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ABSTRACT 

Wayana Dolan: Detecting patterns and drivers of ice on and ice off timing in Alaskan rivers 
wider than 150 m using MODIS 

(Under the direction of Tamlin Pavelsky) 

 

Annual river ice freeze-up and breakup have major implications for northern ecosystems and 

infrastructure and are particularly responsive to climate change. However, a lack of ground-

based observations hampers understanding of large-scale patterns in ice timing. Here I detect 

freeze-up and breakup dates on Alaskan rivers wider than 150 m using MODIS satellite imagery 

from 2000-2017, the first large-scale detection of ice freeze-up using remote sensing and an 

expansion of breakup detection to rivers narrower than 500 m. I find statistically significant 

trends in breakup dates in the North Slope (-0.67 days/year, p<0.05) and West Central regions (-

0.63 days/year, p<0.10). I find no long-term regional freeze-up trends. Regional timeseries of ice 

timing are instead dominated by teleconnections. Pacific Decadal Oscillation and Southern 

Oscillation Indices in the preceding fall and concurrent spring correlate highly to breakup dates, 

suggesting regional predictability. Methods described here can detect freeze-up and breakup 

timing on pan-Arctic rivers. 
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DETECTING PATTERNS AND DRIVERS OF ICE ON AND ICE OFF TIMING IN 
ALASKAN RIVERS WIDER THAN 150 m USING MODIS 

 
1. Introduction 

River ice impacts an estimated 67% of rivers in the Northern Hemisphere (Yang et al., in 

review). During the winter, northern communities and industry rely on ice roads that transect or 

follow frozen rivers (Prowse et al., 2009). Diminishing ice thickness and duration impact the 

length of time during which ice roads can be safely traversed each year (Lonergan et al., 1993; 

Stephenson et al., 2011). Alternatively, a longer ice-free season creates new opportunities for 

shipping (Lonergan et al., 1993; Prowse et al., 2009). In addition to impacting transportation, ice 

breakup can instigate ice jam floods that damage near-river infrastructure (Rokaya et al., 2018). 

However, these ice jam floods are a dominant source of sediment and nutrients such as 

phosphorous, nitrogen, and carbon to near-river ecosystems including floodplains and deltas 

(Scrimgeour et al., 1994; Milburn & Prowse, 2000). Shifts in the duration of ice cover and 

severity of breakup are predicted to greatly influence these systems (Lonergan et al., 1993; 

Beltaos & Prowse, 2009; Prowse et al., 2009). 

River ice breakup and freeze-up timing are responsive to changes in air temperature (Lacroix 

et al., 2005; Duguay et al., 2006; Prowse et al., 2007; Bennett & Prowse, 2010; Arp et al., 2013) 

and are therefore sensitive to climate change-induced warming. Using a ground-based dataset of 

long-term ice cover in Northern Hemisphere rivers and lakes, Magnuson et al. (2000) found that 

ice cover trended towards later freeze-up and earlier breakup over the past several centuries. In 

Canada, excluding the east coast, patterns in breakup timing based on ground observations 
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consistently trend towards earlier breakup (Lacroix et al., 2005; Duguay et al., 2006). Patterns in 

freeze-up are much less spatially consistent and depend greatly upon the years studied for trend 

analysis (Lacroix et al., 2005; Duguay et al., 2006).  

In addition to long term trends, there is preliminary evidence to suggest a correlation between 

shorter term climactic variation and river ice breakup (Pavelsky & Smith, 2004; Bonsal et al., 

2006; Bieniek et al., 2011). For example, the Pacific Decadal Oscillation (PDO) is a 

teleconnection that describes 20 to 30-year sea surface temperature patterns in the Pacific Ocean. 

During the warm phase, air temperatures in most of Alaska and Western Canada increase 

(Bieniek et al., 2012). Similar patterns are found for teleconnections associated with or impacted 

by the El Niño/Southern Oscillation (ENSO), such as the Pacific North American pattern (PNA) 

and the Southern Oscillation Index (SOI). Positive PNA anomalies usually associated with the El 

Niño phase of ENSO indicate warmer temperatures in most of Alaska and Western Canada, 

whereas positive SOI anomalies describing the La Niña phase of ENSO indicate cooler 

temperatures over the region (Bieniek et al., 2012). Bonsal et al. (2006) found that these indices 

strongly correlate to ice breakup dates, and to a weaker extent, freeze-up dates in the western 

parts of Canada. Pavelsky and Smith (2004) found the same correlation between PDO and earlier 

ice breakup in the Mackenzie River in Canada, but opposite correlations for two large Siberian 

rivers. However, not all studies agree about which teleconnections have the most influence on ice 

breakup timing. Schmidt et al. (2019), analyzing the Global Lake and River Ice Phenology 

Database (Benson et al., 2000), found no strong correlations between PDO and breakup, but 

noted that positive PNA anomalies were strongly related to earlier breakup in Canada. The East-

Pacific/North-Pacific (EPNP) pattern is a spring-summer-fall mode of variability in pressure 

heights over Alaska/Western Canada and the North Pacific/Eastern United States that may also 
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impact river ice due to its positive correlation to Alaskan air temperature (Bieniek et al., 2012). 

Sea ice area influences Arctic precipitation (Sewall, 2005; Kopek et al., 2016), and therefore may 

indirectly impact river ice formation and breakup.  

The influence of both long-term and short-term climate patterns on river ice have been, with 

the exception of Pavelsky and Smith (2004), studied using point-based ground observations.  

However, ground-based observations are limited in number, have greatly declined since a peak 

in the 1980s (Shiklomanov et al., 2002; Lacroix et al., 2005), and are not always representative 

of how river ice behaves along entire rivers (Cooley & Pavelsky, 2016). 

One solution to this problem is to study trends in river ice freeze-up and breakup dates using 

remote sensing. This approach allows researchers to identify how ice changes throughout entire 

river systems. Previous papers use optical remote sensing to detect river ice breakup on 

individual rivers (Pavelsky & Smith, 2004; Chaouch et al., 2014; Chu & Lindenschmidt, 2014; 

Gauthier et al., 2015; Cooley & Pavelsky, 2016; Muhammad et al., 2016).  Pavelsky and Smith 

(2004) used the MODerate resolution Imaging Spectroradiometer (MODIS) and the Advanced 

Very High-Resolution Radiometer to visually identify breakup on four large (> 500 m wide) 

Arctic rivers, the Lena, the Ob, the Mackenzie, and the Yenisey. Cooley & Pavelsky (2016) 

created a stationary threshold-based automated ice detection algorithm for the same four large 

rivers, also using MODIS. This method works well for wide rivers where river-observing pixels 

do not also contain areas of land. However, stationary reflectance thresholds produce inaccurate 

results in narrow (< 500 m) or braided rivers because of the high incidence of mixed pixels.  

To address this issue, Chaouch et al. (2014) created a multi-threshold decision tree approach 

to classify river pixels on the Susquehanna river as pure water or mixed land/water.  They then 

further classified the state of pixels in those categories as ice, mixed water/ice, or water, but did 
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not calculate breakup or freeze-up dates. Based upon these methods, the National Oceanic and 

Atmospheric Administration has implemented a real-time ice state detection approach on rivers 

in Alaska using the Visible Infrared Imaging Radiometer Suite (VIIRS). While the algorithm is 

applied to sub-VIIRS pixel rivers, it is primarily geared towards real-time ice state detection of 

individual pixels, does not include calculations of breakup and freeze-up dates, and is not 

available for historical trend analysis. The only previous study focused on remotely sensed 

freeze-up timing detection (Chu and Lindenschmidt, 2014) used MODIS imagery to detect ice 

phenology on several reaches of the Slave River in Canada. While this study demonstrates the 

feasibility of using optical imagery to detect ice freeze-up, no studies have applied detection 

methods on larger spatial scales. 

In this thesis, I present a new method that uses MODIS data to observe ice freeze-up and 

breakup timing on all rivers wider than 150 m in Alaska and the Canadian portion of the Yukon 

River Basin. Using this dataset, I complete a regional analysis to better understand long-term 

trends as well as climatic drivers of interannual variability in ice timing. This research represents 

the first study of statewide trends in river ice phenology in Alaska.  

2. Methods  

2.1 Datasets 

Launched in 1999 on the Terra Satellite, MODIS has a viewing swath of 2,330 km and 

provides daily imagery over the entire study area. I use three MODIS products for this analysis, 

including 250 m resolution daily red band (620-670 nm) imagery included in the 

MOD09GQ.006 product (Vermote et al., 2015a), the ‘state_1km’ band from the daily 

MOD09GA.006 product (Vermote et al., 2015b), and the temporally stationary MOD44W.005 

water mask (Carrol et al., 2009). This analysis focuses on the time period between February 
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2000, when MODIS data first became available, through December 2017. While MODIS’s 

spatial resolution of 250 m limits the size of observable rivers, the daily temporal resolution 

allows for the study of rapid events such as freeze-up and especially breakup, which are 

otherwise unobservable in finer spatial-scale imagery, such as Landsat 5-8, available over the 

same time period. All MODIS data is accessed through Google Earth Engine.  

I analyze all river reaches in the Global River Widths from Landsat (GRWL) simplified 

vector product (Allen & Pavelsky, 2018) with median widths larger than 150 m within Alaska 

and the Canadian portion of the Yukon River Basin. While 150 m is narrower than a MODIS 

pixel, ice-driven seasonal patterns in reflectance, in which ice corresponds to high reflectance 

and water corresponds to low reflectance, are still present. The GRWL simplified vector product 

divides the original point-based GRWL database into reaches in which each reach is 

approximately between tributary junctions. The length of GRWL reaches are, therefore, highly 

variable. Cooley & Pavelsky (2016) demonstrate the feasibility of ice breakup detection within 

reaches of approximately 10 km in length (Cooley & Pavelsky, 2016). As a result, GRWL 

reaches longer than 10 km are divided into segments of approximately 10 km in length, for a 

total of 1149 reaches with a cumulative length of ~12,355 km. 

Additionally, for analysis of trends and regional patterns, I divide the study rivers into seven 

regions based upon groups of Level 6 HydroBASINS (Lehner & Grill, 2013) and prior 

knowledge about the geography and climate of Alaska (Figure 1). These regions are the North 

Slope, West Central, Southwest (SW) Yukon, Central Yukon, Southeast (SE) Yukon, Southwest, 

and Southeast. Within these regions, I analyze the correlation of freeze-up and breakup dates to 

the PDO (Mantua et al., 1997; acquired from 

http://research.jisao.washington.edu/pdo/PDO.latest.txt), the PNA (Wallace & Gutzler, 1981; 

http://research.jisao.washington.edu/pdo/PDO.latest.txt
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Barnston & Livezey, 1987; acquired from 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/pna_index.tim), the EPNP (Barnston & Livezey, 

1987; Bell and Janowiak, 1995; acquired from 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/epnp_index.tim), and the SOI (Trenberth, 1976; 

acquired from https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/data.csv). I also 

compare breakup and freeze-up dates to regional sea ice area measurements from the Bering Sea, 

the Chukchi Sea, and the Beaufort Sea (Meier et al., 2007; Fetterer et al., 2017; acquired from: 

ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/seaice_analysis/).  

Data used for evaluating the accuracy of results includes ice flags from United States 

Geological Survey (USGS) and Water Survey of Canada (WSC) gage stations, MERRA-2 daily 

surface air temperature data (M2SDNXSLV, Global Modeling and Assimilation Office, 2015), 

and visual observations of ice on and ice off from the National Weather Service’s (NWS) 

Alaska-Pacific River Forecast Center (breakup data available at: 

https://www.weather.gov/aprfc/breakupMap; freeze-up data available at: 

https://www.weather.gov/aprfc/freezeUp). I also use the 3” resolution Multi-Error Removed 

Improved-Terrain DEM (MERIT-DEM) (Yamazaki et al., 2017) to assess the risk of noise-

causing topographic shadow near each river reach.  

2.2 Ice breakup & freeze-up date detection algorithm 

First, river-observing pixels are extracted from MOD09GQ.006 daily imagery. I create a 

river mask by using cumulative cost mapping, a tool that distinguishes river pixels from 

miscellaneous water pixels in the MOD44W.005 water mask. Cumulative cost mapping selects 

pixels in the water mask that either intersect river centerlines or border pixels which intersect 

ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/pna_index.tim
ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/epnp_index.tim
https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/data.csv
ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/seaice_analysis/
https://www.weather.gov/aprfc/breakupMap
https://www.weather.gov/aprfc/freezeUp
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centerlines within 5 km (Figure 2a). This river mask is then applied to each daily MODIS 

image. 

To remove pixels that are influenced by clouds, I use the ‘state_1km’ band from temporally 

coincident MOD09GA.006 observations. The band has sixteen bits that represent each pixel’s 

state. Bits related to clouds include cloud state (bits 0-1), cloud shadow (2), cirrus detected (8-9), 

an internal cloud algorithm flag (10), and a pixel adjacent to cloud flag (13). I find that the cloud 

state flag (bits 0-1) is sufficient for this analysis. Other bits often over-filter cloud-free pixels, 

making breakup and freeze-up detection challenging.  

Freeze-up and breakup timing are calculated on a reach-by-reach basis. Therefore, the 

haversine distance function (Sinnott, 1984) is used to match each river pixel to its nearest 

centerline. Reaches containing 10 or fewer pixels are not included in further analysis. For the 

remaining reaches on each date, I calculate the percentage of cloudy pixels and the hours of 

sunlight that the pixels experience based upon latitude and date (Hijmans et al., 2017). 

Observations with greater than 50% clouds are removed from analysis.  

Topographic and cloud shadows can also cause noisy reflectance values. To lessen the 

impact of this noise, the standard deviation of topography within 2 km of each reach’s centerline 

is calculated using MERIT-DEM. If the standard deviation of topography for a reach is greater 

than 200 m, I remove dates from analysis when pixels experience less than 10 hours of sunlight. 

For moderate topographic variation areas (100 m-200 m), observations with less than 8 hours of 

sunlight are removed. For all other reaches, observations with less than 6 hours of sunlight are 

filtered from analysis. Additionally, MODIS imagery in January in northern latitudes is often of 

poor quality due to polar night effects. Therefore, for pixels above 60° north, the month of 
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January is excluded from analysis. In future work, I will update methods to more accurately 

reflect low light conditions by removing dates within two weeks of December 21st.  

Once cloudy and shadow-prone pixels are removed, I create a reach-specific reflectance 

threshold to differentiate between ice and water pixels. Previous studies used the near-infrared 

(NIR) band to detect river ice because of the difference in reflectance between water and ice in 

the NIR wavelengths (Cooley & Pavelsky, 2016). The widths of many of the rivers in this study 

are near or below MODIS resolution. Therefore, many pixels are not pure water pixels because 

they contain vegetation. The NIR band is very sensitive to the presence of vegetation (Colwell, 

1974; Huete et al., 2002), which makes NIR band freeze-up and breakup detection challenging. I 

find that the red band is highly sensitive to the differences in reflectance between ice and water 

but is not nearly as sensitive to vegetation. To create a reach-specific threshold, I create a density 

plot of the red band reflectance of all the pixels that observe a reach during the months of 

January through July. The distribution of reflectance is bimodal during this time period, with ice 

pixels having high reflectance and water pixels having low reflectance. The reflectance of the 

antimode of the density plot becomes the reach-specific threshold (Figure 2b). To ensure 

accurate ice detection, I exclude cases in which the detected reflectance threshold is between 0.1 

and 0.5 and in which <10% of pixels fall into the ice category. These cases occur in extremely 

cloudy areas that lack observations of river ice during the winter and spring. 

Using this reach-specific threshold, I calculate the fraction of pixels ice covered for each 

reach on each date, referred to as the ice fraction. Occasionally, there are ice fraction spikes due 

to clouds that were not properly removed during the ice-free season or pits during the ice-

covered season caused by incorrectly filtered cloud shadows (Figure 2c). To filter out spikes and 
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pits, observations are removed on dates that have an ice fraction more than 25 percentage points 

different from both the previous and next consecutive observations.   

To calculate freeze-up and breakup dates for each year, I use an ‘ice year’ starting on day of 

year 213 (Aug 1st on non-leap years) to allow for freeze-ups that occur after the first of the new 

calendar year. For example, ice year 2013 refers to Aug 1st, 2012 through July 31st, 2013. I do 

not detect freeze-up for ice year 2000 because MODIS data only became available at the end of 

February in 2000. For all other ice years, I count the number of consecutive dates above an ice 

fraction of 0.2 (ice observations) and below an ice fraction of 0.2 (water observations). If there 

are fewer than 3 consecutive observations of ice in an ice year’s timeseries, a freeze-up date is 

not calculated. Otherwise, I identify the start of the first ice-covered period containing 3 or more 

observations. The calculated freeze-up date is the date halfway between the start of the first ice-

covered period and the previous open water observation (Figure 2c).  

To calculate the breakup date, I analyze only ice fraction observations occurring after the 

freeze-up date. Therefore, if no freeze-up date is calculated in a given ice year, no breakup date 

will be calculated. Additionally, breakup dates are not calculated for ice year 2018 because the 

data stops on December 31st, 2017. The breakup date is the date halfway between the end of the 

final ice-covered observation in each year and the next available open water observation. Once 

the freeze-up and breakup dates are calculated for all years for a given reach, I flag observations 

if the uncertainty in the measurements (the half-distance between the low-cloud observation 

preceding the ice on/off date and the next low-cloud observation following the ice on/off date) is 

greater than ±10 days (Figure 2c). Data flagged with high uncertainty is not used in the trend 

and pattern analysis described in following sections.  
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2.3 Evaluation methods 

I evaluate ice phenology time series using in situ observations from the USGS, WSC, and the 

NWS. This process is described as evaluation rather than validation because point-based field 

observations and reach-based remote sensing measurements are fundamentally mismatched in 

scale.  First, I compare MODIS-derived ice fractions to USGS daily discharge flags at 26 gage 

locations (Figure 1). This analysis is supplemented with observations from 128 WSC gages and 

calculate MODIS ice fractions for nearby Canadian river reaches. The USGS flags daily 

discharge as estimated (‘e’), which, for Alaskan rivers, usually corresponds to when the stage-

discharge relationship is impacted by ice or, occasionally, flooding (River Ice Processes, 2017). 

WSC flags daily discharge observations (‘B’) if the stage-discharge relationship is influenced by 

ice. However, WSC and USGS ice flags are not present for daily discharge observations of 

several rivers in certain years when the rivers definitively freeze (based upon geographic location 

and visual inspection of high-resolution Landsat 5-8 imagery and Sentinel-2 imagery). 

Therefore, to remove these observations from evaluation, MERRA-2 average daily surface air 

temperature is used to calculate the mean air temperature for the 30 days prior to each WSC or 

USGS observation. While river ice dates are strongly correlated to 0° isotherm days (Bennett & 

Prowse, 2009; Prowse et al., 2010), to be conservative, I filter out any USGS or WSC daily 

observations not flagged as ice when the previous 30 day mean air temperature was below -3° 

Celsius. Once the gage-derived ice flags have been filtered, ice flags are created for the daily 

MODIS ice fractions. Days with ice fractions larger than 0.25 are flagged as ice, and days when 

the ice fractions are less than 0.25 are flagged as water. This threshold is slightly higher than the 

0.2 ice fraction threshold used during the freeze-up and breakup detection process because I find 
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that a 0.25 ice fraction best matches with the USGS and WSC definitions of ice. On days with 

coincident observations, MODIS, USGS, and WSC ice flags are compared.  

Additionally, freeze-up and breakup date results are validated against visual observations of 

ice on and ice off from the NWS. The NWS does not georeference the location of ice 

observations. Therefore, I manually georeference observations using site descriptions provided 

by the NWS. Locations with high uncertainty are not used for evaluation. The NWS ice dataset 

contains several different dates for ice on and ice off including first ice, freeze-up, safe for man, 

safe for vehicle, ice moved, breakup, first boat, unsafe for man, and unsafe for vehicle. For this 

analysis, only NWS ‘breakup’ and ‘first ice’ dates are used. I choose the NWS ‘first ice’ date 

because the MODIS freeze-up date is the date when the ice fraction goes above 0.2, which is 

more similar in definition to first ice than total river freeze-up. There are 21 unique locations and 

102 total observations with both NWS ‘first ice’ and MODIS freeze-up observations. While the 

NWS ‘last ice’ date matches best with the MODIS definition of breakup, MODIS breakup dates 

are evaluated against NWS ‘breakup’ dates because there are approximately 4 times more 

observations of ‘breakup’ than ‘last ice’ since the year 2000. There 52 locations (612 total 

observations) that observe both NWS ‘breakup’ and MODIS breakup. MODIS ice on and off 

dates can occur on half days (eg. day of year 100.5), but NWS observations do not use fractional 

days. For comparison purposes, I use the floor of the MODIS breakup and freeze-up dates (eg. 

day of year 100.5 becomes day of year 100) when comparing to NWS data.  

2.4 Trend analysis 

I use the Regional Mann Kendall test (Helsel & Frans, 2006) and the seasonal Kendall slope 

estimator contained in the rkt package in R (Marchetto, 2017) to detect breakup date, freeze-up 
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date, and ice duration trends within each of the seven study regions. Reported p-values have been 

corrected for intra-block correlation (Libiseller & Grimvall, 2002).  

To understand the interannual variability of river ice, I analyze the correlation of freeze-up 

and breakup dates to the PDO, the PNA, the EPNP, and the SOI. Breakup and freeze-up dates 

are also compared to regional monthly sea ice area measurements from the Bering Sea, the 

Chukchi Sea, and the Beaufort Sea. For each of the seven study regions, I first calculate the 

yearly median freeze-up and breakup days of the ice year.  Next, Pearson’s correlation 

coefficient (Pearson, 1896), r, is evaluated between the timeseries of regional median freeze-up 

dates and the mean teleconnection indices and sea ice areas from March-April-May (MAM) 

earlier in the calendar year, June-July-August (JJA), and September-October-November (SON). 

For spring breakup, I assess the teleconnection and sea ice correlations from the previous 

calendar year’s SON, December-January-February (DJF), and the concurrent year’s MAM. 

While Pearson’s correlation is most commonly used for studying the relationship between 

teleconnections and river ice, Spearman’s correlation coefficient results (ρ; Spearman, 1904), 

which tests for monotonic correlations, are included in Appendix Figure 1 and Appendix 

Figure 2.  

3. Results  

3.1 Breakup and freeze-up patterns within individual rivers 

This paper presents the first large-scale detection of ice freeze-up and breakup dates on all 

rivers wider than 150 m in Alaska and the Canadian portion of the Yukon River Basin (Figure 

3). For six example rivers, the Yukon, the Koyukuk, the Porcupine, the Tanana, the Susitna, and 

the Colville, I show patterns of breakup and freeze-up progression through river systems, and 

how that progression changes from year to year (Figure 4 & Figure 5).  Breakup on the 
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Porcupine and the Susitna rivers is earlier near the mouth and progresses upstream (Figure 4c & 

Figure 4e). Yukon breakup progresses from upstream to downstream, except for reaches near 

the mouth of the river, which break up earlier (Figure 4a). For all rivers, spatial patterns of 

relatively early and relatively late breakup are similar each year. In contrast, spatial patterns of 

freeze-up are less spatially consistent through time. Spikes in freeze-up dates ~2000 km 

upstream on the Yukon River, ~290 km upstream on the Porcupine River, along the Tanana 

River, and near the mouth of the Colville River are likely caused by improperly filtered 

topographic and cloud shadows or freeze-up events that occurred during low light conditions.  

3.2 Reach-specific evaluation of daily ice flags, breakup dates, and freeze-up dates 

Evaluation of MODIS-derived ice flags against USGS and WSC discharge flags on 

individual reaches suggest that this method is quite accurate.  I observe an overall accuracy of 

0.97 and a kappa statistic of 0.93 when comparing MODIS ice flags to WSC ‘B’ flags, and an 

overall accuracy of .91 and a kappa statistic of 0.82 when compared to USGS ‘e’ flags. The 

months when breakup (April through June) and freeze-up (October and November) occur have 

the highest percentage of incorrect MODIS ice flags (Table 1). However, this pattern may be 

due in part to differences in ice flag definitions between MODIS flags, USGS flags, and WSC 

flags, which have the most substantial influence during transitional ice periods.  The USGS and 

WSC flag discharge observations when the discharge-stage relationship at a gage is affected by 

ice, whether because of shore ice, bedfast ice, or total ice cover. This distinction is based on 

imagery, water temperature, air temperature, and the stage record itself (River Ice Processes, 

2017). The USGS ‘e’ flag is also occasionally used when the stage-discharge relationship is 

influenced by factors other than ice. The ‘e’ flag is used during the summer, for example, during 

periods of flooding. Alternatively, WSC’s ‘B’ flag is exclusively associated with ice presence. 
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Because WSC’s ‘B’ flag is ice-specific, it makes sense that MODIS accuracy is higher when 

compared to WSC flags than to USGS flags.  

I also evaluate breakup and freeze-up dates on individual reaches against NWS observations 

of ‘first ice’ dates and ‘breakup’ dates. When compared to NWS ‘breakup’ dates, MODIS 

breakup has a mean absolute error (MAE) of 4.17 days, a root-mean-square error (RMSE) of 

6.29 days, and a mean bias error (MBE) of -2.85 days. For freeze-up, MAE is 10.46 days, RMSE 

is 22.44 days, and MBE is 6.60 days. However, two observations with large errors (> 75 days) 

caused by failures of the low light filter inflate MODIS freeze-up accuracy metrics. These 

observations are easily visually identifiable and will be removable with slight algorithm 

adjustments. The freeze-up error metrics excluding these outliers are 7.87 days (MAE), 11.03 

days (RMSE) and 3.93 days (MBE). 

3.3 Regional trends and correlations 

Results show that breakup dates, freeze-up dates, and total ice duration vary regionally 

(Figure 6). Rivers on the North Slope of Alaska freeze a median of 17.5 days earlier and break 

up a median of 9.5 days later than the West Central region, the region with the next longest ice 

duration. Compared to the Southeast, North Slope rivers freeze up a median of 29.5 days earlier 

and break up a median of 28 days later, leading to a total ice duration of almost two months 

longer on the North Slope. Intraregional variability in freeze-up dates (calculated as the standard 

deviation of all freeze-up observations within a region) decreases from 38.5 days and 26.3 days, 

respectively, in the Southeast and Southwest regions to 9.9 and 22.5 days in the North Slope and 

West Central regions. In terms of breakup, intraregional variability is lowest within the North 

Slope (10.6 days), SW Yukon (10.0 days), and West Central (8.9 days) regions, and highest in 

the Southeast (18.9 days) and Southwest (22.7 days) regions.  
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Despite differences in the magnitude of breakup and freeze-up days of the year between 

regions, yearly median breakup and freeze-up dates among regions are often correlated, 

suggesting common drivers of ice on/off (Table 2). Breakup timing in the SE Yukon, Central 

Yukon, and SW Yukon regions are all strongly correlated to each other (r = 0.70-0.79), as are the 

Southwest and Southeast regions (r = 0.71). Breakup timing in the three Yukon regions is also 

moderately to strongly correlated to the Southwest of Alaska (r = 0.68-0.87), but only breakup in 

the SE Yukon region is strongly correlated to breakup in the Southeast region (r = 0.71). The 

North Slope is the least correlated to other regions, with only a more moderate correlation to the 

other western ocean-bordering regions (West Central, r = 0.62 and SW Yukon, r = 0.51) during 

breakup and no statistically significant correlations during freeze-up. Across all other regions, 

freeze-up date correlations are almost always weaker than breakup date correlations. The 

strongest freeze-up correlations (r = 0.74-0.83) are found between the regions in southwest and 

central Alaska (Southwest, SW Yukon, and Central Yukon). Freeze-up timing in the Southeast 

and SE Yukon are also correlated (r = 0.67). Ice timing in the West Central region is correlated 

to breakup in all regions as well as freeze-up in all regions except the North Slope.  

The North Slope and West Central are the only two regions with statistically significant 

trends in breakup dates (-0.67 days/year at 95% confidence and -0.63 days/year at 90% 

confidence). West Central is the only region that shows a statistically significant trend in total ice 

duration (-1.10 days/year at 90% confidence). No regions have significant freeze-up date trends. 

While most of the regional trends are not statistically significant, statistically insignificant trends 

are all towards earlier breakup, later freeze-up, and shorter total ice duration (Table 3). 

Statistically significant long-term trends may be challenging to detect in this analysis because the 
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study period of eighteen years is too short and because interannual variability is high, 

particularly outside of the North Slope.  

One of the potential sources of this interannual variability in freeze-up and breakup dates is 

the influence of climatological teleconnections that impact temperatures, storm paths, and 

precipitation over Alaska and Canada (Bonsal & Prowse, 2003; Bieniek et al., 2012). Both PDO 

and SOI indices in SON are moderately to strongly negatively correlated to the following 

spring’s breakup dates in southern Alaskan regions (PDO: r = -0.59 to -0.77; SOI: r = 0.52 to 

0.64), suggesting that high fall PDO values and low fall SOI values may be predictive of earlier 

regional breakup the following spring. EPNP indices and PNA indices are only correlated to 

breakup in DJF (PNA) and MAM (EPNP and PNA), and only within one (EPNP in MAM; PNA 

in DJF) or two (PNA in MAM) regions (Figure 7). Breakup and freeze-up dates on the North 

Slope are also not correlated to any of the studied teleconnections except for a moderate 

correlation between breakup dates and the EPNP during the spring (r = -0.55), where higher 

EPNP indices are associated with earlier breakup.  

Freeze-up dates are much less frequently correlated to studied teleconnection indices (Figure 

8). During freeze-up, the EPNP in the preceding MAM is significantly moderately correlated to 

fall freeze-up dates in the Southwest (r = 0.60), Southeast (r = 0.57), and SW Yukon (r = 0.56) 

regions. High spring EPNP indices predict later fall freeze-up. Positive PDO values and negative 

SOI values in SON are also associated with later fall freeze-up dates in the Southwest (PDO: r = 

0.61; SOI: r = -0.48) and SW Yukon (PDO: r = 0.59; SOI: r = -0.47) regions.  

Another potential source of interannual variability in breakup and freeze-up is variability in 

sea ice area, which can influence precipitation over North America (Sewall, 2005; Kopec et al., 

2016). Expectedly, sea ice area is most strongly correlated to breakup during the spring (MAM). 
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Bering Sea ice is moderately correlated to breakup dates in the Southwest (r = 0.60) and 

Southeast (r = 0.56) regions. Chukchi Sea ice area is correlated (r = 0.64 – 0.66) to all regions 

bordering the Alaskan west coast (Southwest, SW Yukon, West Central, and North Slope). 

While these results suggest that correlation may be related to proximity between land regions and 

oceanic regions, Beaufort Sea ice area is moderately to strongly correlated to breakup dates in all 

Alaskan regions (r = 0.47 – 0.73). The correlation of freeze-up dates to sea ice area is much more 

localized, where freeze-up in the Southwest region significantly correlates only to Bering Sea ice 

area (r = -0.54), and Beaufort Sea ice area only significantly correlates to freeze-up on the North 

Slope (r = -0.48). Statistically significant correlations between sea ice and breakup dates are 

always positive, indicating an association between larger ice area and later ice breakup. 

Statistically significant correlations between sea ice area and freeze-up timing are always 

negative, indicating an association between larger ice area and earlier freeze-up dates.  

4. Discussion 

This study represents the first quantification of breakup and freeze-up dates on rivers 

narrower than 500 m and is the first large-scale detection of river ice freeze-up from space. 

Patterns in breakup and freeze-up timing can be used to understand and quantify drivers of 

spatial and temporal river ice variability.  

4.1 Local breakup and freeze-up drivers 

Analysis of river profiles allows the investigation of drivers in ice timing variability within 

individual rivers. For example, both the Susitna and Porcupine flow south from mountainous 

regions to lower elevations. This is likely why breakup in both rivers progresses from the mouth 

of the river towards upstream reaches, and why freeze-up progresses from the upstream reaches 

towards the mouth (Figure 4c & Figure 4e; Figure 5c & Figure 5e). This pattern contrasts with 
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many large Arctic rivers that are north-flowing, such as the Lena, the Mackenzie, the Ob’, and 

the Yenisey (Pavelsky & Smith, 2004; Cooley & Pavelsky, 2016). The Koyukuk is also a south-

flowing river, but patterns of breakup are much less linear than on the Porcupine and Susitna. 

Certain rapid changes in breakup on the Koyukuk seem to correlate with sharp changes in 

elevation (~475 km upstream and ~630 km upstream; Figure 4c). Further analysis of channel 

geomorphology, river curvature, slope, and air temperature may also provide insights on the 

drivers of local patterns of Koyukuk ice breakup. 

Ice phenology on the Yukon mainstem is influenced by tributaries; breakup occurs earlier 

and freeze-up later near the confluence with the Tanana River, a tributary from the south. 

However, neither breakup nor freeze-up dates are influenced by confluences with rivers flowing 

in from the north such as the Porcupine and the Koyukuk (Figure 4a; Figure 5a). Breakup dates 

on the Yukon are particularly interesting because breakup near the mouth is variable, which, 

upon visual inspection of MODIS imagery, seems to correspond to shore-fast sea ice presence at 

the mouth of the river. The north to south flowing portion of the Yukon (~250-475 km upstream 

on Figure 4a) breaks up earlier downstream and later upstream, suggesting latitudinal drivers of 

breakup timing. The rest of the Yukon breaks up earliest in the upstream reaches near Eagle, 

Alaska, which is relatively southern, and then progresses on a path northward, then back 

southward, and always downstream. The spatial similarity between relatively early and relatively 

late breakup reaches year to year within each river suggests that the control of breakup 

variability between years is predominately regional in nature.  

Overall, patterns in freeze-up are much less spatially consistent through time. There are also 

more reaches during freeze-up whose observations were removed due to high uncertainty. This is 

caused both by more frequent clouds during the freeze-up period and by freeze-ups that occurs 
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during low-light periods, especially in areas of high topographic variation, such as the middle 

reaches of the Susitna River (Figure 5e). Spikes in freeze-up dates on the Tanana river in 2003 

are caused by reaches that either do not freeze prior to onset of low-light conditions or because 

clouds or cloud shadows obscure the entire freeze-up process before low-light conditions take 

effect. Instead of the actual freeze-up, the algorithm detects the increase in reflectance towards 

the end of low light conditions, the observations of which are not properly removed during data 

filtering.  

4.2 Regional trends and correlations 

While long-term trends explain some of the variation in breakup and freeze-up dates, 

variability over the period studied here is predominately interannual. Positive PDO anomalies 

and negative SOI anomalies correlate to earlier breakup in southern and central Alaska even up 

to nine months prior to breakup events, indicating regional predictability. This predictability, if 

quantified further, could be useful to Alaskan residents and industry who rely on ice roads for 

transportation and shipping as well as for hunting and trapping (Stephenson et al., 2011) and may 

have implications for ice jam flood risk predictability due to the correlation between 

teleconnections, air temperature, and precipitation (Hartmann & Wendler, 2005). 

The relationship between spring PDO and spring breakup timing has previously been noted 

in Western Canada, Northwestern Canada, and Eastern Siberia (Pavelsky & Smith, 2004; Bonsal 

et al., 2006) as has the relationship between earlier breakup and El Niño conditions (which 

correspond to negative SOI anomalies) for several locations in Alaska (Bieniek et al., 2011) and 

Western Canada (Bonsal et al., 2006). Bieniek et al. (2011) suggests that winter El Niño 

conditions lead to fewer storms in the Gulf of Alaska, fewer clouds, and warmer air temperatures 

which causes earlier river ice breakup. The PDO is not correlated to breakup on the North Slope, 
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likely because North Slope air temperature is not significantly correlated to the PDO (Bieniek et 

al., 2012).   

Bienek et al. (2012) found that EPNP indices during the months of DJF and MAM have the 

strongest correlation to air temperature on the North Slope of Alaska. Consequently, the only 

statistically significant correlation between a teleconnection index and North Slope breakup 

timing is to the EPNP during MAM. MAM EPNP is also moderately correlated to fall freeze-up 

dates in the southern regions of Alaska, which is unexpected because EPNP is rarely correlated 

to air temperature outside of the North Slope (Bieniek et al., 2012).   

I also observe a positive correlation between sea ice area in the Bering Sea during SON, DJF, 

and MAM, and southern Alaska breakup timing. This indicates that larger sea ice areas in the fall 

and winter are predictive of later river ice breakup timing in the following spring in southern 

Alaska. I see moderate positive correlations between breakup timing and Chukchi sea ice area in 

DJF, which increase in strength during the months of MAM along the entire west coast of 

Alaska. In MAM, there are statistically significant positive correlations between river ice 

breakup in all regions and ice area in the Beaufort Sea. This pattern of correlations could be 

related to sea-ice driven changes in precipitation, where more sea ice results in less Alaskan 

precipitation (Kopec et al., 2016; Sewall, 2005) which causes later breakup. However, this 

explanation is counter to analysis by Bieniek et al., (2011), who found that increases in 

precipitation cause later breakup in southern Alaska. More likely is that patterns controlling air 

temperature in Alaska and the North Pacific Ocean influence both sea ice and river ice breakup, 

hence the positive correlation between the two. For example, SOI is significantly correlated to 

both river ice breakup and sea ice area in the Bering Sea (Niebauer, 1988), where negative SOI 

anomalies 9-12 months in advance precede warmer air temperatures and smaller sea ice areas 
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(Niebauer, 1988).  Alternatively, sea ice loss is thought to be a driver of increased air 

temperatures in Alaska (Serreze et al., 2007; Lawrence et al., 2008; Deser et al., 2010) as well as 

regional changes in precipitation amount and type (Deser et al., 2010). Increased air temperatures 

associated with predicted sea ice loss may cause future later freeze-ups and earlier breakups in 

Alaskan rivers. The future direction and magnitude of precipitation changes due to sea ice loss is 

not yet well constrained in Alaska (Deser et al., 2010).  

4.3 Uncertainties 

There are several potential sources of error in our observations. First, uncertainties in freeze-

up and breakup date calculations caused by cloudy imagery (mean/median freeze-up uncertainty: 

±8.4/3.5 days; mean/median breakup uncertainty: ±3.2/2 days; Figure 9) can propagate through 

to trend and correlation analysis. However, this error is reduced by analyzing data regionally as 

opposed to on a reach-by-reach basis. I also acknowledge the temporal limitations of studying 

climate patterns over an eighteen-year time period. In the future, correlations could be 

recalculated as more MODIS data becomes available. Similarities between Pearson’s correlation 

coefficients (Figure 7 & Figure 8) and Spearman’s correlation coefficients (Appendix Figure 1 

& Appendix Figure 2), particularly between fall PDO and SOI indices and spring breakup dates, 

strengthens my confidence in these relationships.  

Another potential source of error is the stationary water mask used to identify river-observing 

pixels, which does not account for the movement of Arctic rivers over the study period. The 

USGS and NASA recently released the MOD44W.006 water mask product, which is a yearly 

version of the product used in this study.  However, water masks for 2016 and 2017 are not yet 

available on Google Earth Engine. Future analyses should incorporate this updated product as it 

becomes available. Lastly, in certain locations, freeze-up timing can be impacted by topographic 
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shadows not removed during the data filtering process. However, these errors are uncommon and 

are easily manually identifiable in the original MODIS imagery.  

5. Conclusion 

These results provide the first reach-scale detection of river ice freeze-up dates, breakup 

dates, and total ice duration on Alaskan river reaches wider than 150 m. Preliminary analyses of 

river profiles demonstrate the utility of this dataset to assist in identifying localized drivers of 

breakup and freeze-up timing. While long-timescale trends in freeze-up and breakup dates are 

rarely detected, it is unclear if the lack of trends is caused by river ice processes that are not 

changing in response to climate warming or if the timescale of this study is too short to capture 

these patterns. However, south of the Brooks Range, much of the interannual variability in ice 

timing is explained by teleconnections, particularly the PDO and the SOI, whose fall indices may 

be predictive of regional spring breakup timing. Correlations between freeze-up timing and 

teleconnections are generally weaker and less persistent throughout the entire state of Alaska. 

Future analyses should use this dataset in conjunction with geomorphological data to better 

constrain localized drivers of ice timing and should work to quantify the predictive power of fall 

teleconnections for regional spring breakup. Ice detection methods presented in this paper are 

expandable to pan-Arctic rivers, and such analysis would improve understanding of patterns and 

drivers of river ice in a changing Arctic environment.   
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FIGURES 

Figure 1. Map of Alaskan river reaches with median widths wider than 150 m. USGS gage 
stations available for validation are shown in red. The number of reaches per study region in 
which ice timing was able to be analyzed is also listed.  

 

  



 

24 

Figure 2: a. A demonstration of cumulative cost mapping using GRWL river centerlines (red) to 
distinguish river pixels (blue) from miscellaneous water pixels (green) in the MOD44W.005 
water mask. The bottom right corner of image is ~10 km downstream from Nenana, AK. The 
arrow shows the direction of flow of the Tanana River. The black box contains the reach used in 
b. and c. b. An example density plot of red band reflectance values for January through July 
2000-2017 from the reach highlighted in a. The dashed black line represents the surface 
reflectance threshold used to classify pixels in that reach as either water or ice. c. An example ice 
fraction time series for the same reach in ice year 2016, with spikes and pits shown in red, the 
freeze-up date in teal, and the breakup date in pink. Uncertainties in ice timing dates due to 
missing cloudy data are shown by black horizontal error bars. The low-light period is highlighted 
in gray. 
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Figure 3: a. Median freeze-up day of the ice year. b. Median breakup day of the ice year. 
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Figure 4: a-f. Ice breakup day of the ice year (DOY) for the (a) Yukon, (b) Koyukuk, (c) 
Porcupine, (d) Tanana, (e) Susitna, and (f) Colville rivers. Gray areas represent reaches with 
topographic-shadow risk where the standard deviation of topography within 2 km of the 
centerline is greater than 100 m. On each plot, 0 km refers to a. 10 km downstream of Mountain 
Village Airport, AK. b. The mouth of the Koyukuk River. c. The mouth of the Porcupine River. 
d. The mouth of the Tanana river. e. ~10 km downstream of the Yetna River confluence with the 
Susitna River. f.  ~40 km upstream from the mouth of the Colville River.  
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Figure 5: a-f. Same as Figure 4 except for freeze-up day of the ice year (DOY).  
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Figure 6: a. Regional timeseries of median breakup and freeze-up days of the ice year. b. 
Regional median total ice duration.  
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Figure 7: Pearson’s correlation coefficients between regional median breakup dates, mean 
teleconnection indices, and regional mean sea ice areas during SON, DJF, and MAM. 
Statistically significant (p-value <0.05) correlations are shown with a black outline.  
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Figure 8: Pearson’s correlation coefficients between regional median freeze-up dates, mean 
teleconnection indices, and regional mean sea ice areas during MMA, JJA, and SON. 
Statistically significant (p-value <0.05) correlations are shown with a black outline. 
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Figure 9: Median uncertainty caused by missing cloudy data in a. freeze-up and b. breakup.  
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TABLES 

Table 1: Total number of coincident WSC/USGS and MODIS observations and the percentage 
of observations where MODIS ice flags disagree with WSC/USGS ice flags. 

 WSC USGS 
 No. of coincident obs. % incorrect No. of coincident obs. % incorrect 
January 5896 1.5 116 1.7 
February 8033 0.4 1847 0.9 
March  10154 1.6 3165 0.7 
April 12151 8.0 2939 11.8 
May 13991 7.3 2999 24.1 
June 15849 2.6 3157 5.8 
July 17881 0.3 2753 4.5 
August 15924 0.1 2510 2.4 
September 13933 0.1 2352 3.4 
 October 9520 4.1 1907 19.8 
November 7190 13.5 1155 18.7 
December 5908 5.8 55 0 

 
Table 2: a. Pearson’s correlation coefficients between median breakup timeseries for each 
region. b. same as a. but for freeze-up dates. 

a. Breakup Correlation Coefficients 

 
North 
Slope 

West 
Central 

SW 
Yukon 

Central 
Yukon 

SE 
Yukon Southwest Southeast 

North Slope               
West Central 0.62**             
SW Yukon 0.51** 0.89**           
Central 
Yukon 0.29 0.76** 0.79**         

SE Yukon 0.27 0.60** 0.70** 0.73**       
Southwest 0.43* .67** 0.87** 0.68** 0.82**     
Southeast 0.33 0.49** 0.49** 0.35 0.71** 0.71**   

b. Freeze-up Correlation Coefficients 

 
North 
Slope 

West 
Central 

SW 
Yukon 

Central 
Yukon 

SE 
Yukon Southwest Southeast 

North Slope               
West Central 0.35             
SW Yukon 0.02 0.65**           
Central 
Yukon -0.05 0.45* 0.80**         
SE Yukon -0.26 0.45* 0.56* 0.31       
Southwest 0.26 0.68** 0.83** 0.74** 0.43*     
Southeast 0 0.51** 0.65** 0.33 0.67** 0.64**   
Pearson’s r:  * 0.1 significance, ** 0.05 significance 
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Table 3: Kendall’s τ and Sen’s seasonal slope estimator for freeze-up, breakup, and total ice 
duration within each of the study regions.  
 Freeze-up Breakup Ice duration 
 Kendall’s 

τ 
Slope 

(days/year) 
Kendall’s 

τ 
Slope 

(days/year) 
Kendall’s 

τ 
Slope 

days/year 
North Slope 0.13 0.42 -0.32** -0.67 -0.17 -0.67 
W Central 0.18 0.50 -0.28* -0.63 -0.28* -1.10 
SE Yukon 0.04 0.08 -0.20 -0.43 -0.18 -0.77 
Central Yukon 0.11 0.30 -0.16 -0.31 -0.10 -0.42 
SW Yukon 0.17 0.50 -0.22 -0.50 -0.19 -0.93 
SW Alaska 0.12 0.50 -0.17 -0.50 -0.16 -1.00 
SE Alaska 0.02 0.07 -0.15 -0.46 -0.09 -0.50 
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APPENDIX: SPEARMAN’S CORRELATION 

Appendix Figure 1: Spearman’s correlation coefficients between regional median breakup 
dates, mean teleconnection indices, and regional mean sea ice areas during SON, DJF, and 
MAM. Statistically significant (p-value <0.05) correlations are shown with a black outline. 
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Appendix Figure 2: Spearman’s correlation coefficients between regional median freeze-up 
dates, mean teleconnection indices, and regional mean sea ice areas during MAM, JJA, and 
SON. Statistically significant (p-value <0.05) correlations are shown with a black outline.  
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