to 

the statistical d-s case. Temporally, some of the largest differences in 1-h ozone between the two 

downscaling cases occur on the same day, e.g., October 30, at multiple locations. Spatially, they 

occur in relatively clean, i.e., low- or no-fire grid cells. These results suggest that the greatest 

impact of their different wildfire emissions magnitudes is on ozone mixing ratios in low- or no-
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fire grid cells due to the transport of those emissions (and ozone) from upwind locations with 

significant fire activity.  

 The seasonal intermodel comparisons of Figure 3.4 (top and middle row) show that the two 

downscaling methods differ not only in the magnitude, but also the timing of the maximum 

difference with respect to the NEI. The NEI predicts less ozone than the other cases in all the 

warmer months (summer and autumn). These warmer months are dominated by fires in a denser 

canopy. MODIS fire counts, which are used to estimate area burned in the NEI, are known to be 

underestimated in the earliest versions of that inventory for wildfires, in part due to the difficulty 

of under-canopy fire detection by the MODIS instrument (Pouliot et al., 2008, Soja et al., 2009). 

In addition to any ozone overestimates that are present in the downscaling cases in these months 

(e.g., statistical d-s in October), application of the MODIS estimates during canopy-heavy 

months could also contribute to these lower values in the NEI relative to the downscaling cases. 

The seasonal (positive) differences in ozone among the models are largest between either 

downscaling case and the NEI in autumn, at the upper end of the range, and can be attributed to 

the effect of less convective precipitation in autumn than in summer in the Southeast, which 

would increase the daily fire activity estimates in the downscaling cases. 

PM2.5  

Model evaluation against observations 

 In this section, we compare the performance of the two downscaling methods, and the NEI 

wildfire inventory to PM2.5 observations. We evaluate PM2.5 model performance over all of the 

2010 fire season (March 1 – November 30), as well as its seasonal variability, using observations 

from the IMPROVE, CSN, and the SEARCH networks for PM2.5 and its constituents.  

(a) Monthly variability 
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 Table 3.S2 in the Supplement summarizes the performance statistics (NME and NMB) for 

PM2.5 compared to observations from the IMPROVE network. There is more variability in these 

metrics seasonally and among the three simulation cases, than in the results for ozone 

(Table 3.S1). Figure 3.6 shows the range of MFE and MFB for total PM2.5, and for two key co-

emitted PM constituents from wildfires, elemental carbon (EC) and organic carbon (OC).  The 

overall performance for PM2.5 (Figure 3.6, top row) is in the acceptable range for MFE and MFB 

(≤ 75% and ≤ ± 60%, respectively). Unlike ozone, which is overpredicted in the summer months, 

total PM2.5 has the greatest underprediction in these months in all three cases, with the statistical 

d-s having the least negative bias with respect to observations, followed by the dynamical d-s 

(except in July). The best performance statistics are in April and May, while the greatest 

overpredictions during the fire season are in November and March. However, these last two 

months appear to be in a continuum of overpredictions from late autumn when they are largest, 

to early spring when they are smallest, across all cases. The NEI has the best performance of the 

three cases for total PM2.5 in the spring and autumn months, and the most underprediction in the 

summer months, though by small margins.  

 To investigate the possible source(s) of the PM2.5 biases, we examined these error metrics for 

all the major PM constituents. The results for EC and OC are shown in Figure 3.6 (middle and 

bottom rows, respectively), and for the inorganic constituents (SO4, NH4, and NO3) in 

Figure 3.S6 in the Supplement. EC performance for all three cases meets the PM performance 

goal (MFE ≤ 50% and MFB ≤ ± 30%) in April, June, August and September, and meets 

performance criteria (MFE ≤ 75% and MFB ≤ ± 60%) in the remainder of the year. MFB for EC 

is nearly zero for the two downscaled cases, and slightly negative for the NEI in June and 

August, but is positive in July for all three cases. These results indicate that the pronounced 
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negative bias in PM2.5 in the summer months over all cases is not attributable to EC. All three 

cases overpredict EC in autumn, albeit within the good-to-acceptable range of performance. As 

there are no fires in the winter months, the performance for EC during that period is identical in 

all cases, and the large positive winter bias in EC is clearly due to combustion sources other than 

wildfires. 

 There is a severe underprediction in OC for all three cases except in winter (Figure 3.6, 

bottom row), with MFB from April – September being outside the range of acceptable 

performance. The negative biases are smallest for the statistical d-s, followed by the dynamical 

d-s, and largest for the NEI, particularly in summer and autumn, consistent with the progressive 

decrease in their respective wildfire PM2.5 emission magnitudes (Shankar et al., 2018) in these 

seasons. The negative biases in PM2.5 in the summer months, which are common to all three 

cases, are attributable in part to the OC underpredictions, although species with larger mass 

fractions of total PM could also be responsible. This is further examined in Figure 3.7. OC 

performance is best in the winter months when there are no differences in the input emissions 

among the three cases; the performance also improves throughout the fire season from the 

warmest to the coolest months in all cases. We discuss some possible explanations for this under 

“Discussion”. 

(b) Variability across network observations 

 The IMPROVE network is located mainly in the Federal Class I Areas with monitoring 

provided by the National Park Service (NPS), and administered by a consortium of several 

resource management agencies such as the National Fish and Wildlife Service, the USDA Forest 

Service, the Bureau of Land Management. As such, IMPROVE monitors are placed in rural 

areas, which allow reliable measurements of ambient concentrations in the vicinity of fires. To 
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evaluate the performance of our wildfire inventories in simulating air quality downwind and 

farther away from fires, we compared the model results at IMPROVE sites with those across the 

CSN and SEARCH networks for the species common to all. There are some limitations in these 

observations: the geographical coverage in SEARCH is limited to eight stations located in 

Mississippi, Alabama, Florida, and Georgia, and CSN had no EC measurements available 

beyond March in 2010. Nevertheless, these cross-network comparisons can provide additional 

insights into the geographical variability of model performance for PM, e.g., urban vs. rural, or 

the Atlantic seaboard vs. the high-fire areas in the interior of the domain. 

 Total PM2.5 comparisons among IMPROVE and CSN (Figure 3.S7 in the Supplement) show 

that the model performance at the CSN sites is better than at IMPROVE sites, with lower bias 

and error, especially in the summer and autumn, for all the three cases. In these warmer months, 

the least negative bias at the CSN sites is for statistical d-s in August, and the least positive bias 

is for the NEI in September, but the differences among the cases are very small. Figure 3.S8 in 

the Supplement compares the spatial distribution of MFB among the three modeled cases across 

available networks for total PM2.5 (IMPROVE and CSN) in each season. As with the ozone 

spatial comparisons of MFB (Figure 3.S1), the differences among the cases in Figure 3.S8 are 

too slight to be resolved in the color map. However, the bias differences across networks for 

PM2.5 in Figure 3.S7 indicate better performance in some of the constituent species in the warmer 

months at the urban sites than at the rural sites.  

 To investigate this further we compared monthly-averaged model bias and error against 

IMPROVE, CSN, and SEARCH daily measurements (Figure 3.S9 in the Supplement) for OC 

and NO3. These are the two PM constituents with poor model performance at the IMPROVE 

sites (Figure 3.6 and Figure 3.S6). As differences in model performance among the modeled 
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cases were small in those comparisons, the Figure 3.S9 comparisons are shown for a single case, 

statistical d-s, which had large negative biases for OC and NO3, but also predicts higher PM2.5 

than the other cases. The errors and biases for OC are comparably high at the IMPROVE and 

SEARCH networks, and considerably less at the (urban) CSN monitors than at IMPROVE 

(rural) sites. However, the monthly variability of the bias is seen at the SEARCH and CSN 

monitors as well, and goes from negative to positive progressively from the warm to cool 

months, as at the IMPROVE sites.  

 NO3 performance falls outside the acceptable range at all network sites, in almost all months, 

with CSN being the exception in winter. The results for NO3 are somewhat better at the 

IMPROVE and CSN sites than at SEARCH sites, which have considerably more underprediction 

from May – September. The seasonal variability of the bias at all three networks is similar to that 

of OC, at least in these months. As with OC, the greatest negative bias in NO3 is at the SEARCH 

sites in summer, with MFE in excess of 150%. One contribution to this large value is from the 

low concentrations of NO3 in the Southeast, and the small numbers involved in the error 

estimates. The NO3 bias is discussed further in a subsequent section (see “Discussion”). 

(c) PM composition 

 There is a wide range of bias and error among PM and its constituents in Figure 3.6, 

Figure 3.S6 and Figure 3.S9, and in Tables 3.S2-3.S5 in the Supplement, although total PM2.5 

meets the criteria for acceptable PM performance throughout the year and across all cases. To 

further examine the contributions of individual PM species to total PM2.5 performance we 

compared the seasonally averaged PM2.5 composition (Figure 3.7) over the fire season between 

IMPROVE observations and the model simulations. Overall, modeled PM composition is 

overpredicted in sulfate and nitrate, underpredicted in OC, and has mixed results for the other 
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constituents. Total PM2.5 mass is overpredicted in the spring and autumn, and underpredicted in 

the summer in all cases; the summer underprediction is driven by the underprediction of most 

species other than sulfate, particularly the severe underprediction of the lumped species labelled 

“Other”, which includes fugitive dust. There is a decrease in predicted total PM2.5 mass across 

the three cases, statistical d-s, dynamical d-s and the NEI, and in the same direction as the 

decrease in their wildfire emissions. This translates into a monotonic decrease in the springtime 

average PM2.5 concentration of ~ 1% from statistical d-s to dynamical d-s to NEI. In the summer 

and autumn, there is a 5% decrease from statistical d-s to dynamical d-s, and a ~ 2% – 3% 

decrease from the dynamical d-s to the NEI. The differences of modeled PM from the 

observations are much larger, from a low of -20% in the summer for the NEI to a high of 50% 

for the statistical d-s in the autumn, as noted in here and previously. 

 The contribution of sulfate to total PM concentration over the Southeastern U.S. is 

substantial (26% – 32%) in the IMPROVE observations throughout the year, and is 

overpredicted in every season across the three cases, although Figure 3.S6 (top row) shows it to 

be within the acceptable range in all months except October. The sulfate overprediction also 

persists in two months of the winter (January and February), when all three cases have identical 

emissions inputs (Table 3.S3); the small difference in the dynamical d-s case from the other two 

cases for December is due to ~ 10% fewer matched model-observation pairs for this case in 

December. Statistical d-s, by a slim margin, has the largest SO4 overprediction over the whole 

year among the three cases, with an average NMB of 65.3% and average NME of 78.2% 
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(Table 3.S3), because of the larger magnitude of wildfire PM emissions from which its SO4 

emissions contributions are estimated.  

 Due to the use of a common (NEI) speciation profile, both ammonia (NH3) and gas-phase 

NO3 from wildfires are allocated the same fractions of total PM2.5 emissions in all three wildfire 

inventories, and across all seasons. Particulate NO3 contribution to total PM2.5 mass in the 

IMPROVE observations is between 2.5% in the summer, and ~ 8% on average in the spring and 

autumn (Figure 3.7), and as much as ~ 25% in winter (not shown). It has a positive MFB of 14% 

– 51% in the cooler months of the fire season over all three cases (Figure 3.S6, bottom row), but 

has an equally negative MFB in the warmer months; the monthly biases are more or less uniform 

across the three modeled cases. Once again, the statistical d-s case has the highest NMB (234%) 

for NO3 among the three cases (Table 3.S5) in October. There is very little difference in the 

positive biases in the remainder of the year across the cases. On the other hand, ammonium 

(NH4), a PM2.5 constituent that partitions between SO4 and NO3, contributes a greater fraction to 

total PM2.5 mass on average (12% - 17%) than does NO3 throughout the year (Figure 3.7). Its 

bias is considerably less than that of NO3 across the three cases, and comparable to that of SO4. 

Intermodel comparisons 

(a) Daily-average PM2.5  

 Our PM2.5 model evaluation shows that although there is slightly more variability in the 

model simulation results for PM2.5 than in those for ozone, these differences are much smaller 

than their differences from observations. Our intermodel comparisons of PM2.5 are motivated by 

the need to better understand modeling uncertainties and compensating errors, and how they 

affect overall model performance. PM2.5 concentrations summed over all constituent species are 

compared among the three cases over the whole fire season and inter-seasonally (Figure 3.8 and 
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Figure 3.9) at grid cells that contained both IMPROVE monitoring sites and wildfires, at the 

temporal frequency of the measurements. There is less statistical power in these results than in 

those for ozone due to relatively fewer monitors in IMPROVE than in AQS in the eastern U.S., 

in addition to the lower temporal frequency of the measurements (daily averages measured twice 

a week). As with ozone, however, the largest differences in PM2.5 are in the statistical d-s case 

with respect to the other two cases (Figure 3.8, top and bottom rows). As with ozone, the 

smallest differences between cases occur in the spring, and the largest ones in autumn (Figure 

3.9, bottom row). However, the dates of maximum intermodel differences do not coincide with 

those for ozone in most seasons, suggesting a different source contribution to these differences 

than that for ozone. This is explored in the next section.  

(b) PM modeling uncertainties 

 The time frequency of PM2.5 measurements is twice per week in IMPROVE among about 28 

sites in the Southeast, and thus considerably less than in the AQS measurements for hourly and 

MDA8 ozone. Nevertheless, for all the days available in the fire season at all the locations 

showing large differences (i.e., > 50%) between the downscaling cases, we performed a similar 

analysis to that for ozone. Table 3.3 summarizes modeled and observed results for PM2.5 at these 

outlier locations and their times of occurrence, which are somewhat different from those for 

ozone. The largest differences in PM2.5 occur in the summer, particularly in August. With the 

exception of James River Face in coastal Virginia, which is a few grid cells to the northeast of 

AQS site 511611004, there is little agreement in the locations of these large differences in PM2.5 
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with those in ozone, and none in their dates of occurrence. This lack of agreement suggests a 

different underlying source of these occurrences for PM2.5 from that for ozone. 

 Despite the differences in the data of Tables 3.2 and 3.3, they do show some similarities. For 

all the 17 occurrences listed in Table 3.3 that show large differences in PM2.5 between the two 

downscaling cases, the statistical d-s case once again has the larger biases with respect to 

observations, ranging from 0.42 to 14.26 µg m-3. As with ozone, there is more negative bias (in 7 

of the 17 occurrences) in the dynamical d-s case with respect to measurements, with the bias 

ranging from -3.52 to 7.81 µg m-3. Also, as with ozone, the difference in PM2.5 between the two 

cases in a given grid cell is not proportional to the differences in daily burned area within the 

cell, which is zero or negligible for both cases in most of the 17 occurrences. These large 

differences could be a result of the differences in daily fire activity in adjacent grid cells upwind, 

due to the larger burned area in the statistical d-s case than in the dynamical d-s case. This is true 

of each of the grid cells in Table 3.3 that had an adjacent grid cell with a fire on a given day.  

 As in the case of ozone, the domain-wide 24-hour trend (Figure 3.S10 in the Supplement) of 

absolute difference in PM2.5 between the downscaling cases shows a very small median 

difference (on the order of 10-3 µg m-3), but with even less variability than for ozone, and slightly 

more temporal variability at the upper end of the range than for ozone in Figure 3.S2. Primary 

emissions and their variability could contribute to a greater degree in these differences, as 

primary PM is a significant fraction (~ 23%) of these wildfire emissions excluding CO. The 

spatial distribution of the maximum absolute differences in PM2.5 throughout the fire season in 

the lowest model layer (right panel of Figure 3.S11 in the Supplement) shows a similar pattern 

overall to the ozone differences in that it is appreciable mostly over the central and northeastern 

parts of the domain. However, the spatial pattern for PM2.5 concentrations more closely 
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resembles that of the column-total point wildfire emissions of PM2.5 (Figure 3.S11, left panel), 

than in the case of ozone, particularly in Southeastern Missouri and Appalachia. This indicates 

the greater role in the PM2.5 concentration differences played by primary wildfire PM emissions 

than in the case of ozone.  

Discussion 

 Across all three cases modeled, PM2.5 shows an increasingly negative bias with respect to 

IMPROVE in the late spring through the summer, changing to a progressively more positive bias 

from autumn into winter, which has the largest MFE and MFB of 56.2% and 44.5%, 

respectively. The overall model performance for PM2.5 is acceptable in all cases, but masks 

compensating errors in the PM constituents. Of these, the signature species for wildfires are EC 

and OC. Model performance for EC, which is primarily emitted in wildfires, is good-to-

acceptable and mostly positively biased over the fire season. Taken alongside the poor 

performance for OC, which is mostly secondarily produced from precursors emitted from 

wildfires and other natural and anthropogenic sources, this indicates that wildfire EC emissions 

are not the driver of the pronounced negative biases seen in PM2.5 in the summer months. The 

OC biases are mostly negative and most pronounced in the warmer months; they are smallest for 

statistical d-s and greatest for the NEI, which as noted previously, had an underestimation of 

emissions in the 2010 wildfire inventory due to the undercounting of fires below canopy by 

MODIS (Pouliot et al., 2008). This underestimate would be greatest in the months when the 

canopy cover is greatest, and could also account for EC being better predicted in June and 

August with the downscaled inventories than with the NEI inventory.  

 Another, and perhaps the biggest contribution to the low bias in PM2.5 in summer comes from 

species other than the major organic and inorganic components (labelled “Other” in Figure 3.7). 
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Other PM is a larger fraction of the observed summer-average PM2.5 concentration than even 

sulfate (Figure 3.7). Fine PM is the second largest component (~ 43%) after primary OC in 

wildfire PM emissions in all three inventories, and is the primary contributor to Other PM from 

wildfires in CMAQ. Given the uniform PM speciation profile across all seasons in all three 

wildfire inventories in this study, and the relatively good comparisons of Other PM with 

IMPROVE observations in spring and autumn, wildfire emissions are not the likely source of the 

poor summertime performance for this species. Fine dust episodes in the eastern U.S. and the 

Caribbean in the summer have been shown through satellite observations to be associated with 

long-range transport from the Sahel (Prospero, 1999; Prospero et al., 2014). The severe 

summertime underprediction of Other PM suggests a need to refine the eastern boundary 

conditions, which were the same across the three CMAQ simulations, specifically with respect to 

their intra-seasonal variability.  

 The large negative biases in OC predictions, which are seen across both rural and urban 

networks, are likely to be a result of underprediction in the CMAQ v5.0.2 secondary organic 

aerosol (SOA) mechanism rather than in the primary wildfire OC emissions. Some of the 

underestimation could come from the assumed NEI temporal profiles for emissions from smaller 

wildfires that are less than a full day in duration (Wilkins et al., 2018). Residential wood 

combustion has also been shown to be as a source of underestimation of carbonaceous PM in the 

NEI in a 2007 study over the Southeastern U.S. (Napelenok et al., 2014), and this possibility is 

supported by the better model performance for OC at CSN (urban) sites compared to IMPROVE 

(rural) sites. The potential role of residential wood combustion would need to be further 
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examined within the context of the spatial and temporal distribution of emissions from this 

source for our modeling domain in 2010.  

 The very good performance for OC in the winter that gradually degrades going from cool to 

warm months is an indication that temperature dependence of precursor emissions may not be 

well represented either in the fire emissions model, or in the SOA formation pathways in the 

CMAQ organic chemistry formulation. As the emission factors in the BlueSky fire emissions 

model do not adjust for the temperature dependence of individual PM species, the CMAQ SOA 

model is the most likely source of the seasonal variability of this bias. The underprediction of 

SOA in CMAQ is addressed somewhat by the volatility basis set (VBS--Donahue et al., 2013) 

implemented in a later version of CMAQ (CMAQ-VBS -- Koo et al., 2014) than the one used 

here. However, large uncertainties still remain in the representation of semi-volatile and 

intermediate VOCs (IVOCs), especially in the primary emission estimates, and in the SOA 

formation pathways according to Woody et al. (2016). These authors have argued for improving 

the CMAQ-VBS model further by including representations of semi-volatile organic compounds 

(SVOCs) in the form of primary organic aerosol (POA), and IVOCs. 

 In contrast to OC, EC has its highest MFB and MFE in winter for all the cases modeled. As 

EC is co-emitted with OC in biomass and biofuel combustion, this indicates that the emission 

factors, in particular, the OC/EC emission ratios used for non-wildfire combustion sources that 

are active in winter, e.g., biofuel, could account for the poor EC model performance. The 

monthly results for the EC and OC error metrics, which show a consistently higher MFB for EC 

than for OC indicate that the OC/EC emission ratios could also be an issue in wildfire emissions.  

 Our PM composition analyses show that the constituent driving total PM2.5 performance is 

sulfate, due to its having the highest PM mass fraction. Wildfire emissions do not have a major 
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source contribution to the modeled sulfate concentration. Primary SOx emissions constitute 1.8% 

of the total emissions from wildfires, as evidenced by the nearly constant concentration of SO4 

across the three modeled cases in every season. Thus, the sulfate overprediction (MFB > 30%) 

seen throughout the fire season is likely due to an overestimation in SOx emissions from sources 

other than wildfires, or in the secondary sulfate production pathways in CMAQ, notably its cloud 

chemistry, rather than due to an overestimation of wildfire SO4 emissions. In the other two major 

inorganic species, NO3 and NH4, there are large overpredictions for NO3, most notably in 

autumn and winter, and largest (albeit by a small margin) in the statistical d-s case. Furthermore, 

the NH4 overprediction is comparable to that of SO4, and much smaller than that of NO3 across 

all cases and seasons, suggesting that much of the NH4 mass is associated with SO4. The good-

to-acceptable performance for NH4, which has a significant contribution from wildfire-emitted 

NH3, increases the likelihood that wildfire emissions, which are the only source of difference 

among the three inventories, are not the driver of the large positive bias in NO3 in the cooler 

months, and clearly not in the winter. The overpredictions in SO4 and NH4, and to a lesser extent, 

in NO3, offset the substantial underprediction in OC that persists throughout the fire season, 

leading to an acceptable aggregate PM2.5 performance. 

 It is worth noting that in the NO3 performance, the NMB values for NO3 in Table 3.S5, as 

well as the seasonally averaged PM concentrations (Figure 3.7) show a uniformly positive bias 

for this constituent, while a number of the monthly MFB values in Figure 3.6 are negative 

(although on a seasonal-average basis, they are consistent with the results of Figure 3.7). The 

MFB metric is considered a better alternative to NMB at low concentrations (Boylan and 

Russell, 2006), as often occur in NO3 over the Southeast. This is because MFB normalizes the 

bias with respect to the average of modeled and observed values, keeping it bounded (between -
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200% and +200%), whereas NMB normalizes the bias with respect to observations, and can 

become very large at low concentrations. However, somewhat misleading results such as cited 

here for NO3 are known to occur in using the MFB. Alternative metrics that avoid this issue 

while preserving its desirable features (boundedness and symmetry) have been proposed (Yu et 

al., 2006), but have not yet been adopted in standard AQ model evaluations. We have therefore 

based our performance evaluation on a variety of analyses. 

 The intermodel comparisons for PM2.5 show similar difference patterns to those for ozone 

among the modeled cases in the scatterplots, but the largest differences are often not coincident 

spatially or temporally with those for ozone, indicating an alternative contributing source. While 

ozone is entirely produced in secondary chemical reactions from the primary emissions of NOx 

and VOC, PM can have both primary and secondary components. It is likely that the PM 

concentration differences among the modeled cases are driven more by differences in their 

primary PM emissions. This is also supported by the similarity in the spatial patterns of 

maximum absolute difference over the fire season in PM2.5 column emissions and surface 

concentrations between the two downscaled cases.  

Conclusions 

 We have compared two wildfire emissions estimation methods that are both based on 

projections of AAB from a statistical model, to an empirically based benchmark inventory 

compiled by the U.S. EPA, by using them in AQ simulations of a historical period (2010). We 

compared the modeled ambient concentrations among the three cases simulated with these 

inventory methods, and between each case and air quality observations from various ground-
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based networks for 1-h ozone, maximum daily 8-hour average ozone (MDA8), and for PM2.5 and 

its constituents.  

 Our results show nearly identical performance for all three cases against AQS network 

observations for hourly ozone. The O3 differences among the cases are 0.08% - 0.93%, but the 

biases are much larger for any of the cases with respect to AQS observations, being 13% - 25% 

over the entire year. Ozone has acceptable performance in spring through mid-summer, but 

degrades (MFE > 50%) in the cooler months, particularly in the fire-free winter. These results 

suggest that wildfire emissions are not a major contributor to the model errors in ozone. The 

statistical d-s has a significant high bias in O3 with respect to the other two methods at specific 

locations in October, due to its larger AAB estimates. Large ozone differences between the two 

downscaling methods occur mostly in the northeastern quadrant of the domain, and downwind 

from peak differences in VOC and NOx column emissions from wildfires in eastern Missouri and 

Appalachia. These results indicate that transport and secondary chemical transformations of 

precursor emissions from high fire activity areas to fire-free areas downwind drive the largest O3 

differences seen between the two downscaling methods. 

 The PM2.5 model performance against observations from the IMPROVE network is 

acceptable throughout the year for all three methods, but is the result of compensating biases in 

SO4 (positive) and OC (negative) in almost every month. Sulfate, with its highest PM mass 

fraction, drives the PM2.5 bias, which is still within acceptable levels. The minimal contribution 

of SOx to the total emissions from wildfires points to other anthropogenic SOx sources or the 

CMAQ SO4 production pathways as the main cause of this overprediction. EC and NH4; which 

are key constituents in the primary emissions from wildfires also have good-to acceptable 

performance in almost all months. OC, which has a larger contribution from secondary chemical 
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reactions, has its largest underpredictions (beyond acceptable levels) in the summer, for the NEI. 

Given the good-to-acceptable performance for EC, which is co-emitted in wildfires, the likely 

cause of the OC biases is other VOC sources, or secondary chemical reactions in the CMAQ 

model. Future assessments with CMAQ-VBS (Koo et al., 2014) or even later enhancements to 

the SOA mechanism suggested by Pye et al. (2015) could help address the SOA underprediction 

and improve the OC model performance overall. The dramatically better OC model performance 

at urban sites compared to rural sites also indicates potential underestimates of residential wood 

combustion and biogenic emissions in rural areas.  

 Particulate NO3, like much of OC, is formed through secondary processes. Its much lower 

concentrations in the summer than in the other seasons are correlated with that season’s larger 

overpredictions of SO4 and smaller overpredictions of NH4, since less NH3 is available for NO3 

formation. Kelly et al. (2014) cite gas-particle partitioning in the ISORROPIA II 

thermodynamics model as one of the factors contributing to the underprediction of NO3 in 

CMAQ version 5.0; this may have some bearing on our summer NO3 results. The severe 

overprediction of NO3 in combination with larger overpredictions in NH4 in the rest of the fire 

season indicates possible overestimates in the emissions of NH3 or anthropogenic NOx; the latter 

is more likely, as NH4 performance is acceptable over these months. 

 As with ozone, the much smaller (1% - 8%) intermodel differences among the three wildfire 

emission methods for PM2.5 than their individual biases with respect to observations (-14% - 

+51% at IMPROVE sites) during the fire season indicate that modeling uncertainties other than 

wildfire emissions contribute the larger part of the model bias. Differences in PM between the 

two downscaling cases also confirm our previous conclusions for ozone, that their biggest impact 

is in fire-free locations downwind from regions of high fire activity, but with a bigger 
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contribution from the transport of primary PM emissions. These analyses, however, do not 

clearly point to a superior candidate for estimating wildfire emissions, as all three methods have 

uncertainties. On average, the statistical d-s predicts PM2.5 ~ 7% higher than the other methods in 

the summer when all methods underpredict observations, and ~ 4% higher in the remainder of 

the fire season when they all overpredict observations, as a direct result of its higher AAB 

estimates. To allow one-to-one comparisons of the two downscaling methods in their wildfire 

emissions estimates, Shankar et al. (2018) used a single GCM (CGCM31) for the statistically 

downscaled meteorological inputs in these AAB estimates, rather than the full ensemble of GCM 

results used in Prestemon et al. (2016). One avenue for future improvements could be the use of 

the statistical d-s emissions estimates from the full ensemble in future assessments. Multi-model 

ensembles are important for bracketing uncertainties in model results. Of the two downscaling 

methods, dynamical d-s compares more closely with the NEI, which has the smallest biases with 

respect to observations except in summer. Both these methods underpredict summertime PM2.5, 

but for different reasons. In the case of dynamical d-s, which estimated much lower wildfire 

emissions than statistical d-s (Shankar et al., 2018), the underprediction is likely due to the 

overprediction of convective precipitation in summer by the WRF 3.4.1 model used in its AAB 

estimation inputs. This bias could be compounded by the propagation of similar bias in the 

WRFG model from which those WRF simulations were nested down. In the NEI’s early versions 

of the SMARTFIRE system, the likely cause of underprediction is the undercounting of fires 

below canopy by MODIS in the summer. Later versions of WRF and SMARTFIRE have 
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addressed their respective underestimation issues, and could benefit such evaluations in the 

future.  

 In conclusion, both the downscaling methods are seen to perform comparably to the NEI 

wildfire inventory for ozone throughout the year, and better than the NEI for total PM2.5 in the 

summer, in partial confirmation of our hypothesis. The good-to-acceptable performance for 

primarily emitted EC and NH4 (from ammonia), especially by the downscaling methods, 

provides confidence in our overall methodology for estimating wildfire emissions, and in the 

likelihood that these emissions are not the major drivers of the biases in PM species dominated 

by secondary production (OC and NO3). That the largest errors in PM occur in SO4, which has a 

very small contribution from wildfires, and in the case of ozone in the fire-free winter months, 

point to chemical production pathways of these pollutants from non-wildfire sources as fruitful 

targets for future model improvements. Overall, the downscaling methods meet the criterion of 

being comparable to the NEI in simulating the air quality impacts of current-day wildfires while 

enabling assessment of those impacts much farther into the future.  
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Table 3.1. Summary of cases simulated in modeling study  

Case Name 

Wildfire Inventory Method Other 

Sector 

Emissions Annual Fire Activity Estimates 

Daily Fire 

Activity 

Emissions 

Estimates 

NEI Bench-
mark 

Empirical annual totals derived from the 
aggregation of acres burned in individual 
fire events  

2010 MODIS fire 
counts matched to 
ground-based 
reports of areas 
burned per fire 
event using 
SMARTFIRE211 

BlueSky/ 
CONSUME12  

NEI 2005 

Statistical  
d-s 

Meteorological inputs for the Annual Area 
Burned (AAB) estimation model13 
obtained from a Canadian General 
Circulation Model version 3.1 
(CGCM31)/A2 greenhouse gas emissions 
scenario realization, statistically 
downscaled over the Southeastern domain 
at 12-km x 12-km resolution. County-level 
population and income, and land use 
inputs to the AAB estimation from census 
tracts and historical land use records. 

Disaggregated 
from AAB by the 
Fire Scenario 
Builder (FSB) 14 
using WRF 
meteorology 

BlueSky/ 
CONSUME 

NEI 2005 

Dynamical d-s Meteorological inputs for the AAB 
estimation model obtained from a 
simulation of the Weather Research and 
Forecasting (WRF) Model version 3.4.1 
for the Southeastern domain at 12-km x 
12-km resolution, which is nested down 
from a WRF simulation over North 
America dynamically downscaled from a 
CGCM3/A2 scenario realization 15. 
County-level population, income, and land 
use inputs to the AAB estimation from 
census tracts and historical land use 
records. 

Disaggregated 
from AAB by the 
FSB, using WRF 
meteorology 

BlueSky/ 
CONSUME 

NEI 2005 

                                                 

 

 

11 Pouliot et al. (2008) 

12 Larkin et al. (2009) 

13 Prestemon et al. (2016) 

14 McKenzie et al. (2006) 

15 Mearns et al. (2009) 
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Table 3.2. Ozone at selected locations from statistical d-s, dynamical d-s and AQS���� 

network observations 

Date Time 

(GMT) 

AQS Site ID O3 (ppb)  O3 Bias (ppb) Daily burned area (ha)� 

Obs. Stat. 

 d-s† 

Dyn.  

d-s‡ 

Stat.  

d-s 

Dyn.  

d-s 

Stat. d-s Dyn. d-s 

10/9/2010 3:00 1711700021 30 3.0 0.36 -27 -30   

10/16/2010 14:00  53 90 43 37 -10   

10/30/2010 10:00  35 59 39 24 4   

10/8/2010 21:00 1711930072 1 7.2 0.034 6 -1   

10/16/2010 11:00  31 77 37 46 6   

10/29/2010 16:00  12 0.059 0.024 -12 -12 28.7 * 23.4 * 

10/30/2010 10:00  24 54 31 30 7   

10/10/2010 20:00 210590005����,3  16 4.3 2.7 -12 -13   

10/17/2010 21:00  9 10 3.6 1 -5   

10/30/2010 10:00  34 54 32 20 -2   

10/9/2010 18:00 210910012����,3 42 0.97 0.13 -41 -42   

10/10/2010 21:00  21 0.067 0.048 -21 -21   

10/17/2010 21:00  15 1.5 0.14 -13 -15   

10/30/2010 11:00  38 60 37 22 -1   

10/8/2010 20:00 291831002����,4 8 0.29 0.0024 -8 -8   

10/16/2010 11:00  45 70 37 25 -8   

10/22/2010 17:00  37 20 10 -13 -23 201 * 176 * 

10/29/2010 16:00  12 0.0048 0.000092 -12 -12 28.7 * 23.4 * 

10/30/2010 10:00  42 60 35 18 -7   

10/16/2010 9:00 2918600055 38 72 44 34 6 393 *  

10/8/2010 18:00 295100085����,4 4 0.019 0.0026 -4 -4 212 *  
10/16/2010 16:00  30 64 32 34 2   

10/22/2010 16:00  27 23 12 -4 -15   

10/29/2010 16:00  20 5.6 0.028 -14 -20 28.7 * 23.4 * 

10/30/2010 16:00  36 1.1 0.55 -35 -35   

9/6/2010 10:00 3904900376 45 69 42 24 -3   

9/6/2010 10:00 3904900816 42 64 39 22 -3   

10/10/2010 19:00 4716500077 35 0.76 0.47 -34 -35   

10/17/2010 18:00  40 1.4 0.71 -39 -39   

10/18/2010 16:00  66 7.1 3.8 -59 -62   

10/31/2010 17:00  49 13 7.9 -36 -41 22.6 *  

9/9/2010 20:00 5116110048 55 59 29 4 -26 391 *  

9/5/2010 20:00 5403900109 26 16 2.1 -10 -24 284 * 36.6 * 

9/9/2010 11:00  33 66 35 33 2 323 *  

Symbols key: �Air Quality System. �A blank in these columns indicates that there were no areas 
burned inside or within a few grid cells of the monitored cell. †Statistical d-s; ‡Dynamical d-s. 

*Denotes the area burned in an upwind location within 1-2 grid cells of the monitored cell. ����KY-
OH sites in Fig. 3.S3; ����MO-IL sites in Fig. 3.S3. AQS site key: 1Nilwood, Illinois; 2Wood River, 
Illinois; 3Owensboro, Kentucky; 4St. Louis, Missouri; 5Bonne Terre, Missouri; 6Columbus, Ohio; 
7Hendersonville, Tennessee; 8Roanoke, Virginia; 9Charleston, West Virginia. 
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Table 3.3. PM2.5 at selected locations from statistical d-s, dynamical d-s and the 

IMPROVE���� network 

Date 

IMPROVE  

Site Name and State 

PM2.5 (µg m-3)  PM2.5 Bias (µg m-3) Daily burned area 

(ha)� 

Obs. Stat.  

d-s 

Dyn. 

d-s 

Stat.  

d-s 

Dyn.  

d-s 

Stat. d-s Dyn. d-s 

9/5/2010 Brigantine NWR�, NJ1 4.59 17.4 10.72 12.81 6.13 313 *  

8/27/2010 Cadiz, KY2 8.44 18.41 11.00 9.97 2.56   

8/27/2010 Cherokee Nation, OK3 9.48 13.34 8.62 3.86 -0.87   

8/21//2010 El Dorado Springs, MO4 8.88 19.08 16.69 10.2 7.81   

8/24/2010  12.27 14.40 9.09 2.13 -3.17   

9/5/2010  4.79 9.34 5.27 4.56 0.49   

9/23/2010  7.20 7.62 5.09 0.42 -2.11   

9/5/2010 Great Smoky Mountains 
NP�, TN5 

3.99 12.5 7.25 8.51 3.26   

6/7/2010 Hercules Glades, MO 4.10 12.35 4.18 8.25 0.08 59.0 *  

6/19/2010  6.14 10.77 6.48 4.63 0.34   

8/6/2010 James River Face WA�, 
VA6 

14.12 25.45 10.60 11.33 -3.52 48.0 *  

9/17/2010  7.38 11.59 7.01 4.21 -0.37   

11/10/2010 Lake Sugema, IA7 10.81 16.68 8.50 5.87 -2.31 162 * 106 * 

6/7/2010 Linville Gorge, NC8 6.40 9.89 6.38 3.49 -0.02 20.3 *  

9/11/2010 Mingo, MO 3.63 12.86 6.28 9.23 2.65   

10/2/2010  5.03 19.29 8.56 14.26 3.53   

10/29/2010 Sikes, LA9 4.46 13.35 8.81 8.89 4.35   

Symbols key: �Interagency Monitoring of Protected Visual Environments network; �a blank in 
these columns indicates that there were no areas burned inside or within a few grid cells of the 
monitored cell. * denotes the area burned in an upwind location within 1-2 grid cells of the 
monitored cell. Federal Class I Area designations: �National Wildlife Refuge; �National Park; 
�Wilderness Area. State abbreviations: 1New Jersey; 2Kentucky; 3Oklahoma; 4Missouri; 
5Tennessee; 6Virginia; 7Iowa; 8North Carolina; 9Louisiana. 
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Figure 3.1. Modeling domains for the meteorological model: D01 at 50-km x 50-km grid 
spacing; D02 at 12-km x 12-km grid spacing 
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            Statistical d-s                                              Dynamical d-s                                          NEI Benchmark 

 
Figure 3.2. Monthly average performance for 1-h ozone: mean fractional error (%) on the 
vertical axis vs. mean fractional bias (%) relative to observations from the Air Quality System. 
L: statistical d-s; C: dynamical d-s; R: NEI benchmark. 
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 Fire season (March – November) Month of Maximum Difference 

 

Figure 3.3. Comparisons of wildfire emissions methods for 1-h O3 (ppb) predicted at grid cells 
containing Air Quality System (AQS) monitors and wildfires in 2010. L: fire season (March – 
November); R: top and bottom, October; middle, July. The mean, maximum and minimum 
intermodel difference (vertical axis variable – horizontal axis variable), denoted, respectively, 
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MeanDiff, MaxDiff and MinDiff, and the dates and coordinates of their occurrence are shown in 
the plot legend. 
 

 

 

 

 

                 Spring                                                         Summer                                                        Autumn 

 

Figure 3.4. Seasonal comparisons of wildfire emissions methods for 1-h O3 (ppb) predicted at 
grid cells containing both Air Quality System (AQS) monitors and wildfires in 2010. The mean, 
maximum and minimum intermodel difference (vertical axis variable – horizontal axis variable), 
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denoted, respectively, MeanDiff, MaxDiff and MinDiff, and the dates and coordinates of their 
occurrence are shown in the plot legend. 

 

 
 

Figure 3.5. Maximum absolute difference between statistical d-s and dynamical d-s in each grid 
cell over the whole fire season in: Row 1, L – hourly VOC column emissions (g s-1); Row 1, R – 
hourly NOx column emissions (g s-1); Row 2 – hourly O3 mixing ratios (ppbV) in model layer 1. 
Here the fire season is defined as April 23 – November 30; almost all grid cell maxima in 
absolute difference in hourly O3 occurred in this time period. 
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                  Statistical d-s                                           Dynamical d-s                                        NEI Benchmark 

 

Figure 3.6. Monthly-averaged model performance for total PM2.5 and key wildfire constituents 
relative to observations from the IMPROVE monitoring network. Row 1, PM2.5; Row 2, 
elemental carbon (EC); Row 3, organic carbon (OC). 
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Figure 3.7. Domain-wide seasonally averaged total mass of PM2.5 (µg m-3) and fractional mass 
of major constituents during the fire season compared to observations from the IMPROVE 
monitoring network.  
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Fire season (March – November) Month of Maximum Difference 

 

Figure 3.8. Comparisons of wildfire emissions methods for PM2.5 (µg m-3) predicted at grid cells 
containing both Interagency Monitoring of PROtected Visual Environments (IMPROVE) 
monitors and wildfires in 2010. The mean, maximum and minimum intermodel difference 
(vertical axis variable – horizontal axis variable), denoted, respectively, MeanDiff, MaxDiff and 
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MinDiff, and the dates and coordinates of their occurrence are shown in the plot legend. L: fire 
season (March – November); R: top and middle, September; bottom – October.  
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Figure 3.9. Seasonal comparisons of wildfire emissions methods for PM2.5 (µg m-3) predicted at 
grid cells containing Interagency Monitoring of PROtected Visual Environments (IMPROVE) 
monitors and wildfires in 2010. The mean, maximum and minimum intermodel difference 
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(vertical axis variable – horizontal axis variable), denoted, respectively, MeanDiff, MaxDiff and 
MinDiff, and the dates and coordinates of their occurrence are shown in the plot legend. 
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Supplemental Material for Chapter 3 

Table 3.S1. Model performance statistics for monthly-averaged ozone vs. AQS���� 

observations  

Month 

Ozone (ppb) NME���� (%) NMB���� (%) 

AQS 
Stat. 

d-s† 
Dyn. 

d-s‡ 
NEI 

Bmrk* 
Stat. 

d-s 
Dyn. 

d-s 
NEI 

Bmrk 
Stat. 

d-s 
Dyn. 

d-s 
NEI 

Bmrk 

Jan 24.4 25.3 25.3 25.3 38.4 38.4 38.4 3.6 3.6 3.6 

Feb 28.2 28.9 28.9 28.9 33.3 33.3 33.3 2.4 2.4 2.4 

Mar 34.0 37.1 37.1 37.1 31.5 31.5 31.5 9.0 9.0 9.1 

Apr 38.4 41.9 41.8 41.8 28.4 28.4 28.4 9.2 9.0 8.8 

May 32.9 40.3 40.3 40.2 39.1 39.1 39.0 22.7 22.6 22.4 

Jun 30.6 37.5 37.4 37.4 38.6 38.5 38.4 22.7 22.5 22.3 

Jul 29.0 36.5 36.3 36.2 41.9 41.7 41.5 25.5 25.0 24.5 

Aug 30.7 39.1 39.0 38.7 45.5 45.3 45.0 27.3 26.8 26.2 

Sep 30.0 34.8 34.6 34.4 40.0 39.9 39.6 16.0 15.5 14.8 

Oct 30.2 32.6 32.3 32.2 37.7 37.8 37.8 8.0 6.8 6.7 

Nov 25.0 29.3 29.2 29.2 43.3 43.2 43.2 17.2 16.8 16.7 

Dec 24.0 24.4 24.4 24.4 35.3 35.3 35.3 1.8 1.8 1.8 

Symbols key: �AQS: Air Quality System; ����Normalized Mean Error; ����Normalized Mean Bias; 
†Statistical d-s; ‡Dynamical d-s; *NEI Benchmark. 
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Table 3.S2. Model performance statistics for monthly-averaged total PM2.5 vs. IMPROVE���� 

observations 

Month 

Total PM2.5 (µg m-3) NME���� (%) NMB���� (%) 

IMPROVE 
Stat. 

d-s† 
Dyn. 

d-s‡ 
NEI 

Bmrk* 
Stat. 

d-s 
Dyn. 

d-s 
NEI 

Bmrk* 
Stat. 

d-s 
Dyn. 

d-s 
NEI 

Bmrk 

Jan 7.0 11.5 11.5 11.5 75.9 75.9 75.9 65.1 65.1 65.1 

Feb 8.4 13.7 13.7 13.7 71.7 71.7 71.7 63.1 63.1 63.1 

Mar 7.2 10.8 10.8 10.8 64.7 64.8 64.7 50.0 49.9 49.9 

Apr 8.5 9.3 9.1 9.0 43.4 42.2 41.7 9.2 6.6 5.3 

May 7.6 7.4 7.2 7.1 47.5 47.1 46.0 -3.0 -4.9 -7.3 

Jun 8.8 7.1 7.0 6.8 36.9 36.5 37.9 -19.8 -20.8 -23.4 

Jul 9.8 8.2 7.5 7.6 41.2 40.0 40.2 -16.3 -23.7 -22.6 

Aug 9.5 9.0 8.5 8.2 41.0 39.7 38.6 -5.2 -10.1 -13.3 

Sep 7.6 9.9 9.5 8.7 61.6 57.2 48.8 30.6 24.8 15.2 

Oct 6.9 10.8 10.2 10.1 69.0 63.0 61.1 56.2 47.9 45.7 

Nov 6.5 10.9 10.5 10.5 79.4 78.3 74.9 67.3 64.4 61.6 

Dec 8.0 10.9 11.3 10.9 46.6 45.7 46.6 36.4 35.5 36.4 

Symbols key: �Interagency Monitoring of Protected Visual Environments network; ����Normalized 
Mean Error; ����Normalized Mean Bias; †Statistical d-s; ‡Dynamical d-s; *NEI Benchmark.  
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Table 3.S3. Model performance statistics for monthly-averaged sulfate (SO4) vs. 

IMPROVE���� observations 

Month 

SO4 (µg m-3) NME���� (%) NMB���� (%) 

IMPROVE 

Stat. 

d-s† 

Dyn. 

d-s‡ 

NEI 

Bmrk* 

Stat. 

d-s 

Dyn. 

d-s 

NEI 

Bmrk 

Stat. 

d-s 

Dyn. 

d-s 

NEI 

Bmrk 

Jan 1.7 2.4 2.4 2.4 53.6 53.6 53.6 37.6 37.6 37.6 

Feb 2.4 2.9 2.9 2.9 45.7 45.7 45.7 22.8 22.8 22.8 

Mar 2.0 3.5 3.5 3.6 83.7 83.7 83.9 77.2 77.2 77.3 

Apr 2.2 4.1 4.1 4.1 89.4 89.3 89.2 81.8 81.5 81.4 

May 2.4 3.9 3.9 3.9 77.1 76.9 76.6 63.3 63.1 62.6 

Jun 2.6 3.9 3.9 3.9 56.6 58.3 56.3 47.9 49.2 47.4 

Jul 2.9 4.5 4.4 4.5 66.0 61.9 65.8 56.4 51.4 56.1 

Aug 3.0 4.9 4.8 4.9 72.6 72.4 70.6 61.0 60.6 58.9 

Sep 2.1 4.4 4.4 4.4 113.0 113.0 113.0 107.0 107.0 107.0 

Oct 1.7 3.8 3.8 3.8 126.0 126.0 125.0 123.0 122.0 122.0 

Nov 1.5 3.1 3.1 3.1 116.0 116.0 115.0 107.0 107.0 106.0 

Dec 1.9 1.9 2.0 1.9 38.7 38.3 38.7 -1.4 0.6 -1.4 

Symbols key: �Interagency Monitoring of Protected Visual Environments network; ����Normalized 
Mean Error; ����Normalized Mean Bias; †Statistical d-s; ‡Dynamical d-s; *NEI Benchmark.  
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Table 3.S4. Model performance statistics for monthly-averaged ammonium (NH4) vs. 

IMPROVE���� observations 

Month 

NH4 (µg m-3) NME���� (%) NMB���� (%) 

IMPROVE 

Stat. 

d-s† 

Dyn. 

d-s‡ 

NEI 

Bmrk* 

Stat. 

d-s 

Dyn. 

d-s 

NEI 

Bmrk 

Stat. 

d-s 

Dyn. 

d-s 

NEI 

Bmrk 

Jan 1.2 1.3 1.3 1.3 40.4 40.4 40.4 8.6 8.6 8.6 

Feb 1.6 2.0 2.0 2.0 44.8 44.8 44.8 25.6 25.6 25.6 

Mar 1.1 1.7 1.7 1.7 68.0 68.0 68.1 53.7 53.7 53.7 

Apr 1.0 1.5 1.4 1.4 67.7 67.0 66.3 42.2 41.1 40.4 

May 1.0 1.1 1.1 1.1 57.0 56.6 56.2 7.4 6.6 5.5 

Jun 1.1 1.1 1.1 1.1 47.1 48.0 47.2 7.4 8.0 6.4 

Jul 1.2 1.3 1.3 1.3 49.7 45.7 48.9 15.0 7.8 11.7 

Aug 1.2 1.3 1.3 1.3 54.7 54.6 53.5 9.3 8.0 7.3 

Sep 0.9 1.3 1.3 1.2 75.0 73.3 69.1 48.7 46.8 42.2 

Oct 0.7 1.3 1.3 1.3 93.8 92.2 91.8 80.0 78.2 77.6 

Nov 0.8 1.4 1.4 1.4 97.4 97.2 95.8 81.2 79.4 79.4 

Dec 1.3 1.1 1.1 1.1 31.7 31.5 31.7 -16.2 -16.8 -16.2 

Symbols key: �Interagency Monitoring of Protected Visual Environments network; ����Normalized 
Mean Error; ����Normalized Mean Bias; †Statistical d-s; ‡Dynamical d-s; *NEI Benchmark. 
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Table 3.S5. Model performance statistics for monthly-averaged nitrate (NO3) vs. 

IMPROVE���� observations  

Month 

NO3 (µg m-3) NME���� (%) NMB���� (%) 

IMPROVE 
Stat. 

d-s† 

Dyn. 

d-s‡ 

NEI 

Bmrk* 

Stat. 

d-s 

Dyn. 

d-s 

NEI 

Bmrk 

Stat. 

d-s 

Dyn. 

d-s 

NEI 

Bmrk 

Jan 1.8 2.4 2.4 2.4 77.4 77.4 77.4 36.2 36.2 36.2 

Feb 2.3 3.9 3.9 3.9 87.8 87.8 87.8 68.2 68.2 68.2 

Mar 1.2 2.4 2.4 2.4 132.0 132.0 132.0 109.0 109.0 109.0 

Apr 0.6 1.0 1.0 1.0 134.0 132.0 130.0 66.1 63.0 61.1 

May 0.4 0.5 0.5 0.5 123.0 121.0 118.0 35.0 32.2 28.7 

Jun 0.2 0.3 0.3 0.3 140.0 141.0 139.0 44.9 41.3 41.6 

Jul 0.2 0.4 0.3 0.4 168.0 146.0 164.0 59.5 31.7 52.2 

Aug 0.2 0.4 0.4 0.4 207.0 200.0 198.0 110.0 102.0 95.3 

Sep 0.2 0.5 0.5 0.5 238.0 232.0 216.0 154.0 146.0 128.0 

Oct 0.3 1.1 1.1 1.1 278.0 270.0 267.0 234.0 223.0 220.0 

Nov 0.8 2.0 2.0 2.0 189.0 182.0 185.0 165.0 157.0 160.0 

Dec 1.8 2.2 2.2 2.2 55.5 52.6 55.5 18.4 14.2 18.4 

Symbols key: �Interagency Monitoring of Protected Visual Environments network; ����Normalized 
Mean Error; ����Normalized Mean Bias; †Statistical d-s; ‡Dynamical d-s; *NEI Benchmark. 
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Figure 3.S1. Spatial distribution of hourly ozone Mean Fractional Bias with respect to AQS and 
SEARCH measurements in each season for each modeled case.  
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Figure 3.S2. Absolute difference between the statistical d-s and dynamical d-s cases in 1-h O3 

mixing ratios (ppb) from Hour 0 - 23 (local standard time) for the 2010 fire season (March 1 – 
November 30) over the whole domain (level 1).  
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Figure 3.S3. 1-h ozone mixing ratios (ppb) and bias (ppb) relative to AQS observations at four 
sites in October 2010. UL – KY-OH (1): site 210590005, located on the KY-OH border; UR – 
KY-OH (2): site 210910012, located on the KY-OH border; LL – MO-IL (1): site 291831002 
located on the MO-IL border; LR – MO-IL (2): site 295100085 located on the MO-IL border.  
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Fire season (March – November) Month of Maximum Difference 

 

Figure 3.S4. Comparisons of wildfire emissions methods for maximum daily 8-h average 
(MDA8) O3 (ppb) predicted at grid cells containing Air Quality System (AQS) monitors and 
wildfires in 2010. Mean, maximum and minimum intermodel difference (vertical axis variable – 
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horizontal axis variable), and the dates and coordinates of their occurrence are shown in the plot 
legend. L: fire season (March – November); R: top, July; middle, September; bottom, October. 
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Figure 3.S5. Seasonal comparisons of wildfire emissions for maximum daily 8-h average 
(MDA8) O3 (ppb) at grid cells containing both Air Quality System (AQS) monitors and wildfires 
in 2010. Mean, maximum and minimum intermodel difference (vertical axis variable – 
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horizontal axis variable), and the dates and coordinates of their occurrence are shown in the plot 
legend. 
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                  Statistical d-s                                           Dynamical d-s                                        NEI Benchmark 

 

Figure 3.S6. Monthly-averaged model performance for inorganic PM constituents. Mean 
fractional error (%) vs. mean fractional bias (%) relative to observations from the IMPROVE 
monitoring network for: Row 1, sulfate (SO4); Row 2, ammonium (NH4); Row 3, nitrate (NO3).  
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Figure 3.S7. Monthly-averaged model performance comparisons for total PM2.5 between the 
IMPROVE and CSN monitoring networks.  
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Figure 3.S8. Spatial distribution of total PM2.5 Mean Fractional Bias (MFB) with respect to 
IMPROVE and CSN measurements in each season for each modeled case.  
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Figure 3.S9. Monthly-averaged model performance comparisons for PM constituents from 
statistical d-s against multiple monitoring networks. Mean fractional error (%) vs. mean 
fractional bias (%) relative to observations. Row 1, organic carbon (OC); Row 2, nitrate (NO3). 
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Figure 3.S10. Absolute difference between the statistical d-s and dynamical d-s cases in PM2.5 
concentrations (µg m-3) from Hour 0 - 23 (local standard time) for the 2010 fire season (March 1 
– November 30) over the whole domain (level 1). 
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Figure 3.S11. Maximum absolute difference between statistical d-s and dynamical d-s in each 
grid cell over the fire season in: L – hourly PM2.5 column emissions (g s-1), and R – hourly PM2.5 

concentrations (µg m-3) in model layer 1. Here the fire season is defined as April 23 – November 
30; almost all grid cell maxima in absolute hourly PM2.5 concentration differences occurred in 
this time period. 
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CHAPTER 4: ASSESSING THE IMPACTS OF PROJECTED WILDFIRE EMISSIONS 

ON FUTURE-YEAR AIR QUALITY 

 

 

Introduction 

 The following is an excerpt from the Overview section of the recently released Summary 

Climate Change Report on the Fourth National Climate Assessment, Volume II (USGCRP, 

2018):  

 “…the assumption that current and future climate conditions will resemble the recent past is 
no longer valid”.  

The pace of climate change has been accelerating, signaled by an increasing number of 

catastrophic weather-driven events globally. Prominent in this category, wildfires have been 

experiencing a sharp rise over the past few decades in the U.S. and around the world. Five of the 

largest fires in California history occurred within the past 10 years (Cal Fire, 2018). In 

November 2018, the Camp Fire in Butte County, CA, and the Woolsey Fire in Ventura County, 

CA simultaneously became two of the most destructive fires in California history with a loss of 

nearly 21,000 structures, 18,000 of them, in the town of Paradise alone. With a death toll of 86, 

the Camp Fire was also the deadliest in California history. The Southeastern U.S. also 

experienced very large fires in November 2016 over a four-state area in the Smoky Mountains 

(Georgia, South Carolina, North Carolina and Tennessee). These late-year megafires, and the 

gradual disappearance of a distinct fire season (USGCRP, 2018), are increasingly attributed to 
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climate change (Coumou and Rahmstorf, 2012; McKenzie et al., 2014; Stavros et al., 2014; 

Barbero et al., 2015; Littell et al., 2010, 2016).  

 Wildfires can also have adverse health consequences for vulnerable populations through 

exposure to the emitted pollutants, notably PM2.5, and ozone, with associated economic costs far 

beyond those of fire suppression. Fann et al. (2018) estimated the economic impacts of wildfires 

in the form of additional premature deaths and hospital admissions between 2008 and 2012 over 

the Southeastern and Northwestern U.S. to be $11B - $20B (2010$) per year. Rappold et al. 

(2014) estimated the long-term health care costs of the 2008 Pocosin Swamp wildfires in eastern 

North Carolina at ~ 48 times those associated with acute ailments from smoke exposure (~ $1M). 

 In the face of the escalating ecological, human, and economic costs of wildfires, a number of 

wildfire projections have been developed to better prepare the firefighting community, forest 

managers and populations living in fire-prone areas for future fire events (Abatzoglou and 

Kolden, 2011, 2013; Westerling et al., 2011ab; Liu et al., 2013, Littell et al., 2018). These 

methods focus mostly on the impacts of climate change on fire activity, and on very large fires in 

the Western U. S. In the Southeastern U. S., however, considered to be one of the fastest growing 

regions of the country (U.S. Census Bureau, 2018), human factors are a major driver of wildfires 

(Prestemon et al., 2002, Mercer and Prestemon, 2005; Syphard et al., 2017). Humans both ignite 

and suppress the majority of wildfires (Prestemon et al., 2013; Balch et al., 2017). The wide 

geographic variability and rapid evolution of climate and socioeconomic drivers of wildfires in 

the U.S. and elsewhere (Syphard et al., 2017; Viedma et al., 2018) call for region-specific 

methods to investigate how wildfires may respond to expected changes in their primary drivers.  

 Besides supporting resource planning and land management, region-specific AAB 

projections provide a critical input for estimating wildfire emissions that drive air-quality (AQ) 
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simulations to inform exposure assessments and calculate health risks in future fire regimes. 

Current AAB projection methods, however, lack the ability to estimate daily wildfire emissions, 

because AAB are, by definition, annual estimates of fire extent, not emissions. For example, 

studies of wildfires in the Western and even the continental U.S. are either at a relatively coarse 

spatial resolution greater than the 12-km x 12-km grid spacing typically used in regional air-

quality simulations (e.g., Abatzoglou and Kolden, 2011; Liu et al., 2013, 2014; Yue et al., 2103, 

2015; Liu et al., 2016), or over a limited area, e.g., California, as in Westerling et al. (2011 ab), 

because they are mainly intended for understanding the impacts of climate drivers of wildfires on 

annual areas burned (AAB). The challenge, then, is to develop methods to translate AAB and 

similar measures into emissions, thereby helping quantify the impacts of future wildfires on air 

quality and health. To date, there are no known investigations over the Southeast that examine 

not only the long-term impacts of wildfire on air quality, but also the influences of climate 

change and other important drivers (population and income growth) on wildfire at spatiotemporal 

resolutions appropriate for AQ studies over this region. 

 Shankar et al. (2018) developed such a method leveraging AAB projections by Prestemon et 

al. (2016) to estimate wildfire emissions over a Southeastern modeling grid at 12-km x 12-km 

spatial resolution for 2010 and four selected years around mid-21st century. These include, for 

the first time over this region, the influence of both climate and socioeconomic changes at a 

spatial and temporal resolution suitable for AQ impact assessments. The AAB projections are 

made by multilinear regression models (Prestemon et al. 2016) over 13 Southeastern states, with 

input county-level projections of the major wildfire drivers in the region (climate, population and 

income, and land use) based on the Intergovernmental Panel on Climate Change greenhouse gas 

(GHG) emissions scenarios (Nakicenovic and Steward, 2000). Shankar et al. (2018) compared 
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wildfire emissions for 2010, and the four future years using two sets of these AAB projections, 

made with two different methods of downscaling the climate inputs, to emissions estimated with 

19-year historical mean AAB. Their AAB projections were lower (by 7% to 38%) on average in 

the selected future years than the historical mean AAB. Thus, the wildfire emissions that were 

estimated from them were also lower by 13% - 62% than those using the historical mean AAB 

(Shankar et al., 2018). The analyses of Prestemon et al. (2016) find that human-caused ignitions 

burn five times the area of lightning-caused ignitions annually in the Southeast. Human-caused 

AAB, which were found to be strongly correlated with socioeconomic variables, were projected 

to decrease by 6% on average over the region from 2011 to 2060, while lightning-caused AAB, 

which were strongly correlated with climate variables, were projected to increase by 34% on 

average; this results in a net median increase of 4% in AAB in 2011-2060 over the Southeast 

(Prestemon et al., 2016). These offsetting climate and socioeconomic influences, combined with 

the temporal variability of the climate system (Prestemon et al., 2016) explain the substantially 

lower AAB and emissions projected for the four arbitrarily selected future years (2043, 2048, 

2053 and 2058), compared to those based on the historical mean AAB (Shankar et al., 2018).  

 A subsequent study (Shankar et al., 2019), included as Chapter 3 in this document, evaluated 

these two wildfire emissions projection methods by using their respective estimates of 2010 

wildfire emissions in AQ simulations, and by comparing the results to those using EPA’s 

empirical National Emissions Inventory (NEI) for 2010 wildfires, and to ground-based air-

quality observations. The AQ results using the two projection methods are within 0.08% - 0.93% 

and 1% - 8% of those using the NEI for O3 and PM2.5 respectively. Their biases compared to 

observations are, in fact, smaller than those for the NEI for two key primary wildfire PM species, 

elemental carbon (EC), and ammonium (NH4). But all three wildfire emissions estimates have 
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larger biases with respect to observations for other secondary PM species and ozone. These are 

found attributable mainly to emissions underestimates from non-wildfire sectors, or to the 

secondary aerosol models for organic carbon (OC) and particulate NO3. These results partially 

confirm the study hypothesis that these wildfire emissions projection methods would yield AQ 

model results for the criteria pollutants that are within published criteria for acceptable model 

performance, and comparable to those using the standard (NEI) inventory. They thus show that 

these methods can be used in present-day AQ studies while providing contemporaneous 

emissions for future-year AQ assessments that are not possible with empirical inventories.  

 The study described in this chapter extends the application of the projected wildfire 

emissions to AQ assessments of selected future years. Its hypothesis is that the dynamic wildfire 

emissions projection methods will result in considerably different ozone and PM2.5 spatial 

distributions and seasonal-average concentrations by mid-century from their 2010 levels. This 

hypothesis is tested in AQ simulations using the projected wildfire emissions in the future years, 

and comparisons of simulated ozone and PM2.5 between past and future years.  

Methods 

Emissions inputs 

 Chapter 2 described in detail the estimation of emissions from wildfires for the statistical d-s 

and the dynamical d-s methods of projecting wildfire AAB (summarized in Table 2.1) for four 

years around mid-21st century. These provided two sets of wildfire emissions inputs for the 

corresponding AQ simulation cases for each year (Table 3.1).  

 The simulations in this study and in 2010 are not zero-out studies that examine the impacts of 

wildfire emissions in isolation by removing all other sources (e.g., Wilkins et al., 2018). Rather, 

they are designed to examine the AQ impacts of wildfire emissions in the context of changes in 
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climate and society over time, including those in the anthropogenic emissions sectors. To 

account for how anthropogenic emissions and their AQ impacts might change along with those 

of wildfires in the future, projections of anthropogenic sector emissions were obtained from the 

U. S. EPA (Loughlin, D., personal communication). These consisted of emissions projections for 

fuel combustion in electricity generation, industry, residential, commercial, and transportation 

sectors, commercial marine vehicles, aviation, and agricultural emissions (crop and animal 

production, forestry and logging) from 2005 to 2055. They were made at 5-year intervals for the 

Representative Concentration Pathway 4.5 (RCP4.5), under the assumption of stabilization of the 

anthropogenic components of radiative forcing to 4.5 W m-2 by 2100 using the Global Change 

Assessment Model (GCAM – Moss et al., 2010; Thomson et al., 2011, and references therein).  

 In addition to projected emissions of six greenhouse gases, emissions were estimated in 

GCAM as speciated national-scale projection factors for the criteria air pollutants (CAPs) NOx, 

SOx, non-methane Volatile Organic Compounds (VOCs), CO, particulate NH4, SO4, NO3, EC 

and OC, and could therefore be used in this study. They were applied to the 2005 emissions for 

the relevant anthropogenic sectors in the NEI and processed in the Sparse Matrix Operations 

Kernel Emissions (SMOKE) processing system (Baek and Seppanen, 2018) for the four future-

year simulations. As there were no exact matches between the simulation years and those in the 

GCAM projection package, the years in GCAM that most closely matched the simulation years 

were used for the projected emissions: thus, SMOKE processing of 2043 CMAQ-ready 

emissions used the 2045 projected inventory; 2048 emissions processing used the 2050 

inventory, and 2053 and 2058 emissions, the 2055 inventory. The levels of control and growth 

for the various pollutant species are provided for major emission sectors in Table 4.S1. All other 
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non-wildfire sector emissions were as specified in the 2010 simulations. Specifically, VOC from 

solvents, and biogenic emissions were kept at 2010 levels.  

Meteorological inputs 

 The meteorological inputs for the AQ simulations for the four future years were the ones 

generated for the dynamical d-s AAB projections in the Chapter 2 study using the Weather 

Research and Forecasting (WRF) model v3.4.1 (Skamarock et al., 2008). They were processed in 

version 4.2 of the Meteorology-Chemistry Interface Processor (MCIP -- 

https://www.cmascenter.org/help/model_docs/mcip/4.2/ReleaseNotes) to produce model-ready 

inputs to the AQ simulations. 

Other simulation inputs 

 Simulation inputs other than emissions and meteorology include initial and boundary 

conditions. To avoid potential artifacts introduced by inter-year changes in the boundary 

conditions, the same initial and boundary input data were used in all future years and for both the 

simulation cases as in 2010. As the simulations are compared only to each other in this study, 

and not to observations, the 2010 chemical boundary inputs serve as a hypothetical set of hourly 

varying concentrations transported into and out of the domain.  

Air-quality simulations 

 Air-quality simulations for the future years were performed for the statistically and 

dynamically downscaled cases as for 2010 over the Southeastern U. S. domain shown in Figure 

3.1 (D02) at a 12-km x 12-km horizontal grid spacing. The same model configuration of the 

Community Multiscale Air Quality (CMAQ) model version 5.0.2 (Byun and Schere, 2006) was 

used as in the 2010 simulations (Shankar et al., 2019). In addition, the future year simulations 

also included a sensitivity case for each year wherein wildfire emissions were not included. This 
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allows an examination of the impact of future wildfire emissions on air quality, and is similar to 

the approach of Wilkins et al. (2018) and Koplitz et al. (2018) in their retrospective analyses for 

2008-2012.  

Analysis tools and data 

 The analyses for this study focus on intermodel and inter-year comparisons of simulated 

ozone and PM. To keep the statistics of mean and maximum differences comparable between the 

cases in all modeled years, the intermodel comparisons in the future years are made at the same 

locations used in the 2010 evaluations described in Chapter 3. The impacts of wildfire emissions 

on future air quality, however, are examined domain-wide, and compared to published estimates 

of these impacts in 2010 from retrospective studies (Wilkins et al., 2018; Koplitz et al., 2018).  

Results 

Hourly ozone over the fire season 

 The model results shown in Figures 4.1, 4.2, and 4.3 were filtered as in the 2010 analyses 

(Shankar et al., 2019) to compare the modeled ozone at grid cells that contained AQS monitor 

sites and also had wildfires, i.e., grid cells with non-zero AAB as estimated for the statistical d-s 

case. Domain-wide results of the sensitivity of hourly ozone to wildfire emissions are presented 

later in this section. As the downscaled simulations are not driven by wildfire emissions in 

isolation, the impacts of those emissions on atmospheric constituents are inferred in Figures 4.1 – 

4.3 by examining the difference between the predictions of the modeled cases due to the 

differences in their wildfire emissions. As all other inputs are identical between these cases in 

any given year, intermodel comparisons in each year do provide insights into the sensitivity of 

the air quality metrics to the wildfire emission differences, and their causes, and can shed light 

on the relative merits of the wildfire emission estimation methods (Koplitz et al., 2018). On the 
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other hand, inter-yearly comparisons for either modeled case show the impacts of changes across 

years in meteorology and anthropogenic emissions, because both cases use same hourly 

meteorology, and non-wildfire sector emissions in each year.  

 Hourly ozone mixing ratios compared at the AQS sites between the statistical d-s and 

dynamical d-s over the fire season in each modeled year (Figure 4.1 and Table 4.1) show a 

significant drop in the maximum difference (statistical d-s – dynamical d-s) from the 2010 value 

of 67.1 ppb, to values ranging from 23.2 ppb in 2043 to 38.8 ppb in 2053. Relative to 2010, the 

ozone values at the upper end of the range are somewhat lower in the future years in both 

modeled cases; this decrease in peak ozone is likely due to emission reductions relative to 2010 

from wildfire and non-wildfire sources. This is further explained in “Discussion”. 

 In all years, the statistical d-s ozone mixing ratios are higher on average than dynamical d-s 

as indicated by the positive mean intermodel differences (statistical d-s – dynamical d-s) over all 

sites; these fire season statistics are displayed in the plot legends in Figure 4.1. The average of 

these mean differences is ~ 0.07 ppb in the future years, but is ~ 42% lower than the 2010 value 

of 0.12 ppb, indicating closer agreement between the cases in projected ozone.  

 In all future years, Table 4.2 shows a temporal shift in the month of maximum intermodel 

difference, from October 2010 to much earlier in the fire season. The table also shows the 

projected shift in the location of the maximum intermodel difference over the whole fire season 

from Chesterfield, MO at the Missouri-Illinois border in 2010 to locations farther east and/or 

south. These results indicate a change from 2010 in the projected ozone spatial and temporal 

characteristics due to changes in the wildfire emissions, but also due to the inter-year variability 
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introduced by the meteorology, and the anthropogenic emissions. Possible explanations for these 

trends are explored under “Discussion”. 

Hourly ozone seasonal variability  

 Tables 4.1 and 4.2 and the seasonal intermodel comparisons (Figure 4.2) confirm that the 

trends shown in Figure 4.1 over the entire fire season are also repeated within each season of 

each future year: that is, the maximum intermodel differences in ozone in spring and summer 

occur between late May and mid-August, while the autumn maximum difference is projected in 

early September. There is a shift in autumn in the future years to the warmer part of the season 

(early September) from late October, the period when the seasonal maximum difference occurs 

in 2010. Autumn is also projected to have the smallest intermodel differences in the future years, 

especially in 2058, with nearly identical values between the simulations; the maximum 

intermodel difference in autumn 2058 is 0.2 ppb, compared to 67.1 ppb in the autumn of 2010). 

This is a substantial shift from the 2010 ozone characteristics. 

Ozone time series 

 To better understand the changes among 2010 and the future years in the intermodel 

differences in ozone over the whole fire season, and inter-seasonally (Tables 4.1 and 4.2, and 

Figures 4.1 and 4.2) from the perspective of daily fire activity, ozone time series are examined 

for the month and the location of maximum intermodel difference in each year (Figure 4.3). The 

ozone time series for 2010 over selected AQS sites (Figure 3.S3) showed that in the locations 

and months that had large intermodel differences, there were sporadic but sharp differences 

throughout the month, coinciding with intermodel differences in daily fire activity upwind due to 

differences in the AAB estimates between the two modeled cases. The time series of Figure 4.3 

show that there are smaller and fewer such sharp differences in the future-year locations and 



 

 
128

months of maximum intermodel difference than in that of 2010, in October at the Missouri-

Illinois (MO-IL) border (Figure 4.3, top panel). This is indicative of lower fire activity, and/or 

less sensitivity of ozone levels to fire activity. The mean monthly intermodel difference averaged 

over the four future-year locations in Figure 4.3 is ~ 0.12 ppb, less than a tenth of the October 

2010 mean monthly value of 1.3 ppb at the MO-IL site (Table 4.S2). This is partly due to the 

lower projected AAB for both modeled cases in at least two out of the four future years than in 

2010 (Figure 2.3), leading to lower ozone precursor emissions in these years, and also due to 

2010 having the largest AAB difference among all the years between the two cases.  

 Another pronounced difference from 2010 in each future year is that the average monthly 

ozone level at these sites in the future years is higher than in October 2010 by ~ 20 ppb. 

Specifically, the monthly mean 2010 ozone mixing ratio for October from the dynamical d-s 

simulation at the MO-IL site (Figure 4.3, top panel and Table 4.S2) is 22.2 ppb (1.3 ppb lower 

than the monthly mean from statistical d-s); it ranges from 39.3 ppb – 44.8 ppb in the future-year 

locations shown in this figure. These results at individual locations are consistent with the 

findings over all AQS sites in Figures 4.1 and 4.2 and Tables 4.1 and 4.2, that the ozone levels in 

the dynamical d-s case are higher over all seasons at the locations of maximum intermodel 

difference, while the mean intermodel difference over all seasons is smaller. Likely explanations 

of these features are explored further in “Discussion”. 

Ozone impact of wildfire emissions 

 These analyses examine the difference in ozone of the statistical simulation from the no-

wildfire baseline simulation. Of the two downscaled simulations, statistical d-s is the one driven 

by the highest wildfire emissions due to having largest estimates of AAB in all the future years. 
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It thus provides an upper bound on the impact of wildfire emissions on future air quality 

estimated by the downscaling methods.  

 Analysis of the seasonal-average ozone impact of wildfire emissions within the fire season in 

each of the future years (Figure 4.4) confirms the findings of the foregoing analyses. In all years, 

the highest ozone mixing ratios occur in the spring, but the highest wildfire impacts are in the 

summer. This is expected as summertime is not only the season of relatively high ozone 

production, but also the season of highest fire activity. The ozone impact is not large, with a 

domain-wide maximum value of 1.48 ppb in 2043 summer, and < 0.01 ppb in autumn in 2048 

and 2058; the domain-wide maximum changes in ozone due to wildfires in each season and year, 

as well as the region of the impact are summarized in Table 4.3. Spatially, the biggest impact of 

wildfire on ozone is in the Appalachian region around West Virginia, the southern tip of Florida 

and along the Gulf Coast, and in the western part of the domain around eastern Oklahoma and 

Missouri. The maximum impact is projected to be ≈ 1.5% – 3% in the spring and summer, and as 

low as 0.4% in autumn (Figure 4.4), discounting the negligible impacts domain-wide projected in 

autumn 2048 and 2058. This is in the expected range compared to the average impact in 2008-

2012 of 0.41% nation-wide reported by Wilkins et al. (2018), since future wildfire emissions are 

projected as much as 62% lower than in 2010 (Shankar et al., 2018); our results are consistent 

with those lower wildfire emissions and their spatial patterns. Besides the high impact in the 

summer, there is a small to negligible impact on ozone in autumn in almost all years. Even 2053, 
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with the highest AAB estimates among the future years has a maximum impact in autumn of 

only 0.3 ppb. Probable causes of these seasonal trends are explored in “Discussion”.  

PM2.5 over the fire season 

 Comparisons of PM2.5 intermodel differences among the years over the fire season 

(Figure 4.5 and Tables 4.4 and 4.5) show decreases similar to ozone in the ambient PM levels 

and their intermodel differences in the future years relative to 2010. This would be expected 

from the decrease in AAB in the future years compared to 2010, as well as its temporal 

variability. The peak differences over the fire season range from 10.6 µg m-3 in 2048 to 

16.8 µg m-3 in 2043, compared to 26.0 µg m-3 in 2010; this is somewhat consistent with the 

differences in AAB between the two cases in these years, as 2048 had the smallest AAB 

difference, and 2043, the second highest (Figure 2.3). PM2.5 predictions from the two simulations 

are in better agreement in the future years than in 2010 (Figure 4.5). The mean differences 

(0.14 µg m-3 – 0.19 µg m-3) are also smaller over the fire season than in 2010 (0.29 µg m-3) as 

shown in the legends in each panel of Figure 4.5, and have little inter-year variability.  

 As in the case of ozone, maximum differences in PM2.5 over the fire season are also projected 

to shift from their 2010 location near the Mingo National Wildlife Refuge (NWR) in 

southeastern Missouri in late October (Figure 4.5, 4.10, and Tables 4.4 and 4.5), to warmer 

locations and periods, i.e., farther east and south in future summers. These are Quaker City, OH 

in Appalachia in July 2043 and August 2048, and James River Wilderness in Virginia in July 

2053 and July 2058. These future-year characteristics are further examined in “Discussion”. 

PM2.5 seasonal trends 

 Table 4.4 summarizes the results of the seasonal mean and maximum intermodel differences 

in PM2.5 in the future years, and Table 4.5 provides the locations and periods of their occurrence. 
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The mean intermodel differences are highest in summer and lowest in autumn, being almost 

negligible in that season in 2043 and 2058. For a given season, the shift in the location of the 

maximum intermodel differences (Figure 4.S1 and Table 4.5) to the south and east is most 

apparent in the spring in three of four future years, from Shenandoah National Park (NP), VA in 

the spring of 2010 to the Everglades NP (spring 2043), St. Marks, FL on the Gulf Coast (spring 

2048), and Chassahowitzka NWR, FL (spring 2053). Unlike ozone, the summertime maximum 

differences are not projected to change much spatially from 2010, occurring in the same location 

and month as in 2010 (James River Wilderness) in two out of four future years. Among the 

future years, 2053 has an outlier location in autumn with the largest maximum intermodel 

difference for that season of 14.7 µg m-3 in early September. It also has a large intermodel 

difference (16.2 µg m-3) in the summer, the highest over the fire season among all future years. 

This would be expected, as this year has the largest AAB difference between the simulations.  

PM2.5 impacts of wildfire emissions 

 Similar analyses to those displayed in Figure 4.4 were also performed for PM2.5 to examine 

the domain-wide and seasonally averaged impact of wildfire emissions on its ambient 

concentrations (Figure 4.6). The maximum impacts and their locations are summarized in Table 

4.6. The impact of wildfires on PM2.5 is considerably greater than those on ozone, even though 

many of the maximum impact locations are the same as for ozone. Once again, the greatest 

impacts are in the summer in all years, with 2058 being an outlier year (nearly 200% impact). 

Allowing for the decreases in emissions projected by mid-century by the statistical d-s 

methodology (Shankar et al., 2018), these projected impacts are in the range of both the 

percentage increase (275%) estimated by Wilkins et al. (2018) across the U.S., and the 

magnitude of the impact seen in some locations (4 µg m-3) by Koplitz et al. (2018) in their 
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retrospective studies. The smallest impacts are in 2048, which had the lowest wildfire emissions 

projected by the statistical d-s method. Autumn is again the season with the least impacts on 

PM2.5, but even with that, the domain-wide maximum impact is over 50% in two out of four 

autumns. Spatially, the maximum impacts occur farther north than with ozone, in the Midwest, 

as well as in the high wildfire emission region in Appalachia. 

PM2.5 compositional variability 

 All future years for both the modeled cases have lower values of PM2.5 in each season than in 

2010 because of large projected emissions reductions in the energy and transportation sectors 

(see “Methods”). In the data provided by EPA for the future-year emissions projections for non-

wildfire sectors, sulfur emissions, the biggest contributor to PM2.5 in the Southeast, are reduced 

to 25.6%, and NOx, to 33.7% of their respective 2005 values from the energy sector by 2045. EC 

and OC emissions from this sector are reduced to 63.2% and 76.9% of their 2005 values by 

2045. Also by 2045, EC emissions from transportation are reduced to 73.1%, and EC and OC 

emissions, respectively, to 76.4% and 60.9% of their 2005 values from commercial marine 

vehicles. There are, however, some emission increases, e.g., an increase of 4% in NOx and 

primary NO3 emissions, and ~ 20 % in EC and OC emissions from the aviation sector, and 

increases of 25% - 30% in nitrate, ammonia/ammonium, and VOC emissions from agriculture. 

 The PM2.5 compositions for dynamical d-s and statistical d-s (Figure 4.7) compare more 

closely in the future years than in 2010, but they have more inter-year variability than might be 

expected from the large and monotonic emissions reductions in the major components (sulfate 

and nitrate) from 2005 to mid-century. The variability in the PM2.5 constituent concentrations 

resembles, and is likely due to the variability in the AAB projections, but also to the seasonal 
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variability in the WRF meteorology underlying the daily fire activity projections in both 

simulations. This variability is especially noticeable in the later years.  

 Seasonally, the PM2.5 trends in Figure 4.7 follow those seen in Figure 4.S1. Summer shows 

the biggest difference between the two cases in the PM2.5 constituent mass fractions; the 

differences are greater than 0.5% for most constituents. Spring and autumn have the smallest 

differences between the cases in total PM2.5 and its components, and the dynamical d-s results are 

higher than statistical d-s in 2048 autumn. The smallest AAB difference between the cases are in 

that year. As in Figure 4.S1, autumn 2058 has the smallest intermodel differences for all species.  

 To better interpret the results of Figures 4.7, especially for PM constituents with small mass 

fractions of total PM2.5, such as OC and EC, the differences in concentrations between the 

simulation cases are shown as trend plots for each constituent by season in Figure 4.8, and as 

percent differences (statistical d-s – dynamical d-s) in Table 4.7. Yearly trends for the 

concentrations of each constituent and total PM2.5 are also shown in Figure 4.S2. The maximum 

difference in PM2.5 (0.41 ug m-3) between the cases over all the modeled years is in 2010 autumn 

(Figure 4.8, Row 1), as discussed in the previous figures for ozone and PM, while the largest 

differences inter-seasonally in PM2.5 in the future years are in the summer. These show a slightly 

increasing trend ranging from ~ 0.32 to 0.38 µg m-3. These differences are largely driven by OC 

and Other PM, a composite species that represents unspeciated PM, e.g., dust, from multiple 

sources including wildfires. Table 4.7 shows that OC differences are as high as 28.7% between 

the cases, with 2053 being the year of greatest difference, and 2048, the least. The large 
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summertime differences in this species are due to that being the season of largest projected 

differences in AAB and wildfire emissions, and are further examined in “Discussion”. 

 Other PM has an appreciable mass fraction of PM2.5 (~ 19% - 27 %) as seen in Figure 4.7, 

and the difference in the projected values of this constituent in the summer between the modeled 

cases is 0.06 - 0.14 µg m-3 (Figure 4.8). As this is a primary species, these intermodel differences 

are directly attributable to wildfires; all other emission sources contribute equally to its ambient 

concentration in both modeled cases. There is an increasing trend of ~ 4.5% in these differences 

in the future summers, but it is more than offset by the much more negative trend in autumn due 

to lower fire activity.  

 Another notable feature of the PM2.5 difference trends in Figure 4.8 is the value 

of -0.09 µg m-3 in autumn 2048; this is the amount by which the dynamical d-s PM2.5 prediction 

exceeds that of the statistical d-s. This is the season and year in which almost all PM constituents 

are higher in the dynamical d-s case than in the statistical d-s. This is also the year with the 

smallest difference in domain-wide AAB between the cases (Figures 2.3). The negative 

difference in PM2.5 is almost entirely due to that of SO4, the constituent with the highest mass 

fraction (~ 31% - 50%). The difference in SO4 also drives the negative differences in the 

semivolatile inorganic species NH4 and NO3, through the thermodynamics (-0.03 µg m-3 

and -0.01 µg m-3 respectively in 2048).  

Discussion 

Ozone projections 

 The smaller intermodel differences in hourly ozone in all years and all seasons compared to 

their 2010 values are as expected from the smaller intermodel differences in AAB in all the 

future years than in 2010; the exception is 2053 (Figure 2.3). Accordingly, among all the future 
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years 2053 does have the largest fire-season maximum intermodel difference in ozone (38.8 

ppb), as well as the largest mean intermodel difference (0.08 ppb).  

 To understand these temporal and spatial changes in the intermodel differences, some of the 

meteorological drivers of fire activity from selected months in 2010 and the future years are 

compared. In a comparison of monthly precipitation in the future years in the WRF model 

output, the summertime precipitation is much lower in all of the future years than in 2010 

(Figure 4.9), and temperatures are much higher (Figure 4.10); Figure 4.9 (Row 6) also shows the 

relatively dry October in 2010 that had the highest intermodel difference in ozone in that year, 

for comparison with a future summer month (August 2043). Recalling that the WRF model is 

used in the calculation of the daily fire weather index to estimate daily area burned for both 

modeled cases, a warmer and drier summer would increase the daily fire activity in this season, 

when ozone levels are driven up by temperature (see, e.g., Dawson et al., 2006), while the 

statistical d-s case would still predict higher ozone than the dynamical d-s due to its higher AAB 

and precursor emissions.  

 Potential evapotranspiration (PET), a composite temperature-based indicator of fuel aridity 

and one of the regression variables in the AAB estimates, is also higher in the future years than 

in 2010, higher for the statistical d-s than for the dynamical d-s, and highest in mid-summer 

among all seasons (Figures 4.S3 – 4.S5). Spatially, the higher AAB values are along the eastern 

seaboard and to the south along the Gulf Coast and Florida, and somewhat concentrated in 

Appalachia and the Ohio valley in all future years, and are also the locations of most of the 

maximum air quality impacts from wildfires (Figures 4.4 and 4.6). These meteorological trends 

explain the shift to the warmer months and to the south and east in future fire activity, and the 

resulting higher wildfire emissions in these months and locations, as well as the consistently 
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lower ozone values in the dynamical d-s compared to statistical d-s, albeit by smaller margins in 

the future. The shift of peak fire activity to the warmer months means higher ambient ozone 

compared to 2010 in both modeled cases, while the difference in the climate downscaling 

underlying their AAB difference, explains the difference between the cases in ozone in a given 

year and location.  

 A potential contribution to the increases in projected ozone (Figure 4.3) is from the 

anthropogenic sector emissions. In the projected emissions (Table 4.S1) used in the future-year 

simulations, VOC emissions are reduced in the mobile emissions sector to 37.5% of their 2005 

levels by 2045. Over the same period, NOx emissions are reduced to 27.6% of 2005 levels from 

this sector, and to 33.7% from electrical generation; these are the biggest NOx emission sectors. 

On the other hand, VOC emissions from the energy sector are projected to increase by 52.4% 

from their 2005 values by 2045 due to increased oil and gas activity. Furthermore, VOC from 

agricultural production is projected to increase by 29.7% by 2045. In NOx-rich regimes, these 

VOC increases could explain the increases in ambient ozone levels in both modeled cases. This 

combined with the lower AAB and wildfire emissions compared to 2010 explain the features 

seen in the time series of Figure 4. 3, that in the months of maximum intermodel differences, 

(a) the two cases have nearly identical ozone; (b) the differences due to increased wildfire 

activity become appreciable less frequently and by smaller amounts than in 2010.  

PM projections 

The same arguments apply as for ozone in explaining the total PM2.5 intermodel differences over 

the fire season, and inter-seasonally. That is, the meteorological drivers of both seasonal and 

yearly wildfire activity that best explain the differences in the AQ predictions of the modeled 

cases are precipitation and PET in the future years. In contrast to 2010, warmer and drier 
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conditions earlier in the year lead to increased summer fire activity in both modeled cases, but 

statistical d-s has the higher PM2.5 concentrations in the years with the larger AAB estimates.  

 The variability of PM2.5 composition across the years shows an increasing contribution to the 

total PM mass in OC and unspeciated other PM, and slight increases in the other constituents; the 

exception is EC, which shows a steady decrease consistent with decreases of 24% - 60% in EC 

emissions from the major emission sectors (commercial marine vessels, energy, and 

transportation). The reduction in anthropogenic emissions reduces sulfate, nitrate, and total PM 

mass relative to 2010. In combination with wildfire PM2.5 emissions that are projected to be 

nearly constant or slightly increasing in the later years (2053 and 2058) as shown in Figure 2.6, 

this leads to the higher mass fractions in those years for the PM constituents with significant 

contributions from wildfire (Figure 4.7). For example, PM nitrate has some of its highest 

seasonal average values in the spring and autumn in the later years despite the large reduction in 

the anthropogenic emissions of NOx, suggesting an increasing contribution from wildfire 

emissions in these years. On the other hand, the projected emission increases in VOC in some 

anthropogenic sectors (Table 4.S1) explain the increase in OC contributions to total PM in both 

modeled cases through secondary organic aerosol (SOA) formation. The projected summertime 

ozone increases could also contribute to enhancing the SOA formation. Overall, these results 

indicate that wildfire emissions contribute a significant fraction to the total PM mass 

concentration averaged over the whole fire season, and their proportional contribution is 
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projected to increase as anthropogenic PM2.5 emissions decrease, under the assumed 

anthropogenic emissions scenario.  

Conclusions 

 This study assesses the projected impacts of wildfire emissions from two different emissions 

estimation methods that are both based on projections of AAB from a statistical model, in AQ 

simulations of four future years. The analyses of differences between the wildfire emissions 

projections find that there is likely to be less difference between them in the hourly ozone 

impacts from wildfire emissions in the future years than in 2010. Warmer and drier summers are 

projected in the future years by the WRF model, resulting in a shift in the season of maximum 

ozone differences between the wildfire projection methods from late autumn in 2010 to 

summertime, the high fire activity season in the future. Consequently, there are higher ambient 

ozone levels in the locations of these maximum differences. The lower AAB and AAB 

difference between the cases in the future years compared to 2010 (see Figure 2.3) also lead to a 

reduction in the maximum differences between the projection methods in the future, compared to 

those in 2010. Spatially, the impact of fire activity on ozone and PM in the future years is 

projected to be higher along the Atlantic seaboard and the Gulf coast in Texas and Florida, 

consistent with the spatial patterns of the AAB projected by the two methods (Shankar et al., 

2018). The maximum impacts of wildfire on AQ are projected to occur in the summer, and to be 

as much as 1.5 ppb for ozone in 2043, and 14 µg m-3 for PM2.5.  

 As with ozone, the locations of maximum intermodel difference in PM2.5 in future years shift 

east and south to Virginia and Florida in July and August, from the 2010 location in the Midwest 

in autumn, due to the warmer, drier conditions projected in the summers and the higher projected 

AAB in these areas. The total PM2.5 concentration variability over the future years and seasons 



 

 
139

more or less follows that of the PM2.5 emissions projections (Figure 2.8). Projected 

concentrations of key wildfire PM species (OC and unspeciated Other PM) remain constant or 

increase slightly, offsetting the reductions by up to 84% and 76% in SOx and NOx from the 

energy and transportation sectors by 2055, the final anthropogenic inventory year used in these 

simulations. These results indicate that wildfire emissions will have a greater proportional impact 

on future PM levels as emission controls on major anthropogenic constituents such as sulfur and 

NOx are implemented, and will increase the contributions of constituents that have projected 

increases in their anthropogenic emissions. An important caveat is that this is one of several 

possible future emission scenarios for the anthropogenic sectors, and does not take into account 

changes in other sectors, e.g., biogenics, or policy shifts in the near future regarding the use of 

fossil fuels, which will have a bearing on the significance of these wildfire emissions.  

 Another caveat is that these wildfire emissions projections were made with no changes to 

fuel loads. The AAB projections do not explicitly include fuel load changes and would therefore 

not need correcting for this omission. However, calculations of wildfire emissions in BlueSky 

may need to be corrected for future changes in their fuel load inputs, which are based on current 

FCCS fuel loads (McKenzie et al., 2007). Thus, the projected wildfire emissions could be an 

underestimate at least in those areas of the domain where intensive fuel management practices 

are not expected to be implemented. The removal of fuel by fires in the future will somewhat 

offset this impact, as it is also not included in these estimates.  

 In conclusion, both the downscaling methods perform comparably, and differ spatially and 

temporally from 2010 in the locations of maximum difference in the wildfire projection methods 

for ozone and PM2.5. Despite the anthropogenic emission reductions, and the resulting drop in 

concentrations in 2043 relative to 2010, constituent concentrations of wildfire PM (OC and Other 
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PM) remain at that level, or even increase in future years; this results in as much as a 50% 

increase in the case of Other PM in the summer from 2010 to 2058. As the emissions of most of 

the PM constituents are reduced in the anthropogenic sectors (maximum decrease of 84% by 

2058), but less so from wildfires (maximum decrease of 40 % in 2048), these constituent mass 

fraction increases can be inferred as the net contribution of wildfire PM, both primary and 

secondary, to the total ambient PM2.5 concentration. The net increase in wildfire-driven PM2.5 is 

estimated to be ~ 4.5% in the summers, based on the average increase projected by the modeled 

cases in PM2.5 from 2043 to 2058 (Figure 4.S2), and is consistent with the projected median 

increase in AAB over this period. The impact assessment done by subtracting the baseline no-

fire simulation from the statistical d-s simulation estimates much larger increases than this at 

specific locations due to wildfires. However, equivalent or larger decreases in PM2.5 are projected 

in the spring and autumn over the same period. Overall, the projected PM2.5 concentrations 

capture the inter-year variability of the wildfire emissions that would not be possible to represent 

with empirically based inventories. This confirms the study hypothesis that the projected wildfire 

emissions will lead to ozone and PM2.5 spatial distributions and seasonal-average concentrations 

that significantly deviate from 2010 levels by mid-century.  
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Table 4.1. Seasonal mean and maximum differences in hourly O3 between wildfire 

emissions methods in each modeled year. 

Note: Differences are calculated over grid cells containing Air Quality System (AQS) monitors 

and wildfires. Max. ∆-O3, maximum difference (statistical d-s – dynamical d-s) in hourly O3 

mixing ratios; Dyn. d-s O3, O3 mixing ratio from dynamical d-s simulation. � Denotes maximum 
difference over the entire fire season in a given year. 

 Mean ∆-O3 (ppb) Spring Summer Autumn 

Year Spring Summer Autumn 

Max. 

∆-O3 
(ppb) 

Dyn. d-s 
O3 at max. 

∆-O3 (ppb)   

Max. 

∆-O3 
(ppb) 

Dyn. d-s 
O3 at max. 

∆-O3 (ppb)   

Max. 

∆-O3 
(ppb) 

Dyn. d-s 
O3 at max. 

∆-O3 (ppb)   

2010 0.05 0.12 0.21 30.9 44.9 41.5 70.0 67.1� 16.3 

2043 0.02 0.18 0.00 18.6 48.3 23.2� 52.6 5.9 59.2 

2048 0.01 0.11 0.04 18.3 47.5 25.2� 44.5 24.0 58.5 

2053 0.01 0.19 0.02 38.8� 40.4 22.5 54.2 22.0 57.3 

2058 0.02 0.17 0.00 14.0 66.0 37.6� 47.9 0.2 38.9 

 

Table 4.2. Locations and times of seasonal maximum differences in hourly O3 between 

wildfire emissions methods in each modeled year. 

Note: Differences are calculated over grid cells containing Air Quality System (AQS) monitors 

and wildfires. Lat-lon, latitude-longitude; Max. ∆-O3, maximum difference (statistical d-s – 
dynamical d-s) in hourly O3 mixing ratios. � Denotes location of maximum difference over the 
fire season in a given year. These are Chesterfield, MO in 2010; Moundsville, WV in 2043; two 
proximal locations in Middlesboro, KY in 2048 and 2058, and Seabrook, TX in 2053. 

 Spring Summer Autumn 

Year 

Lat-lon of 

max. ∆-O3 

Month/day of 

max. ∆-O3 

Lat-lon of 

max. ∆-O3 

Month/day of 

max. ∆-O3 

Lat-lon of 

max. ∆-O3 

Month/day of 

max. ∆-O3 

2010 36.91, -87.32 April 18 36.13, -96.00 June 24 38.64, -90.35� October 29 

2043 30.39, -89.05 May 16 39.92, -80.73� August 27 40.51, -81.64 September 1 

2048 26.27, -80.30 May 14 36.67, -83.53� July 18 37.48, -82.53 September 8 

2053 29.58, -95.02� May 17 29.94, -89.92 August 19 37.91, -80.63 September 6 

2058 37.28, -83.21 April 20 36.61, -83.74� July 19 37.30, -79.96 September 1 
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Table 4.3. Domain-wide maxima and locations of the seasonal average impacts of wildfire 

emissions on hourly ozone (ppbV) projected by the statistical d-s method  

Note: Wildfire impact is defined as the ozone mixing ratio difference (statistical d-s – baseline 
no-wildfire). 

Year � 
Season� 

2043 2048 2053 2058 

Spring 0.80  
South Florida 

0.13 
South Florida 

0.16 
KY-OH border 

0.17 
KY-OH border 

Summer 1.48 
KY-OH border 

0.57 
KY-OH border 

0.85 
KY-OH border 

1.11 
Appalachia 

Autumn 0.08 
Ohio Valley 

< 0.01 0.32 
Eastern Oklahoma 

< 0.01 
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Table 4.4. Seasonal mean and maximum differences in daily-average PM2.5 between 

wildfire emissions methods in each modeled year.  

Note: Differences are calculated at grid cells containing Interagency Monitoring for PROtected 

Visual Environments (IMPROVE) monitors and wildfires. Max. ∆-PM2.5, maximum difference 
(statistical d-s – dynamical d-s) in daily-average PM2.5 concentrations; Dyn. d-s PM2.5, PM2.5 

concentration from dynamical d-s simulation. � Denotes maximum difference over the fire 
season in a given year.  

 Mean ∆-PM2.5 (µg m-3) Spring Summer Autumn 

Year Spring Summer Autumn 

Max.  

∆-PM2.5 

(µg m-3) 

Dyn. d-s 
PM2.5 at 

maximum  

(µg m-3) 

Max.  

∆-PM2.5 

(µg m-3) 

Dyn. d-s 
PM2.5 at 

maximum  

(µg m-3) 

Max.  

∆-PM2.5 

(µg m-3) 

Dyn. d-s 
PM2.5 at 

maximum  

(µg m-3) 

2010 0.12 0.33 0.42 7.85 7.04 14.9 10.6 26.0� 8.64 

2043 0.04 0.41 0.00 7.46 6.04 16.8� 8.04 3.01 4.27 

2048 0.04 0.28 0.12 4.64 5.86 10.6� 11.2 9.55 11.2 

2053 0.06 0.45 0.07 5.58 4.52 16.1� 9.56 14.7 11.8 

2058 0.08 0.38 0.00 8.94 9.66 13.1� 6.16 0.10 12.0 

 

Table 4.5. Locations and times of seasonal maximum differences in daily-average PM2.5 

between wildfire emissions methods in each modeled year. 

Note: Differences are calculated over grid cells containing Interagency Monitoring for 
PROtected Visual Environments (IMPROVE) monitors and wildfires. Lat-lon, latitude-

longitude; Max. ∆-PM2.5, maximum difference (statistical d-s – dynamical d-s) in daily-average 
PM2.5 concentrations; � Denotes location of maximum difference over the fire season in a given 
year. These are Mingo National Wildlife Refuge, MO in 2010; Quaker City, OH in 2043 and 
2048, and James River Wilderness, VA in 2053 and 2058.   

 Spring Summer Autumn 

Year 
Lat-lon of 

max. ∆- PM2.5  

Month/day of 

max. ∆- PM2.5 

Lat-lon of 

max. ∆- PM2.5   

Month/day of 

max. ∆- PM2.5 

Lat-lon of 

max. ∆- PM2.5   

Month/day of 

max. ∆- PM2.5   

2010 38.52, -78.43 April 17 37.63, -79.51 August 6 36.97, -90.14� October 20 

2043 25.39, -80.68 May 17 39.94, -81.34� July 28 35.97, -81.93 September 8 

2048 30.09, -84.16 May 29 39.94, -81.34� August 15 39.94, -81.34 September 2 

2053 28.75, -82.55 May 23 37.63, -79.51� July 28 39.94, -81.34 September 8 

2058 39.94, -81.34 April 26 37.63, -79.51� July 22 39.71, -79.01 November 10 
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Table 4.6. Domain-wide maxima and locations of the seasonal average impacts of wildfire 

emissions on hourly PM2.5 (µg m-3) projected by the statistical d-s method  

Note: Wildfire impact is defined as the PM2.5 concentration difference (statistical d-s – baseline 
no-wildfire).  

Year � 
Season� 

2043 2048 2053 2058 

Spring 5.6 
South Florida 

3.8 
South Florida 

4.3 
KY-OH border 

3.0 
Ohio valley 

Summer 7.9 
KY-OH border 

3.4 
KY-OH border 

4.6 
Appalachia 

14.0 
Appalachia 

Autumn 1.5 
Northern Ohio  

4.3 
Central Missouri 

4.6 
Eastern Oklahoma 

< 0.01 

  

Table 4.7. Difference (%) between statistical d-s and dynamical d-s in PM2.5 and 

constituents by season and year. 

Note: % difference = (statistical d-s – dynamical d-s) / (statistical d-s + dynamical d-s) x 200. 

Season Year 

Difference (%) Between Modeled Cases 

SO4 NO3 NH4 EC OC OTHER Total PM2.5 

 2010 0.10 0.79 0.47 2.56 6.36 4.68 1.51 

 2043 0.06 0.11 0.09 1.26 2.71 1.17 0.60 

Spring 2048 0.06 0.19 0.13 0.99 2.04 1.39 0.62 

 2053 0.10 0.38 0.20 2.22 3.77 1.62 0.86 

 2058 0.15 0.53 0.18 3.62 6.12 1.36 1.18 

 2010 0.66 7.04 2.36 7.46 17.11 12.58 4.18 

 2043 0.62 5.48 0.26 12.57 24.89 8.66 6.16 

Summer 2048 0.40 2.91 0.70 8.32 18.54 5.54 3.65 

 2053 0.66 6.54 0.47 17.81 28.67 12.65 6.85 

 2058 0.61 3.63 0.39 16.27 25.50 11.43 6.12 

 2010 -0.30 4.27 1.22 7.71 16.78 7.14 4.19 

 2043 0.02 0.03 0.04 0.28 0.62 0.76 0.31 

Autumn 2048 -3.77 -1.35 -3.31 1.02 4.38 -0.81 -1.44 

 2053 0.12 0.29 0.18 2.11 3.63 1.46 0.96 

 2058 0.00 0.00 0.00 0.01 0.02 0.00 0.00 
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 2010 2043 2048 

 

 2053 2058 

Figure 4.1. Comparisons of wildfire emissions methods over the fire season for 1-hr O3 (ppb) 
predicted at grid cells containing Air Quality System (AQS) monitors and wildfires in each 
modeled year. The mean, maximum and minimum intermodel difference (statistical d-s – 
dynamical d-s), denoted, respectively, MeanDiff, MaxDiff and MinDiff, and the dates and 
coordinates of their occurrence are shown in the plot legend. 
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 Spring Summer Autumn 

  

  

  

  

  

2043 

2048 

2053 

2010 

2058 

Figure 4.2. Seasonal comparisons of wildfire emissions methods for 1-hr O3 (ppb) predicted at 
grid cells containing Air Quality System (AQS) monitors and wildfires in each modeled year. 
The mean, maximum and minimum intermodel difference (statistical d-s – dynamical d-s), 
denoted, respectively, MeanDiff, MaxDiff and MinDiff, and the dates and coordinates of their 
occurrence are shown in the plot legend. 
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Figure 4.3. Hourly ozone time series in the months and locations of maximum difference in ozone 
(statistical d-s – dynamical d-s) identified in Table 4.2 over the fire season in each modeled year. 
Top: Chesterfield, MO, on the MO-IL border; Middle: L – Moundsville, WV, near the WV-PA 
border; R – Middlesboro, KY, near the KY-TN border; Bottom: L – Seabrook, TX, on the Gulf 
Coast; R – Middlesboro, KY. 
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Figure 4.4. Seasonal-average spatial distribution of hourly ozone mixing ratios (ppbV) from a 
no-wildfire baseline simulation (Rows 1, 3 and 4) and difference in ozone (statistical d-s - 
baseline no-wildfire) simulations (Rows 2, 4, and 6) in each future year. Note the scale change in 
Row 6 to display the spatial pattern. Spr, Spring; Sum, Summer; Aut, Autumn. 
  



 

 
150

 

 

 2010 2043 2048 

 

 2053 2058 

Figure 4.5. Comparisons of wildfire emissions methods over the fire season for PM2.5 (µg m-3) 
predicted at grid cells containing both Interagency Monitoring of PROtected Visual Environments 
(IMPROVE) monitors and wildfires in each modeled year. The mean, maximum and minimum 
intermodel difference (statistical d-s – dynamical d-s), denoted, respectively, MeanDiff, MaxDiff 
and MinDiff, and the dates and coordinates of their occurrence are shown in the plot legend. 
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Figure 4.6. Seasonal-average hourly PM2.5 (µg m-3) from a no-wildfire baseline simulation 
(Rows 1, 3 and 4) and difference in PM2.5 (statistical d-s - baseline no-wildfire) simulations 
(Rows 2, 4, and 6) in each future year. Spr, Spring; Sum, Summer; Aut, Autumn. 
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Figure 4.7. PM2.5 composition (µg m-3) averaged over IMPROVE sites in each season in each 
modeled year from the dynamical d-s simulation (L) and the statistical d-s simulation (R).  
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Figure 4.8. Seasonal average intermodel differences (statistical d-s – dynamical d-s) in PM2.5 and 

constituents (µg m-3) in the years simulated.  
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Figure 4.9. Monthly total precipitation predicted by the WRF model in the summer months. 
Row 1 – 5: 2010, 2043, 2048, 2053 and 2058; Row 6: October 2010 and August 2043, the 
months of maximum intermodel difference in ozone over the fire season in those years.      
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Figure 4.10. Monthly average daily maximum temperature (°C) predicted by the WRF model in 
in the summer months. Rows 1-5: 2010, 2043, 2048, 2053 and 2058; Row 6: October 2010 and 
July 2058, the months of maximum intermodel difference in both ozone and PM2.5 over the fire 
season in those years. The locations of their occurrence, also provided in Tables 4.2 and 4.4, are 
denoted by circles for ozone, and triangles for PM2.5. 
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Supplemental Material for Chapter 4 

Table 4.S1. Emission growth /control factors for pollutant emissions by anthropogenic 

source sector used in the Sparse Matrix Operator Kernel Emissions (SMOKE) processing 

system for the future-year simulations. 

Note: These factors are multipliers applied to 2005 emissions to estimate the emissions in 2045. 
Anthropogenic emissions in RCP4.5 are projected to decrease in most of these sectors from 2045 
to 2055 by 2% - 5% every 5 years, depending on the pollutant and the source sector, but 
increases in emissions, shown here as multipliers greater than 1, are projected in some sectors, 
e.g., aviation and agriculture. NOx, oxides of nitrogen; PNO3, particulate nitrate; SO2, sulfur 
dioxide; PSO4, particulate sulfate; CO, carbon monoxide; VOC, volatile organic compounds; 
NH3, ammonia; PNH4, particulate ammonium; CH4, methane; BC, black carbon; OC, organic 
carbon. 

Emission 

Sector 
NOx PNO3 SO2 PSO4 CO VOC NH3 PNH4 CH4 EC OC 

Rail, truck, 
transit and 
passenger 
transport 

0.28 0.28 0.52 0.52 0.23 0.38 0.66 0.66 0.66 0.73 1.03 

Deep sea 
freight 

0.47 0.47 0.18 0.18 0.47 0.68   0.97 0.76 0.61 

Aviation 1.04 1.04 0.93 0.93 0.51 0.74   1.07 1.20 1.19 

Energy 
conversion, 
extraction 
and 
distribution 

0.34 0.34 0.26 0.26 0.63 1.52 0.52 0.52 0.86 0.63 0.77 

Industry 
(combustion 
and 
processing) 

0.53 0.53 0.51 0.51 0.44 0.61 0.79 0.79 0.95 0.40 0.00 

Agricultural 
production 

1.25 1.25    1.30 1.26 1.26 1.17   

Commercial 
and 
institutional 
fuel 
combustion 

0.69 0.69 0.63 0.63 0.37 0.54 0.68 0.68 0.77 0.47 0.52 
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Table 4.S2. Monthly mean values and differences in hourly O3 in the months and locations 

of maximum intermodel difference in each modeled year. 

Note: ∆-O3, hourly ozone difference (statistical d-s – dynamical d-s) 

Year Month Location 

Monthly Mean Hourly O3 (ppb) 
Monthly Mean 

∆-O3 (ppb) Statistical d-s Dynamical d-s 

2010 October Centerfield, MO 23.50 22.18 1.32 

2043 August Moundsville, WV 45.94 44.84 1.10 

2048 July Middlesboro, KY 39.68 39.60 0.08 

2053 May Seabrook, TX 42.59 41.38 0.21 

2058 July Middlesboro, KY 39.59 39.34 0.25 
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Figure 4.S1. Seasonal comparisons of wildfire emissions methods for PM2.5 (µg m-3) predicted 
at grid cells containing Interagency Monitoring for PROtected Visual Environments 
(IMPROVE) monitors and wildfires in each modeled year. The mean, maximum and minimum 
intermodel difference (statistical d-s – dynamical d-s), denoted, respectively, MeanDiff, MaxDiff 
and MinDiff, and the dates and coordinates of their occurrence are shown in the plot legend. 
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Figure 4.S2. Seasonal-average concentrations (µg m-3) of PM2.5 and constituents over all grid 
cells containing Interagency Monitoring for PROtected Visual Environments (IMPROVE) 
monitors and wildfires in each modeled year from each modeled case.  
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Figure 4.S3. Potential evapotranspiration (PET – mm) used in the AAB estimates in July of each 
future year, calculated from statistical downscaling (L), and dynamical downscaling (R) of the 
meteorological inputs.  
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Figure 4.S4. Potential evapotranspiration (PET – mm) from statistical downscaling averaged 
yearly in each of the modeled years. 
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Figure 4.S5. Monthly-averaged potential evapotranspiration (PET – mm) from statistical 
downscaling in 2048. Top: spring; middle – summer; bottom – autumn. 
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CHAPTER 5: CONCLUSIONS 

 

 

Introduction  

 This chapter summarizes the conclusions of the three studies undertaken in this research to 

understand the impacts of wildfires on air quality in the Southeastern U. S. by mid-21st century. 

These modeling studies compare two different approaches to estimating wildfire emissions, and 

the resulting air quality predictions. They examine the wildfire contribution to overall air quality 

in the context of other anthropogenic emissions, and not in isolation. As such, the comparisons of 

these two approaches cannot draw definitive conclusions about future AQ impacts of wildfires in 

the Southeast, e.g., “an X % increase in wildfire emissions will result in a Y% increase in PM2.5”, 

although they do provide insights into differences in the current and future AQ predictions of 

these methods. To examine the impacts on future-year air quality of wildfire emissions, 

therefore, the third study includes a modeling sensitivity comparing the results from one of these 

two approaches against a baseline simulation zeroing out the wildfires. The conclusions from 

each study are enumerated in the following sections.  

Study 1 

 This study compared wildfire emissions estimated over the Southeastern U. S. from three 

methods: (a) using AAB projected with meteorological inputs from statistical downscaling of a 

climate realization with the CGCM31 model and the A2 scenario GHG emissions, labeled 

“statistical d-s”; (b) using AAB projected with meteorological inputs from dynamical 

downscaling of a climate realization with the CGCM30 model and the A2 scenario GHG 
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emissions, labeled “dynamical d-s”, and (c) using historical mean AAB for 1992-2010, labeled 

“historical”. The study found the following: 

• Wildfire area burned, and the resulting emissions of PM2.5 in the Southeast for 2010-2060 

are a result of two competing drivers, climate and socioeconomics, each with its own 

spatiotemporal variability. This may not always lead to uniform increases in wildfire 

activity and emissions in future climate regimes.  

• Historical mean AAB are higher than those estimated from statistically downscaled 

meteorology in most of the future time slices, and higher in all of them than those 

estimated with dynamically downscaled meteorology.  

• Historically based estimates of wildfire emissions in the Southeast are consistently higher 

(by 13% - 62%) for PM2.5 than those estimated by either of the projection methodologies. 

• The large differences among the three methods in the temporal variability and spatial 

patterns of PM2.5 emissions in future years compared to historical values are partly 

attributable to the temporal variability of the future changes in climate and 

socioeconomics underlying the AAB projections, and partly to the dynamically 

downscaled meteorology used to estimate future daily fire activity.  

Study 2 

 This study compared the two wildfire emissions projection methods to the empirically based 

National Emissions Inventory for wildfires compiled by the U.S. EPA, by using them in AQ 

simulations of a historical period (2010). The modeled ambient concentrations of 1-hr ozone, 

maximum daily 8-hr average ozone (MDA8), and PM2.5 and its constituents were compared 
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among the three cases simulated with these inventory methods, and between each modeled case 

and air quality observations from various ground-based networks. 

 The study found the following in its ozone analyses: 

• There is nearly identical performance for all three cases against AQS network 

observations for hourly ozone. The O3 differences among the cases are 0.08% - 0.93%, 

but the biases are much larger for any of the cases with respect to AQS observations 

(13% - 25%) over the entire year. Ozone has acceptable performance in spring through 

mid-summer, but degrades (MFE > 50%) in the cooler months, particularly in the fire-

free winter. These results indicate that wildfire emissions, which are the only difference 

between the modeled cases, are not a major contributor to the model errors in ozone. 

• The larger AAB estimates for the statistical d-s result in its large positive difference in O3 

from the other two methods at locations in October downwind of high fire activity. 

• Large ozone differences between the two downscaling methods occur mostly in the 

northeastern quadrant of the domain, and downwind from peak differences in VOC and 

NOx column emissions from wildfires in eastern Missouri and Appalachia. These results 

indicate that transport and secondary chemical transformations of precursor emissions 

from high fire activity areas to fire-free areas downwind drive the largest O3 differences 

seen between the two downscaling methods. 

 The PM2.5 analyses in this study found the following: 

• Much smaller (1% - 8%) intermodel differences among the three wildfire emission 

methods for PM2.5 than their individual biases with respect to observations (-14% - +51% 

at IMPROVE sites) during the fire season indicate that wildfire emissions do not 

contribute the larger part of the model bias. 
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• The PM2.5 model performance against observations from the IMPROVE network is 

acceptable throughout the year for all three methods, but is the result of compensating 

biases in SO4 (positive) and OC (negative) in almost every month. 

• EC and NH4; which are primarily emitted in wildfires also have good-to acceptable 

performance in almost all months. OC, which has a larger contribution from secondary 

chemical reactions, has its largest underpredictions (beyond acceptable levels) for the 

NEI in the summer. As OC is co-emitted with EC in wildfires, these findings together 

indicate that the OC underpredictions are likely due to other VOC sources or secondary 

chemical production in the AQ model, as these are common to all three modeled cases. 

• The dramatically better OC model performance at urban sites compared to rural sites 

indicates potential underestimates of residential wood combustion and biogenic 

emissions in rural areas. 

• Particulate NO3 is lower in the summer than in the other seasons, and correlated with 

larger overpredictions of SO4 and smaller overpredictions of NH4 in that season, since 

less NH3 is available for NO3 formation. Gas-particle partitioning in the thermodynamics 

model is recognized as one of the contributors to NO3 underpredictions in the AQ model, 

and may be a factor in these summertime NO3 results.  

• The severe overprediction of NO3 in combination with larger overpredictions in NH4 in 

the rest of the fire season indicates possible overestimates in the emissions of NH3 or 

anthropogenic NOx; the latter is more likely, as NH4 stays within acceptable performance 

levels over these months. 

• Differences in PM2.5 between the two downscaling cases also confirm the previous 

conclusions from the ozone analyses, that the biggest impact of their differences is in 
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fire-free locations downwind of high fire activity due to the transport of fire emission 

plumes, but with a bigger contribution from primary PM emissions. 

• Of the two downscaling methods, dynamical d-s compares more closely with the NEI, 

which has the smallest biases with respect to observations except in summer. 

Summertime PM is underpredicted by both these methods, but for different reasons: 

underprediction of under-canopy fires by the NEI, and overprediction of summer 

precipitation by the WRF model used in the dynamical d-s. 

• The largest errors in PM2.5 occur in SO4, which has a very small contribution from 

wildfires, and in the case of ozone, in the fire-free winter months, pointing to chemical 

production pathways of these pollutants from non-wildfire sources as fruitful targets for 

future model improvements.  

Study 3 

 This study examines future-year concentrations of ozone and PM2.5 projected with the two 

wildfire emissions projection methods using the same AQ simulation model, with the same 

configuration and model inputs as in the second study, with the exception of the emissions. 

These were projected for the four future time slices, 2043, 2048, 2053 and 2058, for wildfires as 

well as the energy, transportation, industrial, aviation, commercial marine freight, and 

agricultural sectors. The projections from the GCAM (Thomson et al., 2011) were based on the 

Representative Concentration Pathway (RCP) 4.5, which assumes measures to limit GHG 

emissions to stabilize radiative forcing at 4.5 W m-2 by 2100. In the energy sector, this involves 

the reduction of fossil fuel usage through replacement with more renewable energy sources, 

resulting in reductions in SOx, NOx, EC and OC, and non-methane Volatile Organic Compounds 

(NMVOCs). However, there are increases in VOC emissions from oil and gas activity in these 
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projected emissions. The AQ model results are compared between the two downscaling methods, 

and across all the simulation years, including the retrospective year, 2010. 

 This study found the following from the ozone analysis: 

• The wildfire emissions from the two projection methods differ less in their hourly ozone 

predictions in the future years than in 2010 with smaller mean and maximum differences 

over the entire fire season, and in spring, summer and autumn.  

• Warmer and drier summers projected in the future shift the time of occurrence of the 

maximum ozone difference between the projection methods over the fire season to the 

summer (from late autumn in 2010). This accounts for the higher monthly-average ozone 

levels in the locations of these maximum differences by ~ 20 ppb compared to the ozone 

level in October 2010. Spatially, these maximum intermodel ozone differences occur in 

locations of higher AAB, projected to be along the Atlantic seaboard and the Gulf coast 

in Texas and Florida in the future years. 

• The inter-year variability in these maximum intermodel differences follows that of their 

AAB differences; the greatest O3 difference occurs in 2048, and the smallest in 2043.  

• The impact of wildfires on 1-hour ozone averaged over each season have Southeast-wide 

maxima ranging from < 0.01 ppb in autumn to 1.5 ppb in the summer. The biggest 

impacts are seen in the summer in 2043 and 2058, and occur mostly over the South 

Florida, Appalachia and the Ohio valley. 

 The following were the findings of the PM2.5 analyses: 

• The intermodel differences in PM2.5 concentrations projected in the future years are 

smaller than those in 2010 due to lower AAB (by up to 32%) and primary wildfire PM2.5 

emissions (by up to 40%) from their 2010 values. As with ozone, the locations of 
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maximum intermodel difference in future years shift east and south to Virginia and 

Florida in July and August, from the 2010 location in the Midwest in autumn, due to 

warmer and drier summers and higher AAB projected in these areas.  

• The impact of wildfires on predicted 1-hour PM2.5 averaged over each season show 

Southeast-wide maxima ranging from 1.5 µg m-3 in autumn (2043) to 14 µg m-3 in the 

summer (2058), discounting a value of < 0.01 µg m-3 in autumn 2058. The biggest 

impacts are in the summers in all years, with 2058 being an outlier. These impacts occur 

mostly over the South Florida (spring), Appalachia and the Ohio valley (spring and 

summer) and the central Midwest (autumn). Overall, these seasonal maximum impacts 

indicate a wildfire contribution of well over 50% to the total ambient PM2.5 concentration. 

• The temporal variability of the AAB and the resulting wildfire PM emissions dictate the 

PM2.5 concentration variability within each modeled case over the future years.  

• Key wildfire PM species (OC, Other PM and NH4) remain constant or increase slightly 

over the future years despite reductions in the anthropogenic sector emissions of EC by 

24% - 60% and of the major contributors to PM2.5 mass (SOx, and NOx) to ~ 20% their 

2010 levels. The net impact on PM2.5 is a 4.5% increase in the summers for 2043-2058 

from the analysis of composition trends. 

General Conclusions 

 The wildfire emissions estimated from the historical mean AAB, even from the most recent 

19-year period, are not representative of how the climate and socioeconomic variables driving 

wildfire activity and emissions could change in future decades. Our results therefore suggest that 

the use of historical AAB is not sufficient to construct wildfire emission inventories for 



 

 
170

simulating future-year air quality by mid-21st century, be they for climate change impact 

assessments, or for projecting population health risks from wildfire smoke.  

 Data availability from the climate model data archives limited this study to one climate 

model for one-to-one comparisons of the two downscaling methods, even though statistically 

downscaled meteorology from a suite of nine climate realizations was used in the initial AAB 

estimation models. Better inferences of temporal trends in the future wildfire emissions can be 

obtained in the dynamical downscaling by ensemble simulations that bracket the extremes in 

climate and societal change over the 2011-2060 period using representative high- and low-fire 

frequency years from among a number of climate realizations.  

 The wildfire emissions estimates from dynamical d-s are much lower than from statistical 

d-s, partly due to differences between the large-scale dynamics of the climate models and the 

mesoscale circulation in the dynamical d-s, but also possibly due to a high precipitation bias in 

the WRF meteorology used for the dynamical downscaling in estimates of both annual and daily 

fire activity. This is already evidenced by the PM underpredictions in the 2010 summer by both 

downscaling methods, with greater underpredictions by the dynamical d-s method.  

 Overall, both downscaling methods perform comparably to the NEI in simulating ozone 

throughout the 2010 fire season, and better than the NEI in simulating total PM2.5 in the summer 

and primary PM species (EC and NH4) throughout the fire season. Both ozone and secondary 

PM species (SO4, OC, NO3) have large biases in the simulations with all three inventories, which 

are found to be attributable to non-wildfire emissions, or secondary chemical production 

mechanisms in the AQ model. Thus, the simulation results at least partially confirm the 

hypothesis that the wildfire emissions projection methods will be within acceptable AQ model 

performance standards, and produce comparable results to an empirically-based emissions 
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inventory for a retrospective period. They show that the wildfire emissions projection methods 

are able to support simulations of current-day wildfire AQ impacts, with the added benefit of 

enabling such impact assessments much farther into the future.  

 Both the downscaling methods perform much more comparably than in 2010 in projecting 

future-year air quality. Spatially, they differ from 2010 in the locations of their maximum 

differences, and temporally, in the season of their occurrence in both ozone and PM. The 

locations of these maximum differences shift to areas along the eastern seaboard and the Gulf 

Coast of Texas and Florida. Temporally, the maximum difference shifts from October in 2010 to 

the late spring and summer months in the future years, driven by much less precipitation and 

more fuel aridity projected for those months by mid-century. This also changes the ambient 

ozone concentrations in these months of maximum difference in future years by ~ +20 ppb. 

 The impact assessment shows a wildfire contribution of well over 50% to ambient fine PM in 

some areas by mid-century in the summers. Concentration increases of 4.5% in PM2.5 are 

projected on average during the future summers from 2043 to 2058. This is the net effect of 

projected decreases in the energy sector emissions from 2010 to 2055 by an average of 80% in 

the major PM precursors (SOx and NOx), the somewhat smaller (13% - 62%) decreases in 

projected wildfire PM2.5 emissions relative to 2010 (Figure 2.6). The net result, for this particular 

scenario of future-year reductions in energy sector emissions, is an increased contribution of 

wildfire to total PM2.5 by the mid-21st century summer from their 2010 levels, largely driven by 

OC and Other PM. 

 In addition to these differences in magnitude from their 2010 levels, the projected PM2.5 

concentrations also capture the inter-year variability of the wildfire emissions dictated by the 

climate and socioeconomic drivers of the underlying AAB, which cannot be represented with 
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empirically based (static) inventories such as the NEI (see Figure 2.6). These results confirm the 

hypothesis that the projected wildfire emissions will lead to considerably different ozone and 

PM2.5 spatial distributions and concentrations from their 2010 levels by mid-21st century.  

 There are several areas of uncertainty, which should be explored to improve the robustness of 

these assessments. One is that these projected wildfire impacts on AQ are based on key 

assumptions about reductions in anthropogenic emissions in a variety of sectors, each affecting 

the atmospheric constituents in very different ways. Wildfire emissions will have a greater 

proportional impact on future PM levels if anthropogenic controls on SOx and NOx as assumed 

here are implemented. An important caveat is that this is only one of several possible future 

emission scenarios for the energy sector, and does not take into account possible changes in other 

sectors, e.g., agriculture, or policy shifts that could occur in the intervening years regarding the 

use of fossil fuels. These will play a critical role in the significance of these wildfire emissions 

for ambient PM concentrations and composition in the future. For example, there is an 

assumption of about a two-thirds reduction in SOx and NOx emissions from the energy and 

transportation sectors by 2060 relative to 2010. A deviation from this trajectory can have 

dramatic impacts in the formation of nitrate if wildfire emissions grow at 4% over the Southeast 

as projected (Prestemon et al., 2016), and agricultural ammonia emissions increase. The resulting 

composition could be very different from the nearly constant compositions projected here.  

 Another area of uncertainty is introduced by the interannual variability of the AAB captured 

in the sparse sample of four years used in the future-year modeling. The AAB and wildfire 

emissions are both projected to be lower by 13% - 62% in these years. Selecting a different set of 

years, e.g., by choosing years that only have high or low fire activity, could change this trend 

entirely, as also the PM compositions from their nearly constant projected levels in the future 
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years modeled here. This again points to the need for an ensemble approach to bracket 

uncertainties by choosing a larger sample of years to model that are representative of both high 

and low AAB projections. Related to this uncertainty is the gap in the WRF inputs for the daily 

AQ predictions from 2020-2040. Filling this gap in the modeling can lead to very different 

conclusions about the projected impacts of wildfire on future AQ, and their trajectory from the 

present to mid-century.  

 Precipitation is a critical input in wildfire emissions estimates due to its impact on daily fire 

activity, due to its influence on fire weather, and soil and fuel moisture. Reducing the high 

precipitation bias in WRF will greatly change the model results, at least for the dynamical d-s 

projections, and increase the already high impact of wildfires projected for summertime AQ. As 

dynamical downscaling is the most widely used way to provide consistent meteorological inputs 

from estimating emissions, to driving air-quality simulations, correcting biases in this method 

would more reliably support natural resource management and wildfire health risk assessments.   

 Public response to recent fire events indicates that future fuel loads may change not only due 

to climate change but also due to evolving wildfire mitigation strategies. No changes were made 

to fuel loads in these wildfire emissions projections, although land use changes included in the 

AAB projections indirectly account for them in the aggregate. While this omission does not have 

an impact on the AAB projections, it does have an impact on the wildfire emissions estimates, 

which are based on current FCCS fuel loads (McKenzie et al., 2007). Removal of fuels by fire, 

also omitted in these emissions estimates, will somewhat offset this impact. Appropriately 

representing fuel loads in long-term wildfire impact assessments such as the one presented here 

could benefit regional fuel management decisions regarding where, when and what to control. 
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