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ABSTRACT

James G. Xenakis: Special topics for recombinant inbred intercross data: model identifiability,
hypothesis testing and compositional methods

(Under the direction of Fei Zou)

This dissertation addresses statistical issues in studies comprised of mice derived from the

Collaborative Cross (CC) project (Churchill, 2004). Briefly, the CC is a community effort to derive

novel inbred mouse strains from a genetically diverse set of eight inbred founder strains. Specifically,

our interest has been in studying the effects of the parental strains on phenotypes of interest among

recombinant intercrosses (RIX) derived from those strains (i.e., pairings of them). The topics explored

here involve properly accounting for the relatedness of the samples created in these breeding schemes.

When polygenic effects are conceptualized as uncorrelated parental strain effects, a study

design can be framed as a sparse diallel, or more generally dyadic data. In Chapter 2, we consider

such designs, incorporating multiple variance components. This raises often-ignored identifiability

issues, the most significant of which is the possibility of performing inference on an unidentifiable

model parameter - a mistake which is actually not difficult to make in this setting. We develop an

easy-to-apply condition to check for model identifiability in this setting.

In Chapter 3, our focus is on hypothesis testing in these same sparse diallels. Because variance

parameters are boundary parameters, inference is considered a “non-standard” problem, with asymp-

totic reference distributions being (sometimes complicated) mixtures of χ2 random variables, when

they are available at all. This is further complicated by the fact that when the dependent variable

is non-normal, the data structure in this complicated setting does not allow for likelihood-based

methods, as integration over the random effects becomes computationally infeasible. We adapt

an existing score statistic developed by Lin (1997), which is designed for models fit by penalized

quasi-likelihood.

In Chapter 4, we directly model the relatedness of the strains by replacing the diallel-like random

design matrices with ones derived from similarity matrices. Further, we incorporate the contributions
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of the eight founder strains as fixed effects, and propose a framework incorporating the statistic

employed in Chapter 3 to jointly test the fixed and random genetic effects. We show that the benefits

of this approach include improved power and more meaningful interpretations of parameter estimates.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

Psychiatric disorders, including schizophrenia (SCZ), are often devastating neuropsychiatric

illnesses. According to the World Health Organization, SCZ alone affects over 20 million people

worldwide, with onset typically in adolescence or early adulthood (WHO, 2012). Affected subjects

suffer from myriad symptoms, including distortions in cognition like hallucinations and delusions,

as well as excess mortality. Antipsychotic medications like haloperidol are the current mainstays

of treatment for SCZ but are associated with severe and often intolerable side effects that reduce

compliance and thus also badly constrain their effectiveness. It has been estimated that 75% of

patients discontinue treatment over relatively short periods of time, and that adverse drug reactions

(ADR’s) play a major role (Lieberman et al., 2005). The enormity of disorders like SCZ is made

worse by the fact that they are so difficult to study, in part due to the inaccessibility of tissue (Weis

et al., 2007; Tomita et al., 2004; Arnold et al., 2001; Smutzer et al., 1998; Harrison, 1999). While there

is substantial inter-individual variation in susceptibility to ADR’s and much evidence implicating

genetic variation (Bakker et al., 2006; Lerer et al., 2005; Patsopoulos et al., 2005; Reynolds et al.,

2005), researchers have thus far not been able to produce effective algorithms to predict them. While

researchers are limited in the capacity to study the genetic underpinnings of ADR’s in humans, mouse

models can fill this gap. Typically, such studies involve crosses of two existing recombinant inbred

(RI) strains, but such studies are limited in their ability to detect genetic effects and their possible

interactions with environment that underlie complex phenotypes. For one, the limited number of

existing RI strains affords insufficient power to detect the modest effect sizes that are common in

such phenotypes. Further, crossing two inbred lines yields a low level of genetic variation, which is

also distributed non-uniformly. These problems are addressed by the novel Collaborative Cross (CC)

genetic reference panel, which serves as a superior mouse model for the more heterogeneous human

population (Rogala et al., 2014; Kantor et al., 2011). The CC was derived from a genetically diverse
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set of 8 founder inbred strains (Rogala et al., 2014; Kantor et al., 2011; Follenzi et al., 2004), the

selection of which was designed to maximize the levels of genome-wide variation, and capitalize on

the fact that no genomic regions are identical in all these founder strains. The genetic variation is

randomized in the CC strains so that causal relationships can be established. Additionally, each CC

RI genome is a mosaic of the eight founder strains such that the combination of alleles present in

these new strains are not present in any existing mouse strain (Rogala et al., 2014). The CC is the

only mammalian resource that has high and uniform genome-wide variation effectively randomized

across a large, heterogeneous, and infinitely reproducible population.

The pressing need to study the genetic underpinnings of important pharmacogenomic phenotypes

induced by haloperidol motivated a project at UNC, the data from which we employ in what follows.

The samples comprising the study were recombinant inbred intercrosses (RIX) generated from

crossing the inbred RI strains. Such crosses maintain the benefits described above (e.g., genome

variation and infinite reproducibility) and confer additional advantages due to the fact that they

are not inbred and are therefore more representative of the human genome. In the study, a series

of behavior and pharmacogenetic phenotypes were collected from a panel of RIX treated with or

without haloperidol. This behavior study can be framed as a sparse diallel, for which the mixed

model has recently become an increasingly useful tool for analysis, where the parental effects are

assumed to arise from a normal distribution. Although sparse diallels are known to have high power

for mapping studies, the details regarding parameter estimation and testing, and effect prediction are

complicated. In this context, some relevant hypotheses pertain to variances of the random effects.

Such testing problems are considered “non-standard” problems in statistics, because under the null

the parameters of interest lie on the boundary of the parameter space (Self and Liang, 1987). This

is further complicated by the possible presence of nuisance boundary parameters. Further, because

of the connected nature of the random effects in the diallel design, the response vector cannot be

subdivided into independent units; this has been shown to affect the asymptotic distribution of the

estimates for variance components. In addition, this makes fitting the model difficult when the

response is non-normal. Further, whereas the theory is thin for linear mixed models (LMM), it is

altogether lacking for generalized linear mixed models (GLMM). We formally lay out the estimability

theory and testing framework.
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There are several ways of modeling the parental effects. The simplest is with a sort of pedigree;

pairs of mice which share a common parent are assumed to be equally related. While it was originally

expected that each founder strain would contribute 12.5% of the genome of each recombinant strain,

recent work has shown this not to be the case. The founder strains are not equally represented, and

some founder strains are (surprisingly) not represented at all in some of the RI strains (see figure 4.18

in Chapter 4). Because of this phenomenon, it is of interest to extend the simple pedigree model to

incorporate the genetic similarity of the CC lines. Such models have been used to effectively predict

phenotypes based on genomic similarity (Kang et al., 2008).

For complex polygenic traits, RI panels like the CC which are derived from a limited number

of founder strains afford the opportunity to test the association between amounts of founder DNA

present in each line with phenotypes of interest. This is a good starting point in the study of any trait,

especially since some founder strains were specifically bred to express certain phenotypes. There is a

subtle issue with testing such associations because of a constraint present in the data: the sum of the

genetic contributions of the founder strains is, by definition, one. Such data are called compositional,

and if care is not taken to address the constraint, the consequences can be uninterpretable hypotheses

or spurious conclusions (Pawlowsky-Glahn and Buccianti, 2011). While methods for compositional

covariates have been applied effectively in some fields (Lin et al., 2014; Li, 2015), these methods

must be extended to accommodate compositions that have zero elements, which, as mentioned above,

is an unexpected feature of the CC RI straines. In the future, we plan to develop models that properly

handle the compositional aspect of RI data, allowing for meaningful and interpretable hypothesis

testing.

1.2 Classical Diallel

We noted above that our study design can be framed as a sparse partial diallel. The data structure

is shown below in Figure 1.1. Each numbered node corresponds to a unique CC inbred strain, and

the arrows to recombinant crosses of those strains - that is, the samples in the dataset are composed

of these crosses. The arrow points in the direction of maternal parent.

The salient feature of our study design is the large one-way “loop”, which is similar to a well-

known partial diallel known as the single round robin (SRR). There are additional “satellite loops”
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Figure 1.1: Study design

and “chains”, but for now we will focus on the loop. The diallel has had a long and complicated

history in genetics, beginning nearly a centrury ago (Schmidt, 1919). Contributions have come from

sub-fields of applied genetics, where the experimental designs and associated analysis methods have

differed based on the science relevant to the specific subfield. Although all such models can be

described in a general framework, it was several decades until this was attempted. For this reason,

a linear history of the diallel and all its variants would only serve to confuse. We therefore start

with the general treamtent, best formalized by Hayman and Griffing (Hayman, 1954b,a, 1958, 1960;

Griffing, 1956a,b) which was published more than three decades after the publication of what can be

considered the first diallel experiment (Schmidt, 1919). We then circle back to provide a more linear

review.

Griffing defined a diallel cross as one in which a set of p inbred lines are chosen and crosses

(though not necessarily all crosses) are made among these lines (Griffing, 1956a,b). The structure of

the data can be easily visualized in a p× p table (see, for example, Figures 1.2-1.5 below), and the

p2 possible combinations can be divided into three separate groups:

1. The p inbred parental lines themselves, corresponding to the main diagonal in the table.
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2. One set of F1 hybrids, corresponding to, say, the upper right triangle of the table, denoting

offspring whose maternal parent is indexed by row label and paternal parent by column label.

3. The other set of F1 hybrids, corresponding to the lower left triangle of the table. These are

denoted reciprocal F1’s.

According to Griffing there are then four types of diallel experiments, depending on whether the

inbred lines are to be included:

1. All p2 combinations - that is, p inbred parents and both sets of F1’s.

2. The p(p+1)
2 crosses corresponding to the inbred parents and one set of F1’s.

3. The p(p − 1) combinations corresponding to all F1’s, including reciprocals, but no inbred

parents.

4. The p(p−1)
2 crosses corresponding to a single group of F1’s (reciprocal and parental lines

excluded).

Griffing further distinguished between the following two scenarios:

1. The parental lines are assumed to be a random sample from a population about which inferences

are to be made.

2. The parental lines are deliberately chosen, and are therefore not a random sample from any

population.

We note that these two scenarios were, respectively, termed Model I and Model II by Eisenhart

(Eisenhart, 1947), another seminal author on the subject. This yields a total of eight scenarios to

be considered (the effects in each of the four types of experiment can either be considered fixed or

random). It is with these scenarios in mind that we proceed with the history of the diallel. The purpose

of a diallel experiment is twofold. First, the design can be used to study the heritability of traits of

interest (that is, to estimate the genetic components of yield variation among the crosses). Secondly,

it can be used to estimate the actual breeding values of the parental lines included (Kempthorne

and Curnow, 1961). Although Schmidt published the first diallel in 1919 (Schmidt, 1919), it can be

argued that Sprague and Tatum (Sprague and Tatum, 1942) pioneered the theory of the diallel when

they coined the following terms:
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1. General combining ability (GCA): the average performance of a line in hybrid combination.

2. Specific combining ability (SCA): designates cases in which certain combinations do better or

worse than would be expected based on the average performance of the lines involved.

We note that Sprague and Tatum’s study design was of Griffing’s Type 4: p(p−1)
2 F1’s with no parents,

and so these terms require some clarification in order to generalize to all four study designs. We

do this in the context of Griffing’s model for crossing methods that incorporate reciprocal crosses

(Griffing’s types 1 and 3). The model for phenotypic response is:

yijk = gj + gk + sjk + rjk + εijk (1.1)

Where yijk corresponds to the response of sample i with parents j and k. Here, gj corresponds to the

GCA of the jth parent, sjk is the SCA effect for the cross between the jth and kth parents, and rjk

is the reciprocal effect involving the jth and kth parents. The variety effects for crossing methods

excluding reciprocals (Griffing’s type 2 and 4 above), become:

yijk = gj + gk + sjk + εijk (1.2)

1.3 Partial Diallel

Although most diallel literature focuses on the classical models described above, there is also

a rich literature on partial diallel design (Kempthorne and Curnow, 1961; Greenberg et al., 2010;

Viana et al., 1999; Singh and Hinkelmann, 1995, 1998, 1990; Mukerjee, 1997; Hinkelmann and

Kempthorne, 1963; Gupta et al., 1995; Ghosh and Divecha, 1997; Fyfe and Gilbert, 1963; Das et al.,

1998; Arya, 1983; Verhoeven et al., 2006; Clatworthy, 1955). This literature is of particular relevance

to us because, as mentioned above, our study design can be framed as a partial diallel. Further,

the “loop” portion of the design is actually very similar to a common partial diallel known as the

single round robin (SRR). For this reason, we take special care to review several papers that studied

particular partial diallels known as circulant designs, of which the loop design is one. As mentioned

above, the purpose of the diallel is twofold: to estimate genetic components of variation and to

estimate/predict actual yielding capacities of crosses. Note that the number of potential crosses to
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be made increases quadratically in the number of inbred parental lines, p. It is seldom feasible then

to perform a complete diallel as the number of parental lines under study becomes moderate/large.

For a given amount of resources (e.g., the total number of possible samples, which might be limited

for economic reasons) it is of interest whether a design should involve more inbred lines with fewer

crosses sampled (i.e., a more sparse design) or to construct more crosses from a smaller number of

inbred lines. In general, Kempthorne and Curnow (Kempthorne and Curnow, 1961) showed that, for

the estimation of variance components of interest, sparser designs can be more efficient, although

there are some potential pitfalls discussed, for example, in Fyfe and Gilbert (Fyfe and Gilbert, 1963).

Kempthorne and Curnow (Kempthorne and Curnow, 1961) provide perhaps the seminal work on

circulant designs, borrowing heavily from the work of Clatworthy (Clatworthy, 1955), and framing

the circulant design as a connected partially balanced incomplete block design with two associate

classes and two treatments per block. Quoting Clatworthy (with slight changes in notation), such a

design is an arrangement of p treatments (parents in our context) into c blocks (crosses in our context)

such that:

1. Each of the treatments occurs r times, and no treatment occurs more than once in any block.

2. Every pair among the p treatments occurs together in either λ0 or λ1 blocks (and are said to be

ith associates if they occur together in λi blocks, i = 0, 1).

3. There exists a relationship of association between every pair of the p treatments satisfying the

following conditions:

(a) Any two treatments are either first or second associates.

(b) Each treatment has n1 first and n2 second associates.

(c) Given any two treatments that are ith associates, the number of treatments common to the

jth associates of the first and the kth associates of the second is pijk = pikj (i, j, k = 1, 2)

which is independent of the pair of treatments with which we start.

4. A design is said to be connected if for every two treatments, two blocks, or a block and a

treatment, it is possible to pass from one to the other by means of a chain consisting alternately

of blocks and treatments, such that every treatment of the chain occurs in each of the adjoining

blocks.
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Some examples of these circulant designs are shown below in Figures 1.2-1.5. These have been

recurrent designs in the comparative study of diallels (Verhoeven et al., 2006). Clearly, for the loop

design/SSR, λ0 = 0 and λ1 = 1. Most of the theoretical work on these circulant designs predates the

modern mixed model, which we will study. We note that some of our results relate closely to the

nonsingularity condition noted by Curnow (Curnow, 1963) and again by Ole Braaten in his excellent

PhD thesis (Braaten, 1965). That is, special care should be taken in designing the circulant study to

insure that the least squares matrices are not singular. This is closely related to some of our results

that follow in subsequent chapters.

Figure 1.2: Half diallel without inbreds

Most of the work on fitting the diallel models (and variants thereof) discussed so far centered

around the operationalizing of the basic ANOVA models first laid out by Fisher (Fisher, 1919). That

is, constructing the relevant ANOVA tables and comparing observed to expected sums of squares.

The shortcomings of this approach are well known and discussed further below.
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Figure 1.3: Single round robin

Figure 1.4: Double round robin
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Figure 1.5: Factorial design
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1.4 Modern Diallel

As the tools for analysis of the diallel became more sophisticated, so too did the ways of

dissecting the genetic effects in different ways. We use the term “modern diallel” to refer to the

post-ANOVA age, which we might say began with the work of Zhu and Weir (Zhu and Weir, 1996a),

although they built heavily on the work of Cockerham and Weir (Cockerham and Weir, 1977), who

start with a genetic experiment where the phenotypic performance is written in the most general

form:

Yijk = µ+Gij + εijk (1.3)

where Yijk corresponds to the response of the kth sample of a cross between a maternal strain i and

paternal strain j. The authors then take into account the factorial nature of the pairwise matings by

dissecting Gij as follows:

Gij = Mi + Pi + (MP )ij (1.4)

where M and P denote the maternal and paternal effects, respectively, and (MP ) to the interaction

thereof. Assuming these effects to be random, this would correspond to a variance components

model with three mean zero variance components with variances σ2
M , σ2

P , and σ2
MP , respectively. If

the design includes reciprocals, the dissection of the genetic effect can be made even more granular,

as follows:

Gij = gi + gj + sij + di − dj + rij (1.5)

where gi corresponds to the average GCA associated with strain i, and di to a symmetric deviation

from this average associated with having a parent of strain i. Similarly, sij corresponds to the average

interaction of having parental pair i, j, and rij to a symmetric deviation to account for the direction

of the cross. That is:

gi =
(Mi + Pi)

2
(1.6)

di =
(Mi − Pi)

2
(1.7)

sij =
(MPij +MPji)

2
(1.8)

rij =
(MPij −MPji)

2
(1.9)
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where sij = sji and rij = −rji. The authors further expand this into what they call a bio model

which separates nuclear parental contribution from extranuclear maternal and paternal effects, as

follows:

Gij = ni + nj + tij +mi + pj + kij (1.10)

where ni is the nuclear contribution of parent i and tij the associated interaction effect, mi and pi

are the maternal and paternal extranuclear effects, respectively, and the kij are the various interaction

terms (Cockerham and Weir, 1977). This model was further expanded by Zhu and Weir to include

genotype-by-environment interactions for experiments conducted in multiple environments (Zhu and

Weir, 1996b). Zhu and Weir write their model in the most general form as:

Y = Xβ +

q+1∑
u=1

Uueu (1.11)

with covariance matrix:
q+1∑
u=1

σ2
uUuU

′
u (1.12)

We certainly do not mean for this to be an exhaustive literature review of the history of and

methods for the diallel; that would require an entire volume. The purpose was to arrive at the modern

age of diallel analysis. Zhu and Weir (Zhu and Weir, 1996b) note some deficiencies in the ANOVA

methods that had dominated diallel analysis, including the handling of unbalanced data and the

inability to give separate estimates for variance components of maternal and paternal effects. They

fit their model by MINQUE(1) (Rao, 1971), which has fallen out of favor in deference to restricted

maximum likelihood (REML) as computing methods have improved, but we use their general

framework throughout the remainder of this work. We note that some authors have pursued Bayesian

methods for diallel analysis (Greenberg et al., 2010; Lenarcic et al., 2012), but as our ultimate goal is

a model that can be used on the genome-wide scale, we do not pursue such approaches further.

1.5 Variance Components

Although much of the theoretical and applied work on random effects models has been driven by

genetics applications, the earliest known formulation of such models dates back to astronomical work

in the mid-1800’s (Airy, 1861), wherein Airy studied the problem of making repeated observations
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by telescope on celestial bodies on multiple nights. One interesting aspect of his formulation was that

it accommodated unbalanced data (the number of observations need not be the same from night to

night). This is in direct contrast with the treatment of variance component models for the following

century which relied on balanced designs; the unbalanced design would not receive its due treatment

until Henderson’s work in the 1950’s. For the better part of the twentieth century, variance component

estimation was dominated by the analysis of variance (ANOVA) methods developed by R.A. Fisher,

beginning with his seminal paper in the area of quantitative genetics (Fisher, 1919). Briefly, these

methods rely on equating the sums of squares from an ANOVA to their expected values, yielding a

system of equations which is linear in the variance components. There are two problems with this

estimation approach. For one, nothing prevents the estimates of the variance components from being

negative. While some suggested truncating negative estimates at zero, this immediately compromises

the unbiasedness of the estimators. When fitting models with multiple variance components and

the targets of interest are mean parameters it is often argued that negative variance components are

perfectly acceptable, so long as the overall covariance matrix is valid (i.e., positive definite). This is

not helpful when the variance components are themselves of interest, as is often the case in genetics

applications. This brings us to the second problem with the ANOVA approach to variance component

estimation, which is the lack of satisfactory distributional results for testing their significance. This

problem was partially addressed in the 1940’s by Sattherthwaite, who derived approximate sampling

distributions for the variance components (Satterthwaite, 1946) and Wald (Wald, 1940, 1941), who

derived confidence intervals for the ratios of variance components in the 1- and 2- way classifications,

accommodating unbalanced data.

A groundbreaking work on variance component estimation with unbalanced designs came in

Henderson’s now famous 1953 paper (Henderson, 1953) - methodology which is still commonly

used today. It is interesting from our perspective because his work bears some similarity to our

own application. While we are studying how mice respond to stimuli, he was studying the milk

production of dairy cows. Henderson’s methods are best viewed as an effective and comprehensive

generalization of the ANOVA methods. Henderson’s paper consists of three methods, still very much

in use today. Method I applies to models with random effects only, generalizing the sums of squares

ANOVA approach to handle unbalanced data. Method II generalizes Method I, but adjusts for fixed

effects in mixed models. Model III is more complicated, but was of limited use at the time due to
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computational burden. A useful feature of Henderson’s approach is that, in addition to imbalance, it

accommodated any number and type of random effects (i.e., nested or crossed).

As useful as Henderson’s methods are for estimation, being generalizations of the ANOVA

method, the problems of negative estimates and the lack of a cohesive hypothesis testing framework

persisted. These were not adequately addressed until the popularization of Maximum Likelihood

(ML) methods and their variants in the 1960’s. In contrast to ANOVA methods, which require no

distributional assumptions on the random effects (they require little more than a finiteness assumption,

and, in a sense, a separability of the fixed and random effects). The key paper to popularize ML

estimation in random effects models was by Hartley and J.N.K. Rao (Hartley and Rao, 1967). It is

cohesive in the way that Henderson’s approach was, in that it accommodates any number of random

effects, and lack of balance. It also cohesively solves the problem of negative variance estimates, as

these are (typically) forced to be positive in the maximization routine (more on this later, because

it does actually cause problems for testing). One disadvantage (though less so today compared to

when the method first came out) is the computational expense of ML - it requires iteratively solving

the ML equations (Miller, 1973, 1977). Searle worked on the asymptotic distribution in the general

case as well (Searle, 1970). Note also that in the balanced case, the ML estimates coincide with the

ANOVA estimates.

Extending ML estimation, Thompson (Thompson Jr, 1962) first introduced the idea of maximiz-

ing the portion of the likelihood which is invariant to the location parameters (fixed effects). This

method is known as restricted (or residual) maximum likelihood (REML).

1.6 Hypothesis Testing

As we plan to fit models with many variance components, some of which might be null, a

clarification of some important work in this area is in order. The seminal result on the distribution

of the likelihood ratio test is due to Wilks (Wilks, 1938). Consider a p-dimensional vector θ, and a

hypothesis that θ lies on an r-dimensional hyperplane within p-space. Under the null, the distribution

of −2 log λ is asymptotically χ2 with p − r degrees of freedom. Chernoff (Chernoff, 1954) built

on Wilks’ work, and his framework goes a long way to understanding the LRT from a geometric
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perspective. Consider testing H0 : θ ∈ ω versus HA : θ ∈ τ Define:

Pψ = sup
θ∈ψ

L(X, θ) (1.13)

Then the likelihood ratio can be expressed as:

λ(X) =
Pω(X)

Pτ (X)
(1.14)

Chernoff first considers data following a multivariate normal distribution with mean θ and known

covariance matrix Σ. By the sufficiency of the sample mean, we need only consider the case where

the sample size is one, in which case:

Pω(x) = (2π)−
k
2 |Σ|−

1
2 e−

Qω(x)
2 (1.15)

where Qω(x) = infθ∈ω(x− θ)′Σ−1(x− θ). The likelihood ratio test (LRT) is then:

− 2 log λ(x) = Qω(x)−Qτ (x) (1.16)

Note that (1.16) lends itself well to geometric interpretation: Qb(a) is the (generalized) distance from

a to b. The LRT statistic is therefore easily seen as the difference between two distances. Chernoff’s

main contribution is then the following theorem:

Theorem 1.1. Let Z be a random variable with a multivariate Gaussian distribution with mean θ

and covariance matrix I−1(θ0), and let CΩ0 and CΩ1 be non-empty cones approximating Ω0 and Ω1

at θ0, respectively. Then under sufficient regularity conditions, the asymptotic distribution of the

likelihood ratio test statistic, −2 log λN , is the same as the distribution of the likelihood ratio test of

θ ∈ CΩ0 versus the alternative θ ∈ CΩ1 based on a single realization of Z when θ = θ0.

Self and Liang (Self and Liang, 1987) build upon the work of Chernoff in such a way so as to

facilitate geometric interpretability and ease of computation, by introducing a spectral decomposition

of the Fisher information: I(θ0) = PΛP ′. Thus, the LRT can be written as:

inf
θ∈C̃0

||Z̃ − θ||2 − inf
θ∈C̃
||Z̃ − θ||2 (1.17)
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where C̃ = {θ̃ : θ̃ = Λ1/2P ′θ ∀ θ ∈ CΩ − θ0} and C̃0 is defined analagously. This transformation

allows us to work with Z̃, which is normal with mean zero and identity covariance; use of the

Euclidean norm in equation (14) facilitates geometric interpretation. Further, this facilitates the

computation of the probabilities that follow, as everything has been recast in terms of independent

standard normal random variables.

We begin with a scenario that is not explicitly dealt with in Self and Liang (Self and Liang,

1987): testing interior parameters in the presence of nuisance boundary parameters. Formally, we

consider a parameter vector θ = (θ1, θ2) where θ1 corresponds to interior parameters of interest,

and θ2 to nuisance boundary parameters. Figure 1.6 illustrates the case where these are each one-

dimensional, and after applying the spectral transformation above, Λ0.5P

 1

0

 and Λ0.5P

 0

1


remain orthogonal. Note that the support of Λ0.5P

 0

1

 (plotted on the abscissa) is R as it is an

interior parameter, and that of Λ0.5P

 0

1

 (plotted on the ordinate axis) is R+ as it is a boundary

parameter. Applications of this scenario abound. For example, a salient feature of the linear mixed

model is the asymptotic independence of the estimates for the mean and the variance parameters,

so this scenario would apply to testing a mean parameter in the linear mixed model in the presence

of null variance components. In this scenario, the null parameter space corresponds to the half-line

Λ0.5P

 0

1

, and the alternative to the entire upper half plane. There are two regions of interest. If

Z falls in the upper half-plane (region 1), under the alternative it attains the true parameter value, and

thus the Euclidian distance is zero. Under the null, however, the closest point in the null parameter

space is the projection onto the half-line. The LRT statistic is the difference between these two

distances (visualized in red as d1), which is simply the square of the first element of Z: a χ2
1 random

variable. If Z falls in region 2, the distance under the null corresponds to the line from the origin,

and under the alternative it is the line to the projection onto the abscissa. Again, this difference

(visualized in red and labeled d2) is simply the χ2
1 variable Z1.
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Figure 1.6: Testing a single interior parameter in the presence of a single independent nuisance
boundary parameter

Figure 1.7: Testing a single interior parameter in the presence of a single correlated nuisance boundary
parameter

The situation is more complicated when we cannot rely on the independence of the estimates.

Visually, this corresponds to the angle between Λ0.5P

 1

0

 and Λ0.5P

 0

1

 no longer being π
2
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(Figure 1.7). The geometry is more complicated, but following the logic above, there are four relevant

regions, in which the LRT statistics are labeled d1, . . . , d4. Note that the only regions in which the

distribution is tractable are regions 2 and 3, where the LRT statistic follows a χ2
2 and a χ2

1 distribution,

repectively. The distributions in regions 1 and 4 are not necessarily easy to compute. Although this

situation might seem somewhat contrived at first glance, it is actually common. Consider testing a

fixed effect in the generalized linear mixed model where the covariance is “overfit”, in the sense

that one or more parameters are truly zero. The standard asymptotic results do not obtain here. This

also corresponds precisely to the scenario where we want to use a GLMM with random effects that

control for global family effects in CC mice for mapping.

Finally, we consider the case where we are interested in testing a boundary parameter in the

presence of another nuisance boundary parameter. This corrresponds to case 8 in Self and Liang (Self

and Liang, 1987), which is associated with their Figure 7. Both parameters being on the boundary

under the null, the null parameter space is, again, the half-line Λ0.5P

 0

1

, and the aternative is

the entire upper half plane. This situation is plotted in Figure 1.8, which only differs from Figure

1.8 in that region 4 has been broken up into two separate regions. If Z falls in region 5, the closest

point under both the null and the alternative hypotheses is the origin, and thus in this region, the LRT

statistic is zero (this is where the ubiquitous “point mass on zero” originates).

In recent years, several authors have revisited the boundary problem from a theoretical perspective

(Sinha et al., 2007; Kopylev and Sinha, 2011; Vu et al., 1997; Kopylev, 2012; Li and Cui, 2016; Han

and Chang, 2009; Drton, 2009). Although much of this work of is quite general, the bulk of the cited

papers have been, either explicitly or implicitly, in the context of longitudinal data analysis. See, for

example, the oft-cited Stram and Lee (Stram and Lee, 1994). While this paper clearly expands on

the work of Self and Liang and derives some important distributional results, it is not sufficiently

general to accommodate broader classes of mixed models (explained in more detail below). Still,

these two seminal papers are the canonical works when it comes to distributional results for testing

the significance of variance components in mixed models. While the asymptotics governing interior

parameters (e.g., mean parameters in linear regression) are fairly well-behaved, this is not the case

for boundary parameters. These tests are known to be conservative in small samples for the LMM.

Further, Crainiceanu and Ruppert (Crainiceanu and Ruppert, 2004) showed that the sample sizes
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Figure 1.8: Testing a single boundary parameter in the presence of a single nuisance boundary
parameter

need to be quite large for the asymptotics to obtain. Further, they depend on subtle assumptions

which are often not met or ignored. They derived the finite sample and asymptotic null distributions

of the LRT and restricted LRT using efficient simulation algorithms based on spectral decompositions

for testing a single variance component. This work was extended by Greven et al to accommodate

multiple nuisance random effects (Greven et al., 2008).

We have focused thus far on the LRT, but this is by no means the only testing framework (only

the most common); it has been shown that the score and Wald tests follow the same asymptotic

distributions as the LRT (Silvapulle, 1992; Verbeke and Molenberghs, 2003; Silvapulle and Silvapulle,

1995). Ofversten developed a method for deriving exact F tests for variance components for certain

unbalanced LMM’s by means of orthogonal tranformations and a resampling procedure (Ofversten,

1993).

Several Bayesian variable selection methods have also been developed for random effects.

Kinney and Dunson (Kinney and Dunson, 2007) employed a reparametrization of the LMM based

on a modified Cholesky decomposition followed by a stochastic search variable selection approach.

Saville and Herring (Saville and Herring, 2009) compared the null and alternative models using

Bayes factors. While these methods are interesting, we do not explore them further here due to
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the prohibitive computational cost in genomics applications. Another interesting, but similarly

computationally expensive approach is the bootstrap derived by Sinha (Sinha, 2009).

It is important to note that most methods here have focused on the LMM. Fitzmaurice and Ibrahim

(Fitzmaurice et al., 2007) derived a simple permutation procedure based on randomly permuting

the indices associated with a given level of a hierarchical model. Although in theory applicable to

multiple (uncorrelated) random effects, the application was for testing a single variance component in

the absence of nuisance variance components. Lee extended this approach to accommodate multiple

correlated random effects in LMM (Lee and Braun, 2012).

Testing variance components in the GLMM is additionally complicated when the model is fit by

penalized quasi-likelihood (PQL), or “pseudo-likelihood” in SAS parlance (Breslow and Clayton,

1993; Wolfinger and O’connell, 1993). Briefly, PQL is a doubly-iterative process which approximates

the model by transforming the response vector, and then fitting a LMM to the transformed data (itself

and iterative process). Testing requires treating the data at final iteration as normal and performing,

for example, likelihood ratio tests based on LMM using the transformed data as the modified response.

Lin developed a score statistic for testing one or more variance components in GLMM fit by PQL

which has been employed in various other forms (Wu et al., 2011; Chen et al., 2013). We similarly

employ this statistic in what follows.

1.7 Compositional Background

Data consisting of multiple components that are non-negative, subject to a sum constraint, and

where the response is assumed to be related to the relative amounts of each component present, but

not to the size of the sample itself are called compositional data. Although Karl Pearson’s seminal

work on spurious correlation that can result from mishandling such data was done over a century

ago (Pearson, 1896), modern compositional methods derive from the more recent work of Aitchison

(Aitchison and Bacon-shone, 1984) and are nicely summarized by Egozcue et al (Pawlowsky-Glahn

and Buccianti, 2011). The fact that the meaningful information is relative information and not a

function of the size of the sample itself is also known as scale invariance. To form an equivalence

class, the data are typically normalized to sum to a constant k, which is formalized by the closure
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operation. For the D-dimensional vector, x, the closure is defined as:

Cx =

(
kx1∑D
i=1 xi

,
kx2∑D
i=1 xi

, . . . ,
kxD∑D
i=1 xi

)
(1.18)

Often (as in the case of proportions) k = 1, and without loss of generality we can assume this unity

constraint. The sample space for a mixture of D components is the D − 1 dimensional simplex:

Sd = {(x1, . . . , xD) : xi ≥ 0 (i = 1, . . . , D),
D∑
i=1

xi = 1} (1.19)

Compositional data are frequently mishandled when statistical tools designed for use on RD are

applied to data that reside on SD−1.

Figure 1.9: One-dimensional simplex

Much of the work on compositional data applies to the case where the compositional data

are themselves the response variables, but often researchers are interested in studying the effects

of compositional covariates on some other response variable. This causes problems for testing

hypotheses of interest. One scientific area where compositional methods have gained recent traction

is the biological study of the gut microbiome (Lin et al., 2014; Li, 2015), where certain phenotoypes

(i.e., inflammation) are known to be related to the relative contributions of different taxa present.
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Figure 1.10: Two-dimensional simplex

To geometrically illustrate the interpretability problems associated with compositional covariates, we

consider some simple cases. Suppose a sample is made up of two sexes, male and female, and we

wish to control for sex in our analysis. Since proportions are non-negative, Figure 1.9 corresponds to

the first quadrant. The unity constraint means the sample space is the line segment connecting (0, 1)

and (1, 0). The parameter of interest in a model that controls for sex is meaningful. For example,

using females as the reference group, it would be the marginal effect of a unit-increase in the male

proportion. Since there are only two components, this of course corresponds to a unit decrease in the

female proportion, which is congruous with the scientific question of interest. This interepretation no

longer applies when there are more than two components to a composition. Consider, for example, a

mixture of three components, illustrated in Figure 1.10. This figure is viewed from within the first

orthant, looking in towards the origin. In three dimensions, the unity constraint means the sample

space is the triangle connecting the points (1, 0, 0), (0, 1, 0), and (0, 0, 1). In fitting this model, it is

tempting to simply drop one of the terms. This might even make sense if one only wishes to control

for those covariates, when the target of inference is some other covariate. But when the compositional

covariates are themselves the target of inference, such models are innappropriate; the parameters do

not correspond to hypotheses of interest, stemming from the fact that it is impossible to alter one

proportion without simultaneously altering at least one of the other proportions. More formally, a
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contrast in a statistical model has a marginal interpretation. That is, in a (generalized) linear model,

a monotonic function of the expected value of the response is assumed equal to a linear predictor.

Thus, a parameter estimate (or a linear combination thereof) can be interpreted as the derivative of

the linear predictor with respect to a variable (or a linear combination of variables) of interest. We

have established that compositional data are scale invariant. Another way of putting this is that they

are homogeneous of degree zero. A function f(·) is homogoneous of degree k if f(αx) = αkf(x).

Applying Euler’s theorem for homogeneous functions, if f(·) is scale invariant and differentiable at

x, then:
n∑
j=1

xj
df

dxj
(x) = 0. (1.20)

In words, the constraint on the domain redounds to the derivatives. Thus, the traditional interpretations

for the contrasts no longer apply.

In their 1984 paper, Aitchison and Bacon-Shone (Aitchison and Bacon-shone, 1984) detailed

what we now know as that additive logratio transformation (alr) for handling compositional covari-

ates, which entails removing the constant-sum (that is, transforming the data from the simplex to a

real space) via the following transformations:

zi = log
xi
xD

(i = 1, . . . , D − 1). (1.21)

Thus, denoting the expected response as η(x), the linear model for a D-component mixture becomes:

η(x) = β0 +

D−1∑
i=1

βizi (1.22)

which is easily shown to be equivalent to:

η(x) = β0 =
D∑
i=1

βi log(xi) (β1 + · · ·+ βD = 0). (1.23)

While this effectively handles the unity constraint, several problems remain, one of which is inter-

pretability. That is, all parameters are interpreted relative to the initially chosen reference component.

There is also a theoretical problem here, as distances between points in the transformed space differ

when different divisors are selected. One proposed solution to this was to instead employ the centered
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logratio transformation (clr), which is defined as follows:

(y1, . . . , yD) = (ln
x1

D

√∏D
i=1 xi

, . . . , ln
xD

D

√∏D
i=1 xi

). (1.24)

Note that with this coordinate system, the singularity is retained, along with the associated inter-

pretability issue. The best solution for dealing with compositional covariates is to express the

compositional covariates in an orthonormal basis on the simplex (with respect to the Aitchison

geometry). This is achieved by the following isometric logratio transformation (ilr):

zi =

√
D − i

D − i+ 1
ln

xi

D−i
√∏D

j=i+1 xj

, i = 1, . . . , D − 1. (1.25)

Having performed this transformation, the variable z1 is now of scientific interest. It contains

all the information about the compositional part x1 in relation to its ratios between it and all

other components of the mixture. Note that the same interpretation does not pertain for z2, as

x1 does not appear in this term. A solution is to construct D different ilr tranformations, where

the role of z1 is assumed, in turn, by each component. That is, to investigate the significance

of the kth compositional part, we replace (x1, . . . , xD) with (xk, x1, . . . , xk−1, xd+1, . . . , xD) =:

(xk1, . . . , x
k
k, x

k
k+1, . . . , x

k
D). Noting that the ilr transformations are all orthogonal transformations of

each other, there is no need to refit the model D times, only to perform the D linear transformations

and associated hypothesis tests (Hron et al., 2012).
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CHAPTER 2: MODEL IDENTIFIABILITY IN LINEAR MIXED MODELS WITH MULTI-
PLE VARIANCE COMPONENTS WITH APPLICATION TO DIALLEL DESIGNS

2.1 Introduction

In this chapter, we seek to clear up some issues pertaining to model identifiability in the linear

mixed model (LMM), when the variance components are themselves the target(s) of inference. Our

particular focus is on sparse diallel designs. It is quite easy to fit such models with multiple variance

components, such that the model specified is actually unidentifiable. Further, in such cases, it is not

uncommon for existing statistical software to fail to return a reliable warning, which we demonstrate

in simulation. There is therefore a danger of performing inference on unidentifiable model parameters.

We develop a simple check for mixed model identifiability that is both easy to use, and generally

applicable.

2.2 Background

Our study design (refer again to Figure 1.1) can be recast as a type of sparse diallel. This is

helpful in order to reconcile our work with existing literature. The salient feature our design is the

large one-way loop (OWL) comprised of the parental strains labeled 1 through L, where L = 35 in

our study. We focus on this portion of the data because it is nearly identical to a well-known partial

diallel known as the single round robin (SSR). The diallel has had a long and complicated history in

genetics, beginning nearly a century ago (Schmidt, 1919). Contributions have come from sub-fields

of applied genetics, where the experimental designs and associated analysis methods have differed

based on the science relevant to the specific subfield. Although all such models can be described

in a general framework, it was several decades until this was attempted by Hayman and Griffing

(Hayman, 1954b,a, 1958, 1960; Griffing, 1956a,b). They defined a diallel cross as one in which a set

of p inbred lines are chosen and crosses (though not necessarily all crosses) are made among these
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Figure 2.11: Half diallel with no selfs

lines (Griffing, 1956a,b). The structure of the data can be easily visualized in a p× p table. The p2

possible combinations can be divided into three separate groups:

1. The p inbred parental lines themselves, corresponding to the main diagonal in the table.

2. One set of F1 hybrids, corresponding to, say, the upper right triangle of the table, denoting

offspring whose maternal parent is indexed by row label and paternal parent by column label.

3. The other set of F1 hybrids, corresponding to the lower left triangle of the table. These are

denoted reciprocal F1’s.

For example, Figure 2.11 below illustrates a half diallel: the p(p−1)
2 crosses corresponding to a single

group of F1’s (reciprocal and parental lines excluded). This is one of the classic types of diallels

detailed by Griffing, though any subset of the p2 possible crosses (e.g., the OWL) is a partial diallel.
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A difficult aspect of diallel data is that while diallels are conceptualized in terms of individual

parental effects, these effects always come in pairs. Li and Locken term this type of data “dyadic”

and nicely synthesize work from different fields, as dyadic data occurs in areas outside of genetics,

including, for example, psychology (Li and Loken, 2002). This was presicely the feature of the data

that Clatworthy stressed in the 1950’s by framing the diallel as a partially balanced incomplete block

design (Clatworthy, 1955), although we retain the pithy term “dyadic”.

The purpose of a diallel experiment is twofold. First, the design can be used to study the

heritability of traits of interest (that is, to estimate the genetic components of phenotype variation

among the crosses). It can also be used to estimate the actual breeding values of the parental lines

included (Kempthorne and Curnow, 1961). Although Schmidt published the first diallel in 1919

(Schmidt, 1919), it can be argued that Sprague and Tatum (Sprague and Tatum, 1942) pioneered the

theory of the diallel when they coined the following terms:

1. General combining ability (GCA): the average performance of a line in hybrid combination.

2. Specific combining ability (SCA): designates cases in which certain combinations do better or

worse than would be expected based on the average performance of the lines involved.

In statistical parlance, the GCA effects correspond to the main effects of parental lines, and the SCA

effects to interaction terms. We note that Sprague and Tatum’s study design corresponds to the half

diallel shown in 2.11. The full model for this design type is:

Y(i,j),k = µ+ gi + gj + s(i,j) + ε(i,j),k (2.26)

where gi refers to the average performance of line i (GCA), s(i,j) refers to the deviation from the

expected additive contributions of lines i and j when they are used in combination (SCA), ε(i,j),k

is an error term specific to the kth offspring of parents (i, j) and Y(i,j),k is this subject’s phenotype.

We use the parentheses in the above notation to stress the dyadic nature of the data. For designs that

include reciprocal crosses, these effects can be further dissected. The full model becomes:

Y(i,j),k = µ+ gi + gj + s(i,j) + di − dj + r(i,j) + ε(i,j),k (2.27)
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Here, the GCA has been dissected into two pieces: gi now corresponds to the average GCA associated

with strain i, and di to a symmetric deviation from this average associated with having a parent of

strain i - these are sometimes called parent-of-origin (PoO) effects. Similarly, SCA is dissected into

two pieces, where s(i,j) corresponds to the average SCA associated with pair (i, j) and r(i,j) to a

symmetric deviation that accounts for the direction of the cross. Note that in this formulation g· and

s·,· are referred to as GCA and SCA, respectively, while d· and r·,· are referred to as reciprocal GCA

(rGCA) and reciprocal SCA (rSCA), respectively. Although most diallel literature focuses on the

classical models described above, there is also a rich literature on partial diallel designs (Kempthorne

and Curnow, 1961; Greenberg et al., 2010; Viana et al., 1999; Singh and Hinkelmann, 1995, 1998,

1990; Mukerjee, 1997; Hinkelmann and Kempthorne, 1963; Gupta et al., 1995; Ghosh and Divecha,

1997; Fyfe and Gilbert, 1963; Das et al., 1998; Arya, 1983; Verhoeven et al., 2006; Clatworthy,

1955). It remains unclear which parental effects should be included when partial diallel designs are

employed; no systematic work has been done in this area.

2.3 Model Identifiability

The parental effects in a partial diallel can be assumed to be either fixed or random. In either

case, there are interesting and subtle identifiability issues to be discussed. An important, though

in practice often ignored, facet of statistical modeling is an intitial check for model identifiability.

It is of course not necessary for a model to be identifiable, only that inference be performed on

identifiable parameters. However, it is good practice because we show below that it is possible to fit

non-identifiable models and receive no warning from existing statistical software.

2.3.1 Fixed Effects Model Identifiability

Here, we illustrate an identifiability issue with the OWL design when a fixed effects model is

employed. We consider the situation where only GCA effects are of interest and the number of RI

lines is relatively small. That is, our model takes the following form:

Y = Gb+ ε (2.28)
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where Y is an n× 1 vector of observed phenotypes and ε is an n× 1 vector of random errors such

that ε ∼ N(0, σ2
ε In×n). Assuming a total of p parental strains, b = (b1, · · · , bp)T is a p× 1 vector

of fixed parental strain effects, and G is named as such because it corresponds to the GCA design

matrix.

In certain cases, the loop design undertaken solves an identifiability problem that exists in

“unconnected” designs, like the “chain” design illustrated in Figure 2.12 below. We illustrate

this identifiability problem using a simple example with four parental strains. Again, each node

corresponds to a parental inbred line, and each edge to a cross of the connected strains, where the

arrow indicates the direction of the cross. There is an identifiability issue with this design, which

might not be immediately obvious, though it stems from the fact that the parents come in pairs, with

each row of the parental design matrix having two non-zero elements. Mathematically, the parental

design matrix (we present the essence matrix in Figure 2.13) is singular.

Figure 2.12: Chain design with four parents

Figure 2.13: Design matrix associated with four-parent chain

Note that the sum of the odd columns (A and C) equals the sum of the even columns (B and D).

Since a major goal is often to rank the additive contribution of each parental strain to a phenotype
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under study, this design is unhelpful. “Closing” the chain to create a loop solves this problem in

a perhaps somewhat subtle way. For loops constructed from an even number of parental strains,

the identifiability problem persists, but perhaps surprisingly, this problem is solved when the loop

contains an odd number of parents. A general design matrix for the OWL design is shown below:

G =



1 2 3 ... p

Jn×1 Jn×1 0 . . . 0

0 Jn×1 Jn×1 . . . 0

...
...

...
. . .

...

0 0 0 Jn×1 Jn×1

Jn×1 0 0 . . . Jn×1


For loops constructed from an even number of parental strains, this design matrix is singular.

Note that the sum of the odd columns (associated with parents 1,3, etc.) equals the sum of the even

columns (associated with parents 2, 4, etc.). Perhaps surprisingly, this problem is resolved only when

the loop contains an odd number of parents. This is a direct consequence of the dyadic nature of the

data. The first cross provides an estimate of the sum of two parental effects (say b1 + b2). In order to

isolate b1, we must also generate an estimate of (b1 − b2). We do this by first subtracting the adjacent

effect (b2 + b3) from the original effect (b1 + b2), yielding (b1 − b3). To eliminate b3, we proceed to

the next cross, this time adding its effect (b3 + b4). Propagating around the loop in this way, in order

for our final estimate to be of (b1 − b2), as needed, the last operation must be subtraction. Thus, the

integers 2 through p can be paired, and p must therefore be odd. When the loop is comprised of an

even number of strains, such separation is not possible, but in Appendix A we formally derive what

is estimable in such designs. Specifically, we prove the following claims:

Claim 1: For a loop design with an even number of parental strains (q), we can estimate bj+bj+j′

∀j and for odd j′ where j, j′ ∈ 1, ..., q.

Claim 2: For a loop design with an even number of parental strains (q), we can estimate bj−bj+j′

∀j and for even j′ where j, j′ ∈ 1, ..., q.

Further, we derive what is estimable in a loop that incorporates reciprocal crosses (i.e., crosses are

generated in both directions) when we assume the existence of only GCA and rGCA effects. In
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Appendix B, we develop interesting designs that allow for the estimation of the same effects as in the

reciprocal loop designs, but without incorporating any actual reciprocal crosses.

Similar conclusions to some of the above have been reached in existing studies of partial diallels

(Gilbert, 1958; Fyfe and Gilbert, 1963; Kempthorne and Curnow, 1961), though in somewhat different

contexts.

2.3.2 Mixed Model Identifiability

Although fixed effects models can be theoretically sound, they can be of limited use in practice

for analyzing sparse diallels. For a given number of mice, it is often of interest to generate as many

crosses as possible - that is, to include more parental strains, with fewer numbers of mice per strain.

The number of parameters in the model therefore increases with the sample size, yielding inconsistent

maximum likelihood estimates (also known as “Neyman Scott” problems). Another problem is the

fact that mouse studies often suffer from missing data, for which the mixed model is better suited.

We present the following theorem to establish identifiability for linear mixed models, similar to one

presented in (Demidenko, 2013):

Theorem 1: Consider the following model

Y = Xβ +

K∑
k=1

Zkbk + ε (2.29)

where the bk’s are random effects associated with various types of genetic effects, and theZk’s are the

associated random design matrices. Further, bk ∼ N(0, σ2
kIpk) for k = (1, . . .K) independently of

each other and also independently of ε ∼ N(0, σ2
ε In), where In and Ipk refer to identity matrices of

dimension n and pk, respectively, where pk is the number of columns of Zk. We denote σ∗k
2 and σ2

k to

be unique values of the parameter. The model is identifiable if and only if the following n2 equations:

(σ∗ε
2 − σε2)In + (σ∗1

2 − σ1
2)Z1Z

′
1 . . .+ (σ∗K

2 − σK2)ZKZ
′
K = 0 (2.30)
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imply σ∗ε
2−σε2 = σ∗1

2−σ1
2 = . . . = σ∗K

2−σK2 = 0. Defining A as [vec(In), vec(Z1Z
′
1), . . . , vec(ZKZ

′
K)]

we can write the n2 equations above as: A



σ∗ε
2 − σε2

σ∗1
2 − σ1

2

...

σ∗K
2 − σK2


= 0. Thus, we need only show that the

n2 × (K + 1) matrix A be full rank for the model to be identifiable.

Others have noted the subtleties around model identifiability in mixed models and the need

for formal checks of identifiability. Wang (Wang et al., 2013) presents a necessary and sufficient

condition to establish non-identifiability, which is developed in the context of particular common

covariance structures for the random effects and residual errors. While our identifiability condition

pertains to a more narrow class of mixed models, it enjoys the advantage of relative simplicity and

universal applicability to all such models. Specifically, our work applies to models with simple

independent variance components, but with arbitrarily complex associated random design matrices.

Note that, through careful re-paramaterization, this framework can accomodate a very broad range of

models.

2.4 One Way Loop / Single Round Robin

We consider now our OWL design, which is nearly identical to the SRR design that has been

used in the literature. For our purposes, the theory is identical. Both designs are illustrated in Figure

2.14 below, with the grey cells common to both designs; the SRR and OWL additionally include the

black and shaded cells, respectively.

It has been claimed (Verhoeven et al., 2006) that for the SSR, model (2.26) cannot be fit as the

GCA and SCA are not estimable. This is, however, only true in the fixed effects setting (the same

logic applies to the OWL). We present the design matrices for the OWL design below. In deference to

tradition, we label the GCA and SCA random design matrices G and S, respectively. We adopt the

notation G(r) and S(r) to refer to the reciprocal GCA and SCA effects, respectively. For a balanced

OWL design with p parental strains and n observations per cross:
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Figure 2.14: SRR/OWL design
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G =



1 2 3 ... p

Jn×1 Jn×1 0 . . . 0

0 Jn×1 Jn×1 . . . 0

...
...

...
. . .

...

0 0 0 Jn×1 Jn×1

Jn×1 0 0 0 Jn×1



G(r) =



1 2 3 ... p

Jn×1 −1 ∗ Jn×1 0 . . . 0

0 Jn×1 −1 ∗ Jn×1 . . . 0

...
...

...
. . .

...

0 0 0 Jn×1 −1 ∗ Jn×1

−1 ∗ Jn×1 0 0 0 Jn×1


Note the reciprocal GCA matrix is created from the GCA matrix, changing the sign of each entry

associated with a maternal parent to negative one. The SCA design matrix is S = Ip ⊗ Jn×1 where

⊗ denotes the Kronecker product. The design matrix associated with the error term is Inp. By using

G, S, and Inp as Z1, Z2, and Z3 in the identifiability condition above, it is easily shown that A is

full rank and thus the model is identifiable. Some straightforward but tedious calculations yield:

A =


6n2p 2n2p 2np

2n2p n2p np

2np np np


which is clearly full rank. If, however, we add reciprocal GCA effects to the fitted model, such

calculations yield:

A =



6n2p 2n2p 2n2p 2np

2n2p 6n2p 2n2p 2np

2n2p 2n2p n2p np

2np 2np np np
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which is of rank 3. For example, four times the third column equals the sum of the first two columns,

and thus the model is no longer identifiable.

2.5 Simulation Study

Our preferred software for fitting mixed models to dyadic data is SAS, as PROC MIXED allows

for easy specification of random design matrices with multiple nonzero elements per row (we have

included sample code in the Appendix C. We note that this is not easily accomplished in the common

mixed model software packages in R, as the piping syntax used to specify random effects precludes

multiple nonzero elements per row. Of possible interest, one could take advantage of a link between

ridge regression and random effects to effectively “trick” R into fitting a random effects model with

(a single) arbitrarily complicated random design matrix. This link is detailed in Appendix D.

Statistically, there is no problem with fitting an unidentifiable model. A potential pitfall, however,

arises when the researcher makes inference from such a model. If the researcher has not checked

model identifiability prior to model fitting, there is no guarantee that the software will produce output

that indicates the unidentifiability. Wang (Wang et al., 2013) documented this phenomenon, noting

that “software may or may not indicate a problem with model identifiability”. In his simulation study,

he checks for warnings of non-identifiability through non-convergence of the model as well as zero

or extremely large standard errors for the variance components. We add to this research with our

own experience with the OWL sparse diallel design.

We simulated data from the OWL design with GCA and SCA effects (an identifiable model)

under four scenarios:

1. σ2
G = σ2

S = σ2
ε = 1

2. σ2
G = σ2

S = 1, σ2
ε = 2

3. σ2
G = 0.5, σ2

S = 1, σ2
ε = 2

4. σ2
G = 1, σ2

S = 0.5, σ2
ε = 2

For each scenario, we simulated 10,000 datasets, and fit a non-identifiable model with GCA,

rGCA, and SCA effects. Rather than investigate the standard errors for the variance components,
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Figure 2.15: Proportion of simulations wherein variance components are estimated at zero

we note that PROC MIXED generates two notes in the log which provide evidence of model

unidentifiability. Whenever all variance components are estimated in the interior of the parameter

space (that is, none are estimated at zero), SAS returns a note in the log indicating the final Hessian

is not positive definite. In our simulations, (σ2
G, σ

2
rG, σ

2
S) ∈ R3

+ 20.5, 33.4, 34.6, and 50.4 percent

of the time in scenarios 1-4, respectively. The distributions of the zero estimates are illustrated in

Figure 2.15.

When at least one variance parameter is estimated at zero, SAS simply returns a note that the

estimated covariance matrix for the random effects (G in SAS parlance - not to be confused with

our G above) is not positive definite. This is a potentially misleading note, as it does not distinguish

between an unidentifiable model and an identifiable model for which the data support one or more of
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the variance components truly being zero. A potential pitfall is to proceed by simply eliminating the

particular variance component(s) that happened to be estimated at zero in the unidentifiable model.

2.6 Discussion

In this chapter, we have cleared up some important and often overlooked issues concerning

model identifiability which were called to our attention through our experience with data from a

sparse diallel design. Through our simulations we showed that model non-identifiability may not

be obviously revealed based on model results alone. When one or more variance components are

estimated on the boundary, the note that SAS returns can falsely convince the researcher to simply

drop the zero terms from the model in order to yield a positive definite random effect covariance

matrix. This demonstrates the need to check model identifiability prior to model fitting in the setting

of linear mixed models with multiple variance components. We have provided a simple model

check that can be used for this purpose. Although our application was in complex mouse studies,

in particular sparse diallels, the identifiability condition we established applies to all mixed models

with multiple variance components.

37



CHAPTER 3: VARIANCE COMPONENT TESTING IN SPARSE DIALLEL DESIGNS

3.1 Introduction

In Chapter 2, we developed an identifiability condition to be used in study designs with complex

correlation structures, and demonstrated the importance of checking for model identifiability and the

pitfalls associated with not doing so. Having established identifiability, an important next step might

be to test the significance of one or more of the variance components in the model. In this chapter,

we demonstrate that the standard tools are not designed for hypothesis testing in our complicated

setting. As a remedy, we extend an existing score statistic and demonstrate its value.

3.2 Model Parametrization

Ideally, a well-designed study relates a scientific question of interest to a parameter in a statistical

model; this allows for a cohesive hypothesis testing framework. In some cases, accessible statistical

tools do not permit researchers to construct such models. In these scenarios, ad hoc or purely

descriptive approaches are often taken to reconcile estimates produced by a model with the original

scientific goal. Consider, for example, the parametrization employed in a recent study of the effect of

perinatal nutrition on behavioral phenotypes in adult CC RIX mice (Shorter et al., 2018). A salient

result of this study was that perinatal nutrition acts on these phenotypes in a parent-of-origin (PoO)

dependent manner. To study this phenomenon, twenty unique RI strains were paired and crosses

in both directions within these pairings were created (see Table 3.1). That is, each strain was used

both maternally (as dam) and paternally (as sire). Dams were exposed to various diets and the RIX
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offspring of these crosses were phenotyped. The following mixed model was fit to the data:

Yijk = β0 + βj ∗ I{Dam=j} + b1j + b2k + εijk (3.31)

b1j ∼ N(0, σ2
1) (3.32)

b2k ∼ N(0, σ2
2) (3.33)

εijk ∼ N(0, σ2
ε ) (3.34)

where Yijk is the phenotype of the ith mouse of dam of CC strain j and sire of strain k. The random

effects b1j and b2k correspond to the dam and sire effects, respectively, which are typically assumed to

be independent, and also independent of the error term, εijk. In this parametrization, βj corresponds

to a reciprocal effect. That is, a RIX offspring of dam j and sire k receives the additive “dose”

b1j + b2k, while a RIX from dam k and sire j receives, in addition to this, a dose βj to account for

the fact that the direction of the cross has been reversed. Note that in this parametrization, the ten

reciprocal effects to be estimated are fixed terms, in contrast with the background parental effects,

which are modeled as random. Although there are some technical advantages to such specification

(described below), there are several reasons it might be undesirable. We present the study design

described above in table form below, noting that one pairing was dropped from the study because it

yielded no viable offspring.

It should be obvious that, as we want to estimate strain and reciprocal effects for all pairings,

an identifiability issue exists if we were to employ a purely fixed-effects model. That is, we want

to estimate three model terms per pairing, but have only two crosses from which to estimate them.

Modeling the parental strains as random solves this identifiability problem; the levels of the parental

effects would no longer be model parameters. Rather, the variances of these levels would be model

parameters (one parameter per random term). This study also illustrates another important issue that

the random effects approach resolves known as “Neyman Scott problems”. Suppose momentarily

that we were not interested in the reciprocal effects and there were therefore no identifiability issue.

Because many strains contribute low/moderate sample sizes, a fixed-effects approach would not yield

consistent strain estimates. Modeling these effects as random solves this problem, shrinking their

estimates toward the strain grand mean. Further, if we were convinced of the desirability of shrinking
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Table 3.1: Study design from Schoenrock et al.

RIX
Mice Phenotyped (n)

Diet 1 Diet 2 Diet 3 Diet 4
CC001xCC011 19 13 11 20
CC011xCC001 12 14 17 11
CC041xCC051 12 24 11 20
CC051xCC041 13 12 16 14
CC004xCC017 12 6 12 14
CC017xCC004 9 2 15 13
CC023xCC047 10 9 4 8
CC047xCC023 6 4 3 6
CC006xCC026 6 5 10 9
CC026xCC006 6 5 11 14
CC003xCC014 4 3 13 9
CC014xCC003 1 4 8 6
CC035xCC062 1 2 5 5
CC062xCC035 4 7 4 6
CC032xCC042 7 19 21 19
CC042xCC032 6 9 9 6
CC005xCC040 14 24 – –
CC040xCC005 16 15 – –

the strain effects, we might analagously wish to shrink the reciprocal effects in a model that incorates

them.

Perhaps even more importantly, the random design relates the scientific question of interest

(Does this study provide evidence of reciprocal effects?) to an actual model parameter - that is, a

variance component. Modeling the reciprocal terms as fixed, we are constrained to asking whether or

not a PoO effect exists for a particular cross. We would then have to rely on some ad hoc approaches

like concluding reciprocal effects exist when they are observed in multiple crosses, for example.

Note that, given the modest sample sizes employed in such studies, estimates would be subject

to substantial type I error inflation, which would need to be addressed through some corrective

approach.

3.3 Problems Associated with Connectivity

The aforementioned connectivity causes several problems, both technical and theoretical. Two

related problems simply involve the ability to input the relevant random design matrices into common

statistical software. Most software designed for diallel anlaysis can only accomodate a limited
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number of parental strains and is not sufficiently general to incorporate the arbitrary sparse diallel

designs that arise in studies of RIX mice (see, for example, the arbitrary satellite tails and connections

in Figure 1.1). One simple workaround is to abandon specialized software and simply employ general

mixed model software. However, much existing software is not flexible enough to accomodate the

idiosyncratic structure in the parametrization above, which requires multiple nonzero elements per

row of each design matrix. For example, the piping syntax employed for the specification of mixed

models in R presupposes that the column labels for each random design matrix can be specified in a

single column. To our knowledge, the only out-of-the-box software permitting this level of flexibility

are SAS’s PROC MIXED (for LMM) and PROC GLIMMIX and NLMIXED (for GLMM). Sample

code to fit models employing our specification above in PROC GLIMMIX is included Appendix C.

Another major problem caused by connectivity is computational. Typically, estimation of fixed

effects proceeds by integrating the random effects out of the likelihood, as follows:

∫
b

n∏
i=1

p(y|b)p(b) (3.35)

where p(·) denotes a distribution function. Note that the dimension of the integration is the dimension

of b. For computational advantage, it is often desirable to exchange the order of multiplication and

integration, and write the integrated likelihood as follows:

n∏
i=1

∫
bi

p(yi|bi)p(bi) (3.36)

When such exchange is possible, a single high dimensional integration is replaced with n integrations

of much lower order. For example, in a classical longitudinal model including a subject-specific

random intercept and slope, each integral above would be two-dimensional. Note that 3.36 is actually

the standard starting point for most conceptualizations of the integrated likelihood for mixed models,

though this is not sufficiently general. In many settings, the likelihood cannot be broken up into n

independent units. In our setting (admittedly, an extreme scenario) the likelihood cannot be written

as a product at all. In fact, in designs that are completely connected, it is more accurate to say that

the entire data vector is a single (computational) subject.
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Writing the likelihood as a product provides great computational advantage in the GLMM. The

reason is that for non-normal response, the integrations do not exist in closed form, and require

approximation, typically via a quadrature rule. However, the computational cost of using quadrature

increases nonlinearly with the number of random effects integrated over. For data layouts like ours

that must be processed as in 3.35 above, the integration quickly becomes intractable.

The major appeal of integration via quadrature is the fact that, by increasing the number of

quadrature points, the integral approximation can be made arbitrarily precise. But, as intimated

above, these approximations really only obtain for models with at most a few random effects (i.e.,

longitudinal models). Instead, the model can be fit by penalized-quasi likelihood (PQL). Briefly,

PQL is a doubly-iterative process which, rather than approximate the above integral, approximates

the model by transforming the response vector at each outer iteration, and then fitting a LMM to

the transformed data (itself an iterative process). Recall that our interest is in testing variance

components. This is a notoriously difficult hypothesis testing problem because these variance

components are boundary parameters - that is, under the null hypothesis, they lie on the boundary of

the parameter space. The likelihood ratio test (LRT) is by far the most common tool for hypothesis

testing in this setting, which Self and Liang, termed “non-standard”. In a frequently cited paper, they

derived the asymptotic distribution of the LRT in certain special cases involving boundary parameters

(Self and Liang, 1987). For example, for a model with a single random effect, the asymptotic null

distribution of the LRT for testing the significance of the associated variance component is known to

be a 50:50 mixture of χ2
1 and χ2

0 (a point mass on zero) random variables. Crainiceanu and Ruppert

(Crainiceanu and Ruppert, 2004) point out that this distribution, while commonly used in practice,

is highly dependent upon certain subtle assumptions, and that even when the assumptions are met,

the distribution can still perform poorly. One such assumption is that the response vector can be

partitioned into independent units under both the null and alternative hypotheses - an assumption

that is typically not met in studies involved RIX mice. The situation is further complicated by

the fact that PQL does not actually approximate the liklihood. It rather approximates the GLMM

itself with a LMM at each outer iteration using a set of transformed residuals. Still, the hypothesis

testing framework that is standard in statistical software for testing the significance of these variance

components is to base inference on an LRT treating the data at final iteration as being normally

distributed, and using that transformed data to fit the reduced model.
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We present a cohesive strategy based on a score statistic developed by Lin (Lin, 1997) that

applies to hypothesis testing for models fit by PQL (and therefore applies to both LMM and GLMM),

where the hypotheses to be tested involve variance parameters. Of note, our approach applies to

scenarios where one wishes to test multiple parameters simultaneously, and when nuisance variance

parameters are present.

3.4 Score Test

We frame our model as:

g{E[Y |b]} = Xβ +

K∑
k=1

Zkbk (3.37)

where g{·} is a link function that links the expected value of the response (conditional on the random

effects) to the linear predictor. Having specified our model thusly, we build on the work of Lin (Lin,

1997) to develop a framework for testing one or more variance components, possibly in the presence

of one or more nuisance variance components, for models fit by PQL. We note that, having specified

our model, an important (though sometimes neglected) step is to check for model identifiability. In

Chapter 2 above, we have provided a simple means of checking for model identifiability in the LMM,

but note that this process is more challenging for the GLMM due to the dependence of the variance

on the mean. Although Lin’s main result is a “global” score test (that is, a simultaneous test of all

variance parameters in a model), she also presents a statistic for testing the jth random effect, while

treating the other random effects as nuisance. The statistic is as follows:

Uσ2
j

=
1

2
[(Y ∗ −Xβ)TV −1

−j ZjZ
T
j V
−1
−j (Y ∗ −Xβ)− tr(ZTj V −1

−j Zj)] (3.38)

where Y ∗ is the pseudo-data at final iteration, and V−j is the variance of the linear predictor with the

jth term removed:

Vj = (W b−j )−1 +
∑
k 6=j

σ2
kZkZ

T
k (3.39)

where W is a diagonal matrix with elements:

wi = [V (µi){g′(µi)}2]−1 (3.40)
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Figure 3.16: Run time for mixed models with increasing number of variance components

and W b−j corresponds to W having been computed with the jth random effect removed. The

efficient information for the jth random effect, denoted Ĩjj , is:

Ĩjj = E[{Uθj (α̂, θ̂−j)}
2] (3.41)

which can then be approximated with Ĩ ∗jj , where:

Ĩ ∗jj = I ∗θjθj − (I ∗θ−jθj )
T (I ∗θ−jθ−j )

−1I ∗θ−jθj (3.42)

where we define:

I ∗θkθk′ =
1

2
tr(ZTk′V

−1
j ZkZ

T
k V
−1
j Zk′). (3.43)

A very attractive feature of this score test is how well it dovetails with SAS’s PROC GLIMMIX, as

most of the elements required to compute it are readily exported by the procedure (with the exception

of the data vector at final iteration). Another attractive feature is its scalability. That is, as it is readily

seen that the computational burden of fitting a GLMM increases nonlinearly with the number of

random effects (see Figure 3.16), the benefit of not having to fit the model under the alternative can

be large, especially when a testing procedure is applied on the genome-wide scale.
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Lin proves that, under the following regularity conditions, the (normalized) score statistic follows a

N(0, 1) distribution:

1. Condition 1: Each of the design matrices Zj has only zeros and ones, with exactly one 1 in

each row and at least one 1 in each column.

2. Condition 2: As n, qj →∞ (j = 1, . . . ,m), the number of observations at any level of any

random factor is bounded by a constant E for all n. It follows that qj = O(n) (j = 1, . . . ,m).

3. Condition 3: The log-quasilikelihood of α has the usual asymptotic properties, including

consistency of α̂0 and the linear expansion (White, 1982)

n
1
2 (α̂0 − α0) = 1 (3.44)

4. Condition 4: There exists a positive definite matrix I0, which has a partition (see Lin Appendix

2), such that:

lim
n,qj→∞

n−1I = I0 (3.45)

Note that this assumption is reasonable if Conditions 1 and 2 hold.

5. Condition 5: The sequences {wiδ−1
i (yi − µi)}, {xi}, {woi} are uniformly bounded for all

i, . . . , n.

6. Condition 6: For any given m× 1 constant vector λ2, let

Ωλ2 =

m∑
j=1

1

2
λ2j∆

−1WZjZ
T
j W∆−1 (3.46)

Then y∗λ2 = Ωλ2(y− µ) = (y∗λ2,1 , . . . , y
∗
λ2,n

) forms an M -dependent sequence for some constant M .

We note that (6) constitutes the key condition; it essentially says that the matrix Ωλ2 is sufficiently

sparse, which is what is then used to establish the asymptotic normality of the statistic. This

assumption is more or less reasonable given conditions (1) and (2). However, these assumptions are

clearly not met in our model. In fact, the untenability of condition (1) was precisely our original

motivation. That is, our random effect design matrices have two nonzero elements per row, which

are 1 or -1. Further, condition 6 is not met, because the loop design, for example, is clearly not
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M-dependent. In adapting her proof, the only change required is that the diagonal elements of each

ZjZ
′
j are no longer 1, they are 2, and so the 1

2 in Ωλ2j above can be removed. Similarly, where the

following appears:

Γλ2,i =
1

2
(

m∑
j=1

λ2j)woi (3.47)

the 1
2 can be removed. Lastly, Lin argues that, properly normalized:

λTU =
n∑
i=1

Uλ,i =
n∑
i=1

{λT1 Uα,i + (yi − µi)y∗λ2,i − Γλ2,i} (3.48)

is asymptotically normal since {Uλ,i} is an M-dependent sequence. Although this is not the case

for our data, we can heuristically argue that we have approximate M-dependence so long as the

connections in the design are few relative to the overall size of the loop, and thus her “Proposition 1”

can be extended (Lin, 1997).

3.5 Employing the Quadratic Form Portion of the Score Statistic

Rather than formalizing the heuristic logic above, we instead pursue an approach taken by others

- for example, by Wu et al in his Sequence Kernel Association Test (SKAT) (Wu et al., 2011) - where

we employ only the first portion of the statistic above (i.e., the quadratic form). That is, we take as

our statistic:

Q = (Y ∗ −Xβ̂)′V̂ −1
−j ZjZ

′
j V̂
−1
−j (Y ∗ −Xβ̂) (3.49)

In contrast with SKAT, Y ∗ is the pseudo-data at final (outer) iteration (or the actual data if a LMM

is fit, in which case there is only a single “outer” iteration). For convenience, we omit this asterisk

in what follows. That is, in contrast to above, Y actually refers to the pseudo-data in what follows.

Plugging in the weighted least squares estimate for β:

Q = {Y −X(X ′V̂ −1X)−1X ′V̂ −1Y }′V̂ −1ZjZ
′
j V̂
−1{Y −X(X ′V̂ −1X)−1X ′V̂ −1Y }

= Y ′{I −X(X ′V̂ −1X)−1X ′V̂ −1}′V̂ −1ZjZ
′
j V̂
−1{I −X(X ′V̂ −1X)−1X ′V̂ −1}Y

= Y ′{V̂ −1 −X(X ′V̂ −1X)−1X ′V̂ −1}′ZjZ ′j{V̂ −1 −X(X ′V̂ −1X)−1X ′V̂ −1}Y

= Y ′P ′KPY
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for appropriately defined K and P . To derive the distribution,we start by deriving the distribution of

Y −Xβ̂. It is normal with expectation zero and variance derived as follows:

ˆV ar(Y −Xβ̂) = {I −X(X ′V̂ −1X)−1X ′V̂ −1}V̂ {I −X(X ′V̂ −1X)−1X ′V̂ −1}′

= {I −X(X ′V̂ −1X)−1X ′V̂ −1}V̂ {I − V̂ −1X(X ′V̂ −1X)−1X ′}

= {V̂ −X(X ′V̂ −1X)−1X ′}{I − V̂ −1X(X ′V̂ −1X)−1X ′}

= V −X(X ′V̂ −1X)−1X ′

= P

We therefore can rewrite the statistic as:

Q = (Y −Xβ̂)′P−0.5P 0.5V̂ −1ZjZ
′
j V̂
−1P 0.5P−0.5(Y −Xβ̂) (3.50)

= Ỹ ′P 0.5V̂ −1ZjZ
′
j V̂
−1P 0.5Ỹ (3.51)

where Ỹ ∼ N(0, I). Thus, we have expressed the statistic as a quadratic form of a multivariate

normal random variable with identity covariance matrix. The distribution can therefore be shown to

be a mixture of χ2
1 distributions, weighted by the eigenvalues of the interior term. For simplicity, we

note that:

λ(P 0.5V̂ −1ZjZ
′
j V̂
−1P 0.5) = λ(Z ′j V̂

−1P 0.5P 0.5V̂ −1Zj)

= λ(Z ′j V̂
−1PV̂ −1Zj)

where λ(·) denotes the spectral decomposition; we therefore need only compute the eigenvalues

of Z ′jPZj . This distribution can be computed analytically, using the results of Davies (Davies,

1980b,a).

3.6 Testing Multiple Variance Components Using Quadratic Forms

In what follows, we will refer to models that include up to five variance components: a batch

effect, a parental strain effect, a parental strain-by-treatment interaction effect, a sex-by-strain effect,
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and a sex-by-strain-by-treatment interaction effect. The associated random design matrices are

constructed as follows:

1. Each row of the random design matrix associated with the batch effect has a single nonzero

element, which is a one in the column corresponding to the batch to which the sample belongs.

2. Each row of the random design matrix associated with the parental strain effect has two

nonzero elements, which are ones in the columns corresponding to that sample’s parental

strains.

3. Each row of the random design matrix associated with the strain-by-treatment effect is con-

structed from the parental strain matrix by switching the ones to negative ones for mice that

are treated with placebo.

4. Each row of the random design matrix associated with the strain-by-sex effect is constructed

from the parental strain matrix by switching the ones to negative ones for female mice.

5. Each row of the random design matrix associated with the strain-by-sex-by-treatment effect is

constructed from the strain-by-sex matrix by switching the ones to negative ones for female

mice.

In such scenarios, we wish to test the significance of multiple variance components simultaneously.

Specifically, we might wish to test for treatment effects or sex effects, each of which would require

testing two terms at once. For example, a test of the treatment effect corresponds to the following

hypothesis:

H0 : σ2
strain∗tmt = σ2

strain∗sex∗tmt = 0

vs.

HA : as least one departure from null

As in 3.49 above, a test of each individual variance component is achieved with quadratic forms that

are identical except for the Z matrices. That is, if we let Zj correspond to the strain-by-treatment

random design matrix and Zj′ correspond to the strain-by-treatment-by-sex random design matrix,

we propose employing the following statistic:

Q = Qj +Qj′ = Ỹ ′P 0.5V̂ −1(ZjZ
′
j + Zj′Z

′
j′)V̂

−1P 0.5Ỹ (3.52)
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Since this itself is a quadratic form, we can compute the distribution analytically, as above, rejecting

for large Q.

3.7 Simulation Comparators

In the simulations that follow, we compare our analytic χ2 approach described above (referred to

as χ2
mix) with the simple LRT approach, which is the default in SAS. Here, an LRT is performed using

the data at final PQL iteration, which is treated as Gaussian. In addition, for completeness, we include

Lin’s actual asymptotic χ2 statistic, as well as a possible adjustment incorporating permutation. That

is, we use the simple permutation strategy laid out by Fitzmaurice et al (Fitzmaurice et al., 2007),

where instead of using the asymptotic distribution, we derive the reference distribution by repeatedly

permuting the column labels of the random design matrix/matrices of interest.

3.8 Results

3.8.1 Simulation Results

We test our method in a comprehensive simulation study, the aim of which was to investigate the

performance of the proposed method under a range of study designs, distributional assumptions, and

parameter configurations. To investigate the effect of study design, we restrict ourselves to different

partial diallel designs: the half diallel, the double round robin (DRR), and two versions of the single

round robin (SRR). In all cases, the total sample size was maintained more or less constant. We

used a half diallel (with no selfs) composed of six parents, yielding 15 filled cells; employing 12

mice per cell yields a sample size of 180. Our DRR was designed to nearly match the half diallel’s

sample size; with eight parents and 12 mice per cell, it has a sample size of 192. Our first SRR was

composed of 16 parental strains and 12 mice per cell (the sample size was maintained at 192). Lastly,

in our second version of the SRR, we increased the number of parental strains to 24, and to maintain

the sample size at 192 we decreased the number of mice per cell to eight.

Each of the results tables corresponds to a unique parameter configuration. Specifically, we vary

which parameters are being tested (the strain effect, strain-by-treatment interaction, sex-by-strain

effect, and sex-by-strain-by-treatment interaction). We explore testing a single parameter of interest

or two parameters simultaneousy. When testing two parameters simultaneously, we investigate
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scenarios where both parameters are in the interior (i.e., the alternative) of the parameter space, and

where only one parameter is the interior and the other is on the boundary (i.e., it is set to the null

value of zero). We also explore the effect of varying the number of nuisance parameters in the null

model, and whether these parameters lie on the boundary or interior of the parameter space.

For each scenario (or, equivalently, correlation structure) we simulated data from binary, Poisson,

and Gaussian distributions. In each case, we compared the type I errors of the proposed procedures.

We also provided selected simulation results in order to compare the methods in terms of power. Note

that for these power simulations, the alternative parameter values for each distribution were picked

more or less arbitrarily in order to make a reasonable comparison within distributions. Comparing

power between distributions is, of course, essentially meaningless. In Table 3.2 below, we present

results for our simplest (and in some sense our most tractable) scenario - one in which we have a

single nuisance parameter that lies in the interior of its parameter space, and we are testing a single

parameter. We compare results based on the LRT statistic given by SAS to our analytic χ2 mixture

statistic. An important point to note (and one that remains relevant in all of what follows) is that the

p-values used to gauge significance were not actually computed by SAS. The reason for this is that

the null distribution of the LRT is dependent upon whether nuisance parameters are on the boundary

or interior of the parameter space. For certain configurations, the null distribution is tractable - see,

for example (Self and Liang, 1987) or (Shapiro, 1988). Of course, outside of simulation studies,

whether or not a nuisance parameter lies on the boundary is itself estimated. SAS computes the

reference distribution and associated p-value when it is mathematically available. However, when

the reference distribution is unavailable, SAS simply returns the statistic, without a corresponding

p-value. Of course, for our simulations that include no nuisance boundary parameters, we know the

appropriate reference distribution; for the situation in Table 3.2, it is a 50:50 mixture of χ2
0 (a point

mass on zero) and χ2
1 random variables. The p-values used to gauge significance were computed

accordingly.

As shown, the analytic mixture approach achieves type I error rates much closer to the nominal

0.05 level, and as a result a modest improvement in power. This advantage is consistent across study

designs and distributions, although the effect atrophies as the diallel becomes increasingly sparse.

As in Table 3.2, the simulations illustrated in Table 3.3 were conducted with a single (large) interior

nuisance variance parameter (a batch effect). Here, however, we jointly test the significance of two
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variance components simultaneously - the strain effect and the strain-by-treatment interaction. To

compute the power in this scenario, we set both tested variance components to interior values. As

shown, the results are similar to those in Table 3.2 where we test a single effect; the type I error

is much closer to the nominal rate in most scenarios. Here, however, the improvement in power is

even more pronounced. In Table 3.4, we explore scenarios where we test two parameters, one of

which is in the interior of the parameter space, and the other of which is truly on the boundary (null),

in the presence of a single interior nuisance parameter. In Table 3.5, we investigate the robustness

of our proposed approach when testing a single parameter of interest when there are two nuisance

parameters, one of which lies on the boundary and the other remains in the interior. Note that the

commonly used distributions for these two scenarios (a 50:50 mixture of χ2
0 and χ2

1 and a 25:50:25

mixture of χ2
0, χ2

1 and χ2
2) are technically incorrect. We include these simulations as a means of

investigating the consequences of this common error. As shown, the analytic mixture approach

seems more robust to this misspecification of the null reference distribution, as demonstrated by the

improvements in type I error rates and power. In the simulations in which we test two parameters

of interest, we note that while the analytic mixture approach maintains the corrective effect on the

type I error rates, it does not enjoy an analagous improvement in power. In fact, the analytic χ2

mixture approach does almost uniformly worse than the simple LRT. We explore a possible remedy

to this deficiency in analyses below, by incorporating a simple permutation strategy analagous to that

laid out by Fitzmaurice et al (Fitzmaurice et al., 2007). That is, we derive the reference distribution

by repeatedly permuting the column labels of the random design matrix/matrices of interest. For

completeness, we also include results using Lin’s asymptotic statistic as well (on which we based the

permutation). The results are shown below in Table 3.6.

3.8.2 Real Data Analysis

We present the results of our method when applied to real data from a recent study of RIX

mice collected by UNC’s Center for Integrated Systems Genomics (CISGen). The study design has

been discussed above. Although there are numerous satellite tails and connections, it most closely

resembles the SRR, in that the salient feature of the study is a large one-way loop (OWL), a design

which is nearly identical to the SRR. The study was intended to include 12 mice per cross, although
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Table 3.2: Simulation results for testing a single interior parameter in
the presence of a single interior nuisance parameter

Study Design Distribution
Type I Error Power

LRT χ2
mix LRT χ2

mix

HD*
Binary† 0.0278 0.0430 0.1265 0.1655
Poisson†† 0.0327 0.0489 0.1861 0.2344
Gaussian‡ 0.0339 0.0469 0.1355 0.1677

DRR**
Binary 0.0300 0.0443 0.1381 0.1720
Poisson 0.0342 0.0501 0.2110 0.2536
Gaussian 0.0362 0.0460 0.1522 0.1786

SRR1***
Binary 0.0313 0.0423 0.1264 0.1537
Poisson 0.0360 0.0489 0.2026 0.2410
Gaussian 0.0370 0.0436 0.1446 0.1610

SRR2****
Binary 0.0306 0.0404 0.1050 0.1251
Poisson 0.0395 0.0499 0.1804 0.2095
Gaussian 0.0398 0.0424 0.1275 0.1306

*Half Diallel with 6 parental strains, 12 mice per cross
**Double Round Robin with 8 parental strains, 12 mice per cross
***Single Round Robin with 16 parental strains, 12 mice per cross
****Single Round Robin with 24 parental strains, 8 mice per cross
†σ2
batch = 0.1, σ2

strain = 0.0(0.05)
† † σ2

batch = 0.1, σ2
strain = 0.0(0.005)

‡ σ2
batch = 0.1, σ2

strain = 0.0(0.01)

there were some deviations. One purpose of this study was to determine the genetic basis of adverse

reactions to haloperidol. This is a very important research question because these adverse reactions

are the main drivers of noncompliance with treatment, which is quite high with such antipsychotics.

Tremors, tongue movements, and vacuous chewing movements (VCM) are three such side effects.

As exemplified in Figure 3.8.2, the minority of mice experienced tremors and tongue movements, but

those that did were highly prone and experienced a large number. Because of these highly skewed

distributions, these two endpoints were dichotomized to model their presence/absence. VCM were

modeled with a negative binomial distribution. The results for the tongue movement endpoint are

illustrated in Table 3.7. The first four columns correspond to the fixed-effect estimates, and the next

five to the variance component estimates from the model. Each row represents a separate run of the

model, with the variance components indicated by dashes removed and tested. Variance components

marked as NA were excluded from a particular model run entirely (that is, they were not considered

part of the alternative model). The p-values from the analytic χ2 mixture distribution are shown

in the rightmost column. Treatment has a strong marginal effect; subjects treated with haloperidol

are much more likely to experience tongue movements. The second row illustrates that there are
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Table 3.3: Simulation results for testing two interior parameters in the
presence of a single interior nuisance parameter

Study Design Distribution
Type I Error Power

LRT χ2
mix LRT χ2

mix

HD*
Binary† 0.0278 0.0430 0.1265 0.1655
Poisson†† 0.0327 0.0489 0.1861 0.2344
Gaussian‡ 0.0339 0.0469 0.1355 0.1677

DRR**
Binary 0.0300 0.0443 0.1381 0.1720
Poisson 0.0342 0.0501 0.2110 0.2536
Gaussian 0.0362 0.0460 0.1522 0.1786

SRR1***
Binary 0.0313 0.0423 0.1264 0.1537
Poisson 0.0360 0.0489 0.2026 0.2410
Gaussian 0.0370 0.0436 0.1446 0.1610

SRR2****
Binary 0.0306 0.0404 0.1050 0.1251
Poisson 0.0395 0.0499 0.1804 0.2095
Gaussian 0.0398 0.0424 0.1275 0.1306

*Half Diallel with 6 parental strains, 12 mice per cross
**Double Round Robin with 8 parental strains, 12 mice per cross
***Single Round Robin with 16 parental strains, 12 mice per cross
****Single Round Robin with 24 parental strains, 8 mice per cross
†σ2
batch = 0.1, σ2

strain = 0.0(0.05), σ2
strain∗tmt = 0.0(0.05),

† † σ2
batch = 0.1, σ2

strain = 0.0(0.005), σ2
strain∗tmt = 0.0(0.005)

‡ σ2
batch = 0.1, σ2

strain = 0.0(0.01), σ2
strain∗tmt = 0.0(0.01)

strong additive strain effects, and the third row provides marginal evidence for a strain-by-treatment

interaction. The fourth row jointly tests the sex effects; there is no evidence for their existence. The

last row likewise jointly tests the treatment effects; there is marginal evidence that treatment affects

the strains differently.

Table 3.8 illustrates the results for the tremor endpoint. Here, there is evidence only for a strong

additive strain effect. Lastly, Table 3.9 illustrates the results for VCM; there is evidence of a strong

strain effect, and marginal evidence that treatment affects strains differently.
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Table 3.4: Simulation results for testing two parameters (one inte-
rior and one boundary) in the presence of a single interior nuisance
parameter

Study Design Distribution
Type I Error Power

LRT χ2
mix LRT χ2

mix

HD*
Binary† 0.0265 0.0453 0.1773 0.1532
Poisson†† 0.0327 0.0499 0.5550 0.4940
Gaussian‡ 0.0341 0.0405 0.2329 0.2051

DRR**
Binary 0.0242 0.0414 0.1903 0.1906
Poisson 0.0337 0.0521 0.6064 0.5564
Gaussian 0.0319 0.0442 0.1960 0.1592

SRR1***
Binary 0.0257 0.0375 0.1841 0.1879
Poisson 0.0355 0.0490 0.6364 0.6104
Gaussian 0.0376 0.0390 0.2108 0.1862

SRR2****
Binary 0.0271 0.0339 0.1427 0.1375
Poisson 0.0363 0.0497 0.6199 0.5870
Gaussian 0.0428 0.0366 0.1859 0.1432

*Half Diallel with 6 parental strains, 12 mice per cross
**Double Round Robin with 8 parental strains, 12 mice per cross
***Single Round Robin with 16 parental strains, 12 mice per cross
****Single Round Robin with 24 parental strains, 8 mice per cross
†σ2
batch = 0.1, σ2

strain = 0.0(0.1), σ2
strain∗tmt = 0.0(0.0)

† † σ2
batch = 0.1, σ2

strain = 0.0(0.01), σ2
strain∗tmt = 0.0(0.0)

‡ σ2
batch = 0.1, σ2

strain = 0.0(0.02), σ2
strain∗tmt = 0.0(0.0)

Figure 3.17: Number of tongue movements by RIX line
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Table 3.5: Simulation results for testing a single interior parameter in
the presence of an interior nuisance parameter and a boundary nuisance
parameter

Study Design Distribution
Type I Error Power

LRT χ2
mix LRT χ2

mix

HD*
Binary† 0.0278 0.0430 0.1265 0.1655
Poisson†† 0.0327 0.0489 0.1861 0.2344
Gaussian‡ 0.0339 0.0469 0.1355 0.1677

DRR**
Binary 0.0300 0.0443 0.1381 0.1720
Poisson 0.0342 0.0501 0.2110 0.2536
Gaussian 0.0362 0.0460 0.1522 0.1786

SRR1***
Binary 0.0313 0.0423 0.1264 0.1537
Poisson 0.0360 0.0489 0.2026 0.2410
Gaussian 0.0370 0.0436 0.1446 0.1610

SRR2****
Binary 0.0306 0.0404 0.1050 0.1251
Poisson 0.0395 0.0499 0.1804 0.2095
Gaussian 0.0398 0.0424 0.1275 0.1306

*Half Diallel with 6 parental strains, 12 mice per cross
**Double Round Robin with 8 parental strains, 12 mice per cross
***Single Round Robin with 16 parental strains, 12 mice per cross
****Single Round Robin with 24 parental strains, 8 mice per cross
†σ2
batch = 0.1, σ2

strain = 0.0(0.0), σ2
strain∗tmt = 0.0(0.1)

† † σ2
batch = 0.1, σ2

strain = 0.0(0.0), σ2
strain∗tmt = 0.0(0.01)

‡ σ2
batch = 0.1, σ2

strain = 0.0(0.0), σ2
strain∗tmt = 0.0(0.02)

Table 3.6: Simulation results for testing two parameters (one interior and one boundary) in the presence of
a single interior nuisance parameter, incorporating permutation

Design Dist.
Type I Error Power

LRT χ2
mix. χ2

asymp. χ2
perm. LRT χ2

mix. χ2
asymp. χ2

perm.

HD* Binary† 0.0255 0.0435 0.0348 0.0561 0.1776 0.1578 0.1087 0.1504
Poisson†† 0.0329 0.0499 0.0540 0.0564 0.2941 0.2582 0.2494 0.2339

DRR** Binary 0.0257 0.0397 0.0344 0.0524 0.1958 0.1977 0.1616 0.1991
Poisson 0.0339 0.0539 0.0528 0.0604 0.3327 0.3178 0.3031 0.2886

SRR1*** Binary 0.0263 0.0402 0.0361 0.0546 0.1841 0.1853 0.1790 0.2130
Poisson 0.0362 0.0506 0.0480 0.0559 0.3316 0.3345 0.3141 0.2966

SRR2**** Binary 0.0254 0.0335 0.0323 0.0531 0.1419 0.1386 0.1350 0.1678
Poisson 0.0369 0.0492 0.0470 0.0550 0.2940 0.3007 0.2652 0.2411

*Half Diallel with 6 parental strains, 12 mice per cross
**Double Round Robin with 8 parental strains, 12 mice per cross
***Single Round Robin with 16 parental strains, 12 mice per cross
****Single Round Robin with 24 parental strains, 8 mice per cross
†σ2
batch = 0.1, σ2

strain = 0.0(0.1), σ2
strain∗tmt = 0.0(0.0)

† † σ2
batch = 0.1, σ2

strain = 0.0(0.01), σ2
strain∗tmt = 0.0(0.0)

‡ σ2
batch = 0.1, σ2

strain = 0.0(0.02), σ2
strain∗tmt = 0.0(0.0)
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Table 3.7: Real data analysis of number of tongue movements

Fixed Effects Variance Components*
Intercept Tmt Sex Sex*tmt σ2

1 σ2
2 σ2

3 σ2
4 σ2

5 p-value
0.1416 -0.1997 0.1046 -0.0280 0.1345 0.4526 0.0309 NA NA NA
0.1365 -0.1741 0.0745 -0.0268 0.4202 – 0.0130 NA NA <0.0001
0.1425 -0.2049 0.1047 -0.0279 0.1333 0.4518 – – – 0.1277
0.1416 -0.1997 0.1046 -0.0280 0.1345 0.4526 0.0309 – – 0.4449
0.1425 -0.2049 0.1047 -0.0279 0.1333 0.4518 – 0.0000 – 0.0951

* σ2
1 = σ2

batch, σ2
2 = σ2

strain, σ2
3 = σ2

strain∗tmt, σ
2
4 = σ2

strain∗sex, σ2
5 = σ2

strain∗sex∗tmt

Table 3.8: Real data analysis of number of tremors

Fixed Effects Variance Components*
Intercept Tmt Sex Sex*tmt σ2

1 σ2
2 σ2

3 σ2
4 σ2

5 p-value
0.0391 -0.3734 -0.0447 -0.0433 0.0000 1.5101 0.0000 NA NA NA
0.0210 -0.2804 -0.0049 -0.0431 0.5445 – 0.0000 NA NA <0.0001
0.0391 -0.3734 -0.0447 -0.0433 0.0000 1.5101 – NA NA 0.9690
0.0391 -0.3734 -0.0447 -0.0433 0.0000 1.5101 0.0000 – – 0.4853
0.0391 -0.3734 -0.0447 -0.0433 0.0000 1.5101 – 0.0000 – 0.6957

* σ2
1 = σ2

batch, σ2
2 = σ2

strain, σ2
3 = σ2

strain∗tmt, σ
2
4 = σ2

strain∗sex, σ2
5 = σ2

strain∗sex∗tmt

Table 3.9: Real data analysis of number of vacuous chewing movements (VCM)

Fixed Effects Variance Components*
Intercept Tmt Sex Sex*tmt σ2

1 σ2
2 σ2

3 σ2
4 σ2

5 p-value
4.5790 0.1806 0.0959 -0.0143 0.0211 0.0504 0.0013 NA NA NA
4.5827 0.1805 0.1075 -0.0169 0.0597 0.0001 NA NA <0.0001
4.5805 0.1802 0.0958 -0.0144 0.0208 0.0499 – NA NA 0.1833
4.5790 0.1806 0.0960 -0.0143 0.0211 0.0504 0.0013 – – 0.2240
4.5805 0.1802 0.0958 -0.0144 0.0208 0.0499 – 0.0000 – 0.0910

* σ2
1 = σ2

batch, σ2
2 = σ2

strain, σ2
3 = σ2

strain∗tmt, σ
2
4 = σ2

strain∗sex, σ2
5 = σ2

strain∗sex∗tmt
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3.9 Software for Testing Variance Components

The ability to compute the distribution of a quadratic form of iid normal random variables

analytically can be attributed to Davies (Davies, 1980a), whose work has been implemented in the R

package CompQuadForm (Lafaye De Micheaux, 2013). This code is in fact the engine behind the

popular SKAT and was also used by Pirinen as the basis for variance component testing in his LMM

software MMM, which was coded in C (Pirinen et al., 2013). We have adapted Pirinen’s C code

(itself an adaptation of the source code from CompQuadForm) and combined it with original SAS

IML code to create our software for variance component testing in GLMM which can be used with

PROC GLIMMIX. The code will be freely available under the GNU public license and can easily be

adapted for use with any software capable of fitting GLMM by PQL.

3.10 Discussion

This chapter was motivated by the existence of study designs that arise in, for example, mouse

genetics that feature a certain type of connectivity of the random effects. At the extreme, the response

vector cannot be subdivided into any independent units, which causes myriad problems for model

fitting and hypothesis testing. For example, the piping syntax in R presupposes that, for any variance

component, the column headings can be written in a single column. For connected data, such

specification is not adequate to capture the required complex correlation structures, nor does it

allow for a comprehensive hypothesis testing framework in many scenarios of interest. Although

the required models can be specified in SAS, when the response variable is non-normal the same

connectivity precludes standard ML estimation routines due to the intractably high dimension of

the integration required to average over the random effects. This connectivity also creates problems

for hypothesis testing of variance components, for which the standard theory relies on the ability to

subdivide the response vector into independent units under both the null and alternative hypotheses.

The approach we take is to fit the models by penalized quasi-likelihood (for example, in SAS’s

PROC GLIMMIX). While the models can be fit with this approach, it generates another problem - that

is, the classic LRT is no longer appropriate because PQL relies on approximating the GLMM with a

LMM, rather than maximizing the original likelihood. We propose adapting a test statistic developed
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by Lin (Lin, 1997) that is appropriate for very general models like ours. Specifically, we adopt an

approach similar to a well-known adaptation of Lin’s statistic where we employ only the quadratic

form portion of the statistic as in SKAT (Wu et al., 2011) and compute the distribution analytically

using the method of Davies (Davies, 1980a). We showed that in certain scenarios (i.e., those where

we test a single variance component in the presence of nuisance variance components) this approach

dominates the LRT as implemented in standard software. To overcome the poor performance of our

method in certain scenarios, we argued that Lin’s regularity conditions can be relaxed in order to

prove the asymptotic normality of the complete score statistic in our setting. We also demonstrated

that a simple permutation scheme could be used, though with mixed results.

Several additional points are worthy of discussion here. For one, we spent some time above

discussing the seminal results of Self and Liang (Self and Liang, 1987), and how the reference

distributions depend upon whether the nuisance parameters included lie on the boundary or interior

of the parameter space. In our work, no attempt was made to address this issue. Indeed, computing

the reference distribution is easy only in some simple scenarios. We did show that in some scenariois

(i.e., when testing a single variance component) the method was robust to whether or not nuisance

parameters were on the boundary or in the interior.

We also note that there might seem to be a type of inconsistency with the reference distributions

for the LRT and the asymptotic score statistics used in our comparisons. Specifically, for the

LRT, we employ the common mixture distributions, but for the score statistic we use the classic

χ2 distributions. This inconsistency was pointed out by Verbeke and Molenbergh (Verbeke and

Molenberghs, 2003) who frame this as an error on the part of Lin. We, however, disagree with this

assessment. The mixture distribution arises from constrained optimization in the variance component

setting. That is, variance components that would be estimated as negative if the maximization were

unconstrained are typically set to zero. Some have suggested using unconstrained optimization,

but that potentially results in uninterpretable parameter estimates. This is not a problem when the

variance and covariance parameters are regarded as nuisance, but in situations like ours they are

themselves of primary interest. It makes little sense to constrain a parameter that is not actually

in the fit model (as in a score statistic). A significant result (regardless of the hypothetical sign of

the tested parameter) is evidence of model misspecification - when an estimate for the parameter is

required, that term would of course be included in the model, which would be fit with constraints for
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the purpose of interpretability. This problem is completely obviated when we use only the quadratic

form as in our main results, because we are not employing an asymptotically pivotal statistic, but

rather a pseudo-statistic (aka, a plug-in statistic) using the estimates from the model.
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CHAPTER 4: IMPLICATIONS OF GENERAL SIMILARITY MATRICES AND COMPO-
SITIONAL CONSIDERATIONS FOR HYPOTHESIS TESTING

4.1 Introduction

In Chapters 1 and 2, our interest was strictly in establishing identifiability and testing the

significance of variance components in very particular types of models where we modeled the

parental strain effects as random. Technically, this amounted to random design matrices that were

more complicated than those seen in standard longitudinal or clustered models, but albeit with some

structure and sparsity: in every row, there were two nonzero elements. We established a formal

identifiability check and reviewed the limitations of the standard asymptotic reference distributions

for the LRT when testing boundary parameters (they are often mixtures of χ2 distributions).

In this chapter, we consider two modifications to such models. First, we allow for more general

random design matrices that flexibly accomodate the relatedness in the parental strains. Secondly, we

bring the proportions of the genome attributable to each of the eight founder strains into the model

(henceforward referred to as founder compositions) as fixed effects. In such models, entertaining

hypotheses about overall genetic effects requires jointly testing fixed and random terms. At first

glance, this would seem to be a trivial problem, the relevant asymptotic theory having been worked

out already by Self and Liang (Self and Liang, 1987) and described in detail in our literature review.

However, there are subtle issues at play which, if not properly considered, can lead the researcher

down potentially disastrous paths.

4.2 Background

Resources such as the Collaborative Cross (CC) present unique opportunities and challenges for

incorporating genetic similarity into statistical models for phenotypes of interest. For example, the

CC project recombines the genomes of eight founder strains in a novel way for each newly created

recombinant inbred (RI) strain by means of a funnel breeding scheme. Although the RI strains
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are entirely new, they remain mosaics of the eight founder strains: A/J, C57BL/6J, 129S1/SvImJ,

NOD/SHiLtJ, NZO/HiLtJ, CAST/EiJ, PWK/PhJ, and WSB/Eij. Further, we will make use of the

fact that the autosomal DNA of these founders represent three mouse subspecies, as follows:

1. Mus Domesticus: includes A/J, C57BL/6J, 129S1/SvImJ, NOD/SHiLtJ, NZO/HiLtJ, and

WSB/Eij

2. Mus Musculus: PWK/PhJ

3. Mus Castaneus: CAST/EiJ

In the models discussed in Chapters 2 and 3 above, no genetic information was employed other than

the implicit assumption that all parental RI lines are equally distant from each other in terms of

genetic relatedness. This is true only in expectation. That is, although each founder strain contributes,

on average, 12.5% to the genome of each recombinant strain, there is substantial variability in these

contributions. Not only are the founder strains not equally represented, but some of the founder

strains are (surprisingly) not represented at all in some of the RI strains. This is illustrated in Figure

4.18. This phenomenon necessitates an extension to the models discussed thus far to incorporate the

Figure 4.18: Founder contributions to CC RI strains

genetic similarity of the CC strains.

Another important question is whether phenotypes of interest in RIX samples are associated

with the amount of genetic material from particular founders. For example, the New Zealand Obese

(NZO) strain was bred to be overweight to serve as a model for the study of type II diabetes. A

significant association between the proportion of NZO and body weight in study samples would

provide evidence of the highly polygenic nature of body weight. In proposing this model that
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incorporates the relative proportions of the founder strains, we introduce a sum constraint (these

proportions always sum to one). To address this constraint properly, and thus allow for the testing of

meaningful hypotheses of interest, we incorporate some ideas from the field of compositional data

analysis.

A somewhat comprehensive review of compositional data analysis was included in Chapter 1

and is not repeated here. However, it is worth stressing again that, without accounting for the linear

constraint, model parameters do not correspond to hypotheses of interest, stemming from the fact

that it is impossible to alter one proportion without simultaneously altering at least one of the other

proportions. More formally, a contrast in a statistical model has a marginal interpretation. That is, in

a (generalized) linear model, a monotonic function of the expected value of the response is assumed

to be equal to the linear predictor. Thus, a parameter estimate (or a linear combination thereof) can be

interpreted as the derivative of the linear predictor with respect to a variable (or a linear combination

of variables) of interest. We have established that compositional data is scale invariant. Another way

of putting this is that it is homogeneous of degree zero. A function f(·) is homogoneous of degree k

if f(αx) = αkf(x). Applying Euler’s theorem for homogeneous functions, if f(·) is scale invariant

and differentiable at x, then:
n∑
j=1

xj
df

dxj
(x) = 0. (4.53)

In words, the constraint on the domain redounds to the derivatives. Thus, the traditional interpretations

for the contrasts no longer apply. Most solutions for dealing with compositional data involve a

series of log transformations which remove the constant-sum constraint by moving the data from the

simplex to real space (Aitchison and Bacon-shone, 1984). The most promising solution is to express

the compositional covariates in an orthonormal basis on the simplex (with respect to the Aitchison

geometry). This is achieved by the following isometric logratio transformation (ilr):

zi =

√
D − i

D − i+ 1
ln

xi

D−i
√∏D

j=i+1 xj

, i = 1, . . . , D − 1 (4.54)

Having performed this transformation, the variable z1 is now of scientific interest. It contains

all the information about the compositional part x1 in relation to the ratios between it and all

other components of the mixture. Note that the same interpretation does not apply to z2, as x1
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does not appear in this term. The solution is to construct D different ilr transformations, where

the role of z1 is assumed, in turn, by each component. That is, to investigate the significance

of the kth compositional part, we replace (x1, . . . , xD) with (xk, x1, . . . , xk−1, xd+1, . . . , xD) =:

(xk1, . . . , x
k
k, x

k
k+1, . . . , x

k
D). Noting that the ilr transformations are all orthogonal transformations of

each other, there is no need to refit the model D times, only to perform the D linear transformations

and associated hypothesis tests.

As previously mentioned, much of our knowledge on inference involving variance components

has been developed in the context of longitudinal data analyis. There, it is common knowledge that,

when testing the significance of variance components (for example, when performing model selection

on the covariance structure) we hold the fixed effects constant and fit the models by restricted

maximum likelihood (REML). This corrects the well-known downward bias in estimating the

covariance parameters by maximum likelihood. Furthermore, this yields valid restricted maximum

likelihood tests. When testing the fixed effects, however, models are fit (and likelihood ratio tests

performed) by ML, as the distributional results are not valid when comparing models with different

mean structures. It would therefore seem that, for joint tests of fixed and random effects, models

should be fit using ML. However, here we demonstrate an example where ML tends to yield

inconsistent parameter estimates. This compromises the validity of inference, and necessitates an

alternative approach to the LRT. Since score tests do not require fitting the alternative model, they

have the potential to solve this problem. Our method involves fitting a simple linear model with all

the fixed effects and combining the p-values from score tests for fixed effects with the p-values from

the SKAT score statistic (Wu et al., 2011) for the variance component using Fisher’s method. In what

follows, we refer to our method as simply the “composite score” method.

4.3 Method

We begin with a model of the following form:

Y = X0β0 +

nm∑
m=1

xmαm + Zγ + ε (4.55)

where Y is an n× 1 vector of (continuous) phenotypes and X0 is a matrix that includes an intercept

and nuisance fixed covariates, for which β0 are the associated (nuisance) fixed effects. Each xm is
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an n × 1 column, the elements of which correspond to a proportion. If the effects of the founder

proportions are of interest, then nm = 8 and xm[i] corresponds to the proportion of founder m in the

genome of subject i. If the contributions of subspecies DNA are of interest, then nm = 3 (musculus,

castaneus, and domesticus) and pm[i] would then correspond to the proportion of subspecies m

in sample i. The associated αm are the effects of founder (or subspecies) m. Applying an ilr

transformation (4.54) to X = (x1, . . . , xm) we can then fit the following model:

Y = X0β0 +

nm−1∑
m=1

zmα
∗
m + Zγ + ε (4.56)

where the variable z1 (and only z1) is now of scientific interest. It contains all the information about

the compositional part x1 in relation to the ratios between it and all other components of the mixture.

Note that the same interpretation does not pertain for z2, as x1 does not appear in this term. As

mentioned above, we can construct D different ilr tranformations, and in each case interpret α∗1,

which can be interpreted as the effect of a unit increase in that component, while maintaining the log

ratios of the other components constant.

If Z in models (4.55) and (4.56) above were an actual genotype matrix, it would be of extremely

high-dimension (tens or even hundreds of thousands). Instead, we start by writing the variance of a

LMM more generally:

V ar(Y ) = Kσ2
b + Iσ2

ε (4.57)

where K is interpreted as a “genetic relationship matrix” (GRM). The measure of similarity can be,

for example, as in the popular Genome-Wide Complex Trait Analysis (GCTA) (Yang et al., 2011),

the GRM where:

Kjk =
N∑
i=1

(xij − 2pi)(xik − 2pi)

2pi(1− pi)
(4.58)

where xij is the number of copies of the reference allele (i indexes SNP and j indexes individual),

and pi is the frequency of the reference allele. Alternatively, the kinship coefficient matrix (i.e., the

expected proportion of the genome shared IBD) can be used. After computing the similarity matrix

of one’s choice, an eigendecomposition can be performed, and rather than (4.56) above, the following

model is instead fit:

Y = X0β0 +

nm−1∑
m=1

zmα
∗
m +K

1
2γ + ε (4.59)
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As described in GCTA, the model is typically fit by REML. However, in our setting, we are interested

in testing the following hypotheses:

H0 : α∗1 = α∗2 = · · · = α∗nm−1 = 0, σ2
b = 0, vs. (4.60)

HA : at least one departure from null (4.61)

As our hypotheses involves both fixed and random effects, a restricted LRT (rLRT) would not be valid

(in the sense that the well-known asymptotic reference distribution would be incorrect). However,

we can demonstrate an even more fundamental problem, stemming from the fact that GCTA was

designed for human data. Although it theoretically applies to our mouse data as well, the samples

are far more closely related than human samples. As a result, as the samples become more closely

related, K looks more and more like a compound symmetric matrix. Because the entire dataset can

be thought of as a single “subject”, this becomes like estimating a compound symmetric matrix with

a sample of size one - an impossibility. Approaching this scenario causes problems for both ML and

REML. Specifically, the ML estimates for the variance component are enriched with zeros and the

REML estimates are highly biased. For intuition, we present in Appendix E an identifiable model for

which the ML estimate of the variance component can be shown mathematically to be inconsistent

and always estimated at zero (and for which the REML estimate is highly biased upwards).

In a very recent paper, Su et al (Su et al., 2018) used a composite score statistic to jointly test

both fixed and random effects, which employed the SKAT statistic for the random portion (Wu et al.,

2011). In this vein, we start with the asymptotic score as follows:

U =

 Uβt

Uσ2
b

 =

 (Y −X0β̂0)′V̂ −1
0 Xt

1
2(Y −X0β̂0)′V̂ −1

0 KV̂ −1
0 (Y −X0β̂0)− tr(K

1
2 V̂ −1

0 K
1
2 )

 (4.62)
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where β̂0 = (X
′
0X0)−1X ′0Y and V̂0 = σ̂2

ε In×n. Further,

Iβ = X ′V̂ −1
0 X (4.63)

Iσ2
b

=
1

2
tr(K

1
2 V̂ −1

0 KV̂ −1
0 K

1
2 ) (4.64)

The asymptotic score statistic is U ′I −1U for appropriately defined I . As we will show below,

it is useful to employ the quadratic form portion as an alternative score statistic for the variance

component (SKAT):

U∗σ2
b

= (Y −X0β̂0)′K(Y −X0β̂0) (4.65)

for which the p-value can be computed analytically as in Chapter 3, using the method of Davies

(Davies, 1980b,a). This p-value can then be combined with p-value associated with the fixed effects

using Fisher’s method. We note that Su’s approach involved fitting a modified null where all fixed

effects were left unconstrained to compute U∗
σ2
b
; we do not employ that approach here. Instead, we

use the same (restricted) null to compute both the score statistics.

4.4 Results

4.4.1 Simulation Results

Beyond the implications of testing fixed and random effects jointly, modeling the compositional

effects correctly really only has implications for interpretability. Thus, in the interest of simplicity,

the following simulations include only a single random term (and null fixed effects, one of which is

an intercept). That is, we consider the following model:

Y = β0 ∗ Jn×1 + β1X1 +K
1
2 b+ ε (4.66)

b ∼ N(0, σ2
b ) (4.67)

ε ∼ N(0, σ2
ε ). (4.68)

In all cases, the sample size was set to 200, and β0 and σ2
ε were both set to 1. We manually constructed

the similarity matrix, K, to investigate the following four scenarios:
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1. Scenario 1: Off diagonal elements of K are sampled from a truncated normal distribution with

mean 0.125, standard deviation of 0.05, a minimum of zero, and a maximum of 0.3. This

scenario was meant to mimic the IBD matrix observed in our RI data.

2. Scenario 2: Off diagonal elements of K are sampled from a truncated normal distribution with

mean 0.725, standard deviation of 0.01, a minimum of 0.7, and a maximum of 0.75. This

scenario was meant to mimic the IBS matrix observed in our RI data.

3. Scenario 3: Off diagonal elements of K are sampled from a truncated normal distribution with

mean 0.7, standard deviation of 0.025, a minimum of 0.65, and a maximum of 0.75.

4. Scenario 4: Off diagonal elements of K are sampled from a truncated normal distribution with

mean 0.7, standard deviation of 0.05, a minimum of 0.6, and a maximum of 0.8.

In addition, we included a “reference scenario” involving a sparse design matrix. In this scenario

K
1
2 was simply set to a random design matrix associated with a random intercept model (20 levels,

10 subjects per level). In all other scenarios, the similarity matrices were forced to be symmetric

and positive definite. In each scenario, we incremented the values of β1 ∈ {0.0, 0.1, 0.5, 1.0} and

σ2
b ∈ {0.0, 0.2} and computed the type I error and power over 2500 simulations.

The results for the reference scenario are shown in Table 4.10.These results are included to

demonstrate two features, one of which was discussed in the previous chapter. For this sparse random

design matrix, all methods perform as expected. The LRT based on maximum likelihood and the

asymptotic score tests are nearly identical, with the composite score test conferring no benefit above

the asymptotic test. Note also the deficienty of the REML-based LRT. It has extremely conservative

type I error, which translated to markedly reduced power. For all other scenarios, the REML-based

ML was removed.

For scenarios 1-4, the performance of the different approaches diverge wildly. The results for

scenario 1 (meant to mimic using the IBD matrix for 200 unique RI samples) are shown in Table

4.11. As shown, the LRT performance is much better than the score. Scenario 2, the results of which

are shown in 4.12 is meant to mimic use of the IBS matrix. In this setting, no method performs well.

There is simply no power to detect the variance component. The power jumps discretely when β1 is

incremented, but within each set of simulations (β0 = 0.0, β0 = 0.20), the power does not increase
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Table 4.10: Reference scenario results
β σ2

b LRTML LRTREML Score Scorecomposite

0.0 0.0 0.042 0.009 0.038 0.046
0.0 0.1 0.514 0.312 0.539 0.561
0.0 0.5 0.996 0.992 0.997 0.997
0.0 1.0 1.000 1.000 1.000 1.000
0.2 0.0 0.736 0.470 0.690 0.697
0.2 0.1 0.884 0.745 0.867 0.903
0.2 0.5 1.000 0.999 1.000 1.000
0.2 1.0 1.000 1.000 1.000 1.000

Simulation based on OWL design with 10 mice per cross (n=200),
σ2
ε = 1

Table 4.11: Scenario 1 results
β σ2

b LRTML Score Scorecomposite

0.0 0.0 0.037 0.030 0.032
0.0 0.1 0.036 0.021 0.031
0.0 0.5 0.366 0.075 0.160
0.0 1.0 0.835 0.183 0.451
0.2 0.0 0.700 0.649 0.678
0.2 0.1 0.728 0.713 0.712
0.2 0.5 0.762 0.761 0.756
0.2 1.0 0.939 0.786 0.840

Simulation based on 200 unique samples, σ2
ε = 1

with σ2
b . The tightness of the correlation structure is causing all the methods to fail. Scenarios 3

and 4, shown in Tables 4.13 and 4.14, respectively, are of key interest. These scenarios decrease the

similarity relative to scenario 3, and increase the spread in the elements of K. As shown, for these

simulations, the composite score has the ability to resolve the lack of power, detecting the variance

component when the asymptotic tests fail.

4.4.2 Real Data Analysis

Table 4.15 illustrates the results of an analysis of an actual dataset comprised of 840 RIX mice

which were included in a project with UNC’s Center for Integrated Systems Genomics (CISGen).

The phenotype was body weight, which was log transformed before analysis. The samples in this

study represent 72 RIX crosses, made from 63 unique parental strains (most parental strains were

used multiple times). As shown, there is a highly significant polygenic genetic effect. The most

significant compositional component was NZO, which was expected as this strain was in fact bred to
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Table 4.12: Scenario 2 results
β σ2

b LRTML Score Scorecomposite

0.0 0.0 0.024 0.020 0.018
0.0 0.1 0.022 0.023 0.024
0.0 0.5 0.026 0.032 0.028
0.0 1.0 0.016 0.046 0.020
0.2 0.0 0.714 0.689 0.686
0.2 0.1 0.699 0.679 0.672
0.2 0.5 0.644 0.720 0.656
0.2 1.0 0.581 0.719 0.615

Simulation based on 200 unique samples, σ2
ε = 1

Table 4.13: Scenario 3 results
β σ2

b LRTML Score Scorecomposite

0.0 0.0 0.025 0.019 0.028
0.0 0.1 0.023 0.022 0.031
0.0 0.5 0.020 0.036 0.086
0.0 1.0 0.021 0.065 0.201
0.2 0.0 0.710 0.684 0.692
0.2 0.1 0.678 0.686 0.676
0.2 0.5 0.626 0.707 0.720
0.2 1.0 0.617 0.763 0.792

Simulation based on 200 unique samples, σ2
ε = 1

Table 4.14: Scenario 4 results
β σ2

b LRTML Score Scorecomposite

0.0 0.0 0.023 0.020 0.034
0.0 0.1 0.027 0.027 0.061
0.0 0.5 0.029 0.037 0.218
0.0 1.0 0.016 0.058 0.535
0.2 0.0 0.715 0.678 0.691
0.2 0.1 0.685 0.675 0.699
0.2 0.5 0.641 0.722 0.800
0.2 1.0 0.609 0.732 0.890

Simulation based on 200 unique samples, σ2
ε = 1

69



Table 4.15: Real compositional data analysis
Effect Estimate p-value
Overall Genetic Effect <0.0001
Intercept 3.224 <0.0001
Sex (female) -0.250 <0.0001
129 -0.017 0.4371
A -0.002 0.9053
C57BL -0.052 0.0133
CAST -0.049 0.0010
NOD -0.004 0.746
NZO 0.115 <0.0001
PWK 0.027 0.1048
WSB -0.018 0.3928

be obese. Increases in body weight associated with increasing contributions of NZO DNA are most

offset by contributions of C57BL and CAST, which are negatively assocated with body weight.

4.4.3 Discussion

In this chapter, we have demonstrated a deficiency with the standard (ML) LRT hypothesis

testing framework when testing fixed and random effects jointly. While in ideal scenarios, the LRT

performs as expected, it also has the potential to fail catastrophically. The composite score approach

has the ability to resolve this deficiency in certain settings. The relative performance of these methods

is a function of the particular similarity matrix employed. Because this is known a priori, in future

work we hope to develop formal conditions to guide the inferential approach.

We note that it is also possible for a REML-based LRT to resolve the problem. In fact, REML

estimation resolves the problem of inconsistent estimation that we demonstrated in the defective

scenario in Appendix E. However, an adjustment would have to be made because the distributional

results that apply to the ML-based LRT do not apply to the REML-based LRT. We explored a

bootstrap based on an extension of the work of Sinha (Sinha, 2009), but we did not include the results

here because it did not control type I error. This also remains a topic for future research.
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APPENDIX A: COMMON LOOP DESIGNS

In the figure below, each node represents an inbred stain, and each of the edges connecting these

nodes corresponds to a cross. Mice of these crosses are the units of study. Note that the crosses

are not directional because we here assume an additive model. As shown in the figure, for each

cross, we can obviously estimate the additive contribution of the two parental strains (labeled si + sj

in the figure). Suppose we wish to obtain strain-specific estimates; that is, for example, we wish

Figure 7.19: Additive loop design

to obtain separate estimates for s1 and s2. Using the terminology of Sprague and Tatum (1942)

we are estimating the generalized combining ability (GCA) of the parental strains. We can show

that this is only possible if the loop is composed of an odd number of parental strains. This is a

direct consequence of the fact that the parents come in pairs - in order to subtract out the effect of

one parent, we introduce the effect of another. This is more easily seen arithmetically. We have an

estimate for s1 + s2, so we therefore must obtain an estimate of s1 − s2, so that then taking half the

sum of these estimators yields an estimate of s1. We do this starting with the estimate of s1 + sN and

traversing the loop in the counter-clockwise direction. That is, since we want to eliminate sN , we
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must subtract our estimate of sN + sN−1, arriving at an estimate of s1 − sN−1. To eliminate sN−1

we must add the estimate of sN−1 + sN−2. We propagate around the loop until we are left with an

estimate involving only s1 and s2. Writing out the arithmetic:

s1 + sN

− (sN + sN−1)

+ (sN−1 + sN−2)

− (sN−2 + sN−3)

...

+ (s4 + s3)

− (s3 + s2)

In order for our estimate to be one of s1 − s2, as needed, the last operation must be subtraction,

as above. Thus, integers 2 through N can be paired, and N must therefore be odd. We can therefore

make the following claims:

Claim 1: For a loop design with an even number of parental strains (N ), we can estimate ai + ai+j

∀i and for odd j where i, j ∈ 1, ..., N .

Claim 2: For a loop design with an even number of parental strains (N ), we can estimate ai − ai+j

∀i and for even j where i, j ∈ 1, ..., N .
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Reciprocal Loop

In the figure below, we show the design for the reciprocal loop; we have crosses in both directions.

Note that I have now labeled the additive effect with an a., instead of s., as above. Further, p.

corresponds to a parent-of-origin (PoO) effect. Utilizing both directions of a cross, we can estimate:

Figure 7.20: Reciprocal cross loop design

(1a)a1 + a2 + p1

(1b)a2 + a1 + p2

Since we can do this for each pair of reciprocal crosses, we can take differences and estimate all the

differences pi − pj .
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Next, consider traversing the loop in the clockwise direction. We can estimate the following:

(i)a1 + a2 + p2

(ii)a2 + a3 + p3

(iii)a3 + a4 + p4

(iv)a4 + a5 + p5

(v)a5 + a6 + p6

(vi)a6 + a7 + p7

(vii)a7 + a1 + p1

Note that:

(i) + (ii) + (iii) + (iv)− (v) + (vi)− (vii) = 2a1 + p2 − p3 + p4 − p5 + p6 − p7 + p1

Pairing relevant PoO terms and subtracting their estimates, and continuing this logic to other

strains,we can estimate:

2a) : 2a1 + p1

2b) : 2a2 + p2

2c) : 2a3 + p3

2d) : 2a4 + p4

2e) : 2a5 + p5

2f) : 2a6 + p6

2g) : 2a7 + p7

We note that, if the above design incorporated the seven inbred strains as well, it would add nothing

of value in terms of estimability if the true model has only additive and PoO effects. This is seen

because if we have two inbred strains and both associated reciprocal crosses, that would add no new

estimable parameters. The inbred strains would allow for estimating additional dominance effects.
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Now, traversing the loop in the opposite direction we have the following readily estimable:

(i)a1 + a2 + p1

(ii)a2 + a3 + p2

(iii)a3 + a4 + p3

(iv)a4 + a5 + p4

(v)a5 + a6 + p5

(vi)a6 + a7 + p6

(vii)a7 + a1 + p7

Note that:

(i) + (ii) + (iii) + (iv)− (v) + (vi)− (vii) = 2a1 + p1 − p2 + p3 − p4 + p5 − p6 + p7

Pairing the relevant PoO terms and substracting their estimates, we can estimate:

3a) : 2a1 + p7

3b) : 2a2 + p1

3c) : 2a3 + p2

3d) : 2a4 + p3

3e) : 2a5 + p4

3f) : 2a6 + p5

3g) : 2a7 + p6
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Now, subtracting 2a) from 3a), 2b) from 3b), etc. we can estimate:

2(a1 − a2) + (p1 − p2)

2(a2 − a3) + (p2 − p3)

2(a3 − a4) + (p3 − p4)

2(a4 − a5) + (p4 − p5)

2(a5 − a6) + (p5 − p6)

2(a6 − a7) + (p6 − p7)

2(a7 − a1) + (p7 − p1)

Since we can estimate all pairwise differences pi − pj , we can also estimate all ai − aj . Note that it

does not matter whether we have an odd or even number of parental strains in the loop.
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APPENDIX B: AN ALTERNATIVE LOOP DESIGN

If the true model has only additive and PoO, we can actually estimate the same parameters as in

the reciprocal loop design without employing any reciprocal crosses. Consider the design illustrated

in the figure below: We have maintained the original uni-directional outer loop, but introduced many

Figure 8.21: An alternative loop design

inner loops. Note the loop highlighted in red, and the fact that it is not uni-directional. That is, two

strains use I4 as the maternal strain. We can estimate:

(i) : a1 + a2 + p2

(i) : a2 + a3 + p3

(i) : a3 + a4 + p4

(i) : a1 + a4 + p4
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Subtracting (iv) from (i) we get:

(i)− (iv) = a1 − a2 + p2 − a1 − a4 − p4 = (a2 − a4)− (p− 2− p4)

Similarly, subtracting (iii) from (ii) yields:

(ii)− (iii) = a2 + a3 + p3 − a3 − a4 − p4 = (a2 − a4) + (p3 − p4)

And subtracting these, we can estimate p2 − p3. Continuing this logic, we can estimate all pi − pj .

Above, we showed we could traverse the outer loop in one direction to estimate:

2(a1 − a2) + (p1 − p2)

2(a2 − a3) + (p2 − p3)

2(a3 − a4) + (p3 − p4)

2(a4 − a5) + (p4 − p5)

2(a5 − a6) + (p5 − p6)

2(a6 − a7) + (p6 − p7)

2(a7 − a1) + (p7 − p1)

Thus, we can estimate all pi − pj and ai − aj , as in the design where we had reciprocal crosses.

It can similarly shown that for an even number of parental strains, we achieve the same by using

the following design shown in Figure 8.22. Note that this logic does not apply if there are dominance

effects; in that case, the reciprocal design is preferable.
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Figure 8.22: An alternative loop design with an even number of parental strains
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APPENDIX C: FITTING MODELS IN SAS

proc mixed data=dataset;

model dependent_variable = &fixed_effects. / solution;

random batch1-batch&numbatch. / type=TOEP(1);

random addint1-addint&numparent. / type=TOEP(1);

random addtmt1-addtmt&numparent. / type=TOEP(1);

random addsex1-addsex&numparent. / type=TOEP(1);

random addsextmt1-addsextmt&numparent. / type=TOEP(1);

run;

Here, TOEP(1) refers to a 1-banded Toeplitz structure, fixed effects to a list of fixed effects, and

numbatch and numparent to the number of unique batches and parental strain, respectively.
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APPENDIX D: LINK BETWEEN RIDGE REGRESSION AND MIXED MODELS

Consider the simplest mixed model with a single random term:

Y = Xβ + Zγ + ε

γ ∼ N(0, σ2
γ)

ε ∼ N(0, σ2
ε )

Further, consider the ridge regression estimates for γ which we denote γ̂RR = (Z ′Z + λI)−1Z ′y.

We ignore X for now, and start by applying the Sherman-Morrison-Woodbury formula (Woodbury,

1950):

γ̂RR = {(λI)−1 − [(λI)−1Z ′(I + Z(λI)−1Z ′)−1Z(λI)−1]}Z ′y

=
1

λ
{I − [Z ′(λI + ZZ ′)−1Z]}Z ′λ

=
1

λ
{Z ′ − Z ′(λI + ZZ ′)−1ZZ ′}y

=
1

λ
Z ′[I − (Z ′Z + λI)−1ZZ ′]y

=
1

λ
Z ′(Z ′Z + λI)−1[(ZZ ′ + λI)− ZZ ′]y

= Z ′(ZZ ′ + λI)−1y

Next, consider the prediction of the BLUPs. To predict the BLUPs, we start by specifying the joint

distribution of y and γ, and then use the formula for conditional expectation to obtain the estimates:

[ y

γ

]
∼ N

([ Xβ
0

]
,
[ σ2

γZZ
′ + σ2

ε I σ2
γZ

σ2
γZ
′ σ2

γI

])
(6.69)

Now, we derive the BLUPs:

E[γ|y] = σ2
γX
′(σ2

γZZ
′ + σεI)−1y

= Z ′
(
ZZ ′ +

σ2
ε

σ2
γ

I
)−1

y
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So, we see that the BLUPs can be thought of as the estimates from ridge regression with λ = σ2
ε
σ2
γ

. We

know from ridge regression that there is a unique solution for all λ > 0.
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APPENDIX E: INCONSISTENT ML ESTIMATES OF VARIANCE COMPONENTS

We consider the most extreme example of “confounding” between the fixed and the random effects,

such that the fixed effects design matrix exactly equals the random effects design matrix. Consider a

simple clustered model where there are n independent clusters with m subjects per cluster. We can

specify the model as follows:

Yi = Xiβ + zibi + εi

where Yi is an m× 1 column vector, β is an m× 1 parameter vector, andXi is an m×m matrix

of zeros with ones in column i. Further, zi = Jm×1. At first glance, this model might seem

unidentifiable, but it is in fact identifiable. The fixed effects matrix, X , is of full rank, and so the

fixed effects are identifiable. The covariance parameters are also identifiable in the sense detailed in

Chapter 2, where we need not have bothered with the fixed effects (other than to implicitly assume

the fixed effects matrix was full rank). Having established that the fixed effects and covariance terms

are, when viewed separatedly, identifiable, the only way to have an identifiability issue would involve

an interplay between the fixed and the random terms. But this cannot be the case - in order for

that to occur, we would be saying that two normal distribution (µ1,Σ1) and (µ2,Σ2) have identical

distributions, which is impossible. We define the following:

Σi = σ2
eI + ZiGZ

′
i

Σi = σ2
eDi

Di = I + ZiG
∗Z ′i

We will use the following result:

|A+XX ′| = |A|(I +X ′A−1X)

We write the loglikelihood as:
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l = −1

2
nm log(σ2

e)−
1

2
n log |Di| −

1

2σ2
e

n∑
i=1

(yi −Xiβ̂i)
′D−1

i (yi −Xiβ̂i)

Conditional on σ2
e andDi, we estimate β by GLS:

β̂ = (X ′Σ−1X)−1X ′Σ−1y

Substituting β̂ into the loglikelihood, we find it is proportional to the following:

l ∝ −nm log(σ2
e)− n log |Di| −

1

σ2
e

n∑
i=1

(yi −Xiβ̂i)
′D−1

i (yi −Xiβ̂i)

Using (2) above and differentiating with respect to σ2
e we can solve for the MLE:

σ̂2
ε =

∑n
i=1(yi −Xiβ̂i)

′D−1
i (yi −Xiβ̂i)

nm

and substituting these into the loglikelihood, the relevant portion (that involvingDi is):

l(Di) = −n log |Di| − σ̂−2

∑n
i=1(yi −Xiβ̂i)

′D−1
i (yi −Xiβ̂i)

nm

Now, differentiating with respect toG∗:

dl(Di)

dG∗ = −nσ̂−2Z ′iD
−1
i Zi − σ̂

−4
n∑
i=1

Z ′iD
−1
i (yi −Xiβ̂i)(yi −Xiβ̂i)

′D−1
i Zi

Now,

dl(Di)

dG∗ < 0

⇐⇒ −nσ̂−2Z ′iD
−1
i Zi < σ̂−4

n∑
i=1

Z ′iD
−1
i (yi −Xiβ̂i)(yi −Xiβ̂i)

′D−1
i Zi

But since, in our setting Z = X , the right hand side of the inequality is always zero (since

(yi −Xiβ̂i) is in the nullity of D−1
i Zi), making the inequality always true. Therefore, Ĝ∗i will

always be set to zero.
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