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ABSTRACT

Andrew Christopher Loheac: Computational Techniques to Address the Sign Problem in Non-Relativistic
Quantum Thermodynamics

(Under the direction of Joaquín E. Drut)

Understanding quantum many-body physics is crucial to physical systems throughout condensed matter,

high-energy, and nuclear physics, as well as the development of new applications based upon such systems.

Stochastic techniques are generally required to study strongly-interacting quantum matter, but are frequently

hindered by the sign problem, a signal-to-noise issue which breaks down importance sampling methods for

many physical models. This dissertation develops several novel stochastic nonperturbative and semi-analytic

perturbative techniques to circumvent the sign problem in the context of non-relativistic quantum gases

at finite temperature. These techniques include an extension to hybrid Monte Carlo based on an analytic

continuation, complex Langevin, and an automated perturbative expansion of the partition function, all of

which use auxiliary field methods. Each technique is used to compute first predictions for thermodynamic

equations of state for non-relativistic Fermi gases in spin-balanced and spin-polarized systems for both

attractive and repulsive interactions. These results are frequently compared against second- and third-order

virial expansions in appropriate limits. The calculation of observables including the density, magnetization,

pressure, compressibility, and Tan’s contact are benchmarked in one spatial dimension, and extended to two

and three dimensions, including a study of the unitary Fermi gas. The application of convolutional neural

networks to improve the efficiency of Monte Carlo methods is also discussed.
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CHAPTER 1: Introduction

The many-body system, both in the context of classical and quantum physics, has been a long-standing

problem in a variety of fields. The classic n-body problem is a gravitational system of orbiting massive

bodies according to a pairwise 1/r central potential, which requires the use of numerical tools to exactly solve

the equations of motion beyond the two-body problem [7]. An understanding of the many-body problem

in the context of quantum mechanics is crucial to a vast number of physically relevant systems, particularly

throughout nuclear and condensed matter physics. Gluons form colorless bound states to produce hadrons,

protons and neutrons interact to form nuclei, and electrons live on lattices of ions to provide unique materials,

such as graphene. Tackling these challenges proves to be especially fruitful: the study of the quantum-many

body problem illuminates the properties of how the universe’s building blocks interact to create the dynamical

phenomena around us.

Given this challenge of finding solutions to the quantummany-body problem, the development of numer-

ical methods is a crucial pillar to supporting this track of research. QuantumMonte Carlo (QMC) techniques

are used across nuclear [8], condensed matter [9], and high-energy physics [10] to nonperturbatively probe

the collective behavior of interacting many-body systems in the quantum limit. Extracting quantitative infor-

mation about the thermodynamics of these systems is notoriously difficult, or even practically impossible,

in particular regimes of interest. For example, systems with a finite chemical potential in the context of

quantum chromodynamics (QCD), imbalanced systems of ultracold fermions, and particular kinds of phys-

ical interactions pose a significant challenge to QMC methods. The most general roadblock preventing the

study of these rich systems is the appearance of the sign and signal-to-noise problems which cause stochastic

methods to break down and provide incorrect, inaccurate, or diverging results. At its core, the sign problem

(arguably directly related to the signal-to-noise problem) results from a non-positive probability measure

used in the importance sampling of the highly-dimensional integrand that is to be evaluated stochastically.

Over the past several decades, significant work has been put into developing theoretical and algorithmic

techniques to eliminate, or at least mitigate, the sign problem in a variety of contexts across many areas of

physics; however, it has been strongly suggested that the sign problem is NP-hard, and therefore a general

solution does not exist [11], and to search for one would prove fruitless. Therefore, more efficient and robust
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techniques to study many-body systems with limited computational resources are of general interest. The

development of new techniques to overcome the sign problem in the context of non-relativistic quantum

many-body systems will be the topic of this dissertation.

Section 1.1: Dissertation overview

In the present dissertation, we will focus on the development and testing of novel nonperturbative

(stochastic) and semi-analytic perturbative techniques to calculate thermodynamic observables for non-

relativistic systems normally plagued by a sign problem. In particular, we choose to study a system

of fermions under both attractive and repulsive contact interactions at finite temperature; the variant of

the system in one spatial dimension is generally known as the Gaudin-Yang model [12, 13]. The one-

dimensional system is studied extensively here in light of benchmarking new techniques, but studies are

extended to higher dimensions in the final chapter. The methods we have implemented include extensions to

the more conventional hybrid Monte Carlo technique (which is a stochastic method based on the Metropolis-

Hastings algorithm), the complex Langevin method (which permits the study of systems where the fermion

matrix is complex, but drops the Metropolis algorithm for stochastic noise), and a novel perturbative method

performed on the lattice. All of these techniques were used to study thermodynamic quantities of strongly-

interacting fermions, including computing the density and pressure equations of state, virial coefficients,

the isothermal compressibility, and Tan’s contact. These observables are frequently compared to the virial

expansion, which becomes valid in the semiclassical regime. To the best of our knowledge, the results that

we have published, including those for repulsively-interacting and spin-polarized systems, are not previously

known, even though these can be considered classic many-body condensed matter systems.

The work conducted over the course of the doctoral program for this dissertation has resulted in the

following peer-reviewed publications, which form the basis of most of the upcoming chapters.1 A footnote

on the first page of each such chapter indicates the publications it is based upon. Quite often, the text in the

dissertation provides additional discussion or details that were not available in the original manuscript.

1. M. D. Hoffman, P. D. Javernick, A. C. Loheac,W. J. Porter, E. R. Anderson, and J. E. Drut,Universality

in one-dimensional fermions at finite temperature: Density, pressure, compressibility, and contact,

Physical Review A 92, 013631 (2015)

1As an author of the listed manuscripts, permission is granted by the American Physical Society to include these articles in whole
or in part within this dissertation. Note that where appropriate, © American Physical Society in the year of publication.
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2. Andrew C. Loheac, Jens Braun, Joaquín E. Drut, and Dietrich Roscher, Thermal equation of state of

polarized fermions in one dimension via complex chemical potentials, Physical Review A 92, 063609

(2015)

3. M. D. Hoffman, A. C. Loheac, W. J. Porter, and J. E. Drut, Thermodynamics of one-dimensional SU(4)

and SU(6) fermions with attractive interactions, Physical Review A 95, 033602 (2017)

4. Andrew C. Loheac and Joaquín E. Drut, Third-order perturbative lattice and complex Langevin

analyses of the finite-temperature equation of state of non-relativistic fermions in one dimension,

Physical Review D 95, 094502 (2017)

5. Andrew C. Loheac, Jens Braun and Joaquín E. Drut, Polarized fermions in one dimension: density

and polarization from complex Langevin calculations, perturbation theory, and the virial expansion,

Physical Review D 98, 054507 (2018)

6. Lukas Rammelmüller, Andrew C. Loheac, Joaquín E. Drut, and Jens Braun, Finite-Temperature

Equation of State of Polarized Fermions at Unitarity, Physical Review Letters 121, 173001 (2018)

The following article was published during the program, but falls outside the scope of this dissertation:

1. L. Rammelmüller, W. J. Porter, A. C. Loheac, and J. E. Drut, Few-fermion systems in one dimension:

Ground- and excited-state energies and contacts, Physical Review A 92, 013631 (2015)

Section 1.2: Why are non-relativistic systems interesting?

ModernQMC techniques are famous for theirwidespread use in lattice quantumchromodynamics (QCD),

where the relativistic field theory of quarks and gluons are placed on a lattice such that they can be studied

on a computer. The application of QMC to the non-relativistic counterpart in condensed matter physics

is equally important, as non-relativistic systems of fermions and bosons are prevalent in many physical

phenomena. A few of the foremost examples include ultracold atomic clouds, which may be controlled via

Feshbach resonances and can exhibit interesting phase transitions and superfluid states.

As previously mentioned, the physical systems we will be examining in this dissertation will be of

non-relativistic particles with a quadratic dispersion relation. However, most of the fundamental algorithms

and techniques we apply were born in the context of relativistic lattice field theory (e.g., hybrid Monte

Carlo), and still bear important connections with the methods we develop further in our research. Although
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the stochastic evaluation of path integrals is common to both relativistic and nonrelativistic theories, an

important distinction between the two formalisms is the construction of differing fermion actions and the

computational demand required to work with them. In this context, the study of nonrelativistic systems offers

a more tractable challenge to benchmark new numerical algorithms as they are further developed, which can

later be transferred to more difficult situations. In the relativistic case, one must be most concerned with

maintaining local gauge invariance and consequences of breaking continuous rotational symmetry when

discretizing the theory onto a lattice, which leads to introduction of plaquettes and the resulting Wilson

gauge action [14]. This naturally leads to the construction of a gauge action, which by itself is a rich yet

interesting theory to study. For further reading on QMC techniques for relativistic theories, we point the

reader to texts [15, 16] on the subject.

Section 1.3: Brief survey of quantum many-body methods

In addition to the methods to address the sign problem presented in the following chapters, there

are of course a whole host of techniques that others have used across the disciplines mentioned above.

However, most of these methods are only applicable to particular models or dimensionality, are restricted to

a particular regime of parameter space, or are not ab initio techniques, or methods with start from a well-

defined Hamiltonian and systematically proceed without limiting assumptions. Additionally, many more

tractable analytical solutions exist for systems at zero temperature (studies of the ground state) compared

to systems at finite temperature. Systems in one spatial dimension are generally more soluble by analytic

means compared to higher dimensions, if such a technique can be found. We will, however, provide a very

brief survey of some of these additional methods for a handful of situations in the present chapter; it should

be noted that overview is far from exhaustive.

The classic problem studied in quantum chemistry and condensed matter are properties of quantum

systems close to “zero-temperature”, or cases where the ground-state of the system dominate the dynamics

of the system. Although this type of analysis can provide many key properties, such as electronic structure

and spectroscopy information, and may be sufficient in a wide array of situations, finite temperature can have

a drastic effect on the behavior of particular systems.

The Bethe ansatz, first proposed by Hans Bethe in 1931 ([17], see also [18–20] for an introduction to

the method) is capable of providing an analytic solution to the one-dimensional system at zero temperature.

The method was applied to a system of spin-1/2 fermions in the Heisenberg model, and predicted critical
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properties of ferromagnetism. An extension of this method to systems at finite temperature, known as the

thermodynamic Bethe Ansatz (TBA) [21] was introduced, but the method results in an infinite tower of

coupled partial differential equations that must at some point be truncated, is difficult to work with, and is

restricted to one spatial dimension. Nevertheless, it has been applied to a number of models of interest,

including a number that are on the lattice [22–24]. Since the Bethe ansatz and its thermodynamic counterpart

can, in principle, study a whole host of one-dimensional models, many might consider the 1D interacting

system to be solved; however, many such studies remain unexplored which must overcome limitations of this

analytic method, particularly for systems at finite temperature. Some of these previously unknown results in

one spatial dimension are presented in this dissertation.

Beyond analytic techniques, numerical methods have also been developed to extract properties of systems

at zero temperature, such as the ground-state energy of a strongly interacting system. Perhaps the most widely

known is the Hartree-Fock method [25], which is applicable to a wide range of many-electron atomic and

molecular systems, and is a popular starting point in many quantum chemistry and solid state [26] problems.

A number of Monte Carlo methods exist to study systems in the ground state, including diffusion Monte

Carlo (DMC), Green’s function Monte Carlo (GFMC) [27] and variational Monte Carlo (VMC) [28], and

auxiliary field Monte Carlo (AFMC). These techniques have been used to compute various interesting

physical quantities, such as ground-state and low-lying excited state energies of nuclei [29–34], estimates

on isospin-mixing matrix elements [34], and the first calculation of the matrix elements for neutrinoless

double beta decay for light nuclei [35]; many of these calculations have extraordinary agreement with

experiments [8].

These Monte Carlo and other ab initio methods are capable of studying properties of light nuclei, but

begin to break down as the number of nucleons becomes too large. Density functional theory (DFT) [36–

38], although not ab initio, has proved successful in attacking even the largest nuclei, and has recently been

applied to Fermi gases [39]. Mean-field theory is frequently leaned upon when ab initio calculations become

unwieldy, but often have difficulty capturing important statistical features of interacting systems. A host of

other techniques have been developed to address the infamous sign problem, but each generally have their

own advantages and limitations. For instance, Lefschetz thimbles [40–44] involves an evolution of manifolds

into the complex plane, over which a new representation of the path integral can be evaluated. The method

of fermion bags [45–48] seeks to rewrite the partition function as a sum over determinants over a smaller

subspace, which can allow the algorithm to study vastly larger lattice sizes. Bosonization seeks to recast a
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fermionic theory into one written in terms of bosons. As can be seen, there exists a small zoo of techniques

to address studies of interacting many-body quantum system. No single method has risen as superior to all

others, as each appears to have their own niche of strengths. New techniques and improvements on old ones

constantly appear on the market, with perhaps the most modern additions involving applications of machine

learning.

Section 1.4: Experimental counterparts

The condensed matter systems we have chosen to study in this dissertation are by in large accessible

systems that may be studied experimentally using ultracold atomic gases in laboratories today with an

extraordinary degree of precision. Although theoretical developments in some respects remain a few steps

ahead of current experimental techniques, there are some works with which we are able to compare to

directly, including measurements of the equation of state for unpolarized fermions at unitarity [4] and in

two spatial dimensions [49]. However, the experimental study of ultracold atomic gases and their superfluid

states spans back to experiments of helium-4 [50, 51] and up to the first production of a Bose-Einstein

condensate with rubidium-87 [52]. More recently, ultracold fermionic condensates have been realized in the

laboratory [53–57]. Although outside the context of this dissertation, experimental capabilities have gone as

far as determining the entanglement entropy in quantum gases [58], which was theoretically explored [59–62]

by our research group using similar stochastic techniques for interacting many-body systems.
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CHAPTER 2: Foundations of Interacting Quantum Systems

The overarching goal of the work in this dissertation is to study the thermodynamic properties of

interacting many-body quantum systems using several different computational approaches. In particular,

we often choose to compute equations of state, which although were not previously known for a number of

physical systems studied here, help to quickly benchmark and understand the behavior of newmethods. These

properties at finite temperature are computed from a partition function in the grand-canonical ensemble of

the system, which always serves as a starting point for our analysis. The bulk of the analytic work is in

rewriting the partition function in a tractable form from which physics can be extracted with reasonable

resources. In this chapter, we will overview such a recasting of the partition function in terms of auxiliary

fields, and look at well-established Monte Carlo techniques for computing observables stochastically. We

will also discuss the so-called sign problem, which causes Monte Carlo methods to break down for many

systems of interest, and therefore motivates the development of the techniques in this work.

The analytic starting point for computing thermodynamic properties by all the techniques presented in

this work is the grand-canonical partition function for each particular system of interest. This partition

function establishes an ensemble of states for a system that is in thermodynamic equilibrium with heat and

particle reservoirs. The typical state variables of this ensemble are the temperature T (which will typically

appear in our formulations as the inverse temperature β = 1/kBT , where we take the Boltzmann constant

kB = 1), the spatial volume V , and the chemical potential µ. For a quantum mechanical system governed by

a Hamiltonian Ĥ, the grand-canonical partition function is given by a trace over the Boltzmann weights,

Z(µ,V,T) = Tr
[
e−β(Ĥ−

∑
i µi N̂i )

]
(2.1)

where the sum in the exponent is over any number of particle species with corresponding chemical potentials.

Throughout the following chapters, we will consider spin-1/2 fermions in situations where the chemical

potentials for spin-up and spin-down flavors are equal (the spin-balanced case), and where µ↑ , µ↓ (the

polarized case). We will also look at both cases across dimensions, focusing first on developing techniques

in one dimension, and then expanding to two and three dimensions.
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Section 2.1: Equations of state for noninteracting quantum gases on the lattice

Before moving to computing equations of state for interacting many-body systems, we should first

overview a derivation for the pressure and density equations of state for the noninteracting equivalents.

These expressions will frequently enter into our analyses later on, as we typically present thermodynamic

quantities for interacting systems in units of the noninteracting counterparts.

For the moment, let us consider the simple system of non-relativistic, unpolarized fermions1 on the

lattice; shortly we will extend the result to polarized fermions. The Hamiltonian for a free system is simply

given as the kinetic energy,

Ĥ =
p̂2

2m
, Ĥ |k〉 = εk |k〉, (2.2)

where the momentum operator p̂ may be extended to any number of dimensions, and the eigenvalues of the

Hamiltonian are labeled as εk . Evaluating the partition function in the grand-canonical ensemble for ideal

fermions is straightforward in the occupation number basis nk = {n0, n1, n2, . . . n∞} for each corresponding

single-particle energy level εk . If we now consider spin-1/2 fermions which come in two flavors of types

s =↑, ↓ (such that µ = µ↑ = µ↓ and N = N↑ + N↓), then for spin s,

Zs =

∞∑
N=0

∑
{nk }

exp

[
−β

(∑
k

nkεk − µN

)]
, (2.3)

where the second sum is over the set {nk} that satisfies the total particle number N , and the sum appearing

in the exponent is the total energy of all particles in the system (where we have nk particles of energy εk).

By defining the fugacity z ≡ eβµ,

Zs =

∞∑
N=0

∑
{nk }

∏
k

(
znk e−βnk εk

)
(2.4)

for which we may rearrange the various sums in the above to give that

Zs =
∏
k

[∑
nk

znk e−βnk εk
]
. (2.5)

1For a more exhaustive description of ideal quantum gases and the present derivation outside the context of a lattice, see Chapter 6
of Ref. [63].
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For fermions in a given state |k〉 with energy εk , the occupation number of that state may only be either

nk = 0 or nk = 1; as such, the partition sum reduces to (the above may be computed for bosons by completing

the geometric sum):

Zs =
∏
k

[
1 + ze−βεk

]
. (2.6)

If we consider that the system is placed on a one-dimensional spatial lattice of extent Nx , then the product

is taken over the discrete set k = −Nx/2,−Nx/2 + 1, . . . , Nx/2 − 1, Nx/2 − 1 where εk = (2πk/Nx)
2/2m.

The total partition function for both spins is of course the product over such spins, Z = Z↑Z↓. In order to

compute thermodynamic observables, we are generally interested in lnZ which is given by

lnZ = 2

Nx/2−1∑
k=−Nx/2

ln

[
1 + z exp

(
−β

2m

[
2πk
Nx

]2
)]
. (2.7)

The factor of two in front of the sum arises from the fact that the energy and chemical potential contributions to

the for the second spin degree of freedom may be inserted additively in the exponential weight. Additionally,

note that in future references to this expression, we will generally always set the fermion mass m = 1. The

noninteracting pressure P0 is directly related to lnZ,

P0 =
2

βNd
x

Nx/2−1∑
k=−Nx/2

ln

[
1 + z exp

(
−β

2m

[
2πk
Nx

]2
)]
, (2.8)

(where Nd
x is the spatial d-dimensional volume), and the noninteracting density n0 is related by a derivative

with respect to µ,

n0 =
∂ lnZ

∂(βµ)
=

2

Nd
x

Nx/2−1∑
k=−Nx/2

1

1 + z exp

(
β

2m

[
2πk
Nx

]2
) . (2.9)

If we wish to compute the noninteracting density n0 in the continuum limit in one spatial dimension (taking

the infinite volume limit while maintaining a constant finite density), we may perform a change of variables

in Eq. (2.8) to a dimensionless quantity, x = βp2/2m, and consider that the pressure in the continuum is
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P0λ
3
T =
√

16πI0(z) where λT ≡
√

2πβ is the thermal de Broglie wavelength and

I0(z) =
∫ ∞

−∞

dx ln(1 + ze−x
2
). (2.10)

Correspondingly, the density in the continuum limit is related to I0(z) by

n0λT =
2z
√
π

∂I0(z)
∂z

. (2.11)

We will use these expressions for the noninteracting system in cases where a Monte Carlo calculation

demonstrates convergence to the continuum limit. In the case of a two-component polarized gas, for which

we will analyze the interacting case in this thesis, we modify the chemical potential for one species by a

difference h such that µ↑ = µ̄ + h and µ↓ = µ̄ − h, where µ̄ is the average chemical potential of the system,

µ̄ = (µ↑ + µ↓)/2. By modifying the above derivation, it is straightforward to see that for the pressure P0,

P0 =
1

Nd
x

©«
Nx/2−1∑
k=−Nx/2

ln(1 + eεk−µ̄−h)ª®¬ ©«
Nx/2−1∑
k=−Nx/2

ln(1 + eεk−µ̄+h)ª®¬ (2.12)

where εk = 2πk/Nx; the density for the polarized case still follows from Eq. (2.11).

Section 2.2: Auxiliary field representation of the partition function

In order to study the systems we are interested in using a stochastic technique, we must rewrite the grand-

canonical partition function in a form that is tractable; namely, we must decompose the two-body interaction

into a sum over one-body operators. We perform this change by the means of a Hubbard-Stratonovich

transformation, where we introduce an auxiliary field σ which exists in the spatial and temporal dimensions

of the system. We will provide an overview of this transformation in the following section.

Recall that the grand-canonical partition function for a general system of quantum particles is given by

the trace over Boltzmann weights,

Z = Tr
[
e−β(Ĥ−µN̂ )

]
, (2.13)

where β = 1/kBT , Ĥ is the Hamiltonian operator, µ is the chemical potential, and N̂ is the particle number

operator. In order to study the thermodynamics of a system governed by a particular Hamiltonian in the most

straightforward way, one must transform the operator Ĥ to a basis in which it is diagonal, which is a highly
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non-trivial task for the vast majority of interesting systems. In the case of interacting systems, the kinetic

and potential energy operators do not commute ([T̂, V̂] , 0) which implies each N-particle subspace must

individually be diagonalized. In addition, the size of the applicable single-particle basis and the number

of degrees of freedom are typically very large. As such, most studies of quantum many-body systems turn

to alternate routes that rewrites the problem in a form that is tractable by analytical or numerical means.

In the majority of the approaches we use in the following work, we choose the rewrite the grand-canonical

partition function as a path integral over a continuously-varying auxiliary field using a Hubbard-Stratonovich

transformation.

Our natural goal for this problem is not necessarily to compute the partition functionZ itself per se, but

rather to compute physical observables for the Hamiltonian of interest, which can analytically be computed

by taking derivatives of the partition function with respect to various sources, e.g. for an inserted source j

where jÔ is added to the Hamiltonian,

〈Ô〉 =
δ lnZ( j)

δ j

����
j=0

=
1

Z

δZ( j)
δ j

����
j=0

, (2.14)

or one may follow the more conventional route of numerically computing the expectation value of some

observable Ô via,

〈Ô〉 =
1

Z
Tr

[
Ôe−β(Ĥ−µN̂ )

]
. (2.15)

However, computing this in a naive manner by taking a complete trace over the Fock space is generally

an intractable task; our present goal is to rewrite the problem in a form such that 〈Ô〉 can be reasonably

computed. The first step is to consider the Trotter-Suzuki factorization [64] of the transfer matrix Tβ ≡ e−βĤ ,

such that we discretize imaginary time (which is named as such if we consider it → τ),

β = τNτ (2.16)

where τ is referred to as the temporal lattice spacing, and Nτ is the temporal volume in integer units. Given

that Ĥ = T̂ + V̂ , where T̂ is the kinetic energy operator and V̂ is the potential energy operator, we then

11



proceed with the approximation

e−τĤ = e−τT̂/2e−τV̂ e−τT̂/2 +O(τ3), (2.17)

which we truncate to order τ2 under the requirement that τ is made appropriately small.

2.2.1: Hubbard-Stratonovich transformation for contact interactions

To proceed reformulating our problem of computing observables in a tractable form, we must specify the

form of the Hamiltonian of interest. For all of the work developed here, we will study a system of fermions

with zero-range contact interactions such that for a two-component system,

Ĥ =
p̂2
↑
+ p̂2
↓

2
− g

∑
x

n̂x,↑n̂x,↓ (2.18)

where p̂s are operators in momentum space for the subspace of component s, and n̂x,s are density operators

for the component s at the spatial lattice point x. The density operators may be expressed in terms of creation

and annihilation operators as n̂s = ψ̂
†
s ψ̂s. When combined with a non-relativistic formalism on a lattice in

one spatial dimension, this system is known as the Gaudin-Yang model [12, 13].

We will consider a transformation of the partition function for this Hamiltonian to one where the

exponential of the two-body operator V̂ is written as a field integral over a one-body operator in the presence

of all possible external fields,

e−τV̂ =
∫
Dσ exp(−τV̂ext[σ]). (2.19)

To proceed further explicitly we must specify the form of the interaction potential V̂ ; here we will specify

a zero-range contact interaction which will become the focus for the rest of the dissertation. Let us formally

specify the interaction matrix as

V̂ = −g
∑
j

n̂↑,x n̂↓,x (2.20)

where the real constant g is the bare coupling which specifies the strength of the interaction, and the particle

number operator is again n̂s,x = ψ
†
s,xψs,x . In one spatial dimension, the bare coupling is inversely proportional

to the s-wave scattering length a0 = 2/g. More generally, the bare couplingmay be renormalized to quantities
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used for physical systems by means of Lüscher’s formula [65–67], where the two-body energy spectrum is

studied in a finite but continuous volume. For instance, in three spatial dimensions, the limit of low-energy

scattering gives for momentum p and phase shift δ,

p cot δ(p) = −
1

a
+

1

2
reff p2 + O(p4) (2.21)

where reff is the effective interaction range and a is the scattering length; the right hand side is a series

expansion in even powers of p [68]. In a finite box of width L with periodic boundary conditions, the

scattering phase shift is related to the momentum by [69]:

p cot δ(p) =
1

πL
lim
Λ→∞

SΛ(η) (2.22)

whereΛ is the ultraviolet cutoff (defined on the lattice by the lattice spacing `, and in the continuum λ→∞),

η = pL/2π, and

SΛ(η) =
∑
n

Θ(Λ2 − n2)

n2 − η2
− 4πΛ. (2.23)

Note that hereΘ(x) is the Heaviside step function, and n is a vector of integers labeling the energy eigenstates;

the sum is over all such states. A solution of the two-body energy spectrum En = p2
n/2m on the lattice

provides the effective range expansion for sufficiently small energies. The bare coupling g may therefore be

connected to the constants appearing the expansion of p cot δ(p) via a solution of the scattering states for a

single body in an external potential.

The ultimate goal of the Hubbard-Stratonovich transformation is to rewrite the interaction V̂ in terms of

a path integral over decoupled one-body operators that are more easily handled. There are multiple ways of

writing a solution. The first step is to exactly state that (by noting that for fermions n̂2 = n̂),

exp(τgn̂↑,x n̂↓,x) = 1 + (eτg − 1)n̂↑,x n̂↓,x, (2.24)

where we will further introduce an auxiliary field variable σ and the parameter A ≡
√

2(eτg − 1) such that
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for a continuous and compact transformation,

exp(τgn̂↑,x n̂↓, j) =
∫ π

−π

dσ
2π
(1 + An̂↑,x sinσ)(1 + An̂↓,x sinσ). (2.25)

Notice that after contracting σ in Eq. (2.25) we recover Eq. (2.24); in a sense, this method is simply a

rewriting of the interaction, but determining transformations for other interactions is generally nontrivial.

This result also alludes to our first piece of evidence for the sign problem in terms of this system. In the

case where g < 0, where we are in the regime of a repulsive interaction, A becomes complex, and as we will

observe later, the probability measure for our Monte Carlo method becomes ill-defined.

To construct the full Hamiltonian, we should take a product of Eq. (2.25) over all lattice points (recall

that V̂ is written in terms of a spatial sum),

e−τV̂ =
∏
x

eτgn̂↑,x n̂↓,x (2.26)

=
∏
x

∫ π

−π

dσ
2π
[1 + An̂↑,x sinσt (x)][1 + An̂↓,x sinσt (x)] (2.27)

where here we have explicitly noted that the matrix elements of σ are indexed by both space and imaginary

time. Additionally, we must include the proper kinetic energy operator, noting that it is composed as a sum

of operators for each component, T̂ = T̂↑ + T̂↓, and therefore,

e−τ(T̂+V̂ ) = e−τT̂/2
(∏

x

∫ π

−π

dσ
2π
[1 + An̂↑,x sinσt (x)][1 + An̂↓,x sinσt (x)]

)
e−τT̂/2 (2.28)

=
∏
x

∫ π

−π

dσ
2π

e−τT̂↑/2[1 + An̂↑,x sinσt (x)]e−τT̂↑/2 ×

e−τT̂↓/2[1 + An̂↓,x sinσt (x)]e−τT̂↓/2. (2.29)

Here we will define an operator that in generality appears for each component s, or flavor, in the system,

Ûs(σ) ≡ e−τT̂s/2[1 + An̂s,x sinσt (x)]e−τT̂s/2, (2.30)

giving that

e−τĤ =
∏
x

∫ π

−π

dσ
2π
Û↑(σ)Û↓(σ). (2.31)
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The full Boltzmann weight for this system is given by the product of the above right hand side over all points

in imaginary time,

e−βĤ =
Nτ∏
t

Nx∏
x

∫ π

−π

dσ
2π
Û↑(σ)Û↓(σ), (2.32)

where we may formally define the transfer matrix of a single component as a product of U over all such

points,

Ts(σ) =

Nτ∏
t

Us(σ). (2.33)

We additionally define the path integral operator

∫
Dσ =

∏
x

∫ π

−π

dσt (x)
2π

, (2.34)

such that

e−βĤ =
∫
Dσ T̂↑(σ)T̂↓(σ), (2.35)

where after taking a trace over the Boltzmann weights,

Z =

∫
DσTr[T↑(σ)T↓(σ)], (2.36)

which can further shown to be written as

Z =

∫
Dσ det2(1 + zU[σ]), (2.37)

where z = exp(βµ). This form of the partition function, where the size of the matrix that is an argument to

the determinant is of size Nd
x × Nd

x (rather than the full extent of spacetime), is known as the BSS formalism,

first introduced by Blankenbecler, Scalapino, and Sugar in Ref. [70]. We will curiously note that although

the smaller size of the matrixU provides a performance advantage in Monte Carlo calculations, it becomes

prohibitively expensive to use in our perturbation theory formalism (discussed later in this dissertation), and

it is actually better to return to the full fermion matrix, which is of extent V × V .
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To see how the trace is recast as a determinant, first note that the proof relies on the statistics of fermions;

an analogous but different result which contains the inverse of the fermion determinant can be obtained for

bosons. Recall that the operators that appear inU[σ] are of the form exp(−τT̂) and exp(−τV̂). Therefore,

for a generic operator Mi j written in the occupation number basis (for which a† and a are the creation and

annihilation operators, respectively), consider its exponential such that we want to show

Tr

[
exp

∑
i, j

a†i Mi jaj

]
= det

(
1 + eM

)
. (2.38)

If M is transformed to a diagonal basis where for a unitary transformation U, M = U†DU and b = Ua,

b† = a†U†, then

∑
i, j

a†i Mi jaj =
∑
k

b†
k
Dkbk =

∑
k

Dknk, (2.39)

where nk is the occupation number of state k. Since bk , b†
k
obeys the same fermion commutation relations

as ak , a†
k
under the unitary transformation, the trace over Fock space will give only nk = 0 and 1. As such,

Tr

[
exp

∑
i, j

a†i Mi jaj

]
=

∏
k

∑
nk=0,1

eDknk =
∏
k

(1 + eDk ) = det(1 + eM ), (2.40)

where the last equality is made by the fact that the product is taken over all eigenvalues of M , which is

equivalent to the determinant. A similar proof can be shown for a product of operators,

Tr

[∏
i

ea
†Aia

]
= det

(
1 +

∏
i

eAi

)
, (2.41)

from which Eq. (2.37) can be shown to hold.

Section 2.3: Difficulty of direct linear algebra and mean field approaches

The naive approach to computing basic equations of state from the Hamiltonian is to directly compute

the trace over the spectrum as it appears in Eq. (2.1). Constructing the matrix elements of the Hamiltonian

for the many-particle system is in itself a significant challenge, in the sense that the size of the many-particle

basis grows exponentially with the number of particles in the system. Of course, such an approach involves

accurately computing the eigenvalues of the Hamiltonian, which proves to be an challenging task. To

compute the spectrum analytically, one would have to solve for roots of the characteristic equation which
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is a high-order polynomial – clearly such a goal would be fruitless. Finding such roots numerically are

known to be sensitive to accumulation of error, particularly when the system is ill-conditioned, e.g. a

significant number eigenvalues are close to and may lie on either side of zero. In this sense, it may be

difficult to even have enough precision to accurately determine the signs of eigenvalues, which are critical

to reasonably computing quantities of the partition function. However, highly-efficient software packages

which perform exact diagonalization methods [71] do exist, but are generally not an appropriate choice for

studying strongly-interacting systems at finite temperature. In this sense, we choose to exchange the problem

of explicitly working with a large number of particles for high-dimensional integrals which are evaluated

stochastically.

Another conventional approach to probe analytically intractable systems is via mean field, but it is

generally known that these kinds of techniques are unable to capture important fluctuations which contribute

to the thermodynamics. Nevertheless, let’s take a very brief look at this method and see how it fails. We

will simply attempt to compute the pressure P/P0 of a weakly-interacting system in one spatial dimension,

where P0 refers to the pressure of the non-interacting counterpart. Mean field approaches generally improve

in higher dimensions, so the 1D system is in a way a “worst-case” scenario for this type of analysis. The

Hamiltonian can be built by taking advantage of the Fourier transform, where we define Ĥ = T̂ + V̂ . The

kinetic energy operator T̂ can be constructed as a diagonal matrix in momentum space, where the elements

Tn are given by (note that the fugacity z is absorbed into these matrix elements):

Tn =
p2
n

2
− µ , pn =

2πn
L

(2.42)

where the extent of the one-dimensional lattice is of L sites. The potential energy operator V̂ for an attractive

contact interaction controlled by the coupling strength g is correspondingly diagonal in coordinate space,

where in this mean-field approach we simply take

〈V̂〉 = −g n̂↑(x) n̂↓(x). (2.43)

Here n̂s(x) corresponds to the density of the spin-1/2 free gas where n̂↑ = n̂↓. The full Hamiltonian can

therefore be constructed in coordinate space via

Ĥ = U†T̂U + V̂ (2.44)
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Figure 2.1: Result for the pressure P normalized by the non-interacting counterpart P0 that is obtained when attempting a mean-field
analysis for the interacting Hamiltonian. The results are shown for a variety of dimensionless couplings λ, which is related to the bare
coupling by λ =

√
βg. Comparing to the result obtained via HMC in Fig. 3.2, we can see the result is somewhat qualitatively correct

within the virial region, but the result is completely wrong for large values of βµ. Inset: A comparison of the mean-field result with
the second-order virial expansion of the pressure (shown as a dashed black line). Mean field fails to correctly quantitatively capture
the behavior of the virial region.

where U is the Fourier transform matrix. We must therefore compute the eigenvalues εk for the interacting

Hamiltonian H. An understanding of the relative bounds on the error of this operation may be obtained from

the condition number, which provides an estimate of the error in the solution vector ®x based on the error in

input vector ®y for the linear system A®x = ®y. Here we define the condition number κ ≡ ||A−1 | | | |A| |, where

a small condition number (κ ∼ 1) indicates A is well-conditioned, and a large condition number will denote

that it is ill-conditioned [72]. Depending on the choice of µ, we find that κ ∼ 102 − 105, which confirms our

suspicion that accurately extracting the spectrum could be a challenge. Indeed, when we attempt to compute

the pressure from the interacting Hamiltonian for small choices of g, the result is incorrect compared to a

variety of other methods developed throughout this dissertation; although, this limitation is of course due to

the mean-field approach in addition to any numerical challenge. Fig. 2.1 shows the result for the pressure

using mean-field approach for the one-dimensional system on a lattice size of Nx = 61 and temperature of

β = 8. Although the results for the regime of βµ < 0 are somewhat qualitatively correct, a comparison with

the second-order virial expansion (see inset) indicates that the result is not accurate. More importantly, this

mean field completely fails to capture the physics as the temperature is lowered toward large values of βµ

where quantum mechanical effects dominate; the pressure P/P0 should tend back toward the non-interacting

value in this limit. Varying the lattice size Nx and temperature β does not improve this behavior by a

significant amount.
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Section 2.4: Finite-temperature determinantal Monte Carlo

Since we know that more straightforward approaches will not work for our studies of the systems we

are interested in, we will turn to introducing the foundation for Monte Carlo techniques we use throughout

this dissertation. All Monte Carlo techniques, in one form or another, use algorithms that rely on random

numbers to study a problem of interest. As a small example, one may estimate the value of π using a simple

Monte Carlo program. Consider a circle of radius a inscribed inside a square whose side length is 2a.

The program can choose N coordinate points (x, y) from a uniform distribution [such that x, y ∈ (−a, a)].

If k is the number of points that fall inside the circle, than approximately π = 4k/N . As N → ∞, this

approximation will improve. As a more relevant example of a Monte Carlo algorithm to this work, consider

that we are attempting to numerically estimate the value of the integral of a one-dimensional function f (x)

over the domain (a, b), which may not necessarily be easily determined analytically. If we choose a suitable

weight function or probability distribution p(x) we can rewrite the integral as an expectation value:

∫ b

a

f (x) dx =
∫ b

a

f (x)
p(x)

p(x) dx =
〈

f (x)
p(x)

〉
. (2.45)

We can approximate the value of this integral by randomly sampling N values over the domain of x

according to the probability distribution p(x), and appropriately summing over all samples taken. The

choice of how to properly select a set of xi that will well-represent the integral being taken is a delicate one.

Deciding on an algorithm to perform this sampling may be straightforward for a one-dimensional integral,

but in the case of the many-body systems we will be looking at over the next several chapters, the integral we

are attempting to estimate (the grand-canonical partition function, which is a path integral over the auxiliary

field) has an incredible number of dimensions, which makes this issue drastically more complicated. In the

remainder of this chapter, we will discuss the Monte Carlo sampling techniques we use for the quantum

many-body problem.

In Sec. 2.2.1, we have rewritten the grand-canonical partition function Z as a path integral over an

auxiliary field σ which casts the interaction matrix V̂ as a one-body operator in an external field. Although

this recasting makes working with this form of the partition function feasible, we must now in principle

evaluate the path integral over all possible fields. To make such a problem fit on a computer of finite size,

we must discretize the system on to a spacetime lattice to make the number of degrees of freedom of the

auxiliary field finite. However, one would note that visiting every possible field configuration very quickly
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becomes impossible since the number of configurations scales exponentially with the spacetime volume;

for instance, for a discrete field that takes on one of two states and is of a spacetime dimension Nd
x × Nτ ,

the number of configurations is 2Nd
x Nτ . As is commonly seen in statistical mechanics, the vast majority of

these configurations contribute negligibly to the dynamics of the system, and in reality, to study the relevant

physics, we need only to visit the important contributions to the partition function. In order to do so in

practice, we need to construct an algorithm which is capable of sampling such field configurations. In

this section, we will discuss aspects of quantum Monte Carlo algorithms which serves as the foundation of

stochastic calculations seen in this thesis.

When adding a source term to the Hamiltonian which contains the observable we wish to compute [see

Eq. (2.14)], and take a derivative of lnZ to compute 〈Ô〉, if the partition function is written as a path integral

Z =

∫
Dσ P(σ), (2.46)

we can arrive at something of the form

〈Ô〉 =
1

Z

∫
Dσ P(σ)Ô(σ). (2.47)

We can identify P(σ) as a probability measure that will govern our Monte Carlo simulation via importance

sampling; in the case of fermionic systems, this probability measure will be given by a product of fermion

determinants, as derived in a previous section. If we are given a total of Nσ samples of the auxiliary field σ

that obey such a probability measure, than we can state that by a Monte Carlo calculation over a discretized

field,

〈Ô〉 =
1

Nσ

∑
{σ }

Ô(σ), (2.48)

whosemeasurement has an uncertainty of orderO(1/
√

Nσ) given independent samples. At this point, in order

to compute an observable from the partition function we must design an efficient algorithm that samples

the probability distribution with particular properties, such as decorrelation, reproducibility, ergodicity,

and detailed balance. The Metropolis-Hastings algorithm satisfies these mathematical underpinnings that

provides certain guarantees about the calculation. We will see later, however, that these guarantees are not

always required to perform a Monte Carlo calculation and are even a source of issues in the context of the
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sign problem. In the case of the complex Langevin method, the Metropolis accept-reject step is replaced

with the use of a stochastic noise term that is inserted in the action.

The Metropolis-Hastings algorithm produces a Markov chain of states σ that follows a particular prob-

ability (or weight) distribution. The algorithm defines a method of either accepting a proposed move to the

next state in the Markov chain, or rejecting it, based on the probability of a system being in the proposed

state relative to the current one. In the conventional description of the algorithm [73, 74], if a system in state

s is proposed to move to a new state r , the total energies of each state Es and Er and the energy difference

∆E are calculated. The proposed step is automatically accepted if ∆E < 0, otherwise, if ∆E > 0 we choose

a random number R ∈ [0, 1], where

if


R < exp(−β∆E) accept the proposed state

R > exp(−β∆E) reject the proposed state
(2.49)

In this manner, the algorithm can be shown to sample the states of higher probability for a given system.

Note that if a proposed state is rejected, the current state is entered as the next state in the chain; that is,

the attempt is not simply discarded from the Monte Carlo simulation. In the case of determinantal Monte

Carlo, β∆E in the Metropolis algorithm is replaced by an action in Euclidean time, −S = ln(det2 M) (or

the equivalent appropriate fermion determinants for a system of study). Therefore, in the context of QMC,

the partition function must generally be written in the path-integral form

Z =

∫
Dσ(x, τ) e−S[σ(x,τ)], (2.50)

where one may say we have integrated out the fermionic degrees of freedom and are left only with a path

integral over a scalar field. In hybrid Monte Carlo, which we discuss next, we introduce a second auxiliary

field that greatly increases the efficiency of the Metropolis sampling algorithm.

2.4.1: Hybrid quantum Monte Carlo

In the previous section, we discussed how the Metropolis-Hastings algorithm can accept or reject

proposed states along a Markov chain, given the probability of a particular state occurring in a system of

interest. However, we also need to consider how to properly propose the next random sample in the chain

according to our distribution P[σ]. A naive approach may choose to flip one or more spins within a local area
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of the field configuration at a time, however, in the interest of achieving good correlation properties, it can

be shown that a better approach is to propose global updates to the auxiliary field configuration. The hybrid

Monte Carlo algorithm is known to efficiently achieve this proposal through the use of classical molecular

dynamics.

In the hybrid Monte Carlo (HMC) algorithm [75], the value of the auxiliary field σ at each position in

the spatial lattice x and imaginary time τ is updated according to classical Hamiltonian dynamics. As such,

we introduce a new momentum auxiliary field variable π, where π(x, τ) corresponds to the momentum of

the lattice point σ(x, τ) through configuration space. This flow of the field σ is governed by the Hamilton

equations

Ûσ = π , Ûπ = −
δSeff [σ, π]

δσ
, (2.51)

where the time derivative that appears is a new time coordinate that is distinct from the imaginary time τ,

and Seff [σ, π] is the effective action. The conventional action S[σ] is related to the probability distribution

P[σ] as

P[σ] = e−S[σ], (2.52)

and the definition of the effective action includes the addition of the momentum field π,

Seff [σ, π] = S[σ] +
∫

dx dτ
[π(x, τ)]2

2
, (2.53)

where the initial state of the momentum field is chosen from a normal distribution. Note that this field is

reset to a new initial state after a HMC trajectory through configuration space is completed.

The derivative of the momentum field π requires a computation of the functional derivative of the

effective action with respect to the auxiliary field σ. This derivative is taken for each point on the spacetime

lattice such that Ûπ is a matrix of extent Nd
x × Nτ . We can compute the elementwise result according to

[ Ûπ]x,τ = −
∂S[σ]
∂σx,τ

(2.54)

where for a system of two flavors of fermions (note that we have absorbed the fugacity z into the definition
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ofU[σ]),

[ Ûπ]x,τ =
∂

∂σx,τ
2 ln det(1 +U[σ]) (2.55)

= 2 Tr

[
1

1 +U[σ]

∂U[σ]

∂σx,τ

]
. (2.56)

The partial derivative inside the trace evaluates to

∂U[σ]

∂σx,τ
= U1U2U3 · · ·

∂Uτ[σ]

∂σx,τ
· · · UNτ−1UNτ , (2.57)

where ∂Uτ [σ]
∂σx,τ

has one non-zero element A cosσx,τ . Notice that in the non-interacting limit, Ûπ = 0.

Notice that the action is analogous to the total energy E as discussed in the previous section; as such,

some texts may refer to the effective action as a fictitious Hamiltonian, particularly since Seff is a conserved

quantity. In the systems we will be looking at throughout this thesis, the action will generally be proportional

to the quantity ln det M[σ], where M is known as the fermion matrix. The functional derivative is taken

with respect to σ, which will generate inverses of the determinant – as such, it is important check that det M

does not approach singularities in the course of our HMC algorithm. Under this formalism, the path integral

form of the partition function is

Z =

∫
DπDσ exp(−Seff [σ, π]), (2.58)

where the path integral over π simply scalesZ by an irrelevant scalar factor [76].

An advantage of using equations of motion for the evolution of σ which satisfy Hamilton’s equations

is the consequence of S being conserved from one state to the next. Since Seff is held constant, ∆E as it

appears in the Metropolis algorithm will be zero, and a proposed state will always be accepted, provided that

the integration time step is small enough. This greatly increases the efficiency of the algorithm compared to

those which may propose a significant fraction of states which will end up being rejected. Since this constant

action corresponds to a fixed orbit in phase space, a new trajectory is started after each series of samples

where the momentum field is reinitialized according to a Gaussian distribution.

In order to build the matrices Ui[σ] in practice, we can take advantage of Fourier acceleration, in

which we construct the kinetic energy and interaction matrices in their respective diagonal representations,

and apply one diagonal vector to the other in sequence by performing a fast Fourier transform (FFT) on
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Figure 2.2: Rendering of an auxiliary field σ which is of spacetime extent Nx × Nτ = 51 × 60 at a given point in its classical
trajectory some time after thermalization has occurred. Note that the field is valid only at integer lattice points; the solid planes
between such points are for visualization only.

one to the conjugate basis, and then perform the inverse transform on the product. This technique has the

advantage in that the full dense operators in their non-diagonal representation does not need to be computed,

and only vector multiplication need be performed. When an optimized FFT algorithm is used, such as the

implementation FFTW [77], the transform is very fast.

One could be curious as to what the plot of a typical auxiliary field configuration may look like. Fig. 2.2

displays a rendering of such a field of extent Nx × Nτ = 51 × 60 for at a given point in its classical trajectory

after thermalization. It should be pointed out that although this plot is continuous for clarity, the field itself

is discretized and is not valid at non-integer sites. If one were to watch the field evolve, the peaks and valleys

would fluctuate up and down with no discernible pattern, yet different configurations that look similar to

the eye can produce vastly different values for calculated observables. The corresponding momentum field,

however, remains relatively static in comparison with the auxiliary field, with values slowly fluctuating about

their initial condition.

2.4.2: Computing observables stochastically

Our primary goal in studying these physical systems is to compute equations of state such as the pressure

and density. The route we have chosen to take involves sampling the set of field configurations according

to a probability measure given by the partition function of the system. To obtain analytic expressions for
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computing these equations of state, first recall that for a real parameter λ and square matrix M ,

d
dλ

det M(λ) = det M(λ)Tr

[
M−1(λ)

dM(λ)
dλ

]
. (2.59)

Using this result, we obtain for the density n via a derivative with respect to µ,

n =
2

Z

∫
Dσ det2(1 + zU[σ])Tr

(
zU[σ]

1 + zU[σ]

)
, (2.60)

where we identify the probability measure as P[σ] = det2(1 + zU[σ]) and the observable to be

O[σ] = Tr

(
zU[σ]

1 + zU[σ]

)
. (2.61)

Performing this operation of course involves computing an inverse of U[σ]. The pressure P and isother-

mal compressibility κ can be obtained by computing the integral and derivative of n with respect to βµ,

respectively. For the case of spin-polarized systems, where µ↑ , µ↓,

n = n↑ + n↓ =
(

d
d(βµ↑)

+
d

d(βµ↓)

)
lnZ (2.62)

=
1

Z

∑
s=↑,↓

∫
Dσ

[
det(1 + z↑U[σ]) det(1 + z↓U[σ])Tr

(
zsU[σ]

1 + zsU[σ]

)]
. (2.63)

We frequently find the virial expansion to be a useful tool in the regime where z ' 0. This expansion

will be discussed in further detail in the next chapter, but it is interesting to point out here that the coefficients

that appear in this power series expansion may be computed stochastically using a Monte Carlo algorithm.

Consider that the virial expansion is given by

lnZ = Q1

∞∑
n=1

bnzn (2.64)

where bn are the virial coefficients, which one could write in terms of the canonical partition functions Qn,

e.g. at second order,

b2 =
1

2Q1

(
2Q2 −Q2

1

)
. (2.65)

Notice that we may write these canonical partition functions in terms of various products of traces over
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the matrix U, therefore allowing us to compute estimates of bn stochastically. In practice, this numerical

evaluation is tricky to perform since the scaling of Qn with volume must be carefully canceled exactly to

produce the intensive quantity bn.

The punchline of the above discussion is that non-trivial observables may be computed when they are

rewritten in terms of the field variable σ and placed under the path integral. Other quantities, such as the

interaction energy, can also be obtained by taking derivatives of lnZ with respect to other parameters, such

as the bare coupling g or the temporal lattice spacing τ. We will see later that by computing the expectation

value of the potential energy, we can determine a thermodynamic quantity of interest known as Tan’s contact,

which provides particular information about the momentum distribution.
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CHAPTER 3: Strongly Interacting Fermi Gases in One Dimension

After summarizing the theoretical fundamentals of computing equations of state using auxiliary field

and stochastic techniques, we will now move to determining results for strongly-interacting quantum gases.

Throughout the next several chapters, we will study the thermodynamics of spin-1/2 fermions with a contact

interaction given by the Gaudin-Yang model,

Ĥ = −
~2

2m

∑
i

∇2
i − g

∑
i< j

δ(xi − xj), (3.1)

where g is the bare coupling constant and the sum is taken over all particles. Throughout this work, we

will take units such that ~ = m = 1. In this chapter, we will restrict our study to the thermodynamics of

one-dimensional unpolarized fermions (where µ↑ = µ↓), but will cover weakly to strongly coupled regimes,

as well as a wide variety of temperatures. Results for lattice Monte Carlo calculations will be presented for

the particle number density n, the pressure P, the compressibility κ, and Tan’s contact C.1

The Hamiltonian given in Eq. (3.1) clearly has a non-relativistic dispersion, indicating that the system

may correspond to systems including the interacting low-temperature Fermi gas. The contact interaction is

valid for the study of these kinds of systems in the limit where the gas is dilute enough such that the more

complex form of the short-range interaction between fermions is not apparent, namely where the interparticle

spacing k−1
F is large enough (where kF is the Fermi momentum). This interaction is characterized by a single

parameter g which in one dimension is directly related to the s-wave scattering length by g = 2/as; the

corresponding relationship between the value of g in our model and the strength of the physical interaction in

higher spatial dimensions must be considered separately by studying the properties of the two-body spectrum

in a finite volume [65].

The technique we use to compute the thermodynamic observables of interest here is hybrid Monte Carlo,

as presented in Sec. 2.4.1. The two species of fermions is placed on a Euclidian space-time lattice of extent

Nx × Nτ , where the lattice has periodic boundary conditions in the spatial direction and antiperiodic in

1This chapter is based upon the work published in Ref. [1].
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the time direction; these boundary conditions become evident in the form of the Matsubara frequencies

used for fermions. The physical spatial extent is L = Nx`, where we simply take ` = 1 to set the length

and momentum scales. The corresponding extent of the temporal lattice is set by the inverse temperature

β = 1/T = τNτ . Throughout this work, we typically always use a time step of τ = 0.05 (in lattice units)

which balances temporal discretization effects with computational efficiency.

The physical input parameters are clearly the inverse temperature β, the chemical potential µ, and for the

case of this chapter, the attractive coupling strength g > 0. We choose to report all results in terms of two

dimensionless quantities: the fugacity z and the dimensionless coupling λ, which are defined as

z = eβµ and λ2 = βg2. (3.2)

Notice that for a fixed choice of g, taking λ→∞ at fixed µ corresponds to the zero-temperature limit.

Section 3.1: Equation of state results for the unpolarized system

We will most frequently present results in dimensionless form by normalizing the displayed quantities

in units of their noninteracting counterparts at the same value of the input parameters, or by scaling it by the

appropriate factor of the thermal wavelength λT =
√

2πβ. The most natural output for our HMC calculations

is the density equation of state n(λ, βµ), which we compute from the path-integral representation of Z by

taking a analytic derivative of lnZ with respect to βµ, such that

n =
2

Z

∫
Dσ det2(1 + zU[σ])Tr

(
zU[σ]

1 + zU[σ]

)
, (3.3)

where we sample the trace as our observable according to the probability measure P[σ] = det2(1+ zU[σ]).

We can obtain the pressure equation of state P by integrating the density with respect to βµ,

Pλ3
T = 2π

∫ βµ

−∞

nλT d(βµ)′, (3.4)

where the integral in the (βµ)′ → −∞ limit is taken over the corresponding second-order virial expansion

for the density. Correspondingly, taking a derivative of the density produces the isothermal compressibility
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Figure 3.1: Density n, in units of the density of the noninteracting system n0, as a function of the dimensionless chemical potential
βµ and coupling λ. From bottom to top, the coupling is λ = 0.0, 1.0, 1.25, 1.5, . . . , 2.5, 2.75, 3.0, 3.1, 3.2, . . . , 4.0. The dashed line
joins the maxima at each λ.

κ where

κ = λ3
T

√
2π

(nλT )2
∂(nλT )
∂(βµ)

�����
β

. (3.5)

We display the results for these equations of state as computed using HMC below. In Fig. 3.1 we

display the density n/n0, in Fig. 3.2 we display the pressure P/P0, and in Fig. 3.3 we display the isothermal

compressibility κ/κ0.

3.1.1: Calculating the second-order virial coefficient on the lattice exactly

The virial expansion is a power series expansion in the fugacity z of, most commonly, the pressure

equation of state for a particular system. This expansion is valid in the high-temperature limit where z ' 0

(or correspondingly, where βµ → −∞), and is useful because it captures the few-body dynamics which

contribute to properties of the many-body system. The expansion is defined such that

lnZ = Q1

∞∑
n=1

bnzn = Q1(z + b2z2 + b3z3 + · · · ). (3.6)

where Q1 = 2L/λT is the single-particle canonical partition function, and the virial coefficients are bn. Note

that we define b1 = 1. It is also useful to recall the definition of the thermodynamic potential Ω = −PV ,
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Figure 3.2: Pressure P, in units of the pressure of the noninteracting system P0, as a function of the dimensionless chemical potential
βµ and coupling λ, as obtained by βµ integration of the density. The values of λ shown in this plot are the same as in Fig. 3.1.
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Figure 3.3: Isothermal compressibility κ, in units of the compressibility of the noninteracting system κ0, as a function of the
dimensionless chemical potential βµ and coupling λ, as obtained by βµ differentiation of the density. The values of λ shown in this
plot are the same as in Fig. 3.1, but from top to bottom instead.
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where lnZ = −βΩ. These virial coefficients are real numbers which characterize the n-body contribution to

lnZ; in general, these coefficients are difficult to compute since determining bn involves solving the m-body

spectrum for up to the n-body system. To see how this requirement comes about, we can compute useful

expressions for bn in terms of the canonical partition functions Qn. Recall that

Z =

∞∑
n=0

Qnzn (3.7)

so therefore,

z + b2z2 + b3z3 + · · · =
1

Q1
ln

(
1 + Q1z + Q2z2 + Q3z3 + · · ·

)
. (3.8)

By expanding the logarithm on the right hand side and gathering terms at each order in z, we can see that

b2 =
Q2

Q1
−
Q1

2
(3.9)

b3 =
Q3

Q1
− Q2 +

Q2
1

3
(3.10)

b4 =
Q4

Q1
− Q3 −

Q2
2

2Q1
+ Q1Q2 −

Q3
1

4
(3.11)

... .

It is evident that the expression for bn involves up to and including Qn, where we know that computing Qn

requires the n-body spectrum. However, at this point we can note that we should be able to compute b2

exactly since it only involves the two-body problem, which can easily be solved in the center-of-mass frame

using relative coordinates. As such, we will numerically compute the value of b2 for Eq. (3.1) on the lattice

(the result for b2 in the continuum is provided in Ref. [1]) given a few choices of λ. Since this type of

analysis is not affected by the sign problem, we can compute this coefficient for both attractive and repulsive

couplings. Later in this dissertation, we will see how to calculate estimates for higher-order coefficients

using lattice perturbation theory.
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Computing non-interacting lattice virial coefficients

To begin our calculation of b2, let’s first overview the computation of the non-interacting counterpart.

Recall the grand-canonical partition function for Nf flavors of non-interacting fermions on the lattice is

lnZ0(z) = Nf

∑
n

ln
(
1 + ze−βp

2
n/2

)
(3.12)

where pn = 2πn/Nx and n = −Nx/2, . . . , Nx/2 − 1. We know Q1 (single fermions are non-interacting), and

can determine Q(0)2 (the non-interacting counterpart of Q2) from Eq. 3.7 by noting

Qn =
1

n!

∂nZ

∂zn

����
z=0

. (3.13)

By performing the Taylor expansion of Eq. (3.8) as discussed above, we can determine bn for the non-

interacting system by numerically evaluating the free Qn, from which we find that in the continuum limit

b(0)2 = −0.353553 . . . (3.14)

b(0)3 = 0.19245 . . . (3.15)

b(0)4 = −0.125. (3.16)

Of course, the sum in grand-canonical partition function may be evaluated as an integral to find an analytic

solution in the continuum, from which we find b(0)n = (−1)n+1n−3/2.

3.1.2: Tan’s contact for the unpolarized system

We have also computed a thermodynamic quantity known as the contact (see Refs. [78–80]). Although

much is known about this quantity in various situations (see, e.g., Ref. [81] for a review), the full temperature

dependence in 1D was not previously known, to the best of our knowledge. By calculating the density as

detailed above, one may use the Maxwell relation to calculate the contact C from n (see also Refs. [82–87]),

or may use the Feynman-Hellman theorem to compute the contact directly from the expectation value of the

potential energy,

C = −g〈V̂〉. (3.17)
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In order to characterize the contact within the virial region, it is useful to compute the virial expansion

and corresponding coefficients for the contact. Recall that the virial expansion for the grand thermodynamic

potential Ω is given by

−βΩ = Q1(z + b2z2 + b3z3 + · · · ) (3.18)

where Q1 = 2L/λT is the single-particle canonical partition function, and the virial coefficients bn are those

corresponding to the density equation of state. Therefore, we may consider the virial expansion for the

contact C to take the form

βC =
2

λT
Q1(c2z2 + c3z3 + c4z4 + · · · ), (3.19)

where cn may be related to bn by

cn = −
∂bn

∂(a0/λT )
=

√
π

2
λ2 ∂bn

∂λ
. (3.20)

The results for the contact as calculated by HMC, including the leading-order virial expansion (see inset)

is displayed in Fig. 3.4. We show the statistical error in the inset; however, in the main plot, the smoothness

of the results across βµ indicate that the statistical effects are of the order of the size of the symbols. As can

be seen from the inset, the data captures the correct asymptotic behavior at small z for all values of λ shown,

but the agreement slowly deteriorates at large λ, suggesting that the virial expansion breaks down earlier in

that regime. In the limit of βµ � 1 the contact satisfies

Cπβ2/(2Lλ2) = 〈n̂↓n̂↑〉πβ/2→ ζ1βµ + ζ2 (3.21)

where we find ζ1 = 0.35(1) is nearly λ-independent. On the other hand, as is evident from the plot, ζ2 is

approximately linear in λ at large βµ. We find ζ2(λ) ' a + bλ with a = −0.34(1) and b = 0.701(5) at

βµ = 10. An analytic estimate in the absence of interactions yield ζ1 = 1/π ≈ 0.318.

3.1.3: Extending the unpolarized system to more flavors

The above analysis has been performed for a system of fermions with two spin degrees of freedom, but

can be extended to cases for a number of particle flavors greater than 2 (Nf > 2) by modifying the partition
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Figure 3.4: Tan’s contact C scaled by βλT /(2Q1λ2) = πβ2/(2Lλ2) as a function of βµ. The black line shows C in the absence of
interactions. Inset: Zoom-in of the main plot on the region −4.5 ≤ βµ ≤ −1.0, also showing the leading-order virial expansion.
Both plots show data for λ = 0.5, 1.0, 1.5, . . . , 4.0, which appear from bottom to top.

functionZ such that, for the unpolarized system of Nf flavors,

Z =

∫
Dσ detN f (1 + zU[σ]). (3.22)

The results of such an analysis are presented in Ref. [88]. We find that for a system of more flavors, the

interaction is effectively greatly enhanced, and the density n/n0 can increase by up to a factor of ∼ 100 for

the case of Nf = 6.
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CHAPTER 4: Interacting Spin-Polarized Fermi Gases via Complex Chemical Potentials

In the previous chapter we studied the thermodynamic properties of an unpolarized Fermi gas; that is,

the system of interest was such that the chemical potential of two species of fermions were equal (µ↑ = µ↓).

In the context of this dissertation, this is one the most elementary systems to consider, which allowed us to

benchmark our algorithms and better understand the characterizing features of interacting systems. Naturally,

one of the next steps in understanding this class of systems would be to ask about the equations of state for the

case of polarized systems, where these chemical potentials were not equal. However, in such a case, hybrid

Monte Carlo breaks down in the presence of a sign problem, which is generally a significant roadblock for

lattice Monte Carlo calculations of asymmetric systems, for instance, systems with mass or spin imbalance

[89–91], or systems at finite quark density in the context of QCD [92–97]. In order to navigate around

such an obstacle, we introduce an imaginary chemical potential asymmetry such that the two chemical

potentials are complex conjugates of one another.1 In this case, the product of determinants that form the

probability measure under the path integral is positive definite, and the quantum Monte Carlo method may

be implemented as before. However, all observables now lie on the imaginary axis, and must be analytically

continued to obtain the physical thermodynamics of the system. We will see later in Chapter 6 that the

complex Langevin method, in which the auxiliary field is taken to be complex, reproduces the results here

without resorting to an analytic continuation. Given the nature of the technique developed in this chapter,

the method is sometimes referred to as iHMC.

Systems of spin-polarized, attractively interacting fermions, are particularly appealing because of the

potential occurrence of spontaneously broken translation invariance in exotic superfluid phases [98, 99]. As

a stepping stone toward these more interesting systems in higher dimensions, we focus here on the basic

thermodynamic equations of state for fermions in one dimension, rather than on detecting potential exotic

superfluid phases. In the upcoming sections, we compute the density, the spin magnetization, as well as

Tan’s contact, which encodes the importance of high-momentum correlations in systems with short-range

interactions [68, 78–80, 82, 84, 85, 100–104].

1This chapter is based upon the work published in Ref. [2].

35



The Hamiltonian we analyze here is again the Gaudin-Yang model [12, 13],

Ĥ =
−~2

2m

∑
i

∇2
i − g

∑
i< j

δ(xi − xj) (4.1)

where both sums are over all particles. The partition function in the grand-canonical ensemble for such a

system with two spin degrees of freedom is

Z(µ↑, µ↓) = Tr exp[−β(Ĥ − µ↑N̂↑ − µ↓N̂↓)], (4.2)

where µs is the chemical potential corresponding to particles of spin s =↑, ↓, N̂s is the corresponding particle

number operator, and β is the inverse temperature.

Section 4.1: Observables, scales and computational technique

To characterize the thermodynamic properties of spin-polarized interacting fermions in one spatial

dimension, we compute three physical quantities, namely the density n, the spin magnetization m, and Tan’s

contact C, as functions of the inverse temperature β ≡ 1/kBT , the average chemical potential µ, the chemical

potential difference h, and the coupling g. To make the independent quantities µ, h and g dimensionless, we

scale by the appropriate factor of β; that is, using the same quantities used in the previous chapter, we report

the physical results as functions of

βµ, βh, and λ ≡
√
βg. (4.3)

To make the measured quantities dimensionless, we scale the density and magnetization by the density of

the unpolarized system n0, where we report n/n0 and m/n0. In the case of the contact, we scale by C0, the

unpolarized result at βµ = 0.

From the density and magnetization, one may obtain response functions such as the isothermal com-

pressibility κ and the magnetic susceptibility χ simply by taking derivatives with respect to βµ and βh,

respectively. Mixed response functions (of a derivative of n with respect to βh, or m with respect to βµ) may

also be obtained. Conversely, numerical integration of the density with respect to βµ provides the pressure

P for each value of βh.

The computational methods used here for polarized systems is very similar to that of Refs. [6, 105, 106],
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but reduced to one spatial dimension and generalized to complex chemical potentials. One dimensional

systems are relatively computationally inexpensive, and it is therefore possible to calculate on very large

lattices, e.g. Nx ≈ O(102). For such volumes, the continuum limit is easily reached by lowering the

density while still remaining in the thermodynamic (many-particle) regime. As previously mentioned, for

the spin-polarized case one encounters a sign problem which can be avoided by taking the complex chemical

potential for each fermion species to be the complex conjugate of the other. The overall chemical potential

µ = (µ↑ + µ↓)/2 is real as usual, but the asymmetry h = (µ↑ − µ↓)/2 is imaginary. For convenience and

clarity, we define the real parameter hI := Im h = −ih. As such, the total density n = n↑ + n↓ based on the

grand-canonical ensemble is real, while the spin magnetization m = n↑ − n↓ is imaginary. Each of these

output observables must be analytically continued to the real-h axis in order to obtain the physical results.

This procedure is achieved by fitting a given ansatz f (βhI) to the imaginary Monte Carlo results for each

observable, and then taking the transformation βhI → βh such that f̃ (βh) corresponds to proper density,

magnetization, or contact. As will be discussed later in detail, the analytic continuation procedure introduces

a degree of arbitrariness in the final results; however, it should be noted that the results on the imaginary

side are fully non-perturbative and in principle exact up to controlled systematic and statistical uncertainties.

Certain aspects of the functional dependence with respect to βh are known. For example, the symmetry

under spin exchange as is apparent in the partition function indicates that the physics is independent of the

sign of h; we expect our results to be either odd or even functions of h (and also hI) depending on the quantity

in question. Furthermore, it can be shown that the results for imaginary asymmetry will be 2π-periodic in

βhI (see Refs. [89, 90]), and is therefore a compact parameter which will be restricted to the interval [−π, π].

For the calculations we present here, the dimensionless coupling is fixed at a value of λ = 1, although

results for alternative couplings using this method are presented in Ref. [2]. This was chosen as being in

the intermediate-to-strong coupling regime, which is typically outside the range of validity for low-order

perturbative approaches. A spatial lattice volume of Nx = 61, which was fixed through this study, is sufficient

to provide a quantitative understanding of the continuum limit (see Ref. [1]), in the sense that the thermal de

Broglie wavelength λT =
√

2πβ is much smaller then the lattice spacing. The physical extent of the system

is L = Nx`, and the extent of the temporal lattice is given by β = τNτ , where we take τ = 0.05/`2 and ` = 1.
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Figure 4.1: Left: Density as a function of the imaginary chemical potential difference βhI at various values of βµ. Right: Analytic
continuation of the density as a function of βh. In both plots the density is an even function about the origin. Both plots are at a
dimensionless coupling of λ = 1.0, and the physical quantities are plotted in units of the density of the noninteracting, unpolarized
system.

Section 4.2: Monte Carlo results and the analytic continuation

Throughout the preceding calculations, we have fixed β = 8, λ = 1, and have a lattice size of Nx = 61.

The chemical potential asymmetry parameter βhI was varied over a full period [−π, π], and the chemical

potential parameter βµ was varied in the interval [−4, 4], which covers the semiclassical regime (where the

virial expansion is valid) to the fully quantum mechanical regime where interactions are the strongest. For

each data point on the imaginary side in the plots below, we have taken 1000 de-correlated Monte Carlo

samples, ensuring that the statistical uncertainty is below 10%.

In Fig. 4.1, we show the density n/n0 as a function of βhI and βh, respectively, for representative

values of βµ. Similarly, Fig. 4.2 displays the magnetization m/n0 and Fig. 4.3 shows Tan’s contact C. The

statistical error of the Monte Carlo calculations on the imaginary side is estimated to be on the order of the

symbol size in all three figures. In all cases we show the Monte Carlo results as a function of βhI on the left

panel, and the corresponding analytic continuation on the right. Although the imaginary side of the problem

is not physically meaningful, it is reassuring that the data falls on smooth curves that respect even or odd

symmetry around βhI = 0. We therefore have chosen to display only the positive interval βhI ∈ [0, π].

As previously discussed, in order to obtain the results of physical interest, we need to analytically continue

the data from our Monte Carlo study to real-valued chemical potential difference. To this end, we fit our data

to a specific ansatz for each observable, of which the functional form is a priori unknown. It is known that

such an ansatz must respect the correct symmetry about the origin and is formally periodic in βhI. Further,

38



 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

m
/n

0

βh
I

βµ
-2.0

-1.0

0.0

1.0

2.0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3

m
/n

0

βh

βµ
-2.0

-1.0

0.0

1.0

2.0

Figure 4.2: Left: Magnetization as a function of the imaginary chemical potential difference βhI at various values of βµ. Right:
Analytic continuation of the magnetization as a function of βh. In both plots the magnetization is an odd function about the origin,
are at a dimensionless coupling of λ = 1.0, and the physical quantities are plotted in units of the density of the noninteracting,
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Figure 4.3: Left: Tan’s contact as a function of the imaginary chemical potential difference βhI at various values of βµ for a
dimensionless coupling of λ = 1.0. C0 is the contact at βh = βµ = 0. Right: Analytic continuation of the contact as a function of
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give the results from a fit of the data to the polynomial-type ansatz (4.10), whereas solid lines result from fits of the data to our
Padé-type ansatz (4.8) for the fit functions.
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the virial expansion of the grand-canonical partition function suggests that it may be written as an asymptotic

series in powers of cos(βhI), from which it follows that higher-order terms become particularly important

for the strongly-interacting regime βµ > 1. To take such a high-order expansion into account, an ansatz of

the Padé approximant of cosines,

∼
1

1 + cos(βhI)
(4.4)

may be considered appropriate as it may be written as an asymptotic series in powers of cos(βhI) which still

obeys the periodicity in βhI.

Specifically, we choose to fit our Monte Carlo results for the magnetization at finite βhI with the odd

function

f (βhI) = −i
A sin(βhI)

1 + B cos(βhI) + CF(βhI)
(4.5)

where A, B, and C are real-valued fit parameters and the function F is given by

F(x) = cos(x3/π2). (4.6)

This last function was determined empirically. As written, it is analytic on the whole complex plane, in

particular on a disk of radius π centered at the origin. However, it is clearly not periodic in βhI as we

demanded earlier. We have given up this constraint as practically a large number of fit parameters is required

to meet this criterion, rendering the fitting algorithm potentially unstable. For example, a true Padé ansatz

of the form ∼
∑

k=1Ak sin(kβhI)/[1 +
∑

k=1 Bk cos(kβhI)] is compatible with the previously mentioned

constraints; however, the fit is consistently of much lower quality then those obtained using Eq. (4.5). In

fact, in most cases the parameter C associated with the function F is found to be small. Formally, since the

domain of βh is restricted to [−π, π], we define a periodic Fourier series of Eq. (4.5) valid within only that

interval.

The analytic continuation F̃(βh) of Eq. (4.5) is simply obtained by setting hI = −ih, which is therefore

given by

f̃ (βh) = −
A sinh(βh)

1 + B cosh(βh) + CF̃(βh)
, (4.7)

40



where F̃ is the analytic continuation of F, F̃(x) = cosh(x3/π2).

In the case of the density n/n0 and Tan’s contact C/C0, we expect even functions of βhI, and therefore

have chosen to fit the function

g(βhI) = γ

[
1 +Aη(βhI)

1 + Bη(βhI) + Cη[(βhI)
3/π2]

]
(4.8)

where η(x) = 1 − cos(x). Here, γ is a parameter that is fixed by the exactly known value at βh = βhI = 0,

while A, B and C are free real-valued parameter. Once the set of parameters are obtained, the analytic

continuation g̃(βh) of Eq. (4.8) is given by

g̃(βh) = γ
[

1 +Aη̃(βh)
1 + Bη̃(βh) + Cη̃[(βh)3/π2]

]
(4.9)

where η̃(x) = 1 − cosh(x).

The fit parameters for the density, magnetization, and Tan’s contact are provided in Tables 4.1, 4.2, and

4.3, respectively. Since the fits to the Monte Carlo data are sensitive to initial parameter values, the fitting

algorithm performs several such fits with random initial parameter values in the interval [−1, 1], and the best

fit with the minimum mean residuals is chosen for the analytic continuation. Given the functional form of

Eqs. (4.5) and (4.8), one should consider that poles may appear in either the fit or analytic continuation for a

given set of fit parameters. Since we expect these quantities to be analytic for one dimensional Fermi gases,

the fitting algorithm eliminates any fits that demonstrate such behavior. Of course, other functional forms

may be considered for the analytic continuation with consideration to the constraints already discussed.

Note that in Fig. 4.1we also show the analytic continuation of the density, in Fig. 4.2 of themagnetization,

and in Fig. 4.3 of Tan’s contact to real-valued chemical potential differences. Although these functions are

not periodic in βh (which is not expected to be a constraint), they remain valid only in the original restricted

domain of [−π, π]. A few representative values of βµ are shown in each of these figures, however such

analytic continuations may be performed for many values of βµ on an unrestricted domain, and the equations

of state for various imaginary asymmetries may be constructed. Such plots for representative values of βh

at a dimensionless coupling strength of λ = 1 for the density, magnetization, and Tan’s contact are shown in

Figs. 4.6 and 4.7.

One of the more interesting features we observe in our results is in the behavior of the magnetization
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Table 4.1: Fit parameters for the density as they appear in Eq. (4.8) at a constant dimensionless coupling of λ = 1.0 for various
values of βµ, as well as the χ2 per degree of freedom for each fit. Note that γ is not a fit parameter (see main text).

βµ γ A B C χ2

-3.6 1.0080 -0.9670(4) -0.0415(10) -0.001(1) 0.71
-3.2 1.0172 -0.9511(4) -0.0565(9) -0.0022(10) 0.58
-2.8 1.0294 -0.9281(4) -0.080(1) -0.006(1) 0.54
-2.4 1.0461 -0.8942(9) -0.118(3) 0.005(3) 1.29
-2.0 1.0698 -0.848(1) -0.156(3) -0.000(4) 1.66
-1.6 1.1026 -0.7904(6) -0.198(2) -0.016(2) 0.35
-1.2 1.1245 -0.7156(10) -0.276(3) -0.008(4) 1.25
-0.8 1.1731 -0.6334(6) -0.323(2) -0.019(3) 0.63
-0.4 1.1921 -0.5433(9) -0.364(4) -0.034(7) 1.30
0.0 1.2240 -0.492(2) -0.415(2) -0.056(5) 2.74
0.4 1.2359 -0.503(3) -0.493(3) -0.009(1) 5.21
0.8 1.2361 -0.4(1) -0.4(1) 0.00(1) 0.54
1.2 1.2214 -0.18(5) -0.22(5) -0.013(6) 0.97
1.6 1.2109 -0.32(2) -0.34(2) 0.004(1) 0.71
2.0 1.1948 -0.33(3) -0.35(3) 0.005(2) 1.81
2.4 1.1763 -0.22(2) -0.24(2) -0.002(1) 0.41
2.8 1.1625 -0.11(3) -0.13(3) -0.007(1) 0.43
3.2 1.1507 -0.20(3) -0.22(3) -0.001(1) 0.45
3.6 1.1397 -0.07(6) -0.08(6) -0.009(3) 0.60

m/n0 as a function of βh and βµ. On the imaginary side (at least in the region studied), this quantity is

non-monotonic in both of those variables. In particular, we note that the ordering of the curves as a function

of βh, for differing values of βµ, is partially inverted at large enough βh. This behavior, however, results in

a perfectly ordered set of curves on the real-valued side in a way that respects both thermodynamic stability

and physical intuition.

In Fig. 4.3 we show two possible fits and their corresponding analytic continuations for the contact,

namely the Padé form given in Eqs. (4.8) and (4.9), as well as a polynomial function

q(βhI) = γ
[
1 +Aη(βhI) + Bη([βhI]

3)/π2)
]
, (4.10)

where again A and B are real-valued fit parameters, η(x) = 1 − cos(x), and γ is a fixed value, as discussed

previously. The analytic continuation q̃(βh) is given in terms of η̃(x). While the fits on the imaginary side

appear to be of comparable quality, they differ enough in the details that their analytic continuation to the real

side displays noticeable discrepancies. This is particularly evident for large βµ. We take this to be indicative
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Table 4.2: Fit parameters for the magnetization as they appear in Eq. (4.5) at a constant dimensionless coupling of λ = 1.0 for
various values of βµ, as well as the χ2 per degree of freedom for each fit.

βµ A B C χ2

-3.6 1.022(4) 0.044(3) 0.011(5) 0.48
-3.2 1.031(4) 0.062(3) 0.011(5) 0.50
-2.8 1.048(3) 0.094(3) 0.012(4) 0.41
-2.4 1.047(6) 0.146(5) -0.015(6) 1.01
-2.0 1.062(5) 0.202(4) -0.023(6) 1.35
-1.6 1.098(4) 0.269(3) 0.000(4) 0.48
-1.2 1.134(4) 0.387(3) 0.017(4) 1.80
-0.8 1.142(3) 0.521(3) 0.037(3) 5.81
-0.4 1.089(4) 0.632(3) 0.052(3) 8.90
0.0 0.978(3) 0.702(2) 0.067(2) 23.32
0.4 0.833(3) 0.711(3) 0.088(3) 36.24
0.8 0.695(3) 0.684(3) 0.123(3) 7.36
1.2 0.574(2) 0.660(3) 0.156(3) 4.95
1.6 0.473(2) 0.651(3) 0.175(3) 7.57
2.0 0.397(2) 0.639(4) 0.193(4) 8.02
2.4 0.340(2) 0.630(5) 0.214(5) 11.10
2.8 0.292(2) 0.634(6) 0.215(6) 14.55
3.2 0.256(1) 0.638(5) 0.218(4) 14.73
3.6 0.227(2) 0.636(7) 0.218(7) 24.89

of the limitations of our approach, and should be viewed as a warning with respect to the choice of the fit

function. The Padé form given in Eq. (4.8) effectively takes into account arbitrarily high powers of cos(βhI)

which is expected to be valid only in the vicinity of vanishing polarization.

Section 4.3: Magnetization-to-density ratio and magnetic susceptibility

It is important to understand whether the system we are studying is appreciably magnetized in the region

of parameter space that we explore here. To clarify and expand on this point, in Fig. 4.4 we show the ratio

of the magnetization m to the density n. In absolute value, this ratio can only vary between 0 (unpolarized)

and 1 (fully polarized); it is therefore reassuring that m/n in fact lies within the interval [0, 1] after analytic

continuation, and is a monotonically increasing function with βh.

Our results for the magnetization allow us to compute the magnetic susceptibility χ of a polarized Fermi

gas simply by taking a derivative,

χ =
1

n0

∂m
∂(βh)

, (4.11)
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Table 4.3: Fit parameters for the contact as they appear in Eq. (4.8) at a constant dimensionless coupling of λ = 1.0 for various
values of βµ, as well as the χ2 per degree of freedom for each fit. Note that γ is not a fit parameter (see main text).

βµ γ A B C χ2

-3.6 0.0003 -0.4(2) -0.60(4) 0.15(4) 0.47
-3.2 0.0019 -0.50(5) -0.50(3) -0.00(5) 0.52
-2.8 0.0062 -0.503(2) -0.10(5) -0.40(8) 0.12
-2.4 0.0159 -0.5(1) -0.40(9) 0.4(6) 1.01
-2.0 0.0390 -0.45(8) -0.39(6) 0.3(4) 1.30
-1.6 0.0971 -0.5025(5) -0.22(2) -0.27(3) 0.42
-1.2 0.1712 -0.49(1) -0.42(1) -0.00(4) 0.98
-0.8 0.3542 -0.496(2) -0.418(4) -0.051(10) 0.32
-0.4 0.5722 -0.493(2) -0.473(3) 0.006(8) 0.64
0.0 1.0000 -0.496(1) -0.464(3) -0.016(6) 1.02
0.4 1.4929 -0.4974(7) -0.450(2) -0.029(4) 0.70
0.8 2.1795 -0.4978(7) -0.402(2) -0.075(4) 0.60
1.2 2.7994 -0.494(1) -0.386(2) -0.061(6) 0.49
1.6 3.6330 -0.4986(7) -0.331(3) -0.138(7) 1.09
2.0 4.3998 -0.498(1) -0.304(4) -0.16(1) 2.21
2.4 5.0691 -0.4980(5) -0.298(2) -0.157(5) 0.61
2.8 5.8386 -0.4975(5) -0.278(2) -0.166(5) 0.53
3.2 6.6344 -0.4967(7) -0.256(2) -0.180(7) 0.69
3.6 7.3683 -0.4982(6) -0.240(2) -0.211(6) 0.85

where in practice we simply take an analytic derivative of Eq. (4.7) for each discrete value of βµ. The

magnetic susceptibility as a function of βh for representative values of βµ at a fixed dimensionless coupling

of λ = 1.0, as well as the noninteracting case, is shown in Fig. 4.5.

Section 4.4: Comparison with other approaches

In this section, we compare the results from theMonteCarlo simulationswith those fromother approaches

which helped guide the analytic continuation of the numerical data from imaginary to real-valued chemical

potential differences.

4.4.1: Virial expansion

Consider the virial expansion of the partition function, i.e. an expansion in powers of z ≡ eβµ. In the

βµ→ −∞ limit, where the virial expansion is valid, we can evaluate the density and the magnetization order

by order. At leading order in z, n↑,↓λT = z↑,↓, and therefore

nλT = (n↑ + n↓)λT = 2eβµ cosh(βh) (4.12)
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which leads to, noting that n0 = 2z↑z↓ at leading order,

n
n0
= cosh(βh) (4.13)

where n0 is the density for the unpolarized system. This result is the leading order in the virial expansion

and therefore is independent of the interaction. Similarly, we find for the magnetization that

m
n0
=

n↑ − n↓
n0

= sinh(βh), (4.14)

which then at leading order in z yields

m
n
= tanh(βh). (4.15)

In general, accessing higher orders in the virial expansion requires solving the two-, three-, . . . , N-body

problem (see, e.g., Ref. [81]). The grand-canonical partition function for systems with a chemical potential

asymmetry may be written as

Z =

∞∑
N=0

∑
M

zNwMQN↑,N↓, (4.16)

where N = N↑ + N↓ is the total particle number and M = N↑ − N↓ measures the spin polarization. Moreover,

we have introduced the quantities w ≡ eβh and QN↑,N↓ being the canonical partition function of a system

with N↑ spin-up fermions and N↓ spin-down fermions. Expanding Eq. (4.16) to second order in z yields

Z = 1 + 2Q1,0z cosh(βh) +Q1,1z2 + 2Q2,0z2 cosh(2βh) + O(z3), (4.17)

where Q1,0 = L/λT and Q1,1 and Q2,0 may be determined by direct calculation [1] without determining

the explicit form of the partition function. Note that the expansion coefficients QN↑,N↓ depend implicitly on

the coupling λ. To determine all coefficients, recognize that the expression for b2 in terms of the generic

canonical partition functions Q1 and Q2 is given as

b2 =
Q2

Q1
−

Q1

2
(4.18)
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where for the present polarized system, for the interacting case Q2 = 2Q2,0 + Q1,1 and Q1 = 2Q1,0 since

the exchange of spin-up particles for spin-down particles is symmetric (i.e., Q1,0 = Q0,1). This gives for the

interacting system at λ = 1 on the lattice,

b2 = −0.035 =
2Q2,0 +Q1,1

2Q1,0
−Q1,0. (4.19)

In the case of the non-interacting system, Q1,1 = Q2
1,0 so the above reduces to

b(0)2 = −0.35355 · · · =
Q2,0

Q1,0
−

Q1,0

2
. (4.20)

Solving Eqs. (4.19) and (4.20) simultaneously gives the result

Q1,1 = 2(b2 − b(0)2 )Q1,0 +Q2
1,0 (4.21)

Q2,0 =
1

2
Q1,0(2b(0)2 +Q1,0) (4.22)

which fully defines the system. The density n and magnetization m in the second-order virial expansion may

then be determined to the proper order by expanding the quantities

nλT =
λT
L
∂ lnZ

∂(βµ)
, mλT =

λT
L
∂ lnZ

∂(βh)
(4.23)

in a series to second order. Each of these outputs are then normalized by

n0λT =
2
√
π

∫ ∞

−∞

dx
e−x

2

1 + ze−x2
(4.24)

to obtain n/n0 and m/n0. These calculations are compared with Monte Carlo results in the z → 0 limit,

which we do explicitly in Fig. 4.6 and find excellent agreement for small z and βh. However, the quality of

the agreement deteriorates quickly as βh is increased unless z ≈ 0, as expected. For completeness, Fig. 4.7

shows Tan’s contact as a function of βµ, for several values of βh, and at λ = 1.0.

4.4.2: Lattice perturbation theory

As an additional verification of the equations of state obtained through an analytic continuation, we

performed a next-to-leading order lattice perturbation theory calculation by expanding the lattice grand-
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Figure 4.6: Density and magnetization at a dimensionless coupling of λ = 1.0 in units of the unpolarized, noninteracting density
n0. The solid black lines how the second-order virial expansion for each value of βh. Error bars were estimated by varying the fit
parameters by an amount given by the uncertainty in the calculated fits.
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Padé-type ansatz (4.8) for the fit functions.

canonical partition function Z(βµ, βh) in the dimensionless parameter A ≡
√

2(eτg − 1) (which arises

naturally in lattice calculations, see e.g., Refs. [107–109]) about the non-interacting limit (A = 0), up to the

second non-vanishing term. Such an expansion on the lattice yields

lnZ = lnZ0 +
β

2τNx
(Aeβµ)2

∏
s=↑,↓

(∑
k

e−βεk

1 + zse−βεk

)
, (4.25)

whereZ0(βµ, βh) is the partition function of the noninteracting gas, εk = k2/2m, and the sum over k is over

all possible latticemomenta. The form of this result was derived using a slightly different, andmore unwieldy,

formalism used for the high-order perturbative expansion shown in Chapter 5. An explicit derivation of this

result is shown in the Appendix. The density n/n0 and magnetization m/n0 in terms of this NLO result

follow from Eq. (4.25) using the definitions of the density n and magnetization m. We display the results of

this analytic calculation with the numerical Monte Carlo results and the equations of state of the free gas in

Figs. 4.8a and 4.8b. In all cases the results obtained with our proposed analytic continuation approach lie

generally between the leading (noninteracting) calculation and the next-to-leading-order result. Later in this

thesis, we will see comparisons of polarized gases in one dimension with higher-order perturbation theory

beyond NLO, as well as comparisons of this result with complex Langevin.
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Figure 4.8: Comparison of the Monte Carlo results after the analytic continuation, a next-to-leading-order perturbation theory
calculation, and the free gas for the density and the magnetization. Results are displayed in βh = 0.0, 0.5, 1.0, 1.5 and 2.0 in the
strongly interacting region βµ > −1.
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CHAPTER 5: High-Order Lattice Perturbation Theory for Interacting Fermions

From previous discussions, it is evident that even though conventional quantumMonte Carlo methods are

powerful tools in the sense that they are exact up to controlled systematic and statistical uncertainties, their

application is frequently limited to a small subset of systems that are not plagued by the sign problem. Other

analytical devices such as the Bethe ansatz (see, e.g., Refs. [110, 111]) can complement such calculations,

but are unable to address strong interactions or finite temperature in a controlled manner. As a complement

to stochastic methods, we present a novel perturbation theory formalism on the lattice that can be automated

(in principle) to arbitrarily high order. Such an expansion takes advantage of the quantum Monte Carlo

formalism in that this is an expansion on the lattice where the grand-canonical partition function undergoes

a Trotter-Suzuki decomposition and a Hubbard-Stratonovich transformation that allows for a trivial path

integral to be computed over an auxiliary field.1

Section 5.1: Weak-coupling lattice perturbation theory formalism

In a nutshell, the procedure for analytically calculating the perturbative expansion involves evaluating

the diagrammatic expansion and resulting path integral on a computer using an object-oriented approach.

The final expressions, which contain sums over the complete frequency-momentum basis, are evaluated

numerically to determine the pressure equation of state, or other physical observable.

5.1.1: Path integral form of the grand-canonical partition function

The starting point of our lattice perturbative expansion of the equation of state is the grand-canonical

partition function,

Z = Tr
[
e−β(Ĥ−µN̂ )

]
, (5.1)

where, as is generally the case, Ĥ is the Hamiltonian, N̂ is the particle number, and V̂ is the potential energy

operator, which for this work we will generally take to be a two-body operator. Rather than expanding

1This chapter is based on the work published in Refs. [112] and [113]. Fig. 5.5 as it appears in Ref. [114] is published by EDP
Sciences under the Creative Commons Attribution License 4.0.
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directly in powers of V̂ , as is conventional in perturbation theory, we will introduce a Hubbard-Stratonovich

(HS) transformation. We discretize the imaginary time direction as β = τNτ , where τ is an appropriately

small number, and apply a third-order Suzuki-Trotter factorization,

e−τĤ = e−τT̂/2e−τV̂ e−τT̂/2 + O(τ3) (5.2)

followed by a HS transformation,

e−τV̂ =
∫
Dσ e−τŴ [σ], (5.3)

where Ŵ[σ] is a one-body operator representing an external potential set by the spacetime auxiliary field σ,

and where the path integral is over all possible configurations of that auxiliary field. The specific form of the

one-body operator Ŵ[σ] depends on the choice of the HS transformation, as even multiple transformations

can be considered for the same interaction. In the case of fermions, this transformation can be either

discrete or continuous, and in the latter case it can be compact or noncompact [115]. For the purposes of

the perturbative expansion shown here, the particular form of the HS transformation is immaterial, as the

transformation is undone order-by-order.

The use of the HS transform is much more common in quantum Monte Carlo approaches than in

perturbative ones, and is the natural path to mean-field theory calculations. We will show here, however, that

the HS transformation recovers the results of Wick’s theorem but bypasses the operator algebra completely.

In addition, this approach has the advantage of facilitating the use of many-body forces, as it is relatively

simple to write down HS transforms for these systems, and the steps after the transform remain mechanical

(which strongly motivates our formalism).

After collecting all the auxiliary field integrals and performing the trace over the resulting product of

exponentials of one-body operators, we obtain a path-integral form of the grand-canonical partition function

Z,

Z =

∫
Dσ det2M[σ], (5.4)

where in the above form, for the sake of demonstration here, we have assumed that the system contains two

identical species. This formalism can certainly be extended to a larger number of spin degrees of freedom
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or polarized systems. The matrix M , which is of dimension Nτ × V by Nτ × V (where Nτ is the temporal

volume and V is the spatial volume), encodes all relevant system dynamics such that

M[σ] ≡

©«

1 0 · · · UNτ [σ]

−U1[σ] 1 · · · 0

0 −U2[σ]
. . . 0

...
...

. . .
...

0 · · · −UNτ−1[σ] 1

ª®®®®®®®®®®®®¬
. (5.5)

For the case of contact interactions, such as in the Gaudin-Yang model, the matrixU[σ] can be written as

[Ut [σ]]x,x′ = [e−τ(p
2/2m−µ)]x,x′[1 + A sinσ(x′, t)] (5.6)

where x and x′ are spatial indices, t is a temporal index, and where A ≡
√

2(eτg − 1), g is the zero-range

coupling, and τ is the temporal lattice spacing (see, e.g., Ref. [1]). We have chosen a realization of the HS

transformation in which the continuous field σ takes values between −π and π at each point in spacetime,

such that the path integral operator is defined as

∫
Dσ ≡

∏
x,τ

∫ π

−π

dσ(x, τ)
2π

. (5.7)

This particular kind of HS transformation was first explored in Refs. [108, 109].

At this point, we have eliminated from the problem all the quantum operators, which highlights one of

the main advantages of the method. Moreover, we have accomplished this by “integrating out” the fermionic

degrees of freedom, which is an unorthodox route to perturbation theory. We will see, however, that this

is a useful way to proceed in the sense that it mechanically generates the correct answers, and is therefore

amenable to automation.

5.1.2: Expanding the fermion determinant

To obtain the perturbative expansion of the grand-canonical partition function on the lattice, we expand

the determinant of the matrix M in powers of the dimensionless parameter A defined above, which is related
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to the bare coupling g that appears in the interaction term of the Hamiltonian. To this end, first note that

M = M0 + ATS[σ] (5.8)

where M0 is the non-interacting counterpart, and

T ≡

©«

0 0 · · · T

−T 0 · · · 0

0 −T
. . . 0

...
...

. . .
...

0 · · · −T 0

ª®®®®®®®®®®®®¬
, (5.9)

where [T]x,x′ is the kinetic energy operator (where we have taken units such that ~ = kB = m = 1), and

[S(σ)]x,t;x,t = δt,t′δx,x′ sinσ(x, t). (5.10)

Therefore, we further obtain that M = M0(1 + AKS[σ]), where K ≡ M−1
0 T will play the role of the free

propagator, as we explain below, and of course

det M = det M0 det(1 + AKS[σ]). (5.11)

At this point, we set aside the non-interacting factor and make use of the identity det = exp Tr ln to formally

expand the logarithm in powers of A, such that

det(1 + AKS[σ]) = exp

[
∞∑
k=1

AkEk

]
, (5.12)

where we define

Ek =
(−1)k+1

k
Tr

[
(KS[σ])k

]
. (5.13)

Note that each power of the fermion determinant translates simply as a prefactor in the definition of Ek .

Thus, the expansion coefficients for an unpolarized system of Nf species are simply Nf Ek . We further write
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the determinant as

exp

[
∞∑
k=1

AkEk

]
=

∞∏
k=1

exp
[
AkEk

]
(5.14)

=

∞∏
k=1

∞∑
{ik }=0

(AkEk)
ik

ik !
. (5.15)

Eq. (5.13) begins to expose the powers of A in the perturbative expansion. The task ahead is to isolate those

powers and carry out the path integral exactly. Using these expressions, by fully expanding and combining

terms of identical powers of A, it is straightforward to see that

det(1 + AKS[σ]) = 1 + AE1 + A2

(
E2

1

2!
+ E2

)
+ A3

(
E3

1

3!
+ E1E2 + E3

)
+ · · · . (5.16)

The above expansion corresponds to one of the spin degrees of freedom and therefore it is to be combined

with a corresponding expansion for the other spin, which could be done for polarized (different µ for each

species) or unpolarized (same µ) cases. For the moment, we focus on the latter with a two-component

system, which simply means that we are expanding the square of the determinant. As mentioned above, this

can be accomplished easily by setting Ek → Nf Ek for the general case of Nf flavors.

5.1.3: Recovering Wick’s theorem by calculating the path integral exactly at each order

Once the determinants are expanded to the desired power of A, which is easy to automate, one obtains

products of powers of the various Ek defined in Eq. (5.13). The path integral of each of these products must

be evaluated to obtain the expansion of the partition function. For instance, at second order, one of the terms

is ∫
DσE2[σ] = −

1

2

∫
Dσ Tr

[
(KS[σ])2

]
= −

1

2
Ki jKkm

∫
Dσ S[σ]jkS[σ]mi, (5.17)

where all the (collective, spacetime) indices i, j, k,m on the right-hand side are assumed to be summed over.

Writing out the indices explicitly at each order, we see that the main problem is computing path integrals

of the form

Im(b1, b2, . . . , bm) =
∫
Dσ sin(σ[b1]) sin(σ[b2]) . . . sin(σ[bm]),
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where each bk represents a spacetime coordinate. These integrals vanish if m is odd, but otherwise the result

is generally finite and positive. For instance, for m = 2,

I2(b1, b2) =
1

2
δb1,b2, (5.18)

and for m = 4,

I4(b1, b2, b3, b4) =
3

8
δb1,b2 δb1,b3 δb1,b4 +

1

4

[
δb1,b2 δb3,b4(1 − δb2,b3)

+ δb1,b3 δb2,b4(1 − δb3,b2) + δb1,b4 δb2,b3(1 − δb4,b2)
]
, (5.19)

where 3/8 is the result for the case of all four coordinates coinciding, i.e.

∫ π

−π

dσ
2π

sin4 σ =
3

8
. (5.20)

It is the tensor expressions like Eq. (5.19) that automatically implementWick’s theoremwhen contracting

with the various K propagators. As with the Taylor expansion of the determinant, the calculation of the Im

needed for each of the terms at a given order was also automated, as was the subsequent index contraction

with the propagators. The result of that process is that not only the diagrams themselves, but also all the

symmetry factors are generated automatically, minimizing the amount of manual bookkeeping. Naturally,

the topology of the diagrams enters through the Im tensors, which encode the multiple ways in which the

corresponding path integral can give a non-vanishing result.

The complexity of the expression for Im grows with each order in the perturbative expansion and causes

the number of terms in the expansion ofZ (i.e. after contractingwith the K’s) to grow very quickly. Although

the next-to-leading (NLO) contribution can easily be verified by hand, the next-to-next-to-next-to-leading

(N3LO) (i.e. A6) order produces (naively) on the order of 103 terms, all of which must be simplified to obtain

the final results. Moreover, in the case of polarized systems, multiple products of the determinant must be

expanded. This scaling underscores why the method we proposed here is well suited for automation, but it

is otherwise not ideal for manual calculation, especially if a high-order, finite-temperature expansion is the

goal.
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5.1.4: Transforming to frequency-momentum space on the lattice

Naturally, the matrix K can be diagonalized in the momentum basis with a discrete Fourier transform,

such that

[K]ab =
∑
q

U†aq[D0]qUqb (5.21)

where a, b are collective spacetime indices of the form (t, x), and q = (ω, k) is a collective frequency-

momentum index, with ω = (2nω + 1)/Nτ being a fermionic Matsubara frequency (nω = 1, . . . , Nτ), and

k = 2nkπ/Nx (nk,i = 1, . . . , Nx) a d-dimensional spatial wavevector. The free propagator D0 is then

[D0]q ≡
1

1 − exp[iω + τ(k2/2 − µ)]
, (5.22)

while the Fourier transform matrices take the form

Uaq =
1√

Nd
x Nτ

exp[i(ωt − k · x)]. (5.23)

By computing the path integral over the auxiliary field σ for all the terms in the expansion of the determinant

at a particular order, we are left with an object of the generic schematic form

S =
∑
[K]a1a2[K]a3a4 . . . [K]a2m−1a2m Ia1...a2m (5.24)

where the sum is taken over all free spacetime indices, and the object Ia1...a2m results from the path integral

over the interaction terms sin(σi).

Upon inserting the Fourier representation of the propagator [c.f. Eq. (5.21)], we obtain a form that is

described by a collection of indices in the frequency-momentum basis:

S =
∑
[D0]q1[D0]q2 . . . [D0]qm Ĩq1,...,qm (5.25)

where Ĩq1,...,qm results from appropriately contracting the various Fourier tensors U and U† with Ia1...a2m .

The Ĩ tensors represent momentum conservation laws for each specific term.

The advantage of going to frequency-momentum space is that S can be obtained by performing m
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frequency-momentum sums instead of the 2m spacetime sums. This optimization, however, is not enough; it

is crucial to carry out the frequency sums analytically in order to have a numerically manageable expression

at the end. We turn to those sums next.

5.1.5: Computing finite Matsubara frequency sums analytically: two tricks

In the evaluation of expressions at a given order n, we are faced with nested frequency sums that

schematically look like the expression

∑
q1,q2,...,qm

[D0]q1[D0]q2 . . . [D0]qmδ({qk}), (5.26)

where we have left out sums over momenta, which are to be carried out afterwards, and the delta factor

represents an energy-momentum conservation law that is derived from each diagram’s topology. Note that,

here and below, we will use the delta notation to represent the discrete Kronecker symbol rather than the

Dirac symbol (we have no need for Dirac deltas here, as all our expressions are discrete). In this section, we

show how we performed the frequency sums in a way that does not use complex contour integration and,

moreover, allows us to treat all the sums simultaneously.

We begin with an example. The simplest case is that of a single factor, which may seem trivial but is

nevertheless instructive:

S1 =

Nτ∑
n=1

[D0]n =

Nτ∑
n=1

1

1 −Q exp (iωn)
, (5.27)

where we have encoded all the momentum and chemical potential dependence in the factor Q, and where

ωn = (2n + 1)π/Nτ . In this case we expand the expression inside the sum as a geometric series:

S1 =

Nτ∑
n=1

∞∑
k=0

Qkeiωnk =

∞∑
k=0

Qk
Nτ∑
n=1

eiωnk (5.28)

=

∞∑
m=0

∞∑
k=0

Qkδ(k − mNτ)(−1)m (5.29)

=

∞∑
m=0

QmNτ (−1)m =
Nτ

1 +QNτ
, (5.30)
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where we used the fact that k ≥ 0 and

Nτ∑
n=1

ei2πnk/Nτ = Nτ
∞∑

m=−∞

δ(k − mNτ). (5.31)

The S1 sum is useful per se, but also because high-order calculations need the more general sums, such

as

S(k)1 =

Nτ∑
n=1

(
1

1 −Q exp (iωn)

)k+1

, (5.32)

such that S(0)1 = S1. For general k, this is easy to compute by introducing a new parameter λ via

S1(λ) ≡

Nτ∑
n=1

1

λ −Q exp (iωn)
=

1

λ

Nτ
1 + (Q/λ)Nτ

, (5.33)

and differentiate with respect to λ as needed,

S(k)1 =
(−1)k

k!

dkS1(λ)

dλk

����
λ=1

. (5.34)

Clearly, S1(λ) is a generating function for frequency sums of higher order. In particular, for instance,

S(1)1 =
[1 −QNτ (Nτ − 1)]Nτ
(1 +QNτ )2

. (5.35)

The method of expanding the numerator as a power series applies as well when multiple sums are present,

such as for higher-order diagrams for which the corresponding frequency sums are listed in Sec. 5.3.

The general procedure of the method is as follows. First, take a step backward and use the Fourier-sum

representation of all the frequency Kronecker deltas, i.e.

δ[ f (ω1, ω2, . . . )] =
1

Nτ

Nτ−1∑
p=0

eip f (ω1,ω2,... ), (5.36)

in combination with the geometric series expression of the denominators. This first step is similar to that

of techniques used in the continuum, where an integral representation of a Dirac delta function is utilized.

Beyond this point, however, the calculations differ considerably.

The second step is to sum over each fermionic frequency ωn, which yields as many delta functions as
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denominators, with their corresponding “boundary” sums and factors of (−1)m, i.e. use

Nτ∑
n=1

eiωny = Nτ
∞∑

m=−∞

δ(y − mNτ)(−1)m. (5.37)

Here it is important to keep the terms for all m, as y will generally vary over a semi-infinite range due to the

geometric series expansion.

Third, sum over the geometric sum index to saturate the delta functions generated in the previous step.

To this end, it is useful to extend the geometric sum index to −∞, such that Heaviside step functions should

be inserted accordingly.

Fourth, implement the constraints over the boundary sums and evaluate such sums, which lead to the

expected (1 +QNτ
k
)−1 factors. Finally, sum over the Fourier index of the energy-conserving delta functions.

As is clear from the above, the operations to be performed are rather elementary and do not involve complex

analysis, only a small amount of bookkeeping. It is the order of the operations that is crucial for the simplicity

of the method.

Section 5.2: Perturbative results for the equation of state

In this section we show the results of implementing the lattice perturbation theory formalism first to the

case of unpolarized, spin-1/2 fermions in one spatial dimension, and then address the spin-polarized case.

The specific Hamiltonian we explore is the Gaudin-Yang form [12, 13], where Ĥ = T̂ + V̂ with the kinetic

energy operator

T̂ =
∫

dx
∑
s=↑,↓

ψ̂†s (x)
(
−
~2

2m
d2

dx2

)
ψ̂s(x), (5.38)

and the potential energy operator

V̂ = −g
∫

dx n̂↑(x)n̂↓(x), (5.39)

where ψ̂†s (x) and ψ̂s(x) are the creation and annihilation operators in coordinate space for particles of spin

s, and n̂s = ψ̂
†
s (x)ψ̂s(x) are the corresponding density operators. As usual, there are only two dimensionless

parameters characterizing this one-dimensional problem at finite temperature: the fugacity z = eβµ and the

interaction coupling λ =
√
βg.
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Figure 5.1: Feynman diagram for the next-to-leading order (NLO) contribution to the grand canonical partition function.

5.2.1: Analytic expressions for the perturbative expansion

Among the main results of this formalism are the final expressions for the perturbative contributions

to the partition function Z at each order n up to N4LO, which are shown in Tables 5.1, 5.2, and 5.3

(explained in further detail below). Each term at order n is to be accompanied by a factor of A2n, but all

the information required to reproduce the numerical results shown are presented in tables and the provided

expressions for the relevant frequency sums within this chapter. Note however, that the numerical evaluation

of these expressions has only been carried out to N3LO; the limiting factor here is the analytic evaluation of

fourth-order frequency sums.

Each contribution to the perturbative expansion of the partition function corresponds to a fully connected

Feynman diagram of n vertices (or a product of two or more such diagrams), and can be described by the

product of some scalar prefactor with a 1/(NxNτ)n dependence, and one or more sums over the complete

momentum-frequency basis. The Feynman diagrams that appear at NLO, N2LO, N3LO, and N4LO are

provided in Figs. 5.1, 5.2, 5.3, and 5.4, respectively. The Matsubara-frequency sums in the analytic

expressions provided have already been carried out using the technique outlined in Sec. 5.1.5; therefore, all

sums and indices that remain in these expressions are over spatial momenta. The frequency sums always

contain Qn as parameters that encode the spatial momentum dependence:

Qn ≡ eτ(k
2
n/2−µ). (5.40)

A variety of frequency sums over various products of propagators and momentum conservation conditions

appear in these expressions. The expressions for S1 and S(1)1 are given earlier in the text by Eqs. (5.30) and

(5.35), respectively. The remainder of the frequency sums are provided for reference in Sec. 5.3.

The number of loops, or the number of nested momentum sums that appear for each expression, is also

provided explicitly in the tables of perturbative contributions. Since the momentum sums are generally

computed in full, this number provides an estimate for the computational scaling that is required to compute

the value of each diagram; the number of terms that must be computed scales as N`d
x , where ` is the number
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(b)

(a)

Figure 5.2: Feynman diagrams for the next-to-next-to-leading order (N2LO) contribution to the grand canonical partition function.

(a)

(b)

(c) (d)

Figure 5.3: Feynman diagrams for the next-to-next-to-next-to leading order (N3LO) contribution to the grand canonical partition
function.
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(a)

(b) (c)

(d)

(e)

(i)

(g)

(f)

(j)

(h)

Figure 5.4: Feynman diagrams for the next-to-next-to-next-to-next-to leading order (N4LO) contribution to the grand canonical
partition function.

of loops and d is the spatial dimension. Notice that although the expansion is formally in powers of the

parameter A2, one may regard this procedure directly as a weak-coupling expansion in g, given A2 ∼ τg for

τg � 1. As such, one may qualitatively think of the representation of lnZ in this expansion as it appears in

Fig. 5.5.

5.2.2: Pressure equation of state via perturbation theory

To determine the pressure P of a system of any dimension, we use the perturbative expansion of the

interacting partition functionZ, which we expand to order 2n in the parameter A and write as

Z = eβPV = Z0(1 + A2
∆1 + A4

∆2 + A6
∆3 + A8

∆4 + · · · ) (5.41)
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Table 5.1: Detail of next-to-leading order (NLO), next-to-next-to-leading order (N2LO), and next-to-next-to-next-to-leading order
(N3LO) contributions (respectively, order A2, A4, and A6) to the grand-canonical partition function Z. The indicated diagram
figure refers to the corresponding fully-connected Feynman diagram or product of such diagrams for each contribution. The volume
V = NxNτ that appears in all expressions refers to the spacetime volume of the lattice. The greatest number of loops that appear for
each fully-connected diagram is also provided. It is implicit in the notation that a momentum-conserving Kronecker delta has been
utilized to eliminate momentum sums: one in the case of S4 and S(1)4 , but two in the case of S6.

Order Diagram Figure Prefactor Diagram Frequency Sum Loops

NLO Fig. 5.1 1/(2 V)

[∑
p1

S1(Q1)

]2

1-loop

N2LO [Fig. 5.1]2 1/(8 V2)

[∑
p1

S1(Q1)

]4

1-loop

N2LO Fig. 5.2(a) −1/(4 V2)

[∑
p1

S(1)1 (Q1)

] [∑
p1

S1(Q1)

]2

1-loop

N2LO Fig. 5.2(b) 1/(8 V2)
∑

p1,p2,p3

S4(Q1,Q2,Q3) 3-loop

N3LO [Fig. 5.1]3 1/(48 V3)

[∑
p1

S1(Q1)

]6

1-loop

N3LO Fig. 5.2(a) × Fig. 5.1 −1/(8 V3)

[∑
p1

S(1)1 (Q1)

] [∑
p1

S1(Q1)

]4

1-loop

N3LO Fig. 5.2(b) × Fig. 5.1 1/(16 V3)

[ ∑
p1,p2,p3

S4(Q1,Q2,Q3)

] [∑
p1

S1(Q1)

]2

3-loop

N3LO Fig. 5.3(a) 1/(12 V3)

[∑
p1

S(2)1 (Q1)

] [∑
p1

S1(Q1)

]3

1-loop

N3LO Fig. 5.3(b) 1/(8 V3)

[∑
p1

S(1)1 (Q1)

]2 [∑
p1

S1(Q1)

]2

1-loop

N3LO Fig. 5.3(c) −1/(4 V3)

[ ∑
p1,p2,p3

S(1)4 (Q1,Q2,Q3)

] [∑
p1

S1(Q1)

]
3-loop

N3LO Fig. 5.3(d) 1/(12 V3)
∑

p1,p2,p3,p4

S6(Q1,Q2,Q3,Q4) 4-loop
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Table 5.2: Part I detail of next-to-next-to-next-to-next-to (N4LO) contribution (order A8) to the grand-canonical partition function
Z. The remainder of the N4LO contributions are provided in Table 5.3. All diagrams that appear in this table are disconnected
diagrams, and will cancel after the logarithm of the partition function is taken. The indicated diagram figure refers to the
corresponding fully-connected Feynman diagram or product of such diagrams for each contribution. The volume V = NxNτ
that appears in all expressions refers to the spacetime volume of the lattice. The greatest number of loops that appear for each
fully-connected diagram is also provided. It is implicit in the notation that a momentum-conserving Kronecker delta has been
utilized to eliminate momentum sums.

Diagram Figure Prefactor Diagram Frequency Sum Loops

[Fig. 5.1]4 1/(384 V4)

[∑
p1

S1(Q1)

]8

1-loop

[Fig. 5.2(a)] × [Fig. 5.1]3 −1/(32 V4)

[∑
p1

S(1)1 (Q1)

] [∑
p2

S1(Q2)

]6

1-loop

[Fig. 5.2(b)] × [Fig. 5.1]2 1/(64 V4)

[ ∑
p1,p2,p3

S4(Q1,Q2,Q3)

] [∑
p1

S1(Q1)

]4

1-loop

[Fig. 5.3(a)] × [Fig. 5.1]5 1/(24 V4)

[∑
p1

S(2)1 (Q1)

] [∑
p1

S1(Q1)

]5

3-loop

[Fig. 5.3(b)] × [Fig. 5.1]2 1/(16 V4)

[∑
p1

S(1)1 (Q1)

]2 [∑
p1

S1(Q1)

]4

1-loop

[Fig. 5.3(c)] × [Fig. 5.1]3 −1/(8 V4)

[ ∑
p1,p2,p3

S(1)4 (Q1,Q2,Q3)

] [∑
p1

S1(Q1)

]3

3-loop

[Fig. 5.3(d)] × [Fig. 5.1]2 1/(24 V4)

[ ∑
p1,p2,p3,p4

S6(Q1,Q2,Q3,Q4)

] [∑
p1

S1(Q1)

]2

4-loop

[Fig. 5.2(b)]2 1/(32 V4)
©«
[∑
p1

S(1)1 (Q1)

] [∑
p1

S1(Q1)

]2ª®¬
2

1-loop

[Fig. 5.2(c)]2 1/(128 V4)

[ ∑
p1,p2,p3

S(1)4 (Q1,Q2,Q3)

]2

3-loop

[Fig. 5.2(b)] × [Fig. 5.2(c)] −1/(32 V4)

[∑
p1

S(1)1

] [ ∑
p1,p2,p3

S(1)4

] [∑
p1

S1

]2

3-loop
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Table 5.3: Part II detail of the next-to-next-to-next-to-next-to (N4LO) contribution (order A8) to the grand-canonical partition
functionZ. The first part of the N4LO contributions are provided in Table 5.2. All diagrams that appear in this table are new fully-
connected diagrams that appear at this order. The indicated diagram figure refers to the corresponding fully-connected Feynman
diagram or product of such diagrams for each contribution. The volume V = NxNτ that appears in all expressions refers to the
spacetime volume of the lattice. The greatest number of loops that appear for each fully-connected diagram is also provided. It is
implicit in the notation that a momentum-conserving Kronecker delta has been utilized to eliminate momentum sums.

Diagram Figure Prefactor Diagram Frequency Sum Loops

Fig. 5.4(a) −1/(16 V4)

[∑
p1

S(1)1 (Q1)

]3 [∑
p1

S1(Q1)

]2

1-loop

Fig. 5.4(b) −1/(16 V4)

[ ∑
p1,p2,p3,p4,p5

S8α(Q1,Q2,Q3,Q4,Q5)

]
5-loop

Fig. 5.4(c) −1/(32 V4)

[∑
p1

S(3)1 (Q1)

] [∑
p1

S1(Q1)

]
1-loop

Fig. 5.4(d) −1/(8 V4)

[∑
p1

S(2)1

] [∑
p1

S(1)1

] [∑
p1

S1

]3

1-loop

Fig. 5.4(e) 3/(16 V4)

[ ∑
p1,p2,p3

S(2)4 (Q1,Q2,Q3)

] [∑
p1

S1(Q1)

]
3-loop

Fig. 5.4(f) 1/(8 V4)

[ ∑
p1,p2,p3

S(3)4 (Q1,Q2,Q3)

] [∑
p1

S1(Q1)

]
3-loop

Fig. 5.4(g) −1/(4 V4)

[∑
p1

S1

] [ ∑
p1,p2,p3,p4,p5

S(1)6

]
5-loop

Fig. 5.4(h) 1/(32 V4)

[ ∑
p1,p2,p3,p4,p5

S8β(Q1,Q2,Q3,Q4,Q5)

]
5-loop

Fig. 5.4(i) 1/(8 V4)

[∑
p1

S(1)1

]2 [ ∑
,p2,p3

S(1)4

] [∑
p1

S1

]
3-loop

Fig. 5.4(j) −1/(16 V4)
∑

p1,p2,p3,p4,p5

S(1)7 (Q1,Q2,Q3,Q4,Q5) 5-loop
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Figure 5.5: The perturbative expansion for the grand-canonical partition function as lnZ = P/P0 written explicitly up to N3LO,
where we consider the weak coupling limit A2 ∼ τg. In this respect, one may qualitatively regard the expansion as expanding in g

directly on the lattice.

where ∆n is the NnLO contribution, as given by the expressions in Tables 5.1, 5.2, and 5.3, and where

Z0 is the non-interacting grand-canonical partition function, e.g. for an unpolarized system in one spatial

dimension,

lnZ0 = βP0V =
Nx/2−1∑
k=−Nx/2

ln(1 + ze−βεk ) (5.42)

with εk = (2πk/Nx)
2/2. Therefore, the interacting pressure P, relative to the non-interacting result P0,

becomes

P
P0
= 1 +

ln(1 + A2∆1 + A4∆2 + A6∆3 + A8∆4 + · · · )

lnZ0
. (5.43)

To keep the computed value of lnZ consistent with the highest order of A in the expansion ofZ, we expand

the numerator ln(1 +
∑

n A2n∆n) in a Taylor series about A = 0, such that the expanded form up to N4LO is

P
P0
= 1 +

1

lnZ0
(A2ζ1 + A4ζ2 + A6ζ3 + A8ζ4) (5.44)
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where we define

ζ1 = ∆1, (5.45)

ζ2 = ∆2 −
1

2
∆

2
1, (5.46)

ζ3 = ∆3 − ∆1∆2 +
1

3
∆

3
1, (5.47)

ζ4 = ∆4 − ∆1∆3 −
1

2
∆

2
2 + ∆

2
1∆2 −

1

4
∆

4
1. (5.48)

Note that while this procedure offers consistency in the order of the coupling at all stages of the

calculation, in performing this expansion it is important to be mindful of the validity of choosing to expand

about the non-interacting limit. Since the partition function is an extensive quantity, this expansion may

yield unphysical results in cases where
∑

n A2n∆n � 1, which may occur in cases where stronger effective

interactions are present, as is the case when Nf > 2. However, in all cases shown here, the observables

demonstrate physical behavior and are in agreement with alternative methods where available.

5.2.3: Pressure and density equations of state for the unpolarized one-dimensional system

Using Eq. (5.44), we computed the pressure equation of state at NLO, N2LO, and N3LO as a function of

the dimensionless parameter βµ = ln z. Our results for this quantity, for the case of attractive interactions,

are shown for a variety of interaction strengths in Fig. 5.6 (top). Remarkably, we see evidence of convergence

for βµ ≥ 2, even for a coupling of λ = 2. For βµ ≤ 2, on the other hand, our results are qualitatively correct

but fail to match the hybrid Monte Carlo answers by roughly 10% in the worst case of λ = 2.

A possible explanation of this behavior is that perturbation theory simply fails to capture the effect of

the two-body bound state in the virial coefficients as λ is increased, which in the case of the second-order

coefficient b2 involves a dominant inverse gaussian contribution ∝ exp(λ2/4). One could choose to absorb

this effect into the definition of λ by way of a new renormalization scheme defined by matching to an exact

(lattice or continuum) calculation of b2, instead of identifying the coupling g with the inverse scattering

length. Of course, such a renormalization scheme would improve the agreement with the Monte Carlo

results in the semiclassical regime of negative βµ, but by the same token it would spoil it for βµ ≥ 2.

Nevertheless, as the perturbative expansion is extended to higher order, the convergence properties of the

regime is expected to improve.

In all cases, the NLO results are quantitatively disappointing, but N2LO and N3LO display substantial

improvement both in convergence and in approaching the Monte Carlo results. Naturally, this improvement
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Figure 5.6: Pressure P of the attractive (top) and repulsive (bottom) unpolarized Fermi gas in units of the pressure of the
noninteracting system P0, as shown for the dimensionless interaction strengths λ = 0.5, 1.0, 1.5, 2.0, and λ = −0.5, -1.0, -1.5, -2.0
for the attractive and repulsive cases, respectively. The NLO (dashed line), N2LO (dash-dotted line), and N3LO (solid line) results
from perturbation theory are displayed for each coupling. The corresponding data points for each attractive coupling are computed
using HMC (see Ref. [1]).

is not free: the computational effort increases dramatically for N2LO and N3LO relative to NLO. Similar

behavior is seen for the repulsive case in Fig. 5.6 (bottom) but with an important difference, where the results

oscillate as the perturbative order is increased, whereas in the attractive case convergence appears to be

monotonic.

Based on our knowledge of the pressure, differentiation with respect to βµ gives access to the density of

the system, for which results from perturbation theory can be compared more directly with quantum Monte

Carlo results (the pressure is not typically a quantity computed directly in Monte Carlo calculations, but is

rather obtained by integrating the density; see Ref. [1] for details). We show a comparison in Fig. 5.7 (top)

for the case of attractive interactions where Monte Carlo calculations are possible without a sign problem.
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Figure 5.7: Density n of the attractive (top) and repulsive (bottom) unpolarized Fermi gas in units of the density of the noninteracting
system n0, as shown for the dimensionless interaction strengths λ = 0.5, 1.0, 1.5, 2.0 (attractive), and λ = −0.5, -1.0, -1.5, -2.0
(repulsive). The NLO (dashed line), N2LO (dash-dotted line), and N3LO (solid line) results of perturbation theory are displayed
for each coupling and are compared with HMC results (see Ref. [1]) in the attractive case. For both plots, the black diamonds show
CL results (RL for the attractive case), regulated with ξ = 0.1 as described in the main text. The statistical uncertainty of the CL
results is estimated to be on the order of the size of the symbols, or less, as supported by the smoothness of those results.

For repulsive interactions, where a sign problem is present, our calculations yield the results shown in Fig. 5.7

(bottom). In both cases, we have numerically differentiated with a point spacing of dµ = 0.01. Both figures

also display comparisons with results obtained using complex Langevin techniques (which will be introduced

in Chapter 6) and agrees well with the perturbative results across attractive and repulsive couplings.

In addition to displaying the density equation of state for weak to moderate couplings of λ = ±0.5 to 2.0,

we display in Fig. 5.8 the density for stronger couplings of λ = ±2.5 to 4.0 for both perturbation theory and

complex Langevin. The perturbative results, even at N3LO, fail miserably in the strongly interacting and

virial regions beyond λ of 2.5; however, complex Langevin still agrees well with HMC where it is available
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Figure 5.8: Density n of the attractive (top) and repulsive (bottom) unpolarized Fermi gas in units of the density of the noninteracting
system n0, as shown for the dimensionless interaction strengths λ = 2.5, 3.0, 3.5, 4.0 (attractive), and λ = −2.5, -3.0, -3.5, -4.0
(repulsive). The NLO (dashed line), N2LO (dash-dotted line), and N3LO (solid line) results of perturbation theory are displayed
for each coupling and are compared with HMC results (see Ref. [1]) in the attractive case. It is evident that perturbation theory fails
miserably at these higher couplings, and competing oscillations set in for the repulsive case. For both plots, the black diamonds
show CL results (RL for the attractive case), regulated with ξ = 0.1 as described in the main text. The statistical uncertainty of the
CL results is estimated to be on the order of the size of the symbols, or less, as supported by the smoothness of those results.

for attractive couplings. In the case of repulsive couplings, it is evident that oscillations across successive

perturbative orders are setting in, and are competing to converge to the proper result.

5.2.4: Equations of state for the polarized one-dimensional system

We can extend our analysis of the perturbative expansion of the partition function for the unpolarized

system to the case of a two-component spin-polarized system quite naturally, without resorting to another

full derivation. Recall thatZ for the polarized spin-1/2 system will have two distinct fermion determinants,
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such that

Z =

∫
Dσ det M↑(σ) det M↓(σ) (5.49)

where µ↑ , µ↓. If we were to again perform the analysis to a particular order in A but keep track of the flavor

labels on each term, we would arrive at the same symmetry factors and diagrams for the unpolarized case,

but find that exactly half of the propagators are a function of z↑, and the remaining half are a function of

z↓. This translates to modifying all of our momentum sum expressions in Tables 5.1, 5.2, and 5.3 such that

they are invariant under exchange of spin-up and spin-down fermions, and considering all permutations of

z↑ and z↓ across non-commuting propagators. In cases of diagrams such that the product of frequency sums

are not invariant, the additional n combinations and an overall factor of 1/n is added, which leads to a small

increase in computational complexity. For instance, S4 has 6 combinations to consider, while S6 has 20.

In Fig. 6.4 (deferred to Chapter 6, when we discuss CL in more detail) we display the density n/n0 for the

attractive polarized system at a constant coupling of λ = 1, and compare results across N3LO perturbation

theory, complex Langevin, and results from the imaginary chemical potential technique discussed in Chap-

ter 4. Since perturbation theory and complex Langevin are both capable of obtaining a prediction for the

repulsive system, we display these results for the density at a variety of chemical potential asymmetries and

a coupling of λ = −1, where the results compared across all techniques are quite satisfactory. We display

additional density and polarization equations of state for the spin-polarized gas in Chapter 6, where we

introduce the complex Langevin method which is capable of obtaining results outside the region of validity

for perturbation theory.

5.2.5: Perturbative virial coefficients

Based on the results shown above for the pressure equation of state, we implemented a method of

particle-number projection, which is well known in the area of nuclear physics, to calculate virial coefficients

on the lattice perturbatively. To explain the method, recall that the virial expansion for the pressure is given

by

βPV = lnZ = Q1

∞∑
n=1

bnzn, (5.50)
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Figure 5.9: Fifth-order perturbative virial expansion for the pressure P/P0 for two attractive and repulsive couplings. The expansions
are shown for which the virial coefficients are computed at NLO (dashed line), N2LO, (dotted line), and N3LO (dash-dotted line).
The fully solid line shows the full perturbative calculation of the pressure at N3LO, as shown in Fig. 5.6. Results from HMC data
(see Ref. [1]) are displayed as corresponding data points for the attractive couplings.

where Q1 = Nf L/λT is the one-particle canonical partition function, λT =
√

2πβ is the thermal de Broglie

wavelength, and bn are the viral coefficients we want to extract.

Using our semi-analytic expressions for lnZ(z), it is possible to extract the coefficients bn via a numerical

Fourier projection,

bn =
1

Q1αn

∫ 2π

0

dφ
2π

e−inφ lnZ(z → αeiφ), (5.51)

where the partition function is evaluated at z = α exp(iφ) and α is an arbitrary real parameter that is

independent of the result for bn, but is used to ensure that a well-behaved integrand is used. A value of

α = 0.01 is well-suited for the evaluations performed here. An exploration of evaluating virial coefficients

using a Fourier projection of the partition function but stochastically via complex Langevin was explored in

Ref. [116].

We display the fifth-order perturbative viral expansion in the classical regime at NLO, N2LO, and

N3LO in Fig. 5.9, which compares these results with the full perturbative calculation and with HMC data

for attractive couplings. Perturbative values up to the fifth-order virial coefficient obtained using Fourier

projection for four different values of the coupling are shown in Table 5.4. The perturbative expansion of

virial coefficients bn displays signs of convergence at weak coupling |λ | ≤ 1 and for low enough virial order

n. We find that for λ = ±1 the predictions for b5 cease to converge, at least at N3LO. For comparison, an exact
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Table 5.4: Results for the second, third, fourth, and fifth-order virial coefficients of the pressure P [see Eq. (5.50)] at NLO, N2LO,
and N3LO for two repulsive and attractive couplings. All coefficients are computed for a spatial lattice size of Nx = 100, β = 8.0,
and a temporal lattice spacing of τ = 0.05. The fifth-order virial expansion is displayed in Fig. 5.9.

λ Coefficient NLO N2LO N3LO

-1.0

b2 -0.551 -0.473 -0.473
b3 0.472 0.373 0.342
b4 -0.452 -0.380 -0.280
b5 0.449 0.446 0.246

-0.5

b2 -0.453 -0.433 -0.433
b3 0.333 0.308 0.304
b4 -0.289 -0.271 -0.259
b5 0.270 0.269 0.244

0.5

b2 -0.253 -0.233 -0.233
b3 0.0508 0.0254 0.0295
b4 0.0408 0.0592 0.0461
b5 -0.0925 -0.0932 -0.0671

1.0

b2 -0.152 -0.0712 -0.0712
b3 -0.0922 -0.194 -0.161
b4 0.208 0.282 0.176
b5 -0.276 -0.279 -0.0676

lattice calculation of the second-order virial coefficient at Nx = 100 and β = 8 under attractive interactions

(see Ref. [1]) shows that for λ = 0.5, b2 = −0.230, and for λ = 1.0, b2 = −0.0351. This discrepancy

compared with the perturbative value for b2, particularly for larger values of the coupling, underscores the

difficulty in quantitatively capturing the behavior in the virial region using perturbation theory.

In addition to displaying the perturbative values of the virial coefficients for a select few choices of the

coupling, in Fig. 5.10 we plot bn for n = 2, 3, 4, 5 and 6 as a function of the dimensionless coupling λ from

the non-interacting limit to a strongly-coupled regime. Such an approximation at high interactions strengths

is not expected to be reliable, but forms an interesting comparison in valid regions with stochastic methods

of computing virial coefficients, as is discussed in Ref. [116].

Section 5.3: Second- and third-order Matsubara frequency sums

In this section, we will provide a listing of all Matsubara frequency sums that appear in the perturbative

contributions to the grand-canonical partition function at second- and third-order. Note that the first-order

sums S1 and S(1)1 are provided elsewhere in the text. In all cases, our expressions were checked by comparing

with a direct evaluation of the defining sums in a small spacetime volume.

The second-order frequency sum S4 is defined as the sum over four free propagators, where the indices

of the first three propagators are free, and the fourth is constrained by the momentum conservation condition
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Figure 5.10: Plot of the second, third, fourth, fifth, and sixth-order virial coefficients as computed via Fourier projection under
third-order lattice perturbation theory, shown as a function of the dimensionless coupling λ. The plot displays the virial coefficients
from the non-interacting limit of λ = 0 to the strongly-coupled regime.

ω4 = ω1 − ω2 + ω3. Therefore, we write the expression for S4 with a Kronecker delta such that

S4 =

Nτ∑
{n}=1

[
4∏

q=1

1

1 −Qqeiωnq

]
δ(ωn3−ωn2+ωn1−ωn4). (5.52)

After performing the procedure outlined earlier in this chapter, the final result is simply given by

S4 = N3
τ

(
4∏

k=1

1

1 +QNτ
k

) [
1 + (Q1Q3)

Nτ

(
1−XNτ

1−X
−1

)]
. (5.53)

Note that a complete derivation of S4 is available in Ref. [112].

The frequency sum S(2)1 is defined as the sum over the product of three identical propagators, and the

derived expression is given by

S(2)1 =

Nτ∑
n=1

(
1

1 −Q1eiωn

)3

=
Nτ(2 −QNτ

1 [N
2
τ + 3Nτ − 4] +Q2Nτ

1 [N2
τ − 3Nτ + 2])

2(1 +QNτ
1 )

3
. (5.54)

The frequency sum S(1)4 can be obtained, as explained in the main text, by using a differentiation trick:

S(1)4 = −
dS4(λ)

dλ

����
λ=1

(5.55)

where S4(λ) ≡ λ
−1 S4

��
Q1→Q1/λ

. Thus,
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S(1)4 =

Nτ∑
n1,n2,n3,n4=1

(
1

1 −Q1eiωn1

)2
1

1 −Q2eiωn2

1

1 −Q3eiωn3

1

1 −Q4eiωn4
δ(ωn1 − ωn2 + ωn3 + ωn4)

= N3
τ

(
4∏

k=1

1

1 +QNτ
k

) {[
1 + (Q1Q3)

Nτ

(
1 − XNτ

1 − X
− 1

)] (
(Nτ − 1)QNτ

1 − 1

1 +QNτ
1

)
+ Nτ(Q1Q3)

Nτ

[
1 −

1 − XNτ

1 − X
−

XNτ

1 − X
+

X
Nτ

1 − XNτ

(1 − X)2

]}
(5.56)

where X ≡ Q2Q4/(Q1Q3).

Finally, the frequency sum S6 is defined as

S6 =
∑

n1,n2,n3,
n4,n5,n6

(
6∏

k=1

1

1 −Qkeiωnk

)
δ(ωn1 − ωn2 − ωn5 + ωn6) δ(ωn3 − ωn4 + ωn1 − ωn6)

= N4
τ

(
6∏

k=1

1

1 +QNτ
k

)
(S6A + S6B + S6C + 1) (5.57)

such that

S6A ≡ (Q2Q4)
Nτ

[(
1 − (XY )Nτ

1 − XY
− 1

)
(1 +QNτ

5 +QNτ
6 ) + F(X,Y )QNτ

6 + F(Y, X)QNτ
5

]
, (5.58)

S6B ≡ (Q4Q6)
Nτ

(
1 − Y Nτ

1 − Y
− 1

)
, and S6C ≡ (Q2Q5)

Nτ

(
1 − XNτ

1 − X
− 1

)
, (5.59)

where we also define

F(X,Y ) ≡
1 − Y Nτ

1 − Y

(
1 −

1 − XNτ

1 − X

)
+

1

1 − Y

(
1 − XNτ

1 − X
−

1 − (XY )Nτ

1 − XY

)
, (5.60)

as well as X ≡ Q1Q6/(Q2Q5) andY ≡ Q3Q5/(Q4Q6). As evident from the above expressions, it is important

to consider limiting cases near poles (e.g. X = 1) when numerically evaluating these sums; such limits are

straightforward to compute and implement.

Section 5.4: Object-oriented design for analytic perturbative expansions

The process of computing an analytic expression for the perturbative expansion of the grand-canonical

partition function at finite temperature manually has shown to be infeasible beyond next-to-leading order,
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and more complex derivations demand enough computational resources to require a careful consideration

of an appropriate software implementation to perform such a task. The scaling of both utilized memory

and processing resources with the perturbative order of the calculation scales dramatically, and the use of

parallelism adds great benefit at N4LO and beyond for even unpolarized systems. In the following section,

in order to bridge the gap between the mathematical formalism and actual practice and implementation, we

will provide a high-level overview of the software design used to derive the expressions for the perturbative

contributions shown in previous discussions.

The implementation used to produce the results in this work was written in C++ and takes an object-

oriented approach which does a significant portion of the “analytic heavy lifting”, in the sense that common

mathematical manipulations can be expressed in terms of recursive or iterative actions on collections of

objects which symbolically represent items defined by the perturbation formalism. Operations such as

expanding out the product of multiple sums and combining like terms become straightforward processes in

such an implementation, particularly when abstracted to higher levels. The language of C++ was chosen

specifically for the ability to directly manage memory of object allocation. A prototype of the software was

written in Python, but it quickly became evident that garbage collection provided by the standard interpreter

was not efficient enough on workstations with moderate resources, and a lower-level implementation would

be required. A straightforward port to C++ provided greatly improved performance.

All of the classes defined in the implementation which represent mathematical objects in the formalism

are shown in an abbreviated class diagram in Fig. 5.11. All such classes inherit the base class SymbolicTerm

which provides a basic interface for identifying the type of an instance, generating pointers to copies of an

instance, tracking spatial or temporal indices assigned to an object, as well as other tasks. They may

conceptually be divided into two categories (a second level of inheritance was deemed to be unnecessary in

this case). One set of objects represent various expressions (which we call here expression objects), such as

a sum of terms, a product of factors, or a trace over expressions. Items stored in these data structures may

themselves be expression objects such that a tree is generated. The elements, or child nodes, of each of these

objects are stored in a vector<SymbolicTerm> container; since objects may generally be non-commuting,

it is important to maintain an ordered set. On the other hand, a variety of classes for objects which explicitly

represent mathematical objects (such as particular scalars, matrices, and functions) are defined, and are

leaves of any generated expression tree. Note that in the case of representing matrices, the analytic code

does not explicitly store or calculate elements of these matrices; such details are reserved for numerically
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SymbolicObject
flavorLabel : char*
indices : int[2]
termID : TermTypes

simplify()
reduceTree()
copy() : shared_ptr<SymbolicTerm>
to_string() : string

MatrixK
isFourierTransformed : bool
fourierTransform()
copy() : shared_ptr<SymbolicTerm>

MatrixS

TermA

TermE
order : int
getFullExpression() : 

shared_ptr<SymbolicTerm>

CoefficientFraction
num, den : double

eval() : double
Math operator overloads.

CoefficientFloat
value : double
eval() : double
Math operator overloads.

Sum
terms : vector< shared_ptr<SymbolicTerm> >
getExpandedExpr() : Sum
addTerm()
reduceFourierIndices()
combineCoefficients()
Methods for obtaining iterators over terms.

Product
terms : vector< shared_ptr<SymbolicTerm> >
getExpandedExpr() : Sum
addTerm()
reduceFourierIndices()
combineCoefficients()
Methods for obtaining iterators over terms.

Trace
expr : shared_ptr<SymbolicTerm>

Delta

FourierSum
indices : vector<IndexContraction>
reduceDummyIndices()

Figure 5.11: Reduced class diagram for the C++ implementation of computing the analytic expressions for perturbative contributions
to the grand-canonical partition function. All objects used in the calculation are derived from the SymbolicTerm class, and can be
broken into two categories. The left hand side of the diagram contains expression objects which are containers for pointers to one
or more SymbolicTerm instances (which itself may resolve to an expression object), and the right hand side of the diagram shows
terminal objects which are representations of mathematical objects that appear in the perturbation theory formalism. For brevity,
this diagram only displays particular methods and fields discussed further in the text below. In addition, each class typically provides
relevant operator overloads to define particular behaviors, as well as overriding implementations of SymbolicTerm::copy() and
SymbolicTerm::to_string().
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evaluating the expressions later on once the analytic form of the perturbative expansion is obtained.

The calculation of perturbative expansion of the partition function in terms of Feynman diagrams proceeds

in several distinct stages:

1. The evaluation of a determinant of a single fermion matrix M proceeds according to the prescription

provided in Sec. 5.1.2. To consider the case of several flavors of particles, a “flavor label” is assigned

to each object. The series in powers of A with the corresponding factors of Ek are generated on-the-fly

using the methods provided by the TermA and TermE classes. Functions for calculating the Taylor

series of ex using the Sum, Product, and CoefficientFraction classes are provided.

2. After the expansion of a single determinant is obtained, a product of determinants is taken and

expanded, or equivalently, the appropriate factor of the number of flavors Nf is included beforehand

in the definition of Ek [see below Eq. (5.16)]. The expansion is truncated to the power of A desired,

and terms which are in odd powers of A are removed (since they will always vanish).

3. The arguments of Trace objects are provided indices such that the expression is given in an implied

summation notation; for instance, consider the rewriting

Tr(K↑SK↓S) →
∑
i, j

K↑ i, j Sj,k K↓ k,` S`,i . (5.61)

4. At this point, the path integral of each term in the expansion can be evaluated over products of the

form KabSbcKcdSde · · ·K f gSga, whose path integral will be of the form

KabKcd · · ·K f g

∫
DσSbcSdeSga, (5.62)

where in text we have referred to the integral as In(a, b, c, . . . ), where the integrand is n-th order in

the matrix S. A separate function determines In in terms of the appropriate numerical coefficients

and Kronecker delta functions of the indices a, b, c, . . . , where the relevant mapping between the

generic indices and those appearing in the integrand expression is implicitly understood. This com-

putation involves calculating all possible “contractions” of order n, or all the possible ways in which

a non-vanishing contribution to the path integral can group σ-fields together; each such contraction

contributes one term to the integral In. A variety of additional classes and structures are written to
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handle this with clarity.

5. After computing the path integral and fully expanding the result, we are left with an expression of the

form K0,1K2,3 · · · δi jδkl · · · , where integers refer to spacetime indices and lowercase letters indicate

momentum-frequency indices. To proceed further, we must symbolically transform the matrix K to

the free propagator D which is written in the momentum-frequency basis, and insert the resulting

sums from this transform. This introduces the FourierSum class, which represents a set of sums

over spacetime indices, and can handle a basic elimination of redundant indices. Once the calculation

is complete, the contents of this object can be used to quickly determine the Feynman diagram

corresponding to a given term in the expansion.

6. At this point, the calculation is complete, but terms of the same type of diagram must be combined

to simplify the expression. The number of terms present at this point is far too large to be able to

do this manually. The new FeynmanDiagram and Vertex classes are used to identify topologically

identical diagrams based on the indices of the free propagators. Similar diagrams are then combined

together using a separate function, which breaks the sum into smaller parts to make this computation

more manageable.

At this stage the work of the software described at the beginning of this section is complete, and the

contributing terms are output in the general form a
b AnK0,1K2,3 · · ·K2n−2,2n−1 where the Fourier transform

has rendered Kab to

Kab =
∑
ab

U†aiDiUib . (5.63)

The collection of spacetime indices which transform to the diagonal momentum-space representation are

stored in the FourierSum object and are written with each contributing term, for instance an N2LO term

can be presented as

{-1 / 4} {A} {A} {A} {A} D_{0, 1} D_{2, 3} D_{4, 5} D_{6, 7}

FourierSum[(0, 1) (1, 0) (0, 0) (0, 0)]

where here the argument of the FourierSum represents

∑
0,1

U†0iUi1U†1jUj0U†
0k

Uk0U†0`U`0. (5.64)
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A final step to arrive at the form of the expressions in Tables 5.1, 5.2, and 5.3 is to consider momentum

conservation conditions. As an example, rearranging the explicit form of the Fourier sum of the above

expression gives

DiDj

∑
0,1

epi (x0−x1)ep j (x1−x0) = DiDj

(∑
0

ex0(pi−p j )

) (∑
1

ex1(p j−pi )

)
(5.65)

= DiDjδ(pi − pj)δ(pj − pi) (5.66)

where xn are spatial coordinates and pn are momenta. We can see here that pi = pj , which results in the

final expression D2
i , corresponding to frequency sum S1.

81



CHAPTER 6: Complex Langevin Dynamics

In the first few chapters of this thesis, the hybrid Monte Carlo (HMC) method was applied to unpolarized

and spin-polarized systems (in the case of iHMC) of fermions with contact interactions in one dimension.

Although the HMC algorithm was an efficient method to solve for the equations of state of these problems,

it has a significant drawback – any system of interest must be free of the sign problem, since the Metropolis

algorithm no longer functions when the action used as the probability measure fluctuates in sign. Generally,

there exist many more physical systems we would like to study which present a sign problem, than those that

do not. As such, we would like to continue exploring techniques to avoid this roadblock. One method to

circumvent the sign problemwhich we propose and develop in this chapter, is the complex Langevinmethod.1

This technique has gathered considerable attention in the area of finite-density lattice QCD [117–126], but

its application to non-relativistic latter is extremely limited (see, however, Refs. [127, 128]).

The Langevin equation was originally proposed [129] as a method to study the motion of a particle in

a fluid experiencing Brownian motion as a stochastic differential equation [130] for the particle’s trajectory

x(t):

mÜx = −α Ûx + X (6.1)

where m is the mass of the particle, α is a parameter related to the viscosity of the fluid, and X is a term

which Langevin refers to as the complementary force over which the average behavior over an ensemble

of particles can be evaluated. Langevin concluded that this analysis exactly reproduces the result for the

mean squared displacement of a particle experiencing Brownian motion after a given time, as first predicted

by A. Einstein. In the case of our QMC studies, we instead imagine the trajectory through configuration

space of the auxiliary field experiencing stochastic noise according to a particular probability distribution.

Additionally, we allow our field variables to be complex, such that the random walk can wander around the

complex plane. This is in direct contrast to the HMC approach, where instead the trajectory is governed by

1This chapter is based in part on the work published in Refs. [112, 113].

82



the Metropolis algorithm. Although this modification avoids the sign problem in principle, in practice the

complex Langevin algorithm does not come without its own price. In fact, much of the complex Langevin

algorithm in the context of auxiliary field techniques is still under active investigation.

Section 6.1: Formulation of the complex Langevin approach for QMC

As previously alluded to, the basic idea to the complex Langevin approach is to make the auxiliary field

variable σ complex, introduce a noise term η(x, τ) to the dynamical equations of motion, and eliminate

the Metropolis step present in HMC implementations. The starting point is once again the grand-canonical

partition function

Z =

∫
Dσ det2M[σ], (6.2)

where one normally identifies P[σ] = det2M[σ] as the unnormalized probability measure to be used in a

Metropolis-basedMonte Carlo calculation. One further defines an effective action S via P[σ] = exp(−S[σ]).

Most physical observables can then be shown to take the form

〈O〉 =
1

Z

∫
Dσ e−S[σ]O[σ], (6.3)

such that the expectation value can be determined by importance sampling the auxiliary field σ according to

the weight P[σ]. We have already established hybrid Monte Carlo as a well-known way of carrying out such

sampling, so long as P[σ] satisfies the requisite properties. Additionally, the real Langevin (RL) method,

also known simply as stochastic quantization (see, e.g., Refs. [131–133]), can also typically be used in cases

where HMC does not have a sign problem. In this situation, the auxiliary field resorts to be a real field, and

the complex Langevin method reduces to what is known as real Langevin. When performing calculations

in the complex plane, computations for observables which could otherwise be done using RL will naturally

find themselves restricted to the real axis; any initial imaginary part of the observable will decay to zero.

Recall that in HMC, one defines a secondary auxiliary field variable π which is conjugate to the HS field

σ with global, molecular-dynamics type equations of motion in a fictitious phase-space time t which provide
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global configuration updates, such that

Ûσ = π, (6.4)

Ûπ = −
δS[σ]
δσ

. (6.5)

Note that the right-hand side of the last equation represents a functional derivative of the action S, and

naturally represents a molecular dynamics force. In the RL method, on the other hand, the Metropolis step

is removed, and the equations of motion are modified such that

Ûσ = −
δS[σ]
δσ

+ η, (6.6)

where there is no longer an auxiliary momentum field π and a t-dependent noise field η appears instead.

Note that η cannot be just any chosen random noise field, but should satisfy particular properties, namely

such that the mean satisfies 〈η(x, τ)〉 = 0 and spacetime correlations satisfy 〈η(x, τ)η(x ′, τ′)〉 = 2δx,x′δτ,τ′.

Conventionally, recall that the mathematical underpinnings of HMC and RL depend on the probability

distribution P[σ] being positive semidefinite. As is well known, this property generally fails to hold, for

instance, for repulsive interactions and polarized systems, and the calculation is then said to have a sign

problem (or more generally, a complex phase problem). In the case of HMC, this implies that the Metropolis

step is no longer well-defined, and the guarantees that algorithm provides is no longer provided, which

renders HMC unavailable. Although RL does not include such a Metropolis step, one can observe that the

resulting sign problem causes the algorithm to converge to the incorrect result, if it even converges at all. A

generalization of RL is possible, namely complex Langevin (CL), as is first noted in Ref. [134]. In this case,

one complexifies the HS auxiliary field σ into

σ = σR + iσI, (6.7)

where the new auxiliary fields σR and σI are both real. The resulting equations of motion are given as

δσR = −Re

[
δS[σ]
δσ

]
δt + η

√
δt, (6.8)

δσI = −Im

[
δS[σ]
δσ

]
δt. (6.9)
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Here the action S[σ] is to be understood as a complex function of the complex variable σ. Note that, when

the action is real, the imaginary part of the force vanishes and then CL reduces to RL. In particular, when

applied to the case of fermions with contact interactions, we will see that for the attractive case, where there

is no sign problem present, σ is real and the CL simulation behaves as RL.

6.1.1: Complex Langevin pitfalls

Under certain conditions, which have lately receivedmuch attention (see, e.g., Ref. [135]), the CLmethod

can be guaranteed to converge to the right answer. However, such guarantees come for limited cases and

are difficult to prove, and typically do not apply to many physical systems. In such situations, expectation

values 〈O〉 are correctly obtained by averaging over the real part of O[σ] given complex fields σ samples

throughout the CL dynamics evolution. In particular, for the model we study here, it is a priori not known if

CL will converge to the correct result; one goal of the work in this chapter is to explore the viability of CL

for this class of systems.

In the process of making CL a viable solution to the sign problem in lattice QCD, two crucial challenges

were identified: the appearance of numerical instabilities in the CL evolution, and the uncontrolled excursions

of σ into the complex plane due to singularities in P[σ]. The former was largely resolved by implementing

adaptive time-step solvers [136] (which we also use in this work); the latter, on the other hand, is currently

under investigation and a few approaches have been proposed (see, e.g., Refs. [137, 138]). In the calculations

presented here, those excursions are highly problematic because of the dependence of P[σ] on σI is through

hyperbolic functions; one may easily see this by inspecting the HS transformation used and noting the

dependence on sinσ, and

sinσ = sin(σR + iσI ) = sin(σR) cosh(σI ) + i cos(σR) sinh(σI ). (6.10)

Therefore, a growing (positive or negative) σI effectively increases the coupling at an exponential rate

(recall for the transform we use, roughly eτV̂ ∼ A sinσ), which can completely stall the calculation or result

in a converged but wrong answer, as we have observed in a variety of our tests. This exponential growth is

similar to the problem found in gauge theories, as complexified link variables representing the gauge field

become unbounded in the same fashion in those theories.
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6.1.2: Modified action

Throughout our tests of the application of complex Langevin to fermionic systems with contact inter-

actions, we determined that the straightforward application of Eqs. (6.8) and (6.9) is far too susceptible

to uncontrolled excursions into the complex plane, as discussed in the previous section. In order to over-

come this problem, we modified the action in a way reminiscent of the dynamical stabilization approach of

Refs. [139, 140]. In the latter, a new term was added to the CL dynamics which vanishes in the continuum

limit and renders the calculation stable. A technical distinction between the modification we make here and

the approach of dynamical stabilization, is that in the second, the term added to the equations of motion is

not holomorphic.

We propose here to modify the CL equations by adding a regulating term controlled by a parameter ξ,

such that the new equations, in their discretized form, are given as

δσR = −Re

[
δS[σ]
δσ

]
δt − 2ξσRδt + η

√
δt, (6.11)

δσI = −Im

[
δS[σ]
δσ

]
δt − 2ξσIδt . (6.12)

From the perspective of molecular dynamics in the context of hybrid Monte Carlo, one can see that this

change amounts to modifying the action with a term which is quadratic in the auxiliary field,

S[σ] → S[σ] + ξ
∑
x,t

σ2. (6.13)

The rationale for adding such a regulating term was originally based on our understanding of δS[σ]/δσ

as a molecular dynamics force in the HMC algorithm (although it is typically referred to as the “drift” in

the literature regarding the CL method). In the sense of this dynamical force, the new term in the action

can be understood as a harmonic oscillator trapping potential, i.e. a restoring force that prevents the field

from exponentially running away. However, we know that HMC does not apply when σ is complex; a more

appropriate interpretation is obtained by keeping only those new terms in the CL equations and neglecting

the rest, which results in the decoupled form

δσR = −2ξσRδt, (6.14)

δσI = −2ξσIδt, (6.15)
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Figure 6.1: The normalized density n/n0, where n0 is the noninteracting result, for λ = −1.0 and βµ = 1.6, as a function of the
Langevin time t for several values for the regulating parameter ξ [see Eq. (6.13)]. The result was computed on a spatial lattice of
Nx = 80 and a temporal lattice of Nτ = 160. For a choice of ξ = 0, where the regulating term is removed, CL tends toward an
incorrect value for the density. When ξ ' 0.1, the additional term provides a restoring force and the stochastic process converges to
a different value consistent with perturbation theory. On the other hand, for cases where ξ < 0, the solution diverges, as expected.
Each plotted line corresponds to a fixed count of 105 iterations of performing one integration step of the adaptive step δt; as such,
the length of the line gives an indication as to the computational demand to reach time t for a given ξ.

whose solution is a decaying exponential (assuming ξ > 0) for both σR and σI . Thus, this new ad hoc term

represents a damping force. In principle, one could additionally explore anharmonic damping term, such as

a regulated term proportional to σ4. Such an addition may more quickly bound runaway excursions, but one

must balance this behavior with allowing the system to explore appropriate regions of configuration space.

Naturally, the proposed modification introduced a systematic effect that needs to be studied for each

quantity of interest, i.e. it is crucial to understand the ξ dependence of the output. The results previously

presented in Figs. 5.6 and 5.7 correspond to ξ = 0.1. To gain specific insight into the variations of the density

with ξ, we show in Fig. 6.1 a plot of the running average of the density as a function of the Langevin time

t for several values of ξ in the neighborhood of zero. As evident in that figure, there is a sizable window of

small values of ξ where CL converges. Additionally, we show in Fig. 6.2 a plot of the phase and magnitude

of e−S , where S is the complex action, for different values of ξ. The effect of the ξ term on the CL dynamics

can be clearly seen in that figure (note the change of scale for the ξ < 0 plot, where the results are expected

to diverge).

Section 6.2: Unpolarized equation of state using complex Langevin

We have previously displayed the pressure and density equations of state of the one-dimensional balanced

system of fermions in Figs. 5.6 and 5.7 where the CL predictions were used to validate results obtained for

N3LO perturbation theory. Higher coupling results from CL were also compared against HMC in Fig. 5.8
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Figure 6.2: Plot of the complex quantity e−S in terms of its magnitude ρ and phase θ such that e−S = ρeiθ , for a CL calculation
at λ = −1.0 and βµ = 1.6. Data points are plotted as ln(ρ) cos(θ) and ln(ρ) sin(θ) as parametric functions of the Langevin time t.
Plots are displayed for four values of the parameter ξ. Note that for ξ = 0, the solution does not converge, but does converge for
ξ = 0.005 and 0.1. For the case where ξ = −0.1, the result for the density n/n0 rapidly diverges, as expected [note change in scale
for y axis and see Fig. 6.1]. Data points show the locations where samples were taken along the CL trajectory; the shaded areas
result from straight lines joining the data points.
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where perturbation theory drastically breaks down. For both repulsive and attractive interactions, CL

reproduces the N3LO result to high accuracy in regimes where it is expected to be valid. Where perturbation

theory fails at high couplings strengths or within the virial region, CL agrees with both the virial expansion

and HMC, where available (see in particular the figures presented in the following section for curves

corresponding to vanishing polarization). Even though CL is not necessarily guaranteed to converge a

priori to the correct expectation value, these studies with the addition of the modified action agree well with

other known techniques (where applicable), indicating that it does seem to properly converge for this model.

Overall, the results obtained for the equation of state of the balanced system indicated that the algorithm

could be viable for use in the spin-polarized system.

In order to further assess whether the simulation encounters singularities in the drift and that excursions

into the complex plane are reasonably constrained, we display a histogram of the absolute value of the action,

−S ' ln | det M | in Fig. 6.3. The important quantity to consider is the magnitude of det M , since a vanishing

determinant would result in a divergence when integrating the equations of motion. We show such plots for

both the strongest and weakest couplings and for values of the chemical potential primarily in the strongly

interacting region where the density deviates the most from the noninteracting value. This approximately

log-normal distribution is consistently well-defined across parameter values with a reasonable width, even

though the magnitude of the action may vary across βµ. In this respect, there is assurance that the flow

of the simulation is well-controlled and not subject to severely problematic points. The scatter plot of e−S

corresponding to ξ = 0.1 in Fig. 6.2 also supports this finding; the distribution of the magnitude of this

quantity is well contained and is symmetric on the complex plane.

Section 6.3: Spin-polarized fermions using complex Langevin

In the previous section, we discussed equation of state results for unpolarized fermions as calculated

using CL and compared those results with N3LO perturbation theory and HMC. Here we turn once again

to calculating the equation of state for spin-polarized spin-1/2 fermions as we did with iHMC in Chapter 4,

but with the CL method, which does not require fitting data on the imaginary axis and taking an analytic

continuation to the physical observables. In addition to the increased simplicity of the technique for avoiding

the sign problem, we note that CL is not subject to the prohibitive statistical noise that appears at strong

couplings under iHMC, and also may remain valid for parameter space regions where phase transitions

occur. These difficulties made studies in higher dimensions impractical using iHMC, but have succeeded
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Figure 6.3: Histograms of values taken of 2 ln(| det M |) over the course of a CL simulation at ξ = 0.1 for a few representative values
of the coupling λ (shown primarily on the repulsive side and for the strongest coupling) and the chemical potential βµ (shown in
the virial and strongly interacting regions). The distributions across parameter values appear approximately log-normal and well
behaved, and indicate that the drift force is generally free of singularities. Although the magnitude of the action can vary across
parameter space, the variance across field configurations is centered about a well-defined mean.
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under CL, as we present in Chapter 7. For now, let’s review the results and analysis for the system in one

spatial dimension.

We again consider the same Hamiltonian as Eq. (3.1) for two particle species,

Ĥ = −
~2

2m

∑
i

∇2
i − g

∑
i< j

δ(xi − xj) (6.16)

where the sums over i and j are taken over all particles for spin-up (↑) and spin-down (↓) species. The

grand-canonical partition function is, as usual, Z = Tr
[
e−βK̂

]
for K̂ = Ĥ − µ↑N̂↑ − µ↓N̂↓, where µs and

N̂s are the chemical potential and particle number operators for the corresponding species, respectively. To

address the polarized systems, we again adopt the notation

µ ≡
µ↑ + µ↓

2
(6.17)

h ≡
µ↑ − µ↓

2
(6.18)

such that µ↑ = µ + h and µ↓ = µ − h. The parameter h is referred to as the chemical potential asymmetry,

and is also made a dimensionless quantity via a factor of β. The same Hubbard-Stratonovich transformation

as used in previous chapters is applied to this Hamiltonian, where the partition function is evaluated over a

determinant for each spin:

Z =

∫
Dσ det(1 + z↑U[σ]) det(1 + z↓U[σ]). (6.19)

Note that unlike the case where we sampled this path integral using an imaginary polarization, these

determinants are not complex conjugates of one another and the integrand in general is a complex quantity

even under attractive interactions. The density is evaluated similarly to the unpolarized case, with the

exception that derivatives of lnZ are taken with respect to βµ↑ and βµ↓, producing n↑ and n↓, respectively.

These computations using CL and PT were performed on a lattice size of Nx = 61 and Nτ = 160 and

are compared with the third-order virial expansion within the region of validity. In the case of λ = 1,

which corresponds to an attractive interaction, we additionally compare with the data of Chapter 4 (also see

Ref. [2]) which was obtained using iHMC. The temporal lattice spacing was again set to τ = 0.05 such that

β = τNτ . In contrast to the unpolarized results shown above, the evolution was performed using an adaptive

Euler integrator (replacing adaptive fourth-order Runge-Kutta) for a total of 105 iterations, where the first
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10% of samples were discarded to thermalize the system and improve convergence properties.

6.3.1: Third-order virial expansion

In previous chapters, we have routinely used the second-order virial expansion to compare Monte Carlo

results for equations of state in the limit of small fugacity. We will now introduce the virial expansion to

third-order, which naturally contains information relevant to the three-body system. Only one third-order

coefficient is required to describe a polarized spin-1/2 system. Additionally, instead of using the full virial

coefficients bn, we will find it more convenient to write it as ∆bn = bn − b(0)n , the value relative to the

non-interacting case. Therefore, the expansion of the pressure for a polarized gas takes the form

β∆PV = ln

(
Z

Z0

)
= Q1

∞∑
n,m=1

∆bn,mzn
↑

zm
↓
. (6.20)

By writing down the grand-canonical partition function in terms of the (n,m)-particle canonical partition

functions Qn,m, one can see that

∆b1,1 = ∆b2, (6.21)

∆b2,1 = ∆b1,2 =
∆b3

2
. (6.22)

This provides the virial expansion up to third order for the polarized case entirely in terms of the unpolarized

coefficients; i.e. all information regarding the chemical potential asymmetry is separated into the two fugacity

factors z↑ and z↓. Therefore, if we define n0 as the noninteracting unpolarized result, and n(ni), m(ni) as the

noninteracting polarized result, then for the density up to third order,

n
n0
=

Q1

n0V

[
2∆b2z↑z↓ +

3

2
∆b3(z2

↑
z↓ + z↑z2

↓
)

]
+

n(ni)

n0
. (6.23)

Similarly for the magnetization,

m
n0
=

Q1

n0V
[∆b3(z2

↑
z↓ − z↑z2

↓
)] +

m(ni)

n0
. (6.24)

Naturally, these expressions must be symmetric under exchange of spin-up and spin-down particles. We plot

the evaluation of this expansion in the figures below in comparison with CL results.
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6.3.2: Density equation of state

In Fig. 6.4 we show our results for the density equation of state of the spin-polarized Fermi gas at a

coupling strength of λ = 1 (top) and λ = −1 (bottom) as a function of βµ and varying chemical potential

asymmetry βh = 0 to 2. Additionally, the corresponding equations of state for a coupling of λ = ±2 and

±4 are shown in Figs. 6.5 and 6.6, respectively. The insets (where available) show zooms into the region

of positive βµ, where quantum effects dominate. We compare the CL results with third-order perturbation

theory, imaginary-polarization calculations (for the attractive case where iHMC is available), and the third-

order viral expansion in the region βµ ≤ −1.5 (for |λ | = 1 and 2).

In the case of the smallest coupling of λ = ±1, the agreement between the methods is remarkable, in

particular in the viral region (for both attractively- and repulsively-interacting regimes), where except for

very small deviations in the perturbative third-order answer, the results are almost indistinguishable from one

another. Note that, although the virial coefficients b2 and b3 used here vary considerably with the interaction

strength, the lowest-order dominant term at large negative βµ is interaction independent. All of the methods

shown here, including CL, reproduce that universal asymptotic behavior. The insets in Fig. 6.4 show for

βµ > 1 the agreement of the CL results with the perturbative and iHMC calculations.

As the coupling is increased to a moderate value of λ = ±2, the agreement between all three techniques

begins to deteriorate when compared to λ = ±1, although the overall comparison is satisfactory. Perturbation

theory at third order is expected to begin breaking down at this interaction strength, as shown in Ref. [112].

The virial expansion also demonstrates deterioration at this coupling as both βµ and βh move away from

zs ∼ 0. We show our results for the density equation of state at λ = 2 (top) and λ = −2 (bottom) in Fig. 6.5.

Finally, in order to demonstrate that CL is capable of providing a prediction of the equation of state in a

non-perturbative regime (at least up to N3LO), we strengthen the coupling to λ = ±4. The density at this

coupling strength for attractive (top) and repulsive (bottom) regimes is shown in Fig. 6.6. As expected, PT

breaks down significantly when compared to CL at this interaction strength. However, it is reassuring to note

that CL reproduces the unpolarized result for attractive interactions (where the HMC technique is available)

to within acceptable accuracy. Note that at the fixed value of β = 8, finite beta effects (resulting from the

finite temporal lattice size) are expected to be more prevalent when compared to the more weakly-coupled

counterparts (see Ref. [1] for quantitative details).
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Figure 6.4: Density equation of state n = n↑ + n↓ normalized by the non-interacting, unpolarized counterpart n0, for attractive (top)
and repulsive (bottom) interactions of strength λ = ±1. Insets: Zoom in on region βµ > 0 (top) and βµ > 1 (bottom). In all cases,
the CL results are shown with colored symbols, iHMC results (from Ref. [2]) appear with black diamonds, perturbative results at
third order are shown with solid lines, and virial expansion results appear as dashed lines.
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Figure 6.5: Density equation of state n = n↑ + n↓ normalized by the non-interacting, unpolarized counterpart n0 for attractive (top)
and repulsive (bottom) interactions of strength λ = ±2. Insets: Zoom in on region βµ > 0 (top) and βµ > 1 (bottom). The CL
results are shown with colored symbols, perturbative results at third order are shown with solid lines, and virial expansion results
appear as dashed lines.
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96



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-4 -3 -2 -1  0  1  2  3  4

m
/n

0

βµ

iHMC

N3LO PT

3rd-order virial

βh = 0.0

βh = 0.5

βh = 1.0

βh = 1.5

βh = 2.0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-4 -3 -2 -1  0  1  2  3  4

m
/n

0

βµ

N3LO PT

3rd-order virial

βh = 0.0

βh = 0.5

βh = 1.0

βh = 1.5

βh = 2.0

Figure 6.7: Spin polarization m = n↑ − n↓ normalized by the non-interacting, unpolarized counterpart n0 for attractive (top) and
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6.3.3: Polarization equation of state

In addition to the density equation of state, we also provide the spin polarization (sometimes also referred

to as the magnetization) equation of state for all of the couplings mentioned in the previous section. Again,

we can compare the CL results with third-order PT, imaginary-polarization calculations (in the attractive

case), and the third-order virial expansion in the region βµ ≤ −1.5. Agreement is satisfactory among all of

these techniques within the regions we study here. When contrasted with the density, it is interesting to note

that the polarization is approximately (but not precisely) insensitive to the coupling strength. The results for

these calculations are shown in Figs. 6.7, 6.8, and 6.9 for attractive (top) and repulsive (bottom) coupling

strengths of |λ | = 1, 2, and 4, respectively.
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Figure 6.8: Spin polarization m = n↑ − n↓ normalized by the non-interacting, unpolarized counterpart n0 for attractive (top) and
repulsive (bottom) interactions of strength λ = ±2. The CL results are shown with colored symbols, perturbative results at third
order are shown with solid lines, and virial expansion results appear as dashed lines.
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Figure 6.10: Left: Relative difference between the density n↑ + n↓ computed via CL (nCL) and the third-order perturbative result
nPT for three positive values of βµ, as a function of the CL timestep tCL. The dashed horizontal line shows where nCL = nPT.
Right: Relative difference between nCL and the third-order virial expansion nvirial for three values of βµ of small fugacity, as a
function of tCL. The dashed horizontal line shows where nCL = nvirial. In both plots, the coupling was set to λ = ±1, where
solid and open symbols refer to repulsive and attractive couplings, respectively. Error bars represent the statistical error of the CL
calculation, and indicate agreement with PT and the virial expansion as tCL → 0.

6.3.4: Systematics of Langevin time discretization

One of the features of the Langevin method is that, in either its real or complex forms, it performs a walk

in configuration space for a fictitious time t which is discretized with a finite timestep δt. Even when using

adaptive integrators, as was done throughout this chapter, the tolerance of the adaptive algorithm effectively

determines a scale for δt which affects the results. We have observed effects where if the tolerance is set

such that it corresponds to an average time step which is too large, the CL evolution will converge to a value

which systematically deviates from the true result.

To illustrate these effects, we show in Fig. 6.10 a plot of the sensitivity in the density to the size of

the CL time step δt for |λ | = 1 using the perturbative answer for βµ ≥ 0 and the answer from the virial

expansion for βµ ≤ −4.0 as a reference. These sensitivities are compared for three representative values of

the chemical potential at βh = 2. As is evident from that figure, the size of δt can be responsible for potential

discrepancies. The remaining difference between the CL and perturbative results in the limit δt → 0 is

ascribed in part to the inaccuracy of N3LO PT, and in part to statistical uncertainties, as shown by the error

bars. On the scale of the insets of Figs. 6.4 and 6.5, however, that remaining difference would appear as

agreement between CL and PT. This highlights the need to explore such systematic effects when using the

CL method.
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Section 6.4: Reducing the sign problem with convolutional neural networks

As a sharp departure from the techniques presented so far to overcome the sign problem, we will now

introduce a first exploration in using convolutional neural networks (CNNs) to reduce the impact of a low

signal-to-noise when stochastically estimating a thermodynamic observable. In particular, we will use

the CNN to identify the field configurations which lie close to the true expectation value, such that the

standard deviation of the sample population is significantly reduced. When combined with a quantumMonte

Carlo algorithm, such as CL, the CNN has the potential to increase the overall efficiency of the simulation.

Specifically, we would like to apply the CNN to address regimes whereMC techniques have greater difficulty,

in particular the virial region where the probability measure flattens. In a sense, we would like to be able

to more intelligently transfer knowledge of the deep quantum regime over to the virial region; at present,

MC simulations at different points of βµ and λ are independent of one another, and perhaps this may not

be the most efficient approach. Machine learning and neural networks have been making an increasing

number of appearances in the quantum many-body literature, most notably in estimating phase transition

boundaries [141–145], approximating ground-state energies [146, 147], and in other areas as well.

Deep learning has drastically changed the ways in which modern algorithms draw inferences from large

and complex datasets and generalize to new situations. Although the ideas of neural networks have existed

for decades, it is only relatively recently that technology has gained the computational capacity to train large

neural networks. The details of how networks are designed, and their vast array of applications are very

interesting and quickly evolving, but outside the scope of this dissertation; as such we point the reader to

Ref. [148] as an excellent reference to the details of deep learning.

The CNN used in this example contains both sequentially-connected convolutional and dense layers,

with no recurrent steps. A diagram of the network architecture used is shown in Fig. 6.11, and indicates

types of layers used (including kernel sizes, number of filters, and number of neurons), as well as activations

applied. A normalized form of the fermion matrix U[σ] is used as an input to the convolutional portion

(recall thatU = (M − 1)/z, where M is the Nx × Nx fermion matrix and z is the fugacity). For the purposes

of this demonstration, a smaller volume of Nx = 31 and Nτ = 60 for β = 6 in one spatial dimension was

used, but the expectation is that the same techniques should apply to larger volumes (but would require an

appropriately larger number of convolutional layers). In particular, we take the difference with the kinetic
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2D convolution    (4, 4)    6 filters ReLU

2D convolution    (6, 6)    2 filters ReLU

Fully connected layer (32 neurons) ReLU

Fully connected layer (32 neurons) ReLU

Fully connected layer (16 neurons) ReLU

Fully connected layer (16 neurons) ReLU

Fully connected layer (24 neurons) ReLU

Fully connected layer (16 neurons) ReLU

Fully connected layer (16 neurons) ReLU

Fully connected layer (4 neurons) ReLU

Normalized
 complex fermion

matrix

Softmax

Fully connected layer (8 neurons) ReLU

[α, β]

[S/S0,TrU/T0]

Figure 6.11: Architecture of the convolutional neural network. The complex, normalized form of the fermion matrix is inserted as
the input of the convolutional network. Additional information is passed in at an intermediate step through the sequential network,
and two output neurons categorize the accuracy of the considered auxiliary field configuration (see main text).
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energy operator at µ = 0 in coordinate space:

Ũ[σ] = U[σ] − Tx , [Tp]p,p′ =
∑
n

exp

[
−β

2

(
2πn
Nx

)2
]
δp,p′, (6.25)

where Tx is the Fourier transform of Tp, the representation in momentum space. We choose to set µ = 0

considering that the matrix U[σ] is independent of the chemical potential. This abstraction can allow

the neural network to make generalizations across all values of µ. The matrix U[σ] (where the real and

imaginary parts are treated as two channels) is passed through two convolutional layers which contain several

trainable filters, after which the output of the second layer is flattened into a one-dimensional vector and

passed through several fully-connected layers for global processing. At this point, additional information

(referred to as the auxiliary vector below) about the field configuration is introduced into the network,

including the value of the fermion determinant S/S0 and the trace of U[σ], TrU/T0, both of which are

normalized by a non-interacting counterpart. Here, we define S0 and T0 such that

S0 = 2
∑
k

ln
(
1 + ze−βp

2
k
/2

)
, (6.26)

T0 =
∑
k

e−βp
2
k
/2, (6.27)

where pk = 2πk/Nx and the sum is over the spatial lattice from k = −Nx/2 to Nx/2 − 1. The combined

vector containing the result from the convolution and the auxiliary vector is passed through additional fully-

connected layers and finally through two output neurons with a softmax activation, both of which categorizes

the input fermion matrix (and corresponding auxiliary field). Note that all other layers in the network have a

rectified linear unit (ReLU) activation, which introduces the requisite nonlinearity into the network. Training

is performed for 200 epochs using the Adam [149] optimizer with a cross-entropy loss function. The network

was implemented using the software packages Keras and TensorFlow.

The network is trained such that if the output vector is approximately [0, 1] (or if the output of the second

neuron is similarly maximal), the trained observable (here, the density n/n0) as calculated from the input

fermion matrix is estimated to be within 10% of the true expectation value. Conversely, if the first neuron is

maximized, the corresponding field configuration is estimated to provide a sample for the observable which

is above 10% in error. The training data used consists of 452,000 samples gathered from 226 independent

CL simulations corresponding to βµ = −2.4 to 5 and λ = ±0.75 to ±2 (corresponding to both attractive and
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repulsive interactions). An additional 60,000 samples from the virial regime where −5.0 ≤ βµ ≤ −3.0 and

0.25 ≤ |λ | ≤ 2.0 were withheld from the training set as validation data, which was used to determine the

accuracy of the trained model. Data fromN3LO perturbation theory at a matching lattice size was used as the

reference value to determine the relative error of each field configuration, which is known to be acceptably

accurate within the regime studied here, particularly at λ = ±1. In practice, one should use a nonperturbative

result from CL, but available computational resources to obtain well-converged results, particularly in the

deep virial region, was a limiting factor for this first exploration. A smaller study using CL results indicated

that the CNN was able to appropriately learn the features of whatever reference value the network is trained

on.

A number of plots demonstrating the performance and predictions of the trained CNNmodel for λ = ±1 is

shown in Fig. 6.12. The top plots show themean values of the density equation of state n/n0 as conventionally

determined by the CL simulation (containing 10,000 samples), in addition to the mean value of the subset of

samples which the CNN estimates to be within 10% of the true expectation value. The red and blue shaded

regions show the standard deviation of the full set and subset selected by the CNN, respectively. The shaded

grey background of all plots throughout the figure where βµ > −2.4 indicates the data points at λ = ±1

that were used to train the CNN; the data points for βµ < −2.4 are a prediction made by the CNN on field

configurations not previously seen. Even though the predictions made by CL and the CNN are very close

to one another, the CNN is often able to make a slightly improved result. The key advantage offered by

the CNN, as indicated by this first exploratory study, is that the variance of the sample set is significantly

reduced, which can offer a drastic improvement in other situations where the sign problem is too severe and

too computationally expensive to overcome.

The center plots show the percentage of samples which were correctly classified by the CNN. Even

though the network struggles near the density peak, particularly in the attractive case, the accuracy always

remains above 90%. The network is still able to provide an accurate mean for the density considering that an

average is taken over many inferences. The bottom plots indicate the fraction of samples collected by the CL

simulation whose difference from the true expectation value is ≤ 10%. This demonstrates that CL becomes

much less efficient in the virial region where the probability measure flattens and becomes approximately

independent of the auxiliary field as z → 0. Considering that a smaller percentage of samples in the virial

region are classified as close to the reference value, yet the network’s accuracy is above 96%, indicates

that the CNN is learning nontrivial features of the fermion matrix and of the relevant quantum dynamics.
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Figure 6.12: Predictions and performance of the trained convolutional neural network shown in Fig. 6.11. The plots on the left
hand side corresponds to the case of attractive interactions where λ = 1, and the right corresponds to repulsive interactions where
λ = −1. Top: Density n normalized by the non-interacting counterpart n0. Values of the density made by the CNN prediction
(black squares), CL simulations (green circles), and N3LO reference values (purple triangles) are shown. The red shaded curve
indicates the standard deviation of all samples provided by CL, and the blue shaded curve shows the standard deviation of the subset
of samples selected by the CNN whose error is estimated to be ≤ 10%. Center: Percentage of the samples across the training and
validation data sets which were correctly classified by the CNN for each value of βµ. Bottom: Fraction of the density samples
whose error is ≤ 10% for each value of βµ. In all plots, the grey shaded region indicates the values of βµ whose samples were used
to train the CNN.
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Therefore, it is likely to be a promising approach to more challenging situations for conventional Monte

Carlo techniques.
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CHAPTER 7: Systems in Higher Dimensions

In the previous chapters of this dissertation, we explored equations of state of unpolarized and spin-

polarized Fermi gases in one spatial dimension using a variety of numerical and analytic techniques. All of

this prior work has been building up to the point where we are capable of moving beyond these models in

low dimensions. We will now gather the expertise we gained by exploring the one-dimensional counterpart

in detail, and apply those methods to systems in two and three spatial dimensions. As is to be expected,

these calculations are significantly more challenging, primarily due to the computational resources required.

However, the payoff may be rewarding – these systems can be much richer since phase transitions occur, and

are experimentally relevant in modern research. In particular, the unitary Fermi gas in three dimensions1,

where the two-body interaction strength is tuned to the threshold of bound state formation, has been of

particular theoretical and experimental interest for the past decade.

Section 7.1: Spin-polarized fermions in two spatial dimensions

The quantum gas in two spatial dimensions (2D) is a unique character, and is quite different from the one-

and three-dimensional cases. The difference arises from the fact that the 2D system contains an anomalous

scale invariance, where the classical interpretation of the Hamiltonian contains symmetries which are broken

by quantum mechanical effects. In particular, the bare coupling g in the non-relativistic 2D Hamiltonian

with contact interactions is dimensionless, and appears to be scale invariant until a two-body bound state is

immediately formed after an interaction is turned on. As such, this and other quantum anomalies related

to scale invariance has been a subject of interest for decades [151–156]. The natural dimensionless scale

that sets the interaction strength here is therefore βεB, where β is the inverse temperature and εB is the

ground-state two-body binding energy. Unfortunately, the two-dimensional form of the Hamiltonian [see

Eq. (3.1)] is still written in terms of the bare coupling g. This means that a renormalization procedure must

be done to determine the mapping of εB(g, β).

This intermediary ofmapping the theory to the interactions of the physical system introduces an additional

1This chapter is based in part on the work published in Ref. [114, 150]. Fig. 7.4 as it appears in Ref. [114] is published by EDP
Sciences under the Creative Commons Attribution License 4.0.
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complication to the study of two-dimensional gases. By performing a numerical calculation of the function

g(εB, β, Nx), one finds that this coupling runs logarithmically with parameters of the finite system (e.g. Nx

and β) and will generally not converge when taking the continuum limit. Therefore, observables should

generally be computed via an extrapolation in Nx and β at fixed εB. To determine g(εB, β, Nx), the two-body

ground state energy is calculated numerically on the lattice using a Green’s function projection method (see

e.g. [157] for related work to this method). In this case a trial wavefunction |ψ0〉 is constructed using the

Slater determinant of plane wave solutions, and is then evolved according to

|ψβ〉 = exp(−βĤ)|ψ0〉 (7.1)

in the limit of β → ∞. The Hamiltonian in the evolution operator is the usual non-relativistic dispersion

with a contact interaction controlled by the bare coupling g. The corresponding binding energy E0 is given

by the exponential decay of the energy as a function of β:

Eβ = E0 + Ae−β(E1−E0) + · · · (7.2)

where E1 denotes the first excited state. These measurements for varying values of g gives a parametric

function which can therefore be used to determine the mapping of g(εB) across relevant values of Nx and β.

A full extrapolation of the spin-polarized equation of state for this Hamiltonian in 2D to the continuum

limit is still underway, but we will present results for this calculation for a choice of Nx and β and see how

it compares to perturbation theory and experiments in the unpolarized limit. The density and polarization

equations of state of the spin-polarized 2D system may be computed under complex Langevin with the

appropriate straightforward modifications; we focus here on the density for attractively interacting fermions.

Fig. 7.1 shows the density n/n0 for the unpolarized system corresponding to five values of βεB across

a handful of techniques including CL (for Nx = 16) and a previous calculation [3] using HMC (Nx = 19).

Although the curves agree satisfactorily for the smallest coupling strengths, the deviations which ap-

pear at increasing interaction strengths indicate the finite-volume effects which are still present at these

computationally-demanding lattice sizes. This underscores our desire for performing an accurate extrapola-

tion to the infinite volume limit. However, the comparison between the CL and HMC datasets indicate that

CL continues to perform as expected as was observed in one spatial dimension. Note that other simulation
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Figure 7.1: Density equation of state n normalized by the non-interacting counterpart n0 for the spin-balanced attractively interacting
Fermi gas in two spatial dimensions as a function of the dimensionless chemical potential βµ. Curves are displayed for five interaction
strengths from βεB = 0.1 to 3.0. Colored symbols correspond to CL calculations at Nx = 16, and black diamonds correspond to
HMC calculations [3] at Nx = 19, where both are at β = 10. PT at N3LO (pink dotted lines) are shown at each value of the chemical
potential asymmetry, which correspond to that of the CL data points from bottom to top.

parameters, including the imaginary time discretization τ = 0.05 and the regulation parameter ξ = 0.1

remain the same here as from our 1D explorations. A result from an experimental study of 2D ultracold

atomic gases [49] is also shown for βεB ' 0.5. Although the agreement between these experimental and

theoretical data seems qualitatively correct, minor deviations which are likely due to finite volume effects

can be seen near the peak of this curve. Indeed, as one moves from the Nx = 16 to 19 data, one approaches

this experimental result, which can be expected to lie in the continuum limit. Finally, perturbation theory up

to N3LO for the unpolarized gas (which is less computationally demanding than the polarized counterpart)

is also displayed. However, the result only agrees well with the smallest coupling strength, and highlights the

highly nonperturbative nature of the 2D system, where the radius of convergence of PT may be drastically

smaller when compared to 1D. This behavior may be attributed to the logarithmic divergence of the bare

coupling, which is essentially the expansion parameter used in PT here. Note that a comparison with the

virial expansion is not displayed in this plot, but the coefficients up to third order in the continuum have been

determined [158, 159], and a comparison of the HMC data with other analytic approaches are displayed and

discussed in Ref. [3].

Two examples of the density equation of state for the spin-polarized system are shown in Fig. 7.2, where

the top and bottom plots correspond to a coupling of βεB = 0.1 and 0.5, respectively. The data points

correspond to calculations performed using CL with a lattice size of Nx = 16 and where β = 10. Note that
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the non-zero chemical potential asymmetry introduces a sign problem, which prohibits the use of HMC.

Perturbation theory results are shown at N2LO for where βh , 0, and at N3LO where βh = 0; note that the

values of βh correspond to those of the CL data points from bottom to top. The perturbative results at both

second- and third-order agree well at βεB = 0.1, but show significant breakdown at the increased coupling

strength of βεB = 0.5.

Section 7.2: The polarized Fermi gas at unitarity

One of the most intensely studied physical systems in recent years, at the interface of atomic, nuclear, and

high-energy physics, is the unitary Fermi gas (UFG) [68, 160, 161]. This system refers to a two-component

Fermi gas in three spatial dimensions where the s-wave scattering length a0 is tuned to be infinite and

the interaction range r0 is effectively zero. As such, the system can be modeled with a Hamiltonian which

contains a contact interaction tuned to the appropriate value of the bare coupling g, i.e. the three-dimensional

analogue of the Gaudin-Yang model. Additionally, the lack of scales typically set by the scattering length

and interaction range results in a equation of state for the unitary Fermi gas which is universal, in the sense

that it can be characterized solely by the density (or alternatively, the dimensionless Fermi momentum kFa0;

kF = (3π2n)−1/3) [162]. This property renders this model of the UFG relevant across vast energy scales,

from atomic physics to astrophysics (including approximately, the crusts of neutron stars [163–169]). Since

this system has importance across an intersection of multiple fields, it has been experimentally explored in a

variety of contexts [170, 171]. In particular, a unitary Fermi gas can be realized to an excellent approximation

using ultracold alkali atoms in optical traps and manipulated via a Feshbach resonance [4].

By studying a strongly-interacting system in three spatial dimensions, we enter a regime where we may

encounter superfluid phase transitions at sufficiently low temperatures. In particular, the UFG lies at a point

between the Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensation (BEC) phases, for which

the details of the crossover in the unpolarized case has been extensively studied [161], yet the crossover

along spin-polarized plane remains unknown (although a few studies have been made, see e.g. Refs. [172–

174]). The BCS phase is a weakly-interacting limit where large-volume Cooper pairs are formed, and the

BEC phase is a strongly-interacting limit consisting of tightly-bound dimers [175]. However, it is expected

that a superfluid system will lose its superfluidity at a sufficiently high spin polarization [176, 177]. An

understanding of how this BEC-BCS crossover occurs, and its relation to the UFG, can have important

implications beyond atomic superfluids, including high-Tc and color superconductors [172, 178–182]. Note
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Figure 7.2: Density equation of state n normalized by the non-interacting counterpart n0 for the spin-polarized attractively
interacting Fermi gas in two spatial dimensions as a function of the dimensionless chemical potential βµ. Curves are displayed for
five polarizations from βh = 0.0 to 2.0. Colored symbols correspond to CL calculations at βεB = 0.1 (top) and βεB = 0.5 (bottom)
for Nx = 16 and β = 10. PT at N2LO (red solid lines) is shown for the polarized case, and at N3LO (pink dotted line) for the
spin-balanced case. Note that the values of βh for each of the PT curves correspond to that of the CL data points from bottom to
top.
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that in comparison with the 2D model of the previous section, the relevant phase transition there is instead

the Berezinskii-Kosterlitz-Thouless type [68].

As the UFG is a strongly-coupled many body system, it is highly non-perturbative and exhibits a severe

sign problem in the polarized case. Just as in the one-dimensional counterpart, the fermion determinants

corresponding to the two-particle species are unequal (since µ↑ , µ↓) and may generally differ in both sign

and magnitude from one another. One may suggest the route of introducing an imaginary chemical potential

asymmetry and perform an analytic continuation, as was done in Chapter 4 for the 1D case, but one will

very likely find that this method becomes intractable in such a strongly coupled system. Indeed, it was

determined that even in one dimension the method of analytic continuation shows significant breakdown as

the coupling strength increases. As we will show below, the complex Langevin method, as it was introduced

in the previous chapter, performs much better at attacking this problem.

Recall that the complex Langevin method complexifies the auxiliary field σ → σR + iσI such that the

path integral representation of the grand-canonical partition function is

Z =

∫
Dσ e−S[σ] (7.3)

where the action S[σ] = − ln
[
det(M↑[σ])det(M↓[σ])

]
and Ms is once again the fermion matrix for spin

s; see Chapter 5 or Ref. [115] on details of how this matrix is constructed. The Hamiltonian that is studied

here is again a non-relativistic dispersion with a contact interaction, but now in three spatial dimensions.

The bare coupling g is fixed throughout this calculation such that in the unitary limit [see the discussion of

Eq. (2.21)]

p cot δ(p) = 0 (7.4)

to zeroth order in p, which corresponds to g ≈ 5.14. Also note that M is also a function of the fugacity zs,

such that in the spin-polarized case where µ↑ , µ↓ and it is no longer the case that e−S[σ] ≥ 0, it is also

generally true det(M↑[σ]) , det(M↓[σ]). Therefore, in the spin-polarized regime S[σ] can also generally

be complex, which introduces a sign problem and hinders the use of probabilistic MC approaches. The same

is the case in one spatial dimension; however here, we have the additional complexity that the spacetime

volume of the system is now V = N3
x × Nτ (the fermion matrix has V × V elements) where to reach the
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continuum limit ` = 1 � λT , λF � Nx must still be satisfied (where λF is the Fermi wavelength, and the

Fermi momentum in 3D is kF = (3π2n)1/3). In other words, the calculation must be performed in a way

such that Nx and β are made as large as possible, while still remaining in a dilute regime to avoid lattice

artifacts due to finite range. Therefore, the computational challenge to compute the equation of state is great,

and requires months of execution time for up to Nx = 11.

To characterize the universal thermodynamics of the spin-polarized UFG, we have computed the density

n, magnetization m and normalized susceptibility χ̄M as function of the dimensionless chemical potential

βµ and chemical potential asymmetry βh, where

µ =
µ↑ + µ↓

2
, h =

µ↑ − µ↓

2
. (7.5)

As usual, the path integral form of 〈n〉 and 〈m〉 is obtained by differentiating lnZ with respect to µ and h,

respectively. The magnetic susceptibility is derived from the magnetic equation of state, where

χ̄M =
∂m̄
∂(βh)

, m̄ =
m
n

���
βh=0

. (7.6)

Computations have been performed [150] at Nx = 7, 9 and 11 with Nτ = 160 (corresponding to β = 8

and dτ = 0.05) using the complex Langevin method. As usual, periodic boundary conditions are used in the

spatial direction and antiperiodic in the temporal direction to respect the fermion fields. In this study, the

chemical potential asymmetry parameter was varied over the range βh ∈ [0.0, 2.0] and the mean chemical

potential was in the interval βµ ∈ [−3.0, 2.5] which covers the semiclassical regime to the deep quantum

regime, including a small region below the superfluid transition temperature of the unpolarized system at

(βµ)c ' 2.5 [4, 183–185]. We compare with experimental results in the unpolarized limit obtained at MIT

and the second- or third-order virial expansion [see Eqs. (6.23) and (6.24)], where note that in 3D for the

single-particle partition function of two spins in the continuum, Q1/V → 2/λ3
T , and the non-interacting

virial coefficients are b(0)n = (−1)n n−5/2. The coefficients of the interacting gas at unitarity up to third-order

are b2 = 3/(4
√

2) and b3 ≈ −0.29095 (see, e.g., Refs. [81, 186]). Studies of the unpolarized unitary Fermi

gas were first conducted experimentally in Ref. [53, 54] and calculated with QMC in Ref. [106].

We first validate results of the CL calculation for the unpolarized case against prior bold diagrammatic [5]

and determinantal hybrid Monte Carlo [6] calculations for the density, which is shown in Fig. 7.3 (top). For
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Figure 7.3: Top: Density of the unpolarized UFG obtained with CL (blue squares), in units of the noninteracting, unpolarized
density n0 as a function of the dimensionless mean chemical potential βµ. Also shown is the third-order virial expansion (dashed
line), experimental results of Refs. [4, 5] (red circles), bold diagrammatic Monte Carlo (BDMC) calculations [5] (dark diamonds),
and determinantal hybrid Monte Carlo (DHMC) calculations [6] (light diamonds). Bottom: Compressibility κ as derived from
the density EOS, in units of its noninteracting counterpart κ0 as a function of the dimensionless pressure P/P0 (blue squares). A
comparison ismade to experimental values [4] (red circles) and the third-order virial expansion (dashed line). Statistical uncertainties
for the CL results are on the order of the symbol sizes. The shaded areas indicate the superfluid phase.
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Figure 7.4: Density n = n1 + n2 of the spin-polarized Fermi gas at unitarity in three spatial dimensions, normalized by the density
of the non-interacting, unpolarized system n0. Results using CL are shown in colored points for chemical potential asymmetries
βh = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 at a spatial lattice volume of N3

x = 73. The second-order virial expansion is shown in solid
black lines. Additionally, experimental results for the unpolarized system at unitarity are shown in solid red circles (see Ref. [4]).

the parameter region that was studied, the balanced equation of state is in excellent agreement with the

third-order virial expansion for βµ . −1. Additionally, the isothermal compressibility held at constant

temperature,

κ =
1

n
∂n
∂P

����
T

, (7.7)

is also in excellent agreement with experimental values and the third-order virial expansion above the

superfluid phase transition, as displayed in Fig. 7.3 (bottom). Although quantitative discrepancies are

apparent at the phase transition of the compressibility, the location of the sharp peak at P/P0 ≈ 0.5 is in

agreement with experiment. The smoothness of these curves in both the density and compressibility EOS

indicate that statistical uncertainties are well controlled and are roughly the size of the plotted symbols.

However, close to the phase transition, all state-of-the-art methods shown display finite-range and finite-

volume effects, once again highlighting the challenge of these calculations.

Provided the excellent agreement of the density and compressibility equations of state for where µ↑ = µ↓,

we now move to discuss the unbalanced case. Initial results for the density equation of state of the polarized

unitary Fermi gas [114] at N3
x = 73 are shown in Fig. 7.4 against unpolarized experimental results and
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Figure 7.5: Left: Density of the UFG in units of the noninteracting density, from top to bottom: βh = 0 (circles), 0.4 (octagons),
0.8 (hexagons), 1.2 (pentagons), 1.6 (squares), 2.0 (triangles), compared to the third-order virial expansion (dashed lines). Note the
colors encode fixed values of βµ shown in all panels. Center: Magnetization in units of the interacting density for the balanced
system as a function of βh for several values of βµ. For βµ ≤ −1.0, the third-order virial expansion is shown with dashed lines.
Right: Dimensionless magnetic susceptibility χ̄M as a function of βh (symbols) compared to the corresponding susceptibility of
the free Fermi gas χ̄0M (dotted lines) at equal chemical potential and asymmetry (color and shake coding match other panels). Inset:
Ratio χ̄M/ χ̄0M as a function of βµ at βh = 0.4.

the second-order virial expansion. Agreement with these limits is not ideal; the CL data does not heel

appropriately to the virial expansion for larger values of βh, and finite range effects are strongly evident in

the deep quantum regime. As such, larger lattices are required to correctly determine the density equation

of state, as well as the other thermodynamic quantities derived from it.

Such equations of state at a more appropriate spatial lattice size of N3
x = 113 are shown in Fig. 7.5. The

left and center panels show the density and magnetization equation of state, respectively, and are compared

with the third-order virial expansion in the appropriate regimes. Once again, we find excellent agreement for

sufficiently negative βµ. However, as was also observed in the one-dimensional case, the regime of validity

for the virial expansion appears to shrink as βh is increased.
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APPENDIX: NLOWEAK-COUPLING EXPANSION FOR POLARIZED SYSTEMS

In Chapter 5 we presented the results of a high-order perturbative expansion for the grand-canonical

partition function of interacting quantum gases using a Hubbard-Stratonovich representation. Here we will

in complete detail provide a derivation of the next-to-leading order (NLO) expansion for the case of a

polarized Fermi gas with contact interactions, as was discussed in Chapter 4.

We are working to compute an expansion for the partition function in the grand canonical ensemble for

a polarized system with Nf = 2, where we have some population of spin-up (↑) and spin-down (↓) fermions.

Therefore, under a path integral representation, we begin with

Z = e−βΩ =
∫
Dσ det

(
1 + z↑U

)
det

(
1 + z↓U

)
. (A1)

We introduce the expansion by expanding the matrix product U in a Taylor’s series in the parameter

A ≡
√

2(eτg − 1) about A = 0 (corresponding to the weak-coupling limit),

U[σ] = U0 + AU1 +
A2

2
U2 + · · · , (A2)

where we define the notation

Uj =
∂ jU[σ]

∂Aj

����
A=0

. (A3)

Equivalently, we perform a series expansion of the determinant, where in order to evaluate the relevant

derivatives we make use of the identity

∂

∂λ
det[M(λ)] = det[M(λ)]Tr

[
M−1 ∂M

∂λ

]
. (A4)

Therefore, we note the evaluations

∂

∂A
det(1 + zU)

����
A=0

= det(1 + zU0)Tr

[
zU1

1 + zU0

]
(A5)
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and

∂2

∂A2
det(1 + zU)

����
A=0

= det(1 + zU0)

(
Tr

[
zU2

1 + zU0

]
− Tr

[
z2U2

1

(1 + zU0)
2

])
+det(1 + zU0)Tr2

[
zU1

1 + zU0

]
.

(A6)

The series expansion of the fermion determinant for a single flavor is then written as, after factoring out

the common non-interacting determinant,

det(1 + zU) = det(1 + zU0)

(
1 + ATr

[
zU1

1 + zU0

]
+

A2

2
Tr

[
zU2

1 + zU0

]
−

A2

2
Tr

[
z2U2

1

(1 + zU0)
2

]
+

A2

2
Tr2

[
zU1

1 + zU0

]
+ · · ·

)
.

(A7)

To consider two flavors of particles (spin-up and spin-down), we take the product of two such expansions,

and place a subscript on the fugacity z to distinguish the two species,

det(1 + z↑U)det(1 + z↓U) = det(1 + z↑U0)det(1 + z↓U0)

[
1 + A

(
Tr

[
z↑U1

1 + z↑U0

]
+Tr

[
z↓U1

1 + z↓U0

] )
+

A2

2

(
Tr2

[
z↑U1

1 + z↑U0

]
+ Tr2

[
z↓U1

1 + z↓U0

]
+ 2 Tr

[
z↑U1

1 + z↑U0

]
Tr

[
z↓U1

1 + z↓U0

]
−Tr

[
z2
↑
U2

1

(1 + z↑U0)
2

]
− Tr

[
z2
↓
U2

1

(1 + z↓U0)
2

]
+ Tr

[
z↑U2

1 + z↑U0

]
+ Tr

[
z↓U2

1 + z↓U0

])
+ · · ·

]
.

(A8)

To determine the partition function to second-order in A, which we denote here asZ(2), we must compute

the path integral of the above expression. However, before moving to this step, we must determine how to

explicitly represent the matricesUj that appear in Eq. (A8), where all the dynamics of the Hamiltonian are

contained. Recall that in general, through a Trotter-Suzuki decompositionU[σ] is given by

U[σ] =

Nτ∏
i=1

TV[σi], (A9)

where for a contact interaction the Hubbard-Stratonovich transformation gives

V[σi] = 1 + A sin(σi), (A10)
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given that σε[−π, π]. It may be easily noted that

U0 = e−βT̂ . (A11)

A first derivative ofU[σ] with respect to A, and then evaluating A = 0 will give

U1 =

Nτ∑
j=1

(
e−τT̂

) j−1
sin(σj)

(
e−τT̂

)Nτ−j
, (A12)

and similarly, a second derivative will give

U2 =

Nτ∑
j,k=1

(
e−τT̂

)k−1
sin(σk)

(
e−τT̂

) j−k
sin(σj)

(
e−τT̂

)Nτ−j−1
. (A13)

Since det(1 + z↑U0)det(1 + z↓U0) is independent of the auxiliary field σ, we will factor it out and

compute the path integral within the square brackets term by term. For the terms that are linear in A, where

for brevity we denote s =↑, ↓,

A
∫
DσTr

[
zsU1

1 + zsU0

]
= Azs

∫
Dσ

∑
a

Nτ∑
j=1

[
e−βT̂

1 + zse−βT̂

]
aa

[sin(σj)]a (A14)

= Azs
∑
a

Nτ∑
j=1

[
e−βT̂

1 + zse−βT̂

]
aa

∫ π

−π

dσj

2π
[sin(σj)]a (A15)

= 0 (A16)

since the integral over the odd integrand vanishes. Note here that j is a temporal index, while a is a spatial

index. Therefore, we have that the first-order contribution in the perturbation expansion is zero, and we must

proceed to A2 in order to obtain the next-to-leading order result. For the case of the two terms where the
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trace is squared, we have the path integral

A2

2

∫
DσTr2

[
zsU1

1 + zsU0

]
=

A2

2
z2
s

∫
Dσ

Nτ∑
j,k=1

(∑
a

[
e−βT̂

1 + zse−βT̂

]
aa

[sin(σj)]a

×
∑
b

[
e−βT̂

1 + zse−βT̂

]
bb

[sin(σj)]b

)
(A17)

=
A2

2
z2
s

Nτ∑
j,k=1

∑
a,b

[
e−βT̂

1 + zse−βT̂

]
aa

[
e−βT̂

1 + zse−βT̂

]
bb

×

∫ π

−π

dσi dσj

2π
[sin(σj)]a[sin(σk)]b (A18)

=
A2

2
z2
s

Nτ∑
j,k=1

∑
a,b

[
e−βT̂

1 + zse−βT̂

]
aa

[
e−βT̂

1 + zse−βT̂

]
bb

δjkδab

2
(A19)

=
A2

4
z2
s

Nτ∑
j=1

∑
a

A2

2
zs

Nτ∑
j,k=1

∑
a,b

[
e−βT̂

1 + zse−βT̂

]
aa

[
e−βT̂

1 + zse−βT̂

]
bb

(A20)

=
A2

4
z2
s Nτ

∑
a

[
e−βT̂

1 + zse−βT̂

]2

aa

(A21)

Next, let’s evaluate the path integral over the negative term where we a trace over the factor ofU2, such

that

−
A2

2

∫
DσTr

[
z2
sU

2
1

(1 + zsU0)
2

]
=

A2

2
z2
s

∫
Dσ

Nτ∑
j,k=1

∑
a,b

[
e−βT̂

1 + zse−βT̂

]
aa

[sin(σj)]a

×

[
e−βT̂

1 + zse−βT̂

]
bb

[sin(σj)]b (A22)

= −
A2

4
z2
s Nτ

∑
a

[
e−βT̂

1 + zse−βT̂

]2

aa

(A23)

by the same argument made above. Clearly, these two terms will cancel.

Finally, let’s consider what should be the only non-vanishing term in this second-order perturbation

expansion. Therefore, as a shorthand we write that

Z(2) = A2

∫
DσTr

[
z↑U1

1 + z↑U0

]
Tr

[
z↓U1

1 + z↓U0

]
, (A24)
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so then

Z(2) = A2z↑z↓

∫
Dσ

Nτ∑
j,k=1

(∑
a

[
e−βT̂

1 + z↑e−βT̂

]
aa

[sin(σj)]a

×
∑
b

[
e−βT̂

1 + z↓e−βT̂

]
bb

[sin(σk)]b

)
(A25)

= A2z↑z↓
Nτ∑

j,k=1

∑
a,b

[
e−βT̂

1 + z↑e−βT̂

]
aa

[
e−βT̂

1 + z↓e−βT̂

]
bb

×

∫
−π,π

dσj dσk

2π
[sin(σj)]a[sin(σk)]b (A26)

= A2z↑z↓
Nτ∑

j,k=1

∑
a,b

[
e−βT̂

1 + z↑e−βT̂

]
aa

[
e−βT̂

1 + z↓e−βT̂

]
bb

δjkδab

2
(A27)

=
A2

2
z↑z↓

Nτ∑
j=1

∑
a

[
e−βT̂

1 + z↑e−βT̂

]
aa

[
e−βT̂

1 + z↓e−βT̂

]
aa

(A28)

=
A2

2
Nτ z↑z↓

∑
a

[
e−βT̂

1 + z↑e−βT̂

]
aa

[
e−βT̂

1 + z↓e−βT̂

]
aa

(A29)

Notice that the index a on the Boltzmann factors place the kinetic energy operator T̂ in the coordinate

representation, when it would be more useful to evaluate these matrix elements in the diagonal momentum

basis. Therefore, we insert two Fourier transforms F̂ (a, p) that will introduce sums over all lattice momenta,

and therefore leave the product independent of spatial coordinates (which introduces a factor of the volume

at the end of the calculation). We define

F̂ =
1

Nx

∑
p

e−i p̂(a−a
′) (A30)

and also similarly,

F̂ † =
1

Nx

∑
p

ei p̂(a−a
′) (A31)
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so therefore we now write that, where for a non-relativistic system we take T̂ = p̂2/2m,

Z(2) =
A2

2
Nτ z↑z↓

∑
a

F̂

[
e−βT̂

1 + z↑e−βT̂

]
aa

F̂ † F̂

[
e−βT̂

1 + z↓e−βT̂

]
aa

F̂ † (A32)

=
A2Nτ
2N2

x

z↑z↓
∑
a

(∑
p

[
e−β p̂

2/2m

1 + z↑e−β p̂
2/2m

]) (∑
p

[
e−β p̂

2/2m

1 + z↓e−β p̂
2/2m

])
(A33)

=
A2Nτ
2Nx

z↑z↓
∏
s=↑,↓

(∑
p

[
e−βεk

1 + zse−βεk

])
(A34)

where we have set p̂2 |ψ〉 = k2 and εk = k2/2m where k = −(Nx − 1)/2 . . . (Nx − 1)/2 − 1. Also notice that

z↑z↓ = e2βµ, and β = τNτ . Therefore, we have the result

Z(2) =
β

2τNx
A2e2βµ

∏
s=↑,↓

(∑
k

[
e−βεk

1 + zse−βεk

])
. (A35)

The complete grand-canonical partition function to second-order will be given by Z = Z(0)(1 +Z(2)),

so therefore in order to compute thermodynamic observables more easily, we write that

lnZ = lnZ(0) + ln(1 +Z(2)) (A36)

where Z(0) is the non-interacting partition function. In order to consistently expand ln Z to order A2, we

expand ln(1 +Z(2)) ≈ Z(2), which gives the final result

lnZ = lnZ(0) +
β

2τNx
(Aeβµ)2

∏
s=↑,↓

(∑
k

[
e−βεk

1 + zse−βεk

])
(A37)
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