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ABSTRACT 

Noah Greifer: Improving Methods for Propensity Score Analysis with Mis-Measured Variables 

by Incorporating Background Variables with Moderated Nonlinear Factor Analysis 

(Under the direction of Patrick Curran) 

 

There has been some research in the use of propensity scores in the context of measurement 

error in the confounding variables; one recommended method is to generate estimates of the mis-

measured covariate using a latent variable model, and to use those estimates (i.e., factor scores) 

in place of the covariate. I describe a simulation study designed to examine the performance of 

this method in the context of differential measurement error and propose a method based on 

moderated nonlinear factor analysis (MNLFA) to try to address known problems with standard 

methods. Although MNLFA improves effect estimation somewhat in the presence of differential 

measurement error relative to standard factor analysis methods, the greatest gains come from the 

nonstandard practice of including the treatment variable as an indicator in the scoring models. 

More research is required on the effects of model misspecification on the performance of these 

methods for causal inference applications.
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INTRODUCTION 

Randomized control trials have long been considered the “gold standard” design method for 

making causal inferences in the social and health sciences (Jones & Podolsky, 2015). When 

randomization is successful, any observed difference in outcomes after receipt of the treatment 

can be due only to treatment status and not to some other variable that might otherwise explain 

the relationship between treatment status and outcome (Shadish, Cook, & Campbell, 2002). 

Although random assignment is frequently used in psychology to answer causal questions, often 

random assignment is unethical or impossible. For example, researchers cannot randomly assign 

whether people experience childhood trauma, use illicit substances in adolescence, or are held 

back a year in school, but clearly the causal effects of these events are of great concern to 

researchers and policymakers. There may also be scenarios in which random assignment is not 

desirable, because it involves forcing a subset of individuals into a treatment condition they 

might not otherwise want be placed in; the conclusions of randomized studies can therefore lack 

external validity (Rothwell, 2005). 

Instead, psychologists often employ observational studies, studies in which the event of 

interest is not randomly assigned by the researcher, but rather is chosen by the participant or 

some other actor. It is no longer so simple to draw a causal effect estimate from a comparison of 

the outcomes of those in various conditions, because the observed differences may be due to 

some quality of the subjects that also influenced their treatment assignment. For example, 

Odgers et al. (2008) sought to estimate the causal effect of early adolescent substance use on 

adult criminal convictions, but substance users were more likely to have a parent who was 
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convicted, which itself might explain why substance users have more convictions in adulthood. 

Instead of simple comparisons between conditions, researchers will have to rely on statistical 

methods and sets of assumptions to identify causal effects and make valid causal inferences for 

their data. These methods are further complicated by measurement error, ubiquitous in 

psychology, in which the constructs of interest are often not directly observable. 

The structure of this paper is as follows. First, I introduce the assumptions required and 

methods available for making causal inferences with social science data, with a focus on 

propensity score methods. Next, I describe the problems with propensity score methods caused 

by measurement error and recent attempts to solve these problems. Next, I present a new 

potential solution that builds off prior methods involving latent variable analysis by including a 

recent methodological innovation, namely moderated nonlinear factor analysis (Bauer, 2017; 

Bauer & Hussong, 2009). Finally, I present the results of a simulation study designed to examine 

the plausibility and effectiveness of this proposed method to improve the performance of 

propensity score methods in conditions of measurement error; this is the focus of my work here. 

The Potential Outcomes Framework 

The potential outcomes framework is a valuable conceptual and mathematical tool to 

understand the problems associated with making causal inferences. In this framework, each 

individual has two potential outcomes, Yz=0 and Yz=1, where Y is a continuous outcome variable 

and z is an instance of random variable Z denoting treatment status taking the values 0 (control) 

and 1 (treated). These correspond to the potential outcomes if the unit were to receive control 

and if the unit were to receive treatment. We can define the individual treatment effect for a unit 

i to be  

 𝜏𝑖  =  𝑌𝑖
𝑧=1 – 𝑌𝑖

𝑧=0 (1) 
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and the average treatment effect in the population (ATE) to be  

 𝐴𝑇𝐸 =  𝐸[𝑌𝑖
𝑧=1 – 𝑌𝑖

𝑧=0]  =  𝐸[𝑌𝑖
𝑧=1] –  𝐸[𝑌𝑖

𝑧=0] (2) 

In fact, though, for each individual, only one of the potential outcomes is observed. The other 

is the counterfactual outcome (i.e., counter to fact). This is considered the fundamental problem 

of causal inference: neither E[Yi
z=1] nor E[Yi

z=0] can be directly computed to attain a causal 

effect estimate. Instead, we can compute functions only of the observed outcomes E[Yi
z=1|Z=1] 

and E[Yi
z=0|Z=0], the potential outcomes realized corresponding to the actual treatment 

assignment of the individuals. 

However, the expectations of the potential outcomes are identifiable under several 

assumptions. These are the stable unit treatment value assumption (SUTVA), positivity, 

consistency, and exchangeability (Foster, 2010). SUTVA requires that a unit’s potential 

outcomes do not depend on the treatment status of other individuals (and thus are “stable”). 

Positivity requires that it is theoretically possible for all units to be in either treatment condition 

(i.e., no combinations of qualities systematically exclude units from either condition). 

Consistency requires that there are no unspecified versions of treatment. Although these 

assumptions are worthy of study, the final assumption of exchangeability, described below, is the 

focus of this paper, and the aforementioned assumptions will be taken for granted here. 

Exchangeability and Confounding 

Exchangeability is a core assumption and requires that there is no association between 

treatment status and potential outcomes:  

 𝑌𝑧 ⊥  𝑍 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 (3) 

Insofar as potential outcomes are a function of some set of covariates and the actual treatment to 

be received, this means that this set of covariates is not also associated with treatment 
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assignment. The assumption of exchangeability will be the focus of this work and is the focus of 

most work in causal inference research. Conceptually, exchangeability can be thought of as the 

assumption that there are no alternative explanations for the observed association between actual 

treatment assignment and actual outcome value other than the causal effect of treatment on the 

outcome. In other words, there is no confounding. 

Asymptotically, randomization guarantees exchangeability because when units are 

randomized to conditions the joint distribution of factors that influence potential outcomes will 

be the same across conditions (even if the factors are not measured). In this way, treatment 

assignment is independent of potential outcomes (because it is independent of all covariates that 

relate to potential outcomes), and exchangeability is met. In this case,  

 𝐸[𝑌𝑧=1|𝑍 = 1]  =  𝐸[𝑌𝑧=1] (4) 

and 

 𝐸[𝑌𝑧=0|𝑍 = 0]  =  𝐸[𝑌𝑧=0] (5) 

Because the first expression in each of the equations (4) and (5) is identifiable from the observed 

data, the desired estimand—the unconditional expectation of each potential outcome—can be 

computed using equation (2). A simple comparison of group means will yield a valid estimate of 

the treatment effect.  

Exchangeability can be extended to the case of conditionally randomized experiments, 

wherein within each level of some factor (i.e., a random variable C), randomization occurs and 

assignment is independent of potential outcomes. In this case, conditional on C, there is 

exchangeability; this is known as conditional exchangeability (CE; Hernán & Robins, 2018, Ch. 

2), or the strongly ignorable treatment assumption (Rosenbaum & Rubin, 1983). Expanding on 

equation (3), CE is formalized as 
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 𝑌𝑧 ⊥  𝑍 |𝐶 = 𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧, 𝑐 (6) 

For example, to examine the effect of a promising school policy intervention aimed at improving 

the academic performance of financially disadvantaged children, researchers might randomly 

assign schools in low income neighborhoods to treatment with 0.75 probability and might 

randomly assign schools in middle income neighborhoods to treatment with 0.5 probability. It is 

clear that neighborhood income class will affect the potential outcomes of the schools, regardless 

of treatment status, but conditional on (i.e., within) neighborhood class, treatment is independent 

of the potential outcomes, and so a marginal causal effect can be identified (Hernán & Robins, 

2018). This insight is critical to understanding exchangeability in observational studies, which 

are more common than conditionally randomized experiments in psychology. 

When randomization does not occur and, for example, individuals are allowed to choose their 

own treatment condition, equations (4) and (5) do not hold and the causal effect cannot be 

immediately identified. Instead, a simple comparison of group means will include information 

both about the treatment effect and the other associations between assignment and potential 

outcomes. For example, if those with parents who have histories of conviction are more likely to 

engage in illicit substance use as adolescents, the difference in adult convictions between 

adolescent substance users and abstainers will include not only the causal effect of drug use on 

the individual’s convictions but also the association between parental conviction history and the 

individual’s convictions through pathways other than the increased propensity to use substances. 

This failure to identify the correct causal effect is called “bias” and is a direct result of 

confounding (or a violation of any of the aforementioned assumptions). Figure 1 is a schematic 

depiction of a confounding scenario, where C is the set of common causes of Treatment and 

Outcome. In the example above, we can consider adolescent illicit substance use the treatment, 
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adult convictions the outcome, and having parents with a history of convictions a common cause 

of treatment and outcome that creates confounding. 

In observational studies, it may be possible to condition on a set of confounding variables 

and arrive at CE. This will be true if the observational study can be thought of as a conditionally 

randomized experiment: conditional on a set of pre-treatment variables, individuals are randomly 

assigned (with some nonzero probability) to condition (Hernán & Robins, 2018, Ch. 3). 

Therefore, to identify causal effects in observational studies, one can condition on a set of pre-

treatment variables associated with treatment and potential outcomes and arrive at a valid 

estimate of the causal effect without true randomization. The identification of the set of sufficient 

variables to eliminate confounding is its own area of research (e.g., Brookhart et al., 2006), but 

the focus for the rest of this study will be on the act of conditioning on those variables, given that 

they are already known. 

Adjusting for Confounding 

Three methods of conditioning on variables include matching, stratification, and regression. 

In matching, individuals in one treatment condition are matched to individuals in the other based 

on similarity of covariate values, and the causal effect estimate is the average of the pairwise 

outcome differences. In stratification, units are stratified into quantiles of covariate values, and 

treatment effects are estimated within each stratum. A problem with these two methods is that 

with many confounders, which are often necessary to eliminate confounding in observational 

studies, these methods fail: it will be impossible to find units with the same or even similar 

values of the entire set of covariates, yielding units without matches and strata with too few units 

(Rosenbaum & Rubin, 1984). This problem is often known as the “curse of dimensionality.” 

Regression is regarded as a solution to this problem because regression models can include 

many variables while yielding efficient estimates of the treatment effect. Regression is 
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commonly used as a statistical method to condition on sets of variables in conditionally 

randomized and observational studies. A weakness of regression is that the functional form of 

the relationship between all of the included covariates and the outcome must be correctly 

specified in the regression model, or else residual confounding can occur (Schafer & Kang, 

2008). For example, if the true outcome model includes interactions and nonlinear terms but a 

simple linear regression missing those forms is specified, the effect estimate will be biased and 

inconsistent (Hernán & Robins, 2018, Ch. 15; Schafer & Kang, 2008). There are other reasons 

why researchers may want to avoid regression in favor of some other method to adjust for 

confounding; these will be discussed later to contrast regression with the methods presented next.  

Balancing Scores and the Propensity Score 

Consider a set of variables C for which conditioning on C is sufficient to eliminate 

confounding and arrive at CE. A balancing score b(C) is a value or set of values that, when 

conditioned upon, yields conditional independence between the covariates and the treatment, 

thereby satisfying the requirements for CE. The full set of confounding variables itself is 

(trivially) a balancing score. However, as described above, conditioning on the full set through 

matching or stratification can fail due to the curse of dimensionality, and conditioning on the full 

set through regression requires model assumptions that are unlikely to be met. In their landmark 

paper, Rosenbaum and Rubin (1983) discovered a unidimensional balancing score, known as the 

propensity score, which could allow for matching and stratification to achieve exchangeability. 

Formally, they discovered a b(C) such that 

 𝑌𝑧 ⊥  𝑍 |𝑪 ⇒  𝑌𝑧 ⊥  𝑍 |𝑏(𝑪), (7) 

where 

 𝑏(𝑪)  ≡  𝑃(𝑍 = 1|𝑪). (8) 

That is, if there is a set of covariates C for which conditioning on C is sufficient to eliminate 
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confounding and arrive at CE, then conditioning on the conditional probability of receiving 

treatment given C—the propensity score—is also sufficient to arrive at CE. In a conditionally 

randomized experiment, the probability of receiving treatment is set by the researcher, and non-

parametric techniques like matching and stratification on this known probability will yield 

unbiased estimates of a treatment effect. 

 A variety of methods have been developed for matching on the propensity score, including 

the traditional and simple nearest neighbor matching, as well as more sophisticated alternatives 

such as full matching (Stuart & Green, 2008) and genetic matching (Diamond & Sekhon, 2013). 

With stratification, researchers typically form quantiles of the propensity score and estimate 

treatment effects within each quantile; this technique is used less frequently than matching 

(Thoemmes & Kim, 2011). Propensity scores can be used in inverse probability weighting for 

marginal structural models (Robins, Hernan & Brumback, 2000), where a function of the 

propensity score is used as a sampling weight in weighted estimation. Occasionally, the 

propensity score itself is used as a covariate in a regression model, but this method has fallen out 

of favor due to its poor empirical properties and additional required assumptions (Austin, 2011; 

Thoemmes & Kim, 2011). The primary focus here will be on propensity score weighting. 

Estimating Propensity Scores 

In practice, the true propensity score is not known, so it must be estimated from the sample 

data at hand. A variety of methods can be used to generate propensity scores from sample data, 

which generally involve specifying a parametric or non-parametric model predicting treatment 

assignment from the available covariates. The fitted values from this model then form the 

estimated propensity scores. A common method is to use logistic regression and to use the 

model-predicted probabilities of treatment assignment as the propensity scores. The propensity 

score model can include all or a subset of the relevant covariates as well as polynomials, 
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interactions, and other non-linear terms; machine learning techniques such as generalized 

boosted modeling (McCaffrey, Ridgeway, & Morral, 2004) can simplify this process by 

requiring fewer modeling decisions from the user in cases of uncertainty (Lee, Lessler, & Stuart, 

2010).  

The resulting estimated propensity scores must then be evaluated for their ability to achieve 

CE by empirically examining whether, after conditioning on the propensity score, the joint 

distributions of covariates are similar across treatment groups (Stuart, 2010). This distributional 

similarity, an approximation of CE in the sample, is often referred to as balance. Balance 

assessment is an ongoing area of research, but typical methods involve comparing the means and 

higher moments of covariate distributions and interactions across treatment groups and using 

visual diagnostics such as kernel density and Q-Q plots (Kainz et al., 2017). A common and 

recommended measure of balance is the standardized mean difference (SMD), defined by the 

following expression (Austin, 2011): 

 
𝑆𝑀𝐷 =  

𝑀1 −  𝑀0

√𝑠1
2 + 𝑠0

2

2

 
(9) 

where M1 and M0 are the (weighted) group means of the covariate under study, and s1
2 and s0

2 

are the group variances. In propensity score weighting, the SMD is computed with the group 

means weighted by the estimated propensity score weights, but the group variances remain 

unweighted (Stuart, 2010). Typically, SMD values below 0.10 in absolute value are considered 

adequate (Stuart, 2010). It is important to note that propensity score models are not to be 

evaluated on traditional model evaluation criteria such as goodness of fit or parsimony; attaining 

balance on the covariates of interest is paramount (Stuart, 2010). 

If the estimated propensity score and conditioning specifications do not yield satisfactory 
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balance, the propensity score model can be respecified, such as by adding squared terms or 

interactions, and reevaluated until balance is achieved (Rosenbaum and Rubin, 1984; Stuart & 

Rubin, 2008; Stuart, 2010). Because this process does not involve the outcome variable, there is 

no risk of capitalizing on chance to arrive at a specific treatment effect estimate; the propensity 

score stage of a full analysis is akin to the design stage of a study, in that applying the propensity 

score is essentially adjusting the selection parameters for the sample (Rubin, 2001). Unlike 

typical statistical analyses, overfitting to the data is not a problem because the goal of propensity 

score analysis is to arrive at sample covariate balance irrespective of the interpretability, 

plausibility, reproducibility, or parsimony of the propensity score model (Augurzky & Schmidt, 

2001; Stuart, 2010). 

Estimating a Treatment Effect 

Once propensity scores have been estimated and balance has been achieved, an analyst can 

then estimate the treatment effect in their propensity score-conditioned data. For propensity score 

matched samples, a matched pairs t-test on the matched samples is recommended (Austin, 2011). 

For propensity score weighted data, an outcome regression model can be specified as follows: 

 𝐸[𝑌𝑗] =  
0

+ 
1

𝑍𝑗 , (10) 

where Yj is the outcome, Zj is treatment assignment, and 0 and 1 are the intercept and treatment 

effect, respectively, which are to be estimated (Robins et al., 2000). This model is then fit with 

weighted least squares (WLS) regression (i.e., by minimizing the weighted sum of squares) or by 

generalized estimating equations to arrive at an estimate for 1, which corresponds to the causal 

treatment effect estimate (Hernán & Robins, 2018, Ch. 12). After effect estimation, there are a 

variety of methods to assess the potential impact of unobserved confounding on estimates of the 

treatment effect (Liu, Kuramoto, & Stuart, 2013). 
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Propensity Scores vs. Regression Models 

In psychology, the practice of statistically modeling relationships among variables using 

regression or structural equation modeling is popular (Foster, 2010). Researchers can specify a 

parametric model for the outcome conditional on a linear combination of predictors, including 

treatment and variables required to eliminate confounding. The estimated treatment effect can 

then often be identified by examining the coefficient estimate for the treatment variable in the 

model (Schafer & Kang, 2008). On the other hand, propensity score methods are explicitly a 

non-modeling approach, in that the functional form of the relationship between the covariates 

and the outcome variable does not have to be modeled (Ho, Imai, King, & Stuart, 2007). Though 

the propensity score itself must be modeled, the process and reasons for modeling the propensity 

score vastly differ from those of confirmatory parametric models, opening up the possibility of 

employing machine learning and other optimization-based techniques that would normally be 

reserved for exploratory data analysis.  

Several authors have discussed the differences between regression and propensity score 

approaches for conditioning on confounding variables. The core of these discussions is that the 

commonly employed structural assumptions of the form of the relationship between covariates in 

regression are often untenable, and failing to specify the correct functional form for important 

covariates can yield additional bias (Foster, 2010; Ho et al., 2007; Schafer & Kang, 2008). 

Because regression is a confirmatory approach that involves having access to the outcome 

variable and estimating a treatment effect with each run, continually respecifying an outcome 

regression model to improve the plausibility of exchangeability can run the risk of overfitting or 

a temptation to select an outcome model that yields a treatment effect in accordance with a 

researcher’s hypothesis (King & Nielsen, 2016; Rubin, 2001). Because the respecification of 

propensity score models depends on criteria distinct from inference (i.e., covariate balance) and 
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is done without considering the outcome data or a treatment effect estimate, propensity score 

methods do not face these issues. 

Despite these potential pitfalls, regression can be a valuable tool for causal inference. It has 

been shown that when researchers apply regression and propensity score methods separately to 

analyze the same data, the substantive conclusions are almost identical (Shah, Laupacis, Hux, & 

Austin, 2005). Several authors recommend regression on datasets preprocessed through 

propensity score or other matching methods (e.g., Ho, Imai, King, & Stuart, 2007; Rubin, 2001). 

Freedman and Berk (2008) found in their simulations that regression alone actually performed 

better than using propensity score weights alone or propensity score weighted regression. Indeed, 

there is still debate about the value of propensity score methods when linear regression often 

arrives at the same conclusion and does so with greater apparent precision (Shadish, Clark, & 

Steiner, 2008). 

In the end, the debate boils down to a bias-variance tradeoff: with propensity score methods, 

there is a major emphasis on reducing bias, often at the expense of statistical efficiency (i.e., by 

removing cases after matching or down-weighting cases with weighting); whereas with 

regression, the efficiency properties of maximum likelihood estimation yield high precision of 

the estimates, but often at the expense of potential unbiasedness when the model is misspecified 

(Golinelli, Ridgeway, Rhoades, Tucker, & Wenzel, 2012; Schafer & Kang, 2008). For the 

purposes of this study, I focus on the application of propensity scores for effect estimation on 

observational studies, though regression-based techniques should not be discounted in estimating 

causal effects.  
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Propensity Scores and Measurement Error 

In many of the social sciences, psychological variables can produce confounding because 

they are often related both to treatment selection (such as when individuals get to choose their 

own treatment) and to outcomes (such as when the outcome depends on motivation or is caused 

by baseline psychological characteristics). A major issue with psychological variables is that 

they are almost always measured with error (Bollen, 2002). Until recently, the problems 

associated with conditioning on an indicator of a mis-measured variable rather than on the true 

variable itself had been largely ignored in the causal inference literature. Steiner, Cook, and 

Shadish (2011) were the first to systematically investigate the effects of measurement error in 

covariates of the propensity score model on bias in the estimated treatment effect. They found 

that decreasing the reliability of measures of latent covariates associated with the treatment and 

outcome led to increased bias in treatment effect estimates. Other researchers found similar 

results in simulations that attempted to provide solutions to the problem of measurement error 

(e.g., Jakubowski, 2015, McCaffrey, Lockwood, & Setoji, 2013). Rodríguez De Gil et al. (2015) 

ran a large, comprehensive simulation study examining the effects of covariate unreliability on 

treatment effects estimated with propensity scores. They found that even small unreliability in 

covariates (e.g., reliabilities of .8) can lead to marked increases in bias, increased Type I error 

rates, and decreased confidence interval coverage. They did not examine a solution to these 

problems. 

Several approaches have been developed to deal with covariate measurement error and 

related issues such as covariate missingness and unmeasured confounding, all of which can be 

considered issues in the same vein (e.g., Cole, Chu, & Greenland, 2006). These approaches 

include multiple imputation with calibration (Webb-Vargas, Rudolph, Lenis, Murakami, & 

Stuart, 2015), corrected propensity score weighting (McCaffrey, Lockwood, & Setoji, 2013), and 
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subclassification on latent classes (Masyn & Walderman, 2016). Although promising, most 

current approaches have limitations that hamper their widespread use: they are challenging to 

implement for substantively oriented researchers, some require external validation samples or 

otherwise untestable but major distributional assumptions, and they are still in their infancy, with 

little empirical validation. 

Another solution that has gained some attention is to use latent variable (LV) models to 

generate estimates of the mis-measured covariate and then use those estimates in place of the 

true variable in standard propensity score analysis. This method involves generating factor scores 

from the observed indicators of the LV using standard factor analysis or principal components 

analysis. Raykov (2012) proposed this solution and supported it with analytical derivations and a 

simulated demonstration of its efficacy. Jakubowski (2015) explored this method as well, using 

simulations to more systematically examine its effectiveness under a variety of circumstances, 

including treatment model misspecification. Both authors found modest reductions in bias 

relative to using the observed covariates in propensity score analysis.  

In a manuscript under review for publication, Nguyen, Hong, Ebnesajjad, and Stuart (under 

review) expanded on this method by incorporating other covariates and the treatment variable 

into a structural equation model and using factor scores generated from this model in a standard 

propensity score analysis. In this way, treatment was modeled as an indicator of the LV. This 

method yielded dramatic improvement in bias reduction compared to the method of using factors 

scores generated from the measurement model only. Because of its effectiveness and the ease of 

performing structural equation modeling and generating factor scores, this method holds promise 

for widespread use. Though it may seem unusual to include the treatment variable as an indicator 

of the LV when estimating factor scores as done in Nguyen et al. (under review), there is some 
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precedent for including the outcome in estimating the predictor of that outcome. 

First, the Mantel-Haenszel technique, used to determine whether a test item functions 

differentially for two groups of units that are otherwise identical on their level of the measured 

construct, involves matching units with similar levels of the construct to be measured and 

comparing their responses to items (Michaelides, 2008). Holland and Thayer (1988) and Zwick 

(1990) found that matching on a proxy for the construct that included the item under study (i.e., 

the item for which the differential functioning between groups was in question) yielded superior 

performance for accurately assessing whether the item functioned differentially. In this way, the 

relationship between group membership and item response is examined conditional on a measure 

that includes the item response, similar to how Nguyen et al. (under review) proposed that the 

outcome of the propensity score model (i.e., the treatment) should be used to construct the score 

that is used as a predictor of that same outcome. 

Second, when missing data techniques (e.g., multiple imputation or full-information 

maximum likelihood) are used to “fill in” values for the missing variable, a distribution for the 

missing variable must be specified conditional on a set of related covariates (Collins, Schafer, & 

Kam, 2001). When the variable with missingness is used to predict an outcome (and therefore its 

relationship with the outcome is in question), it is recommended to include the outcome in the 

estimation of the conditional distribution of the variable (Leyrat et al., 2017; Meng, 1994; 

Moons, Donders, Stijnen, & Herrell, 2006). In the sense that LVs and missing data are related 

concepts (Blackwell, Honaker, & King, 2017), it would seem to be prudent to apply the lessons 

from the missing data literature to problems in measurement error (Mislevy, Johnson, & Muraki, 

1992). Indeed, in the context of categorical latent variables, this line of reasoning led to the 

development of a similar approach for latent class analysis with distal outcomes, in which the 
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distal outcome is included as a covariate in the latent class model used for class assignment 

before the outcome is regressed on class membership (Bray, Laza, & Tan, 2015). 

Instead, Burt (1976) described the procedure of using outcomes as indicators of LV models 

as leading to “interpretational confounding,” in that the meaning of the LV (and therefore its 

relationship with its indicators) changes when including an outcome in its measurement model. 

To the degree the meaning of the LV affects its relationship with an outcome, some authors 

argue that measures should be taken to separate the measurement step and outcome modeling 

step entirely (Burt, 1976). The approach of Nguyen et al. (under review) explicitly violates this 

recommendation by including the outcome (i.e., the treatment) in the measurement model and 

using the estimated scores from that model in predicting the same outcome.  

There is both theoretical precedent and controversy in the use of the treatment as an indicator 

to estimate factor scores for propensity score analysis. Below I discuss factor scores and 

measurement models in more detail, primarily considering standard measurement models (in the 

sense that only indicators of a LV, as opposed to outcomes, are included).  

Factor Analysis and Factor Scores 

Factor scores, also known as scale scores in item response theory (IRT), are point estimates 

of units’ values on a LV given some indicators and a model linking the LV to the indicators (i.e., 

the measurement model). There are variety of ways to compute factor scores (Grice, 2001), 

though they are often highly correlated with each other (Fava & Velicer, 1992). The first step is 

often to specify and estimate a (generalized) factor score model, which parametrically links the 

LV to its indicators, using an equation such as 

 µ𝑖𝑗 =  𝑔𝑖
−1(𝜈𝑖  +  𝜆𝑖𝜂𝑗) (11) 

where µij is the expected value of indicator i for person j, ηj is the value of the LV for individual j 
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assumed be normally distributed as  

 𝜂𝑗  ~ 𝑁(𝛼, 𝜓) (12) 

where α and ψ are the mean and variance, respectively, of the LV, and νi and λi are parameters 

describing the linear relationship between ηj and µij (Bauer, 2017; Bauer & Hussong, 2009). In 

relation to a generalized linear model, gi
-1(.) is an inverse link function, which may differ for 

each item depending on its type; a response function is also specified to relate the expected value 

of the indicator µij to actual indicator values uij. For example, a linear factor model with 

continuous indicators might include an identity link (and inverse link) and a normally distributed 

response function, while a 2-PL IRT model with binary indicators would include a logit link and 

a binomial response function (Bauer & Hussong, 2009). For this 2-PL model, the relationship 

between µij and the observed response uij for item i would be defined as P(uij = 1| ηj) = µij. 

Once parameters for the factor model have been estimated, they can be used to generate 

factor scores based on individuals’ patterns of responses and assumptions about the distribution 

of the LV. For each individual, a “posterior” distribution f for the LV can be formed by taking 

the product of the conditional item response functions (i.e., measurement equations) for each 

item and the conditional LV distribution (usually specified as Gaussian), as in the following 

equation: 

 

𝑓(𝜂𝑗|𝒖𝑗) = ∏ 𝑇𝑖(𝑢𝑖𝑗|𝜂𝑗)𝜙(𝜂)

𝑛𝑖𝑡𝑒𝑚𝑠

𝑖=1

 (13) 

where uj is the vector of all item response for unit j, Ti is the estimated response curve for item i, 

and ϕ is the probability density function of η (i.e., mentioned in equation 12). Factor scores can 

be computed as the expectation or mode of this posterior distribution. Though there are a variety 

of choices to be made when considering how to compute factor scores, especially with 
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continuous items (Grice, 2001), Lu and Thomas (2008), building off core results of Skrondal and 

Laake (2001), recommend using the expected a posteriori (EAP) score estimates, which involve 

computing the expectation of this posterior distribution, when the scores are to be used as 

predictors in regression models. 

A problem with estimating factor scores, and with factor analysis in general, is factor 

indeterminacy; perfect estimates of the LVs are impossible because the LV does not have a 

posterior point distribution after observing and modeling the indicators (Maraun, 1996). That is, 

𝑓(𝜂𝑗|𝒖𝑗) has nonzero variance. Modeling more information about the LV can reduce 

indeterminacy by reducing the posterior variance, yielding more precise estimates of the LV in 

the form of factors scores (Fava & Velicer, 1992). This information can come in the form of a 

larger sample size, more indicators, and higher multiple correlation of other covariates with the 

LV (Bollen, 2002). Given a constant sample size, including more indicators (i.e., consequences) 

of the LV and modelling covariances with other observed variables will thereby reduce factor 

indeterminacy, leading to superior factor score estimates (Mislevy et al., 1992). These properties 

may help explain why the approach to propensity score estimation of Nguyen et al. (under 

review) led to improved performance of the propensity scores: including the treatment variable 

as a consequent of the LV increased the number of its indicators, and including the covariances 

between other covariates and the LV increased the multiple correlation for the LV, both of which 

reduce its indeterminacy by reducing the variance of it posterior distribution. 

Moderated Nonlinear Factor Analysis 

Factor score estimates can be improved with available background variables in other ways. 

Curran et al. (2016) found that using background variables in the measurement model improved 

factor score estimates. The reason is that when holding the often-untenable assumption that the 
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same scoring algorithm exists for all units, estimates of the LV are biased and imprecise, 

resulting from incorrect modeling of the relationship between the LV and its indicators. Two 

ways background variables might influence measurement are known as impact and differential 

item function (DIF). Impact occurs when background variables affect the distribution of the LV 

(i.e., by creating different values of α and ψ in equation (12) for each individual). The LV mean 

and variance for individual j are instead specified as 

 𝛼𝑗  =  𝑓𝛼(𝑿𝑗) (14) 

and 

 𝜓𝑗  =  𝑓𝜓(𝑿𝑗), (15) 

where αj and ψj are the mean and variance, respectively, of the LV for individual j with 

background variables Xj, and fα and fψ relate Xj to αj and ψj. DIF occurs when background 

variables affect the parameters relating the LV to its indicators (i.e., by creating different values 

of νi and λi in equation (11) for each individual). In this case, the item intercept and loading for 

individual j are specified as 

 𝜈𝑖𝑗 =  𝑓𝜈𝑖
(𝑿𝑗) (16) 

and 

 𝜆𝑖𝑗 =  𝑓𝜆𝑖
(𝑿𝑗), (17) 

where νij and λij are the factor intercept and loading for item i for individual j with background 

variables Xj, and fνi and fλi relate Xj to νij and λij.  

Unmodeled impact and DIF affect factor score estimation because the parameters of the LV 

distribution and measurement equations will be assumed to be constant across individuals (i.e., 

not involving on Xj), thereby yielding an incorrect posterior distribution from which to compute 

the factor scores. It is possible to incorporate background variables into LV models using 
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moderated nonlinear factor analysis (MNLFA), an expansion of generalized factor analysis that 

allows for the simultaneous modeling of the relationships between covariates and both the LV 

and its indicators (Bauer & Hussong, 2009; Curran, et al., 2014). Doing so involves specifying a 

model for the LV mean, a model for the LV variance, and models for the parameters in the 

measurement models of the indicators, all of which can contain background covariates of any 

variable type, subject to identifiability constraints. Thus, each of the parameters estimated in the 

models in equations (11) and (12) can vary across individuals, and can be modeled in terms of 

functions containing background covariates as in equations (14) through (17). 

The models are simultaneously estimated, yielding parameter estimates that can be used to 

generate factor score estimates using an updated version of equation (13) (Bauer & Hussong, 

2009): 

 

𝑓(�̂�𝑗|𝒖𝑗, 𝑿𝑗) = ∏ 𝑇𝑖(𝑢𝑖𝑗|𝜂𝑗 , 𝑿𝑗)𝜙(𝜂𝑗|𝑿𝑗)

𝑛𝑖𝑡𝑒𝑚𝑠

𝑖=1

 (18) 

which now conditions on Xj. Ti and ϕ now explicitly involve j and involve estimating the 

parameters in fα, fψ, fνi, and fλi.  

Curran, et al. (2016) used a simulation to examine the performance of this technique and 

others for estimating factor scores in various conditions of covariate involvement in the 

measurement model. Simulation factors included percent of items with DIF, ratio of mean 

impact to variance impact, number of items, and the magnitude of DIF. Examined scoring 

models included proportion scores (i.e., the mean of the indicators), unconditional MNLFA (i.e., 

a 2-PL IRT model), MNLFA accounting for impact, and MNLFA accounting for both impact 

and DIF. The authors found fairly substantial improvements in factor score recovery (as 

measured by the correlation between the estimated scores and the true scores and the RMSE of 
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the estimated scores) under all scenarios when using MNLFA that accounted for both impact and 

DIF, even when the covariate involvement was small, and especially when it was large.  The 

authors conclude by recommending the inclusion of background variables when available 

through MNLFA in estimating factor scores. 

Propensity Scores and MNLFA 

Given these findings, it would appear that involving background variables in factor score 

estimation for propensity score modeling is a plausible solution to the problem of improving 

propensity score-based methods with mis-measured covariates. In settings in which propensity 

scores are commonly used, background variables are often plentiful, as they are included in the 

models used to estimate the propensity scores. These background variables may be able to 

provide more information than solely their prediction of the probability of treatment assignment; 

including some of them in a MNLFA model for the estimation of the factors scores of the latent 

confounder may also help to decrease bias and improve the precision of the effect estimate. As 

the use of factor scores in propensity score estimation is still in its infancy, these possibilities 

have not yet been examined, and they may provide a benefit to research assessing causal effects 

in the ubiquitous circumstance of confounding and measurement error. 

With the present study, I aimed to address a fundamental problem in propensity score 

analysis with human data: that measurement error is often inherent in the covariates one must 

account for to eliminate confounding. By incorporating the findings by Jakubowski (2015) and 

Nguyen et al. (under review) that factor scores can improve the results of propensity score 

analyses and the finding by Curran et al. (2016) that background variables can be used to 

improve factor score estimation, I hoped to provide a new set of procedures for applied 

researchers in the context of covariate measurement error. The application of propensity score 

methods and LV models in tandem may help bring advances in psychometric techniques to bear 
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on these causal methods often used in other disciplines with little development in accounting for 

measurement error. 

Drawing from theory and prior results on measurement error, factor scoring, and propensity 

score analysis described previously, I proposed the following hypotheses to be addressed in this 

study. First, I hypothesized that failing to model impact and DIF when they are present will yield 

degraded factor score estimates, thereby biasing causal effect estimates in addition to increasing 

their variability. Second, I hypothesized that using MNLFA and including background covariates 

will improve causal effect estimation by yielding factor score estimates that better emulate the 

true confounder addressed using propensity scores, thereby reducing the bias and variability of 

the effect estimate. Third, I hypothesized that in cases of uncertainty about the population impact 

and DIF effects, the detriments of over-modeling when impact and DIF are not present will be 

outweighed by the benefits of correct modeling when they are present, especially when more 

information about the LV is available. Finally, I hypothesized that the factor scores generated 

from models that most closely matched the data-generating model would yield the most accurate 

information about balance on the true latent confounding variable. 

I used a simulation study to systematically test these hypotheses by varying the factors 

related to factor score recovery and examining their effects on effect estimates and balance in the 

confounders. In particular, I varied the presence of impact and DIF, the number of items, and the 

method of generating the factor score estimates in the context of a propensity score analysis of 

the treatment effect of a binary treatment on a continuous outcome, a situation that is common in 

causal studies in psychology. 
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CHAPTER 1: METHODS 

Data Scenario 

To provide concreteness to the simulation, it is helpful to consider a hypothetical 

observational study comparing the effect of a standard vs. an experimental after-school program 

for elementary school students on emotional wellbeing at the program’s end. We might imagine 

this study spread over two sites implementing the same programs. Students are allowed to 

choose the program in which they take part, and we can imagine their choice depends on factors 

including site-specific characteristics, their age, and their level of an LV (e.g., depression) as 

measured by an error-prone psychological scale with binary items and known DIF such as the 

Child Behavior Checklist (CBCL; Achenbach & Edelbrock, 1981). In this example, our 

“treatment” is the experimental program, while the “control” is the standard program. The 

outcome is measured emotional well-being at the program’s end, which itself is known to depend 

on a variety of factors, including those that influence selection into the chosen program1. We will 

imagine that age, site, and the LV constitute a sufficient set of variables to identify the causal 

effect of the experimental program relative to the standard one. We can assume one is interested 

in the ATE, the hypothetical average effect of moving all students from the standard program to 

the experimental program. We will imagine that levels and the measurement of the LV may be 

affected by each student’s site and age, which is plausible given prior research (e.g., Curran et 

al., 2014). 

                                                 
1 For the purposes of this simulation, it will be assumed that the outcome construct of interest is measured perfectly; 

however, psychological variables like this are often subject to measurement error. 



24 

I simulated data consistent with the path model in Figure 2. The data-generating model 

includes two components: a binary treatment (program) with a causal effect on an observed 

continuous outcome (well-being) confounded by an observed binary variable (site), an observed 

continuous variable (age), and a latent continuous variable (depression); and a measurement 

model for the LV that includes binary indicators, mean and variance impact from the observed 

confounders, and slope and intercept DIF from the observed confounders. The causal portion of 

the model is a setup common in propensity score simulations (e.g., Jakubowski, 2015; Nguyen et 

al., under review), while the measurement portion is similar to that used in Curran et al. (2016).  

Latent and Observed Confounders 

The LV is measured with a set of k binary items. I specified the corresponding measurement 

model as follows2: for j = 1, …, n individuals assessed on i = 1, …, k binary indicators, each 

indicator wij will follow a Bernoulli distribution with probability pij defined by the factor model 

as  

 𝑝𝑖𝑗 =  (1 +  𝑒𝑥𝑝(−(𝜈𝑖𝑗  +  𝜆𝑖𝑗𝜂𝑗)))−1 (M1) 

where νij is the intercept of item i for person j, λij is the loading of item i for person j, and ηj is 

value of the LV for person j, distributed as 𝜂𝑗  ~ 𝑁(𝛼𝑗, 𝜓𝑗). This corresponds to a generalized 

linear model with a logit link and a Bernoulli response function, equivalent to a 2-PL IRT model 

when considering ηj as latent.  

The observed covariates site and age were generated, respectively, as being drawn from a 

Bernoulli distribution with probability 0.6 and from a uniform distribution with bounds (-3, 3) 

(i.e., as if age were centered at its population mean for the group of interest). Although typically 

many more confounders and at least several moderators of the factor model would be present in 

                                                 
2 Formulas in this section are numbered with a preceding letter “M” to distinguish them from statistical formulas 

used elsewhere. 
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an analysis with real data, here I limited my simulation to just two variables for simplicity of 

illustration, with the hope that results would generalize to situations with more variables and 

variables of types other than binary and uniform continuous. Substantive theory would typically 

drive the selection of these variables.  

Measurement Moderation 

I defined measurement moderation using the following models: I defined mean and variance 

impact, respectively, as  

 𝛼𝑗  =  𝛾0  +  𝛾1𝑎𝑔𝑒𝑗 + 𝛾2𝑠𝑖𝑡𝑒𝑗 +  𝛾3𝑎𝑔𝑒𝑗  ×  𝑠𝑖𝑡𝑒𝑗 (M2) 

and 

 𝜓𝑗 =  𝛽0𝑒𝑥𝑝(𝛽1𝑎𝑔𝑒𝑗  +  𝛽2𝑠𝑖𝑡𝑒𝑗). (M3) 

These equations are instantiations of equations (14) and (15). By this specification, the mean (αj) 

and variance (ψj) of the LV depend on (i.e., are impacted by) the levels of age and site; there is 

also an interactive effect of age and site on the mean (i.e., the effect of age on the LV mean is 

moderated by site). Equation (M3) for the LV variance ψj corresponds to a log-linear model so 

that the variance is bounded at 0 (Bauer, 2017; Bauer & Hussong, 2009). The parameters were 

chosen so that the marginal LV mean and variance were 0 and 1, respectively, in the population. 

I defined intercept and loading (i.e., slope) DIF, respectively, as  

 𝜈𝑖𝑗 =  𝜅0𝑖 +  𝜅1𝑖𝑎𝑔𝑒𝑗  + 𝜅2𝑖𝑠𝑖𝑡𝑒𝑗 (M4) 

and 

 𝜆𝑖𝑗 =  𝜔0𝑖 +  𝜔1𝑖𝑎𝑔𝑒𝑗  +  𝜔2𝑖𝑠𝑖𝑡𝑒𝑗 (M5) 

The equations correspond to equations (16) and (17). As above, the intercept (νij) and loading 

(λij) each depend on the levels of site and age. 
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Treatment and Outcome Models 

I specified the treatment effect model as follows, consistent with many propensity score 

simulations, notably Nguyen et al. (under review). I defined the treatment selection model as  

 
log (

𝑒𝑗

1 − 𝑒𝑗
) =  𝑎0 + 𝑎1𝑎𝑔𝑒𝑗 + 𝑎2𝑠𝑖𝑡𝑒𝑗 + 𝑎3𝜂𝑗  (M6) 

where ej is the probability of selecting the experimental program; that is, ej is the “true” 

propensity score (i.e., the model-generated probability of treatment assignment for each 

individual). This model is consistent with a logistic regression model where selection probability 

is determined only by site, age, and the LV. Program selection (Zj) is drawn from a Bernoulli 

distribution with probability ej for each unit j. The coefficients are listed in Table 1 and were 

chosen so that age, site, and the LV uniquely explain 5%, 5%, and 10%, respectively, of the 

variance in the logit of the true propensity scores, and the marginal probability of treatment is 

.35. These reflect small to medium effect sizes for the observed covariates and a medium effect 

size for the LV (Cohen, 1988, p. 413). SMDs (defined in equation 9) were 0.52 (age), 0.39 (site), 

and 0.80 (LV); these indicate significant covariate imbalance, especially for the LV, given that 

absolute SMDs of 0.10 or lower are considered tolerable (Stuart, 2010).  

I defined the outcome model as  

 𝑌𝑗 =  𝜏𝑍𝑗 +  𝑏1𝑎𝑔𝑒𝑗 + 𝑏2𝑠𝑖𝑡𝑒𝑗 +  𝑏3𝜂𝑗 + 𝑏4𝑎𝑔𝑒𝑗  ×  𝜂𝑗 +  𝑏5𝑠𝑖𝑡𝑒𝑗  ×  𝜂𝑗  

+  𝜀𝑗 

(M7) 

where 𝜀𝑗  ~ 𝑁 (0, 𝜎2). The purpose of including interactions in this model is to simulate a level of 

model complexity that applied researchers may not know to specify beforehand in their outcome 

model. A benefit of propensity score methods is that they yield unbiased results even when then 

outcome model is complex, so long as an appropriate propensity score model has been specified. 

Here there is no effect moderation on treatment and the potential outcome models for each unit 
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differ only on Zj. Thus, τ is the causal effect of the experimental program on the outcome, and its 

estimate is the causal effect estimate that is the focus of the analysis of the simulations. The 

coefficients are listed in Table 1 and were chosen so that age and site each uniquely explained 

6% of the variance in the outcome, the LV uniquely explained 12% of the variance in the 

outcome, and the interactions each uniquely explained 2% of the variance in the outcome, so that 

all variables jointly explained 34% of the variance in the outcome. Together with the treatment 

selection, these parameters created significant confounding by the covariates, yielding an 

unadjusted treatment effect estimate with a Cohen’s d of approximately 0.6, indicating a 

moderate to large effect of treatment (Cohen, 1988, p. 40), when the true treatment effect was 0. 

The residual variance (σ2) was chosen to scale and identify the effects of the covariates. 

Design Factors 

The design factors include the presence of impact (two levels), the presence of DIF (two 

levels), and the number of items (two levels), for a total of eight cells. Each cell was replicated 

1000 times, for a total of 2 x 2 x 2 x 1000 = 8000 simulated data sets. Each data set contained 

1000 individuals, which is reasonable for a two-site observational study and appropriate for both 

MNLFA and propensity score applications (e.g., Curran et al., 2017; Nguyen, Ebnesajjad, Stuart, 

Kennedy, & Johnson, 2018). Sample size will not be included as a varying design factor, given 

that its effects are predictable and Curran et al. (2016) found meager effects and no interactions 

with other design factors. 

Impact. As exogenous predictors, it is expected that the observed and latent variables would 

naturally covary. I defined the presence of impact as covariate effects on the LV mean and 

variance above and beyond this covariance between the covariates and the LV. Regardless of the 

presence of impact in the simulation design, the covariates jointly explained 15% of the variance 

in the LV mean model (M2), yielding correlations between the LV and age of .33 and between 
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the LV and site of .21, which correspond to medium correlations commonly observed in practice 

(coefficient values are in Table 1). In the “impact absent” condition, the LV mean model 

contained only the linear terms, and the LV variance was constant across individuals. In the 

“impact present” condition, an interaction between site and age was included in the LV mean 

model, and covariate effects were also included in the LV variance model (M3) so that the 

variance of the LV differed for each individual based on their covariate values. The coefficients 

of the variance model are listed in Table 1 and were chosen so that across individuals, the inter-

quartile range of the model-generated LV variances was 0.5, corresponding to a medium amount 

of variability in the variances due to age and site, which was enough to perturb estimates using 

traditional method methods in Curran et al. (2016) and differentiated the results between the 

“impact present” and “impact absent” conditions in pilot testing. To ensure equality across 

conditions, parameters were chosen so that the marginal mean and variance of the LV were 

approximately 0 and 1, respectively, in the population. 

DIF. I defined the presence of DIF as covariate effects on the intercept and loading 

parameters of the indicator measurement models. In the “DIF absent” condition, the parameters 

of the measurement models were the same across individuals for each item. In the “DIF present” 

condition, these parameters differed across individuals based on age and site on half the items. 

The parameters are listed in Table 2 and were chosen to yield weighted area between curves 

(wABC)—a standardized measure of effect size for DIF—of approximately 0.3 on average, 

which has been considered a cutoff for delineating problematic DIF from unproblematic DIF 

(Edelen, Stucky, & Chandra, 2015). The items that had DIF in the “DIF present” condition were 

identical to those that did not have DIF so that any differences caused by DIF were attributable 

to the presence of DIF broadly and not the presence of DIF for a certain type of item. Item 
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endorsements ranged between .5 and .75. Item communalities, computed as the squared 

correlation between the LV and the continuous latent propensity underlying the item 

endorsement probabilities (Long, 1997), ranged from .23 to .7. The parameters and proportion of 

items with DIF are comparable to those found in empirical integrative data analysis applications, 

including Curran et al. (2014), and differentiated the results between the “DIF present” and “DIF 

absent” conditions in pilot testing. Specific values are in Table 2. 

Number of Items. The number of items was either six or 12. As in many simulation studies, 

the effect of the number of items is straightforward: the more items, the better the precision of 

the estimates because of increased factor determinacy (Bollen, 2002). This was found in both 

Curran et al. (2016) and Jakubowksi (2015). The reason for including it here was to examine 

whether the potential loss in precision due to over-modeling impact and DIF when there are none 

is comparable to the gain in efficiency when increasing the number of items. Curran et al. (2016) 

also found in metamodels that the number of items interacted with other design factors, including 

the magnitude of impact and DIF, which are studied here.  

Data Generation and Analysis 

Data was generated in R (R Core Team, 2018) in the following sequential steps for each 

replication. First, values of site and age were generated from the distributions previously 

described. Next, values of the LV were generated using equations (M2) and (M3) to define the 

mean and variance of the LV. Next, the indicators of the LV were generated using equations 

(M1), (M4), and (M5). Next, the treatment variable was generated using equation (M6), and 

finally, the outcome variable was generated using equation (M7).  
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Effect Estimation Models 

Within each simulation, several estimation models were employed. In all but the naïve model 

(defined below), the following steps occurred. First, a score was estimated to represent the LV. 

Second, a logistic regression model was fit with treatment status as the response and the 

observed covariates and the estimated LV score as predictors; this served as the propensity score 

model from which predicted probabilities were estimated as propensity scores. Third, the 

propensity scores were transformed into weights with the following formula: 

 
𝑤𝑗 =  

𝑍𝑗

�̂�𝑗
+

1 − 𝑍𝑗

1 − �̂�𝑗
, (M8) 

where 𝑍𝑗 is the treatment status for individual j and �̂�𝑗 is their estimated propensity score. These 

weights are appropriate for estimating the ATE (Austin, 2011). Finally, an outcome regression 

model as specified in equation (10) was fit using the estimated weights for WLS estimation to 

acquire a treatment effect estimate for each data set. Additionally, using each set of weights, I 

computed the weighted SMD of the estimated LV score between the treated and control groups, 

and the same for the true value of the corresponding LV; these served as balance summaries for 

the estimated and true LVs. 

 The following are the methods that were employed in this simulation, which involve the 

basic, current best practice, and proposed improved methods. 

Method 1: Naïve Model. In this method, neither scores for the LV nor propensity scores 

were estimated. A regression of the outcome on only the treatment variable (i.e., a t-test) was fit 

to attain a naïve treatment effect estimate with no adjustment for confounding. The goal of the 

subsequent methods was to arrive at improved treatment effect estimates relative to this 

unadjusted estimate; therefore, this model served as a baseline. 
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Method 2: Individual Items. In this method, no LV scores were estimated; the propensity 

score model was fit using the individual items and the observed covariates to predict the log odds 

of treatment, as follows: 

 

log (
𝑃(𝑍𝑗 = 1)

1 − 𝑃(𝑍𝑗 = 1)
)  =  𝑏0 + 𝑏1𝑎𝑔𝑒𝑗 +  𝑏2𝑠𝑖𝑡𝑒𝑗 + ∑ 𝑏𝑖+2𝑋𝑖𝑗

𝑘

𝑖=1

 (M9) 

where 𝑋1𝑗, … , 𝑋𝑘𝑗 are the k indicators for the LV. This approach was examined by Jakubowski 

(2015), Nguyen et al. (under review), and Raykov (2012) and represents an approach 

recommended by Steiner, Cook, and Shadish (2011) to improve propensity score estimation with 

potentially unreliable variables. This technique might be typically employed when several 

observed variables seem to measure the same construct but may not clearly fall within a known 

factor structure. To compute the balance summary for this method, I computed the weighted 

SMD for each item between the treated and control groups and then used the mean of these 

SMDs to serve as the balance measure. 

Method 3: Simple FS. In this method, an unconditional generalized factor model (i.e., a 2-

PL IRT model, not including the observed covariates) was fit to generate the factor scores. 

Figure 3A depicts a path diagram corresponding to the fitted model. The estimated factor scores 

�̂� were computed using EAPs and were used in the following logistic regression model: 

 
log (

𝑃(𝑍 = 1)

1 − 𝑃(𝑍 = 1)
)  =  𝑏0 +  𝑏1𝑎𝑔𝑒𝑗 + 𝑏2𝑠𝑖𝑡𝑒𝑗 + 𝑏3�̂�𝑗  (M10) 

the predicted values of which formed the estimated propensity scores. SMDs of these factor 

scores were used in computing the balance summary. This method corresponds to the approach 

recommended by Jakubowski (2015) and Raykov (2012) and to the simple factor score method 

described in Nguyen et al. (under review). This method assumed equal factor loadings across 

individuals and an unconditional normal distribution for the LV. To identify the model, the LV 
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mean and variance were fixed at 0 and 1, respectively, and all intercepts and loadings were freely 

estimated. 

Method 4: MNLFA Simple FS. I fit a conditional (i.e., MNLFA) generalized factor model 

to the items, modeling mean impact on the LV from site, age, and their interaction; variance 

impact on the LV from age and site modeled with a log-linear function (Bauer & Hussong, 

2009); and intercept and loading DIF from age and site on half of the items. Figure 3B depicts a 

path diagram corresponding to the fitted model. When DIF and impact were present, this 

MNLFA model corresponded to the data-generating model for the LV and items; otherwise, this 

model involved over-modeling nonexistent impact or DIF. DIF was modeled for the “correct” 

indicators, i.e., those indicators that in the “DIF present” condition had DIF (and therefore over-

modeling non-existent DIF for those same items in the “DIF absent” condition). To identify the 

model, the mean and variance at the reference levels of the covariates (i.e., at 0) were fixed at 0 

and 1, respectively, and all loadings were freely estimated. Factor scores �̂� were estimated from 

this model using EAPs of the conditional LV distribution and measurement functions as in 

Curran et al. (2016) and used to estimate propensity scores from the logistic regression model in 

equation (M10) and to compute the balance summary. 

Method 5: Fully Inclusive FS. I fit a structural equation model linking the covariates and 

the LV to the treatment (including the items as indicators), and then generated factor scores for 

the LV from this model. In this way, the treatment is used as an indicator of the LV, and linear 

covariances between the observed covariates and the LV are estimated in the model. Figure 3C 

depicts a path diagram corresponding to the fitted model. This model follows the same structure 

as the fully inclusive factor model proposed by Nguyen et al. (under review). The same 

identifying constraints were used as in the Simple FS method. Because the structural equation 
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model includes estimating covariances between the observed and LVs, any linear impact on the 

LV mean by the observed variables is modeled. The estimated factor scores �̂� were estimated 

using EAPs and were used in the logistic regression specified above in equation (M10) and to 

compute the balance summary.  

Method 6: MNLFA Fully Inclusive FS. I fit a MNLFA model as in MNLFA Simple FS 

method but included the relationship between the covariates, LV, and treatment as in the Fully 

Inclusive FS method. Figure 3D depicts a path diagram corresponding to the fitted model. When 

impact and DIF were present, this model corresponded to the data-generating model for the LV, 

items, and treatment, and involved over-modeling covariate relationships with the LV and items 

otherwise. As with the fully inclusive factor model, the treatment functions as an indicator for 

the LV. The same identifying constraints were used as in the MNLFA Simple FS method. The 

estimated factor scores �̂� were used in the logistic regression specified above in equation (M10) 

and to compute the balance summary. 

Method 7: True LV. Finally, these methods were compared to a model that uses the true LV 

in place of estimated factor scores in equation (M10). In practice, this method would not be 

accessible to researchers because the true values of the LVs are not available. This will serve as a 

benchmark for the other methods, given that this method uses true LV values and therefore is (in 

theory) the best a method relying on estimated LV values could achieve. Given that the 

propensity score model was correctly specified, this method was expected to yield the least 

biased and most precise estimates, even more precise than a model that were to use the true (i.e., 

model-generated) probabilities of treatment assignment (Lunceford & Davidian, 2004). 
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Model Estimation 

The factor score models were fit in Mplus using the MplusAutomation package (Hallquist & 

Wiley, 2018). The propensity score estimation and effect estimation were performed in R. LV 

models were fit with maximum likelihood estimation with adaptive quadrature and 15 quadrature 

points per dimension using default start values and convergence criteria; Bauer (2017) and 

Curran et al. (2016) found these specifications to be effective. In the Simple FS and Fully 

Inclusive FS methods, the LV was scaled to have mean 0 and variance 1 in order to identify the 

model. In the MNLFA Simple FS and MNLFA Fully Inclusive FS methods, the LV was scaled 

to have mean 0 and variance 1 for the “reference” group (i.e., when site and age are both 0) 

(Bauer, 2017). 

Criterion Variables 

Six criterion variables were examined and compared across conditions and method: mean 

factor score correlations with the true LV, mean propensity score correlations with the optimal 

propensity score, mean percent bias remaining (PBR), root mean squared PBR (RMSPBR), 

mean true balance, and root mean squared balance discrepancy (RMSBD). 

Mean factor score correlations with the true LV were computed for all methods that involved 

estimating a factor score. The Pearson correlation for each factor score type with the true LV 

values was computed for each replication and then averaged within cells. High correlations 

between the factor scores and the true LV indicate that the estimated factor scores using the 

given method represent the true LV values well.  

Mean propensity score correlations with the optimal propensity score were computed for all 

methods that involved estimating propensity scores. The “optimal” propensity scores are those 

estimated using the correct model and true LV values. Note that these will differ from the true 

model-generated treatment probabilities; propensity scores estimated using the correct model 
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yield unbiased effect estimates with smaller variance than do true assignment probabilities 

(Lunceford & Davidian, 2004), and therefore provide a better benchmark for comparison of the 

propensity scores estimated without access to the true LV values3. High correlations between the 

estimated and optimal propensity scores indicate that the estimated propensity scores should 

function similarly to the true propensity scores in arriving at covariate balance and therefore an 

unbiased estimate of the treatment effect. Although no hypothesis implied this criterion, I 

included it to help explain the patterns of results found. 

The mean PBR was computed for all methods; for each method within each replication, PBR 

was computed using the following formula: 

PBR = 100 ∗ (�̂� − 𝜏𝑝𝑜𝑝)/(�̂�𝑛𝑎ï𝑣𝑒 − 𝜏𝑝𝑜𝑝) 

where �̂� is the estimated treatment effect for a given method, 𝜏𝑝𝑜𝑝 is the treatment effect in the 

population (here, 0), and �̂�𝑛𝑎ï𝑣𝑒  is the treatment effect estimated using the Naïve method (i.e., the 

raw difference in group means)4. A PBR of 100 means that the estimated treatment effect was as 

biased as the naïve estimate, and no bias was removed; a PBR of 0 means that the effect estimate 

was perfectly unbiased (i.e., equal to the population treatment effect); PBRs between 100 and 0 

mean that not all bias was removed using the adjustment method; and PBRs less than 0 mean 

that there was overcorrection (i.e., bias in the direction opposite to that of the naïve estimate). 

The mean PBR was computed for each method and cell of the design.  

The RMSPBR was computed as the square root of the mean of the squared PBRs for each 

                                                 
3 The pattern of results was essentially unchanged when using the model-generated treatment probabilities as a 

benchmark. 

 
4 I used PBR rather than raw bias because the initial bias differed between cells due to the effects of impact on the 

covariance among the covariates; PBR ensures that all bias reduction is placed on the same scale. In addition, using 

proportion-based criteria (akin to measures of relative bias) allows for the interpretation of bias and variability in a 

way separated from the arbitrary scale of the variables used in this simulation. 
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method and design cell, and functions similarly to a traditional root mean squared error (RMSE), 

in that it indicates the typical distance of each effect estimate from the population effect and is on 

the same scale as the PBR. RMSPBRs close to 0 indicate that PBRs were typically low, and the 

effect estimate was often close to the population effect. For mean PBRs and RMSPBRs, I 

considered differences of greater than 1 between cells to be statistically meaningful on the 

context of this simulation5. All PBR and RMSPBR values are reported in Table 3 and in the 

subsequent text as whole numbers for clarity. I omit “%” in the reporting of the results, but the 

mean PBR should be interpreted as a percentage, and the RMSPBR, while not a percentage, 

should be interpreted on the same scale as the mean PBR (i.e., as percentage points). 

For each method, estimated and true balance summaries were created. For the methods that 

involved estimating a factor score, the estimated balance summary was the weighted SMD of the 

factor scores, computed as in equation (9). For the Items method, which did not involve 

estimating a factor score, the average weighted SMD of the items was used as the estimated 

balance summary. For all methods, the true balance summary was the weighted SMD of the true 

LV using the weights estimated with that method. For each method and design cell, the average 

true balance summary was computed to examine the degree to which the estimated weights 

balanced the true LV; this are reported as the mean SMD of the true LV. Values close to 0 

indicate good balance in the variable means between the treatment groups; authors recommend 

ensuring weighted SMDs below 0.1 before proceeding with effect estimation. 

In addition, the RMSBD was computed as the square root of the mean squared difference 

                                                 
5 For each method, I computed an analogue to the pooled standard error of the PBR and multiplied by 2; for all 

methods, this value was slightly less than 1. Differences in mean PBRs greater than 1 are thus greater than two 

standard errors away from each other, which can be considered evidence that the mean values in question differ 

statistically. In practice, mean PBR differences of 1 would not be meaningful; I consider them meaningful here to 

highlight the patterns observed in the results. 
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between the true and estimated balance summaries for each method and cell; this value 

represents the typical difference between the estimated balance summary, which would be 

accessible to researchers, and the true balance summary, which is normally inaccessible but 

which is desired. Values of the RMSBD close to 0 indicate that the estimated balance summary 

is similar to the true balance summary and might be used as a proxy for measuring balance on 

the true LV. Values of the RMSBD larger than 0.1 are particularly problematic because they 

indicate that even after achieving perfect balance based on the estimated balance summary, 

problematic imbalances in the true LV are likely to remain. 

To my knowledge, these criteria have not been used to evaluate simulation results in the 

context of propensity score analysis and were developed for this study in particular, though 

similar values to the mean PBR have appeared sparingly (e.g., Shadish, et al., 2008; Hall, 

Steiner, & Kim, 2015). They reflect a compromise to satisfy the desire to provide familiar 

simulation criteria (e.g., bias, RMSE) while addressing the issues of differing baselines across 

cells and criteria not on typical or inherently meaningful scales. Although the overarching 

patterns hold when more standard simulation criteria are used, for the purposes of a fair 

comparison across methods and conditions, I have chosen to describe the results of this 

simulation using these new criteria. 
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CHAPTER 2: RESULTS 

First, I discuss issues of model convergence and aberrant estimates. Next, I discuss the 

quality of the factor scores and propensity scores. Next, I discuss the bias and variability for each 

method in terms of mean PBR and RMSPBR across conditions. Finally, I discuss the balancing 

performance of the methods with respect to the mean true balance and RMSBD. 

Convergence and Aberrant Estimates 

I fit a total of 32,000 factor models across all replications and conditions: four scoring 

models (simple FA model, simple MNLFA model, fully inclusive FA model, and fully inclusive 

MNLFA model) fit to 1,000 replications within each of 8 cells6. Fourteen models failed to 

converge, yielding model parameter estimates that were not true maximum likelihood solutions: 

nine occurred in estimating the simple MNLFA models, and five occurred in estimating the fully 

inclusive MNLFA models. The failures only occurred when DIF was present and with six items. 

I omitted results originating from these models from all subsequent analyses.  

All replications were checked for impossible or unusual parameter values, outlying data 

points, and extreme effect estimates. Although there were some unusual parameter estimates and 

effect estimates, these were not deemed to be worthy of removal because they appeared to be the 

result of natural randomness or estimation uncertainty that was relevant to the analysis. 

  

                                                 
6 Naïve, item, and true score models were also fit but were not at risk for failure to converge. 
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Score Quality 

I computed correlations between the estimated factor score and the true LV values and 

between the estimated propensity scores and the optimal propensity scores to inform variations 

in other criteria presented below. Correlations close to 1.00 indicate high score quality, 

suggesting performance of the scores close to their respective benchmarks. First, I discuss the 

quality of the estimated factor scores, and then I discuss the quality of the estimated propensity 

scores. Across both sets scores, patterns were similar regardless of the number of items, so only 

the six-item conditions will be discussed. 

Factor Scores. The distributions of correlations between the estimated factor scores and the 

true values of the LV are displayed in the top panel of Figure 4. The largest differences were 

between the unconditional factor scores and the MNLFA-based factor scores. In the absence of 

impact and DIF, all factor score performed similarly with mean correlations around .83, 

indicating fairly good agreement with the true LV values. In the presence of impact and DIF, the 

unconditional factor scores had mean correlations around .77, while the MNLFA-based factor 

scores had mean correlations around .84. Similar results were found in Curran et al. (2016), in 

which MNLFA-based factor scores were more highly correlated with true LV values than were 

unconditional scores in the presence of impact and DIF, especially when impact and DIF effects 

were strong. The fully inclusive factor scores were consistently slightly more correlated with the 

true factor scores on average (by a small margin of approximately .005), as these factor scores 

were effectively computed with an additional correctly modeled indicator (i.e., the treatment). 

Propensity Scores. The distributions of correlations between the propensity scores estimated 

with the approximate methods and the propensity scores estimated with true values of the LV are 

displayed in the bottom panel of Figure 4. Mean correlations ranged from .94 to .97, indicating 

excellent agreement with the optimal propensity scores. There was little variability in this range, 
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though some patterns emerged: overall, the simple FS and MNLFA simple FS methods yielded 

higher mean correlations than did using the items or the fully inclusive methods. Across 

conditions, the MNLFA simple FS yielded higher mean correlations than the other methods, 

ranging from .96 in the absence of impact and DIF to .97 in the presence of both. The 

unconditional fully inclusive FS consistently yielded the lowest mean correlations, ranging from 

.94 in the presence of impact and DIF to .95 in the absence of both, despite the method’s high 

performance on the other metrics described below. 

Bias and Variability of Effect Estimates 

Mean PBR and RMSPBR values are displayed in Figure 5 and detailed in Table 3. Across 

cells and models, there was substantial variability in mean PBRs: values ranged from -2 to 13 

(i.e., between -2 and 13 percent of the original bias remaining). On the other hand, RMSPBRs 

were not highly variable: values ranged from 12 to 19 (i.e., the typical PBR was between 12 and 

19 percentage points from 0 percent). Given that mean PBRs for some methods and cells were 

close to 0, these methods were able to yield mostly unbiased estimates. Performance of each 

method on these metrics in the various conditions of impact, DIF, and number of items is 

described below. First, I describe the performance of the simple methods (those that do not 

involve including the treatment in the factor score model), and next I describe the fully inclusive 

methods. 

Items. Using the items involved eschewing a factor score model and simply including the 

items in the propensity score model along with the observed covariates. This model was 

incorrect in assuming the true LV can be adequately represented by an optimally predictive 

weighted sum of the items. When impact or DIF were present, some degree of the induced 

covariance between the items and the covariates was accounted for in the propensity score 

model, which freely allowed the items and covariates to covary as exogenous predictors of 
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treatment. 

With six items and no impact or DIF, using the items directly yielded a mean PBR of 13, 

indicating significantly biased effect estimates. Surprisingly, the presence of impact or DIF 

slightly improved bias removal; with either impact or DIF present, the mean PBR was 11, and 

with both, the mean PBR was 12. The opposite pattern emerged with 12 items: the least bias was 

observed when neither impact nor DIF were present (mean PBR = 7), and the greatest bias was 

observed when both impact and DIF were present (mean PBR = 9). Regardless of the presence of 

impact or DIF, using the items yielded biased effect estimates, especially with fewer items. 

The RMSPBR largely remained the same or decreased in the presence of impact or DIF. 

With six items, RMSPBR was 19 in the absence of impact and DIF, 18 in the presence of only 

DIF, 17 in the presence of only impact, and 17 in the presence of both impact and DIF, 

indicating large typical differences between the estimated treatment effect and the true effect. 

With 12 items, RMSPBR was 16 in the absence of impact (regardless of DIF) and 15 in the 

presence impact (regardless of DIF). The bias and RMSPBR patterns were in approximately the 

same direction with six items, but in opposite directions with 12 items. 

Simple Factor Score. The simple FS method involved estimating factor scores from an 

unconditional measurement model that included the items as indicators of the LV (Figure 3A). In 

the presence of impact, this method was incorrect in assuming an unconditional normal 

distribution for the LV when in reality the distribution was conditional on the covariates7. In 

presence of DIF, this method was incorrect in assuming equal intercepts and loadings for each 

item across all units, when in reality these parameters of the measurement equations varied 

                                                 
7 Note that in the “Impact absent” condition, the LV distribution was also normal only conditional on the covariates, 

but only linear covariances were present in contrast to the nonlinear relationships present in the “Impact present” 

condition. 
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across units based on their covariates values. 

The bias and RMSPBR results for the simple FS method were almost identical to those from 

the items, echoing the results of Nguyen et al. (under review), and indicating similarly significant 

bias in the effect estimates. With six items, the mean PBR was 13 in the absence of impact and 

DIF, 12 in the presence of only DIF, 11 in the presence of only impact, and 13 in the presence of 

both impact and DIF. With 12 items, the mean PBR was 7 in the absence of impact and DIF, 9 in 

the presence of only DIF, 8 in the presence of only impact, and 9 in the presence of both impact 

and DIF. The RMSPBR results were identical to those using the items method, except that in the 

presence of only impact with six items, the simple FS method yielded an RMSPBR of 15. In 

general, using the simple factor score yielded similar bias and RMSPBR to using the items; when 

the methods differed, the simple FS method always yielded increased bias compared to using the 

items, but these differences were only by one point8. The relatively high mean PBR and 

RMSPBR results indicate significant bias in treatment effect estimates and that effect estimates 

were typically quite far from the true effect. 

MNLFA Simple Factor Score. The MNLFA simple FS incorporated the covariate effects 

on the LV distribution and measurement equations into the scoring model but did not include the 

treatment variable as an indicator (Figure 3B). When both impact and DIF were present, this 

method matched the data-generating process for the LV and its indicators; when either were 

absent, this method over-modeled nonexistent relationships between the covariates and the LV 

distribution and measurement equations.  

Overall, the MNLFA simple FS method yielded mean PBR and RMSPBR values similar to 

or slightly less than those from using the items or using the (unconditional) simple FS. In the 

                                                 
8 Though Figure 5 depicts some other differences between the simple FS method and using the items, these 

differences were small enough not to be considered meaningful. 
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absence of impact and DIF, the mean PBR was 13 with six items and 7 with 12 items, equal to 

those found with the previous two methods, reflecting significantly biased effect estimates. In the 

presence of either impact or DIF (or both), the MNLFA simple FS method yielded a mean PBR 

of 11 of with six items and a mean PBR of 7 with 12 items, representing modest but consistent 

improvements of between 0 and 2 points over the unconditional simple methods, which ranged 

from 11 to 13 with six items and from 8 to 9 with 12 items. This pattern of results indicates slight 

improvements in bias removal using the MNLFA Simple FS relative to the unconditional simple 

methods, but also that effect estimates using this method remained biased, despite using a 

scoring model at least as flexible as the data-generating model. 

As was seen in the unconditional methods, RMSPBR was lower when impact or DIF were 

present (even if incorrectly modeled): with six items, the RMSPBR was 19 in the absence of 

impact and DIF, 17 in the presence of only DIF, and 16 in the presence of impact (regardless of 

DIF), and with 12 items, RMSPBR was 16 in the absence of impact and DIF, 15 in the presence 

of only DIF, 14 in the presence of only impact, and 13 in the presence of both. These values were 

slightly but consistently lower than those of the unconditional simple methods by between 0 and 

2 percentage points when either impact or DIF were present. All improvements over the 

unconditional simple methods were modest, and the MNLFA simple FS method still yielded 

biased effect estimates, especially with fewer items. 

Fully Inclusive Factor Score. The fully inclusive FS method involved including the 

treatment variable as an indicator in the scoring model and modeling the covariances between the 

observed covariates, the LV, and the treatment; however, mean impact by the covariate 

interaction, variance impact, and DIF were not modeled (Figure 3C). Nguyen et al. (under 

review) found this method to be highly effective in removing bias in the absence of impact or 
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DIF.  

Here, the fully inclusive FS method removed essentially all the bias, regardless of the 

presence of impact or DIF or the number of items. With six items, the mean PBR was 0 in the 

absence of DIF (regardless of impact) and 2 in the presence of DIF (regardless of impact). With 

12 items, the mean PBR ranged from -1 to 2, with a slight increase in the presence of impact, 

regardless of DIF. The RMSPBR decreased when impact or DIF were present, regardless of the 

number of items. The presence of impact and DIF together lowered the RMSPBR from 17 to 14 

with six items and from 16 to 13 with 12 items, with intermediate values in the presence of either 

one, reflecting typical effect estimates closer to the true effect, a pattern found also with the 

simple methods. 

MNLFA Fully Inclusive Factor Score. The MNLFA fully inclusive FS incorporated the 

covariate effects on the LV distribution and measurement equations into the scoring model and 

also included the treatment variable as an indicator and covariate effects on the treatment (Figure 

3D). When both impact and DIF were present, this method matched the data-generating process 

for the LV, the indicators, and treatment; when either were absent, this method over-modeled 

nonexistent relationships between the covariates and the LV distribution and measurement 

equations. 

With either six or 12 items and with no impact (regardless of the presence of DIF), the 

MNLFA fully inclusive FS method removed almost all bias (mean PBR between -1 and 1). In 

the presence of impact, however, with six items the mean PBR was 5 (regardless of DIF) and 

with 12 items was 4 in the absence of DIF and 3 in the presence of DIF. With respect to 

RMSPBR, the MNLFA fully inclusive FS consistently yielded similar or smaller values than the 

unconditional fully inclusive FS, regardless of the presence of impact or DIF or the number of 
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items. With six items, the RMSPBR was 17 in the absence of impact and DIF, 16 in the presence 

of only DIF, and 13 in the presence of impact (regardless of DIF). With 12 items, the RMSPBR 

was 16 in the absence of impact and DIF, 15 in the presence of only DIF, 13 in the presence of 

only impact, and 12 in the presence of both.  

Notably, in the presence of impact, the MNLFA fully inclusive FS method had similar 

RMSPBRs than using the true LV values (which yielded RMSPBRs of 13 in the presence of 

impact). In addition, the pattern of mean PBR was opposite to that of RMSPBR: in the presence 

of impact and DIF, for which the analysis model matched the data-generating model, mean PBR 

was higher but RMSPBR was lower than in the absence of impact and DIF. 

True LV Values. The true LV values were free of measurement error and therefore were 

expected to yield unbiased and efficient estimates (relative to the other methods), with any error 

resulting from sampling error and the natural inefficiency of propensity score weighting. Indeed, 

mean PBRs ranged from -1 to 1, indicating unbiased effect estimates, and RMSPBRs ranged 

from 13 to 15. As with the methods above, RMSPBRs were lowest (RMSPBR = 13) in the 

presence of impact, which might provide some context for these patterns.  

Covariate Balance 

Given that applied researchers rely on balance statistics to make decisions about the 

appropriateness of their balancing procedure, it is important to understand the relationship 

between the balance statistics computed on the observed variables and the balance statistic that 

would be computed on the unobserved true variables were they to be observed. I examined 

whether balancing on the observed factor scores yielded balance on the true values of the LV and 

how far off the balance statistics computed on the observed variables were from the balance 

statistics computed on the true variable. 
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Balancing Performance. Without any adjustment, on average the true LV was imbalanced 

according to the SMD (by design). Though nearly all of the methods were able to achieve 

balance on the observed manifestation of the LV, only the methods that included the treatment as 

an indicator were able to also balance the true LV. Figure 6 displays the overall balancing 

performance of each method for the case with six items, stratified by the presence of impact. 

Discrepancies between the median estimated balance summary (left-facing densities) and the 

true balance summary (right-facing densities) indicate the failure of the simple methods to 

achieve satisfactory balance on the true LV. 

In general, the pattern of true balance summaries (the LV mean SMDs) followed that of the 

mean PBRs in the effect estimates, which is to be expected given that imbalance in the true LV 

produces bias. The methods that did not include the treatment as an indicator yielded true mean 

SMDs ranging across cells from 0.181 to 0.232 with six items and from 0.122 to 0.170 with 12 

items, indicating a failure to achieve satisfactory balance based on the usual criterion of 0.100. 

For these methods, the best balance was achieved when both impact and DIF were present and 

correctly modeled (i.e., using the MNLFA simple FS; mean SMD = 0.181 for six items) and 

when only impact was present but not modeled (i.e., using the items or simple FS; mean SMDs = 

0.182 and 0.183, respectively, for six items). For each cell, increasing the number of items 

consistently decreased mean SMDs. Including MNLFA in the score model reduced mean SMDs 

by approximately 0.02 in the presence of DIF and had little effect in the absence of DIF 

(regardless of impact).  

The methods that did include the treatment as an indicator yielded superior balance on the 

true LV. All SMDs were below .100, even when the incorrect scoring model was used. In 

general, using the fully inclusive FS yielded better balance than using the MNLFA fully 
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inclusive FS in the presence of impact (e.g., mean SMD = 0.017 vs. 0.063, for six items with 

impact and DIF both present), mirroring the mean PBR results (mean PBR = 2 vs. 5, for the 

same design cell). The MNLFA fully inclusive FS, however, did yield satisfactory balance on the 

true LV, and yielded slightly better balance than the unconditional fully inclusive FS when 

impact was not present.  

Indicating Balance on the LV. Although balance on the LV was achieved on average to 

varying degrees with these methods, another question is the degree to which the observed 

balance statistics provide information about the true balance of the LV. Although the estimated 

balance summaries of the simple methods mostly fell between -0.1 and 0.1, the true balance 

summaries mostly fell outside this range and had little overlap (Figure 6). On the other hand, the 

estimated balance summaries of the fully inclusive methods largely overlapped with the true 

balance summaries. 

RMSBDs represent the typical difference between the estimated and true balance summaries 

within each cell. Larger values imply that the estimated balance summary is not a good indicator 

of balance on the true LV, while small values imply that the estimated balance summary is an 

adequate proxy for balance on the true LV. For the simple methods, RMSBDs ranged across 

cells from 0.185 to 0.254 with 6 items and from 0.128 to 0.175 with 12 items, indicating large 

discrepancies between the estimated and true balance summaries. In general, the MNLFA simple 

FS yielded estimated balance summaries that were closest to the true balance summaries, 

especially when either impact or DIF were present.  

In contrast, for the fully inclusive methods, RMSBDs ranged across cells from 0.054 to 0.086 

with 6 items and from 0.041 to 0.066 with 12 items, indicating that estimated balance summaries 

from these methods are trustworthy indicators of the balance on the true LV. In general, the 
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MNLFA fully inclusive FS yielded estimated balance summaries that were closer to the true 

balance summaries than did the fully inclusive FS, especially when impact was present. 

In sum, the fully inclusive methods both yielded better balance on the true LV and provided 

more information about balance on the true LV. Although the patterns of balance in the true LV 

were very in line with those of the mean PBR, conditional on the inclusiveness of the scoring 

model, the estimated balance summaries yielded the best information about the true LV balance 

when the scoring model matched or was more flexible than the data-generating model. 
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CHAPTER 3: DISCUSSION 

The greatest distinction among methods was whether they included the treatment as an 

indicator or not; those methods that did so (i.e., the fully inclusive methods) performed almost 

universally better than the simple methods across the criteria studied (i.e., they had lower mean 

PBR, lower RMSPBR, better mean balance, and lower RMSBD). Among the simple methods, 

the MNLFA simple FS method tended to yield lower mean PBRs, lower RMSPBR, better 

balance, and lower RMSBDs than using the items or the unconditional simple FS method. 

Although patterns of results varied in the presence of impact or DIF, the performance of MNLFA 

simple FS method on the above metrics was either unaffected or improved by the presence of 

impact or DIF. Of note, though, is that by some metrics, the performance of the unconditional 

methods improved in the presence of impact or DIF in some conditions relative to the absence of 

impact and DIF, though these same improvements were not manifested in the factor score or 

propensity score correlations. 

Between the fully inclusive methods, the relative performance of the MNLFA-based and 

unconditional FS methods varied based on the presence of impact or DIF and the metric 

considered. In general, the unconditional fully inclusive FS method yielded lower mean PBRs 

and better mean balance than the MNLFA fully inclusive FS method, but the MNLFA-based 

method consistently yielded lower RMSPBRs and lower RMSBDs than the unconditional 

method, in some cases performing as well or slightly better than using the true LV values. The 

performance of the unconditional method was largely unaffected by the presence of impact or 

DIF; to the degree it was affected, impact in particular was associated with slightly increased 
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mean PBRs, decreased RMSPBR, worse balance, and greater RMSBDs. Similar patterns were 

found for the MNLFA-based method, except that some of these patterns were amplified, and 

RMSBDs decreased in the presence of impact. Factor score correlations were very slightly 

higher with the fully inclusive methods, but propensity score correlations were slightly lower. 

In the following sections, I evaluate the hypotheses proposed earlier given the results 

described above. In addition, I discuss some possible reasons for the observed variation, 

especially between the simple and fully inclusive methods. Finally, I provide recommendations, 

note limitations of the study, and discuss future avenues of research.  

Hypothesis 1: The presence of impact or DIF will yield biased effect estimates when using 

the standard estimators 

My first hypothesis followed from conventional knowledge about model misspecification. I 

expected the standard (i.e., unconditional) estimators to be more biased in the presence of 

unmodeled impact or DIF. It is known in the factor score regression literature that estimated 

factor scores can yield unbiased regression coefficients when estimated with the correct 

measurement model (Lu & Thomas, 2008; Skrondal & Laake, 2001), but impact and DIF can 

yield degraded factor scores when estimated with conditional (i.e., incorrect) models (Curran et 

al., 2016). Millsap’s (1995) Duality Theorem implies that unmodeled variance impact on the LV 

(at least in the absence of DIF) should yield biased estimated relationships between factor scores 

and its sequelae (i.e., the treatment). It is thus surprising that in some conditions and with some 

metrics, the simple methods were not negatively affected by the presence of impact or DIF. It is 

possible that the DIF and impact effect sizes used in this simulation were too small to elicit large 

effects that may have been in a more predictable direction, but the pattern of factor score 

correlations (Figure 4, top panel) does indeed indicate significant degradation of the estimated 

factor scores in the presence of the studied levels of impact and DIF.  
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Between the simple unconditional methods, there was little advantage to using the simple 

factor scores over the items, regardless of the presence of impact or DIF or the number of items. 

This may result from the increased flexibility afforded by using the items at the expense of 

providing incorrect regression coefficient estimates due to measurement error. It is possible that 

the inclusion of the covariates in the propensity score model along with the misspecified factor 

scores reduced or eliminated the effects due to the misspecification of the factor model, perhaps 

by compensating for the otherwise under-modeled covariances between the factor scores and 

covariates. This might explain the slightly improved performance of the items-based estimator 

relative to the simple factor score FS estimator in the presence of DIF: some of the DIF-induced 

covariance between the indicators and covariates is implicitly modeled in the propensity score 

model when the items are included.  

One of the most surprising findings was that the unconditional fully inclusive FS method was 

largely unbiased in the presence of impact or DIF. Despite using an incorrect factor model that 

yielded highly degraded factor scores and propensity score slightly further from the optimal 

propensity scores, the fully inclusive FS method yielded unbiased effect estimates with relatively 

lower variability and fairly reliable information about true balance in the presence of impact or 

DIF, at least under the conditions studied here. This is good news for those employing this 

method, which fared very well in the simulation of Nguyen et al. (under review) as well. Possible 

reasons for this are discussed later, though it is clear that including the treatment as an indicator 

increased this method’s robustness to misspecification due to impact and DIF, more so than did 

including covariate relationships with the LV in the scoring model (based on the performance of 

the MNLFA-based simple FS method, described below). 

In sum, my hypothesis about the standard estimators in the presence of impact and DIF was 
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mostly incorrect. Unmodeled impact and DIF had small effects on the quality of the estimators 

despite reductions in the quality of the factor scores, indicating that individual differences in the 

measurement of the LV are not a major source of error in effect estimation. Although model 

misspecification can have serious consequences in structural equation modeling, it may be that 

the propensity score weighting procedure provided enough opportunities for bias cancellation or 

compensation by the included covariates that the misspecifications studied here were largely 

irrelevant. 

Hypothesis 2: Incorporating MNLFA into standard estimators will yield improved 

estimates when impact or DIF are present. 

Given that correctly modeling the indicator relationships with the LV will improve the 

correlation between the estimated factor scores and true LVs (Curran et al., 2016), I expected 

improved performance over the standard methods when incorporating those relationships with 

MNLFA. Correctly modeling these relationships allows the estimated posterior of the conditional 

LV distribution to center nearer to the true distribution, which in turn should improve factor 

score recovery. Indeed, these results were found here: while the unconditional methods yielded 

degraded score recovery, the MNLFA-based methods yielded excellent score recovery, 

especially when impact and DIF were both present and modeled, but also even when either one 

was absent (Figure 4, top panel). 

Though we have seen that factor score quality as measured by its correlation with the true LV 

is not necessarily a good indicator of its success in yielding unbiased effect estimates, among the 

simple methods, the MNLFA simple FS saw reductions in bias and variability over the 

unconditional simple methods. Though impact and DIF did not negatively affect the performance 

of the unconditional simple methods, they instead provided an opportunity for improvement 

when correctly modeled with MNLFA. Correctly modeling the covariate relationships with the 
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LV and its indicators reduces the indeterminacy of the factor because a larger proportion of the 

variance in the indicators and the LV itself are explained by the included covariates (Bollen, 

2002). Given that the two elements of the scoring algorithm are the (conditional) expectations of 

the item responses and the (conditional) LV distribution, correctly modeling these by 

conditioning on the covariates should improve precision and reduce bias, in the same way 

including control variables improves the precision and reduces the bias of the estimation of a 

focal variable on an outcome in regression by reducing the mean squared error. Similarly, the 

link between LV methods and missing data procedures described by Mislevy et al. (1995) would 

imply that including auxiliary variables in factor models would improve parameter and score 

recovery. 

Unexpectedly, the pattern of decreasing bias when modeling impact and DIF was reversed 

with the fully inclusive methods. Modeling impact and DIF when it was present yielded effect 

estimates with somewhat greater bias than those estimated with the unconditional fully inclusive 

method. The reasons for this are not immediately clear; both factor score and propensity score 

correlations improved in the presence of impact and DIF when using the MNLA fully inclusive 

FS method over the unconditional fully inclusive FS method (Figure 4), and yet the true LV 

retained more imbalance and therefore more bias remained. One clue is that the estimated factor 

scores were not well balanced by the propensity score weights, especially in the presence of 

impact (Figure 6), even though weighting typically balances the (observed) variables that entered 

the propensity score model. It may be that irregularities in the estimated propensity scores not 

observable from their correlations with the optimal propensity scores were responsible for their 

failure to balance the scores and true LV; the effects of these irregularities may have been (at 

least partially) masked when impact and DIF were not modeled along with the fully inclusive 
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factor model (e.g., due to bias cancellation). Perhaps enforcing exact balance on the MNLFA 

fully inclusive factor scores (using, e.g., entropy balancing; Hainmueller, 2012) would yield 

better balance on the true LV, thereby yielding less biased effect estimates. 

Overall, there were benefits to modeling impact and DIF with MNLFA when they were 

present due to improved score recovery caused by increased precision (i.e., decreased 

indeterminacy) in the scores. Despite being more precise, the MNLFA fully inclusive FS 

estimator was more biased than its unconditional counterpart, though the reasons were not clear 

based on standard methods of score quality assessment and require further investigation.  

Hypothesis 3: Using MNLFA when impact and DIF are not present will yield unbiased but 

imprecise results due to over-modeling 

In this study, over-modeling occurred when either bias or DIF were absent but were modeled 

with MNLFA. Although it is often possible to identify the presence of impact and DIF using DIF 

detection techniques (e.g., Bauer, 2017), no technique will perfectly capture all such 

relationships in the population. Thus, it was important to determine whether there were 

consequences of being overly liberal when modeling impact and DIF (while maintaining a 

tractable scoring model), especially in the attempt to uncover a general recommendation for 

researchers that allows for agnosticism about the data-generating process. 

Overall, the MNLFA-based methods performed no worse than the unconditional methods in 

the absence of impact, DIF, or both in terms of bias, variability, and validity of the balance 

summary. Although overfitting can reduce the precision of estimates by inappropriately 

responding to noise in the sample (Forster, 2000), there were no such problems here. Overfitting 

is often maligned for its failure to generate replicable estimates or good out-of-sample 

predictions (e.g., Camstra & Boomsma, 1992), but because the step in the analysis that involves 

overfitting is one in which inferences are not made and predictions are made only in-sample, 
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capturing the unique qualities of the sample at hand did not impede the inferences made in the 

final step.  

 This is encouraging to those who might otherwise avoid a needlessly complex model in 

favor of parsimony; in fact, there were no gains to doing so given the simulation conditions. 

When a more complex model excludes (i.e., constrains) relationships that would be otherwise 

present in a simpler model (i.e., in order to estimate other relationships), bias can indeed occur 

(Kaplan, 1988), though this simulation did not examine these types of misspecification. All data-

generating models that excluded at least one of impact and DIF were nested within the MNLFA-

based factor models; future work is needed to examine the effects of model-misspecification 

when this is not the case. 

Simple vs. Fully Inclusive Methods 

Though there were some improvements in effect estimation that came with correctly 

modeling impact and DIF, clearly the most important factor was whether the factor score model 

included the treatment as an indicator. Although such effects were found by Nguyen et al. (under 

review), it was unexpected that the unbiasedness of this method would extend to the case of 

unmodeled impact and DIF. Indeed, deeper examination of the performance of the fully inclusive 

methods at various steps yields somewhat paradoxical conclusions, described subsequently. 

There are a number of reasons why the fully inclusive method would be expected to perform 

well; these include that an additional indicator is used to measure the LV, thereby slightly 

increasing the LV’s reliability, and that the (linear) covariate relationships with the LV are also 

modeled. Nguyen et al. (under review) found that it was important for the covariate relationships 

with the LV and treatment to be correctly modeled; failing to model these relationships (what the 

authors called the “partially inclusive” method) yielded biased effect estimates when the 

covariates were related to the LV, likely due to remaining covariance between the LV and the 
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treatment in the factor model. Correctly modeling the covariate relationships with LV was not 

enough alone, though, as demonstrated here by the poorer performance of the MNLFA simple 

FS method, which did correctly model these relationships, relative to the unconditional fully 

inclusive FS method when DIF and impact were present. In addition, the gains of an additional 

indicator do not explain these differences in performance: even with six more indicators and with 

covariate effects correctly modeled, the MNLFA simple FS estimator with 12 items was more 

biased than the unconditional fully inclusive FS estimator with only six items (although it should 

be noted that the former had less variability as measured by the RMSPBR). The score quality of 

the unconditional fully inclusive factor scores was lower than that of the MNLFA simple factor 

scores, indicating that it is not score quality that yielded these effects.  

One possibility is the increased role of the propensity score model in the posterior 

distribution of the LV. By modeling the treatment as an indicator, one is using the propensity 

score model as one of the indicator measurement equations; the propensity score is the 

conditional probability of “item endorsement” (i.e., treatment receipt) given the covariates and 

LV value. The factor scores are computed including the propensity score function in the 

posterior distribution of the LV and are then used again in the observed-score propensity score 

model. The outcome (i.e., of the propensity score model; the treatment) is used as a component 

of its own predictor, artificially increasing the covariance between the predictor and the outcome. 

For example, in predicting loneliness from depression, using a depression scale that included an 

indicator related to loneliness would artificially increase the relationships between the scale and 

loneliness. One might expect better predictions of the outcome from such a model. In this case, 

this would amount to the fully inclusive factor scores producing propensity scores more highly 

correlated with true or optimal propensity scores. 
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In fact, this is not the case: the propensity scores estimated from the fully inclusive factor 

scores were less correlated with the optimal propensity scores than were the propensity scores 

estimated from MNLFA simple factor scores (or from any other model; Figure 4). Given that the 

estimation of the propensity scores is the penultimate step to arriving at an effect estimate, it 

remains unclear why the fully inclusive method would perform so well, especially with a 

misspecified model, given the low quality of its factor scores and propensity scores. Likewise, it 

remains unknown why this performance was not seen to the same extent with the MNLFA fully 

inclusive FS method, in which the factor score model matched the data-generating model in the 

presence of impact and DIF, but for which bias remained in the effect estimate. 

Limitations 

This study was one of few to examine a LV solution to the problem of measurement error in 

propensity score analysis. It is impossible to fully represent all possible data scenarios that might 

arise using a simulation study, and only a few such scenarios were explored here. The magnitude 

and form of impact and DIF did not differ, but it is possible that the magnitude of impact and 

DIF can change the quality of the score estimates (Curran et al., 2016) and therefore possibly the 

effect estimates. Here, I focused on a single plausible value for each impact and DIF parameter 

primarily to explore their effects in scenarios applied researchers might find; the parameters were 

not pushed to their limits. In addition, a simple data-generating model was used, and, except in 

the cases of unmodeled impact and DIF, there was no structural model misspecification. Given 

that misspecification in some parts of the model can have broad-reaching effects (Bollen, Kirby, 

Curran, Paxton, & Chen, 2007), and the fully inclusive methods relied on correctly modeled 

structural relationships, it would be interesting to examine how these methods would fare when 

these relationships are incorrectly specified, such as when residual covariances between items 

are inappropriately excluded from the scoring models. The goal here was to present a best-case 
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scenario to demonstrate the adequacy of the proposed MNLFA-based methods, since their 

efficacy in this context had not previously been explored.  

Although estimation bias and variability were examined, there was little focus on inference 

here, in that standard errors were not estimated for any methods and power and Type I error rates 

were not examined. Standard error estimation for propensity score-based estimators is itself an 

ongoing area of research, though many researchers have agreed that sandwich-based standard 

errors (White, 1980) are an adequate solution (Robins, 2000). Nguyen et al. (under review), 

however, recommend using bootstrapping for inference, but such an approach may be too 

computationally intensive to be feasible with the highly structured scoring models studied here. 

It may be possible to combine commonly used standard errors for propensity score-based 

estimators with those that account for the uncertainty at multiple steps of the analysis, including 

the factor score estimation, as in Skrondal and Kuha (2012). 

Finally, the only method examined was propensity score weighting, though other propensity-

score based and related methods exist for estimating treatment effects, including matching, 

stratification, propensity score ANCOVA, and combinations of these methods with regression. In 

addition, I did not examine more robust methods of estimating balancing weights, including 

those that provide exact balance on covariates (e.g., entropy balancing; Hainmueller, 2012); 

these methods may allow for the separation between issues of estimating valid factor scores and 

estimating propensity scores that balance covariates.  

Despite these limitations, my study was characterized by several key strengths, including 

using new standardized measures of estimation performance and examining simulation criteria 

related to how applied researchers would actually use the methods (i.e., with respect to covariate 

balance), beyond simply distributional qualities of the estimators. In addition, this study was the 
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first to consider differential measurement error in the context of causal inference. 

Recommendations 

Given the assumption of a correctly specified propensity score model, I recommend 

employing the MNLFA fully inclusive FS method for estimating causal effects with covariate 

measurement error. Although the unconditional fully inclusive FS method yielded unbiased 

results even in the presence of impact or DIF, the MNLFA fully inclusive FS method yielded 

estimates that were closer to the population values more often (i.e., with lower RMSPBR), was 

robust to over-modelling without increasing the variability of the estimate, and provided more 

accurate information about the balance of the true LV. 

The preferred approach, as with any LV scoring procedure, is to gather as much information 

about the LV by using impact- and DIF-detection methods, as in Bauer (2017) and Curran et al. 

(2014). Substantive theory and evidence should drive the selection of potential moderating 

variables, although automated methods exist and others are in development (Cole, Gottfredson, 

& Giordano, 2018). Once these relationships have been identified, factor scores should be 

estimated as EAPs using the fully inclusive MNLFA model, erring on the side of over-modeling 

as opposed to under-modeling. Balancing weights should be estimated, and balance should be 

assessed on the factor scores. If balance is acceptable, effect estimation should proceed by using 

weighted regression of the outcome on treatment, perhaps also including some of the covariates 

in the regression model (as recommended by Nguyen et al., under review). If possible, a 

bootstrap confidence interval should be generated; otherwise, a sandwich standard error-based 

confidence interval may be appropriate. Researchers should report the fit of the factor model, 

balance on the covariates, and the results of a sensitivity analysis to examine the robustness of 

the estimate to unmeasured confounding. 

Although the fully inclusive methods performed well in the present simulation and in that of 
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Nguyen et al. (under review), it is reasonable to be cautious about using it given its non-standard 

form (i.e., including the treatment as an indicator) and potential for bias due to misspecification 

(as was hinted at in Nguyen et al., under review). If a simple method is used instead, a MNLFA-

based FS should be used, given its universally superior performance to the unconditional FS 

method and to using the items across all conditions and metrics. With many items, which may be 

common in some scales, the bias due to the indeterminacy of the factor will be small (Bollen, 

2002). 

Future Directions 

This study was the first to examine the performance of LV methods in the context of 

propensity score analysis with differential measurement error in a covariate. Much uncertainty 

still remains about these techniques; in particular, their robustness to model misspecification 

remains to be seen. This model misspecification may come in the form of incorrectly specified 

impact and DIF relationships in the measurement model as well as ignored nonlinear 

relationships between the latent confounder and the treatment (especially in the context of the 

fully inclusive methods). This is a critical avenue of future research given that the value of 

propensity score-based methods is the removal of the necessity of correct functional form for 

modeling an outcome on treatment and confounders. Broadly, more research is required on the 

decision-making with MNLFA and the consequences of failing to identify relationships that exist 

in the population. In particular, future research should examine the effects of incorrectly modeled 

nonlinear relationships between the latent variable and the treatment, model misspecification 

both in the propensity score model and measurement model, and extensions to more covariates, 

including those measured with error. 

Another important direction is the examination of LV methods in this context with the 

application of other causal inference methods, including matching, nonparametrically estimated 
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balancing weights, time-varying treatments, and doubly robust methods. For example, are there 

benefits to estimating the treatment effect with a weighted structural equation model over 

weighted factor score regression? Do matching and non-parametrically estimated balancing 

weights provide additional robustness against bias due to measurement error given their 

robustness to unmeasured confounding and model misspecification (Zubizarreta, Paredes, & 

Rosenbaum, 2014)? To date, no study on measurement error in causal inference has considered 

any techniques beyond logistic regression-based propensity scores, which, though unbiased 

asymptotically, are not always optimal in finite samples. 

Methodological innovation and advancement often comes at the intersection of multiple 

scientific disciplines; by combining the state of the art in measurement from psychology with 

well-studied and robust causal inference methods in biostatistics and econometrics, new 

possibilities emerge for discussion among these disciplines and mutual adoption of techniques. 

As the problems of measurement error in the human sciences become increasingly 

acknowledged, finding ways to bring advances in LV modeling techniques into the 

methodological toolbox of causal inference researchers will create incremental progress in the 

attempt to create robust, reliable, and replicable sciences.  
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Figures and Tables 

 

Figure 1. Nonparametric path diagram illustrating the basic structure of confounding. 

A set of variables C causes both selection into treatment and variation in the outcome. This 

situation, common in observational studies, is known as confounding. 

  



63 

 

Figure 2. Path diagram depicting the data-generating model.  η is the latent variable (LV) 

whose mean and variance depend on the observed variables age and site. Z is the treatment. Y 

is the outcome. Not depicted are the age-site interaction on the LV mean and the age-LV and 

site-LV interactions on the outcome. See Tables 1 and 2 for specific parameter values. 
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Figure 3. Path diagrams corresponding to the four factor models fit. A) Simple FS; B) 

MNLFA Simple FS; C) Fully Inclusive FS; D) MNLFA Fully Inclusive FS. η is the latent 

variable; Z is the treatment. 
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Figure 4. Correlations between estimated factor scores and true values of the latent variable 

(upper plot) and between estimated propensity scores and optimal propensity scores (lower 

plot) for each method with six items. FI = fully inclusive; FS = factor score; PS = propensity 

score. FS quality is not perfectly in line with PS quality, and neither align perfectly with bias 

performance. 
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Figure 5. Percent bias remaining (PBR) of each method in the “Impact absent, DIF absent” 

and “Impact present, DIF present” conditions. Diamonds represent the mean PBR for each 

method. The horizontal bars represent the RMSPBR for each method. FI = fully inclusive. 
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Figure 6. Split violin plots of balance across replications. Dark densities, facing left, are the 

weighted standardized mean differences (SMDs) of the estimated factor score (or the mean of 

the SMDs for the items). Light densities, facing right, are those of the true latent variable. The 

solid line within each density is the median. The line at zero indicates perfect balance, and the 

dotted lines at -0.1 and 0.1 indicate the boundaries of acceptable balance. Densities are shown 

for the six-item condition stratified by the presence or absence of impact and ignoring the 

presence or absence of DIF. FI = fully inclusive; FS= factor score. There is greater agreement 

between the estimated and true balance summaries when using the FI scores. Notably, when 

impact is present (lower panel), the MNLFA FI FS method produces some imbalance in the 

estimated and true balance summaries, though they remain in agreement. 

 

  



68 

Table 1. Data-Generating Model Parameters for Structural Equations 

 

 Parameter Function 

Value 

Impact 

Absent 

Impact 

Present 

M2: Mean Impact 

 

𝛾0 Intercept -0.04 -0.04 

𝛾1 Age slope 0.18 0.19 

𝛾2 Site slope 0.21 0.22 

𝛾3 Age-Site interaction slope 0.05 0 

M3: Variance Impact 

 

𝛽0 Intercept 0.52 0.85 

𝛽1 Age slope 0.36 0 

𝛽2 Site slope 0.63 0 

M6: Treatment Selection 

 

𝑎0 Intercept -1.05 

𝑎1 Age slope 0.26 

𝑎2 Site slope 0.93 

𝑎3 LV slope 0.64 

M7: Outcome 

 

𝜏 Treatment effect 0 

𝑏1 Age slope 0.50 

𝑏2 Site slope 0.88 

𝑏3 LV slope 1.22 

𝑏4 Age-LV interaction slope 0.15 

𝑏5 Site-LV interaction slope 0.46 

𝜎2 Residual variance 9 

Note. LV = Latent Variable. 
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Table 2. Data-Generating Model Parameters for Measurement Equations 

 

  Intercept (Equation M4)  Loading (Equation M5) 

  Baseline Age Site  Baseline Age Site 

6 Items              

 Item 1 κ01 0 κ11 - κ21 -  ω01 1.00 ω11 - ω21 - 

 Item 2 κ02 1 κ12 - κ22 -  ω02 1.75 ω12 - ω22 - 

 Item 3 κ03 2 κ13 - κ23 -  ω03 2.50 ω13 - ω23 - 

 Item 4 κ04 0 κ14 0.6 κ24 0.7  ω04 1.00 ω14 0.3 ω24 0.9 

 Item 5 κ05 1 κ15 -0.6 κ25 0.7  ω05 1.75 ω15 -0.3 ω25 0.9 

 Item 6 κ06 2 κ16 0.6 κ26 0.7  ω06 2.50 ω16 0.3 ω26 -0.9 

12 Items              

 Item 1 κ01 0.0 κ11 - κ21 -  ω01 1.0 ω11 - ω21 - 

 Item 2 κ02 0.4 κ12 - κ22 -  ω02 1.3 ω12 - ω22 - 

 Item 3 κ03 0.8 κ13 - κ23 -  ω03 1.6 ω13 - ω23 - 

 Item 4 κ04 1.2 κ14 - κ24 -  ω04 1.9 ω14 - ω24 - 

 Item 5 κ05 1.6 κ15 - κ25 -  ω05 2.2 ω15 - ω25 - 

 Item 6 κ06 2.0 κ16 - κ26 -  ω06 2.5 ω16 - ω26 - 

 Item 7 κ07 0.0 κ17 0.6 κ27 0.7  ω07 1.0 ω17 0.3 ω27 0.9 

 Item 8 κ08 0.4 κ18 -0.6 κ28 0.7  ω08 1.3 ω18 -0.3 ω28 0.9 

 Item 9 κ09 0.8 κ19 0.6 κ29 0.7  ω09 1.6 ω19 0.3 ω29 -0.9 

 Item 10 κ0,10 1.2 κ1,10 0.6 κ2,10 0.7  ω0,10 1.9 ω1,10 0.3 ω2,10 0.9 

 Item 11 κ0,11 1.6 κ1,11 -0.6 κ2,11 0.7  ω0,11 2.2 ω1,11 -0.3 ω2,11 0.9 

 Item 12 κ0,12 2.0 κ1,12 0.6 κ2,12 0.7  ω0,12 2.5 ω1,12 0.3 ω2,12 -0.9 

Note. A dash (-) indicates zero. In the “DIF absent” condition, all parameters other than those 

under “Baseline” are zero. 
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Table 3. Mean Bias and Variability for Treatment Effect Estimates 

 

    Method 

 

No. 

Items Impact DIF 

Ite

ms 

S 

FS 

MS 

FS 

FI 

FS 

MF

I FS 

Tru

e LV 

PBR 

 6 Absent Absent 13 13 13 0 1 1 

 Present 11 12 11 -2 -1 -1 

 Present Absent 11 11 11 0 5 -1 

 Present 12 13 11 2 5 0 

 12 Absent Absent 7 7 7 -1 -1 -1 

 Present 8 9 7 1 0 0 

 Present Absent 8 8 7 2 4 0 

 Present 9 9 7 2 3 -1 

RMSPBR 

 6 Absent Absent 19 19 19 17 17 15 

 Present 18 18 17 17 16 14 

 Present Absent 17 16 16 15 13 13 

 Present 17 17 16 14 13 13 

 12 Absent Absent 16 16 16 16 16 15 

 Present 16 16 15 15 15 14 

 Present Absent 15 15 14 13 13 13 

 Present 15 15 13 13 12 13 

Note. PBR = Percent Bias Remaining; RMSPBR = Root Mean Squared PBR; S FS = 

Simple Factor Score; MS FS = MNLFA Simple Factor Score; FI FS = Fully Inclusive 

Factor Score; MFI FS = MNLFA Fully Inclusive Factor Score; LV = Latent Variable. 

Values are rounded to nearest whole number. 
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