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ABSTRACT

Hyo Young Choi: Scissor for finding outliers in RNA-seq
(Under the direction of J. S. Marron and D. Neil Hayes)

The impressive progress of high-throughput technologies has provided many interesting modern

data types, which has tremendously increased the demand for Statistics. RNA-seq, in particular,

allows a rich characterization of the genome with many exciting applications. This dissertation

makes contributions to RNA-seq data analysis by addressing several statistical challenges especially

characterized by high dimensionality.

The dissertation is composed of two major parts. The first part concerns the issue of high

dimensional outliers which are challenging to distinguish from inliers due to the special structure

of high dimensional space. We introduce a new notion of high dimensional outliers that embraces

various types and provides deep insights into understanding the behavior of these outliers based on

several asymptotic regimes. Using this new framework, we develop an outlier detection method

called Scissor that aims to identify sample outliers with distinct forms or patterns of transcripts

across RNA-seq cohorts. Scissor offers a novel approach to unsupervised screening of a variety

of shape changes that are possibly associated with important genetic events. Scissor has been

implemented in R and is available online.

The second part is motivated by a challenge raised by an application of PCA to RNA-seq data.

A fundamental question using PCA is how many principal components are effective for reducing

dimensions. Although several algorithms have been developed to address this question, it has

been observed that these algorithms may not be appropriate for RNA-seq data due to its abnormal

noise structure. We propose a new algorithm for determining an effective number of principal

components in RNA-seq data assuming a flexible noise structure based on some fundamental results

in random matrix theory. The proposed method also provides a visualization tool for assessing the
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noise assumption. This methodology has been successful in offering more reasonable numbers of

principal components for RNA-seq data and implemented in Scissor.
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CHAPTER 1. INTRODUCTION

Through advancements in terms of computing speed, storage capability, and data-collection

technologies, the scope of Data Science has profoundly broadened. An immeasurable amount

of data have been generated at an unprecedented speed and a variety of new data types have

emerged from numerous platforms such as social media sites, Internet of Things (IoT), and scientific

research institutions. The emergence of such massive data, or Big Data, and new data structures has

tremendously increased the demand of Statistics.

An important type of Big Data is often characterized by a large number of variables in the

thousands, millions and more with only tens or hundreds of observations (large d, small n). In

statistical terminologies, we often call such a data set “high dimensional” or “large dimensional”.

Among many statistical challenges raised by Big Data, high dimensionality is a major issue. In

traditional data analysis, it is assumed that data consist of many observations and a relatively few

variables (large n, small d). The asymptotic assumption of increasing n with a fixed d leads to nice

theoretical properties such as consistency, efficiency, and asymptotic normality. However, such

theories do not provide useful insights for large d data sets. For example, a sample covariance

matrix is not a consistent estimator for the true one in the case of an increasing d even when n is

large. This is mainly because the number of parameters to be estimated (d(d+1)
2 ) is much larger than

the number of observations (nd) (See Section 1.1).

In situations where the classical large n, small d statistical theory does not give useful insight,

methods based on that cannot be expected to work effectively. Many conventional statistics based

on a sample covariance matrix, such as the sphericity tests based on the uniformity of the sample

eigenvalues, are not consistent with an increasing d for example. To appropriately handle the issue of
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dimensionality, tremendous efforts have been made in both theoretical and methodological statistics

for the last few decades.

This dissertation makes further contributions to the high dimensional data analysis motivated

by challenges arising from modern genomic data types. We explore several theoretical aspects of

high dimensional data in some particular situations where regular assumptions are violated and

develop new statistical tools based on the theories investigated.

1.1 High-dimensional asymptotics

The sample covariance matrix is one of the fundamental objects in multivariate data analysis.

When the sample size tends to infinity and the dimension size is fixed, the sample covariance

matrix can be used as a good estimate of the population covariance matrix. However, when the

dimension size is large, the estimation of the population covariance matrix based on the sample

covariance matrix can become very poor. To appreciate this issue, let X be a d× n data matrix

whose columns are random vectors from Nd(0, Id) and denote a version of its sample covariance

matrix by Sn =
1
nXXT . Note that we do not subtract the sample mean vector because the population

mean is zero. In the classical domain when n tends to infinity and d is fixed, it is expected that

the eigenvalues of Sn will be close to 1, which is the eigenvalue of the population covariance

matrix, Id , which is a sense that Sn is a good estimate of Id . Under different conditions, however, the

empirical distribution of the eigenvalues of Sn converges to the Marcenko-Pastur (M-P) distribution

(Marčenko and Pastur, 1967), when d and n both tend to infinity such that d
n → c, as illustrated

in Figure 1.1. The histogram illustrates the distribution of sample eigenvalues of Sn with d = 500

and n = 1000. The curve indicates the theoretical M-P distribution with c = 0.5. The distribution

strongly deviates from the distribution of the population eigenvalue, which is a point mass at 1.

This supports the idea that the sample covariance matrix is not a good estimate of the population

covariance matrix for large dimensions.

When we consider a different asymptotic domain, the limiting distribution of sample eigenvalues

is different. For example, if d
n → ∞ as d and n both grow, the limiting distribution of non-zero

2



Marcenko−Pastur distribution

Eigenvalues

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1.1: The histogram shows the empirical distribution of eigenvalues of Sn with d = 500 and
n = 1000. The red vertical line indicates the distribution of the population eigenvalue, which is
a point mass at 1. The curve shows the theoretical M-P distribution with an index c = 0.5. The
empirical distribution well follows the theoretical M-P distribution whereas both distributions are
strongly deviated from the population eigenvalue distribution.

sample eigenvalues is known to be a semi-circular law with an extreme point mass at zero. If d
n → 0

as d and n both increase, the sample eigenvalues converge to one while the limiting distribution with

suitable rescaling results in a semi-circular law. Thus, different asymptotic domains yield different

limiting properties. Among various asymptotic regimes, this dissertation spotlights three asymptotic

regimes:

• Classical asymptotic regime considers an increasing n (n→ ∞) and fixed d.

• Random matrix theory (RMT) asymptotic regime considers proportionally increasing n

and d, i.e. n→ ∞ and d→ ∞ such that d
n → c. Here, c is mostly assumed to be a constant

within 0 < c < ∞.

• High dimensional low sample size (HDLSS) asymptotic regime considers an increasing d

(d→ ∞) with n being fixed.

A data set is often thought of as a collection of observations generated as a linear combination of

a limited number of signals plus noise. This formulation allows us to confine our view to estimation

3



of such signals instead of the full recovery of a vast number of parameters. Obviously, this advantage

is significantly augmented when dealing with large dimensional data sets. In this formulation, each

observation vector X j can be modeled as

X j = µ+Ay j + ε j (1.1.1)

where µ is a mean vector, A is a d×K matrix representing source signals in its columns, y j is an

K-dimensional random vector, and ε j is a d-dimensional vector of noise. Recent work based on the

model (1.1.1) includes Kritchman and Nadler (2008); Passemier and Yao (2012); Ma et al. (2013);

Shabalin and Nobel (2013); Choi et al. (2014); Yao et al. (2015); Fan and Wang (2015). For instance,

in a signal detection model, X j can be a vector of the recorded signals with noise at a certain time,

where the columns of A are K unknown source signals, and the y j’s are emission levels of these

signals. See e.g. Section 11.6 of Yao et al. (2015). In econometrics, X j can be the returns of stocks

at a certain time, with A being a matrix of latent common factors where the y j’s are unobservable

random factors (Onatski, 2012; Ma et al., 2013; Fan and Wang, 2015). From now on, without loss

of generality, we assume that the mean vector is zero, i.e. µ = 0.

In many related works, the d-dimensional noise vector ε j in (1.1.1) is modeled by ε j = σz j

where σ > 0 is the noise level and z j is a d-dimensional vector of white noise. Also, it is often

assumed that y j and z j are independent. Then, the covariance matrix of X j becomes

ΣΣΣ = ACov(y j)AT +σ
2Id.

Let α1, · · · ,αK denote the eigenvalues of ACov(y j)AT . Since the rank of ACov(y j)AT is at most K,

the eigenvalues of Σ, i.e. spectrum, are

spec(ΣΣΣ) = (α1 +σ
2,α2 +σ

2, · · · ,αK +σ
2︸ ︷︷ ︸

K

,σ2, · · · ,σ2︸ ︷︷ ︸
d−K

) (1.1.2)
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where α1≥α2≥ ·· ·≥αK ≥ 0. In this model, the signal component of ΣΣΣ has K spikes (α1,α2, · · · ,αK),

so (1.1.2) is called the spike covariance model (Johnstone, 2001).

Under this spike model, it is of great interest to estimate the underlying spike signals, i.e. dimen-

sion reduction. One of the most popular dimension reduction techniques is Principal Component

Analysis (PCA) (Jolliffe, 2002). PCA finds a low dimensional subspace maximizing the explained

variation in data, which enables us to recover the underlying signals. To understand the performance

of PCA, many of its interesting theoretical properties have been investigated. From now on, we

assume αK > 0 in (1.1.2). In the classical domain, Anderson (1963) showed that the first K sample

eigenvectors are consistent. However, when the dimension d is very large, the sample eigenvectors

are no longer always consistent. In the RMT domain, a number of papers examine this aspect

(Paul, 2007; Bai and Silverstein, 2010; Paul and Johnstone, 2012; Nadler et al., 2008; Johnstone

and Lu, 2009; Benaych-Georges and Nadakuditi, 2011). Also, in the HDLSS domain, Ahn et al.

(2007); Jung and Marron (2009); Jung et al. (2012); Shen et al. (2013); Aoshima et al. (2018) found

mathematical conditions which characterize the consistency and the strong inconsistency of sample

eigenvectors. Shen et al. (2016) developed a general asymptotic framework to explore interesting

transitions among those three asymptotic domains.

In Chapter 1.3, we extend the previous asymptotic studies for high dimensional data to the

case where there are a small number of outliers. First, we introduce a useful statistical framework

modeling high dimensional outliers. We then explore the behavior of such high dimensional outliers

and the consistency of the first few PC directions with a major interest in the recovery of underlying

directions in which only a small number of outliers go. The challenges to our theories relative to the

existing theory lie in that data observations may not follow an identical distribution, which makes

some well-known theories established under the i.i.d. case no longer applicable. The results have an

important application for detecting outliers in RNA-seq data as will be discussed in Chapter 2.7.2.

Under certain conditions, the studies mentioned above support the idea that the first few

principal component (PC) directions provide crucial information on the signals in high dimensional

data. Then, how many PC directions should be used? Interesting algorithms have been proposed
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to address this question often under the assumption of ε j = σz j. However, it has been observed

that some modern data structures do not follow such assumption. Assuming more flexible noise

structure, we propose in Chapter 3.6.2 an algorithm for determining an effective dimension size

based on some fundamental results in RMT.

We also provide a visualization tool for assessing the distributional assumption made on the

underlying eigenvalues. For example, the assumption, ε j = σz j with d-dimensional white noise

z j, indicates that the distribution of the underlying eigenvalues is a point mass at σ2. As such, the

proposed method is a visual alternative to testing underlying covariance structure.

1.2 RNA-seq data

Over the last decade, impressive advancements have been made in cancer genomics due to

the progress of high-throughput or next generation sequencing (NGS) technologies. An important

achievement is better understanding of the transcriptome, the set of transcripts in a cell, which is

crucial for inferring the functions of genes and understanding human disease (Wang et al., 2009;

Koboldt et al., 2013; Buermans and Den Dunnen, 2014; Van Dijk et al., 2014). In particular,

massively parallel cDNA sequencing, or RNA-seq (RNA sequencing), enables the analysis of the

entire transcriptome in a very high-throughput and quantitative manner.

RNA-seq uses deep-sequencing technologies. RNA-seq experiments mostly start with a popu-

lation of RNA, convert it to cDNA fragments, and then obtain short reads (sequences) from each

fragment from one end (single-end) or both ends (pair-end) (Wang et al., 2009; Oshlack et al., 2010).

Millions of short (25-400bp) reads are generated from this process and then aligned to the reference

genome or transcriptome. These aligned reads construct read count pile-ups for each gene locus,

also known as a base-resolution expression profile, expression coverage, or per-base read depths.

This single-base resolution for annotation has enabled an unprecedented landscape view of the

transcriptional structure of genes by providing a microscopic examination of the transcriptome.

RNA-seq has several benefits over other existing NGS technologies. Specifically, it has high

sensitivity by producing a huge range of expression levels with very low background noise (Wang
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et al., 2009; Ozsolak and Milos, 2011). This enables more accurate quantification of RNA expres-

sion levels than microarrays. Also, its per-base resolution characterizes the precise exon-intron

boundaries, allowing deep examination of splicing diversity. These advantages of RNA-seq have

led to an enormous range of applications such as gene expression profiling, identification of novel

transcripts, studies of DNA methylation and protein binding sites, the complete characterization of

the genome of non-model organisms, and cancer gene identification (Pan et al., 2008; Keren et al.,

2010; Eswaran et al., 2013).

Despite many advantages of RNA-seq, it also presents several technological and bioinformatic

challenges. For example, spurious artifacts can be introduced from the experimental steps such as

amplification, library construction, sequencing, and mapping (Conesa et al., 2016). This dissertation

studies statistical challenges raised by RNA-seq data analysis. In general, RNA-seq expression

coverage data for a single gene have measurements on the read-depths of thousands (1,000 ∼

30,000) of base-positions, but only with hundreds of individuals available. This is a good example

of high dimensional data mentioned earlier, which motivates the theories and methodologies

developed herein.

A substantial proportion of human genes differ in function in ways that are reflected through

different forms of shape changes in expression coverage of RNA-seq. For example, very diverse

splicing patterns and insertions/deletions have been observed. Standard genetic approaches use

junction reads or single nucleotide changes. Taking a different approach to addressing the high-

dimensionality issue, we propose a RNA-seq shape change detection method called Scissor (Shape

changes in selecting sample outliers in RNA-seq). Particularly, Scissor depends on a new statistical

model for outliers in high-dimensional settings that will be introduced in Chapter 1.3.

PCA has been an important exploratory step prior to the downstream analysis in the field of

computational biology. For example, the first and second PCs from RNA-seq data often reveal

the impacts of different library sizes and batch effects. Also, PCA has been extensively used for

reducing dimensions in many genomic data types. An important challenge in the application of

PCA to RNA-seq data is to determine the number of PCs that will be included in the analysis. This
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is mainly because the noise structure of expression coverage differs from the regular white noise

assumption. To address this challenge, we propose an algorithm in Chapter 3.6.2 as mentioned

earlier. The proposed method has been successful in offering more reasonable numbers of PCs

in RNA-seq data compared to other existing algorithms. Furthermore, this algorithm allows us to

automatically choose different numbers of PCs for different genes.

1.3 Outline

This chapter presented the motivation and backgrounds of the theories and methodologies

developed hereafter. The remainder of the dissertation is divided into three parts. The first presents

some theoretical works on high-dimensional outliers motivated by RNA-seq data. The second part

introduces Scissor. The last part presents an algorithm for determining the number of PC directions

with application to RNA-seq data.
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CHAPTER 2. THEORY OF HIGH-DIMENSIONAL OUTLIERS

2.1 Motivation

From a classical point of view, outliers have been considered as bad cases that may confound

the statistical analysis. In this case, one may think the data are contaminated by a few outliers and

those should be down-weighted or potentially removed from the dataset. Much work in this case has

been done. See Hampel et al. (2011) and Huber (2011) for a good overview. On the other hand, there

are situations where outliers can produce important and rich information. For example, aberrant

observations of gene expression data can be highly related to important genetic phenomena such as

mutations, abnormal splicing, and structural variations that are known to be strongly connected to

cancer. In both cases, the study of outliers helps to better understand data.

Roughly speaking, in low dimensional space, a data point is an outlier if it does not fit the

distribution that a majority of the data points come from. However, this definition is more challenging

for high dimensional data due to the ‘curse of dimensionality’, i.e. the phenomenon where the

data points tend to be more apart from each other as the dimension increases. As discussed in

Section 2.4, when d� n, Hall et al. (2005) showed that data points tend to lie near the surface

of a high-dimensional sphere and that, more surprisingly, all pairwise distances of points are

approximately equal and all pairwise angles are approximately perpendicular. These geometrical

properties indicate that data points in high dimensional space are very sparse, and thus they might

be considered as inliers, which makes it challenging to distinguish outliers from them. Due to this

curse of dimensionality, classical outlier detection methods such as distance-based or depth-based

approaches (Barnett and Lewis, 1974; Hawkins, 1980; Stahel, 1981; Donoho and Gasko, 1992;

Liu, 1992; Zuo and Serfling, 2000; Zuo, 2003; Dang and Serfling, 2010) do not work well for

high dimensional data. Over the last decade, several alternative outlier detection methods have
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been developed to tackle the challenge of high dimensionality. (Filzmoser et al., 2008; Ro et al.,

2015; Rousseeuw et al., 2016; Ahn et al., 2018) However, there is no consensus on the definition

of outliers and each method targets different types of outliers. For further discussion, see Section

3.2. In this chapter, we introduce a new notion of high dimensional outliers that embraces various

types of outliers and provides deep insights into understanding the behaviors of outliers in high

dimensions.

Often, the classical large sample theory does not provide good approximations to high dimen-

sional data. For example, many statistics such as Hotelling’s T 2-statistic, generalized variances,

multiple correlation coefficients, and various statistics for sphericity tests are asymptotically con-

sistent under a classical asymptotic regime, but those asymptotics are no longer valid with large d

even d < n. To understand such different asymptotic behavior of high dimensional data, as men-

tioned earlier, tremendous efforts have been made over the last few decades under several different

asymptotic regimes (Baik and Silverstein, 2006; Jung and Marron, 2009; Shen et al., 2016; Wang

et al., 2013; Paul and Aue, 2014; Yao et al., 2015). However, the studies on limiting properties

of high dimensional outliers are still lacking. Under the new notion of outliers, we investigate the

conditions under which outliers can be distinguished from inliers as well as the conditions under

which such outliers can be asymptotically well captured by a low dimensional subspace produced

by PCA. Our theoretical results extend the previous asymptotic studies for high dimensional data to

the case where there are a small number of outliers. The results have an important application for

detecting outliers in RNA-seq data as will be discussed in Chapter 2.7.2.

The remainder of this chapter is organized as follows. In Section 2.2, we review related work.

Section 2.3 introduces a model for an underlying distribution possibly generating outliers. Some

geometrical properties of high dimensional outliers are explored in Section 2.4. Theoretical aspects

related to the asymptotic behavior of sample eigenvalues and eigenvectors when there are two

different types of signals, outlier signals as well as main signals, are investigated in Section 2.5.

Section 2.6 provides a toy example to illustrate the theoretical results. The proofs of the theorems

are given in Section 2.7.
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2.2 Related work

Let X be a d-dimensional random vector with mean vector µ and covariance matrix ΣΣΣ. Let

λ1 ≥ ·· · ≥ λd be the d ordered eigenvalues of ΣΣΣ and U1, · · · ,Ud be the corresponding eigenvectors.

Let X1, · · · ,Xn be observations on X . Denote the sample covariance matrix by S = 1
n−1 ∑

n
j=1(X j−

X̄)(X j− X̄)T and its ordered sample eigenvalues and eigenvectors by λ̂1 ≥ ·· · ≥ λ̂d and Û1, · · · ,Ûd ,

respectively. The asymptotic study of sample eigenvalues (λ̂1 ≥ ·· · ≥ λ̂d) and sample eigenvectors

(Û1, · · · ,Ûd) has an interesting history and developed roughly in three different asymptotic domains:

the classical domain, the RMT domain, and the HDLSS (See Chapter . In each domain, different

asymptotic theories have been established.

In the classical domain, Girshick (1939) investigated the asymptotic properties of sample

eigenvalues and eigenvectors in the case of all the eigenvalues of ΣΣΣ being different. When the

smallest d−q eigenvalues of ΣΣΣ are equal and the others are all different, Lawley (1953) investigated

the asymptotic theories of sample eigenvectors. When X1, · · · ,Xn are from a multivariate normal

distribution, Anderson (1963) has given the asymptotic distribution of λ̂1, · · · , λ̂d , Û1, · · · ,Ûd in

the case of λ1, · · · ,λd having any multiplicities. The asymptotic study of the eigenstructure of the

sample covariance matrix in the classical domain essentially relies on the fact that the population

covariance matrix is well approximated by the sample covariance matrix when the sample size is

large with dimension fixed. When the dimension is also large, however, this is no longer the case.

In the RMT domain, these phenomena were explored in a large number of papers, e.g. Marčenko

and Pastur (1967); Silverstein and Choi (1995); Silverstein (1995); Bai and Silverstein (1998); Baik

et al. (2005); Paul (2007); Bai and Yao (2012). See also Bai (2008), Bai and Silverstein (2010), Paul

and Aue (2014) and Yao et al. (2015) for useful overview. A well-known observation is that the

empirical spectral distribution (ESD) of the sample covariance matrix converges almost surely to

the Marcenko-Pastur distribution when the population covariance matrix is the identity and d and n

proportionally grow to infinity. Combining the fact that the an eigenvalue is a continuous function

of a matrix, this supports the idea that the sample covariance matrix is not a good estimate of the

11



population covariance matrix for large dimensions. However, many data sets in high dimensions

involve quiet different eigenvalues, for instance, a few largest of those are much larger than the other

eigenvalues. To understand these phenomena, the spiked covariance model was initially introduced

by Johnstone (2001) and extensively studied. Baik et al. (2005) studied the conditions of the first m

population eigenvalues that provided the corresponding sample eigenvalues being separate from the

other small eigenvalues under the spike covariance model. They proved a transition phenomenon:

the limits of the extreme sample eigenvalues depend on the critical value 1+
√

c, i.e. a sample

eigenvalue from a population eigenvalue that is greater than 1+
√

c is asymptotically isolated from

the others, i.e. the bulk eigenvalues. Baik and Silverstein (2006) extended the results of Baik et al.

(2005) to non-Gaussian variables and found that the limits of the extreme sample eigenvalues depend

on the critical values 1+
√

c for the largest spike eigenvalues and on 1−
√

c for the smallest spike

eigenvalues. Bai and Yao (2012) extended the results to a generalized spike covariance model that

allows flexibility on the distribution of bulk population eigenvalues. The spike covariance model

is closely related to the concept of small-rank perturbations, i.e. theories on perturbed random

matrices. In a small-rank perturbation approach, convergence of the few largest sample eigenvalues

and the corresponding sample eigenvectors are studied in Benaych-Georges and Nadakuditi (2011).

Note that underlying spike eigenvalues are constant in the classical domain and the RMT

domain where the increasing sample size n boosts the consistency. On the other hand, in the

HDLSS domain, underlying spike eigenvalues are allowed to increase, which encourages the PCA

consistency for increasing dimension d and a fixed n (Ahn et al., 2007; Jung and Marron, 2009;

Jung et al., 2012; Shen et al., 2016). Jung and Marron (2009) explored the asymptotic behaviors of

the spike eigenvectors when the levels of spike eigenvalues increase at the rate dα. In the case of

α > 1, they showed that the spike eigenvectors are subspace consistent, i.e. the subspace spanned

by the sample spike eigenvectors consistently estimates the subspace spanned by the underlying

population spike eigenvectors, and is strongly inconsistent for α < 1, i.e. the angle between each

sample eigenvector and the true one converges to 90 degrees. Jung et al. (2012) deeply explored

the boundary case (α = 1) and showed the convergence in distribution of the first spike eigenvector
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under the normal assumption. Shen et al. (2016) have provided a general framework of the PCA

consistency that nicely connected the existing results from different domains except for some

boundary cases.

In this chapter, we deeply explore the behaviors of high dimensional outliers via geometrical

representations in the HDLSS domain and asymptotic theories of sample eigenvalues and eigen-

vectors from the data containing a few outliers under the general framework studied in Shen et al.

(2016). A major interest is the consistent estimation of underlying outlier directions in which only a

small number of outliers go. We will provide for each scenario a condition that allows achievement

of the PCA individual consistency or subspace consistency.

2.3 Model and Notations

In this section, we introduce a model that provides a new notion of high dimensional outliers.

Figure 2.2 shows a motivating example with 30 normal RNA-seq data curves in grey color with two

potential colored outliers. Each curve represents each observation in the genomic region around

the gene TP53. The curves are read depth (or coverage), i.e. the number of reads aligned to each

nucleoide, which are log10 read counts from RNA-seq experiments based on HNSCC (Head and

Neck Squamous Cell Carcinoma) cancer tissue samples obtained from the TCGA Research Network.

We use the terminology sample to indicate a patient. Exons, highlighted by colored background

(except for pink), are regions of a gene that are annotated as the part of the messenger RNA region.

By contrast, introns, highlighted by a white background together with on colored pink, are regions

of the gene that are expected to be spliced out, i.e. not used in the RNA production. In the figure, the

red and blue curves behave differently from the others in the sense that the red one retains an intron,

as highlighted by the pink background, and the blue one skips several exons, as highlighted by the

green background. Such abnormal splicing events are called intron retention and exon skipping,

respectively. It has been observed that such events happen with a small chance at each gene, hence

it makes sense to consider such samples as outliers.
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Figure 2.2: The 30 RNA-seq observations for the gene TP53 are plotted on the log-scale. Exons
are highlighted by colored background and introns are indicated using mostly white background.
The red and blue curves indicate biologically important outliers and the other gray curves indicate
normal observations.

The two red and blue outliers show clearly different structure from the other curves, which

implies that they show different underlying signals that do not fit together with the majority of the

data. At the same time, interestingly, some of the main structures of the two outliers are shared

with most of the data. This example motivated us to consider two different types of underlying

directions in the data space, together with variation in those directions in describing outliers. Two

important types are outlier directions that may lead to prominent high dimensional outliers and main

directions whose variation is shared among all data points including outliers. The new proposed

model incorporating these two components is now introduced in three parts.

Part 1. The classical way of describing underlying variations of a random vector using PCA is

discussed in this paragraph. Let X be a random vector distributed as a d-dimensional multivariate

normal distribution, Nd(0,ΣΣΣd). The spectral decomposition of the population covariance matrix is

ΣΣΣd = UdΛΛΛdUT
d
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where Ud = [u1, · · · ,ud] contains the orthonormal eigenvectors of ΣΣΣd in its columns and ΛΛΛd =

diag(λ1,λ2, · · · ,λd) is a diagonal matrix with the corresponding non-negative eigenvalues. Then, a

random vector from Nd(0,ΣΣΣd) can be expressed as

X = UdΛΛΛ
1/2
d Z = UdY

where Z ∼ Nd(0, Id) and Y ∼ Nd(0,ΛΛΛd). That is, X is a linear combination of Ui with random

coefficients yi from N(0,λi), i.e.,

X =
d

∑
i=1

yiUi, yi ∼ N(0,λi). (2.3.1)

In the terminology of PCA, the yi are the principal components, i.e. the scores or projection

coefficients (Jolliffe, 2002). Intuitively, if X involves large yi for some i, then the direction Ui is an

important direction of variation of the underlying distribution of X , whereas if yi ≈ 0, X does not

feel strongly the direction Ui.

Part 2. Distributions for modeling outliers are now considered. Based on the intuition behind

the principal components, an outlier can be viewed as an observation that goes strongly in some

directions that the bulk of data points do not. Denote one of those directions by U∗i and the

corresponding random coefficient by y∗i . Then outliers that go in the direction U∗i have large y∗i ’s

whereas the other data points have small y∗i ’s in (2.3.1). We model this underlying variation of a

random coefficient y∗i by a scale mixture distribution with two different variances, τi,2� τi,1 > 0,

i.e.,

y∗i ∼


√

τi,1zi, w.p. 1−wi

√
τi,2zi, w.p. wi,

(2.3.2)

where the zi’s are i.i.d random variables with mean zero and variance one and 0 ≤ wi ≤ 1, with

wi≈ 0. The first part of the mixture distribution with the smaller variance, τi,1, describes the behavior

of the majority of data vectors with little variation in the direction U∗i . The second part of the mixture
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distribution with the larger variance, τi,2, corresponds to outliers, and so we assume that wi is small,

e.g. less than 0.05. This mixture model well reflects an underlying mechanism generating outliers

in the sense that “one person’s noise could be another person’s signal”, as pointed out in Kamber

and Han (2001).

Part 3. A new model for an underlying distribution embracing a small set of outliers is introduced

based on the classical setting (2.3.1) together with the distribution (2.3.2) beyond the Gaussian

models. Let X = [X1, · · · ,Xn] be a data matrix whose columns are independent observation vectors

distributed as a d-dimensional (perhaps non-Gaussian) multivariate distribution with a small number

of aberrant vectors whose signals are different from the majority of the data. Let {Ui}1≤i≤d be a set

of underlying orthogonal vectors some of which are responsible for the potential outliers. Note that

these vectors do not need to be the eigenvectors of the underlying covariance matrix. In the spirit

of (2.3.1), an observation vector X j can be expressed as a linear combination of the orthonormal

direction vectors, {Ui}1≤i≤d , whose coefficients are independent random variables distributed as

different mixture distributions, i.e.

X j =
d

∑
i=1

yi jUi, where yi j ∼


√

τi,1zi j, w.p. 1−wi

√
τi,2zi j, w.p. wi,

(2.3.3)

where the zi j’s are assumed to be i.i.d. random variables with mean zero, variance one, and bounded

fourth moment. Then, the random variables {yi j}1≤ j≤n with wi > 0 model how the direction Ui as

an outlier component can generate outliers. Also, we will use wi = 0 for other directions especially

main components, which allows flexibility to include the classical way of describing the variation

from underlying directions as in (2.3.1). To distinguish the two components, we let Imain denote a

set of dimension indices that correspond to main components and Iout denote outlier components.

That is, Iout = {1 ≤ i ≤ d | wi > 0} and Imain = {1 ≤ i ≤ d | wi = 0} = {1, · · · ,d}\Iout . Also, we

denote the sample indices that are outlying in each outlier component, indexed by i ∈ Iout , by

si = {1≤ j ≤ n | yi j =
√

τi,2zi j}.
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Under the model (2.3.3), outliers are allowed to share important features or background noise

with normal data points. The model also allows an outlier to be associated with several outlier

components, which offers flexibility in modeling the nature of outliers. Under this setting, a sample

vector from (2.3.3) can be viewed as a random vector from a complicated mixture distribution

whose components have different covariance structures.

As discussed earlier, still there is no consensus definition for outliers. Every procedure may

target its own informal definition for outliers based on various goals. Here, we describe several

types of outliers that are commonly used in various applications as special cases of the proposed

model in (2.3.3).

• Variable-specific outliers: This type of outlier is different from the bulk of the data only at

single variables. If an observation is an outlier with respect to the original variables, then it is

usually extreme on these variables. Assuming there are d variables in the model, each sample

can be modeled by (2.3.3) with Ui = ei for i = 1, · · · ,d. Here, ei is a unit vector with 1 for

the ith entry and 0 for the others. Then, an outlier X j in the m-th variable can be described by

τm,2 > τm,1 and an underlying outlier proportion wm.

• Scale mixture outliers: The outliers in this category exhibit a much different abberation,

across all variables simultaneously, and are more scattered than the majority of data, and

thus they are also known as scatter outliers (Filzmoser et al., 2008). Let X j ∼ Nd(0,σ2
1ΣΣΣ)

with probability 1− p and Nd(0,σ2
2ΣΣΣ) with a small probability p and σ2

2� σ2
1. This scale

mixture model is a special subset of the model (2.3.3) with wi = p,τi,1 = σ2
1,τi,2 = σ2

2 for

all i = 1, · · · ,d, where the Ui’s are a set of the orthogonal vectors, e.g. the eigenvectors of ΣΣΣ.

Additionally, the Iout will include every index, Imain = /0, and s1 = s2 = · · ·= sd . That is,

X j =

 ∑
d
i=1 yi jUi, where yi j = σ1zi j, w.p. 1− p

∑
d
i=1 yi jUi, where yi j = σ2zi j, w.p. p.
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• Shifted outliers: The shifted outliers are those that are shifted globally to a common direction

(Filzmoser et al., 2008; Ro et al., 2015; Dai and Genton, 2016). Often, these outliers share

most of the variation with the the bulk of the data, but present abnormally high or low overall

pattern, which is typically described by the mean vector denoted by µ. Let X j be independent

random vectors from a jµ+Z j, where Z j ∼ Nd(0,Σ), a j ∼ N(0,σ2
1) with probability 1− p and

N(0,σ2
2) with probability p, and Z j and a j are independent. Assuming σ1 < σ2 and a small p,

the random variable a j describes how a small fraction of data points may be shifted. Define

one of the underlying vectors, say U1, to be the normalized mean vector, that is, U1 = µ/‖µ‖,

and the other underlying vectors to be orthogonal to each other. Then, the variation from the

U1 for normal samples and outliers are respectively σ2
1‖µ‖2 +UT

1 ΣΣΣU1 and σ2
2‖µ‖2 +UT

1 ΣΣΣU1.

Thus, each data object can be modeled by

X j =
d

∑
i=1

yi jUi, where y1 j ∼

 N(0,σ2
1‖µ‖2 +UT

1 ΣΣΣU1), w.p. 1− p

N(0,σ2
2‖µ‖2 +UT

1 ΣΣΣU1), w.p. p,

with the other yi j from N(0,UT
i ΣΣΣUi) for i = 2, · · · ,d.

2.4 Geometrical representation

It is important to understand the behavior of outliers in high dimensional space. Roughly

speaking, the distance between data points becomes heavily dominated by noise as dimension

increases, resulting in a sparse data set where outliers are less distinguishable. Zhou and Marron

(2016) studied the case where some outliers are too close to each other due to some common factors,

e.g. family members, and thus unduly affect the conventional PCA and some robust methods.

However, studies on the behavior of high dimensional outliers in a systematic manner are still

lacking. This section explores the geometrical features of the high dimensional outliers based on the

model (2.3.3).
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It is of great interest to understand when outliers in high dimensions may deviate from the

majority and when they may not. Intuitively, if τi,2 in some outlier components are dramatically

larger than τi,1, then the relevant outliers are more likely to be separated from the bulk of the data.

By contrast, if τi,2 do not differ much from τi,1, the corresponding outliers are expected to be harder

to distinguish. As discussed below, an interesting observation in high dimensional data is that if

an outlier is involved in a large fraction of outlier directions, d encourages the separability of the

outlier from the other normal data points even when τi,2 is not substantially large. On the other hand,

if an outlier is involved in a limited number of outlier directions, d discourages the separability even

for relatively large τi,2’s. We study these phenomena using the geometrical representation of high

dimensional outliers in the HDLSS context explored by Hall et al. (2005) and identify a condition

when outliers may be distinguishable in such high dimensions.

We consider a simple scenario where data come from (2.3.3) with τi,1 = σ2 and τi,2 = τ(d) for

all i under the normality assumption. In this section, we index the variation for outlier components

by d, τ(d), as an indication of increase with dimension. Then, our model can be expressed as

yi j =

 σzi j, w.p. 1−wi

τ(d)zi j, w.p. wi,
for i ∈ Iout and yi j = σzi j for i /∈ Iout . (2.4.1)

Consider a non-outlier point X j from (2.4.1) which can be expressed as X j = ∑
d
i=1 σzi jUi where the

Ui are orthonormal underlying eigenvectors. As d increases, it follows by a law of large numbers

that its squared Euclidean distance scaled by d converges to the constant σ2 in the sense that

1
d
‖X j‖2 =

1
d

d

∑
i=1

σ
2z2

i j

→ σ
2 (2.4.2)

almost surely. Then, we might fairly say that a non-outlier point X j lies approximately on the surface

of a d-variate sphere, of radius (σ2d)1/2, as d→ ∞. Similarly, we can obtain limiting behavior of

distances between pairs of non-outlier points. The distance between two non-outlier points X j and
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Xl is approximately equal to (2σ2d)1/2 as d→ ∞, in the sense that

1
d
‖X j−Xl‖2 =

1
d

d

∑
i=1

σ
2(zi j− zil)

2

→ 2σ
2 (2.4.3)

where the convergence is almost sure. These asymptotic results match with the results in Hall et al.

(2005). As described in their paper, application of (2.4.3) to each pair ( j, l) of non-outliers, and

scaling all distances by the factor d−1/2, shows that they asymptotically construct a polyhedron

where each edge is of length (2σ2)1/2 and the vertices are the m non-outliers.

Similarly, we now explore the behavior of outliers in high dimensions. An outlier point X j′ can

be expressed as

X j′ = ∑
i∈I j′

out

√
τ(d)zi j′Ui + ∑

i/∈I j′
out

σzi j′Ui

where I j′
out is an index set for outlier components related to X j′ . Let K(d)

j′ = |I j′
out | be the cardinality

of the set I j′
out for each d and p j′

out = lim
d→∞

K(d)
j′
d be the fraction of the outliers components for a large d.

The deviation of X j′ from the majority depends on the levels of K(d)
j′ , that is, p j′

out > 0, p j′
out = 0 with

K(d)
j′ → ∞, and p j′

out = 0 with K(d)
j′ fixed. Each case requires the different levels of τ(d) as will be

discussed below.

Let us first consider the case of p j′
out > 0 with τ = lim

d→∞
τ(d). It follows that if a law of large

numbers applies to its squared distance divided by d, then

1
d
‖X j′‖2 =

1
d ∑

i∈I j′
out

τ
(d)z2

i j′+
1
d ∑

i/∈I j′
out

σ
2z2

i j′

=
K(d)

j′

d
1

K(d)
j′

∑
i∈I j′

out

τ
(d)z2

i j′+
d−K(d)

j′

d
1

d−K(d)
j′

∑
i/∈I j′

out

σ
2z2

i j′

→ p j′
outτ+(1− p j′

out)σ
2 (2.4.4)
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almost surely as d→ ∞. This implies that an outlier point X j′ is approximately of distance (σ2d +

p j′
out(τ−σ2)d)1/2 from the origin. Also, the distance between an outlier X j′ and a non-outlier X j

divided by d1/2 converges almost surely to (p j′
out(τ−σ2)+2σ2)1/2 as d→ ∞:

1
d
‖X j−X j′‖2 =

1
d ∑

i∈I j′
out

(σzi j−
√

τ(d)zi j′)
2 +

1
d ∑

i/∈I j′
out

σ
2(zi j− zi j′)

2

→ p j′
out(τ−σ

2)+2σ
2. (2.4.5)

Therefore, a larger p j′
out or a larger τ help to better separate the outlier X j′ from non-outliers provided

that τ > σ2 and pout > 0. In particular, this geometrical property shows that even when τ is not much

bigger than σ2, good separability still follows when p j′
out is sufficiently large for high dimensions

whereas it tends to be less successful in low dimensions (Filzmoser et al., 2008).

The type of scale mixture outliers introduced in Section 2.3 is a special example of this case

with σ2
1 = σ2 and σ2

2 = τ. For this particular type, all the resulting outliers have pout = 1, which

together with (2.4.2) and (2.4.4) leads to two d-variate spheres of different radii: a sphere of radius

(σ2d)1/2 on the surface of which the non-outliers approximately lie, and another sphere of radius

(τd)1/2 for the outliers. This geometrical representation is also associated with the unique spectrum

limit of the sample covariance matrix of high dimensional scale mixture distributions as studied

in Li and Yao (2018). They showed that the limit of the ESD from the scale mixture distribution

can be viewed as a mix of the two separate ESD limits relevant to each mixture component, and

the separation of these two limits becomes more distinct for a larger ratio of d
n . Roughly speaking,

the part of the spectrum limit containing large eigenvalues is associated with the larger sphere of

radius (τd)1/2 and the other part involving smaller eigenvalues is associated with a smaller sphere

of radius (σ2d)1/2.

So far, we have observed that d encourages the geometrical separability of an outlier X j′ if

p j′
out > 0. However, this is no longer the case for p j′

out = 0 because the terms p j′
outτ and p j′

out(τ−σ2)

in (2.4.4) and (2.4.5), respectively, disappear for large d, which discourages the separability. In

this more challenging situation, we need a τ(d) much bigger than σ2 to approximately models the
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separability. So here we let τ(d) increase as d increases. As mentioned earlier, the case with p j′
out = 0

is further divided into two cases where K(d)
j′ increases as d increases and where K(d)

j′ is fixed. Let us

first explore the case with increasing K(d)
j′ . We model the idea of a stronger outlier as

K(d)
j′ τ(d)

d
→ r j′ as d→ ∞. (2.4.6)

Then, it is easy to show 1
d‖X j′‖2→ r j′+σ2 and 1

d‖X j−X j′‖2→ r j′+2σ2 as d→ ∞. This indicates

that r j′ plays an important role in separating X j′ from non-outliers geometrically. If r j′ is too small,

and in particular if it equals 0, then the data points in the sample including outliers asymptotically

behave as a regular data set with the absence of outliers. On the other hand, if the r j′ is large enough,

the outlier X j′ tends to be distinguished from the sphere on the surface of which the majority of data

points spread out.

The results above hold for increasing K(d)
j′ as d → ∞, for fixed sample size n. For the case

of a limited number of outlier directions, i.e. K(d)
j′ = K j′ , a law of large numbers may not be

applicable, and rather we employ the convergence in distribution. Then, we have 1
d‖X j′‖2 →d

1
K j′

∑
i∈I j′

out
r j′z2

i j′+σ2 and 1
d‖X j−X j′‖2→d

1
K j′

∑
i∈I j′

out
r j′z2

i j′+2σ2. Still, we see that the level of r j′

determines the separability of an outlier from the other normal data points. But here it is good to

mention that r j′ becomes the limit of τ(d)

d , which only depends on the level of τ(d), because we fix

the K j′ .

To sum up, our study in this section enables understanding of the transition phenomenon of

high dimensional outliers from near the surface of a high dimensional sphere to being distant from

the sphere. Our results indicate that there are two factors affecting this transition which are the

proportion of outlier components involved in an outlier and the signals of those outlier directions.

2.5 PCA consistency

In a spike covariance model, a fixed number of population eigenvalues are assumed to be much

larger than the others. This provides an important sense in which the signals corresponding to large
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population eigenvalues are consistently estimated by PCA under some conditions that depend on

various asymptotic domains (Shen et al., 2016). We employ the same concept of a spike covariance

model here. Let K be the total number of different spike components among the covariance

matrices in the mixture components. For convenience, we refer to {Ui}1≤i≤K as spike directions and

{Ui}K+1≤i≤d as non-spike directions. The non-spike components are often considered as noise. In a

modification of the definition in Section 2.3, denote the index sets for outlier spike components and

main spike components by Iout = {1≤ i≤K|wi > 0} and Imain = {1, · · · ,K}\Iout , respectively. That

is, {Ui}i∈Iout is the set of outlier spike directions and {Ui}i∈Imain is the set of main spike directions.

The inherent variation derived in each direction Ui can be expressed as λi = (1−wi)τi,1 +wiτi,2 by

the mixture distribution in (2.3.3) and such λi’s are indeed the population eigenvalues corresponding

to the direction Ui. This is because the covariance matrix of X j from (2.3.3) can be written as

ΣΣΣ = Cov(X j) = Cov(Uy j) = UCov(y j)UT where y j = (y1 j, · · · ,yd j)
T . Due to the independence of

{yi j}1≤i≤d , Cov(y j) is a diagonal matrix whose entries are var(yi j) = (1−wi)τi,1 +wiτi,2, and thus

the λi’s are the eigenvalues of ΣΣΣ by the eigenvalue decomposition.

Let X1, · · · ,Xn be observations from (2.3.3) with the K spike components as described above.

Denote the sample covariance matrix by Σ̂ΣΣ = 1
nXXT = 1

n ∑
n
j=1 X jXT

j and its eigenvalue decomposi-

tion by Σ̂ΣΣ = ÛΛ̂ΛΛÛT with Û = [Û1, · · · ,Ûd] and Λ̂ΛΛ = diag(λ̂1, · · · , λ̂d) where {(λ̂k,Ûk) : k = 1, · · · ,d}

are the pairs of eigenvalues and eigenvectors of Σ̂ΣΣ such that λ̂1 ≥ λ̂2 ≥ ·· · ≥ λ̂d . In this section,

asymptotic properties of λ̂1, · · · , λ̂d and Û1, · · · ,Ûd are analyzed under the general framework devel-

oped by Shen et al. (2016). As discussed in Section 2.2, this general framework includes several

previously studied domains as special cases and allows one to understand interesting connections

among the various domains. This section provides parallel asymptotic results for data from a compli-

cated mixture distribution (2.3.3) and enables understanding of the behavior of outlier components

in high dimensions. The main contribution of our theorems compared to the existing theories lie in

that data observations do not follow the same distribution, which mean the well-known theories

must be extended.

23



We consider increasing sample size n, increasing dimension d, and increasing spike signals.

As an indication of increasing spike signals, we let λi, τi,1, and τi,2 be sequences indexed by n,

that is, λ
(n)
i , τ

(n)
i,1 , and τ

(n)
i,2 . Consider the M+1 tiers where the first K eigenvalues, {λ(n)

i }1≤i≤K , are

grouped such that qm eigenvalues fall into the m-th tier where ∑
M
m=1 qm = K and the rest of the

eigenvalues are all grouped into the M + 1-th tier. Define q0 = 0,qM+1 = d−K, and the partial

sums pm = ∑
m
l=0 ql . Then, the index set of the eigenvalues in the m-th tier can be written as

Hm =
{

pm−1 +1, pm−1 +2, · · · , pm−1 +qm
}

for m = 1, · · · ,M+1.

Denote a linear subspace spanned by the components in the m-th tier by Sm = span{Ui, i ∈ Hm} for

m = 1, · · · ,M+1.

The following assumptions provide the conditions for the variances, τ
(n)
i,1 and τ

(n)
i,2 , of the

underlying mixtures. Several different conditions are assumed for main spike signals, outlier spike

signals, and noise signals, which helps to distinguish spike components from non-spike components.

There are two types of noise in our model. One type is noise for all data points that correspond to

the non-spike components in the model. By contrast, the other type is noise for the majority but a

signal for a few observations. The latter type of noise is modeled by the small variance part in the

outlier components. The following two assumptions illustrate the variances for these two types of

noise.

Assumption 2.5.1. lim
n→∞

τ
(n)
i,1 = lim

n→∞
τ
(n)
i,2 = cλ for i ∈ HM+1.

Assumption 2.5.2. lim
n→∞

τ
(n)
i,1 = cλ for i ∈ Iout .

In a spike covariance model, noise signals are described in non-spike components and the cor-

responding underlying eigenvalues often are assumed to be constant for modeling white noise. This

helps the bulk eigenvalues corresponding to the noise possess some known asymptotic properties.

For instance, the distribution of the bulk eigenvalues converges to some well-known distributions,

e.g. the Marcenko-Pastur law or the semi-circular law, and the extreme eigenvalues (the smallest

and largest eigenvalues) are also known to be consistent to some values or asymptotically follow
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the Tracy-Widom distribution (Marčenko and Pastur, 1967; Bai and Yin, 1988; Bai et al., 1988; Bai

and Yin, 1993; Johnstone, 2001). In the same spirit, Assumption 2.5.1 describes the asymptotically

equivalent noise signals for non-spike directions {Ui}i∈HM+1 . Eventually, the underlying eigenvalues

{λ(n)
i }i>K are all equal to cλ for large d. Assumption 2.5.2 describes noise variances (τ(n)i,1 ) for the

outlier spike components. Since the outlier spike components are nothing but noise for the majority

of the data, the same level of variation assumed for the non-spike components can be assumed.

Thus, the noise variances for outlier spike directions are also asymptotically equal to cλ. This nicely

connects the outlier model with the null model, i.e. the case with no outlier spike components, in

the sense that the outlier components will merge with non-spike noise components.

In contrast to noise signals, we allow spike signals to be increasing in n. The intensity of each

spike component is determined by the underlying variation that each component is involved in,

which is equivalent to its corresponding eigenvalue. For large n, the underlying eigenvalues, λ
(n)
i ,

are simply τ
(n)
i,1 for i ∈ Imain whereas, for i ∈ Iout , the eigenvalues are wiτ

(n)
i,2 because variation from

the larger variance component τ
(n)
i,2 dominate variation from the smaller variance component τ

(n)
i,1 .

The PCA consistency strongly depends on the magnitudes of spike eigenvalues, which are specified

in a systematic manner in the following assumptions. Let δ
(n)
m for m = 1, · · · ,M be sequences of

constant values for index n.

Assumption 2.5.3. lim
n→∞

τ
(n)
i,1

δ
(n)
m

= 1 for i∈Hm∩ Imain and lim
n→∞

τ
(n)
i,2

wiδ
(n)
m

= 1 for i∈Hm∩ Iout , m = 1, · · · ,M.

Assumption 2.5.4. As n→ ∞, δ
(n)
1 � δ

(n)
2 � ·· · � δ

(n)
M � λ

(n)
K+1 where an � bn implies lim

n→∞

an
bn

> 1.

Assumption 2.5.3 allows the components in the same tier to share asymptotically equivalent

eigenvalues. We further assume different limiting coefficients for different tiers in Assumption 2.5.4,

which enables the characterization of the M subspaces spanned by the directions in each tier.

Under Assumptions 2.5.1-2.5.4, we now investigate the asymptotic properties of the sample

eigenvalues and eigenvectors. Even though we assume a complicated mixture distribution for the

underlying structure and thus the data are not i.i.d., we obtain parallel asymptotic results to those

in Shen et al. (2016). This is because although observations are not from an identical distribution,
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they are allowed to share the same underlying eigenvectors from the model (2.3.3). Then, we have a

simple integrated covariance matrix ΣΣΣ so that a spike covariance model can be employed even when

data come from multiple distributions.

In general, the strength of underlying spike signals and increasing sample size n encourage

PCA consistency whereas increasing dimension d discourages consistency. When the underlying

spike signals in the m-th tier with increasing n are asymptotically strong enough to prevail over the

dimension d in the sense that d
nδ

(n)
m
→ 0, it follows that the estimates of the eigenvectors are subspace

consistent in the m-th tier and the estimates of the eigenvalues are consistent as well. Theorems 2.5.1

and 2.5.2 demonstrate such asymptotic behavior in a concrete manner under different scenarios.

Theorem 2.5.1. Under Assumptions 2.5.1-2.5.4,

(a) if d
nδ

(n)
M

→ 0, then

(i) for i≤ K, λ̂i

λ
(n)
i

→a.s. 1 where λ
(n)
i = τ

(n)
i,1 for i ∈ Imain and λ

(n)
i = wiτ

(n)
i,2 for i ∈ Iout;

(ii) for i > K,

• if 0 < c < ∞, cλ(1−
√

c)2 ≤ λ̂n∧d ≤ λ̂1 ≤ cλ(1+
√

c)2 a.s.;

• if c = ∞, nλ̂i
d →a.s. cλ;

• if c = 0, λ̂i→a.s. cλ;

(b) if d
nδ

(n)
h

→ 0 where 1≤ h < M and d
nδ

(n)
h+1

→ ∞, then

(i) for i≤ ph, λ̂i

λ
(n)
i

→a.s. 1 where λ
(n)
i = τ

(n)
i,1 for i ∈ Imain and λ

(n)
i = wiτ

(n)
i,2 for i ∈ Iout;

(ii) for i > ph, nλ̂i
d →a.s. cλ.

Theorem 2.5.1 considers two scenarios: (a) when all spike signals are strong and (b) when

strong population signals are assumed only up to the h-th tier and the other signals are dominated

by the increasing dimension, i.e. d
nδ

(n)
h+1

→ ∞. It should be noted that these two different scenarios

yield different asymptotic regimes: (a) considers all three cases for the limit of c, i.e. 0 < c < ∞,

c = ∞, and c = 0, whereas Theorem 2.5.1 (b) considers only the case of c = ∞. This is because the
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condition d
nδ

(n)
h+1

→ ∞ of (b) and Assumption 2.5.4 together rule out the cases of c < ∞ as d
nλ

(n)
K+1

→ ∞

can hold only when d
n → ∞. In both cases, if the signal in a tier is strong enough so that d

nδ(n)
→ 0,

then the sample eigenvalues corresponding to the tier consistently estimate the true eigenvalues. On

the other hand, if the spike signals are not that strong, then the corresponding sample eigenvalues

tend to be swallowed by the small bulk eigenvalues.

Intuitively, although an underlying outlier component is dramatically intense, its realized signal

is much weaker than the true one because it loses the power due to the small chance of participation.

Assumption 2.5.3 reflects this intuition and gives a condition that the ith outlier spike signal should

be 1/wi times greater than the other main spike signals in the same tier to compensate for this loss

of power. Based on this assumption, Theorem 2.5.1 demonstrates that such an outlier signal would

asymptotically attain the same sample eigenvalues as the main signals in the same tier. In particular,

the sample eigenvalue from an outlier signal converges to the dominating variance (τ(n)i,2 ) multiplied

by the corresponding proportion (wi) in the underlying mixture distribution (2.3.3). Therefore,

the true levels of outlier signals can be approximately estimated by dividing the corresponding

eigenvalues by the proportion (≈ wi) of the relevant outliers.

In many outlier detection methods, it is of great interest to choose the subspace that outlier

components are involved in (Filzmoser et al., 2008; Ahn et al., 2018). Although Theorem 2.5.1

suggests that a few large sample eigenvalues may consistently estimate the true levels of the signals,

it is not enough to say that the corresponding principal component directions construct a useful

subspace for detecting outliers. This brings to the study of eigenvectors that is discussed in the

following theorem. Let δ
(n)
0 = ∞ for all n.

Theorem 2.5.2. Under Assumptions 2.5.1-2.5.4,

(a) if d
nδ

(n)
M

→ 0, and 0 < c≤ ∞, then

(i) Ûi are subspace consistent in the sense that the angle(Ûi,Sm)→a.s. 0 for i ∈ Hm, m =

1, · · · ,M+1.

• For m = 1, · · · ,M−1, angle(Ûi,Sm) = o(
{

δ
(n)
m

δ
(n)
m−1

∨ δ
(n)
m+1

δ
(n)
m

}1/2
).
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• For m = M, angle(Ûi,Sm) = o(
{

δ
(n)
m

δ
(n)
m−1

}1/2
)∨O(

{ d
nδ

(n)
m

}1/2
).

• For m = M+1, angle(Ûi,Sm) = O(
{ d

nδ
(n)
m−1

}1/2
).

(b) if d
nδ

(n)
h

→ 0 where 1≤ h < M and d
nδ

(n)
h+1

→ ∞, then

(i) Ûi for i ≤ ph are subspace consistent in the sense that the angle(Ûi,Sm)→a.s. 0 for

i ∈ Hm, m = 1, · · · ,h.

• For m = 1, · · · ,h−1, angle(Ûi,Sm) = o(
{

δ
(n)
m

δ
(n)
m−1

∨ δ
(n)
m+1

δ
(n)
m

}1/2
).

• For m = h, angle(Ûi,Sm) = o(
{

δ
(n)
m

δ
(n)
m−1

}1/2
)∨O(

{ d
nδ

(n)
m

}1/2
).

(ii) Ûi for i > ph are strongly inconsistent in the sense that |< Ûi,Ui > |= O(
{nλ

(n)
i

d

}1/2
).

Under the same scenarios considered in Theorem 2.5.1, Theorem 2.5.2 studies the asymptotic

behavior of the sample eigenvectors in terms of angles as studied in Jung and Marron (2009) and

Shen et al. (2016). In each scenario, if the mth tier involves a strong signal such that d
nδ

(n)
m
→ 0, then

the ith sample eigenvector, Ûi for i ∈ Hm, tends to be in the subspace, Sm, which is spanned by the

underlying directions in the mth tier. This holds for all i ∈ Hm, and thus it follows that the subspace

spanned by the sample eigenvectors, {Ûi}i∈Hm , converges to the Sm. This phenomenon is called

the PCA subspace consistency. Also, the different levels of signals in different tiers assumed in

Assumption 2.5.4 make the estimated subspaces become distinct for large n and large d, and more

gaps between the levels accelerate this distinction as indicated by the different convergence rates

obtained in the theorem.

In high-dimensional data, searching for outliers in a much lower dimensional subspace where

the outliers are distinguishable is advantageous. The subspace often provides critical information

for interpreting why an object is outlying and to what extent the object is an outlier (Kamber and

Han, 2001). This is almost impossible using full dimensions because of the overwhelming noise.

Once such a subspace is found, some appropriate conventional outlier detection methods may be

applicable for the approximated low-dimensional data. Under the assumption that all outlier signals

dominate the dimensions, combining Theorem 2.5.2 (a) with Theorem 2.5.1 (a) allows one to find
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the outlier-relevant low dimensional subspace by using the first few PC directions whose sample

eigenvalues are substantially large and thus separate from the other bulk eigenvalues.

On the other hand, Theorem 2.5.2 (b) together with Theorem 2.5.1 (b) shows that when only a

subset of the outlier signals are strong enough to dominate the increasing dimensions, the first few

PC directions with large sample eigenvalues provide a good subspace only for those strong outlier

components. Not only this, the strong inconsistency suggests that it becomes very challenging to

distinguish the outlier directions missing from the first few PCs from the non-spike directions. This

is not simply because the sample eigenvalues from those weak outlier signals are not separable

from the bulk sample eigenvalues. Once the spike samples eigenvalues are swallowed by the bulk,

then it is likely that the corresponding directions are all mixed with non-spike directions, so any

of the single sample eigenvectors may not be representative of those spike directions. Therefore,

the approximation of the data matrix using the first few eigenvectors may miss some important

information that are relatively weak but not noise. This implies that the outlier components with

weak signals or with extremely small participation are harder to be separated from noise. Thus

special care should be taken to find the hidden outlying structure.

Also, it should be noted that the theorem does not guarantee that the sample eigenvectors are

individually consistent to the true ones. So looking at the individual PC directions may not be

enough to detect outliers. To illustrate this situation, a toy example is given in Section 2.6. As one of

the special and important cases, we now consider the case when all spike eigenvalues are separable,

i.e. q1 = q2 = · · ·= qM = 1 and M = K. Then, Assumption 2.5.4 becomes

Assumption 2.5.5. As n→ ∞, λ
(n)
1 � λ

(n)
2 � ·· · � λ

(n)
K � λ

(n)
K+1 > 0.

This allows us to get the individual consistency of eigenvalues as well as eigenvectors instead of

subspace consistency. The following corollaries of Theorem 2.5.1 and 2.5.2 describe such individual

consistency under the same scenarios with the respective theorems.

Corollary 2.5.1. Under Assumptions 2.5.1, 2.5.2, and 2.5.5,

(a) if d
nλ

(n)
K

→ 0, then
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(i) for i≤ K, λ̂i

λ
(n)
i

→a.s. 1 where λ
(n)
i = τ

(n)
i,1 for i ∈ Imain and λ

(n)
i = wiτ

(n)
i,2 for i ∈ Iout;

(ii) for i > K,

• if 0 < c < ∞, cλ(1−
√

c)2 ≤ λ̂n∧d ≤ λ̂1 ≤ cλ(1+
√

c)2 a.s.;

• if c = ∞, nλ̂i
d →a.s. cλ;

• if c = 0, λ̂i→a.s. cλ;

(b) if d
nλ

(n)
h

→ 0 where 1≤ h < K and d
nλ

(n)
h+1

→ ∞, then

(i) for i≤ h, λ̂i

λ
(n)
i

→a.s. 1 where λ
(n)
i = τ

(n)
i,1 for i ∈ Imain and λ

(n)
i = wiτ

(n)
i,2 for i ∈ Iout;

(ii) for i > h, nλ̂i
d →a.s. cλ.

Corollary 2.5.2. Under Assumptions 2.5.1, 2.5.2, and 2.5.5,

(a) if d
nλ

(n)
K

→ 0, and 0 < c≤ ∞, then

(i) Ûi are consistent with Ui in the sense that angle(Ûi,Ui)→a.s. 0 for i = 1, · · · ,K.

• For i = 1, · · · ,K−1, angle(Ûi,Ui) = o(
{ λ

(n)
i

λ
(n)
i−1

∨ λ
(n)
i+1

λ
(n)
i

}1/2
).

• For i = K, angle(Ûi,Ui) = o(
{ λ

(n)
i

λ
(n)
i−1

}1/2
)∨O(

{ d
nλ

(n)
i

}1/2
).

• For i > K, angle(Ûi,S) = O(
{ d

nλ
(n)
i−1

}1/2
) where S = span(Ui : i > K).

(b) if d
nλ

(n)
h

→ 0 where 1≤ h < K and d
nλ

(n)
h+1

→ ∞, then

(i) Ûi are consistent with Ui in the sense that angle(Ûi,Ui)→a.s. 0 for i = 1, · · · ,h.

• For i = 1, · · · ,h−1, angle(Ûi,Ui) = o(
{ λ

(n)
i

λ
(n)
i−1

∨ λ
(n)
i+1

λ
(n)
m

}1/2
).

• For i = h, angle(Ûi,Ui) = o(
{ λ

(n)
i

λ
(n)
i−1

}1/2
)∨O(

{ d
nλ

(n)
i

}1/2
).

(ii) Ûi for i > h are strongly inconsistent in the sense that |< Ûi,Ui > |= O(
{nλ

(n)
i

d

}1/2
).
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2.6 Illustration using a toy example

We now illustrate the PCA subspace consistency with a toy example under the model (2.3.3),

highlighting the situation where an outlier component is captured by the first few PC directions but

none of the PC directions are individually representative of the outlier component.

First, let us describe the simulation setting. We generated n = 200 independent data vec-

tors in d = 3000 dimensions based on our model described in (2.3.3). To generate such data,

{zi j}1≤i≤d,1≤ j≤n are assumed to be distributed as independent N(0,1) and the standard basis vec-

tors, {ei}1≤i≤d , are used as underlying eigenvectors {Ui}1≤i≤d with e1, · · · ,e9 being the main spike

directions and e10 being an outlier spike direction. For the main spike directions, the underlying

variations are assumed to be τi,1 = 3000,1000,100,90,80,70,60,50,40 for i = 1, · · · ,9. For the

outlier spike direction e10, we assume τ10,1 = 2000,τ10,2 = 1 and the outlier proportion w10 = 0.02.

For the other non-spike directions {Ui}11≤i≤d corresponding to noise, τi,1 = 1 and τi,2 = 1 are

assumed. A realization from this model had the 4 outliers, denoted by X1, · · · ,X4, with 196 normal

data points, denoted by X5, · · · ,X200.

For this data set, we constructed a sample covariance matrix where PCA was applied and

obtained a set of sample eigenvectors and eigenvalues. Since the true spike directions are e1, · · · ,e10,

we can examine the contribution of each sample eigenvector onto the true spike directions simply

by taking the squares of the entries. The sum of the squares of entries in each sample eigenvector is

one and thus the squared values û2
ji, i.e. the squared jth entry of Ûi, can be regarded as the explained

percentage of the underlying vector e j in the direction Ûi. Table 2.1 gives the squares of the first 12

entries (in rows) of the first 11 eigenvectors Û1, · · · ,Û11 (in columns). The last two rows indicate

the corresponding sample eigenvalues λ̂i and the angles between the true outlier direction e10 and

Ûi for i = 1, · · · ,11. The largest value in each Ûi is indicated using red, and if the red value, say û2
ji,

is close to one and the other entries are close to zero, then the Ûi is a good estimate of the e j. For

example, the first entry of Û1 is approximately one with all the other entries of zero, indicating that

the first underlying direction e1 is well estimated by Û1. Similarly, Û2 is a good estimate of the e2.
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On the other hand, none of the Û3, · · · ,Û10 has an entry which is close to one. Instead, they

have several nonzero entries, indicating that each of them has some correlation with several

underlying directions. This can be understood that any of the underlying directions, e3, · · · ,e10 are

well estimated by the single sample eigenvectors. Nonetheless, an important note is that, for each

row j = 3, · · · ,10, the sum of the squared jth entries of Û3, · · · ,Û10 is close to one. This supports

the PCA subspace consistency in that each of the true eigenvectors e3, · · · ,e10 can be estimated by a

linear combination of Û3, · · · ,Û10 rather than any individual directions. As described in Theorem

2.5.2, this is because the underlying variation in e3, · · · ,e10 are nearly in the same tier, which tends

to somewhat discourage the individual consistency.

In particular, it should be noted that none of the first 10 eigenvectors alone provide good

estimates for the outlier direction e10 as highlighted in lightblue. Specifically, there is no direction

that describes the e10 more than 30%. The angles in the last row also reveal that none of those 10

sample eigenvectors are close to e10. However, the sum of the squared 10th entries in the first 10 PC

directions, ∑
10
i=1 û2

i,10, is almost 0.88, indicating that the e10 may be well captured by the subspace

spanned by the 10 sample eigenvectors. As discussed earlier, therefore, this supports the concept

that although using individual PC directions for detecting outliers may be ineffective, this subspace

does preserve the critical information for the outliers and thus may be used to detect those outliers.
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Û1 Û2 Û3 Û4 Û5 Û6 Û7 Û8 Û9 Û10 Û11
1 0.996 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.987 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
3 0.000 0.000 0.657 0.001 0.072 0.173 0.004 0.000 0.000 0.002 0.000
4 0.000 0.000 0.020 0.665 0.111 0.023 0.055 0.011 0.001 0.003 0.000
5 0.000 0.001 0.029 0.031 0.330 0.422 0.048 0.008 0.001 0.013 0.000
6 0.000 0.000 0.071 0.006 0.198 0.023 0.064 0.501 0.007 0.003 0.000
7 0.000 0.000 0.036 0.002 0.080 0.009 0.408 0.201 0.053 0.059 0.000
8 0.000 0.000 0.000 0.007 0.004 0.021 0.094 0.047 0.243 0.382 0.000
9 0.000 0.001 0.003 0.000 0.012 0.001 0.010 0.000 0.467 0.292 0.000

10 0.000 0.000 0.101 0.182 0.079 0.215 0.169 0.096 0.030 0.007 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

...
...

...
...

...
...

...
...

...
...

...
λ̂i 3519.209 996.408 123.856 99.055 91.825 86.694 71.458 70.393 52.236 42.087 16.850

angle 89.6 89.1 71.5 64.8 73.7 62.4 65.7 71.9 80.0 85.3 89.4

Table 2.1: This table shows the first 11 sample eigenvectors with squared entries. The largest value in each Ûi is colored using a red font and the row
corresponding to the outlier signal, e10, is hightlighted using lightblue background. This row indicates how much each Ûi explains the outlier signal.
The last two rows respectively show the sample eigenvalues corresponding to {Ûi}1≤i≤11 and the angles between Ûi and the true outlier signal, e10.
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2.7 Proofs

In this section, we provide proofs for the theorems in Section 2.5. The main steps in the proofs

are similar to the proofs in Shen et al. (2016) but our different setting for the underlying distribution

of data requires the addition of more detail.

Let Y be a d×n matrix whose column vectors are Y1,Y2, · · · ,Yn where Yj = (y1 j, · · · ,yd j)
T and

yi j’s are independent random variables in our model in (2.3.3). Then, switching the roles of columns

and rows, we get the n×n dual (Gram) matrix of the sample covariance matrix Σ̂ΣΣ

Σ̂ΣΣD =
1
n

XT X =
1
n

YT UT UY =
1
n

YT Y,

and it is well known that they share the same nonzero eigenvalues. Let us define two matrices that

will be treated separately in the proof. Let

A =
1
n

K

∑
i=1

ỸiỸ T
i , and B =

1
n

d

∑
i=K+1

ỸiỸ T
i ,

where Ỹi is the i-th row vector of Y. Then,

Σ̂ΣΣD =
1
n

d

∑
i=1

ỸiỸ T
i = A+B.

Before the proof, we provide two popular lemmas. Lemma 2.7.1 provides the upper and lower

bounds for the eigenvalues of a matrix that can be expressed as the sum of two symmetric matrices.

Lemma 2.7.1. (Weyl inequality) Let A and B be n× n real symmetric matrices. Then, for all

j,k, l = 1, · · · ,n,

λk(A)+λl(B) ≤ λ j(A+B) for k+ l = j+n

λk(A)+λl(B) ≥ λ j(A+B) for k+ l = j+1
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where λ j(A) is the j-th largest eigenvalue of a matrix A.

Next, Lemma 2.7.2 provides the convergence of the largest and smallest non-zero eigenvalues

of a random matrix, which is known as Bai-Yin’s law (Bai and Yin, 1993).

Lemma 2.7.2. (Bai-Yin’s law) Suppose B = 1
qVV T where V is a p×q random matrix composed

of i.i.d. random variables with zero mean, unit variance and finite fourth moment. As q→ ∞

and p
q → c ∈ [0,∞), the largest and smallest non-zero eigenvalues of B converge almost surely to

(1+
√

c)2 and (1−
√

c)2, respectively.

2.7.1 Proof of Theorem 2.5.1

Proof. The proof consists of the following three steps:

1. Establish the convergence of λk(A).

2. Establish the convergence of λk(B).

3. Establish the convergence of λk(A+B).

Lemma 2.7.3 proves the first step.

Lemma 2.7.3. As n→ ∞, we have

1

λ
(n)
k

λk(A)→ 1 a.s. for k = 1, · · · ,K.

where λ
(n)
i = τ

(n)
i,1 for i ∈ Imain and λ

(n)
i = wiτ

(n)
i,2 for i ∈ Iout .

Proof. Define Ak =
1
n ∑

K
i=k ỸiỸ T

i with Ak,D being its dual matrix and Ak,R = A−Ak. Then,

λ1(
1
n

ỸkỸ T
k )+λn(

1
n

K

∑
i=k+1

ỸiỸ T
i )≤ λk(A)≤ λ1(Ak)+λk(Ak,R) (2.7.1)

where the upper bound follows from Lemma 2.7.1 and the lower bound from the expression (5.9)

in Jung and Marron (2009). Since the rank of 1
n ∑

K
i=k+1 ỸiỸ T

i is less than K < n, λn(
1
n ∑

K
i=k+1 ỸiỸ T

i )
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should be zero. Likewise, the rank of Ak,R is at most k−1, and thus λk(Ak,R) = 0. Therefore, we get

λ1(
1
n

ỸkỸ T
k )≤ λk(A)≤ λ1(Ak). (2.7.2)

By dividing (2.7.2) by λ
(n)
k , the inequality becomes

1

λ
(n)
k

λ1(
1
n

ỸkỸ T
k )≤ 1

λ
(n)
k

λk(A)≤ 1

λ
(n)
k

λ1(Ak). (2.7.3)

We now show that the left hand side converges to 1. Note that λ1(
1
nỸkỸ T

k ) = λ1(
1
nỸ T

k Ỹk) and thus we

show the convergence of 1
λ
(n)
k

1
nỸ T

k Ỹk. For k = 1, · · · ,d, let sk = {1≤ j ≤ n : yk j =
√

τ
(n)
k,2zk j}, which

is an index set containing sample indices from the second component in the mixture model (2.3.3)

corresponding to the direction Uk. Then,

1
n

Ỹ T
k Ỹk =

1
n

n

∑
j=1

y2
k j

=
1
n ∑

j∈sc
k

τ
(n)
k,1z2

k j +
1
n ∑

j∈sk

τ
(n)
k,2z2

k j

= τ
(n)
k,1
|sc

k|
n

1
|sc

k|
∑
j∈sc

k

z2
k j + τ

(n)
k,2
|sk|
n

1
|sk| ∑j∈sk

z2
k j (2.7.4)

where |s| is the cardinality of a set s. If k ∈ Imain, then sk = /0 and λ
(n)
k = τ

(n)
k,1, and thus it follows from

the law of large number that 1
λ
(n)
k

1
nỸ T

k Ỹk→ 1 almost surely. If k ∈ Iout , then we have λ
(n)
k = wkτ

(n)
k,2,

|sc
k|
n → 1−wk, |sk|

n → wk. Also, since
τ
(n)
k,1

τ
(n)
k,2

→ 0 as n→∞, the convergence 1
λ
(n)
k

1
nỸ T

k Ỹk→ 1 for k ∈ Iout

also follows from the law of large numbers. Hence we conclude that

1

λ
(n)
k

λ1(
1
n

ỸkỸ T
k )→ 1 a.s. (2.7.5)

for k = 1, · · · ,K.

36



Next, we show that the right hand side of (2.7.3) also converges to 1. Let Ak,D be the dual

matrix of Ak. Then, it can be written as

Ak,D =
1
n



Ỹ T
k Ỹk Ỹ T

k Ỹk+1 · · · Ỹ T
k ỸK

... . . . ...

Ỹ T
K Ỹk · · · Ỹ T

K ỸK


.

Then, one can show that

1

λ
(n)
k

Ak,D −→



1 0 · · · 0

0 bk+1,k · · · 0
... . . . ...

0 · · · bK,k



where bl,k = limn→∞

λ
(n)
l

λ
(n)
k

. The above convergence of each element of Ak,D can be obtained in a similar

way as in (2.7.4) and thus is omitted. It follows from bl,k ≤ 1 for l ≥ k that the largest eigenvalue of

1
λ
(n)
k

Ak,D converges almost surely 1. Note that 1
λ
(n)
k

λ1(Ak) =
1

λ
(n)
k

λ1(Ak,D) = λ1(
1

λ
(n)
k

Ak,D) and thus it

follows that

1

λ
(n)
k

λ1(Ak)→ 1 a.s. (2.7.6)

By (2.7.5) and (2.7.6), we conclude that

1

λ
(n)
k

λk(A)→ 1 a.s.
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Lemma 2.7.4. As n→ ∞, we have

λmax(B)→ cλ(1+
√

c)2 and λmin(B)→ cλ(1−
√

c)2 a.s. if
d
n
→ c < ∞

n
d

λmax(B) and
n
d

λmin(B)→ cλ a.s. if
d
n
→ ∞. (2.7.7)

Proof. Let Ỹi,(1) =
(
yi jI{ j∈sc

i }
)

1≤ j≤n be an n-dimensional vector whose elements are yi j if j ∈ sc
i

and 0 if j ∈ si and Ỹi,(2) = Ỹi−Ỹi,(1). Similarly, define Z̃i,(1) and Z̃i,(2) with Z̃i = (zi1, · · · ,zin)
T . Then,

B =
1
n

d

∑
i=K+1

ỸiỸ T
i

=
1
n

d

∑
i=K+1

(
Ỹi,(1)Ỹ

T
i,(1)+ Ỹi,(2)Ỹ

T
i,(2)
)

=
1
n

d

∑
i=K+1

(
τ
(n)
i,1 Z̃i,(1)Z̃

T
i,(1)+ τ

(n)
i,2 Z̃i,(2)Z̃

T
i,(2)
)

(2.7.8)

Without loss of generality, assume that τ
(n)
i,1 ≤ τ

(n)
i,2 for all n and all i = K +1, · · · ,d. Then,

B+
1
n

d

∑
i=K+1

(τ
(n)
i,2 − τ

(n)
i,1 )Z̃i,(1)Z̃

T
i,(1) =

1
n

d

∑
i=K+1

τ
(n)
i,2 Z̃iZ̃T

i .

It follows from the Weyl inequality that

λk(B)+λn(
1
n

d

∑
i=K+1

(τ
(n)
i,2 − τ

(n)
i,1 )Z̃i,(1)Z̃

T
i,(1))≤ λk(

1
n

d

∑
i=K+1

τ
(n)
i,2 Z̃iZ̃T

i ).

Note that 1
n ∑

d
i=K+1(τ

(n)
i,2 − τ

(n)
i,1 )Z̃i,(1)Z̃T

i,(1) is nonnegative definite and thus we have

λk(B)≤ λk(
1
n

d

∑
i=K+1

τ
(n)
i,2 Z̃iZ̃T

i ). (2.7.9)
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Also, since

1
n

d

∑
i=K+1

τ
(n)
i,2 Z̃iZT

i +
1
n

d

∑
i=K+1

( max
K+1≤i≤d

τ
(n)
i,2 − τ

(n)
i,2 )Z̃iZ̃T

i =
1
n

d

∑
i=K+1

max
K+1≤i≤d

τ
(n)
i,2 Z̃iZ̃T

i .

Again, the Weyl inequality and the nonnegativity of 1
n ∑

d
i=K+1(maxK+1≤i≤d τ

(n)
i,2 − τ

(n)
i,2 )Z̃iZ̃T

i yield

the following inequality

λk(
1
n

d

∑
i=K+1

τ
(n)
i,2 Z̃iZ̃T

i )≤ λk(
1
n

d

∑
i=K+1

max
K+1≤i≤d

τ
(n)
i,2 Z̃iZ̃T

i ).

Hence, it follows from (2.7.9) that

λk(B)≤ λk(
1
n

d

∑
i=K+1

max
K+1≤i≤d

τ
(n)
i,2 Z̃iZ̃T

i ). (2.7.10)

To get a lower bound of λk(B), we start with the following equality

B =
1
n

d

∑
i=K+1

τ
(n)
i,1 Z̃iZ̃T

i +
1
n

d

∑
i=K+1

(τ
(n)
i,2 − τ

(n)
i,1 )Z̃i,(2)Z̃

T
i,(2).

from (2.7.8). Then, we obtain

λk(
1
n

d

∑
i=K+1

min
K+1≤i≤d

τ
(n)
i,1 Z̃iZ̃T

i )≤ λk(B) (2.7.11)

in a similar way to get (2.7.10).

By (2.7.10) and (2.7.11) and letting B∗ = 1
n ∑

d
i=K+1 Z̃iZ̃T

i , it follows that

min
K+1≤i≤d

τ
(n)
i,1 ×λk(B∗)≤ λk(B)≤ max

K+1≤i≤d
τ
(n)
i,2 ×λk(B∗). (2.7.12)
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By Lemma 2.7.2, the convergence of the extreme eigenvalues of B∗ can be obtained as follows:

λmax(B∗)→ (1+
√

c)2 and λmin(B∗)→ (1−
√

c)2 if
d
n
→ c < ∞

n
d

λmax(B∗) and
n
d

λmin(B∗)→ 1 a.s. if
d
n
→ ∞. (2.7.13)

For details, see the proof of Lemma 6.4 in Shen et al. (2016).

Since minK+1≤i≤d τ
(n)
i,1 and maxK+1≤i≤d τ

(n)
i,2 → cλ by Assumption 2.5.1, it follows from (2.7.12)

and (2.7.13) that

λmax(B)→ cλ(1+
√

c)2 and λmin(B)→ cλ(1−
√

c)2 a.s. if
d
n
→ c < ∞

n
d

λmax(B) and
n
d

λmin(B)→ cλ a.s. if
d
n
→ ∞.

Theorem 2.5.1 (a). So far, we proved the first and second steps and now we prove the last step

that completes the proof. It follows from the Weyl inequality and (2.7.1) that

λi(A)+λn(B)≤ λi(Σ̂ΣΣD)≤ λi(A)+λ1(B) for i = 1, · · · ,min(d,n). (2.7.14)

Let us first consider the case when 0 < c < ∞. Then, the condition d
nδ

(n)
M

→ 0 yields δ
(n)
M → ∞,

and thus 1
λ
(n)
i

λn(B) and 1
λ
(n)
i

λ1(B)→ 0 for i≤ K by Lemma 2.7.4. According to Lemma 2.7.3, we

conclude that for i≤ K

λ̂i

λ
(n)
i

→ 1 a.s. (2.7.15)

because λ̂i = λi(Σ̂ΣΣ) = λi(Σ̂ΣΣD). For i > K, λi(A) = 0 since the rank of A is less than or equal to K.

Then, by Lemma 2.7.4,

cλ(1−
√

c)2 ≤ liminf λ̂i ≤ limsup λ̂i ≤ cλ(1+
√

c)2 for i > K. (2.7.16)
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Next, consider the case when c = ∞. By the condition d
nδ

(n)
M

→ 0, 1
λ
(n)
i

λn(B) = n
d λn(B)× d

nδ
(n)
M

×

δ
(n)
M

λ
(n)
i

→ 0 for i≤ K. Similarly, 1
λ
(n)
i

λ1(B)→ 0 for i≤ K. Thus, we can conclude (2.7.15) for i≤ K.

For i > K, it follows from λi(A) = 0 and Lemma 2.7.4 that

n
d

λ̂K+1→ cλ and
n
d

λ̂n→ cλ a.s.,

which gives

n
d

λ̂i→ cλ a.s. for i > K.

Lastly, consider the case when c = 0. In this case, the condition d
nδ

(n)
M

→ 0 does not guarantee

δ
(n)
M → ∞ so that we divide the case into two sub-cases: δ

(n)
M → ∞ and δ

(n)
M < ∞. When δ

(n)
M → ∞,

(2.7.15) follows similarly to the case when 0 < c < ∞. When δ
(n)
M < ∞, according to Theorem 1

(c = 0) of Baik and Silverstein (2006) as mentioned in Shen et al. (2016), (2.7.15) still follows for

i≤ K. For i > K, it is easy to see (2.7.16) with c = 0, that is,

cλ ≤ liminf λ̂i ≤ limsup λ̂i ≤ cλ for i > K.

Hence, we have λ̂i→ cλ for i > K. This completes the proof.

Theorem 2.5.1 (b). As mentioned earlier, the condition d
nδ

(n)
h+1

→ ∞ implies d
n → ∞. So, we only

consider the case d
n → ∞.

(i) i≤ ph: since d
nδ

(n)
h

→ 0, δ
(n)
h →∞ and thus λ1(B)

λ
(n)
i

≤ λ1(B)
δ
(n)
h

× δ
(n)
h

λ
(n)
ph

→a.s. 0. Similarly, λn(B)
λ
(n)
i

→a.s. 0.

Then, (2.7.15) follows from (2.7.14) for i≤ ph.

(ii) i > ph: (2.7.14) can be re-expressed as

n
d

λi(A)+
n
d

λn(B)≤
n
d

λ̂i ≤
n
d

λi(A)+
n
d

λ1(B).
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We can easily see that n
d λi(A) ≤ n

d λph+1(A) =
nδ

(n)
h+1
d × λph+1(A)

δ
(n)
h+1

→a.s. 0 by the condition

d
nδ

(n)
h+1

→ ∞. Therefore, it follows from Lemma 2.7.4 that n
d λ̂i→a.s. cλ for i > ph.

2.7.2 Proof of Theorem 2.5.2

Proof. For the subspace consistency of the sample eigenvectors, Ûi to the Sm, we want to show

angle(Ûi,Sm)→a.s. 0. (2.7.17)

This is equivalent to showing that cos(angle(Ûi,Sm)) =
(

∑k∈Hm ÛT
i UkUT

k Ûi
)1/2→a.s. 1 for i ∈ Hm

since Sm = span{Ui}i∈Hm . Without loss of generality, we can assume Uk = ek where the kth entry is

1 and the rest of entries are all zero. Then, ÛT
i Uk is simply ûki and therefore (2.7.17) is equivalent to

∑
k∈Hm

û2
ki→a.s. 1 for i ∈ Hm. (2.7.18)

In general, we will show (2.7.18) for the subspace consistency, but different convergence rates will

be achieved under each scenario. For the strong inconsistency of Ûi to the true eigenvector Ui, we

will show that the angle(Ûi,Ui)→a.s.
π

2 , which is equivalent to showing that cos(angle(Ûi,Ui)) =

ûii→a.s. 0.

Before we prove the main parts, we first provide some important results that will be used in the

proof of the main parts. Define S = ΛΛΛ
− 1

2 ÛΛ̂ΛΛ

1
2 where ΛΛΛ = diag(λ(n)

1 , · · · ,λ(n)
d ), and then its element

for is the kth row and ith column is ski =

√
λ̂i√

λ
(n)
k

ûki. From (2.3.3), we obtain SST = 1
nΛΛΛ
− 1

2 YYT ΛΛΛ
− 1

2 ,

and thus the kth diagonal element of SST , i.e.

(SST )(k,k) =
d

∑
i=1

s2
ki =

d

∑
i=1

λ̂i

λ
(n)
k

û2
ki =

1

λ
(n)
k

d

∑
i=1

λ̂iû2
ki,
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is equal to the kth diagonal element of 1
nΛΛΛ
− 1

2 YYT ΛΛΛ
− 1

2 = 1
n ∑

n
j=1

1
λ
(n)
k

y2
k j. From (2.7.4) and (2.7.5),

we get

1

λ
(n)
k

d

∑
i=1

λ̂iû2
ki =

1
n

n

∑
j=1

1

λ
(n)
k

y2
k j→a.s. 1. (2.7.19)

Since all diagonal values of a matrix should be less than its largest eigenvalue, it follows from

λi(SST ) = λi(ST S) that

(ST S)(i,i) =
d

∑
k=1

s2
ki =

d

∑
k=1

λ̂i

λ
(n)
k

û2
ki = λ̂i

d

∑
k=1

1

λ
(n)
k

û2
ki ≤ λ1(

1
n

ΛΛΛ
− 1

2 YYT
ΛΛΛ
− 1

2 ). (2.7.20)

To use the above inequality in the proof of the main parts, the largest eigenvalue of 1
nΛΛΛ
− 1

2 YYT ΛΛΛ
− 1

2

is of interest. If there are no outlier components, ΛΛΛ
− 1

2 Y will consist of i.i.d. random variables with

zero mean, unit variance, and finite fourth moment. Then, Lemma 2.7.2 implies that

λ1(
1
n

ΛΛΛ
− 1

2 YYT
ΛΛΛ
− 1

2 ) →a.s. (1+
√

c)2 for 0≤ c < ∞ and

λ1(
1
d

ΛΛΛ
− 1

2 YYT
ΛΛΛ
− 1

2 ) →a.s. (1+
1√
c
)2 for 0 < c≤ ∞.

In the case with outliers from the model (2.3.3), however, the entries of the ΛΛΛ
− 1

2 Y are not identically

distributed any longer, which brings same challenges. Here, we prove that the maximum eigenvalue

of 1
nΛΛΛ
− 1

2 YYT ΛΛΛ
− 1

2 still has the same limit even though there are a few outliers from different

distributions.

Lemma 2.7.5. As n, d→ ∞ such that d
n → c, we have

λ1(
1
n

ΛΛΛ
− 1

2 YYT
ΛΛΛ
− 1

2 )→a.s. (1+
√

c)2 0≤ c < ∞

λ1(
1
d

ΛΛΛ
− 1

2 YYT
ΛΛΛ
− 1

2 )→a.s. (1+ 1√
c)

2 0 < c≤ ∞.
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Proof. Denote the ith row vector of ΛΛΛ
− 1

2 Y by Y̆i. Then, 1
d YT ΛΛΛ

−1Y = 1
d ∑

d
i=1 Y̆iY̆ T

i = 1
d ∑

K
i=1 Y̆iY̆ T

i +

1
d ∑i>K Y̆iY̆ T

i . Recall that each element of Y̆i is y̆i j = τ
(n)
i,1 zi j for j ∈ sc

i and y̆i j = τ
(n)
i,2 zi j for j ∈ si. Let

Zi = (zi1, · · · ,zin)
T for i = 1, · · · ,d, and then we have

1
d

YT
ΛΛΛ
−1Y =

1
d

( K

∑
i=1

Y̆iY̆ T
i −

K

∑
i=1

ZiZT
i

)
+

1
d

( K

∑
i=1

ZiZT
i +

d

∑
i=K+1

Y̆iY̆ T
i

)
. (2.7.21)

By the Weyl inequality, we have

λ1(
1
d

d

∑
i=1

Y̆iY̆ T
i )≤ λ1

(1
d

( K

∑
i=1

Y̆iY̆ T
i −

K

∑
i=1

ZiZT
i

))
+λ1

(1
d

( K

∑
i=1

ZiZT
i +

d

∑
i=K+1

Y̆iY̆ T
i

))
. (2.7.22)

Letting Y̆K = [Y̆1, · · · ,Y̆K] and ZK = [Z1, · · · ,ZK], we get 1
d

(
∑

K
i=1 Y̆iY̆ T

i −∑
K
i=1 ZiZT

i

)
= 1

d

(
Y̆KY̆T

K−

ZKZT
K

)
. Then, we have

λ1

(1
d

(
Y̆KY̆T

K−ZKZT
K

))
≤ tr

(1
d

(
Y̆KY̆T

K−ZKZT
K

))
=

1
d

[
tr
(

Y̆KY̆T
K

)
− tr
(

ZKZT
K

)]
=

1
d

[
tr
(

Y̆T
KY̆K

)
− tr
(

ZT
KZK

)]
=

1
d

[ K

∑
i=1

n

∑
j=1

1

λ
(n)
i

y2
i j−

K

∑
i=1

n

∑
j=1

z2
i j

]
=

n
d

[ K

∑
i=1

1
n

n

∑
j=1

1

λ
(n)
i

y2
i j−

K

∑
i=1

1
n

n

∑
j=1

z2
i j

]
.

Because ∑
K
i=1

1
n ∑

n
j=1

1
λ
(n)
i

y2
i j−∑

K
i=1

1
n ∑

n
j=1 z2

i j→a.s. 0 and n
d →

1
c , we have

λ1

(1
d

( K

∑
i=1

Y̆iY̆ T
i −

K

∑
i=1

ZiZT
i

))
→a.s. 0 for 0≤ 1

c
< ∞. (2.7.23)

Based on techniques similar to the proof of Lemma 2.7.4, one can show that

λ1

(1
d

( K

∑
i=1

ZiZT
i +

d

∑
i=K+1

Y̆iY̆ T
i

))
→a.s. (1+

1√
c
)2. (2.7.24)
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By (2.7.22), (2.7.23), and (2.7.24), we have

λ1(
1
d

d

∑
i=1

Y̆iY̆ T
i )≤ (1+

1√
c
)2 almost surely. (2.7.25)

For the lower bound, application of Weyl inequality on the other way gives

λn

(1
d

( K

∑
i=1

Y̆iY̆ T
i −

K

∑
i=1

ZiZT
i

))
+λ1

(1
d

( K

∑
i=1

ZiZT
i +

d

∑
i=K+1

Y̆iY̆ T
i

))
≤ λ1(

1
d

d

∑
i=1

Y̆iY̆ T
i ).

Since the rank of 1
d

(
∑

K
i=1 Y̆iY̆ T

i −∑
K
i=1 ZiZT

i

)
is less than or equal to K, we have λn

(
1
d

(
∑

K
i=1 Y̆iY̆ T

i −

∑
K
i=1 ZiZT

i

))
= 0, which with (2.7.24) gives

(1+
1√
c
)2 ≤ λ1(

1
d

d

∑
i=1

Y̆iY̆ T
i ) almost surely. (2.7.26)

A combination of (2.7.25) and (2.7.26) completes the proof.

Now we start to prove Theorem 2.5.2. We will first prove (b) and move on to (a).

proof of (b). Assumption 2.5.4 and d
nδ

(n)
h+1

→∞ together imply d
n →∞. So here we only consider

the case of d
n → ∞. The proof consists of the following three steps:

1. Establish the convergence for the h-th tier.

2. Establish the convergence for the m-th tier sequentially from m = h−1 to 1.

3. Establish the strong inconsistency of the remaining sample eigenvectors.

We start with the first step.

1. Establish the convergence for the h-th tier, i.e. angle(Ûi,Sh) = o(
{ δ

(n)
h

δ
(n)
h−1

}1/2
)∨O(

{ d
nδ

(n)
h

}1/2
)

for i ∈ Hh. As discussed earlier, we need to show the following:

∑
k∈Hh

û2
ki = 1+o

(
δ
(n)
h

δ
(n)
h−1

)
∨O
( d

nδ
(n)
h

)
for i ∈ Hh. (2.7.27)
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This can be proved by showing the following two equations:

d

∑
i=ph+1

û2
ki = O

( d

nδ
(n)
h

)
for k ∈ Hh (2.7.28)

and

h−1

∑
m=1

∑
i∈Hm

û2
ki = O

(
δ
(n)
h

δ
(n)
h−1

)
for k ∈ Hh. (2.7.29)

Since ∑
d
i=ph+1 û2

ki ≤ ∑
ph
k=1 ∑

d
i=ph+1 û2

ki = ∑
d
k=ph+1 ∑

ph
i=1 û2

ki and ph is finite, the first equation (2.7.28)

is equivalent to

d

∑
k=ph+1

ph

∑
i=1

û2
ki = O

( d

nδ
(n)
h

)
for m = 1, · · · ,h (2.7.30)

for m = h. The proof of (2.7.30) is equivalent to showing the following two equations:

d

∑
k=K+1

pm

∑
i=1

û2
ki = O

( d

nδ
(n)
m

)
for m = 1, · · · ,h (2.7.31)

and

K

∑
k=ph+1

pm

∑
i=1

û2
ki = O

(δ
(n)
h+1

δ
(n)
m

)
for m = 1, · · · ,h. (2.7.32)

For details, see Shen et al. (2016). Thus, in order to show (2.7.27), it is enough to show (2.7.29),

(2.7.31), (2.7.32). We start with (2.7.31).
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proof of (2.7.31). For m = 1, · · · ,h, from λ̂pm

λ
(n)
K+1

∑
d
k=K+1 ∑

pm
i=1 û2

ki ≤ ∑
d
k=K+1

1
λ
(n)
k

∑
pm
i=1 λ̂iû2

ki,

d

∑
k=K+1

pm

∑
i=1

û2
ki ≤

λ
(n)
K+1

λ̂pm

pm

∑
i=1

λ̂i

d

∑
k=K+1

1

λ
(n)
k

û2
ki

≤ d

nδ
(n)
m

δ
(n)
m

λ̂pm

nλ
(n)
K+1

d

pm

∑
i=1

λ̂i

d

∑
k=1

1

λ
(n)
k

û2
ki

≤ d

nδ
(n)
m

δ
(n)
m

λ̂pm

nλ
(n)
K+1

d
pmλ1(

1
n

ΛΛΛ
− 1

2 YYT
ΛΛΛ
− 1

2 ) by (2.7.20)

=
d

nδ
(n)
m

δ
(n)
m

λ̂pm

λ
(n)
K+1 pmλ1(

1
d

ΛΛΛ
− 1

2 YYT
ΛΛΛ
− 1

2 ) (2.7.33)

By Theorem 2.5.1(b), Assumption 2.5.1, and Lemma 2.7.5, for large n and d, the last expression of

(2.7.33) becomes a constant multiplied by d
nδ

(n)
m

that converges to 0. Therefore, the proof of (2.7.31)

is complete.

proof of (2.7.32). For m = 1, · · · ,h, from λ̂pm

λ
(n)
ph+1

∑
K
k=ph+1 ∑

pm
i=1 û2

ki ≤ ∑
K
k=ph+1

1
λ
(n)
k

∑
pm
i=1 λ̂iû2

ki,

K

∑
k=ph+1

pm

∑
i=1

û2
ki ≤

λ
(n)
ph+1

λ̂pm

K

∑
k=ph+1

1

λ
(n)
k

pm

∑
i=1

λ̂iû2
ki

≤
λ
(n)
ph+1

λ̂pm

K

∑
k=ph+1

1
n

n

∑
j=1

1

λ
(n)
k

y2
k j by (2.7.19)

=
λ
(n)
ph+1

δ
(n)
h+1

δ
(n)
h+1

δ
(n)
m

δ
(n)
m

λ
(n)
pm

λ
(n)
pm

λ̂pm

K

∑
k=ph+1

1
n

n

∑
j=1

1

λ
(n)
k

y2
k j (2.7.34)

For m = h, it follows from
δ
(n)
h+1

δ
(n)
h

→a.s. 0, Theorem 2.5.1(b), and (2.7.19), the proof of (2.7.32) is

complete.

proof of (2.7.29). From (2.7.19), we obtain

1

λ
(n)
k

d

∑
i=1

λ̂iû2
ki =

1

λ
(n)
k

ph−1

∑
i=1

λ̂iû2
ki +

1

λ
(n)
k

∑
i∈Hh

λ̂iû2
ki +

1

λ
(n)
k

d

∑
i=ph+1

λ̂iû2
ki

→a.s. 1 for k ∈ Hh. (2.7.35)
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The third part of (2.7.35)

1

λ
(n)
k

d

∑
i=ph+1

λ̂iû2
ki ≤

λ̂ph+1

λ
(n)
ph

d

∑
i=ph+1

û2
ki

=
δ
(n)
ph

λ
(n)
ph

nλ̂ph+1

d
d

nδ
(n)
ph

d

∑
i=ph+1

û2
ki

→a.s. 0 for k ∈ Hh. (2.7.36)

The convergence follows from Theorem 2.5.1 (b) and (2.7.28). Thus, (2.7.35) becomes

1

λ
(n)
k

ph−1

∑
i=1

λ̂iû2
ki +

1

λ
(n)
k

∑
i∈Hh

λ̂iû2
ki→a.s. 1 for k ∈ Hh. (2.7.37)

Because λ̂i

λ
(n)
k

→a.s.
δ
(n)
m

δ
(n)
h

for i ∈ Hm and k ∈ Hh, (2.7.37) can be rewritten as

h−1

∑
m=1

∑
i∈Hm

δ
(n)
m

δ
(n)
h

û2
ki +

1

λ
(n)
k

∑
i∈Hh

λ̂iû2
ki→a.s. 1 for k ∈ Hh. (2.7.38)

Also, since ∑
d
i=1 û2

ki = 1 and ∑
d
i=ph+1 û2

ki→a.s. 0 for k ∈ Hh by (2.7.28), we have

h−1

∑
m=1

∑
i∈Hm

û2
ki +

1

λ
(n)
k

∑
i∈Hh

λ̂iû2
ki→a.s. 1 for k ∈ Hh. (2.7.39)

From (2.7.38), (2.7.39), and δ
(n)
m

δ
(n)
h

≥ 1, we get ∑
h−1
m=1 ∑i∈Hm û2

ki →a.s. 0 and ∑i∈Hh
û2

ki →a.s. 1. This

already shows the subspace consistency, and for convergence rate of (2.7.29), ∑
h−1
m=1 ∑i∈Hm û2

ki ≤

∑
h−1
m=1 ∑i∈Hm

δ
(n)
m

δ
(n)
h

û2
ki ≤ (h− 1)

δ
(n)
h−1

δ
(n)
h

∑i∈Hm û2
ki →a.s. 0 for m = 1, · · · ,h− 1. Hence, we complete the

proof of the step 1. We move on to Step 2.

2. Establish the convergence for the m-th tier sequentially from m= h−1 to 1, i.e. angle(Ûi,Sm)=

o(
{

δ
(n)
m

δ
(n)
m−1

∨ δ
(n)
m+1

δ
(n)
m

}1/2
) for i ∈ Hm for each m.
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We want to show

∑
k∈Hm

û2
ki = 1+o

(
δ
(n)
m

δ
(n)
m−1

∨
δ
(n)
m+1

δ
(n)
m

)
for i ∈ Hm, m = 1, · · · ,h−1,

which is equivalent to showing

∑
i∈Hm

û2
ki = 1+o

(
δ
(n)
m

δ
(n)
m−1

∨
δ
(n)
m+1

δ
(n)
m

)
for k ∈ Hm, m = 1, · · · ,h−1. (2.7.40)

Let us start with m = h−1. We have

∑
i∈Hh−1

û2
ki = 1−

h−2

∑
m=1

∑
i∈Hm

û2
ki−

d

∑
i=ph−1+1

û2
ki, (2.7.41)

and thus we will show ∑
h−2
m=1 ∑i∈Hm û2

ki and ∑
d
i=ph−1+1 û2

ki both converge to 0. Since ∑
d
i=ph−1+1 û2

ki ≤

∑
ph−1
k=1 ∑

d
i=ph−1+1 û2

ki =∑
d
k=ph−1+1 ∑

ph−1
i=1 û2

ki =∑
ph
k=ph−1+1 ∑

ph−1
i=1 û2

ki+∑
d
k=ph+1 ∑

ph−1
i=1 û2

ki, it follows from

∑
ph
k=ph−1+1 ∑

ph−1
i=1 û2

ki = o
(

δ
(n)
h

δ
(n)
h−1

)
by (2.7.29) and ∑

d
k=ph+1 ∑

ph−1
i=1 û2

ki = O
(

d
nδ

(n)
h−1

)
by (2.7.30) that

d

∑
i=ph−1+1

û2
ki = o

(
δ
(n)
h

δ
(n)
h−1

)
. (2.7.42)

From ∑
h−2
m=1 ∑i∈Hm û2

ki +∑i∈Hh−1
û2

ki +∑
d
i=ph−1+1 û2

ki = 1, we have

h−2

∑
m=1

∑
i∈Hm

û2
ki + ∑

i∈Hh−1

û2
ki→a.s. 1 (2.7.43)

by (2.7.42). Also, by (2.7.19), we have

1

λ
(n)
k

d

∑
i=1

λ̂iû2
ki =

1

λ
(n)
k

ph−2

∑
i=1

λ̂iû2
ki +

1

λ
(n)
k

∑
i∈Hh−1

λ̂iû2
ki +

1

λ
(n)
k

d

∑
i=ph−1+1

λ̂iû2
ki→a.s. 1 for k ∈ Hh−1.
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By lim
n→∞

λ
(n)
ph−1+1

λ
(n)
k

→a.s. 0, we get 1
λ
(n)
k

∑
d
i=ph−1+1 λ̂iû2

ki ≤
λ
(n)
ph−1+1

λ
(n)
k

∑
d
i=ph−1+1 û2

ki→a.s. 0, which leads to

h−2

∑
m=1

∑
i∈Hm

δ
(n)
m

δ
(n)
h−1

û2
ki + ∑

i∈Hh−1

û2
ki→a.s. 1 for k ∈ Hh−1 (2.7.44)

since lim
n→∞

λ̂i

λ
(n)
k

→ δ
(n)
m

δ
(n)
h−1

for i ∈ Hm and k ∈ Hh−1. Combining (2.7.43) and (2.7.44) with δ
(n)
m

δ
(n)
h−1

>

1 for m = 1, · · · ,h− 2 yields ∑
h−2
m=1 ∑i∈Hm

δ
(n)
m

δ
(n)
h−1

û2
ki →a.s. 0. Therefore, we have

δ
(n)
h−2

δ
(n)
h−1

∑
ph−2
i=1 û2

ki ≤

∑
ph−2
i=1

δ
(n)
m

δ
(n)
h−1

û2
ki→a.s. 0, which gives

h−2

∑
m=1

∑
i∈Hm

û2
ki = o

(δ
(n)
h−1

δ
(n)
h−2

)
for k ∈ Hh−1. (2.7.45)

Hence, (2.7.40) with m = h−1 follows from (2.7.41), (2.7.42) and (2.7.45) and the proofs for the

other m = h−1, · · · ,1 are similar to m = h−1, and thus omitted. Lastly, we complete the proof of

Theorem 2.5.2 (b) by showing Step 3.

3. Establish the strong inconsistency of the remaining sample eigenvectors, i.e. |< Ûi,Ui > |=

O(
{nλ

(n)
i

d

}1/2
) for i > ph. From (2.7.19), we have

max
i>ph

nλ̂i

d
d

nλ
(n)
i

û2
ii = max

i>ph

λ̂i

λ
(n)
i

û2
ii ≤

1
n

n

∑
j=1

1

λ
(n)
k

ŷ2
ki→a.s. 1.

Since nλ̂i
d →a.s. cλ for i > ph by Theorem 2.5.1 (b), we obtain max

i>ph
û2

ii = O
(

nλ
(n)
i

d

)
, which completes

the proof of Theorem 2.5.2 (b).
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CHAPTER 3. SCISSOR: SHAPE CHANGES IN SELECTING SAMPLE OUTLIERS IN
RNA-SEQ

3.1 Motivation and Challenges

A substantial proportion of human genes differ in function in ways that are reflected through

different forms of shape changes in read coverage of RNA-seq. For example, tumor-suppressor

genes lose their function through various changes in expression such as aberrant splicing, frameshift

indels, large deletions, or overexpression of noncoding RNAs. Although many recent reports (Zhang

et al., 2014; Dvinge and Bradley, 2015; Jung et al., 2015; Wong et al., 2016) have addressed

the importance of such shape changes in cancer, the systematic discovery of these events is still

challenging.

This is not simply because shape changes are rare. As discussed in Chapter 1.3, high dimen-

sionality of RNA-seq data often makes good outliers indistinguishable from inliers. To detect such

high dimensional outliers, it is important to specify what type of aberration is of interest. However,

changes in RNA-seq expression present many different forms each of which results from various

reasons. For example, genetic mutations are responsible for some important shape changes. The

splice site mutations, i.e. single-nucleotide variants (SNVs) at a splice site (exon-intron boundary),

are known to cause abnormal splicing events such as intron retention or exon-skipping. This ab-

normal splicing often skips a whole exon or retains a whole intron, which tends to change a wide

range of the gene. On the other hand, the frameshift mutations, i.e. indels (insertions or deletions)

of nucleotides that can change the reading frame (a set of consecutive triplets in the sequence of

nucleotides), are occasionally responsible for the deletion of read coverage in a relatively short

region (30∼200 bp) in the middle of an exon. It has been also observed that a number of shape

changes occur in the absence of mutations.
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Classically, differential expression (DE) analysis has been studied to identify changes in

expression using properly normalized total read counts data (Anders and Huber, 2010; Robinson

and Oshlack, 2010; Love et al., 2014). The DE analysis particularly compares gene-level expression

between samples with known labels, e.g. treated versus untreated cells, cancer versus normal,

wild-type and mutant (Oshlack et al., 2010). However, gene expression analysis provides a limited

view of RNA-seq data by summarizing the fine architecture of transcriptome as single numbers for

each gene. Some biologically important changes in expression that are too weak to be captured by

single numbers can be missing using gene-level expression analysis. In this work, we introduce a

new statistical method, Scissor (Shape Changes In Selecting Sample Outliers in RNA-seq) that uses

base-resolution expression levels across a gene locus. The base-level RNA-seq data provide rich

information beyond gene expression analysis, allowing us to detect fine structural changes such as

frameshift indels besides landscape changes such as intergenic deletions. By using the complex and

dynamic aspect of the transcriptome, Scissor offers a novel approach to unsupervised screening of a

variety of shape changes that are possibly associated with important genetic events.

To identify various types of shape changes, we model the underlying mechanism possibly

generating aberrant shapes by multiple unknown mixture distributions introduced in Section 2.3,

recasting the problem in a high-dimensional latent variables framework. Then, the latent outlying

structures described by outlier directions are distinctly or in combination associated with various

shape changes. Based on this model, Scissor aims to identify sample outliers that have distinct

forms or patterns of transcripts across RNA-seq cohorts from a single gene locus.

We have analyzed 522 TCGA head and neck squamous cell carcinoma (HNSCC) RNA-seq

tumor samples. The in-depth analysis at frequently mutated tumor suppressor genes has detected

several genes with novel shape changes including TP53, which appear to be associated with new

splicing variants that were missing from the current variant callers. The genome-wide study has

shown that some mutation types are strongly associated with shape changes. Moreover, the analysis

has provided a set of key genes with strong evidence of shape variants, which shows that Scissor can
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be used to prioritize genes for further investigation. We have also found that a substantial number of

shape changes including intron retention and exon-skipping occur in the absence of mutations.

The remainder is organized as follows. In Section 3.2, we review several outlier detection

methods associated with our study. Section 3.3 introduces a model for RNA-seq read counts using

the underlying distribution possibly generating various types of RNA-seq shape outliers discussed

in Chapter 2.3. The pre-processing part of Scissor including filtering and normalization steps are

described in Section 3.4. Scissor is based on the theoretical results established in Section 2.5. In

particular, we propose a new approach to high-dimensional outlier detection in Section 3.5. Then,

we apply the proposed method to collections of HNSCC RNA-seq samples in Section 3.6.

3.2 Related work

Although numerous procedures have been suggested for identification of outliers, still there

is no consensus definition for outliers. Every procedure may target its own informal definition of

outliers based on various goals. Here, we describe several popular outlier detection methods highly

related to our goal. Many classical methods for detecting outliers in low dimensional data (mostly

for univariate data) are reviewed by Barnett and Lewis (1974) and Hawkins (1980). Chapter 10 of

Jolliffe (2002) also reviews some outlier detection methods for multivariate data using PCA.

Two popular outlier-detection methods in the classical domain, are PCA-based methods pro-

posed by Hawkins (1974, 1980). These two statistics for detecting outliers are based on the

normalized PC scores corresponding to the last q principal components with low-variances because

the low-variance PCs may be considered as the most effective directions in determining outliers,

whereas the first few PCs are relatively insensitive to outliers and thus are discarded. The proposed

statistics are

H2
1 j =

d

∑
k=d−q+1

ŷ2
k j

λ̂k
, H2 j = max

d−q+1≤k≤d

ŷk j√
λ̂k
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where ŷk j is the value of the kth PC score for the jth observation, λ̂k is the kth eigenvalue, and d

is the dimension size. These statistics perform very well for low dimensional data and have been

widely used. In high dimensional space, however, the intuition behind the Hawkins’ statistic might

not work. One main reason is that the last few PCs may be just noise related directions and unrelated

to outliers in high dimensional data. As discussed in Chapter 1.3, when outlier signals are fairly

strong, the PC directions related to outliers may have large enough variation to be included in the

first few PC directions. Although the intuition may not work, the Hawkins’ statistic H2
1 j based on

other PC directions, instead of the last few, can give meaningful insights in some sense and we will

revisit this issue in Section 3.5.1.

Another important outlier detection technique is based on the projection depth function that

was introduced by Stahel (1981) and has been extensively studied in Donoho and Gasko (1992);

Liu (1992); Zuo and Serfling (2000); Zuo (2003); Dang and Serfling (2010). The projection depth

function generalizes a robust measure of outlyingness for one-dimensional datasets x = {x1, · · · ,xn},

i.e. o(x|x) = x−Med1≤ j≤n(x j)
MAD1≤ j≤n(x j)

, to arbitrary dimension d, i.e.

o(X |X) = sup
‖h‖=1

∣∣∣hT X−µ(FhT X)

σ(FhT X)

∣∣∣, (3.2.1)

where FhT X is the distribution of hT X and µ(·) and σ(·) are any univariate location and scale mea-

sures, respectively. Intuitively, the o(X |X) is the most outlyingness of X over any one-dimensional

projection of X with respect to the dataset X and thus it is also called a projection outlyingness.

The projection depth function o(X |X) with (µ,σ) = (Med,MAD) is affine invariant and has a very

high breakdown point. Dang and Serfling (2010) showed that the projection outlyingness is superior

than some other important outlyingness functions (the half space, the Mahalanobis distance, and

the Mahalanobis spatial) in the sense that it maintains a low false positive rate with a high masking

breakdown point, which is a robustness criterion introduced in their paper. Although the projection

outlyingness has received significant attention, it has been rarely used for detecting high dimensional
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outliers because its optimization procedure is computationally so intensive that it is prohibitively

costly to compute for high dimensional data.

When the underlying projected distribution is asymmetric, the projection depth function with

the MAD may result in false positive errors for the skewed side and false negative errors on the

other side since it does not capture the asymmetry. Rousseeuw et al. (2016) proposed a new measure

of the projection outlyingness taking the skewness into account. They also propose a method to

detect outliers in functional data by computing outlyingness at each gridpoint and taking a weighted

average of them. This approach may perform well when the global structure of functions are similar

and aberrations are only locally observed. However, if an outlier is different in its overall structure,

then the method may miss it.

Dai and Genton (2016) introduced a graphical tool for detecting outliers for functional data.

They proposed functional directional outlyingness by generalizing the statistical depth idea to

multivariate functional data to capture the direction of outlyingness in addition to the point-wise

scalar depth. Functional directional outlyingness is decomposed into two parts: magnitude outlying-

ness and shape outlyingness. Magnitude outlyingness quantifies the levels of overall shift whereas

shape outlyingness measures the levels of deviation from the median shape pattern by aggregat-

ing the variation of outlyingness. The proposed magnitude-shape (MS) plot is a two-dimensional

visualization of the two measures of outlyingness, allowing the inspection of shifted outliers and

shape outliers. Compared to Rousseeuw et al. (2016), this method shows better performance for

multivariate functional data or outliers that are outlying in a large part of the domain. For univariate

and high-dimensional data, however, this method may also fail to detect important shape outliers

as the shape outlyingness of the outliers in high-dimensional space are less distinguishable due to

cumulative noise of the other curves.

In this chapter, we apply the projection depth function to an appropriate low rank subspace

in high dimensional space. This is possible because our goal is to detect outliers whose signals

are substantially different from the others and such signals tend to be well captured in a subset

of the principal component directions under certain conditions as will be seen later. Our method
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identifies outliers that are different globally as well as locally from the others. In addition, our

method provides a direction for each observation which makes it maximally outlying.

3.3 Model and Notation

A variety of shape changes in mRNA product are reflected by the base-resolution read depths.

In the light of this, Scissor benefits from the fine structure of the transcriptome by taking per-base

read depths at a single gene locus as an input. In this section, we discuss the underlying statistical

framework modelling the base-level expression coverage with possible outliers, which will be the

basis of the outlier detection.

At a given gene, Scissor starts with a read count matrix R with one row for each base-position

and one column for each sample. That is, the matrix entries Ri j indicate the number of reads mapped

to the base position i (1 ≤ i ≤ d) in sample j (1 ≤ j ≤ n). Here, d denotes the total length of the

transcript considered and n denotes the sample size. Samples at a given gene often share the overall

expression patterns in a log-linear way, i.e. linearly associated after log-transformation. Therefore,

for each gene, we fit a log-linear model as follows.

We model read counts Ri j as following a multiplicative framework in a high-dimensional

setting:

Ri j ≈ µa j
i ·mi j (3.3.1)

with mean µi > 0, geometrically scaled by a normalization factor a j, and the other sources of

variation mi j including alternative shape variants. The mean is the geometrical mean of the read

counts at a base-position and the normalization factor accounts for differences in sequencing depth

between samples. The part µa j
i naturally models the different variability across the samples expressed

at different levels. The remaining variation mi j is further modeled by log(mi j) = g(a j)xi j with a

smooth curve g(.) and high-dimensional random vectors X j ∼ Pd where X j = (x1 j, · · · ,xd j)
T . It has

been observed that different levels of overall expression yield further dynamics that are not captured
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solely by the part µa j
i . We model such dynamics by a smooth curve g(a j) as a function of an overall

expression level satisfying a constraint g(1) = 1 for identifiability. Finally, the X j’s describe other

sources of variation beyond overall expression levels, including diverse genetic events that may lead

to shape changes in expression. Therefore, the X j’s involve the critical information for detecting

outliers and are further modeled as follows.

As discussed in the previous chapters, high-dimensional random vectors are often represented

by a linear combination of a set of underlying signal directions plus noise. In many cases, the signal

directions capture most of the important variation in the data and the estimation of these signal

directions are of great interest. Chapter 1.3 introduced an extended model (2.3.3) embracing some

directions that possibly generate outliers. The variation from each of these latent outlier directions is

modeled by a scale mixture distribution and an outlier is defined as a data point characterized by big

contribution of some of these outlier components. As a motivating example, we already introduced

how the underlying structure of RNA-seq data including outlying structure can be modeled by

this complicated mixture model (See Section 2.3). From this, we model the variation of X j by the

high-dimensional mixture distribution (2.3.3).

Under this model, Scissor aims to detect sample outliers whose forms or patterns in expression

coverage are significantly different from the majority of samples. For doing this, it is crucial to

extract the X j’s that contain the crucial information of outlying structure by removing irrelevant

variation from the raw coverage data. In the next section, we introduce the pre-processing procedure

of Scissor to achieve this goal and illustrate each step with real data examples.

3.4 Pre-processing data

A collection of 522 HNSCC RNA-seq observations were obtained from the TCGA Research

Network. The dataset was processed as described in Network (2012). As mentioned earlier, it is

crucial to get a reliable data set that fits the statistical framework while reducing irrelevant variation.

For the purpose of mining shape outliers, we assume that most samples at a single gene locus have

similar expression patterns except for the ones with biologically important shape changes. However,
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there are some genes and cases that violate this assumption. For example, degraded RNA samples

often produce different shape patterns at a substantial number of genes, which can confound the real

shape changes. Also, different sequencing depth between samples often produce extreme skewness

and different levels of dynamics that should be adjusted to get reliable results.

As parts of the pre-processing steps of Scissor, we filter out some genes and cases that do not

fit the statistical model and normalize the remaining samples to adjust sequencing depth. The main

goal of the pre-processing steps of Scissor is to get xi j from the raw read counts Ri j in (3.3.1). The

pre-processing procedure is divided into several steps: filtering genes and cases, selecting intronic

parts, transforming the data, and normalizing. The filtering step is based on genome-wide analysis

and should be completed before the downstream per-gene analysis. Once the genes and cases are

filtered out, the rest of the pre-processing steps and the outlier detection algorithm are performed

for the remaining genes and cohorts.

A pipeline of the pre-processing procedure starting from the BAM files is given in Figure 3.3.

The two filtering steps have a pink background because they are usually done before the per-gene

analysis. To the right side of the pipeline, real data examples are shown to illustrate each step. In

this figure, the focus is entirely on the gene TP53, which is known as the most frequently mutated

tumor-suppressor gene. To construct the base-level RNA-seq data, read-depths for a single gene

can be measured at each base-position along the length of the transcript, and the resulting data

structure is an expression count matrix with one row for each position and one column for each

patient. Here, we use the union of the existing transcripts to avoid missing regions not covered by

some transcripts. The expression counts matrix can be obtained from BAM files using the SAMtools

package Li et al. (2009). A set of 30 expression profiles were randomly chosen after excluding the

suspect outliers out of 522 patients. These 30 samples are overlaid as curves colored as gray in

Figure 3.3 (a). This figure also displays three examples of degraded RNA samples using different

colors, showing completely distinct structure from the gray samples. The boundaries of each exonic

region are indicated by the gray vertical lines where parts of introns will be included later. Notice

that there is an exon with no coverage exon near 1000, and this is because we employ the TCGA
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gene model which includes this exon even though this exon is not covered in this gene. The rest of

the figures from (b)-(e) will be discussed in detail in the following subsections.

59



BAM files & gene annotation

raw coverage matrix (a)

remove degraded samples (b)

check on/off property (c)

include intronic parts (d)

log transform counts (e)

normalize data (f)

processed data matrix

for downstream analysis

PCA

- Low dimensional matrix

- Residual matrix

Global SC detection

- On low dimensional matrix

- Projection-depth directions

Local SC detection

- On residual matrix

- Window directions

obtain OS & MOD

Figure 3.3: The pre-processing steps of Scissor at gene TP53 as an example. (Left) The pipeline for pre-processing data is shown starting with BAM files to get the
data object that will be used for detecting outliers. The steps (b) and (c) are colored by pink background because these steps are usually completed before the single
gene analysis. (Right) Each step from (a)-(f) is illustrated. (a) The raw coverage data obtained at each base-position along the union of existing transcripts. We
randomly selected 30 cases (gray) after excluding the suspect outliers. Three degraded cases (colored) are included to indicate the different structure from degradation.
(b) The intact cases after removing degraded cases. We included two suspect outliers colored by blue and red. (c) On/off scores for gene TP53. See Section 3.4.2 for
details. (d) The intron-included raw coverage data. (e) Log transformed data using the chosen shift parameter 10. (f) Using the scale normalization, we obtained the
normalized data. The red and blue outliers are more separate from the other grey non-outliers after the pre-processing procedure.
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3.4.1 Filtering out degraded samples

Degradation of RNA transcripts could confound subsequent analyses, especially if data sub-

jected to different amounts of degradation are naively compared against each other (Romero et al.,

2014). Figure 3.3 (a) shows the three suspicious degraded RNA-seq observations indicated by

different colors with the other non-degraded observations in gray. It is well known that sequencing

degraded RNA samples often leads to less read coverage at the 5’ end of the gene and negatively

affect subsequent analyses such as transcript quantification, gene expression profiles, and fusion

detection (Opitz et al., 2010; Romero et al., 2014; Davila et al., 2016). In particular, this leaves

degraded RNA-seq samples susceptible to being considered as shape outliers, which could confound

real biological aberrations from the high quality samples. In this subsection, we propose a method

to quantify the level of degradation in each case at each gene and identify a group of cases that were

globally degraded at a considerable number of genes.

A recent study (Davila et al., 2016) reports that the transcript coverage of degraded samples

show exponential decrease as a function of the distance from the 3’ end of mRNA that more

highly degraded samples show a faster rate of decrease. This motivates us to measure the extent

of degradation, also called decay rate, by the mean-corrected slope of log-transformed RNA-seq

data. To accurately assess the decay rates, we first adjusted the different sequencing depths at each

locus by using the first step of the scale normalization method. This procedure helps to remove the

intrinsic slopes, allowing for high quality RNA-seq samples to be free of decreasing trend from the

3’ end so that the remaining trend can be observed only in a set of degraded samples. Therefore, it

enables more accurate comparison of the decay rates across genes by adjusting the other sources

possibly affecting slopes. After the adjustment, we fitted a linear model to the mean corrected

coverage with the ordered base positions as a covariate for each sample. Let qi j = q j(i) be the mean

corrected coverage for the jth observation (1 ≤ j ≤ n = 522) where i indexes base position at a

given locus (1≤ i≤ d) of which total length is d. The linear model

qi j = q j(i) = α j +β j× (
i
d
)+ εi j
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Figure 3.4: Heatmap of decay rates for all genes and all tumor cases, in which the brown color
indicates the top 5% decay rates whereas the beige color indicates the lower values. The vertical
color bar on the right of the heatmap encodes the gene lengths and a darker blue denotes a longer
gene. The horizontal color bar on the bottom of the heatmap encodes the decay ranks from the 3’/5’
bias method of Abeshouse et al. (2015) and a darker red denotes higher decay rank. Based on two
groups from the hierarchical clustering on the top of the heatmap, the 70 identified degraded cases
are in brown and the rest of the intact cases are in green.

was fitted and the least square estimates α̂ j and β̂ j were obtained. Note that we divided the covariate

i by d to correct the effect of gene length. Then, the β̂ j is the decay rate of the jth observation with

a higher value of β̂ j indicating severe degradation.

We obtained n = 522 decay rates at each gene and collected those values across genes as a

large matrix of which columns are samples and rows are genes. Unsupervised hierarchical cluster
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analysis was performed with this matrix using hclust in R/Bioconductor with the complete linkage

method. Figure 3.4 displays a heatmap of the decay rate matrix based on the order of unsupervised

hierarchical clustering for both rows and columns. The samples were classified to two groups as

shown in the dendrogram above the heatmap and samples in the second group indicated by the

brown color clearly show higher decay rates at more than 50% of the genes. Based on this cluster

analysis, we identified 70 RNA-seq samples with strong evidence of degradation and excluded

them from the downstream analysis. The vertical color code on the right of the heatmap shows

lengths of genes in which darker blue indicates longer genes. This color code shows that longer

genes tend to undergo more degradation, which is expected since long genes are fully affected

by degradation whereas short genes are less affected (Davila et al., 2016). As an illustration, a

set of intact/degraded RNA-seq overlays for a short gene, LGALS1, and a long gene, FAT1, are

displayed in Figure 3.5. The gene LGALS1 shows no clear changes in expression between the two

groups whereas the gene FAT1 shows severe impact of degradation on the second group. We also

found strong association between our decay rates and the 3’/5’ biases from Abeshouse et al. (2015).

The latter are shown using a color code at the bottom of the heatmap in Figure 3.4. A darker red

represents severe degradation based on the 3’/5’ bias and the samples with dark red color tend to

have high decay rates.

The three suspicious degraded samples in Figure 3.3 (a) are all identified as degraded, and the

remaining intact samples are shown in Figure 3.3 (b) with two colored suspicious shape outliers

(red and blue).

3.4.2 Filtering out on/off genes

In most genes, RNA-seq coverage across samples share analogous global pattern with the

exception of a small number of samples that we call shape outliers. On the other hand, there is a set

of distinctive genes where overall structures of expression coverage dramatically differ between

samples, which do not fit the underlying model and often confound biologically meaningful shape

outliers. Here, we identify those genes and filter them out from downstream analysis. Although the
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Figure 3.5: Intact and degraded samples are shown in two genes with different lengths. A set of intact
samples are shown in green color on the left hand side and all 70 degraded samples identified in this
section are shown in brown color on the right hand side. In each figure, a black curve represents
the point-wise mean. The degraded samples (left) in the longer gene FAT1 (top row) show severe
degradation whereas the intact and degraded cases in the shorter gene LGALS1 (bottom row) do
not show a clear difference.

genes identified from this section are excluded from our main analysis, we provide interesting gene

sets that are associated with head and neck cancer types.

It has been observed that the genes where samples do not share an analogous pattern are

roughly categorized into two groups: (1) the genes with extremely low coverage across samples

and (2) the genes where a group of samples are well expressed whereas the rest of samples are

rarely expressed. These genes commonly have a considerable number of samples that appear to

be off, and we call such genes on/off genes. To identify on/off genes, we measure the level of

shape-similarity among samples in the context of angles in a high-dimensional space between each

individual vector and the mean vector at a given gene. A larger angle from the mean vector indicates

that the corresponding sample presents a higher dissimilarity from the other samples. The angle

approach allows a lowly-expressed sample along with the global structure that is shared among
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the other samples to be considered as being “on” at the given gene. This helps to distinguish the

signal-involved low coverage from noise.

For easier interpretation, we take the cosine transformation of the angles, which results in the

values ranging from 0 to 1 with a higher value indicating closer to “on” whereas a lower value

indicates “off”. Then, the resulting values can be considered as the explained amounts of individual

samples by the mean vector. We call these values the “level of shape-similarity”, denoted by lss j

where j indexes samples. The identification procedure is described as follows:

For each gene,

1. Transform the base-level coverage counts, Ri j for base i and sample j, by zi j = log10(Ri j +

10)− log10(10). This shift parameter of 10 gave good experimental performance.

2. Define the 0-adjusted mean as m0
i =

1
](zi j>0) ∑{ j:zi j>0} zi j for base i. We estimate the overall

shape structure by the 0-adjusted mean vector, m0 = (m0
1, · · · ,m0

d)
T .

3. Compute the level of shape-similarity by lss j =
zT

j m0

‖z j‖‖m0‖ , which is equivalent to the cosine of

the angle between the vectors Z j and m0 where Z j = (z1 j, · · · ,zd j)
T .

4. Collect lss j ( j = 1, · · · ,n) for the given gene. If the percentage of samples with lss j < 0.6 is

greater than 20%, we declare the gene to be an on/off gene.

Results.

An on/off gene example is XIST in Figure 3.6. This gene is associated with gender because

it is involved in the X-chromosome inactivation. The left figure shows coverage of all samples at

XIST with the 0-adjusted mean vector in black. The identified on/off samples using the proposed

algorithm are represented by pink/blue colors. In contrast to the on-samples expressed at high or

moderate levels, off-samples are rarely expressed or just noise. The lss values used to separate

on/off samples are shown on the left in Figure 3.6 with the symbols +/
a

for female/male. The

two gender groups are almost perfectly separated except for a few cases and this shows the strong

association between gender and the on/off property at this gene.
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Figure 3.6: On/Off analysis on XIST. The left plot shows the overlays of RNA-seq coverage with
red color for on-samples and blue for off-samples classified from the on/off analysis. The right plot
shows the estimated lss values with a kernel density estimate (black curve).Based on the cutoff
value 0.6, the on- and off-samples were classified as indicated by red and blue colors. The gender of
samples are also indicated by the triangle (

a
) for males and the cross symbol (+) for females. The

on/off analysis clearly separates the data into two groups.

The on/off analysis at gene TP53 is shown in Figure 3.3 (c). In contrast to the above gene XIST,

the lss values of TP53 are all close to 1, indicating that all samples are well expressed and share the

overall pattern.

The goal of the on/off analysis is to identify a group of genes with this on/off property. The

collection of the lss values for the whole genome are displayed in the left heatmap of Figure 3.7.

We identified the 5802 on/off genes indicated by the green block of the first heatmap. These are

the genes where more than 20% of the samples are off and are excluded from the downstream

analysis of Scissor because they do not fit the statistical model for outlier detection. Nevertheless, it

is interesting to see if there are any biologically meaningful features in the identified on/off genes.

The right heatmap is the zoom-in figure corresponding to the 5802 genes identified as on/off.

The rows and columns are sorted by an unsupervised clustering method and the vertical color code

on the left indicates the 5 different clusters for genes. On the right side of the heatmap, each tumor

site is indicated by different colors. We grouped those tumor sites into four categories, Oral tongue

(oral tongue), Larynx (larynx, hypopharynx), Oropharynx (oropharynx, tonsil, base of tongue), and

Other (buccal mucosa, alveolar ridge, floor of mouth, hard palate, lip), and they are presented at the

bottom of the heatmap to see if there is any association between tumor sites and the clusters from
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Figure 3.7: Heatmaps of the binary matrices from the level of shape-similarity (LSS). If the LSS is
greater than 0.6, the value is 1. Otherwise, the values 0. (a) The heatmap for all genes/cases. Rows
are genes and columns are samples. The top block of the heatmap with the dark green color code on
the left indicates the identified 5802 on/off genes where more than 20% of samples are noisy or
extremely low-expressed, that is, more than 20% of values are 0. The rows and columns are ordered
by unsupervised hierarchical clustering. The bottom block with the yellow color code corresponds
to the rest of genes that are included in the main statistical procedures for detecting shape variants.
The rows are ordered by the number of values of 0. The gene with the most 0 values is displayed at
the top of the bottom block. (b) The zoom-in heatmap for the identified 5802 on/off genes from
the green color code in Figure 1 (a). The genes were classified into 5 groups as indicated by the
color codes on the left. The top color code below the heatmap indicates the tumor percentage and
the remaining four color codes indicate the tumor sites: Oral tongue, Larynx (larynx, hypopharynx),
Oropharynx (oropharynx, tonsil, base of tongue), Other (buccal mucosa, alveolar ridge, floor of
mouth, hard palate, lip). The legend for colors are displayed on the right.

the heatmap. Interestingly, some tumor sites are concentrated together, indicating some association

between gene clusters and the tumor sites.

In particular, the zoom-in heatmap for Cluster 2 is shown in the left panel of Figure 3.8. An

unsupervised clustering method was reapplied to Cluster 2, based on which the rows (genes) and

and columns (samples) of the heatmap are sorted. The sorted heatmap well separates on- and

off-samples, indicated by beige and dark brown, and these two sample groups are distinguished

by the dendrogram above the heatmap (brown branches for the off-group and green branches for
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Figure 3.8: The heatmap (left panel) for Cluster 2 is presented using the same color codes as in Figure
3.7. The rows and columns were sorted by an unsupervised clustering algorithm applied to both samples
(columns) and genes (rows). Two sample clusters (on/off) were identified as in the dendrogram (green/brown).
The sample overlays for these two clusters are compared in two genes, EGFR and MYH1, which are a normal
gene and on/off gene in Cluster 2, respectively. The two clusters do not show clear difference in the gene
EGFR (top) whereas the gene MYH1 (bottom) shows distinct on/off features of the two clusters.

the on-group). The right panel of Figure 3.8 compares the behavior of these identified two sample

groups at different genes, the gene MYH1 from Cluster 2 and a normal gene EGFR. The left column

represents the on-sample group and the right column represents the off-sample group using the

same colors as in the dendrogram. While there is no clear difference between two groups in the

gene EGFR, the on/off gene MYH1 clearly shows that one group (green) is on whereas the other

group (brown) is off.

The color code at the bottom of the heatmap demonstrates that tumor samples from oral tongue

are mostly on at these on/off genes. To interpret these on/off genes in Cluster 2, we performed Gene

Ontology (GO) enrichment analysis to this gene set. The results are summarized in Table 3.2. Here,

we only presented the first few GO terms with the smallest p-values. Most of the pathways are

associated with muscle, which is roughly because when tumors around tongue were extracted, there

is a residual muscle tissue carried by some samples. This shows that these identified on/off genes

can reveal presence of the muscle around tongue.
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Pathway % of genes (P-value) Genes
Muscle contraction 26.2 (6×10−36) CAV3, MYBPC2, MYL1,

TRIM72, MYOT, MYOM2,
CKMT2, MYOM1, LMOD2,
LMOD3, HRC, ACTA1, MYH1,
MYH2, MYH4, MYLPF, MYH7,
MYH6, CACNG1, TRIM63,
CACNA1S, MYH8, TRDN,
MYH13, TMOD4, CHRND,
SGCA, SCN4A, CHRNG

Muscle filament sliding 13.6 (1×10−20) ACTC1, MYL2, MYBPC2,
ACTA1, MYL3, MYBPC1,
MYH2, MYL1, MYH4, MYH7,
ACTN2, MYH6, MYH8, TNNI1

Cardiac muscle
contraction

11.7 (11.7×10−15) ACTC1, MYL2, MYL3, MYL1,
MYLK2, MYH7, MYH6,
ATP1A2, CSRP3, SCN5A,
CASQ2, TNNI1

Sarcomere organization 7.8 (2×10−10) MYPN, LDB3, ACTN2,
ANKRD1, MYH6, LMOD2,
CASQ1, CASQ2

Regulation of striated
muscle contraction

5.8 (7×10−10) MYL2, MYL3, MYH7, MYH6,
ATP1A2, CSRP3

Myofibril assembly 5.8 (7×10−9) TMOD4, MYOZ1, MYOZ2,
MYH6, LMOD2, MYOZ3,
LMOD3

Regulation of the force
of heart contraction

5.8 (6×10−8) MYL2, MYL3, MYH7, MYH6,
ATP1A2, CSRP3

Striated muscle
contraction

4.9 (7×10−7) MYLK2, SMPX, MYH7, MYH6,
CASQ2

Regulation of heart rate 5.8 (1×10−6) CAV3, MYH7, MYH6, SCN5A,
CASQ2, HRC

Skeletal muscle
contraction

4.9 (1×10−5) CHRND, MYH7, CHRNA1,
MYH8, TNNI1

Table 3.2: GO enrichment analysis was performed to the gene set of Cluster 2. The table summarizes the
several top pathways (the left column) showing the smallest p-values shown in the second column. The genes
associated with each pathway are listed in the right column.

69



3.4.3 Inclusion of intronic part

Although exon-based analysis is commonly applied for RNA-seq expression data (Kimes et al.,

2014), it can miss some important abnormal shapes. For example, it can fail to detect intron retention

caused by splice-site mutations since the region where the overexpression happened cannot be

observed in exon-only expression values. Thus, we include some part of the intron expression values

as well as exon expression values as our data object. Since it is common that lengths of transcripts

corresponding to introns are much longer than those of exons, inclusion of all bases of introns

may yield a data object which is dominated by intronic regions making it hard for some important

features of the exons to be distinct. Also, read counts at introns are often very noisy, which could

lead to unreliable results since the true signals may be concealed by that noise. For these reasons,

we employed a rule determining which parts of introns will be included. Basically, every intron

between exons will be fully or partly included. In general, because the coverage around splice sites

provide useful information on important shape changes such as intron retention and exon skipping,

we include the parts of introns that adjoin exons. In order to make variations of expression levels at

exonic regions and intronic regions comparable, we have the total lengths of bases for all exons and

all introns at a gene to be as equal as possible. The lengths of intron that will be included between

exons are determined by the following rule: for each intron between exons,

1. if its length is less than or equal to a threshold (L), it is fully included.

2. if its length is greater than L, then the part of the intron is taken to be the union of two subsets

of length L
2 from both ends of that intron and the rest of it is discarded.

Here, the threshold L is chosen such that the difference between total lengths of exons and introns

is minimized. As a result, the RNA-seq data that will be considered throughout this work consist

of exons and introns with equal weights. Figure 3.3 (d) shows the intron-contained coverage. The

chosen intron subsets by the above rule are highlighted by a white background and exons are

highlighted by a colored background as before. While the red outlier does not stick out in Figure

3.3 (b), it reveals its abnormality at the 6th intron in Figure 3.3 (d) because the aberration does not
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appear at exons. Thus, intron-contained data allow us to discover interesting aberrant events that

cannot be observed in exon-only analysis.

3.4.4 Data transformation

The raw coverage data often show heterogeneous variation within and between samples. As

an example, Figure 3.9 (a) shows the raw coverage overlays of every sample at the gene CASP1

and we can easily notice unstable dynamics such as strong skewness and different variabilities

across bases as well as across samples. For example, highly expressed cases have much more

fluctuation than lowly expressed cases and further, coverage variation in exonic regions are much

higher than in intronic regions. This implies that such high variation from highly expressed samples

or exonic regions may dominate the other interesting variation. A typical remedy to adjust such

heterogeneity of counts data is log-transformation (Anders and Huber, 2010), which helps to get

more stable variation as shown in Figure 3.9 (b). It is common to add a shift parameter, also known

as a pseudo-count, before the log-transformation to avoid the undefined zone of the log function

and to control unwanted biases from low versus high. However, there is no consensus on what value

of a shift parameter should be used. Here, we propose a procedure to determine a shift parameter

that provides more reliable results for the downstream outlier detection.

In the outlier detection procedure of Scissor, it is crucial for the data distribution to have

a roughly symmetric distribution to avoid confounding outliers from high skewness. The log-

transformation often reduces the extreme skewness of raw counts, but different log shift parameters

result in different levels of skewness and thus a careful selection of the parameter helps to obtain

a less skewed and roughly symmetric data distribution. Also, different genes present different

dynamics in coverage, so it is desirable to apply a suitable parameter for each gene.

Feng et al. (2016) proposed an algorithm to select a shift parameter that minimizes the skewness

for one-dimensional data. They used the Anderson-Darling (A-D) statistic to measure the skewness

in data and found the parameter minimizing the A-D statistic by a grid search method. However,

the pileup data at a given gene has dimension d, the length of the gene, while better interpretation
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comes from using only one shift parameter for each gene. It’s very unlikely that there is a common

value that minimizes the skewness at every base position and so we want a parameter that fits best in

some overall sense. Therefore, we propose to select a parameter that minimizes the overall skewness

of the data.

How can we measure the overall skewness? As mentioned earlier in Section 3.3, the overall

mean expression is shared among samples in a log-linear way and the scale factor a j in the model

describes a relative amount of overall mean expression that is involved in the jth sample. From

this point of view, the a j can be considered as a representative value of the d relative expression

values of the sample from all base positions. Thus, we propose to measure the overall skewness

of the data based on the A-D statistic of the a j’s ( j = 1, · · · ,n). Since the a j’s are unknown, we

should first estimate them. The estimation procedure is simply based on the linear model with the

estimated mean vector as a covariate and the log transformed read depth vectors as response vectors.

Theoretically, if the underlying mean vector is zero, then the response values are also expected to

be zero, and thus we use the linear model without intercept. Then, the estimate of the a j can be

obtained by the estimate of the coefficient in the linear model and we call the estimated values the

mean scale factors (msf). See Section 3.4.5 for details. Note that the msfs depend on the log shift

parameter. Thus, the resulting A-D statistic using msfs also depend on the parameter, and thus we

can choose the parameter by comparing the A-D statistics from different values of the parameter.

By a grid search based on a given range for the parameter, we select the parameter that achieves the

minimum A-D statistic. The proposed algorithm is summarized as follows:

1. For a range of the parameter, say 1, · · · ,10, consider candidates (e.g. integers) of the shift

parameter that will be considered in the grid search and compute the A-D statistic for each

candidate based on the following steps.

(a) Take the log-transformation of the data with the given parameter.

(b) Obtain ms f j ( j = 1, · · · ,n).

(c) Compute the A-D statistic of ms f1, · · · ,ms fn.
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Figure 3.9: Automatic data transformation at gene CASP1. (a) The raw coverage data for 481 patients
are shown using rainbow colors, which correspond to the mean scale factors in (c). The red color indicates
highly expressed samples and the purple color for lowly expressed samples. The black curve represents the
trimmed mean across samples at each base. The data show severe skewness and heterogeneous variation
across samples and bases. (b) The log transformed data with the automatically selected shift parameter of 7
are shown with the same rainbow color scale as (a). The black curve represents the trimmed mean across
samples at each base. The transformed data are roughly symmetric about the mean curve and show stable
variation across samples and bases. (c) The mean scale factors from raw coverage data are shown with the
kernel density estimate using the black curve. The distribution is skewed and the A-D statistic of 12.41
indicates strong skewness. (d) The A-D statistics with respect to a shift parameter from 1 to 15 are shown.
The value 7 produces the smallest A-D statistic. (e) The mean scale factors with the transformed data using
the parameter value 7 are shown with the kernel density estimate. The distribution seems roughly symmetric
about the mean 1. The A-D statistic also shows significantly reduced skewness compared to (c).

2. Select the parameter which gives the smallest A-D statistic.

Results.

Figure 3.9 (c) shows the mean scale factors of the raw counts data in (a) with the kernel density

curve. The skewed curve as well as the corresponding A-D statistic of 12.41 support that the

distribution is substantially skewed. Figure 3.9 (d) shows the A-D statistics with respect to the

parameter candidates (1, · · · ,15). Although any positive values can be used, we considered only
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positive integer values for the faster computation and easier interpretation. Also, for the genome-

wide analysis, we limited the range of parameters up to 10. This is because it has been observed

that the shift parameter values beyond 10 often produce too little variation for low counts compared

to high counts, which may result in shape changes at low expression levels being less detectable.

Figure 3.9 (d) indicates 7 as the chosen shift parameter, and the log transformed coverage data with

the chosen parameter are shown in Figure 3.9 (b). It can be seen that the variation is now nicely

stabilized within samples as well as between samples. The corresponding msfs and the A-D statistic

shown in Figure 3.9 (e) also attains much less skewness of the distribution than before the log

transformation.

3.4.5 Data normalization

Normalization is a critical step of the processing pipeline in the analysis of short read sequencing

data. Specifically, normalization aims to reduce the impact of unwanted technical variability on

the downstream results by removing this from the data. To detect differential expression, several

normalization approaches of RNA-seq data have been proposed to adjust sequencing depth from

different libraries, allowing the accurate comparison of expression levels between genes (Anders

and Huber, 2010; Robinson and Oshlack, 2010; Bullard et al., 2010; Li and Dewey, 2011; Dillies

et al., 2013; Hicks and Irizarry, 2014; Zyprych-Walczak et al., 2015; Reddy, 2015). However, these

approaches were designed to standardize gene expression data at the genome-wide level often by

scaling the total number of reads across samples. In contrast, to identify base-level shape changes,

the proposed normalization aims to remove systematic technical effects that may affect base-level

read coverage data at individual gene loci.

Kimes et al. (2014) proposed a normalization procedure for read-depth data to identify clusters

of differential isoform usage. They filtered out low-expression samples and performed count

normalizing followed by log-transformation. However, biologically important shape changes are

still observed in low-expression samples, and simply removing low-expressed samples may lose

important genetic events. Also, scaling each remaining sample by its total expression can distort its
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genuine shape architecture by yielding unwanted fluctuation especially in lowly-expressed regions.

Such artificial variation may confound other important variation.

Here, we propose an effective way to standardize base-level read coverage data between samples

at a given gene, while preserving important shape deviation. As discussed above, the model (3.3.1)

accounts for the systematic variation from technical biases via the normalization factors a j and

a smooth curve g(a j). The a j’s describe the different expression levels and g(a j) accounts for

the overall variation subject to the expression levels. While the log-transformation step helps to

stabilize the different levels of variation and significantly reduce extreme skewness in the data, it

is observed in a substantial number of genes that log-transformation does not fully remove the

systematic variation. Such systematic variation often leads to biased results and therefore should

be adjusted for. The normalization step of Scissor aims to reduce this technical bias and obtain the

fundamental variations xi j that are essentially associated with outlying signals. In practice, we only

observe Ri j and the other unknown elements µi, a j and g(.) can be estimated as described below.

First, we estimate µi by a trimmed mean at each base-position. This simple method effectively

down-weights the outliers and helps to robustly estimate the true mean expression levels. As

introduced in the previous section, the majority of samples share the overall shape patterns with

different expression levels and thus, the a j can be estimated by using the linear model. And then,

we equate the overall expression levels of samples to zero by subtracting out the sample-specific

overall expression as follows:

r j = logR j− â j log µ̂.

where â j and µ̂ are the estimates of a j and µ.

Now, we propose a procedure to estimate the unknown function g(a) that describes overall

variation subject to the expression levels a j. Suppose that a j and µ are known and they are normalized

out. Then, our model becomes

g(a j)X j = logR j−a j logµ.
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Letting v j = logR j−a j logµ, we have the following relationship:

∑
i

v2
i j = g2(a j)∑

i
x2

i j.

By taking the expectation of both sides, we have

E[∑
i

v2
i j] = g2(a j)E[∑

i
x2

i j]

= g2(a j)τ

where τ = E[∑i x2
i j]. This implies that if g(.) is independent of the scale factor, i.e. g(.) is a constant

function, then ∑i v2
i j should be centered at τ with some variation with no systematic pattern. Con-

versely, if ∑i v2
i j shows a certain systematic pattern with respect to a j, then it can be an evidence

of variation subject to overall expression. The characterization of this pattern thus can be used for

the estimation of g(.). However, there is an unknown factor τ, indicating that g(.) is unidentifiable

solely based on ∑i v2
i j. Let f (a) = g2(a)τ. By giving a constraint g(1) = 1 as stated before, we have

f (1) = g2(1)τ = τ, allowing g(a) to be identifiable by
√

f (a)/ f (1). The remaining part is then the

estimation of f (a).

Using the estimates from above, we can replace the v j by r j = logR j − â j log µ̂ and thus

rT
j r j = ∑i r2

i j can be used to estimate f (a). Simply taking the sum of squared values from data may

not be a good estimate because it can easily break down due to some extreme values. This limitation

can be overcome by emplying other robust approaches. Here, we use Tukey’s bisquare method to

downweight get extreme values, allowing a more stable estimation, but other methods can be also

used. Based on Tukey’s bisquare function ρ, i.e.

ρ(r) =


k2

6

{
1− [1− ( r

k)
2]3
}

for |r| ≤ k

k2

6 for |r|> k,

76



Figure 3.10: Variation levels of the data before and after normalization for gene TP53. In both plots, each
point represents each sample and is colored based on the magnitude of the estimated scale factors â j using
a rainbow color scale. The red points indicate highly expressed samples and purple points indicate lowly
expressed samples. The red curves in each plot are the estimates using a popular smoothing technique
LOWESS with a smoothing parameter 0.7. The left plot presents the variation levels computed from the
log-transformed data shown in Figure 3.3 (e). The right plot shows the variation levels computed from the
normalized data shown in Figure 3.3 (f). After the proposed normalization, the systematic pattern involved in
the overall variation with respect to expression levels are effectively removed.

we estimate the E[∑i v2
i j] by

∑
i

ρ(ri j)

with the tuning parameter k = 4.685σ where σ is the sample standard deviation of ri j.

The left plot of Figure 3.10 shows the properly scaled ∑i ρ(ri j) with respect to â j at gene TP53

such that the center of the points is (1,1). The points exhibit a systematic pattern, which supports

the existence of non-negligible impact of overall expression onto the variation ri j. The function f

can be estimated by pooling information across points and fitting a smooth curve to capture the

global trend. Then, the function g is estimated by the fitted curve f̂ scaled by f̂ (1) so that ĝ(1) = 1.

The estimated function ĝ for the gene TP53 is shown by the red curve. We divide ri j by ĝ(â j), i.e.
ri j

ĝ(â j)
, to remove the overall expression-dependence. We repeat this procedure until we get the data

object whose pattern is not systematic any longer. At gene TP53, the normalized data are presented

in Figure 3.3 (f) and the adjusted variation levels after the normalization are shown in the right plot

77



of Figure 3.10. We now denote the normalized data by xi j and this will be used for the downstream

outlier detection analysis.

3.5 Detecting shape changes

We are now in a position to present the method. The shape outliers of interest in our study are the

samples whose RNA-seq coverage structure are abnormal from the majority of the data. The shape

changes mostly appear as atypical enrichment or scarcity of expression in some area of a given gene.

The pre-processing procedure introduced in the previous section helps outliers be more distinctive

in that the abnormal gain or loss of expression stick out as in Figure 3.3 (f). Such abnormality is

reflected in the proposed mixture model in Section 3.3 using a set of unknown outlier directions. If

we can estimate these outlier directions, they would be very useful for identifying outliers as well as

interpreting the outliers. In this section, we propose a new approach to approximating underlying

outlier directions with the goal of selecting important RNA-seq shape variants.

Extraction of latent outlier directions from a high dimensional data set is not simple because

many features are involved in an overwhelming number of dimensions. So it is advantageous to

make use of the knowledge about what types of aberrant features should be considered. In this

work, we propose a two step procedure each step of which is designed to reveal particular types of

aberration. The first step aims to find some abnormal features that involve strong underlying signals

so that the features can be captured by the first few PC directions. While this type of abnormal

feature does not need to be involved in some specific RNA-seq structure, the outliers in this category

typically present global or landscape shape changes that appear in a wide range within a gene. This

is roughly because for such wide shape changes to be distinguished, the levels of the underlying

signals should be compelling. Based on this observation, we call this type of aberration global shape

changes. For example, altered large exons or large introns, intergenic deletions, and fusions often

manifest these global shape changes in various forms.

On the other hand, the second step aims to find some particular structure of RNA-seq shape

changes. The shape changes missing from the first step are typically characterized by abnormal gain
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or loss at some restricted regions. These local shape changes are associated with finer variation such

as alternative splicing at short exons or short introns and small deletions in the middle of an exon.

(Examples) We call this type of aberration local shape changes. These often have too weak signals

to be consistently estimated in the first few PCs. To identify these more challenging outliers, we

limit our view to some important regions within a given gene. This helps to find the directions we

should look at to discover meaningful outliers.

3.5.1 Global shape change detection

The global shape change detection aims to identify the shape changes that are involved in

some strong outlier directions so that the first few principal components may capture the underlying

abnormal structure. This enables us to narrow down to the first few principal components instead

of dealing with full large dimensions. With the normalized data vectors, X j, we denote the data

matrix by X = [X1,X2, · · · ,Xn] and the sample covariance matrix by Sn =
1
nXXT . We do not subtract

the mean vector X̄ because the X j’s are already centered during the normalization procedure. Let

(Ûi, λ̂i) from PCA denote the pairs of sample eigenvectors (PC directions) and sample eigenvalues

of Sn sorted by the eigenvalues in decreasing order.

3.5.1.1 The most outlying direction

Denote the PC score, i.e. the projection of the jth point onto the ith sample eigenvector, by

ŷi j. Suppose a hypothetical scenario that an outlier signal Ui′ is consistently estimated by one of

the sample eigenvectors, say Ûi′ . Then, the outliers that involve Ui′ are expected to stick out in the

direction Ûi′ in that the ŷi′ j corresponding to those outliers are much larger than the others. That is,

the normalized PC scores, defined as

v̂i j =
ŷi j√

λ̂i

, (3.5.1)
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can be used to detect outliers by choosing cases that have substantially large v̂i′ j. As we discussed

in Section 2.5, however, the PCA subspace consistency does not guarantee that outlier signals are

estimated individually. Therefore, the PC scores corresponding to the single K sample eigenvectors

might be unsuitable for quantifying the outlyingness and less powerful for detecting outliers.

Then, what is a more informative direction for outliers than the individual PC directions?

The type of structure of interest here is outlying and there is no guarantee that the large-variance

PC directions from PCA will find such features. To find such outlying structure, we employ the

projection depth function in (3.2.1) over the low-dimensional space, with the goal of detecting

outliers based on the outlying structure. Using the same notation as in (3.2.1), denote a normalized

projection score of a point X with respect to X on a direction h by sh(X |X), i.e.

sh(X |X) =
hT X−µ(FhT X)

σ(FhT X)
such that ‖h‖= 1.

The sh(X |X) reflects the outlyingness of X over the direction h with respect to the dataset X. Scaling

a projection score hT X by the spread of {hT X j}1≤ j≤n allows us to compare the outlyingness of X

over the direction h with the other direction vectors, h
′ ∈ span(X1, · · · ,Xn). Therefore, we define the

most outlying direction h∗ of a data point X as a direction that yields the largest sh(X |X) over all

directions h as follows:

Definition 3.5.1. The MOD (Most Outlying Direction) of a point X ∈ Rd , denoted by h∗(X |X), is

defined as a unit vector h ∈ span(X1, · · · ,Xn) that maximizes sh(X |X), i.e.

h∗(X |X) = argsuph|sh(X |X)| subject to h ∈ span(X1, · · · ,Xn) and ‖h‖= 1.

From the definition of a projection depth function, an MOD is the direction that achieves the

supremum in a projection depth function. That is, the direction h∗(X |X) provides the most projection

outlyingness of the point X over all possible directions. In contrast to PC directions that describe

overall structures relevant to the majority of data points, the most outlying direction describes

individual structure of each data point that makes the point the most distinguished. Accordingly, the
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Figure 3.11: In the left (right) figure, the outlier is indicated by a red (blue) circle and the other
normal points are indicated by black. The red (blue) line illustrates the MOD of the red (blue)
outlier.

MODs of outliers may be used to recover hidden outlier directions, and further the visualization of

the MOD often provides a useful interpretation as to why the RNA-seq outliers are abnormal as will

be seen in Section 3.6. Such interpretation is informative in that users can understand the biological

meaning of the abnormalities.

Figure 3.11 illustrates the MODs of two outliers with (µ,σ)=(Median, MAD). In the left figure,

an outlier is indicated by a red circle with normal observations indicated by black. The MOD of the

red circle is indicated by a red line. It is obviously the direction that describes the unique structure

of the red outlier in the sense that the other points have little variation in the red direction. Here,

the MOD is very close to the red point since the red point only goes along the vertical axis and the

others rarely do. In the right panel, an outlier is indicated by a blue circle and its MOD is illustrated

by a blue line. This MOD also provides good insight about the abnormality of the blue outlier

compared to the other points. In this case, the MOD is not close to the blue outlier because the

MOD here is balancing the projected value of the blue point with the spread of projected values of

the other points. Thus, the MOD of an outlier point can be thought of as a compromise between the

outlier and a direction of minimal projected variation.
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The projection depth function can be rewritten based on a MOD as follows:

o(X |X) = sup
‖h‖=1

∣∣∣hT X−µ(FhT X)

σ(FhT X)

∣∣∣ (3.5.2)

= sup
‖h‖=1

|sh(X |X)|= |sh∗(X |X)| (3.5.3)

where h∗ = h∗(X |X). Then, the o(X |X) is understood as the maximum value over all possible

one-dimensional outlyingness and we call this value the projection outlyingness (PO) or projection

outlyingness score. As a special case, if h∗(X j|X) = Ûi′ for a data point X j with (µ,σ)=(Mean, SD),

then o(X j|X) becomes the absolute value of the normalized PC score |v̂i′ j| in (3.5.1). Hence, a PO

score can be seen as a generalized version of the normalized PC score, allowing projection onto

other directions (MODs) and other location and scale measures rather than the PC directions and

(Mean, SD). In contrast to PCA that obtains min(d,n) orthogonal PC directions by sequentially

maximizing the sample variances, Scissor obtains n MODs each of which maximizes the projection

outlyingness of each data point. Note that the n MODs do not need to be orthogonal to each other

and besides, if several outliers are involved in similar outlying structure, then the corresponding

MODs tend to be close to each other, constructing fairly small angles.

The n MODs yield the n PO scores, allowing appropriate comparison of the depth of outlying-

ness across data points. For example, if a point has a higher PO score, then it is more likely to be an

outlier. Based on a cutoff value, Scissor declares a data point as an outlier when its PO score is so

large that it cannot be justified by randomness as will be seen later.

Although any univariate location and scale measures can be used for µ(·) and σ(·), the Med

and MAD have been widely employed due to their robustness and simplicity. Scissor also uses

(µ,σ)=(Med, MAD) by default. However, for the purpose of exploring theoretical properties of the

MODs and PO scores, the projection depth function involved with (Med, MAD) is very tricky to

deal with because it not differentiable with respect to h. On the other hand, the projection depth

function based on (Mean, SD) may not be a reliable measure of outlyingness because the mean and

SD easily break down at extreme points. Nevertheless, the function with (Mean, SD) is much easier
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to deal with, making the theoretical investigation much simpler. Therefore, we first investigate some

interesting properties of the MODs and PO scores based on (Mean, SD) and then propose the main

procedure based on (Med, MAD).

3.5.1.2 Projection depth function with (µ,σ)=(Mean, SD)

In this subsection, we consider a projection depth function based on (µ,σ)=(Mean, SD), which

provides a good insight into understanding how the method works. We first describe the procedure

of obtaining the MOD and PO score with a data point Xl . We will see that they are reduced to

a simple and intuitive formula based on the PC directions and PC scores. In this subsection, we

assume that the data vectors X1, · · · ,Xn come from a d-variate normal distribution with mean zero

and some covariance matrix.

Let Ûq = [Û1, · · · ,Ûq] be the first q sample eigenvectors of Σ̂ΣΣ. Then a direction vector h in Sq
1

can be represented by a linear combination of the eigenvectors, Û1, · · · ,Ûq, i.e.

h = Ûqα = α1Û1 + · · ·+αqÛq (3.5.4)

where α is a q-dimensional vector with α = (α1, · · · ,αq)
T and ‖α‖ = 1. Then, the optimization

problem in (3.5.2) with (µ,σ)=(Mean, SD) can be equivalently written as

o2(Xl|X) = sup
‖α‖=1

∣∣∣αT ÛT
q Xl−Mean(αT ÛT

q X)

SD(αT ÛT
q X)

∣∣∣2 (3.5.5)

= sup
‖α‖=1

∣∣∣αT ŷq,l−Mean(αT Ŷq)

SD(αT Ŷq)

∣∣∣2 (3.5.6)

where ŷq, j = ÛT
q X j for 1 ≤ j ≤ n are vectors of PC scores of the j-th data point X j and Ŷq =

[ŷq,1, · · · , ŷq,n]. As the mean vector and covariance matrix of Ŷq can be approximated by 0q and

Λ̂ΛΛq = diag(λ̂1, · · · , λ̂q), (3.5.5) can be written as

o2(Xl|X) = sup
‖α‖=1

αT ŷq,l ŷT
q,lα

αT Λ̂ΛΛqα
. (3.5.7)
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This can be solved by a generalized eigenvalue problem

Aα = λBα

where A = ŷq,l ŷT
q,l and B = Λ̂ΛΛq with the solution λ∗ being a projection outlyingness o2(Xl|X). Then,

we get the solutions as follows:

α
∗ =

Λ̂ΛΛ
−1
q ŷq,l

‖Λ̂ΛΛ−1
q ŷq,l‖

(3.5.8)

λ
∗ = ŷT

q,lΛ̂ΛΛ
−1
q ŷq,l. (3.5.9)

It follows by (3.5.4) and (3.5.8) that the MOD of the Xl and the square of the corresponding

projection outlyingness can be obtained by

h∗(Xl|X) = Ûqα
∗ = Ûq

Λ̂ΛΛ
−1
q ŷq,l

‖Λ̂ΛΛ−1
q ŷq,l‖

o2(Xl|X) = ŷT
q,lΛ̂ΛΛ

−1
q ŷq,l =

q

∑
i=1

( ŷil√
λ̂i

)2
. (3.5.10)

Therefore, the MOD and PO scores using Mean and SD have a simple analytical solution

and a close relationship with PCA. The MOD is a linear combination of the PC directions with

the coefficients of the properly scaled PC scores and the PO score is a sum of the squares of

normalized PC scores corresponding to Xl . Note that here we consider the first q PC directions. It is

easy to notice that as q increases, the projection outlyingness becomes large and dominated by the

accumulated noise.

More explicitely, under a normality assumption, a PC score ŷil follows a normal distribution

with mean zero and variance λ̂i and therefore o2(Xl|X) is a sum of the squares of q independent

standard normal random variables. Then, it follows that o2(Xl|X) is distributed as the chi-squared

distribution with q degrees of freedom with the mean q and variance 2q, indicating that as more PC

directions are involved, the distribution of o2(Xl|X) tends to be a normal distribution with increased
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mean and variance. This suggests that every data point in high dimensions has their own directions

where their projection outlyingness is pretty unusual just by the overwhelming noise, which implies

the possibility of swamping (a nonoutlier is detected as an outlier). Therefore, searching for outliers

in high dimensions based on projection outlyingness may easily fail because real outliers are

less distinguishable. This property is closely connected to the geometrical representation of high-

dimensional data investigated in Hall et al. (2005) and Section 2.4 of this thesis in that every point

is approximately orthogonal to each other and thus each data point can be an outlying direction of

itself.

It should be noted that o2(Xl|X) is equivalent to Hawkins’ statistic H2
1l mentioned in Section

3.2 except that Hawkins’ statistic is on the basis of the last few PCs. This observation provides a

new interpretation of Hawkins’ statistic in the sense that it is the projection outlyingness using the

mean and SD over the subspace using the last few PC directions. Therefore, the outliers that are

detectable using Hawkins’ statistic are those which inflate the (Mean, SD)-based projection depth

among the last few PCs. As mentioned in Jolliffe (2002), for the low-dimensional case, the last

few PCs can reveal observations that violate the correlation structure imposed by the bulk of the

data. By contrast, examining the last few PCs is not really helpful for detecting outliers in high

dimensions because they mostly correspond to noise.

Thus, in order to get reliable projection outlyingness against swamping in a high dimensional

space, it is important to carefully choose the subset of the PC directions that will be included. There

are many existing methods to estimate the number of spike signals and here, we assume that the

right number of principal components is selected, which is K. We will discuss how to choose K in

Chapter 3.6.2. Then, the signal-related low rank space can be identified by the subspace spanned

by the first K principal components, Û1, · · · ,ÛK , for K < min(n,d). Letting Sk
j denote the subspace

spanned by Û j, · · · ,Ûk, i.e., Sk
j = span(Û j, · · · ,Ûk), our low dimensional representation, denoted by

X̃, can be obtained by projecting X onto SK
1 . Then X̃ provides sufficient information that is involved

in strong shape changes.
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As mentioned earlier, the global shape change detection procedure aims to identify the strong

outliers whose underlying abnormal structure are captured by the first few PCs, which are the K

PCs here. Following the same process as in (3.5.4) - (3.5.10) based on the ÛK = [Û1, · · · ,ÛK], we

get the square of a (Mean, SD)-projection outlyingness of Xl ,

o2(X̃l|X̃) =
K

∑
i=1

( ŷil√
λ̂i

)2
. (3.5.11)

Then, the statistic o2(X̃l|X̃) follows the chi-squared distribution with K degrees of freedom under a

normality assumption. Even beyond the normality assumption, the distribution o2(X̃l|X̃) can still be

approximated by the chi-squared distribution since the PC score ŷil , which is the mean of d random

variables, roughly follows a normal distribution by the CLT.

3.5.1.3 Projection depth function with (µ,σ)=(Med, MAD)

As mentioned before, the projection depth function based on (Mean, SD) is sensitive to outliers

and thus can mask real outliers. Masking occurs when estimates are so highly affected by outlying

points that some good outliers cannot be detected. The projection depth function as an outlier

identifier must be robust against masking. A well-known robust projection depth function is based

on (µ,σ)=(Med, MAD) where MAD(x) = Med j(|x j−Medi(xi)|)/Φ−1(0.75) with the standard

normal cdf Φ. Then, the normalized projection score becomes sh(X |X) = hT X−Med(hT X)
MAD(hT X)

and the

chosen projection depth function is

o(X |X) = sup
‖h‖=1

|sh(X |X)|= sup
‖h‖=1

∣∣∣hT X−Med(hT X)

MAD(hT X)

∣∣∣. (3.5.12)

There are two major challenges to directly dealing with this projection depth function for our

full dimensional data. One is that since the optimization is computationally so intensive, most

solvers to this problem require that the sample size is larger than the dimension. Second, even if

a solver can provide a solution for full dimensional data with high dimensionality, the solution
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might not be meaningful because of the swamping effect from high dimensions as discussed in the

projection depth function with Mean and SD. For these reasons, we first approximate the data matrix

using the first few PCs and apply the projection depth function. Again, this is possible because we

aim to identify outliers associated with strong shape changes in this global shape change detection

step.

Similar to the procedure as in (3.5.4) - (3.5.5), the projection depth function based on the low

rank approximations X̃ can be reduced to a K(� n) dimensional problem with sample size n in the

rotated new coordinate system as follows

o(X̃ |X̃) = sup
‖α‖=1

∣∣∣αT ÛT
KX̃−Med(αT ÛT

KX̃)

MAD(αT ÛT
KX̃)

∣∣∣
where α = (α1, · · · ,αK)

T ∈ RK with ‖α‖= 1. Again, ÛT
KX̃ is a PC scores matrix corresponding to

Û1, · · · ,ÛK and it follows that

o(X̃ |X̃) = sup
‖α‖=1

|sα(Ŷ |ŶK)|= sup
‖α‖=1

∣∣∣αT Ŷ −Med(αT ŶK)

MAD(αT ŶK)

∣∣∣
where Ŷ = ÛT

KX̃ and ŶK = ÛT
KX̃. Now the optimization involves n data points with a smaller

dimension K� n, which is usually more tractable.

Since the optimization may have many local maxima even if the global maximum is much

larger than these (Stahel, 1981), ordinary nonlinear programming cannot solve the problem. Instead,

an approximate algorithm proposed by Stahel (1981) has been widely used to compute a practicable

solution. The algorithm compares the values {sv(Ŷ |ŶK) : v ∈ v} over a finite set of well constructed

K-dimensional directions v= {v1, · · · ,vs}with the direction giving the largest value being a solution,

α∗. A popular procedure to generate a finite set of directions v = {v1, · · · ,vs} is to choose at random

K indices {ik}1≤k≤K from {1, · · · ,n} and find a direction v perpendicular to the hyperplane passing

through Ŷi1, · · · ,ŶiK . Repeat this procedure s times and get s directions v1, · · · ,vs.

87



From the solution α∗ by this optimization algorithm, the MOD and the PO score are obtained

as

h∗(X̃ |X̃) = ÛKα
∗

o(X̃ |X̃) = sα∗(Ŷ |ŶK). (3.5.13)

3.5.1.4 Global shape change detection algorithm

We now present the proposed method for identifying strong shape changes. To effectively

extract the latent outlier structure based on the projected outlyingness, an important condition is

the normality of the projected points corresponding to nonoutliers. This condition is often satisfied

because PC scores approximately follow the normal distribution by the CLT. However, this is not

the case for some genes. Even when we filtered out the on/off genes in the pre-processing step, there

still remained genes with a group of off- or rarely expressed samples, which heavily skewed the

distribution of the projected points. The serious skewness often causes nonoutliers to be classified

as outliers. Also, some genes have multiple transcript variants and isoforms, resulting in a bimodal

distribution or a strongly skewed distribution.

Such departure from normality can produce many false discoveries and conceal biologically

important outliers, and therefore some attention is needed. Here, we propose a modified projection

depth approach taking into account departure from normality. To do this, we add a normality

constraint to the projection depth function so that we only search the directions in which the given

constraint is satisfied. Let φ be a function measuring the normality. Then, the projection outlyingness

will be

o1(X̃ |X̃) = sup
∣∣∣αT Ŷ −Med(αT ŶK)

MAD(αT ŶK)

∣∣∣ s.t. ‖α‖= 1, φ(αT ŶK)≤ ρ, (3.5.14)

where ρ is a cutoff value. While any measure of normality can be used, here we employ the

winsorized A-D statistic (Feng et al., 2016) with a special emphasis on the skewness. This statistic
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is robust against outliers, allowing us to keep the useful directions which indicates good outliers.

From (3.5.14), we can obtain the MOD by choosing the direction giving the largest value among

v\v′ where v′ is a set of directions with φ(vT
k ŶK)> ρ for vk ∈ v. Accordingly, the obtained MOD is

a more reliable direction for detecting outliers.

Based on the modified projection depth function, the global shape change algorithm is proposed

as follows:

1. Apply PCA and find a low (K-) dimensional subspace and get a low dimensional approxima-

tion by projecting X j onto it:

X̃ j = ŷ1 jÛ1 + · · ·+ ŷK jÛK, j = 1, · · · ,n.

2. For a data point X̃ j ( j = 1, · · · ,n), obtain the PO score o1(X̃ j|X̃) based on (3.5.14). Here, X̃ is

a data matrix whose columns are low-dimensional data vectors and does not need to contain

X̃ j.

3. Collecting the PO scores for j = 1, · · · ,n, declare a set of data points as outliers if o2
1(X̃ j|X̃)≥

χ2
1−α

(K) with a pre-determined level α.

3.5.1.5 Analysis with toy example

We revisit the toy example in Section 2.6 to illustrate how the proposed procedure can be used

to approximate underlying outlier directions. In this toy data set, as a reminder, there are 4 outliers,

denoted by X1, · · · ,X4, among n = 200 independent data vectors in d = 2000. The e10 was used as

an underlying outlier direction to generate these outliers. This example showed the PCA subspace

consistency, highlighting the situation where the outlier direction is approximately captured by the

first few PC directions but none of the PC directions are individually representative of the outlier

direction.

Table 3.3 shows the squares of the first 12 entries (in rows) of the MODs of the six data points,

X1, · · · ,X6, denoted by h∗1, · · · ,h∗6 (in columns). The MODs were obtained by the algorithm proposed
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Figure 3.12: Distribution of PO scores of 200 data points. The four outliers highlighted by a red font are
clearly distinguished from the other data points.

in the previous subsection using the true number of the spike components, K = 10. The largest value

in each column is indicated using red, which shows that the MODs h∗1, · · · ,h∗4 explain approximately

90% of the underlying outlier direction e10. This indicates that the MODs well approximate the

underlying outlier direction and thus provide more informative directions than the individual PC

directions for identifying outliers.

h∗1 h∗2 h∗3 h∗4 h∗5 h∗6
1 0.000 0.000 0.000 0.000 0.006 0.010
2 0.000 0.000 0.000 0.000 0.005 0.010
3 0.000 0.002 0.000 0.002 0.182 0.004
4 0.000 0.001 0.000 0.001 0.030 0.240
5 0.001 0.001 0.001 0.001 0.028 0.163
6 0.001 0.000 0.002 0.000 0.216 0.035
7 0.003 0.000 0.000 0.000 0.228 0.217
8 0.001 0.003 0.000 0.003 0.103 0.161
9 0.001 0.000 0.000 0.000 0.025 0.002

10 0.868 0.871 0.876 0.871 0.011 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000

...
...

...
...

...
...

angle 21.3 21.0 20.6 21.0 84.0 89.1

Table 3.3: This table shows the estimated MODs of X1, · · · ,X6, denoted by h∗1, · · · ,h∗6, with squared entries.
The first 4 columns h∗1, · · · ,h∗4 correspond to the outliers and the last two columns h∗5,h

∗
6 correspond to two of

the non-outliers. The largest value in each MOD is colored using a red font and the row corresponding to
the outlier signal, e10, are highlighted using a light blue background. This row indicates how much each h∗i
explains the outlier signal. The last row illustrates the angles between h∗i and the true outlier direction, e10.
The first four MODs corresponding to the outliers are close to the true outlier direction.
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A collection of the PO scores of the 200 data points are shown in Figure 3.12 with a kernel

density estimate. Each point represents each data point and the four outliers, X1, · · · ,X4, are indicated

by red indices. The four outliers have significantly large PO scores and are clearly separated from

the other data points with the small PO scores. This example shows that the proposed procedure

effectively extracts the latent outlier direction as well as isolates strong outliers from the other data

points.

3.5.2 Local shape change detection

We now propose a second step procedure to deal with more challenging situations when outlying

features are not distinguishable using a low rank representation. As mentioned earlier, the features

whose signals are not strong enough to dominate increasing dimensions are the ones that may not

be captured by the first few PCs. Then, these features remain in the residuals, which still suffer

from high dimensionality, and thus simply applying the projection depth idea or other conventional

outlier detection algorithm to the residuals may not be appropriate. To address this issue, this second

step proposes to benefit from available knowledge about the outlying structures to extract critical

information from many irrelevant features in an overwhelming number of dimensions.

As we stated earlier, shape variations missing from the low rank approximation often exhibit

changes in a limited region of coverage. This is roughly because the required level of the signal for

a latent local abnormality to be distinctively expressed need not be that intensive as required for a

global abnormality. Such local shape changes are characterized by loss or gain in a whole/part of an

exon or intron. Because widespread noise in the whole domain challenges the local variations to be

found, it is advantageous to separately deal with the relevant local regions. An intuitive and simple

way of doing this is to slide a window along the domain and hook potential outliers within each

window area as follows.

We first define a window direction as a unit vector whose entries corresponding to a given

window area are all equal to a constant and the rest of the entries are all zero. Then, a group

of window directions can be a useful source for the projection depth function to measure local
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abnormalities. The sparsity of a window direction helps to reduce the impact of noise and thus

to separate meaningful outliers from inliers. It may be important to choose an appropriate size of

window because too small windows can be sensitive to too fine variations and too large windows can

be vulnerable to noise accumulation. We propose to use 50∼ 200 for a window size because most

meaningful local variations often appear as such lengths of changes in expression. In addition to a

specific length of windows whose union spans the transcript of a given gene, we include windows

each of which corresponds to a whole exon or a whole intron. The window directions with these

windows are useful to more accurately capture the whole exonic changes or whole intronic changes.

We denote a collection of these window directions by w.

The basic idea of the second step is the same as the first step in the sense that we find a direction

that maximizes the one-dimensional outlyingness for each data point. However, the directions

involved in the projection depth function are given some structure, which helps to accent local

abnormality. This means that we take the set v (a collection of direction vectors that the depth

function will examine) to be w. Let I2 be a set of the remaining sample indices after excluding the

first step outliers and also let X̌ denote the residual matrix whose columns (X̌ j) correspond to each

of the remaining samples. Then, the second step PO scores can be written as

o2(X̌ j|X̌) = sup
∣∣∣hT X̌ j−Med(hT X̌)

MAD(hT X̌)

∣∣∣ s.t. h ∈ v, φ(hT X̌)≤ ρ, (3.5.15)

where φ and ρ for the normality condition as introduced in (3.5.14). We can obtain the MOD by

choosing the direction giving the largest value among v/v′ where v′ is a set of directions with

φ(hT
k X̌ j) > ρ for hk ∈ v. The MODs maximizing (3.5.15) can be used for interpreting the local

abnormality. For a given outlier, the corresponding MOD informs the specific region where shape

aberration occurs as well as the type (loss/gain) of the aberration involved.

In contrast to the PO scores o1 from the global shape change detection procedure, the distribu-

tion of the statistic o2 is unknown so that a cutoff value to determine outliers should be carefully

chosen. For detecting outliers in the data from an unknown distribution, it is common to use a
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box-plot and follow the rule that a point beyond an upper outer fence (Q3+1.5× IQR) is considered

as an outlier. However, this rule does not reflect the potential skewness of the distribution because

the MAD does not account for the asymmetry. This may result in false discoveries on one side

of the distribution or mask actual outliers on the other side. Rousseeuw et al. (2016) proposed an

alternative to single robust scale measures to account for the potential asymmetry of a distribution.

They suggested to separately apply a robust scale estimator to each of two subsamples that are

above and below the median. We employ this idea to compute the second step PO scores o2 which

often show a right-skewed distribution.

Obtain the two scale estimates of {o2(X̌ j|X̌)}, denoted by sL and sR for the left and right side,

respectively. Then the proposed cutoff can be chosen by the following rule:

c2 = Med(o2)+ sR×Φ
−1(1−α).

We only look at the right side of the distribution because we are interested in detecting a data point

involved with abnormally large outlyingness.

To sum up, the local shape change algorithm is proposed as follows:

1. Collect a set of window directions.

2. Get the residual vectors X̌ j for j ∈ I2. For each X̌ j, obtain the second step PO score o2(X̌ j|X̌)

based on (3.5.15) with v being a collection of the window directions considered. Here, X̌ is a

matrix whose columns are X̌ j for j ∈ I2, but it does not need to contain the jth sample for the

jth sample inspection.

3. Collecting the PO scores, declare a set of data points as outliers if o2(X̌ j|X̌) ≥ c2 with a

pre-determined level α.
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3.6 Results

Let us now revisit the HNSCC RNA-seq data. We originally collected the 522 tumor samples

for 20275 genes, and the filtering steps of Scissor discussed in Sections 3.4.1 and 3.4.2 identified 70

degraded samples and 5802 on/off genes, which were excluded from the downstream analysis. In

this chapter, we apply the other parts of Scissor to the remaining 452 samples and 14473 genes. We

first report the results at some important genes in Section 3.6.1 and then present the results from the

genome-wide level analysis in Section 3.6.2.

3.6.1 Per-gene analysis

3.6.1.1 TP53

The TP53 gene is known as one of the most commonly mutated genes and mutations in this

gene are associated with a wide range of human cancers. This gene encodes a tumor suppressor

protein, called p53, which regulates cell division by keeping the cell from dividing too quickly, and

thus the inactivation of this gene causes cancer (Olivier et al., 2009; Network et al., 2014). It is also

known that alternative splicing of this gene results in multiple transcript variants and isoforms.

We applied Scissor to the gene TP53 with the first 12 PCs (chosen by the method that will be

introduced in Chapter 3.6.2) for the global shape change detection method and the window size of

50 for the local method. The left and right panels of Figure 3.13 show the PO scores obtained from

the global and local shape change detection procedures, respectively. Scissor detected 47 shape

changes in total based on the cutoff values with the significance level α = 10−5, indicated by the

black vertical lines in each panel. From the global shape change detection procedure (left panel),

we identified 32 abnormal cases, shown as blue points, with the other grey non-outliers. The local

shape change detection (right panel) identified 15 outliers, indicated as orange points.

An outlier (TCGA-BA-6871) whose outlyingness is the most extreme among the identified

global shape changes is studied on the left column of Figure 3.14 with its MOD and the projected

values on this MOD. The MOD is characterized by exceptional richness at the 3rd intronic region,
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Figure 3.13: The left and right panels show the PO scores from the global and local shape change detection
procedure, respectively, with kernel density estimates. The colored points indicate the identified outliers from
each step based on the cutoff values indicated by the black vertical lines. These procedures identified 32
global and 15 local shape changes, respectively.

which helps to interpret the type of aberration that the red outlier is involved in. The distribution of

the scaled projected values using x−Med(x)
MAD(x) (robust Z-scores) obtained by projecting all samples onto

this direction is represented with a kernel density estimate. In this plot, each point represents each

sample, and there are 6 samples in different colors including the red one, which have abnormally

large scores. The samples with such large scores are expected to be the ones that strongly go in this

MOD. The coverage overlays for those samples are shown in Group 2 in Figure 3.16 and in Group

4 in Figure 3.18. Indeed, they are all associated with the 3rd intron retention as illustrated in the

MOD. In particular, four of them (Group 2 in Figure 3.16) have the splice site mutations at the same

location near the observed shape changes. This shows that the MOD not only helps to understand

the abnormality of outliers but also can be used to group the identified outliers that share similar

abnormalities.

An example (TCGA-CV-6940) of the outliers from the local shape change detection procedure

is shown on the right column of Figure 3.14. The MOD that gives the largest outlyingness to this

example among the considered window directions is shown in the middle of the column, indicating

that this sample may be associated with an abnormal loss of the 7th exon. The zoom-in figure

around the window area of this panel highlights the deleted coverage. Notably, we found that there

is a frameshift mutation, indicated by the black vertical line, near the observed shape change. The
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Figure 3.14: (Left) The top figure displays an example (Sample TCGA-BA-6871) of identified global shape
changes. The middle panel shows the corresponding MOD, illustrating the abnormal high expression in
the 3rd intronic region. The projected values onto this MOD are shown at the bottom with several colored
points that have significantly high values. The most distinguished red point corresponds to this outlier. (Right)
Another identified local shape change (Sample TCGA-CV-6940) is displayed in the top panel. And the
corresponding MOD is shown below with a zoom-in plot to highlight the abnormally deleted area. The
projected scores onto this MOD are shown at the bottom. The extreme values are colored and the most
extreme one corresponds to this sample.

robustly normalized projection values obtained by projecting all cases (except for the identified ones

from the first step) onto this MOD are presented in the bottom figure with a kernel density estimate.

Two points with unusually large scores are colored and the most extreme one corresponds to this

particular sample (TCGA-CV-6940). The other green sample (TCGA-CV-7178) is shown using

the same color in Group 6 in Figure 3.17 and shows a similar shape change pattern. It turned out

that this green sample also has a frameshift mutation in the middle of the area where the abnormal

deletions are observed, strongly indicating that these mutations are responsible for the resulting

shape changes.
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As we already mentioned with some of the above examples, a large fraction of the detected

shape changes are associated with mutations. Table 3.4 summarizes how many mutations were

associated with shape changes for each mutation. More than half of the splice site mutations were

identified and most of them were from the global method, which potentially implies that splice

site mutations are more associated with global shape changes in the gene TP53. On the other hand,

most of the identified frameshift mutations were from the local method, which implies that shape

changes from frameshift mutations tend to be smaller. Although there were two samples with silent

mutations that have shape changes, those samples have non-silent mutations as well that may result

in shape changes. So this does not support the notion that silent mutation is associated with shape

changes. Among the identified 47 shape changes, we found that 34 of them are associated with the

called mutations.

Among the identified outliers, the shape changes associated with a splice site mutation are

shown in Figure 3.16. The groups here are based on the location where splice mutations occur,

indicated by the red vertical lines, and so the outliers in each group share similar shape change

patterns. The samples in Figure 3.17 are all the examples where frameshift mutation was associated

with shape changes, and we grouped them by the mutation position. The mutation of each sample is

indicated by color.

It should be also pointed out that the 17 splice site mutations that were not identified by Scissor

(Table 3.4) have no significant shape changes even though splice site mutations were called. One

example is shown in the top row of Figure 3.15. The red vertical line indicates the position of the

called splice site mutation which is expected to retain the adjacent intronic reads. However, no clear

Mutation (452) # of outliers (Step 1, Step 2)
Splice site (39) 22 (19, 3)
Nonsense (58) 4 (2, 2)

Silent (5) 2 (1, 1)
Frame shift (67) 9 (2, 7)

Other (196) 9 (6, 3)

Table 3.4: Table for the number of coincidences of each mutation and significant shape changes.
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Figure 3.15: Top: an example with an inactive splice site mutation. The red vertical line indicates
where the mutation is called. On the right, the IGV screenshot shows the reads mapping to the
exon-intron boundary with the splice mutation called. All reads are green indicating normal splicing,
despite the mutation called. Bottom: an identified shape change in the absence of any mutation
called. The IGV screenshot shows the reads aligned to the exon-intron boundary near the observed
shape change, with pink indicating abnormally spliced reads. We observed many abnormal reads
that span the exon-intron junction and involves insertion, despite no mutation called.

shape change was observed near the position. For a more detailed view, we present the Integrative

Genomics Viewer (IGV) screenshot which shows the reads aligned near the mutation position for

this sample. It clearly shows that the reads in this area are normally split and the flanking intron

is not covered. Although the screenshot exhibits only a subset of the reads, we confirmed that

there was no retained read spanning the exon-intron junction. This observation demonstrates that

this sample does not involve abnormal splicing, potentially indicating that the splice mutation was

inactive or was incorrectly called.

Other interesting examples are shape changes identified from Scissor in the absence of mutations

called. We identified 13 such shape variants and one of them is displayed in the bottom row of
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Figure 3.15. This sample (TCGA-BA-6871) is the one with the most extreme outlyingness that we

previously saw in Figure 3.15, and it is characterized by the retained 3rd intron. The IGV screenshot

taken for a subset of the reads mapping to the boundary of the exon flanking the 5′ end of the 3rd

intron is displayed to right of the sample overlay. Notably, it shows that there are many abnormally

retained reads (pink) that span the exon-intron junction. Moreover, these reads all have insertions at

the location 4bp away from the exon-intron junction, which implies that the insertion is an important

variant responsible for the intron retention, but was missed by the variant caller.

All the 13 shape variants with an absence of called mutations are displayed in Figure 3.18.

The samples are grouped by their distinct shape changes. The three samples on the top row show

several consecutive exons skipped, which is often observed under the intergenic deletion. The shape

changes in Group 4 are characterized by their abnormalities at the 2nd or 3rd intronic regions. Group

5 shows abnormally high read coverage at the 6-9 intronic regions. Lastly, the two cases in Group

6 do not really exhibit apparent shape abnormality, but it should be noted that these samples are

expressed at high levels with ambiguously retained reads at a wide range of introns.
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Figure 3.16: The 21 outliers involved in distinct splice site mutations among the 47 identified outliers. The outliers are grouped by the
sites of the mutations and the outliers in each group exhibit similar types of aberration.
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Figure 3.17: The 9 shape change cases involved with frameshift mutations. These outliers are grouped based on where the shape changes
occur.
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Figure 3.18: The 13 RNA-seq outliers that are not associated with any mutations are displayed. The outliers are grouped by the types of
aberration. The groups 1-3 exhibit intragenic deletions at different regions. Group 4 retains the 2nd intron or the 3rd intron. Group 5
retains several different introns. The samples in group 6 are highly expressed and exhibit moderate levels of intron retention at almost all
intronic regions.
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3.6.1.2 CDKN2A

The CDKN2A gene is known as a frequently altered tumor suppressor gene in a wide variety

of tumors. In HNSCC, particularly, most of the mutations in this gene are somatic mutations,

which can produce no functional p16 protein (Stransky et al., 2011; Loyo et al., 2013; Lim et al.,

2014; Mountzios et al., 2014). This gene is also known to encode distinct proteins as a result of

alternatively spliced variants and the identification of the associated clusters have been studied in

Kimes et al. (2014).

We applied Scissor to the gene CDKN2A. The left and right panels of Figure 3.19 show the

PO scores obtained from the global and local shape change detection procedures, respectively.

Scissor detected 41 shape changes in total based on the cutoff values with the significance level

α = 10−5, indicated by the black vertical lines in each panel. The 39 global shape changes were

identified, indicated by the blue points, shown with the other grey non-outliers. The local shape

change detection identified 2 outliers, indicated as orange points.

Comparison of the identified shape changes and the called mutations is summarized in Table

3.5. Notably, Scissor identified all 9 splice site mutations with strong outlyingness by the global

method. The corresponding 9 samples can be divided into two groups based on mutation position

and the resulting shape changes are shown in Figure 3.20. The samples in the left panel have splice

Figure 3.19: The left and right panels show the kernel density plots of the projection outlyingness
{PO j}1≤ j≤452 from the global and local method, respectively. The detected outliers from each step are
colored and the cutoff values are indicated by the vertical lines.
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Figure 3.20: Identified splice mutations in the gene CDKN2A. The samples in the left panel have splice
mutations at the right end of the 2nd intron, indicated by the red vertical line, which led to the skipped exons.
The samples in the right panel have splice mutations at the right end of the last intron, which cause the
adjacent intron retention.

site mutations at the 3′ end of the 2nd intron, indicated by the red vertical line, which are responsible

for skipping the flanking exon. The right panel shows the other 6 samples with splice site mutations

that occur at the 3′ end of the last intron. As a result, those samples all retain the adjacent intron.

The other shape variants that do not have splice site mutations are displayed in Figure 3.21. For

example, the samples in Group 1 skipped the 1st exon and part of the 3rd exon as well as abnormally

retained read coverage from the 3rd intron to the 4th intron. An interesting group is Group 7 whose

samples are characterized by different exon usage of the 4th exon. While the other samples do not

use this exon, only these two samples have expression of this exon.

Mutation (452) # of outliers (Global, Local)
Splice site (9) 9 (9, 0)
Nonsense (53) 2(2, 0)

Silent (0) 0 (0, 0)
Frame shift (18) 0 (0, 0)

Other (20) 2 (2, 0)

Table 3.5: Table for the number of coincidences of each mutation and significant shape changes.
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Figure 3.21: Identified shape changes in the absence of splice site mutations in the gene CDKN2A. The outliers are grouped by distinct shape
abnormality patterns.
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3.6.2 Genome-wide analysis

We applied Scissor to 14473 genes with a significance level α = 10−5 for the global and local

shape change detection procedures. On average, four shape changes were identified at each gene,

but the number of outliers show a very skewed distribution. A group of genes (e.g. TP53, CDKN2A,

FAT1) have a lot more shape changes than expected (∼ 10% of the samples) whereas the mode of

the distribution is zero, indicating that a substantial number of genes have no shape changes.

Figure 3.22 illustrates association between each mutation type and shape change. Each line

of the left panel (a) shows percentage of each mutation identified across the cohort with different

sets of genes filtered by RSEM (RNA-Seq by Expectation Maximization) (Li and Dewey, 2011).

The RSEM software quantifies gene and isoform abundances by computing maximum likelihood

percentile 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N 14473 12562 10933 9338 7828 6381 4962 3614

a b

Figure 3.22: Mutational analysis with the genome-wide results from Scissor. Panel (a) presents the percentage
of identified mutations in different sets of genes filtered by RSEM. Each line represents each mutation type.
As we consider more highly expressed genes, the overall percentage goes up. Panel (b) reports the output
from Fisher’s exact test to see if there is any significance difference in the number of identified mutations with
silent mutations as a base line. The top plot shows the results with the global and local outliers together, and
splice site mutations and nonsense mutations are found to be significant. The middle plot shows the results
with the global outliers only, and splice site mutations are strongly significant but the other mutation types
are weak. The bottom plot reports the results from the local outliers only, showing that splice site, frameshift,
and nonsense mutations are significantly higher than silent mutations.
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estimates based on the EM algorithm. Since a highly expressed gene often shows high RSEM

values with large variability, we computed median and MAD of RSEM values for each gene and

gradually filtered out low-expressed genes based on the percentiles (p = 0.1,0.2, · · · ,0.7) of the

computed median and MAD. The horizontal axis of panel (a) indicates this percentile and the table

below shows the number of genes considered at each percentile threshold. Overall, the percentage

of identified mutations goes up as we consider more highly expressed genes, and this is because

mutations in low coverage are often inactive. Also, Scissor identified a much higher fraction of

splice site mutations (blue line) than the other mutation types, indicating that splice site mutations

are more responsible for shape changes.

A silent mutation makes a change in a DNA codon that has no corresponding change in the

amino acid translation. Thus, a silent mutation is not expected to have shape changes, also as

supported by the low percentage (yellow) in the Figure 3.22. An interesting question is whether

the numbers of identified mutations are significantly higher than identified silent mutations which

can be considered as a base line. To see if there is any significant difference, we performed Fisher’s

exact test with a silent mutation as the reference. The bar plots in the panel (b) show the results

from the exact test for both global and local outliers, global outliers only, and local outliers only.

Each bar represents each mutation type and the y-axis indicates − log10(p-value). Overall, splice

Figure 3.23: (Left) Percentage of identified mutations in a TSG gene set. (Right) Percentage of identified
mutations in an oncogene set. Overall, the percentages in TSG are higher than the percentages in OCG. In
particular, significantly high fraction of splice site mutations are associated with shape changes in TSG.
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site mutations and nonsense mutations are strongly associated with both outlier types in our shape

change analysis as shown in the top of Panel A. And as expected, the global shape changes (middle)

are more associated with splice site mutations whereas the local shape changes (bottom) show

strong association with more mutation types, in particular, splice site, frameshift, and nonsense

mutations. This is partially because a splice site mutation tends to result in a larger shape change

because it often skips a whole (or several) exon(s) or a whole (or several) intron(s). On the other

hand, frameshift and nonsense mutations often lead to smaller shape changes.

As we mentioned earlier, a tumor suppressor gene (TSG) regulates cell division by keeping

the cell from dividing too quickly, and thus the inactivation of a TSG can lead to cancer. On the

other hand, an oncogene is a gene that is not supposed to be activated, and when it is turned on,

cells grow or divide out of control, which can cause cancer. Figure 3.23 exhibits percentage of

identified mutations in TSG (left) and in oncogenes (right). Percentage of identified mutations in

TSG are mostly higher than the ones in Figure 3.22 (a), and remarkably, more than 30% of splice

site mutations in TSG were identified, which is substantially higher than before. Therefore, this

supports the notion that shape changes are highly associated with tumor suppressor genes. On the

other hand, we observed much smaller proportions in oncogenes compared to TSG. In particular,

identified splice mutations are no longer significantly higher than the other mutation types.
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Figure 3.24: Distribution of maximum scores with a kernel density estimate. The x-axis indicates the scores
and the y-axis indicates the height of the kernel density estimate. Each point represents one gene and the
height of the points are random jitter except for the top 30 genes. Those top 30 genes with the most extreme
maximum outlyingness scores are indicated using red text and include some important TSG (FAT1, TP53,
JAK1).
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Figure 3.25: The most outlying sample in each of the two genes, TBL3 and FAT1, is shown in each panel.
These two genes are chosen due to their extreme scores as illustrated by Figure 3.24. The sample (TCGA-CR-
6484) from the gene TBL3 is distinguished by its unusually retained introns. The sample (TCGA-F7-8298)
from the gene FAT1 abnormally retains a part of the intron near base position 15000 and skips all following
exons.

An interesting observation of the genome-wide analysis of Scissor is that many of the bio-

logically important genes have extreme outlyingness scores (approximately greater than 20). For

example, the genes TP53 and CDKN2A have their maximum outlyingness scores of 72 and 30,

respectively, as shown in Figure 3.13 and Figure 3.19. Such large scores indicate that the correspond-

ing shape variations have strong underlying signals, which are more likely to be novel. Therefore,

the maximum outlyingness score from each gene can be used to discover some key genes. Figure

3.24 shows a distribution of the largest scores from genes with a kernel density estimate. Each point

represents a gene and the x-axis indicates the maximum scores. Here, the y-axis indicates the height

of the kernel density estimate, and the heights of most points are random. The top 30 genes with the

most extreme scores are shown in red text and some important tumor suppressor genes, FAT1, TP53,

and JAK1, are included in the list. Here, we only highlight the top 30 genes where the maximum

scores are greater than 50, but we observed that scores around 20 tend to be extreme as well. In this

way, Scissor provides some key genes that are potentially important and need further investigation.

The gene TBL3 is the gene whose maximum outlyingness score is the most extreme across

genes as indicated by Figure 3.24. The most outlying sample (TCGA-CR-6484) from this gene is

displayed in the left panel of Figure 3.25. This sample is distinguished by its abnormal retention of

several introns while the other samples have normal splicing as indicated by the mean curve (grey).

Another extreme sample from the gene FAT1 (the 3rd gene in Figure 3.24) is illustrated in the right
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panel of Figure 3.25. This sample retains the part of the intron near base position 15000 and then

skips all following exons. While this sample has no mutations called, we have found many insertions

and deletions in the reads aligned to the exon-intron junction where intron retention occurs.
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CHAPTER 4. DETERMINING THE NUMBER OF SPIKES IN PCA

4.1 Motivation

Although the sample covariance matrix is not a consistent estimator for the population counter-

part for a large d, the sample covariance matrix analyzed by PCA often reveals important underlying

structure of high dimensional data. As in mentioned in Chapter , Johnstone (2001) introduced the

spike covariance model where all but finitely many eigenvalues of the population covariance matrix

are the same. Here, we denote the large eigenvalues in (1.1.2) by α1, · · · ,αK for convenience, i.e.

UT
ΣΣΣU = ΛΛΛ = diag(α1, · · · ,αK,σ

2, · · · ,σ2) (4.1.1)

where ΣΣΣ is the population covariance matrix and has the spectral decomposition ΣΣΣ = UΛΛΛUT

with α1 ≥ ·· · ≥ αK > σ2 > 0. The eigenvalues α1, · · · ,αK correspond to spikes and they are

mostly assumed to be much larger than the non-spike eigenvalues. The directions corresponding

to spikes can be considered as important underlying structure of data whereas the other directions

corresponding to non-spikes can be considered as noise. Under the spike covariance model, many

interesting asymptotic properties have been investigated in, for example, Kritchman and Nadler

(2008, 2009), Johnstone and Lu (2009), Jung and Marron (2009), Benaych-Georges and Nadakuditi

(2011), and Shen et al. (2012). In particular, Jung and Marron (2009), Shen et al. (2012),and

Theorems 2.5.1 and 2.5.2 studied in Chapter 1.3 showed PCA subspace consistency. These studies

show that PCA is a useful tool for dimension reduction and data visualization for high dimensional

data.

One challenging problem in PCA is how to determine the number of spikes K. The scree plot is

one of the popular ways that have been proposed. Based on the plot of ordered eigenvalues, one
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looks for an elbow that distinguish the eigenvalues that are remarkably large from relatively small

eigenvalues. Although this method is very simple, looking for an elbow is often subjective and it

may be unclear that the elbow really gives the meaningful separation. Moreover, when one has a

large number of datasets to be analyzed, it is hard to look at all scree plots corresponding to each

dataset. For example, when applying PCA to RNA-seq data for many separate genes as in Kimes

et al. (2014), visual inspection would entail looking at more than 20,000 scree plots and deciding on

elbows. This is obviously intractable.

There has been much research on how to determine the number of components. Most of the

previous works assumed that the population eigenvalues corresponding to non-spikes are all equal

as in (4.1.1). When non-spike eigenvalues are all the same, the empirical distribution of non-spike

sample eigenvalues except for a few first large ones should be close to the standard Marcenko-Pastur

distribution. However, we have observed datasets whose non-spike sample eigenvalues do not

follow the standard Marcenko-Pastur distribution. They rather show even more heavy tails and right

skewness. This observation motivates us to generalize the underlying distribution of the population

eigenvalues for determining the number of principal components.

In this chapter, we review some important results in random matrix theory and introduce an idea

to choose the number of spikes. The remainder is organized as follows. In Section 4.2, we review

related work. Some important known results in random matrix theory are reviewed in Section 4.3.

In Section 4.4, based on the theoretical results, the proposed method is described. We conclude this

chapter with real data examples in Section 4.5.

4.2 Related work

Methods for determining the number of spikes in PCA have been developed in different

fields such as the statistics (Besse and de Falguerolles, 1993; Krzanowski and Kline, 1995; Choi

et al., 2014), signal processing (Wax and Kailath, 1985; Kritchman and Nadler, 2008, 2009), and

econometrics (Harding et al., 2007; Passemier and Yao, 2012, 2014), with various approaches. For

excellent background, see Chapter 6 of Jolliffe (2002). As a similar problem, a low rank matrix
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reconstruction problem based on SVD has been studied in Wongsawat et al. (2005); Shabalin and

Nobel (2013); Nadakuditi (2014).

To our best knowledge, it dates back to the works of Bartlett (1954) and Lawley (1956) which

are based on likelihood ratio tests to check for equality of the smallest eigenvalue. The problem of

testing the hypothesis of multiplicity of the smallest eigenvalue was also considered in Wax and

Kailath (1985) and Zhao et al. (1986) based on various information theoretic criteria for model

selection such as Akaike’s AIC criterion and Schwart-Rissanen’s minimum description (MDL)

criterion. These methods are based on the large sample asymptotic and may not work well for high

dimensional data with a limited number of observations.

Remarkable developments in random matrix theory allow us to understand asymptotic behaviors

of the sample eigenvalues in high dimensional space. It follows that many methods for determining

the number of signals have been introduced based on these asymptotic results. Kritchman and

Nadler (2008) developed an algorithm for rank determination based on the asymptotic distribution

of the largest noise eigenvalue. Their algorithm performs sequential hypothesis tests on whether the

largest eigenvalue at each step arises from a signal rather than from noise. The statistical procedure

at each step involves estimating noise variance and setting a threshold based on the Tracy-Widom

distribution where the largest noise eigenvalue follows (Johnstone, 2001). Their algorithm has been

considered as a good benchmark for judging performance of other methods for determining the

number of components in many papers.

Passemier and Yao (2012, 2014) proposed a method estimating the number of spikes under

the case where there are possibly equal spikes. Based on the different asymptotic behaviors of

spike and non-spike sample eigenvalues, they determine a threshold for the successive spacings

of the ordered sample eigenvalues. The larger spacings are expected for spike sample eigenvalues

than for noise eigenvalues so that one may separate spikes and non-spike eigenvalues based on an

appropriately determined threshold for the spacing. This method is very intuitive in the sense that

the proposed procedure is somehow similar to the naive procedure based on scree plots with a more

reasonable separation based on random matrix theory. To avoid false determination due to ties of
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spike eigenvalues, they also proposed a more robust estimator by using consecutive two or more

spacings that should be larger than a threshold at the same time to be considered as spikes.

Choi et al. (2014) introduced exact tests for rank determination based on the Kac-Rice test

derived by Taylor et al. (2013). By formulating the problem in a regularized regression problem

with a nuclear norm penalty, they obtained a conditional survival function of the kth singular value

given all the other singular values as a test statistic for a hypothesis test on whether the rank of the

unknown signal matrix is less than k or not. The test statistic is uniformly distributed under the null

hypothesis and plays a role of a p-value. Their method may be more accurate than other methods

based on asymptotics of sample eigenvalues because the procedure depends on the exact test rather

than the asymptotic test.

4.3 Known results on the generalized spike covariance model

In this section, we review some important results of random matrix theory. Let {wi j}1≤i≤d,1≤ j≤n

be i.i.d. random variables satisfying

E(w11) = 0, E(|w11|2) = 1, E(|w11|4)< ∞

and let (Td) be a sequence of d×d nonnegative definite Hermitian matrices. Write Zn = (u1, · · · ,un)

where u j = (w1 j, · · · ,wd j)
T and Xn = T

1
2

d Zn. Then, the sample covariance matrix of Xn can be

expressed as Sn =
1
nXnXT

n = 1
nT

1
2

d ZnZT
n T

1
2

d . Let (Hn) be a sequence of the empirical spectral distribu-

tions of (Td) with the dimension to sample size ratio, yn =
d
n , and assume that Hn weakly converges

to a nonrandom probability distribution H on [0,∞) as n tends to infinity satisfying yn→ y where y

is a positive constant. The limit distribution H is referred to as the population spectral distribution

(PSD). For the simplest case where Td = Id , the ESDs of (Td) are Hn(t) = δ1(t) for all n and thus

the PSD H(t) can be obtained as Hn(t)→ H(t) = δ1(t). The classical Marcenko-Pastur law says

that the ESD of Sn converges to a nonrandom limiting spectral distribution (LSD) G under this case.
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A generalized version of the classical Marcenko-Pastur law has been developed (Silverstein,

1995) when the PSD H(t) is an arbitrary probability measure. The PSD H and the LSD G are linked

by the following inverse map of the companion Stieltjes transform s(z) of the LSD G,

z = gy,H(s) =−
1
s
+ y

∫ t
1+ ts

dH(t), z ∈ C+,

which is called the Silverstein equation. Let Fy,H be the distribution whose Stieltjes transform is

my,H = g−1
y,H . Throughout the proposal, we call Fy,H the Marcenko-Pastur (MP) distribution with

indexes (y,H). A lot of theory and applications in the spectral analysis have been established from

this equation. One crucial result is the Lemma 4.3.1 which indicates the analytical relationship

between the two supports of the PSD H and the MP distribution Fy,H (Silverstein and Choi, 1995).

Define

ψy,H(α) = gy,H(−1/α) = α+ yα

∫ t
α− t

dH(t) (4.3.1)

for α /∈ ΓH and α 6= 0.

Lemma 4.3.1. (Silverstein and Choi, 1995) If λ /∈ ΓFy,H , then my,H(λ) 6= 0 and α =−1/my,H(λ)

satisfies

(a) α /∈ ΓH and α 6= 0 (so that ψy,H(α) is well-defined);

(b) ψ
′
y,H(α)> 0.

Conversely, if α satisfies (a)-(b), then λ = ψy,H(α) /∈ ΓFy,H .

Roughly speaking, what the lemma says is that given the PSD H one can characterize the

support of the MP distribution Fy,H as illustrated in Figure 4.26. In Figure 4.26, the curve indicates

the ψy,H(α) with y = 2 and the PSD H = δ1 and the regions indicated by yellow are {α} satisfying

(a) and (b) in Lemma 4.3.1 and the corresponding ψy,H(α). According to Lemma 4.3.1, the support

of the MP distribution Fy,H is indicated as blue on the y-axis.
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Figure 4.26: The curve illustrates ψy,H with y = 2 and the PSD H = δ1. The yellow regions
correspond to the α satisfying (a) and (b) in Lemma 4.3.1 and the blue region indicates the support
of the MP distribution Fy,H .

Baik and Silverstein (2006) investigated the asymptotic behaviors of the sample eigenvalues

corresponding to the spikes under Johnstone’s spike model. They showed that sample spike eigen-

values converge almost surely to some functions of the corresponding population spike eigenvalues

and the different functions are considered for the different types of spikes. Bai and Yao (2012)

extended their results to a generalized spike model where the spectrum of a base set follows an

arbitrary distribution. A generalized spike model has a population covariance matrix Td that is of

the form

Td =

 ΛΛΛ 0

0 Vd


where ΛΛΛ is an M×M matrix whose eigenvalues are the population spikes, α1 > · · · > αK of

respective multiplicity (nk) with ∑
K
k=1 nk = M, and Vd is a d′× d′ matrix whose eigenvalues are

βn,1 ≥ ·· · ≥ βn,d′ . Under certain conditions on the true eigenvalues, they showed the almost sure

convergence of a sample spike eigenvalue to some function of the corresponding population
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eigenvalue as n and d both increase such that d
n → y. Our method is motivated by a generalized

spike model, which allows flexibility on non-spike population eigenvalues.

4.4 Methodology

In this section, we propose an algorithm to choose the number of spikes for a generalized

spike model where the PSD is not constrained to be the point mass at σ2, i.e. H(t) = δσ2(t). The

algorithm will be first described under the scenario where the PSD is known, which is unrealistic in

most cases but easy to understand the basic idea. Next, we will introduce the main algorithm which

is applicable when the PSD is unknown. Also, we propose a graphical tool to assess the distribution

assumption for the PSD. In this section, we denote the PSD by H(t;θθθ) to emphasize the parameters

that identify the H(t) and the eigenvalues of Sn in decreasing order by λ̂1, · · · , λ̂d∧n.

4.4.1 Estimation when the PSD is known

Let us first consider the case when the PSD H(t;θθθ) is known. Since we know the support

of the corresponding LSD Fy,H according to Lemma 4.3.1, a straightforward way to estimate

the number of underlying spikes may be counting the number of eigenvalues above the upper

boundary of the support. However, this procedure may slightly overestimate the true number of

spikes because it ignores the variation in the largest noise eigenvalue. In the point mass PSD,

for example, the resulting upper boundary for the LSD is by = σ2(1+
√

y)2 whereas the largest

eigenvalue is known to converge in distribution to the Tracy-Widom law whose support contains by,

giving a non-ignorable probability of the largest eigenvalue being greater than by (Johnstone, 2001;

Ma et al., 2013). To reflect such variation of the largest noise eigenvalue, in this particular example,

the approximate Tracy-Widom quantile can replace the upper boundary by and this provides a more

precise estimation (Kritchman and Nadler, 2008).

However, except for this simplest case (H(t;θθθ) = δσ2), we do not know the distribution of the

largest noise eigenvalue. Thus, we approximate the distribution by simulation under a sufficiently

large number of independent replications and then we take a certain quantile (e.g. 99th percentile)
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as a threshold above which sample eigenvalues are considered as spikes. The simulation procedure

to get a level α threshold, sα, is described in Algorithm 1.

Algorithm 1.

1. For b = 1,2, · · · ,B with a sufficiently large number B ∈ N,

(a) Generate d random variables {β(b)
1 , · · · ,β(b)

d } from H(t;θθθ) and get a d× d diagonal

matrix T(b) by taking diag(T(b)) = {β
(b)
1 , · · · ,β(b)

d };

(b) Generate a d×n matrix Z(b) whose entries are independent variables from N(0,1);

(c) Get the largest eigenvalue λ̂
(b)
1 of 1

nT 1/2
(b) Z(b)ZT

(b)T
1/2
(b) .

2. Obtain (1−α)-quantile sα based on the set {λ̂(1)
1 , · · · , λ̂(B)

1 }.

4.4.2 Estimation when the PSD is unknown

In practice, the PSD H(t;θθθ) is unknown and should be estimated as well. Here we consider the

scenario that the type of distribution is known but with unknown parameters, e.g. the case that the

PSD is δσ2 with an unknown parameter σ2. The main algorithm is based on a sequence of nested

hypothesis tests:

H(m)
0 : K ≤ m−1 vs. H(m)

1 : K ≥ m

where K is the true number of spikes and m = 1, · · · ,d∧n. At the m-th stage, we estimate the PSD

parameters assuming λ̂m, · · · , λ̂d∧n to be non-spikes and test whether or not the λ̂m is from a spike

based on the approximate distribution of the largest noise eigenvalue obtained by Algorithm 1 with

the estimated parameters. If the null is rejected, i.e. there are at least m spikes, then we proceed to

the (m+1)-th hypothesis test after excluding λ̂m. Otherwise, we stop the procedure and conclude

that there are at most m−1 spikes. Note that when we consider a point mass PSD and a theoretically

obtained threshold from the Tracy-Widom law instead of the simulated one, this procedure plays
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the same role as the method proposed by Kritchman and Nadler (Kritchman and Nadler, 2008) with

a carefully estimated noise variance.

Estimation of unknown parameters of the PSD. An interesting topic in the random matrix

theory is the estimation of the PSD parameters. (Li et al., 2013; Bai et al., 2010). Although we

employ the Bai’s method of moments in this paper because it is intuitive and is to implement, other

PSD parameter estimation methods can be used as well. Bai et al. (2010) proposed a method to

estimate the unknown parameters based on the relationship between the moments of the PSD H(t;θθθ)

and the moments of the MP distribution Fy,H . The following lemma (Nica and Speicher, 2006)

describes the relationship.

Lemma 4.4.1. (Nica & Speicher, 2006) The moments α j =
∫

x jdFy,H(x), j ≥ 1 of the LSD Fy,H are

linked to the moments β j =
∫

t jdH(t) of the PSD H by

α j = y−1
∑yi1+i2+···+i j(β1)

i1(β2)
i2 · · ·(β j)

i jφ
( j)
i1,i2,··· ,i j

(4.4.1)

where the sum runs over the following partitions of j:

(i1, · · · , i j) : j = i1 +2i2 + · · ·+ ji j, il ∈ N,

and φ
( j)
i1,i2,··· ,i j

is the multinomial coefficient

φ
( j)
i1,i2,··· ,i j

=
j!

i1!i2! · · · i j!( j+1− (i1 + i2 + · · ·+ i j))!
.

We denote the estimate of θθθ obtained from the method of moments by θ̂θθ. Note that the proposed

moment estimator has been proved to be strongly consistent and asymptotically normal (Bai et al.,

2010).

We employ this method of moments to estimate the PSD parameters θθθ and the main algorithm

to estimate the number of spikes K is described as follows:
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Main algorithm.

From m = 1, iterate the following procedure until it stops.

1. Based on {λ̂m, λ̂m+1, · · · , λ̂d∧n}, obtain the PSD parameters θ̂θθ
(m)

.

2. Applying Algorithm 1 with the estimated θ̂θθ
(m)

, obtain the (1−α)-quantile s(m)
α with a prede-

termined level α.

3. If λ̂m > s(m)
α , reject H(m)

0 and go to the step 1 replacing m by m+ 1. Otherwise, we do not

reject H(m)
0 , the estimate of the number of spikes is K̂ = m−1, and stop here.

4.4.3 PSD diagnostics

The proposed method for determining the number of spikes depends on the correct specification

of the underlying PSD. Under a misspecified PSD, the estimated number would be unreliable. Here,

we develop a graphical tool for the diagnostic to check if the assumed PSD is correctly specified.

Let s be the true companion Stieltjes transform as defined in Section 4.2 and let the sample

companion Stieltjes transform, denoted by sn, be

sn(u) =−
1−d/n

u
+

1
n

d

∑
i=1

1

λ̂i−u

for u ∈ Γc
Fn

where Fn denotes the ESD from the data and ΓF denotes the support of the distribution

F . Then, Li et al. (2013) shows that, under certain conditions, (a) sn(u) converges to s(u) for

any u ∈ int(liminfn→∞ Γc
Fn
\0); (b) the ψy,H(α) defined in (4.3.1) uniquely determines the PSD H.

Combining (a) and (b) gives us an important fact that if the PSD of the data is truely H, then

the ψ̂n(α) = s−1
n (−1/α) will be close to the true ψy,H(α) for α ∈ A where A = {α : α /∈ ΓH ,α 6=

0, and ψ
′
y,H(α)> 0}.

Based on this fact, we propose psi envelopes which carefully study the difference between ψy,H

and ψ̂n by constructing simulated envelopes, ψ̂
q
n for q = 1, · · · ,Q. The basic idea is the same for

Q-Q envelopes (Hannig et al., 2001). The envelope ψ̂
q
n is from Q independent replications obtained
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Figure 4.27: Examples of the psi envelope for assessment of the point mass PSD H = δ1. The left
panel shows the case where the sample eigenvalues are truly from the assumed H whereas the right
panel shows the case where the sample eigenvalues are from the different point mass PSD H

′
= δ1.2.

The figure demonstrates the sensitivity of the psi envelope diagnostic.

as in Algorithm 1. Then, the psi envelope enables assessment of the PSD assumption by checking

whether or not the ψ̂n is covered by the envelope. Two examples of the psi envelope are shown

in Figure 4.27, which are checking whether or not two different sets of eigenvalues are from the

PSD H = δ1. For the left plot, the sample eigenvalues truly from the H = δ1 are considered, and the

sample eigenvalues from a different PSD H
′
= δ1.2 for the right plot. In each plot, the function ψy,δ1

is shown in black with 100 blue envelope and the estimated function ψ̂n in red. The ψ̂n which is

based on the eigenvalues truly from the H is well covered by the envelope whereas the ψ̂n from H
′

shows clear deviation from the envelope. As this example shows, the psi envelope provides a useful

graphical tool for the PSD diagnostic.

4.5 Real data analysis

In this section, we apply the proposed methods to our main example, RNA-seq gene expression

data. Let us first briefly describe the data structure. A collection of 522 head and neck squamous

carcinoma RNA-seq observations were obtained from the TCGA Research Network as described

earlier. In this chapter, we study the base-level gene expression for each of several important

cancer related genes. For each gene, the RNA-seq read-depths are measured along the length of the
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Figure 4.28: A set of RNA-seq observations for the gene CDKN2A are plotted on the log scale.

transcript. The resulting data structure is an expression count matrix RRR = {ri j}1≤i≤d,1≤ j≤n where

ri j is the read count at the ith position for the jth patient, d is the length of the transcript at the

gene being studied, and n is the sample size. Since RNA-seq counts data show unstable variations

within and between observations, the shifted logarithm transformation was taken to stabilize such

heterogeneity, i.e. X = {xi j} where xi j = log10(ri j +1). For each gene, our analysis is based on the

resulting matrix X and the example of the gene CDKN2A is described in Figure 4.28.

Since RNA-seq data typically have 1,000-20,000 dimensions while there are only hundreds

of samples available, PCA is a very useful tool to reduce a huge dimension size and visualize the

underlying relationship between samples or variables. In many cases, RNA-seq data are analyzed

for hundreds or thousands of genes for various purposes such as discovery of key genes, detection

of interesting genetic events, or identification of novel clusters, so that an automatic choice of the

number of PCs at each gene is useful. To our best knowledge, however, there is no existing method

to select the number of PCs that is applicable to RNA-seq data. In Section 4.5.1, we show why the

existing methods are not appropriate for the RNA-seq data and suggest a new PSD model which is

more suitable. And we compare our results with some existing methods for several important genes

in Section 4.5.2.
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Figure 4.29: Comparison between the theoretical functions ψyn,δσ̂2 (black) and the estimated func-
tions ψ̂n (red) for the RNA-seq data at the gene CDKN2A. In each plot, the estimates σ̂2 and ψ̂n
are obtained based on the sample eigenvalues except for the 10, 50, 100, 200, 300, 400 largest
eigenvalues. The blue rectangular area with the black arrows indicate the theoretically expected
supports of the LSDs under the point mass PSD. The orange rectangular area with the red arrows
indicate the supports of the ESDs from the data. The green rectangular area indicates the intersection
of the blue and orange regions. The estimated noise variances are provided at the bottom of each
plot. The Figure shows a point mass PSD provides a very poor fit to the data.

4.5.1 The proposed noise model

Figure 4.29 shows graphics which demonstrate that the point mass PSD for a noise distribution

of RNA-seq data is clearly not appropriate. Here, the gene CDKN2A is considered with d =

1978, n = 522. In each plot, the theoretical function ψyn,δσ̂2 (black) with the estimated noise level

σ̂2 and yn =
d
n is compared with the estimated function ψ̂n from data (red) after excluding the 10,

50, 100, 200, 300, 400 largest eigenvalues sequentially. The red arrow represents the support of

the empirical spectral distribution from the data, that is, from the smallest to the largest sample

eigenvalue. Correspondingly, the support of the theoretical M-P distribution extended to the 99th
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percentile of the distribution of the largest eigenvalue, known as the Tracy-Widom law, is represented

by the blue arrow (Ma et al., 2012). This enables more accurate comparisons of the two distributions

by taking into account the variation in the maximum eigenvalue. Although the theoretical and

data-driven functions, ψyn,δσ̂2 and ψ̂n, as well as the corresponding supports become comparable

as more eigenvalues are kicked out, it is clear that they strongly disagree even when almost all

eigenvalues are elliminated. This demonstrates that the noise eigenvalues from the data do not

follow the classical M-P distribution, which motivates our improved PSD models.

Under the questionable white-noise assumption, we easily expect that too many PCs would

be determined to be significant because of the extreme skewness of the ESD. The severe positive

skewness makes the kth sample eigenvalue, the maximum of the remaining eigenvalues at the kth

stage, be much greater than the theoretically possible maximum eigenvalue, resulting in the rejection

of the hypothesis that the kth eigenvalue is from noise. In almost all cases, we observed that this was

indeed true as described in Table 4.6. From the perspective of the dimension reduction, however,

such high numbers of PCs may not be helpful especially for downstream statistical analyses that

mostly require a much smaller dimension size.

Accordingly, the PSD that has a point mass at the noise variance, i.e. H(t) = δσ2 , is not a

suitable distribution for RNA-seq data whose eigenvalues are extremely right-skewed. To capture

the extreme positive skewness, we suggest a right-skewed PSD, particularly the Gamma distribution

truncated at some upper quantile. Other right-skewed distributions may be used but the Gamma

distribution fit the best from our experience. Also, we can control the degree of positive skewness

by adjusting the truncation quantile. Our method is sensitive to this choice of the quantile and

precise specification is a topic for future research. Truncation determined by the upper 0.995

quantile gave reasonable values so we use it for the rest of the paper. Figure 4.30 shows the psi

envelopes introduced in Section 4.4.3 for assessing the gamma assumption after kicking out a few

largest sample eigenvalues. As in Figure 4.29, Figure 4.30 shows the estimated functions ψ̂n in

red sequentially removing a first few eigenvalues with the red vertical arrows for the supports of

the ESDs. The black curves represent the theoretical functions ψyn,H(t;θ̂θθ) with the black arrows
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Figure 4.30: The psi envelopes for assessing the Gamma PSD for the gene CDKN2A. In each plot,
the remaining eigenvalues excluding the 1, 5, 10, 11, 15, 20 largest eigenvalues are compared with
the estimated Gamma PSD. The blue, orange, and green rectangular regions and red and black
arrows are determined similarly as in Figure 4.29. The PSD parameters are provided at the bottom
of each plot. The figure indicates 11 large non-noise eigenvalues.

indicating the approximate supports of the corresponding LSDs. As more eigenvalues are excluded

up to 11, the sample psi curve gets closer to the psi envelopes, which supports that the remaining

sample eigenvalues roughly follow the LSD based on the estimated PSD H(t, θ̂θθ). As we will see

in Section 4.5.2, the critical value 11 is exactly the estimated number of spikes from the proposed

method in Section 4.4.

4.5.2 Application to important genes

We compared our method (CM) with the methods proposed by Kritchman and Nadler (KN) and

Passemier and Yao (PY) for the RNA-seq data at several important tumor-related genes: CDKN2A,

TP53, FAT1, PTEN, CASP4, CHEK2, EGFR, and PIK3CA. Let us first briefly describe the two

methods.
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Method of Kritchman and Nadler (KN). Kritchman and Nadler (2008) developed an algo-

rithm for rank determination based on the asymptotic distribution of the largest noise eigenvalue.

Their algorithm performs sequential hypothesis tests on whether the largest eigenvalue at each

step arises from a signal rather than from noise. The statistical procedure at each step involves

estimating noise variance and setting a threshold based on the Tracy-Widom distribution where the

largest noise eigenvalue follows (Johnstone, 2001). Their algorithm has been considered as a good

benchmark for judging performance of other methods for determining the number of components in

many papers.

Method of Passemier and Yao (PY). Passemier and Yao (2012, 2014) proposed a method for

estimating the number of spikes under the case where there are possibly equal spikes. Based on

the different asymptotic behaviors of spike and non-spike sample eigenvalues, they determine a

threshold for the successive spacings of the ordered sample eigenvalues. Because larger spacings

are expected for spike sample eigenvalues than for noise eigenvalues, one may separate spikes and

non-spike eigenvalues based on an appropriately determined threshold for the spacing. This method

is very intuitive in the sense that the proposed procedure is somehow similar to the naive procedure

based on scree plots with a more reasonable separation based on random matrix theory. To avoid

false determination due to ties of spike eigenvalues, they also proposed a more robust estimator by

using consecutive two or more spacings that should be larger than a threshold at the same time to be

considered as spikes.

The estimated number of spikes for each gene from the three methods are summarized in Table

4.6. As expected, both KN and PY methods determine a huge number of spikes and, in particular,

the KN results indicate that all PCs are spikes for these eight genes. When the all PCs are declared

as spikes, the noise variance cannot be estimated because there is no noise eigenvalue any more,

as indicated by NA in Table 4.6. On the other hand, our proposed method provides biologically

reasonable and practical number of spikes. Although we provide the results for the eight chosen

genes, we have observed that this is indeed true for almost all genes. We believe that the proposed

method can give valuable contribution to distinguish meaningful and important signals from noise
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d CM (τ̂, ν̂) KN (σ̂2) PY (σ̂2)

CDKN2A 1978
11 (0.019,

1.399)
521 (NA) 197 (0.00046)

CHEK2 2595 5 (0.014, 2.029) 521 (NA) 208 (0.00034)
CASP4 2688 6 (0.011, 3.665) 521 (NA) 219 (0.0039)

PIK3CA 3686 8 (0.013, 1.310) 521 (NA) 521 (NA)

TP53 3876
12 (0.013,

1.505)
521 (NA) 521 (NA)

PTEN 5535
17 (0.011,

1.235)
521 (NA) 521 (NA)

EGFR 7965
13 (0.010,

2.434)
521 (NA) 521 (NA)

FAT1 15232
16 (0.008,

3.781)
521 (NA) 521 (NA)

Table 4.6: Estimates of the number of spikes from the proposed method (CM) and two existing
methods (KN and PY). The lengths of transcripts (dimensions of the RNA-seq data) for eight genes
are provided in the second column. For the CM method, the estimated shape and rate parameters
(τ̂, ν̂) of the Gamma are provided and the estimated noise variance σ̂2 are also provided for the KN
and PY methods. The table shows that the proposed CM method estimates reasonable numbers of
spikes whereas the KN and PY methods provides far too large number of spikes. NA indicates that
the noise variance is not available.

in RNA-seq data. Furthermore, the method can be also applied to other types of data set where a

point mass PSD is not appropriate with a carefully chosen PSD.
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