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ABSTRACT

DENNIS GOLDFARB: ANALYSIS AND SIMULATION OF TANDEM MASS SPECTROMETRY DATA
(Under the direction of Michael B. Major and Wei Wang)

This dissertation focuses on improvements to data analysis in mass spectrometry-based proteomics,

which is the study of an organism’s full complement of proteins. One of the biggest surprises from the Human

Genome Project was the relatively small number of genes (∼20,000) encoded in our DNA. Since genes code

for proteins, scientists expected more genes would be necessary to produce a diverse set of proteins to cover

the many functions that support the complexity of life. Thus, there is intense interest in studying proteomics,

including post-translational modifications (how proteins change after translation from their genes), and their

interactions (e.g. proteins binding together to form complex molecular machines) to fill the void in molecular

diversity.

The goal of mass spectrometry in proteomics is to determine the abundance and amino acid sequence of

every protein in a biological sample. A mass spectrometer can determine mass/charge ratios and abundance

for fragments of short peptides (which are subsequences of a protein); sequencing algorithms determine

which peptides are most likely to have generated the fragmentation patterns observed in the mass spectrum,

and protein identity is inferred from the peptides. My work improves the computational tools for mass

spectrometry by removing limitations on present algorithms, simulating mass spectroscopy instruments to

facilitate algorithm development, and creating algorithms that approximate isotope distributions, deconvolve

chimeric spectra, and predict protein-protein interactions.

While most sequencing algorithms attempt to identify a single peptide per mass spectrum, multiple

peptides are often fragmented together. Here, I present a method to deconvolve these chimeric mass spectra

into their individual peptide components by examining the isotopic distributions of their fragments. First, I

derived the equation to calculate the theoretical isotope distribution of a peptide fragment. Next, for cases

where elemental compositions are not known, I developed methods to approximate the isotope distributions.

Ultimately, I created a non-negative least squares model that deconvolved chimeric spectra and increased

peptide-spectrum-matches by 15-30%.
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To improve the operation of mass spectrometer instruments, I developed software that simulates liquid

chromatography-mass spectrometry data and the subsequent execution of custom data acquisition algorithms.

The software provides an opportunity for researchers to test, refine, and evaluate novel algorithms prior to

implementation on a mass spectrometer.

Finally, I created a logistic regression classifier for predicting protein-protein interactions defined by

affinity purification and mass spectrometry (APMS). The classifier increased the area under the receiver oper-

ating characteristic curve by 16% compared to previous methods. Furthermore, I created a web application to

facilitate APMS data scoring within the scientific community.
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CHAPTER 1: INTRODUCTION

1.1 Mass spectrometry-based proteomics

One the biggest surprises from the Human Genome Project was the small number of genes encoded

in our DNA. Our genome’s limited repertoire of ∼20,000 genes did not reflect the complexity of life, so

scientists have turned to the study of the proteome–an organism’s full protein complement—to begin filling

the void in molecular diversity. Proteins are comprised of amino acid (AA) chains (Definition 2.2) and can be

represented as a sequence of characters from a 20 letter alphabet, one for each amino acid. While the genome

provides the blueprints for protein AA sequences, proteins are subject to a myriad of post-transcriptional and

post-translational regulatory mechanisms. Proteins are spliced into isoform variants, chemically modified,

cleaved, and degraded. Estimates for the number of these distinct protein versions range from one to six

million per cell type (Aebersold et al., 2018). Furthermore, proteins physically bind each other to form

protein complexes (Definition 2.2) that function as microscopic machines. It is the protein molecules that

perform most processes of life, determine our traits, and have major ramifications on health and disease.

The goal of mass spectrometry in proteomics is to determine the abundance and amino acid sequence of

every protein in a biological sample. A typical workflow begins by cleaving the proteins into non-overlapping

amino acid subsequences called peptides. The resulting peptide mixture is separated by a technique called

liquid chromatography (Definition 2.3) and injected into a mass spectrometer over the course of minutes to

hours. At any given time, peptides are simultaneously entering the mass spectrometer. Using the standard

data acquisition strategy (Definition 2.4.6), the mass spectrometer performs an MS1 scan; it measures and

records the mass-to-charge ratios (m/z) and signal intensities of the present molecules—also known as a

mass spectrum. Next, an MS2 scan is performed; the peptides are fragmented and the mass spectrum

of the peptide’s fragments is recorded. Using the measured m/z of the peptides and their fragments, a

sequencing algorithm then determines which peptides most likely generated the observed fragmentation

patterns. Afterwards, proteins are identified by mapping the peptide AA sequences to a reference database of

protein AA sequences. Finally, post-processing steps infer biological implications.
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MS-based proteomics finds itself at a similar stage as DNA sequencing was in the late 90’s and early

2000’s; mass spectrometers have the capability to generate vast quantities of complex data that as of yet

cannot be fully analyzed, let alone interpreted for biological meaning. While mass spectrometry has been a

scientific discipline since the end of the 19th century, high-throughput MS-based proteomics only became

feasible following the success of the Human Genome Project. DNA sequences of genes were translated into

protein AA sequences, and a reference database for the human proteome was created. The availability of a

reference database spurred algorithmic development and led to computer-automated interpretation of MS data.

Although data analysis tools now receive considerable attention, improvements in instrument engineering

and experimental design continue to outpace algorithmic advances. In spite of these limitations, MS-based

proteomics is still immensely powerful. As a result, MS techniques have been deployed in the search

for disease biomarkers, the elucidation of molecular signaling pathways and protein-protein interactions

(Definition 2.2), drug-target discovery, the determination of cellular spatial organization, and the real-time

detection of cancerous tissues during surgery (Crutchfield et al., 2016; Kosako and Nagano, 2011; Huttlin

et al., 2017; Klaeger et al., 2017; Fatou et al., 2016; Marx, 2015).

Three of the main challenges faced by mass spectrometry are the complexity of the proteome, limitations

of mass spectrometry instrumentation, and inadequate data analysis methods.

First, even for short peptides the number of possible sequences is huge, so sequencing algorithms must

identify sequences from a vast search space. With only the 20 naturally abundant amino acids, a peptide of

length n already has 20n possible sequences. Chemical modification of individual amino acids such as the

phosphorylation of serines, threonines, and tyrosines, compound this number. One can restrict the search

to a reference database, but these are understandably incomplete: new chemical modifications continue to

be discovered, and even for known chemical modifications most of their sites on a protein have not yet

been observed. Furthermore, a protein’s unmodified AA sequence is subject to variation due to splicing, in

which different regions of a gene are used as the blueprint for a protein. Many splice variants also remain

undiscovered. Mutations in a gene lead to amino acid substitutions, and the mutations found in a biological

specimen are usually not known. Moreover, DNA sequences encoding peptides <100 amino acids long are

typically not annotated as genes and are therefore absent from reference databases (Frith et al., 2006). As a

result, sequencing algorithms that use reference databases are limited, and de novo sequencing algorithms,

which don’t use reference databases, are computationally intensive.
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Second, data can be incorrect, missing, or confounded. Incorrect data is introduced by measurement error,

bias, and electronic noise. Data are frequently missing due to a combination of the instrumentation’s limit of

detection and restricted dynamic range. The limit of detection is a frequent problem in MS-based proteomics

because proteins cannot be copied and amplified like DNA, and is therefore constrained by its starting

material. The restricted dynamic range is an issue because the dynamic range of protein abundance is much

large than the instrumentation’s. For example, the distribution of protein abundance in human blood spans

more than 10 orders of magnitude, while contemporary instrumentation is capable of detecting ∼4 within

an experiment, and ∼3 within a single mass spectrum (Anderson and Anderson, 2002; Wu and Han, 2006).

Confounded data is often due to the finite resolution of mass analyzers. Molecules with similar m/z cannot

always be distinguished from each other. However, and even with adequate resolution, space-charge effects

can cause two nearby m/z peaks (Definition 2.4.4) to coalesce into one, or a homogeneous m/z population

can create two nearby peaks each with the wrong m/z (Kaufmann and Walker, 2018). Third, an incomplete

understanding of peptide fragmentation pathways (Definition 2.4.5.2), multiple signals per molecular species,

and the simultaneous fragmentation of multiple peptides inhibits sequencing efforts. In this stage, observed

mass spectra are compared to expected mass spectra for a given peptide candidate. Though scientists have

described many fragmentation pathways, their frequencies are not yet predictable and uncommon pathways

are ignored. Most sequencing algorithms expect the common pathways will be observed with uniform signal

intensity, yet in reality these intensities vary. The uncommon peptide fragments are not yet incorporated

into sequencing algorithms (Medzihradszky and Chalkley, 2013; Verheggen et al., 2017). Multiple signals

exist for almost all molecular species due to their distribution of isotopes (Definition 2.1) and charge states

(Definition 2.4.5.2). Chimeric mass spectra, which result from the co-fragmentation of multiple distinct

peptides, contradict the prevailing approach of matching a single peptide per spectrum. Though many peptides

and proteins are identified using mass spectrometry, most mass spectra are not matched to the reference

sequence database, and for those that are matched, much of their signals are unexplained.

Computer science is well-suited to improve MS-based proteomics. Better models of signal patterns

are needed, and these models can be developed through mathematical modeling, data mining, and machine

learning techniques. Due to improvements in instrument engineering, researchers are also exploring novel

data acquisition strategies (Bilbao et al., 2015), calling for analysis tools and algorithms tailored to the new

types of acquired data. The integration of data acquisition and data analysis in real-time holds great potential,

but is relatively untapped. Currently, many instrument settings are defined prior to the start of an experiment
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and remain static throughout its execution, but on-line data analysis can optimize parameters in real-time.

This requires a shift to on-line and extremely efficient algorithms. Finally, post-processing methods for

biological interpretation should be integrated with other fields including genomics and transcriptomics.

1.2 Thesis statement

In this thesis, I show that chimeric spectra deconvolution, machine learning, and improvements to

data acquisition lead to increased identifications of proteins and protein-protein interactions from mass

spectrometry-based proteomics experiments.

Mass spectrometry data analysis is in its infancy and this dissertation contributes to three levels of

the computational workflow: 1) analysis of mass spectra, 2) decision-making during data acquisition, and

3) scoring candidate protein-protein interactions. Beginning with the analysis of mass spectra, Chapter 3

derives methods to calculate theoretical and approximate isotope distributions for fragments of peptides and

proteins. Using these methods, Chapter 4 describes a non-negative least squares regression (NNLS) model

to deconvolve chimeric mass spectra by attributing a fragment’s isotopic distribution to different peptides.

Application of the NNLS model increased peptide-spectrum-matches by 15-30% and protein identifications

by 5-9%. Next, Chapter 5 describes software I developed to simulate the data acquisition process of a mass

spectrometer and to assist the evaluation of novel acquisition and analysis algorithms. Finally, to improve

the prediction of protein-protein interactions, Chapter 6 describes a logistic regression model that integrates

orthogonal sources of biological information with mass spectrometry data and increased the area under the

receiver operating characteristic curve compared to previous methods by an average of 16%.

1.3 Contributions

1.3.1 Isotope distributions

In MS-based proteomics, only 20-50% of MS2 mass spectra are reliably matched to peptides. Interpre-

tation of these data is hindered by the inability to analyze fundamental signal patterns found in all spectra.

To alleviate this, I present methods to compute theoretical and approximate isotope distributions of peptide

fragments. The major contributions are:
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1. Equations for the theoretical isotope distribution of a fragment ion. Fragments have different

isotope distributions than precursors (Definition 2.4.5.2); they depend on the set of precursor isotopes

isolated during an MS2 scan. I derive the equation to determine the theoretical probabilities of each

fragment isotope. The equation requires elemental compositions of the molecules to be given as input.

2. Approximation of fragment isotope distributions by approximate elemental compositions. Typi-

cally, elemental compositions are not known a priori. For these cases, I developed an approximation

method that uses observed masses to approximate elemental compositions and then calculates isotope

probabilities. It matches observed isotopic distributions with chi-squared scores within 2% of the

theoretical fragment isotope distributions.

3. Alternative approximation method using splines. I show that isotope probabilities follow a tight

non-linear pattern that depends on peptide mass. Cubic splines fit to these probabilities provide

approximations with accuracy equal to the current state-of-the-art approach, but cubic splines are 20

times faster to evaluate.

4. Approximation of isotope distributions with sulfur-specific models. The unique isotope distribution

of sulfur atoms causes inaccuracy in the approximations of small sulfur-containing peptides. I achieved

more accurate approximations using a modified model and sulfur-specific splines that account for the

expected number of sulfur atoms in the fragment and peptide.

I validated these methods experimentally through direct infusion experiments of angiotensin I peptide and

a shotgun whole-cell HeLa lysate experiment on an Orbitrap Fusion Lumos mass spectrometer. Furthermore,

I added the methods to the OpenMS software library, allowing the mass spectrometry community to use them

to develop novel approaches to process MS2 spectra.

1.3.2 Deconvolution of chimeric spectra

Chimeric spectra are MS2 spectra that contain fragments from multiple distinct peptides. In complex sam-

ples containing millions of distinct peptide species, most MS2 spectra are chimeric. Sequencing algorithms,

however, are designed for and perform best on spectra from a single peptide. Fortunately, fragments have

isotope distributions that depend on their precursor. Leveraging this dependency, I developed a non-negative

least squares regression (NNLS) model that can determine each fragmented precursor’s contribution to an
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MS2 spectrum. Using this model, I present a method to deconvolve a chimeric spectrum by decomposing it

into separate spectra for each precursor peptide, and removing non-monoisotopic (Definition 2.1) peaks:

1. NNLS model for deconvolution. Approximate fragment isotope distributions are used as fuzzy basis

templates and define the design matrix of the model described here. An observed MS2 spectrum is

assumed to be a sparse linear combination of these templates whose coefficients need to be determined

by solving a convex optimization problem. To promote the desired sparsity, the NNLS model is

regularized with a sparse group lasso penalty. Separate spectra for each precursor are constructed from

groups of templates with positive coefficients. The resulting spectra have fewer contaminating peaks

from other peptides.

2. De-isotoping and determination of monoisotopic mass. Sequencing algorithms expect only monoiso-

topic peaks to be present in the spectrum. In practice, other isotopic peaks are present and prevalent.

The model described here determines the isotopic state (Definition 3.2.1) and monoisotopic mass of

each peak. Using this information, I developed a method that removes non-monoisotopic peaks, and

adds their signal intensity to their corresponding monoisotopic peak. This makes the spectrum ideal for

analysis by standard sequencing algorithms.

3. Decoupling from sequencing algorithm. Instead of creating a new sequencing algorithm that ac-

counts for fragment isotopic distributions, which would add to an already bloated ecosystem, my

deconvolution method is a pre-processing step independent of any sequencing algorithm. Consequently,

the method is compatible with any sequencing algorithm. Furthermore, it is also independent and

complementary to previous approaches to process chimeric spectra, which allows this approach and

others to be integrated together into a more powerful pipeline.

This work describes the first application of approximate fragment isotope distributions. Using four

different data sets from three different laboratories, the deconvolution procedure increased peptide-spectrum-

matches (PSMs) by >17.7% on average (from 25,472 to 31,043), unique peptide identifications by 5% (from

15,237 to 16,203), and proteins identifications by >6% (from 3,455 to 3,699).
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1.3.3 Simulation of data-dependent acquisition

The incredible complexity of biological samples and the insufficient scan speed of mass spectrometers

necessitates judicious use of the instrument’s duty time to maximize sequencing depth. Novel acquisition

algorithms are difficult to test because few vendors provide an application programming interface for

custom control of the instrument. To this end, I developed MSAcquisitionSimulator, a collection of C++

programs to simulate data-dependent acquisition (Definition 2.4.6) algorithms on in silico generated liquid

chromatography-mass spectrometry (LC-MS) proteomics data. This software has the following novel features:

1. A model to generate realistic peptide-spectrum-matches. This allows for evaluation of acquisition

algorithms with respect to the number of peptides and proteins identified. Existing simulation software

attempt to simulate MS2 spectra, but these programs are inadequate for use with peptide sequencing

software.

2. Efficient pruning of low-abundant ions. This results in better scaling with respect to runtime and

memory for larger data sets. A case study with simulations containing over 45,000 proteins is provided.

Existing simulators for LC-MS data require massive amounts of RAM and/or CPU time, making

simulations of this size infeasible.

3. Decoupled generation of ground truth data and the simulation of data acquisition. Separate

programs for these two tasks allows for the comparison of different algorithms on identical data without

the computational cost of re-generating the ground truth.

MSAcquisitionSimulator fills a gap left by existing simulators. It provides an opportunity for additional

research in an area critical to MS-based proteomics.

1.3.4 Prediction of protein-protein interactions

Decreasing instrumentation costs and improved technologies have made affinity purification-mass

spectrometry (APMS) (Definition 2.4.8) approaches commonplace in academic science. With the vast

amounts of data being produced, data quality control measures have become critically important, particularly

for APMS technologies which suffer high false positive discovery rates. To address these concerns, I

developed Spotlite, a machine learning classifier and web interface for scoring APMS data. The achievements

of this work are:
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1. Comparative analyses of existing APMS scoring approaches. Three popular and fundamentally

different APMS scoring approaches (CompPASS, HGSCore, and SAINT) were evaluated on five

disparate APMS data sets, revealing complementarity in identifying genuine protein-protein interactions

from contaminants.

2. Logistic regression model to predict protein-protein interactions. To improve the scoring perfor-

mance of CompPASS, HGSCore, and SAINT, a variety of non-MS data were integrated using a logistic

regression model. Inclusion of these non-MS data improved APMS data classification by an average of

16% relative to the APMS scoring methods alone, as determined by the area under the curve (AUC) of

the receiver operator characteristic (ROC) curves.

3. User-friendly web application. Because implementation of existing APMS scoring methods requires

computational expertise beyond many laboratories, I developed a web application for APMS data

scoring, analysis, annotation, and network visualization.

4. Case study on the KEAP1 E3 ubiquitin ligase. Through APMS analysis of KEAP1, Spotlite was

employed to reveal true KEAP1 protein interactions as well as to annotate the interacting proteins for a

variety of functional and disease-relevant characteristics.

The improved scoring performance of Spotlite combined with Spotlite’s user-friendly, fast, and open-

access web interface provides an invaluable resource for researchers to analyze and interpret APMS data.

1.4 Organization

The remainder of this dissertation is organized into the following chapters:

• Chapter 2 introduces the fundamentals of mass spectrometry, proteomics, and relevant basic chemistry

and biology. It includes definitions and nomenclature of terms used throughout the dissertation.

• Chapter 3 presents equations to calculate the theoretical isotope distributions of peptide fragments.

Several methods to approximate isotope distributions of both precursors and fragments are developed

and described for cases when elemental compositions are not known a priori.
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• Chapter 4 provides an application for the methods outlined in Chapter 3. A non-negative least squares

model is developed to deconvolve chimeric MS2 spectra into separate spectra for each precursor

peptide. The model’s performance is evaluated on experimental data from three different laboratories.

• Chapter 5 describes software to simulate the data acquisition process of a mass spectrometer. It

provides methods to generate ground truth data and to execute and evaluate user-developed acquisition

algorithms for the interrogation of an in silico peptide mixture.

• Chapter 6 details a logistic regression model to classify candidate protein-protein interactions from

APMS data as bona fide interactors or contaminants. It describes a web application developed for

researchers with less computational expertise.

• Chapter 7 concludes this dissertation and discusses plans for future research.
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CHAPTER 2: BACKGROUND

2.1 Atomic elements

Atomic elements are comprised of three subatomic particles: protons, electrons, and neutrons. Protons

and electrons have positive and negative charges, respectively, of equal magnitude. An atomic element is

defined by the number of protons in its nucleus, and elements with different numbers of neutrons are called

isotopes. While neutrons have no charge, they have a mass of 1.008645 Daltons (Da), and cause isotopes to

have different masses (Figure 2.1). Many atomic elements have multiple stable isotopes and their relative

terrestrial abundances have been determined (Table 2.1). The natural abundances of an element can be

thought of as a discrete probability distribution, or isotope distribution, for its isotopic state. These isotope

distributions play an important role in mass spectrometry because a population of a single molecular entity

is detected as multiple sub-populations with distinct masses. A molecule whose elements are all in their

smallest stable isotopic state is said to be monoisotopic.

2.2 Protein structure

Amino acids are the building blocks of proteins and are composed of the following organic elements:

hydrogen (H), carbon (C), nitrogen (N), oxygen (O), and sulfur (S). While the backbone of each amino acid

is the same, they have different R groups that makes them unique (Figure 2.2). Both individual and chains

of amino acids are written with the N-terminal side (NH2) on the left and the C-terminal side (COOH) on

the right. Chains of amino acids are created through the formation of peptide bonds (Figure 2.3). During

the chemical reaction that forms a peptide bond, amino acids lose a water molecule and are then called

amino acid residues. The remainder of this dissertation deals with amino acid residues and will refer to

them simply as amino acids. Proteins are long chains of amino acids (Figure 2.4). There are 20 common

amino acids and in proteomics they are often referred to by their single letter codes (Table 2.2). Except for

leucine (L) and isoleucine (I), each amino acid has a different mass. A protein’s AA sequence is its primary

structure, and can be represented by a string of characters from a 20 letter alphabet. Certain permutations of
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Figure 2.1: Schematic of three carbon isotopes. C12 and C13 are carbon’s only stable isotopes. C14 is one
of 13 known radioactive carbon isotopes. For each isotope, the numbers of protons and electrons remain
constant while the number of neutrons varies. The change in mass between isotopes is not equal to the mass
of the additional neutrons because some of the mass is converted into nuclear energy.

Table 2.1: Stable isotopes of common organic elements found in biology

Element Symbol Nominal Mass Exact Mass (Da) % Natural Abundance1

Hydrogen H 1 1.0078 99.99
2H or D 2 2.0141 0.01

Carbon 12C 12 12.0000 98.93
13C 13 13.0034 1.07

Nitrogen 14N 14 14.0031 99.64
15N 15 15.0001 0.36

Oxygen 16O 16 15.9949 99.76
17O 17 16.9991 0.04
18O 18 17.9992 0.20

Phosphorus P 31 30.9738 100.00

Sulfur 32S 32 31.9721 94.99
33S 33 32.9715 0.75
34S 34 33.9679 4.25
36S 36 35.9671 <0.01

1 Natural abundances provided by IUPAC.
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Figure 2.2: Schematic of an amino acid. All amino acids contain an amino group (NH2, usually depicted
on the left side), a carboxyl group (COOH, usually depicted on the right side), and the variable R group, all
bound to a central carbon molecule. The R group is specific to each amino acid and determines its chemical
properties.

amino acids form hydrogen bonds with nearby amino acids to create secondary structures called α helices

and β sheets. These structures in turn fold onto each other to form a three dimensional tertiary structure.

Finally, multiple proteins will physically bind to each other to create what are called protein complexes and

referred to as a quaternary structure. These protein complexes function as small molecular machines. Two

proteins that part of the same complex are said to have a protein-protein interaction and are co-complexed. If

co-complexed proteins are physically touching each other, then they have a direct interaction, otherwise they

have an indirect interaction.

2.2.1 Digestion

A typical sample preparation step in MS-based proteomics is to enzymatically digested proteins into

peptides. Peptides are AA subsequences of the protein AA sequences (Figure 2.5). This type of workflow is

known as shotgun proteomics. The most common enzyme utilized for digestion is trypsin, which cleaves at the

C-terminal side of arginines (R) and lysines (K). Due to the distribution of R’s and K’s in the human proteome,

this creates peptides that are predominantly 7-20 amino acids long. The length of a peptide or protein is

N C C

R1

OH

OH

H

H

N C C

R2

OH

OH

H

H

N C C

R1

O

H

H

H

N C C

H

OH

O

H

R2

H
2
O+ +

Amino acid residue 1 Amino acid residue 2

N-terminus C-terminus

Amino acid 1 Amino acid 2

peptide bond

Figure 2.3: Formation of a peptide bond. Two amino acids form a peptide bond when the carboxyl group of
one amino acid reacts with the amino group of the other amino acid. This chemical reaction results in the
release of a water molecule and the joining of the two amino acids.
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Table 2.2: Amino acid residues

Name Symbols Elemental Composition Monoisotopic Mass Structure
Glycine Gly G C2H3NO 57.021464 HN CH CO

H

Alanine Ala A C3H5NO 71.037114 HN CH CO

CH3

Serine Ser S C3H5NO2 87.032029 HN CH CO

CH2 OH

Proline Pro P C5H7NO 97.052764
N CH CO

CH2

CH2

H2C

Valine Val V C5H9NO 99.068414
HN CH CO

CH

CH3CH3

Threonine Thr T C4H7NO2 101.04768
HN CH CO

CH

OH CH3

Cysteine Cys C C3H5NOS 103.00919 HN CH CO

CH2 SH

Leucine Leu L C6H11NO 113.08406
HN CH CO

CH2 CH CH3

CH3

Isoleucine Ile I C6H11NO 113.08406
HN CH CO

CH CH2 CH3

CH3

Asparagine Asn N C4H6N2O2 114.04293
HN CH CO

CH2 C NH2

O

Aspartic Acid Asp D C4H5NO3 115.02694
HN CH CO

CH2 C OH

O

Glutamine Gln Q C5H8N2O2 128.05858
HN CH CO

CH2 C NH2

O

CH2

Lysine Lys K C6H12N2O 128.09496 HN CH CO
CH2 NH2CH2 CH2 CH2

Glutamic Acid Glu E C5H7NO3 129.04259
HN CH CO

CH2 C OH

O

CH2

Methionine Met M C5H9NOS 131.04048 HN CH CO

CH2 CH2 S CH3

Histidine His H C6H7N3O 137.05891
HN CH CO

CH2

N

N

H

Phenylalanine Phe F C9H9NO 147.06841 HN CH CO

CH2

Arginine Arg R C6H12N4O 156.10111
HN CH CO

CH2 CCH2 CH2 NH

NH2

NH

Tyrosine Tyr Y C9H9NO2 163.06333 HN CH CO

CH2 OH

Tryptophan Trp W C11H10N2O 186.07931
HN CH CO

CH2

NH

Compositions, masses, and structures are for internal amino acid residues and therefore exclude both an
N-terminal H and a C-terminal OH group that would be removed during the creation of a peptide bond on
each terminus.
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Figure 2.4: Four levels of protein structure. (A) The primary structure of a protein is the sequence of amino
acids that form the protein, and is usually represented as a string of characters. Each character represents
a single amino acid. (B) The secondary structure of a protein consists of the local three-dimensional folds
of nearby amino acids. The common secondary structures are α-helices, β-sheets, and unstructured loops.
(C) The tertiary structure of a protein is the overall three-dimensional shape that a protein takes after its
secondary structures are folded together. (D) The quaternary structure of a group of proteins is their physical
arrangement when bound together in a protein complex.
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Figure 2.5: Enzymatic digestion of a protein into peptides. Trypsin preferentially cleaves peptide bonds at
the C-terminal side of R’s and K’s (orange). The neighboring amino acids affect digestion efficiency, with
C-terminal P’s having the most significant inhibitory effect. The peptide AA sequences will later be identified
using mass spectrometry.

the number of amino acids in its sequence. While peptides of this length are amenable for measurement by

mass spectrometry, they also complicate protein identification because some peptides belong to multiple

proteins. Due to the low occurrence of missed cleavages and non-tryptic digestion, overlapping peptides are

low-abundant and therefore often not identified. The probability of tryptic cleavage is affected by the amino

acids surrounding the candidate site. For example, prolines (P) at the C-terminal side of RK’s inhibits trypsin

activity. However, even under ideal conditions, 100% cleavage is unlikely. Moreover, other enzymes present

in a cell cause cleavages at unexpected locations. These missed cleavages and non-tryptic digestion sites

create many different peptides in a sample. Additionally, the amino acids can be chemically modified which

changes a peptide’s mass. Hundreds of chemical modifications exist and can occur in combinations on a

single peptide. Therefore, a complex peptide mixture may contain millions to billions of distinct peptides,

most of which are low-abundant.

2.3 Liquid chromatography

Due to the large number of distinct peptides in a sample, the peptides need to be sorted, separated,

and introduced into a mass spectrometer in an orderly fashion so that the instrument can analyze fewer

peptides at a time. To achieve this, liquid chromatography (LC) is the most common separation technique

employed (Figure 2.6). Beads coated with chains of carbon (stationary phase) are densely packed into

columns. A peptide mixture is loaded on to the column and a liquid (mobile phase) is flowed through it.

Initially, hydrophilic peptides begin to travel down the column. Over time, the concentration of an organic

liquid is increased, causing gradually more hydrophobic peptides to start moving. These chromatographic

separations typically use gradients lasting several minutes to a few hours long. As the peptides elute from the

column, they are introduced to the mass spectrometer ion source. Typically, copies of a particular peptide
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Figure 2.6: Schematic of liquid chromatography. Liquid chromatography is used to separate peptides over
time. Peptides (colored) bind the stationary phase of the column (grey), but also bind the molecules of the
mobile phase that are flowing through the column and cause the peptides to travel in the direction of flow.
The ratio of an organic mobile phase B relative to the aqueous mobile phase A is increased over time in
order to elute increasingly hydrophobic peptides (red and green) in an orderly fashion. This separation keeps
downstream detectors from being overwhelmed by too many different peptides.
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will elute from a column over a span of several seconds. Due to the complexity of some peptide mixtures and

imperfect separations, many peptides simultaneously elute from the column.

2.4 Mass spectrometry

Mass spectrometers measure the mass-to-charge ratios (m/z) and signal intensities of ion populations.

A signal is a specific (m/z, intensity) pair. Ions are charged molecules, and they are necessary for analysis

by mass spectrometry because electromagnetic fields are used to influence their trajectories. The trajectory

of an ion depends on its m/z value and it is this relationship that is used to determine the m/z. A basic mass

spectrometer contains an ion source to generate ions, a mass analyzer to separate the ions by m/z, and a

detector to measure the electrical charge or current produced by the ions. Detectors are not sensitive enough

to detect a single ion, so populations of ions are required. Most modern mass spectrometers also contain

collision cells to fragment the ions, which is necessary for AA sequence identification.

2.4.1 Ionization

To create ions from the peptides eluting from a liquid chromatography column, the end of the column

is fitted with a needle (Figure 2.7). A high voltage is applied to the needle to provide a source of protons.

As the mixture of peptides and liquid sprays out from the needle tip, droplets are formed containing both

peptides and protons. Under atmospheric conditions, the droplets begin to evaporate until the liquid is gone

and the protons are transferred to a neighboring peptide. This technique creates multiply-charged peptide

ions and is called electrospray ionization. The newly-formed ions make their way into the mass spectrometer

where their m/z’s and signal intensities will be measured. It is important to distinguish signal intensity from a

molecule’s abundance. Signal intensity refers to the measured electrical output due to ions detected by a mass

spectrometer, while a molecule’s abundance refers to the actual number of copies present in the biological

specimen under investigation. Signal intensity and abundance are loosely correlated.

2.4.2 Mass analyzers

All mass analyzers use electromagnetic fields to influence the trajectory of an ion in order to determine its

m/z. The path of an ion depends on its m/z and known instrument parameters. Figure 2.8 shows a schematic

of an Orbitrap mass analyzer. To start mass analysis with an Orbitrap, a tightly packed population of ions
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Figure 2.7: Schematic of electrospray ionization. Peptides embedded in a liquid (blue) emerge as a droplet at
the end of a needle. A high voltage applied to the needle supplies protons, and these protons are transferred
to peptides as the droplets evaporate. The resulting peptide ions (denoted by their charges: +1, +2, and +3)
enter the mass spectrometer interface.

is injected into the mass analyzer. The ions begin to revolve around the central electrode and separate into

distinct bands for each m/z. The bands periodically travel back and forth along the length of the electrode in a

sinusoidal manner. A signal amplifier and detector is located in the middle of the top and bottom electrodes.

They detect the electrical current produced as ions pass the center of the mass analyzer. The detected signal is

recorded over time and a fast Fourier transform is performed to recover the m/z’s and signal intensities of the

ions in the Orbitrap mass analyzer.

2.4.3 Isotope distributions

A population of a single molecular entity is a mixture of sub-populations with different isotope composi-

tions and therefore different masses. A molecule’s natural (or precursor) theoretical isotope distribution can

be determined from its elemental composition using polynomial expansion. For example, let Ax represent

the probability of a specific isotopic element, then the isotope distribution of C34H53N7O15 can computed by

expansion of the polynomial expression:

(A12C +A13C)
34 · (AH +A2H)53 · (A14N +A15N )7 · (A16O +A17O +A18O)

15

After expansion, each product term corresponds to a specific combination of elemental isotopes. The

exponent signifies the count of the corresponding elemental isotope in the molecule. Evaluating the product

term gives the probability of that combination. This approach determines a fine isotope distribution: terms

18



Detected signal

Distinct ion populations

having di!erent m/z

Ampli"er

Mixed ion packet

time

in
te

n
si

ty

Mass spectrum

Electrodes in
te

n
si

ty

m/z

Figure 2.8: Schematic of an Orbitrap mass analyzer. A central electrode is surrounded by two outer electrodes.
Ions oscillate back and forth along the central electrode at frequencies that depend on their m/z. As the ions
move, they create an electric current, and amplifiers connected to the outer electrodes increase the signal
before being measured by a detector. Ions are allowed to oscillate for 16-256ms, followed by the application
of an enhanced Fourier transform to determine the m/z’s and signal intensities of the individual components
that created the detected signals.

with the same number of extra neutrons but different isotopic elements are treated separately because they

have slightly different masses. To compute a nominal isotope distribution, the terms with the same number

of neutrons must be added together. Nominal isotope distributions are more common in mass spectrometry

due to the inability to differentiate between extremely similar masses. The monoisotopic population of a

molecule is denoted as M , and subsequent isotopes are denoted as M + i where i is the number neutrons

greater than the monoisotope present in the molecule.

2.4.4 MS1 scans

An MS1 scan measures the m/z and signal intensity of ions currently entering the mass spectrometer

(Figure 2.9). These scans are acquired periodically over the course of an experiment. Consecutive MS1 scans

have similar signals because they are performed faster and more often than the time it takes for a peptide

species to completely elute from the LC column. A peptide species will first elute from the column at low

abundance, then gradually increase in abundance until reaching an apex, and then decrease until it is finally

no longer detected. Therefore, copies of a particular peptide will be observed in multiple consecutive MS1

scans and its elution profile can be stitched together from the MS1 data. When referring to data in a mass

spectrum that are related to isotopes, the adjective isotopic will used to differentiate it from the concept of a

probability distribution. Furthermore, the isotopic data can be theoretical is it based on known elemental
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Figure 2.9: Liquid chromatography–mass spectrometry data consists of three dimensions: time, m/z, and
signal intensity (top). During an MS1 scan, the mass spectrometer allows all ions into the mass analyzer and
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will create separate peaks and can be used to determine the charge and mass of an ion (bottom right).
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Figure 2.10: Ion isolation with a quadrupole mass filter. An isolation m/z center and width is specified to
capture a set of ions (left). To achieve the isolation of only the ions whose m/z falls within the bounds, a
quadrupole mass filter consisting of 2 pairs of cylindrical poles will toggle their voltage polarity at a precise
frequency and voltage strength such that only the desired ions will have stable trajectories when moving
through the mass filter (right). Ions with stable trajectories will make it through to the next stage of the
mass spectrometer, while ions with unstable trajectories will collide with the quadrupole’s housing, lose their
charge, and fall to the bottom of the chamber.

compositions, approximate if it is based on unknown elemental compositions, or observed if it is referring to

experimental data measured by an actual mass analyzer. In an MS1 mass spectrum (or MS1 spectrum for

short), isotopic distributions of peptides are clearly visible (Figure 2.9). Each nominal isotope will create an

isotopic peak, which is a collection of signals that appear to represent the same molecular entity. The m/z

spacing between isotopic peaks is used to determine the charge and mass of the observed peptide. Since an

extra neutron adds ∼1.003 Da to a molecule, if the m/z difference between two isotopic peaks is ∼0.5, then

z must equal 2. The mass can then be computed by solving for m. An accurate mass measurement is not

sufficient to identify a peptide, however, because permutations containing the same combination of amino

acids will have the identical mass. To elucidate the AA sequence, further mass analysis is necessary.

2.4.5 Tandem mass spectrometry

Tandem mass spectrometry refers to the use of two rounds of mass analysis. After an MS1 scan determines

the mass of a peptide, the peptide is isolated, fragmented, and the mass spectrum of its fragments is measured.

This type of scan is called an MS2 scan. MS2 spectra contain the m/z and signal intensity of fragments which

are often indicative of a peptide’s AA sequence.
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2.4.5.1 Ion isolation

Ion isolation refers to the accumulation of desired ions, or conversely, the filtering of undesired ions. It is

used to accumulate an ion population of interest for further study. An isolation window is defined by its m/z

center and m/z width. Ions whose m/z values are within the bounds of the window are isolated, and those

outside are filtered out. The amount of time spent accumulating ions is called injection time. An example of a

quadrupole mass filter is shown in Figure 2.10. Voltages and radio frequency fields are adjusted so that only

ions with the proper m/z will have stable trajectories. Ions with m/z values outside the bounds will not travel

to the end of the quadrupole.

Typically, an isolation window is centered on either on a peptide’s monoisotopic peak or the isotopic

peak with the strongest signal intensity. Narrower isolation windows centered on the desired ions have three

important effects. First, advantageously, they increase the proportion of desired ions that are isolated relative

to other ions because it’s less likely other ions are within the window’s bounds. Second, however, narrower

windows also have decreased isolation efficiency because even ions within the window’s bounds start to have

unstable trajectories if their initial velocities are outside an ever decreasing acceptable range. Longer injection

times are necessary to counter the decreased isolation efficiency. Third, narrower windows will isolate a

partial isotopic distribution where some isotopic peaks will fall outside the isolation window. Isolation of a

partial isotopic distribution leads to different isotopic distributions in subsequent mass spectra and must be

accounted for during data analysis. Therefore, isolation window widths balance specificity and sensitivity,

and change observed isotopic distributions.

2.4.5.2 Fragmentation

Once a population of ions is isolated, they can be fragmented in a collision cell inside the mass

spectrometer (Figure 2.11). Prior to fragmentation, the ions are called precursors. The precursors enter the

collision cell at high velocity and collide with gas particles. The collisions cause the peptides to vibrate

violently until a bond is broken and two complementary B/Y fragments are created. The fragments are then

sent to a mass analyzer to measure their m/z and signal intensity. Sequencing algorithms determine the most

likely AA sequence to have generated the observed fragmentation pattern.

Fragmentation pathways refer to the location and relative frequency of a break at a particular chemical

bond compared to other chemical bonds. There are three bonds on each amino acid that can be broken to
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Figure 2.11: Schematic of collision-induced dissociation. A collision cell is populated by gas particles such as
helium, nitrogen, or argon. Peptide ions are propelled into the collision cell at high energy and collide with the
gas particles causing the peptides to dissociate into smaller fragments. Some fragments will not have a charge
because the protons remained associated with the complementary fragment. These neutral particles will not
be affected by electromagnetic forces and therefore cannot be measured by the mass analyzer. Fragment ions,
however, continue on to the next stage of the mass spectrometer.
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Figure 2.12: Common fragmentation pathways. Two amino acids are shown connected by a peptide bond.
Dashed lines indicate the three bonds that, when individually broken, will dissociate the two amino acids
and provide sequence information. For notation, a break between the central carbon and the carbon of the
carboxyl group can generate A and X ions. An ion that contains atoms from the peptide N-terminus to the
central carbon is an A ion. An ion that contains atoms from the peptide C-terminus to the carboxyl carbon is
an X ion. B ions contain atoms from the peptide N-terminus to the carboxyl carbon. Y ions contain atoms
from the peptide C-terminus to the amino nitrogen. C ions contain atoms from the peptide N-terminus to the
amino nitrogen. Z ions contain atoms from the peptide C-terminus to the central carbon.
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Figure 2.13: A peptide consisting of seven amino acids and its possible B/Y fragments are shown. The
fragment notation extends to sequences of any length n. The index for a fragment ion represents its amino
acid length, and therefore ranges from 1 to n− 1.

dissociate chains of amino acids from each other, and fragment ions have different notation depending on

which bond was broken (Figure 2.12). Collision-induced dissociation predominantly causes breaks at peptide

bonds because they are the weakest bond among the three options. This dissociation results in B and Y

fragment ions. Fragments containing the amino acids from the N-terminus up to the broken peptide bond

are called B ions, while fragments starting at the peptide bond and ending at the C-terminus are called Y

ions. The fragments are further indexed based on the number of amino acids in the fragment (Figure 2.13).

After fragmentation, the ions are sent to a mass analyzer. An example of an MS2 mass spectrum of a peptide

annotated with matching B/Y fragment ions is shown in Figure 2.14. The number of pluses following an ion

label indicate its charge state: the molecule’s number of protons minus its number of electrons.

2.4.6 Data acquisition

The algorithm used by a mass spectrometer to decide which scans to perform is called a data acquisition

strategy. When the strategy makes decisions based on the data it is observing, it is called data-dependent

acquisition (DDA). Conversely, when the observed data is not used to drive the decision-making process, the

strategy is called data-independent acquisition (DIA). The most common data acquisition strategy is TopN
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Figure 2.14: MS2 mass spectrum of angiotensin I peptide analyzed on an Orbitrap analyzer after CID
fragmentation. Peaks that match expected B/Y ion m/z’s are shown in red and their location are annotated
on the peptide’s AA sequence. Some complementary B/Y ions are not observed because they either did not
retain any protons, underwent further fragmentation, or a different fragment ion was responsible for the other
peak. Unmatched peaks are colored black.
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Figure 2.15: (A). Schematic of the TopN data-dependent acquisition algorithm. The mass spectrometer
begins with an MS1 scan, performs up to N MS2 scans if there are enough peaks to target, and then repeats
this process until the end of the experiment. (B) The N most intense peaks from an MS1 spectrum are chosen
as targets to fragment in the following MS2 scans.

data-dependent acquisition. In TopN, MS1 scans are followed by N MS2 scans (Figure 2.15 A). Each MS2

scan isolates and fragments the next most intense monoisotopic peak from the previous MS1 scan (Figure

2.15 B). This process is repeated until the experiment is complete. In order to avoid redundant MS2 scans of

the same peptide, a feature called dynamic exclusion is used: once a peak is targeted for an MS2 scan it is not

allowed to be the target of another scan for a period of time defined by the user. At the end of the experiment,

a file containing the collection of MS1 and MS2 spectra is written and later computationally processed to

determine the identity and quantities of peptides and proteins.
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Figure 2.16: Schematic of a database search algorithm. Theoretical MS2 spectra are generated for peptides
from a reference database of protein AA sequences. Theoretical MS2 spectra are compared to observed
MS2 spectra using one of many developed similarity scores. A high score is indicative of a correct peptide-
spectrum-match and therefore peptide identification. The distribution of similarity scores can be modeled
by a two-component mixture model in which the distribution with higher scores (green) contains correct
identifications, and the distribution with lower scores (red) stems from incorrect identifications. False
discovery rates and p-values are computed based on these distributions.

2.4.7 Peptide identification

When the experiment is performed on a peptide mixture with a known proteome, peptide AA sequences

can be identified using a database search algorithm (Figure 2.16). In a database search, a reference database of

protein AA sequences database is digested in silico to create a list of possible peptide AA sequences. For each

peptide, a theoretical MS2 spectrum is computed using simple assumptions about expected fragmentation

pathways: all monoisotopic B and Y ions are present with equal intensities, and the additional loss of H2O and

NH3 are present with lower intensities. Each observed MS2 spectrum is then compared to theoretical spectra

whose precursor peptide mass is equal to the peptide mass of the MS2 target (± a small error tolerance). A

similarity score is computed and the best peptide-spectrum-matches (PSMs) are recorded. Finally, PSMs

passing a 1% false discovery rate (FDR) are accepted as confident identifications. Alternatively, sequences

can be determined without a reference database using de novo sequencing algorithms, but these have lower

success rates and are not the focus of this dissertation.
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Figure 2.17: Schematic of the protein inference problem. (Left) Protein identifications are determined from a
collection of observed MS2 spectra. Each MS2 spectrum is typically matched to a single peptide, however
they can also match to multiple peptides, creating a many-to-many relationship. Each peptide may belong
to one or more proteins from a reference database for another many-to-many relationship. Probabilities are
computed for each peptide-spectrum-match and peptide-to-protein mapping. (Right) Proteins are accepted as
identified (grey) based on identified and mapped peptides (colored).

2.4.8 Protein inference

The probability of a protein identification is calculated after mapping identified peptide AA sequences

to protein AA sequences from a reference database (Figure 2.17). Though many peptide AA sequences are

unique to a particular protein and are therefore trivial to assign, some are shared between multiple proteins

and their assignment is therefore ambiguous. In ambiguous cases, probabilities are computed for each

candidate protein assignment by taking into account the presence of other observed peptides that map to

the same proteins. For example, a shared peptide will be assigned to a protein with many unique peptides

instead of a protein with zero unique peptides. The probability of a protein’s presence is computed from

the identification scores of the PSMs and the weights of their assignment to the protein. Finally, a FDR is

computed and controlled at the protein level. In affinity purification-mass spectrometry (APMS) experiments,

protein complexes that contain a protein of interested are first extracted from a biological specimen followed

by the identification of the co-complexed proteins by mass spectrometry.
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CHAPTER 3: ISOTOPE DISTRIBUTIONS OF FRAGMENT IONS

3.1 Introduction

In mass spectrometry (MS)-based proteomics, peptide AA sequences are determined by performing

MS2 scans, which isolate and subsequently fragment precursor ions. Frequently, only part of a precursor’s

isotopic distribution is captured due to isolation windows that are too narrow or are offset relative to the

precursor. Experiments using data-dependent acquisition typically use isolation windows that are 1.4-4 m/z

wide (Michalski et al., 2011; Scheltema et al., 2014). With a 1.4 m/z wide isolation window, only one to three

isotopic peaks of a charge +2 peptide can fit within its boundaries. For example, if the window is centered

>0.2 m/z below the monoisotopic peak, then only the monoisotopic peak would be isolated. This can occur

for co-eluting peptides that were not the intended target of an MS2 scan because their m/z position relative to

the isolation window is random. Since co-fragmentation is encountered in as many as 50% of MS2 spectra of

complex samples, isolation of unexpected isotopes from co-eluting peptides is common (Houel et al., 2010).

The isolation of only some isotopes leads to fragments with complex isotope distributions; these distributions

depend on the subset of isolated precursor isotopes and the elemental compositions of both the precursor and

the fragment of interest. While a general method to calculate the theoretical isotope distribution of a fragment

has been developed, this method requires exact knowledge of those inputs (Rockwood et al., 2003). Typically,

peptide AA sequences and elemental compositions are unknown a priori. Therefore, computational tasks that

occur prior to sequence determination, including MS2 de-isotoping, monoisotopic mass calculation, charge

assignment of fragment peaks, and chimeric spectra deconvolution, do not take full advantage of fragment

isotopic distributions. In order to improve these pre-processing endeavors and to increase protein and peptide

identifications, an efficient method is needed to approximate theoretical fragment isotope distributions based

on observed peaks and isolation window parameters.

The isotope distribution of a molecule arises from the varying number of neutrons in its individual

elements. In mass spectrometry, there are two types of isotope distributions to consider: precursor (or natural)

isotope distributions and fragment isotope distributions. A molecule’s precursor isotope distribution is its
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distribution of isotope abundances prior to fragmentation. After fragmentation, however, the isotope distribu-

tion of a particular fragment molecule is called a fragment isotope distribution. When computing theoretical

isotope distributions for either type, there are two further scenarios: either the elemental composition of the

molecule is known, or it is not. When the elemental composition is known, its theoretical precursor isotope

distribution can be computed using methods such as polynomial expansion, multinomial expansion or the

fast Fourier transform (FFT) (Brownawell and Filippo, 1982; Yergey, 1983; Rockwood et al., 1995).

However, if a molecule’s elemental composition is not known, but is comprised of similar structural units

such as amino acids or nucleotides, then its theoretical precursor isotope distribution can be approximated

in one of two ways. The most common method is to first approximate the elemental composition using

the Averagine model, which represents the elemental composition of an average amino acid weighted by

frequency in the human proteome, and then to compute the corresponding theoretical precursor isotope

distribution (Senko et al., 1995). A fractional Averagine model was later developed that allowed continuous

values for element counts and therefore avoided discontinuities due to element rounding, but was also more

computationally intensive (Renard et al., 2008). The second approximation method utilizes the relationship

between mass and isotope ratios. In the case of peptides, approximate precursor isotope distributions are

reconstructed by evaluating polynomial functions that are fit to the isotope ratios and masses of peptides

generated in silico (Valkenborg et al., 2008; Ghavidel et al., 2014). However, because of its unique isotope

distribution, the number of sulfur atoms within a peptide creates a divergence in these patterns, particularly

for shorter peptides. If the number of sulfurs can be determined, then a more accurate prediction of isotope

ratios can be achieved by utilizing models that are fit specifically to peptides with the same sulfur count.

The second type of isotope distribution, fragment isotope distributions, arise from more than just the

elemental composition of the molecule. During the isolation and fragmentation of an individual precursor

isotopic peak, each precursor in the population has the same number of neutrons, but the locations of the extra

neutrons vary. Consequently, the isotope distribution of a fragment depends on the stochastic arrangement of

neutrons within the precursor. The isotope distribution of a specific fragment is governed by the probabilities

of extra neutrons residing in the given fragment versus its complementary fragment. Isolating multiple

precursor isotopic peaks adds further complexity, as the resultant fragment isotope distributions are linear

combinations of the fragment isotope distributions stemming from individual precursor peaks. Conveniently,

isolation of the complete isotopic distribution creates fragments whose distributions are equivalent to the

fragment’s natural isotope distribution. For the case where the elemental composition of the precursor and
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fragment are known, and only a single precursor isotopic peak was fragmented, software has been developed

to calculate the theoretical fragment isotope distribution (Ramaley and Herrera, 2008). Unfortunately,

utilization of this method has been minimal (Rockwood and Palmblad, 2013). Extending the framework to

handle the fragmentation of multiple precursor isotopic peaks, as well as providing a method to approximate

fragment isotope distributions will increase its utility and range of applications. Such opportunities exist

in the pre-processing of MS2 spectra of unknown elemental compositions, whose methods often rely upon

approximate precursor isotope distributions (Carvalho et al., 2009; Xiao et al., 2015; Chen et al., 2006; Horn

et al., 2000; Zabrouskov et al., 2005; Liu, 2011; Kou et al., 2014; Yuan et al., 2011; Mechtler, 2016).

Here, I developed methods that approximate fragment isotope distributions when elemental compositions

are not known. I re-derived the existing general framework for fragment isotope distributions of individual

precursor isotopic peaks and then extended it for subsets of isotopes. Next, I incorporated the Averagine

model within this framework in order to support biomolecules of unknown elemental compositions. Given

that sulfurs have a large effect on the isotope distributions of small peptides, which are abundant in MS2

spectra, a I developed a sulfur-specific Averagine method and evaluated it on both precursors and fragments.

Furthermore, I observed that individual precursor isotope probabilities followed a smooth non-linear pattern

and summarized them with splines and used those splines in place of the Averagine model. I evaluated

the accuracy and speed of these on in silico digested peptides, mass spectrometry experiments utilizing the

angiotensin I peptide, and in complex peptide mixtures from HeLa cells lysate.

3.2 Methods

3.2.1 Probabilistic model for fragment isotope distributions

The nominal isotope probabilities of a fragment after the isolation and fragmentation of a single precursor

ion were modeled. A molecule’s nominal isotopic state is its difference in neutrons relative to its monoisotopic

form. In the remaining chapter, nominal isotopes are referred to simply as isotopes. For notation: random

variables are represented with capital letters; specific values are represented with lowercase letters; a collection

of specific values is denoted by bold lowercase letters; and unions represent logical “ors”. Model variables

are defined in Table 3.1. The five assumptions underlying our model are as follows:

1. Mutual exclusivity of isotopic states. A single molecule cannot simultaneously exist in multiple

isotopic states.
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2. Independence of isotopic states between a fragment and its complementary fragment. The iso-

topic state of a fragment does not influence the isotopic state of its complementary fragment when not

conditioned upon another event.

3. Non-negativity of isotopic states. A molecule cannot have fewer neutrons than its monoisotopic form;

therefore, the probability of having fewer neutrons than the monoisotope is zero.

4. Uniform isolation efficiency within the isolation window boundaries. All ions whose m/z values

fall within the boundaries of the isolation window are isolated with equal efficiency. Thus, the relative

abundance of the permitted isotopes is identical prior to and after isolation.

5. Zero isolation outside the isolation window boundaries. Ions whose m/z values fall outside the

boundaries of the isolation window are not isolated. The isolation window is assumed to perform as a

perfect square.

Table 3.1: Variable descriptions for isotope probability model
Symbol Description
P Random variable for the nominal isotopic state of precursor with known ele-

mental composition
F Random variable for the nominal isotopic state of fragment with known ele-

mental composition
C Random variable for the nominal isotopic state of a complementary fragment,

whose elemental composition is that of the precursor minus the fragment
p Specific value for the precursor’s nominal isotopic state
f Specific value for the fragment’s nominal isotopic state
p Subset of precursor isotopes that can be isolated by the isolation window

An equation to compute the probability that a fragment will exist as a specific isotope given that its

precursor belonged to one of the permitted isotopes was derived utilizing the assumptions stated above.

Applying Bayes’ theorem results in equation 3.1, and the mutual exclusivity assumption leads to equation

3.2. A precursor’s isotopic state must be the sum of the isotopic states of its fragment and the corresponding

complementary fragment. Consequently, if a fragment’s isotopic state equals f , then the following two events

are identical: 1) the precursor’s isotopic state equals p, and 2) the complementary fragment’s isotopic state

equals p − f . These descriptions lead to equation 3.3, which is then simplified to equation 3.4 because

conditioning the complementary fragment’s isotopic state on the fragment’s isotopic state has no effect due to
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the assumption of independence described above. Finally, in equation 3.5, the denominator is substituted with

an equivalent expression that avoids computing the precursor’s isotope distribution by reusing the calculations

of the numerator. This final equation is composed exclusively of unconditional events whose probabilities

can be computed by methods for precursor isotope distributions.
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3.2.2 Sulfur-specific Averagine model

A modified Averagine method can be used to approximate the elemental composition of a peptide when

its composition of sulfur atoms is known. The average mass of the sulfurs is subtracted from the observed

average mass of the molecule. The elemental composition of the remaining mass is then approximated using a

modified Averagine model that does not contain sulfurs: C4.9384H7.7583O1.4773N1.3577. Following the standard

Averagine method, the remaining mass is divided by the average mass of the modified Averagine model, and

the result is multiplied by the model’s elemental composition. Finally, the element counts are rounded, and

hydrogens are added or subtracted to compensate for any error in nominal mass.
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3.2.3 Averagine model incorporation

Both the Averagine and sulfur-specific Averagine models were incorporated into the general framework

in order to approximate fragment isotope distributions. Our evaluations were performed with a priori AA

sequence information; thus, average masses and sulfur counts for each fragment and its complementary

fragment were calculated based on AA sequence information rather than from observed peak intensities and

m/z values. For each average mass, both the Averagine and sulfur-specific Averagine methods were used to

approximate its elemental composition. Precursor isotope distributions were computed for the approximate

elemental compositions up to the largest isolated precursor isotope using the fast Fourier transform method

implemented in OpenMS (Röst et al., 2016). The approximate isotope distributions were then used as

substitutes for their exact counterparts in equation 3.5.

3.2.4 Approximation using splines

Splines were fitted to theoretical isotope probabilities of in silico-generated AA sequences. Each isotope

had a training data set consisting of average masses and corresponding isotope probabilities for simulated

sequences. The simulated sequences were varied in length from one to 1000 amino acids with a maximum

mass of 100 kDa. For each sequence length, 1000 sequences were generated by choosing a random amino

acid for each position. To mimic the distribution of amino acid combinations observed in nature, the

amino acids were sampled from a probability distribution corresponding to the observed frequencies for the

20 most common amino acids found in the human canonical SwissProt database (downloaded 11/28/16)

(Uniprot Consortium, 2018). After sequence generation, theoretical isotope distributions were computed up

to the first 100 isotopes. Sulfur-specific training sets containing zero to five sulfurs were generated separately

for each case. The construction of the sulfur-containing sequences was identical to the procedure described

above, except that once the sequence contained the desired number of sulfurs (from methionine or cysteine

amino acids), the rest of the sequence was derived from the remaining 18 amino acids. Random sequences

were chosen over in silico proteome digests in order to minimize gaps and biases in mass coverage.

Individual cubic splines were fit for each isotope (M to M+100) and sulfur count (0-5, all) combinations

using MATLAB’s Curve Fitting Toolbox (version R2016a). Initially, knots were uniformly spaced along

the mass axis at 2 kDa intervals with the first and last knots repeated four times to force the splines to have

two continuous derivatives. Next, cubic B-splines were fit using a least-squares approximant and the initial
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knot sequence. Knot selections were then adjusted to uniformly distribute the errors of the least-squares

approximant, and the B-splines were re-fit. The final B-splines were converted to piece-wise polynomial

format and written to an XML file.

3.2.5 Chemicals and standards

Angiotensin I was purchased from Sigma (St. Louis, MO; catalog number A9650) and reconstituted

to a final concentration of 1 pmol/µl in a solution of 50:50 (methanol:water) containing 0.1% acetic acid.

PierceTM HeLa Protein Digest Standard was purchased from Thermo Fisher Scientific (Waltham, MA; catalog

number 88328) and diluted to a final concentration of 200 ng/µl in a solution of 98:2 (water/acetonitrile)

containing 0.1% formic acid.

3.2.6 Mass spectrometry

Angiotensin I peptide was analyzed by direct infusion into an Orbitrap Fusion Lumos mass spectrometer

(Thermo Scientific). The syringe pump was operated at a flow rate of 3 µl/min. The Heated Electrospray

Ionization (HESI) ion source voltage was 3.5 kV; the RF lens was set to 30%; and the ion transfer tube was

maintained at 300 ◦C. MS2 scans were acquired by the Orbitrap analyzer at 15k resolution using a 5e4 AGC

target, 30ms max injection time, and collision-induced dissociation (CID) at 30% collision energy. The MS2

scans were performed in a targeted manner using an inclusion list to isolate and fragment varying isotopes of

the precursor in the +3 charge state. The inclusion list consisted of isolation windows with widths ranging

from 0.4 to 2.4 m/z at 0.1 m/z intervals and isolation window offsets ranging from -1.2 to 1.2 m/z at 0.05 m/z

intervals relative to the +3 precursor monoisotope (m/z = 432.9).

Trypsinized peptides (200 ng) from HeLa cell lysate were separated via reverse-phase chromatography

using a nanoACQUITY UPLC system (Waters Corporation; Milford, MA) and analyzed by an Orbitrap

Fusion Lumos. Peptides were trapped on a 2 cm column (Pepmap 100, 3 µm particle size, 100 Å pore

size) and separated in a 25 cm EASY-spray analytical column (75 µmol ID, 2.0 µm C18 particle size, 100 Å

pore size) at 300 nl/min and 35 ◦C using a 180min gradient from 2-25% buffer B (0.1% formic acid in

acetonitrile). The EASY-spray ion source voltage was set to 1.95 kV; the RF lens was set to 30%; and the

transfer tube was maintained at 275 ◦C. The mass spectrometer was operated in data-dependent acquisition

mode with a 3 s cycle time (TopSpeed). Full MS scans were obtained at 60k resolution by the Orbitrap mass

analyzer, with a 400-1550 m/z scan range, 4e5 AGC target, and 50ms maximum injection time. For MS2
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selection, peptide monoisotopic peak determination was enabled, and dynamic exclusion was set to 60 s with

a 10 ppm mass tolerance. Further MS2 selection criteria included a 5e4 intensity threshold and inclusion of

charges 2-7. Isolation was performed by a quadrupole using isolation windows of 1.6 m/z width and centered

on the monoisotopic peak. MS2 scans were obtained by the Orbitrap mass analyzer at 15k resolution using a

5e4 AGC target, 50ms maximum injection time, and 25% CID collision energy.

3.2.7 Data analysis

Angiotensin I data were processed via custom programs utilizing the OpenMS library. Prior to analysis,

raw data were converted twice into mzML format using ProteoWizard’s MSConvert (Chambers et al., 2012).

In one conversion, the profile data were centroided; in the second conversion, the profile data were preserved

for plotting purposes. Scans that isolated contiguous subsets of the first four precursor isotopes were identified

based on isolation window parameters, and isotopic peaks from the two most intense fragment ions (B5
+

DRVYI and B9
++ DRVYIHPFH) were extracted. The extraction process consisted of searching the centroided

data for the monoisotopic fragment peak up to the largest isolated isotope using a 10 ppm mass tolerance.

Observed isotopic peak intensities for each fragment within each scan were normalized to a sum of one.

Theoretical and approximate isotope distributions were computed using the OpenMS implementations of

the previously described methods. When calculating precursor isotope distributions, the first seven isotope

probabilities were computed, and isotopes were removed if both of the following were true: 1) their abundance

was less than 10% of the most abundant isotope, and 2) the isotope was greater than the maximum isolated

isotope. After filtering, the isotope probabilities were re-normalized such that they sum to one. To evaluate

goodness of fit between observed and computed distributions, chi-squared (χ2) statistics were calculated

using the computed distributions as the expected values.

HeLa cell lysate data were analyzed by database search within an OpenMS workflow, followed by

a custom program to evaluate the fits of approximated isotope distributions. After conversion to mzML,

a database search was performed using MSGF+ (Kim and Pevzner, 2014) against the human canonical

SwissProt database (downloaded 11/28/16) appended with reversed decoy sequences. Search parameters

included a static Carbamidomethyl (C) modification, variable Oxidation (M) modification, maximum of two

modifications, 10 ppm precursor mass tolerance, fully tryptic digestion, 6-40 amino acid length, charge states

of 2-4, no isotope error, and the Q-Exactive instrument parameter. Peptide-spectrum-matches (PSMs) were

scored using Percolator (version 3.0) (The et al., 2016) and filtered for a 1% false discovery rate (FDR).
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The custom program then extracted MS2 spectra for each PSM and calculated the m/z for each B and Y ion

of charge +1 up to one less than the precursor charge. Using the same procedure as described above for

angiotensin I peptide, the fragment isotopes were found in the spectrum; their theoretical and approximate

fragment isotope distributions were computed; and chi-squared statistics were calculated. The source code

used to generate all figures in this manuscript is available at www.github.com/MajorLab/Fragment-Isotope-

Distribution-Paper/.

3.3 Results and Discussion

3.3.1 Derivation of a model for fragment isotope distributions

When performing an MS2 scan in mass spectrometry, it is common that only part of an isotopic

distribution is isolated and fragmented, which results in fragments with complex isotope distributions. To

predict these distributions, I modeled the probabilities of a fragment’s isotopic state given its elemental

composition, the elemental composition of its precursor, and the boundaries of the employed isolation

window. This model requires explicitly stating the five assumptions employed, of which the first three are

self-evident: 1) a single molecule cannot simultaneously be in multiple isotopic states; 2) the molecule cannot

have fewer neutrons than its monoisotopic state; and 3) when no other information is available, the number of

neutrons in a fragment and its complementary fragment are independent of each other. However, the other

two assumptions are not entirely accurate: 4) there is uniform isolation efficiency within the isolation window,

and 5) there is zero isolation outside of the isolation window’s boundaries. Current mass spectrometry

instrumentation does not achieve the perfect box shape for an isolation window; isolation efficiency often

decreases near the edges of the window and is non-zero just outside of its boundaries (Scheltema et al., 2014;

Lawson et al., 2017). Therefore, our model reflects an idealized scenario. For the fragmentation of a single

precursor isotopic peak, the model is equivalent to the framework by Rockwood. The method described here

for determining the theoretical fragment isotope distributions was added to the OpenMS library along with

unit tests to ensure correctness.

3.3.2 Averagine model incorporation

Typically, the identities and elemental compositions of the molecules in each MS2 scan are unknown.

For such cases, the model for calculating fragment isotopic distributions cannot be used directly, and an
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approximation approach must be used instead. The approach described here uses the Averagine method to

approximate the elemental composition of a fragment and its complementary fragment from their average

masses. An alternative approach is to first approximate the compositions of the precursor and fragment

and then subtract the composition of the fragment from the precursor to determine the composition of the

complementary fragment. This is the more computationally efficient approach when approximating multiple

fragment isotopic distributions for the same precursor. However, this approach will often lead to negative

hydrogen counts for the complementary fragment due to rounding and hydrogen compensation performed by

the Averagine method. For example, for a mass of 1340 Da the Averagine method approximates an elemental

composition of C60H76O18N16S1, and C54H106O16N15S0 for a fragment mass of 1220 Da. Subtracting the

two compositions leads to an approximate elemental composition of C6H-30O2N1S1 for the complementary

fragment of mass 120 Da, which is not compatible with software that calculates isotope distributions.

The standard Averagine method uses the average mass calculated from observed peaks; however, when

only part of an isotopic distribution is isolated, a fragment’s isotopic distribution is no longer representative of

its average mass. Furthermore, difficulty arises for low-intensity ions where the monoisotopic peak may not

be observed due to low abundance. For the evaluations performed in this work, elemental compositions were

known, and the correct average masses were used. When average masses are not known, a method based

on observed peaks will be necessary and will result in some mass error; however, the effect on approximate

isotopic distributions due to inaccuracy of a few Daltons is negligible. The approximation methods for

fragment isotope distributions using the Averagine and sulfur-specific Averagine models have also been

added to the OpenMS library.

3.3.3 Spline construction

While the Averagine model combined with the FFT has successfully been used to approximate isotope

distributions, they have two undesirable properties. The Averagine model has discontinuities due to the

rounding of element counts, with the largest effect due to sulfurs as demonstrated by the vertical jumps within

the blue lines of Figure 3.1. Additionally, the FFT is often replaced with a pre-computed lookup table at

several Dalton intervals when extremely fast computation is necessary. The fractional Averagine method

avoids discontinuities, but requires five additional convolutions and is therefore slower to compute. As an

alternative, I used splines to model isotope probabilities in a compact and efficient data structure (Figures

3.1-3.5). Although the probabilities follow a consistent pattern, divergence is present due to the distinct
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Table 3.2: Goodness of fit statistics for splines
Sulfurs Isotope RMSD Mean deviation R2

all M 0.00870 0.00506 0.99858
all M+1 0.00882 0.00648 0.99378
all M+2 0.00759 0.00571 0.98928
all M+3 0.00619 0.00472 0.99021
all M+4 0.00504 0.00370 0.99385

0 M 0.00673 0.00398 0.99916
0 M+1 0.00478 0.00329 0.99824
0 M+2 0.00330 0.00248 0.99802
0 M+3 0.00265 0.00191 0.99834
0 M+4 0.00206 0.00142 0.99907
1 M 0.00439 0.00185 0.99931
1 M+1 0.00306 0.00161 0.99922
1 M+2 0.00225 0.00142 0.99935
1 M+3 0.00253 0.00185 0.99820
1 M+4 0.00200 0.00140 0.99902
2 M 0.00389 0.00165 0.99934
2 M+1 0.00274 0.00146 0.99932
2 M+2 0.00206 0.00130 0.99945
2 M+3 0.00243 0.00181 0.99803
2 M+4 0.00194 0.00137 0.99896

isotopic distribution of sulfur-containing peptides (Figure 3.1). To address this, sulfur-specific splines were

fitted separately to peptides containing the matching number of sulfurs (Figures 3.1, 3.6-3.9). Both the

sulfur-specific and average splines showed excellent goodness of fit with >0.99 R2 values (Table 3.2), and

the best fits were exhibited by the sulfur-specific models. Computing approximate isotope distributions with

splines is nearly 20 times faster than the Averagine and FFT method (Figure 3.10). The disadvantage of

splines is that the requested mass must be within the mass range to which that spline was fitted. This can be

mitigated by training the model to the anticipated range of queries or by defaulting to the Averagine and FFT

method when the requested mass is out of range. A sample Java program to parse and compute approximate

isotope distributions using the spline models is available at our GitHub repository.

3.3.4 in silico evaluation

To determine how well approximate fragment isotope distributions matched to theoretical fragment

isotope distributions, I calculated chi-squared statistics between approximate and theoretical distributions for

each B and Y fragment from all tryptic peptides in the human proteome (Fig. 3.11). The precursor Averagine

method was included as a baseline and to demonstrate that it is inappropriate for fragment isotopes except

when most of the precursor isotopic distribution is isolated. As shown in the first row of Figure 3.11, the

precursor Averagine approximation improves as more isotopes are isolated. For the fragment methods, the
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Figure 3.1: Splines were fit to the isotope probabilities of in silico generated tryptic peptides. Theoretical
precursor isotope probabilities (circles) of human tryptic peptides were overlaid with predictions by the
Averagine model, average splines, and sulfur-specific (0-5 sulfurs) splines.
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Figure 3.2: Spline (black line) fitted to the probabilities of the monoisotope (M) for simulated peptides.

Figure 3.3: Spline (black line) fitted to the probabilities of isotope M+1 for simulated peptides.
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Figure 3.4: Spline (black line) fitted to the probabilities of isotope M+2 for simulated peptides.

Figure 3.5: Spline (black line) fitted to the probabilities of isotope M+3 for simulated peptides.
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Figure 3.6: Splines (black lines) fitted to the probabilities of the monoisotope (M) for simulated peptides
with specific numbers of sulfurs.

Figure 3.7: Splines (black lines) fitted to the probabilities of isotope M+1 for simulated peptides with specific
numbers of sulfurs.
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Figure 3.8: Splines (black lines) fitted to the probabilities of isotope M+2 for simulated peptides with specific
numbers of sulfurs.

Figure 3.9: Splines (black lines) fitted to the probabilities of isotope M+3 for simulated peptides with specific
numbers of sulfurs.
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Figure 3.10: Runtime comparison between splines and the Averagine followed by fast-Fourier transform
(FFT) method for precursor and fragment isotope distributions. For the precursor comparisons, 10,000 masses
were randomly sampled between 400-9500 Da and their approximate isotopic distributions were calculated up
to the designated number of isotopes (x-axis). For the fragment comparisons, 10,000 masses were randomly
sampled in the same manner, and then the fragment isotope distribution was approximated with the fragment
mass being equal to the ith mass and the precursor mass equal to the i+ (i+ 1) sampled masses.

sulfur-specific Averagine and sulfur-specific splines were the best matches. The sulfur-specific splines were

slightly better, having a 10% smaller median χ2 score and 7% smaller mean (Table 3.3). The fragment

Averagine and splines were nearly identical to the sulfur-specific methods when isotopes less than M+2 were

isolated. Interestingly, the fragment Averagine method has a 37% smaller median χ2 score than the splines,

but it has a 23% larger mean. The fragment Averagine method has a better best case because it can sometimes

approximate a peptide’s exact or near exact elemental composition, but in rare situations the compositions are

very inaccurate and negatively skew the mean. Overall, the sulfur-specific methods are the best matches to

theoretical fragment isotope distributions, but the sulfur-specific methods require that the number of sulfur

atoms be known. Furthermore, the fragment Averagine method is a better match than the splines in most

cases.

3.3.5 Angiotensin I evaluation

To experimentally validate the theoretical calculations and approximation methods, I directly infused

angiotensin I peptide into the mass spectrometer and isolated and fragmented different subsets of precursor

isotopes (Figure 3.12). The two most intense fragment ions, B5
+ and B9

++, displayed minor deviation from

the theoretical distributions at least partially due to sample sizes and non-uniform isolation efficiency within

and beyond the isolation window boundaries. Evidence for isolation outside of the isolation window are
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Table 3.3: χ2 statistics between theoretical and approximate fragment isotopic distributions
Isotopes Method mean min Q1 median Q3 max

M+1 Precursor Averagine 0.31166 1.82e-17 0.02362 0.13105 0.44372 4.58303
M+1 Fragment Averagine 0.00182 0 0.00013 0.00066 0.00214 0.06662
M+1 Splines 0.00186 0 0.00013 0.00065 0.00212 0.08643
M+1 Sulfur-specific Averagine 0.00181 0 0.00014 0.00067 0.00214 0.07448
M+1 Sulfur-specific splines 0.00184 0 0.00013 0.00063 0.00207 0.08605

M+1—M+2 Precursor Averagine 0.31318 1.52e-10 0.06149 0.15200 0.40871 10.4607
M+1—M+2 Fragment Averagine 0.01063 0 0.00042 0.00150 0.00480 2.25174
M+1—M+2 Splines 0.00712 7.76e-11 0.00070 0.00172 0.00427 1.1017
M+1—M+2 Sulfur-specific Averagine 0.00179 0 0.00018 0.00071 0.00210 0.05280
M+1—M+2 Sulfur-specific splines 0.00162 7.05e-12 0.00016 0.00062 0.00184 0.06577
M+1—M+3 Precursor Averagine 0.32850 3.10e-05 0.06400 0.15873 0.42464 12.6815
M+1—M+3 FragmentAveragine 0.01493 0 0.00055 0.00200 0.00636 2.37977
M+1—M+3 Splines 0.00990 9.16e-11 0.00110 0.00240 0.00561 1.1796
M+1—M+3 Sulfur-specific Averagine 0.00183 0 0.00020 0.00073 0.00213 0.05315
M+1—M+3 Sulfur-specific splines 0.00164 4.64e-12 0.00018 0.00064 0.00185 0.06542
M+1—M+4 Precursor Averagine 0.33619 3.42e-05 0.05785 0.16062 0.43790 13.5404
M+1—M+4 Fragment Averagine 0.01790 0 0.00063 0.00236 0.00770 2.52145
M+1—M+4 Splines 0.01166 4.34e-11 0.00147 0.00294 0.00657 1.39113
M+1—M+4 Sulfur-specific Averagine 0.00187 0 0.00022 0.00075 0.00217 0.05393
M+1—M+4 Sulfur-specific splines 0.00167 4.14e-12 0.00020 0.00068 0.00191 0.06537

M+2 Precursor Averagine 1.69740 6.72e-10 0.11598 0.58786 1.91653 120.986
M+2 Fragment Averagine 0.02561 0 0.00081 0.00290 0.01039 3.8416
M+2 Splines 0.01979 4.75e-11 0.00168 0.00469 0.01349 2.07881
M+2 Sulfur-specific Averagine 0.00278 0 0.00041 0.00129 0.00326 0.18362
M+2 Sulfur-specific splines 0.00268 2.80e-11 0.00040 0.00121 0.00311 0.06401

M+2—M+3 Precursor Averagine 1.73207 5.65e-05 0.17054 0.63613 1.92412 121.38
M+2—M+3 Fragment Averagine 0.02852 0 0.00097 0.00340 0.01256 3.71784
M+2—M+3 Splines 0.02146 7.14e-10 0.00188 0.00492 0.01382 2.04985
M+2—M+3 Sulfur-specific Averagine 0.00267 0 0.00035 0.00113 0.00296 0.17695
M+2—M+3 Sulfur-specific splines 0.00239 3.54e-12 0.00034 0.00104 0.00271 0.06285
M+2—M+4 Precursor Averagine 1.79561 8.61e-05 0.19664 0.67603 1.99525 126.088
M+2—M+4 Fragment Averagine 0.03161 0 0.00113 0.00396 0.01430 3.85248
M+2—M+4 Splines 0.02326 2.16e-10 0.00224 0.00554 0.01516 2.02176
M+2—M+4 Sulfur-specific Averagine 0.00267 0 0.00035 0.00109 0.00289 0.17877
M+2—M+4 Sulfur-specific splines 0.00237 1.56e-10 0.00034 0.00102 0.00266 0.06291

M+3 Precursor Averagine 6.97127 9.59e-05 0.41309 1.73223 6.30168 352.666
M+3 Fragment Averagine 0.03663 0 0.00142 0.00504 0.02011 3.7248
M+3 Splines 0.03010 2.16e-10 0.00279 0.00718 0.01933 2.32176
M+3 Sulfur-specific Averagine 0.00370 0 0.00051 0.00157 0.00398 0.21951
M+3 Sulfur-specific splines 0.00377 2.00e-10 0.00052 0.00150 0.00390 0.10934

M+3—M+4 Precursor Averagine 7.36454 7.21e-05 0.51901 1.89298 6.66907 478.385
M+3—M+4 Fragment Averagine 0.04067 0 0.00154 0.00559 0.02235 4.1501
M+3—M+4 Splines 0.03195 1.33e-09 0.00292 0.00733 0.02008 2.21615
M+3—M+4 Sulfur-specific Averagine 0.00363 0 0.00045 0.00139 0.00366 0.23376
M+3—M+4 Sulfur-specific splines 0.00345 6.15e-11 0.00045 0.00132 0.00354 0.10041

M+4 Precursor Averagine 37.11730 5.68e-05 1.06872 4.58227 21.35562 10648.4
M+4 Fragment Averagine 0.05331 0 0.00201 0.00765 0.03189 5.98558
M+4 Splines 0.04510 5.45e-10 0.00425 0.01198 0.03447 7.36276
M+4 Sulfur-specific Averagine 0.00508 0 0.00058 0.00179 0.00481 0.38125
M+4 Sulfur-specific splines 0.00547 1.87e-10 0.00060 0.00179 0.00524 0.34323

M—M+1 Precursor Averagine 0.04382 1.25e-14 0.00789 0.02155 0.05513 0.55427
M—M+1 Fragment Averagine 0.00079 0 7.20e-05 0.00035 0.00108 0.01568
M—M+1 Splines 0.00074 9.28e-18 6.69e-05 0.00031 0.00094 0.01766
M—M+1 Sulfur-specific Averagine 0.00078 0 6.81e-05 0.00034 0.00104 0.01595
M—M+1 Sulfur-specific splines 0.00073 6.41e-20 6.45e-05 0.00030 0.00092 0.01680
M—M+2 Precursor Averagine 0.03243 4.77e-09 0.00336 0.01086 0.03463 0.67269
M—M+2 Fragment Averagine 0.00504 0 0.00027 0.00100 0.00286 0.54412
M—M+2 Splines 0.00353 8.78e-11 0.00048 0.00103 0.00246 0.38792
M—M+2 Sulfur-specific Averagine 0.00105 0 0.00012 0.00048 0.00142 0.02462
M—M+2 Sulfur-specific splines 0.00096 1.68e-12 0.00010 0.00041 0.00123 0.02411
M—M+3 Precursor Averagine 0.02222 9.68e-07 0.00180 0.00585 0.02105 0.65202
M—M+3 Fragment Averagine 0.00796 0 0.00036 0.00138 0.00414 0.67376
M—M+3 Splines 0.00547 1.01e-11 0.00078 0.00149 0.00347 0.48207
M—M+3 Sulfur-specific Averagine 0.00118 0 0.00015 0.00055 0.00160 0.03092
M—M+3 Sulfur-specific splines 0.00108 1.61e-12 0.00012 0.00047 0.00138 0.03060
M—M+4 Precursor Averagine 0.016780 5.81e-08 0.00112 0.00387 0.01475 1.07931
M—M+4 Fragment Averagine 0.01006 0 0.00041 0.00166 0.00527 1.12703
M—M+4 Splines 0.00679 2.58e-11 0.00102 0.00184 0.00429 0.75066
M—M+4 Sulfur-specific Averagine 0.00124 0 0.00016 0.00059 0.00169 0.04040
M—M+4 Sulfur-specific splines 0.00115 5.08e-13 0.00014 0.00050 0.00148 0.03919
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Figure 3.11: The match quality of approximation methods to theoretical isotope distributions was assessed by
the chi-squared statistic. The distribution of chi-squared statistics is shown for each approximation method.
Every B and Y ion from human tryptic peptides was tested, and each contiguous subset of precursor isotopes
between M and M+4 was evaluated separately.

the small M+1 peaks observed for both fragments when only the monoisotopic precursor should have been

isolated. Once again, the precursor Averagine approximation was only appropriate when most of the precursor

isotopic distribution was isolated. Conversely, all the fragment methods recapitulated the observed isotopic

distributions. It is notable that many of the isotopic distributions are visibly distinguishable from each other

except when the only difference is the isolation of a low-intensity precursor isotope. This implies that the

set of isolated precursor isotopes that created a fragment could be inferred from the fragment’s isotopic

distribution, and can potentially be used to deconvolve chimeric spectra generated by the co-isolation of

multiple precursors with different sets of isotopes.

3.3.6 Whole-cell lysate evaluation

To test the accuracy of these methods on complex samples utilizing typical instrument settings, I

performed a shotgun proteomics experiment with whole-cell lysate from HeLa cells using data-dependent

acquisition. After a database search to identify peptide-spectrum-matches, fragment isotopic distributions

were compared to theoretical and approximate fragment isotope distributions (Figure 3.13 and Table 3.4). The

multimodal nature of the chi-squared scores is due to separate, but overlapping, distributions that correspond

46



B5+ DRVYI B9++ DRVYIHPFH

M
M

−M
+1

M
−M

+2
M

−M
+3

M
+1

M
+1−M

+2
M

+1−M
+3

M
+2

M
+2−M

+3
M

+3

646 648 650 582 583 584 585

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Theoretical Fragment

Splines

Sulfur−specific fragment Averagine

Sulfur−specific splines

Precursor
Isolation Window

433.0 433.5 434.0

Approximation
methods:

m/z m/z m/z

In
te

ns
ity

 n
or

m
al

iz
ed

 to
 b

as
e 

pe
ak

Precursor Averagine

Fragment Averagine

Figure 3.12: MS2 scans were performed on directly infused angiotensin I peptide using various isolation
windows. Different sets of precursor isotopes were captured in each scan (right axis labels and diagrams).
Profile data is displayed of the two most intense fragments of angiotensin I after CID fragmentation: B5

+ and
B9

++. All signals within 1 m/z of a fragments isotopic distribution were extracted from the profile data, and
computed distributions were scaled to the extracted base peak. Circles and squares represent the predicted
intensities.
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peaks were detected. Isolation windows were centered on the monoisotope with a 1.6 m/z isolation width.

to the number of missing fragment isotopes. The leftmost distributions have no missing isotopes, while

more undetected isotopes result in greater chi-squared scores. The precursor Averagine method had 34%

and 74% higher chi-squared scores on average compared to all the other approximation methods. The

fragment methods’ average chi-squared scores were all within 2% of each other (including the sulfur-specific

methods), suggesting that in a high-throughput and complex setting, experimental sources of variance, bias,

and interference outweigh the theoretical impact of sulfurs.

3.4 Conclusion

Theoretical fragment isotope distributions can be computed and approximated and accurately match

observed fragment isotopic distributions despite the inability of current mass spectrometers to employ perfect

box-shaped isolation windows. Taking a probabilistic approach, I re-derived the equations for theoretical

fragment isotope distributions and expanded the model to handle the isolation of multiple precursor isotopes. I

developed two approximation methods: one using the Averagine model and the other using splines. Although

the spline models can be slightly less accurate than the Averagine model when compared to theoretical

distributions, in a high-throughput shotgun experiment the splines were equally accurate. Therefore, the

spline models are a viable alternative, especially when speed is a top priority. Furthermore, I introduced sulfur-
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Table 3.4: Summary of chi-squared statistics from HeLa cell lysate experiment
method median mean sample size isotope count

Theoretical Fragment 0.0931 0.1463 69027 2
Precursor Averagine 0.1711 0.2586 69027 2
Fragment Averagine 0.0957 0.1486 69027 2

Splines 0.0911 0.1459 69027 2
Sulfur-specific Averagine 0.0956 0.1488 69027 2

Sulfur-specific splines 0.0909 0.1459 69027 2

Theoretical Fragment 0.1679 0.3008 20131 3
Precursor Averagine 0.2527 0.4121 20131 3
Fragment Averagine 0.1710 0.3064 20131 3

Splines 0.1685 0.3017 20131 3
Sulfur-specific Averagine 0.1695 0.3064 20131 3

Sulfur-specific splines 0.1671 0.3021 20131 3

specific variants for both methods, but neither improved matches to observed fragment isotopic distributions.

The worst performing method was the precursor Averagine method, which is only appropriate for calculating

fragment isotope distributions when a precursor’s entire isotopic distribution is isolated. I contributed to

the OpenMS library the methods to calculate theoretical and approximate fragment isotope distributions

using the Averagine and sulfur-specific Averagine models so that they can be utilized by future approaches to

process MS2 spectra.
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CHAPTER 4: DECONVOLUTION OF CHIMERIC SPECTRA

4.1 Introduction

In shotgun proteomics, proteins are enzymatically digested into peptides and separated by liquid chro-

matography. As peptides elute from the chromatography column, they are ionized and introduced into a

mass spectrometer. To determine a peptide’s AA sequence, a subset of peptide ions–or precursors–is first

isolated and then dissociated into fragment ions during MS2 scans. Using the fragments’ measured mass-to-

charge (m/z) ratios and signal intensities, algorithms can identify the AA sequence that was most likely to

have generated the observed mass spectrum. Ideally, isolated precursor populations are homogeneous, as

interfering signals from other peptides result in diminished identification rates (Michalski et al., 2011; Houel

et al., 2010; Gorshkov et al., 2016; Hebert et al., 2018). Unfortunately, in complex samples, the large number

of distinct peptide species means that co-elution of different peptides is unavoidable, and the likelihood of

co-eluting peptides of similar m/z is high (Michalski et al., 2011). Therefore, it is common for multiple

peptides to reside within the bounds of an isolation window used to isolate a precursor ion population. The

simultaneous isolation and fragmentation of multiple peptides results in chimeric spectra (Figure 4.1). During

data-independent acquisition (DIA), where wide isolation windows are typically utilized, nearly every MS2

spectrum is chimeric by design (Chapman et al., 2013). However, even the narrower windows used during

data-dependent acquisition (DDA) methods inadvertently result in >50% chimeric spectra (Houel et al.,

2010). Thus, chimeric spectra are the norm, rather than the exception, and strategies must be developed to

appropriately analyze these spectra.

Historically, peptide sequencing algorithms have been developed assuming that each spectrum is gen-

erated by a single peptide. These peptide sequencing algorithms fall into two main categories: database

searching and de novo sequencing. In a database search, MS2 spectra are scored for how well they match

to theoretical spectra from a reference database of protein AA sequences, or to previously observed and

identified spectra from a spectral library. While many scoring approaches have been developed, they tend to

share three fundamental characteristics: 1) reward matching peaks, 2) penalize missing peaks, and 3) penalize
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Figure 4.1: Formation of a chimeric MS2 spectrum. Overlapping isotopic distributions from two peptides are
co-isolated. For peptide A, isotopes M+1, M+2, and M+3 are isolated. For peptide B, isotopes M and M+1
are isolated. After fragmentation, the resulting MS2 spectrum contains fragments from both peptides.

unexplained peaks (Verheggen et al., 2017). Chimeric spectra are difficult to sequence with a database search

because they contain a large number of unexplained peaks for any single peptide match (Houel et al., 2010).

Additionally, many post-processing methods reward peptides that match significantly better than all other

candidates, but this difference decreases when two peptides have many matching peaks (The et al., 2016).

These challenges lead to increased false negatives, yet they have little effect on false positives (Houel et al.,

2010). The second approach—de novo sequencing—converts MS2 spectra into spectrum graphs in which

vertices represent masses and the vertices are connected by edges if their mass difference corresponds to an

amino acid (Yan et al., 2015). The highest-scoring path through the graph is then identified. The advantage of

de novo sequencing is that peptides missing from a reference database can be identified. Their disadvantage is

that they require the presence of a more complete fragmentation pattern and fewer interfering peaks. Chimeric

spectra hinder these calculations because they have many peaks and therefore introduce more paths in the

graph. This leads to many possible AA sequences with similar probabilities without a clear winner. Peptide

identification rates on chimeric spectra using de novo sequencing are even lower than chimeric identification

rates using database searches (Gorshkov et al., 2016). For both database search and de novo sequencing,

cleaner spectra produce superior sequencing results.

Three main strategies have been developed to identify peptide AA sequences from chimeric spectra. The

first strategy is to use specialized scoring methods that maintain high accuracy in the presence of unexplained

peaks by decreasing their associated penalty. This is a common approach in DIA analysis. DIA methods also

match relative signal intensities of fragment peaks by querying against entries in a spectral library rather than

comparing to theoretical spectra (Gillet et al., 2012). Using this strategy, multiple peptides can be identified
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per spectrum by individually testing each candidate peptide AA sequence. Unfortunately, spectral libraries

are experimentally time consuming to create, and they limit future identifications to previously observed

peptides. Similarly, for DDA, a robust scoring method was used on chimeric spectra that were submitted

multiple times to a database search, where each submission included a different precursor mass corresponding

to one of the co-isolated precursors (Zhang et al., 2014). While these scoring methods have been moderately

successful, they have lower identification rates than the standard methods that were developed for the one

peptide per spectrum model.

The second strategy is to use standard scoring methods and to simultaneously test multiple peptides from

a spectral library (Wang et al., 2010) or sequence database (Wang et al., 2011) to find the best combination

of peptides that match the chimeric spectrum. Despite aggressive pruning, this strategy is time consuming

due to the large number of possible peptide combinations. Alternatively, peptides can be identified one at

a time through iterations of peptide identification followed by elimination or attenuation of the matched

peaks until no high scoring peptides remain (Zhang et al., 2005; Jurgen et al., 2011; Shteynberg et al., 2015).

Nevertheless, subsequent identifications have lower scores because only one peptide will be assigned a

fragment peak that is shared by multiple peptides.

In contrast to the strategies described above, the third strategy attempts to deconvolve chimeric spectra

into their individual components prior to sequencing. These methods aim to create a distinct spectrum for

each co-fragmented precursor peptide. In DIA experiments, elution profiles of fragments that correlate

with a precursor’s elution profile can be grouped together (Li et al., 2001; Plumb et al., 2006; Geiger et al.,

2010; Weisbrod et al., 2012). However, many peptides have similar elution profiles; therefore, chimeric

spectra will be created. In another DIA strategy, Egertson and co-authors use a variation of Hadamard

multiplexing, and deconvolved spectra are recovered by NNLS (Egertson et al., 2013). Nevertheless, these

spectra are still highly chimeric because they correspond to medium-sized isolation windows of 4 m/z. For

DDA, deconvolution has been achieved by extracting complementary fragment pairs that together sum to

the expected precursor mass (Ledvina et al., 2011; Kryuchkov et al., 2013; Gorshkov et al., 2015). Many of

these approaches require novel sequencing algorithms that add to an already bloated collection, while other

approaches utilize pre- and post- processing steps independent of the sequencing approach, allowing their

integration with any method.

An unexploited feature for deconvolution is the isotope distribution of fragment ions. Isotope distributions

arise from the natural abundances of element isotopes that make up a molecule. For a precursor peptide,
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the theoretical isotope distribution can be computed from its elemental composition and approximated if

its AA sequence is not known (Rockwood et al., 1995; Senko et al., 1995). Precursor isotopic distributions

are used ubiquitously in the interpretation of MS1 scans. Overlapping distributions are identified, separated,

and then used to determine monoisotopic masses and targets for MS2 (Renard et al., 2008; Samuelsson

et al., 2004; Slawski et al., 2012). Conversely, use of fragment isotopes has been minimal, and most MS2

isotope processing methods assume that the fragments follow a precursor isotope distribution (Rockwood

and Palmblad, 2013; Carvalho et al., 2009; Xiao et al., 2015; Chen et al., 2006; Horn et al., 2000; Zabrouskov

et al., 2005; Liu, 2011; Kou et al., 2014; Yuan et al., 2011; Mechtler, 2016). However, fragment isotope

distributions depend on its elemental composition, the precursor’s elemental composition, and the set of

precursor isotopes that were fragmented (Rockwood et al., 2003). If a chimeric spectrum was the result of

multiple peptides for which different sets of isotopes were isolated, then their fragments will have distinct

isotopic distributions. These isotopic distributions can be identified and attributed back to their precursor.

Here, I propose a novel strategy to deconvolve chimeric spectra by leveraging the dependence of fragment

isotope distributions on their isolated precursor isotopes. For each MS2 spectrum, precursors with isotopes

with m/z that are within the isolation window are extracted from neighboring MS1 spectra. For each

peak within the MS2 spectrum, a basis template is created by computing an approximate fragment isotope

distribution. Next, I solve a NNLS regression model that is regularized with a sparse group lasso (Simon et al.,

2013). Deconvolved spectra are then created by utilizing the basis templates and coefficients corresponding

to distinct precursors. Importantly, this is a pre-processing step that is independent of the search algorithm

used, and is therefore compatible with all search algorithms.

4.2 Methods

4.2.1 Mass spectrometry

An angiotensin I and neurotensin peptide mixture (Sigma, St. Louis, MO; catalog numbers A9650 and

N6383) was analyzed by direct infusion into an Orbitrap Fusion Lumos mass spectrometer. Instrument

parameters were identical to section 3.2.6 except for the following: MS2 scans were acquired with higher-

energy collision dissociation (HCD) at 30% collision energy. Multiplexed MS2 scans were performed using

an inclusion list to isolate and fragment both angiotensin I and neurotensin peptides in the +3 charge state.
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The isolation window parameters were adjusted for each scan in order to target all combinations of contiguous

isotopes for each peptide.

Trypsinized peptides (1 µg) from HeLa cell lysate from Thermo Fisher Scientific (Waltham, MA; catalog

number 88328) were separated and analyzed by an Orbitrap Fusion Lumos using the same parameters as

section 3.2.6 except for the following: the separation gradient was 60min long; MS1 scans were obtained at

120k resolution with a 300-2000 m/z scan range; and MS2 scans were acquired with 30k resolution using a

2e5 AGC target, 54ms maximum injection time, and 30% HCD collision energy.

4.2.2 Data sets

Four whole-cell lysate experiments were used for evaluation and training. Two data sets were generated

from in-house experiments: a 200 ng HeLa cell lysate from section 3.2.6 and the 1 µg sample described

above. The third data set was generated from a 400 ng HeLa cell lysate experiment completed by the

UNC Proteomics Core Facility using a Q Exactive HF mass spectrometer (Thermo Fisher) with a 1.6 m/z

isolation window and 90min gradient. The fourth data set was downloaded from the PRIDE repository and

encompassed data from an SW480 cell lysate (Vizcano et al., 2016). The SW480 lysate experiment was

performed on a Q Exactive mass spectrometer using a 2.0 m/z isolation window and a 180min separation

gradient.

4.2.3 Mixture model

A mass spectrum is represented as a sequence of pairs
{(

(m/z)i, yi
)}n

i=1
, where (m/z)i is a mass (m)

divided by a charge (z), and yi is the corresponding signal intensity observed at (m/z)i for i = 1, . . . , n.

In an ideal scenario, the observed intensities y = (yi)
n
i=1 of an MS2 mass spectrum could be written as a

linear combination of fragment isotope distribution templates. Let A∗ be a non-negative matrix of templates

and let x be a non-negative vector of coefficients:

y = A∗x (4.1)

Both A∗ and x can be grouped according to their corresponding precursors p ∈ p∗ that were isolated

and fragmented to create sub-matrices A∗p and sub-vectors xp. Each p ∈ p∗ is a unique combination of a

peptide’s AA sequence and a set of isolated isotopes. Each sub-matrix A∗p can then be divided into columns
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t∗p,1, . . . , t
∗
p,Tp

representing the theoretical isotopic distribution of each fragment-charge pair that dissociated

from precursor p. The entries in template t∗p,j represent the discrete probability of an isotope peak at the

corresponding (m/z)i. This gives a more detailed model:

A∗x =
∑
p∈p∗

A∗pxp, A
∗
p = [t∗p,1, . . . , t

∗
p,Tp

] (4.2)

In practice, however, there is measurement noise and error, limited sample sizes, imperfect isolation effi-

ciency, unknown elemental compositions, and uncertainty with respect to the isolated precursors. Therefore,

I attempt to approximate the observed spectrum as a sparse linear combination of fuzzy templates. Let A be

a non-negative matrix of fuzzy templates. The entries in template tp,j represent a fragment’s approximate

isotope probability at the corresponding (m/z)i using the fragment Averagine approach described in sec-

tion 3.2.3. Each element of p is a unique combination of a precursor mass and a set of isolated isotopes.

Accordingly, the approximate version of 4.2 is given as:

y ≈ Ax =
∑
p∈p

Apxp, Ap = [tp,1, . . . , tp,Tp ] (4.3)

4.2.4 Identification of isolated precursors

To use the fragment Averagine method, each precursor’s monoisotopic mass and set of isolated isotopes

must be determined. To this end, the Hardklör algorithm from the Crux toolkit (version 3.1) was used to

identify precursor isotopic distributions and their monoisotopic masses in all MS1 scans (Hoopmann et al.,

2007; Park et al., 2008). Default parameters were used except for the following: Hardklör-algorithm=version2,

instrument=orbitrap, and resolution=85000. Precursors identified in the nearest MS1 scans before and after

each MS2 scan were examined for any isotopes that were within the bounds of the MS2 scan’s isolation

window. Only charge states ≥ 2 were considered. If an isotope ≤ M+3 was isolated, its corresponding

precursor was added to p for this MS2 scan. The single exception occurred when only the monoisotopic peak

was isolated, in which case the precursor was excluded. In cases where multiple precursors had the same

isolated isotopes and charge, the precursor with the greatest total signal intensity of its isolated isotopes was

added, and the other precursors were excluded. Finally, precursors with total signal intensity ≤ 20% of the

most intense precursor were removed.
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4.2.5 Template selection and construction

Templates are created for every plausible monoisotopic fragment mass, fragment charge, and precursor

p. For each (m/z)i having a positive yi, fuzzy templates are created using (m/z)i as the monoisotopic

fragment m/z. Templates are created for each precursor p ∈ p and fragment z = 1, . . . , Zp − 1, where

Zp is the precursor charge state determined by Hardklör. A template is computed by approximating the

fragment isotope distribution with the following inputs: the monoisotopic mass of precursor p, the set of

isolated isotopes of p, and the monoisotopic fragment mass m = (m/z)i · z. To handle the cases where

the monoisotopic peak was not detected due to low abundance, a template is created for an (m/z)i with

yi = 0. Specifically, if the approximated probability of a monoisotopic fragment is less than the M+1 isotope

probability, and y = 0 at the m/z of the M-1 isotope, then a template is created at this M-1 isotope m/z.

When constructing A and y, all (m/z)i entries with yi = 0 are initially removed; therefore, y only

contains positive values. With each new template, if one of its isotope m/z values is not within 20 ppm of a

m/z having a corresponding y ∈ y, then a 0 intensity is inserted at the appropriate location.

4.2.6 Non-negative least squares model

Many more templates are created than are expected to represent a given spectrum. Their creation is due

to the uncertainty of their correct placement and identity; thus, extra templates are generated in order to

cover all possible cases. With this overabundance of templates, there are an infinite number of solutions for

Equation 4.3. In these situations, some form of regularization is used to favor specific types of solutions. To

promote sparsity, the least absolute shrinkage and selection operator (LASSO) is a common penalty used for

regularization. The LASSO shrinks coefficients to exactly zero and promotes overall sparsity, though the

ideal solution for the chimeric spectrum deconvolution model is group-level sparsity. In most cases, each

isotopic peak should be represented by a single template. To achieve this type of sparsity, the sparse group

LASSO penalty along with its two penalty parameters λ1 and λ2, were added to the model. The goal is

compute x̂, the value of x which minimizes the regularized equation:

x̂ = min
x≥0
‖y −Ax‖2 + λ1‖x‖1 + λ2

T∑
t=1

‖yt −Atxt‖2 (4.4)
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For this convex optimization problem, λ1 and λ2 must be properly selected through a grid-based search

as described in section 4.2.9. After computing the value of x̂, a deconvolved spectrum for each precursor,

can be calculated by:

ŷp = Apx̂p, p ∈ p (4.5)

Furthermore, a deconvolved monoisotopic spectra, ŷmono
p , can also be calculated. Let Amono

p be a matrix

consisting of monoisotopic templates [tmono
p,1 , . . . , tmono

p,Tp
], which have a value of one at their monoisotopic

m/z and zeros in the remaining entries:

ŷmono
p = Amono

p x̂p, A
mono
p = [tmono

p,1 , . . . , tmono
p,Tp

] (4.6)

Monoisotopic spectra are necessary because most peptide sequencing algorithms expect monoisotopic

masses. A visual example of the model is provided in Figure 4.2.

4.2.7 Model solution

To find solutions to Equation 4.4, I utilized CVX (Version 2.0), a package for specifying and solving

convex programs (Grant and Boyd, 2008, 2014). CVX decides whether to solve the specified problem or

the dual problem, chooses a convex optimization solver, and handles conversion to the proper input format.

In this case, SDPT3, an algorithm for semidefinite-quadratic-linear programs was selected to solve the dual

problem (TüTüNcü et al., 2003).

4.2.8 Evaluation

The number of peptide-spectrum-matches, unique peptides, and proteins following a database search

were compared on three versions of each data set: the original spectra, deconvolved spectra, and monoisotopic

deconvolved spectra. For each case, a database search was performed using the Crux library (Mcilwain

et al., 2014) against the human canonical SwissProt database (UniProt Consortium, 2012) (downloaded

11/28/16) appended with reversed decoy sequences. Search parameters included a static carbamidomethyl (C)

modification, variable oxidation (M) modification, fully tryptic digestion, a 3 Da precursor mass tolerance,

and a 0.02 mz-bin-width. Peptide-spectrum-matches were scored using Percolator (version 3.0) (The et al.,
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Figure 4.2: Visual schematic of NNLS model on an example chimeric spectrum. Two precursors are co-
isolated and co-fragmented as shown in Figure 4.1. After solving the NNLS problem, templates highlighted
in blue are assigned positive coefficients. Templates belonging to the same precursor are merged to create
deconvolved spectra.
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2016) and filtered for a 1% false discovery rate. Protein inference was performed by Fido with default

parameters (Serang et al., 2010).

4.2.9 Parameter optimization

To optimize the values for the λ1 and λ2 parameters, a grid-based search was performed for all combina-

tions of values in {1, 0.1, 0.001, 0.0001} on the multiplexed angiotensin I and neurotensin data. Parameters

were excluded if they resulted in deconvolved spectra that were visibly identical or accounted for less

than 90% of the original total signal intensity. Then, a finer-grained search was performed on the 200 ng

HeLa experiment. Both λ parameters were set equal to each other. The grid-based search tested λ in

{0.1, 0.09, . . . , 0.02, 0.01}.

4.3 Results

4.3.1 Angiotensin I and neurotensin

To test and refine the described NNLS model, single-peptide and chimeric spectra were created during a

direct infusion experiment of a two-peptide mixture comprised of angiotensin I and neurotensin. To create

single-peptide MS2 spectra, separate MS2 scans were performed with an isolation window that isolated

and fragmented the monoisotopic peak of each peptide (Figure 4.3). Expected fragments dominate the

spectra, however many unmatched peaks are still present. The unmatched peaks are likely due to unexpected

fragmentation pathways. Additionally, a few low-intensity peaks match the m/z of fragments from the

non-targeted peptide because the two peptides can create fragments with similar or identical mass. These

spectra represent the best case result of chimeric spectra deconvolution.

Next, chimeric spectra were generated by performing multiplexed MS2 scans. Multiplexed MS2 scans

perform multiple isolations to capture a mixed ion population followed by a single round of fragmentation

and mass analysis. Here, ions were sequentially accumulated using two isolation windows; one window for

each peptide, with half the injection time dedicated to each isolation. Then, the mixed ion population was

fragmented and scanned in an Orbitrap mass analyzer. The isolation window parameters were adjusted to

capture different subsets of contiguous precursor isotopes for each peptide. All combinations of isotopes were

generated up to isotopes M+3. Figure 4.4 contains an example where the first two isotopes of angiotensin I

and the second isotopes of neurotensin were co-isolated and co-fragmented. This combination of co-isolated
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Figure 4.3: MS2 spectra of angiotensin I and neurotensin from a direct infusion experiment. Peaks matching
angiotensin I and neurotensin monoisotopic fragments colored red and green, respectfully. Unmatched peaks
are colored grey. Inset: Observed MS1 spectrum of the corresponding peptide and the employed isolation
window.
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isotopes is common in shotgun proteomics experiments that use a 1.6 m/z wide isolation window. Although

the signal intensities of the isolated isotopes from angiotensin I and neurotensin were nearly equal, most

of the matching monoisotopic fragments are from angiotensin I. As expected due to the isolation of the

monoisotopic peak of angiotensin I and the lack of the monoisotopic peak from neurotensin, the fragments

have significantly different isotopic distributions. Specifically, monoisotopic fragments have high intensity

for angiotensin I, and low intensity for neurotensin. The high-intensity unmatched peaks in the chimeric

spectrum are M+1 and M+2 isotopes of neurotensin precursors and fragments.

An NNLS model was created and solved for the chimeric spectrum, which resulted in two deconvolved

spectra. The deconvolved spectrum corresponding to the angiotensin I peptide is dominated by matches to

angiotensin I fragments and the high-intensity unmatched peaks are also found in the single-peptide spectrum

from Figure 4.3. However, more neurotensin fragments are observed in the deconvolved spectrum than in the

single-peptide angiotensin I spectrum. Similarly, the deconvolved neurotensin spectrum primarily consists of

neurotensin fragments, though the most intense peaks are not monoisotopic and would hinder sequencing

algorithms. Likewise, 20 low-intensity angiotensin I fragments were incorrectly assigned to the neurotensin

spectrum.

Monoisotopic versions of the deconvolved spectra were created using Equation 4.6. These de-isotoped

spectra lack the M+1 and M+2 fragment peaks from their corresponding deconvolved spectra. As expected,

the angiotensin I spectrum is relatively unchanged as the high-intensity fragments were already monoisotopic.

Conversely, the high-intensity unmatched peaks in the neurotensin spectrum were removed, and the high-

intensity peaks now match neurotensin fragments. Furthermore, the number of peaks matching angiotensin I

fragments decreased to 12. Though these monoisotopic spectra still contain noise and interference from the

other peptide, they are extremely similar to their single-peptide versions.

A more difficult example is shown in Figure 4.5. Here, the second two isotopes of angiotensin I and

the first three isotopes of neurotensin are isolated. Due to the relatively low abundance of the second two

isotopes, the isolated ion populated consisted <20% of angiotensin I peptides. Additionally, the monoisotopic

fragments are rare based on their theoretical fragment isotope distributions. The combination of these two

factors resulted in many missing monoisotopic peaks and few matches to angiotensin I fragments in the

chimeric spectrum. The deconvolved angiotensin I spectrum is of low quality; it contains few matches to

angiotensin I fragments, few peaks overall, and the most intense matching fragment belongs to neurotensin.

On the other hand, most peaks from the chimeric spectrum were assigned to the deconvolved neurotensin
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Figure 4.4: Chimeric and deconvolved spectra of angiotensin I and neurotensin from a direct infusion
experiment. A multiplexed MS2 scan was performed using two separate isolation windows. Isotopes M
and M+1 were isolated for angiotensin I, and isotopes M+1 and M+2 were isolated for neurotensin. A
NNLS model was solved to create deconvolved and monoisotopic spectra. Peaks matching angiotensin I and
neurotensin monoisotopic fragments colored red and green, respectfully. Unmatched peaks are colored grey.
Inset: Observed MS1 spectrum of the corresponding peptide and the employed isolation window.
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spectrum, which mimicked the single-peptide version. The monoisotopic angiotensin I spectrum was of

higher-quality than the deconvolved-only spectrum; it matched the same angiotensin I fragments, but with

higher intensity due to de-isotoping, and the high-intensity neurotensin fragments were no longer matches.

4.3.2 Whole-cell lysate evaluation

Table 4.1: Whole-cell lysate identification statistics
Data set Method PSMs Unique peptides Proteins

HELA 200ng Major original 21619 10656 2915
deconvolved 26184 (+21.1%) 10883 (+2.13%) 3082 (+5.73%)

mono + deconvolved 28117 (+30.05%) 11441 (+7.36%) 3182 (+9.16%)
HELA 1ug Major original 24616 17738 3722

deconvolved 30614 (+24.36%) 18746 (+5.68%) 3972 (+6.71%)
mono + deconvolved 29818 (+21.13%) 18644 (+5.10%) 3931 (+5.61%)

SW480 1ug PS original 30182 17319 3728
deconvolved 34484 (+14.25%) 18047 (+4.20%) 3920 (+5.15%)

mono + deconvolved 35194 (+16.60%) 18524 (+6.95%) 3985 (+6.89%)
HELA 400ng Core original 20147 15788 4221

deconvolved 20349 (+1.00%) 15513 (-1.74%) 4345 (+2.93%)
mono + deconvolved 20760 (+3.04%) 15868 (0.50%) 4394 (+4.09%)

To test the NNLS model on more complex, high-throughput MS-based proteomics data, four whole-cell

lysate experiments were obtained from three separate laboratories. Each experiment was performed using

different sample concentrations and instrument settings, and a different mass spectrometer was used by

each laboratory. For each experiment, analyses were performed on three data sets: 1) the original spectra,

2) deconvolved spectra, and 3) monoisotopic deconvolved spectra. A database search was performed on

the data sets to obtain peptide and protein identifications. deconvolved spectra increased peptide-spectrum-

matches, unique peptides, and proteins in all cases except the HELA 400ng Core experiment (Table 4.1).

The monoisotopic deconvolved spectra further increased every category for every experiment, except for

the HELA 1ug Major experiment. The greatest improvement was observed for the HELA 200ng Major

experiment, which is likely because the λ penalty optimization was performed on that data set. The

HELA 400ng Core experiment had the smallest improvements. A likely cause of the poorer results was the

low automatic-gain-control (AGC) setting of 2e4. This value controls the number of ions isolated per MS2

scan, and a low value increases scan speed, but results in poor isotopic distribution statistics and missing

peaks. On the other hand, the HELA 1ug Major experiment used the highest recommended AGC target of
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2e5 and concomitantly had nearly eight times more chimeric spectra with three peptide identifications than

the SW480 1ug PS experiment (Table 4.2).

Table 4.2: PSMs per spectrum
Data set 1 PSM 2 PSMs 3 PSMs

HELA 200ng Major 25224 1152 2
HELA 1ug Major 22034 3802 60

SW480 1ug PS 28290 3440 8
HELA 400ng Core 19154 800 2

Though the increase in PSMs was substantial, less than half resulted in new peptide identifications.

The remaining peptides were already identified in other scans from the original spectra and are therefore

redundant. Serendipitously, these redundant spectra provide an opportunity to further confirm the quality of

the NNLS model and the subsequent PSMs. Given the chromatographic conditions used in the whole-cell

lysate experiments, a peptide’s elution profile spans only several seconds to a minute. Therefore, correctly

identified redundant peptides should come from spectra that were acquired at similar times. However, since

the PSM false discovery rate was controlled to 1%, some deviations due to incorrect peptide identifications

are expected. To test this, the scan numbers for deconvolved peptides were compared to their corresponding

scan numbers in the original data (Figure 4.6). Identifications with the same scan number were excluded. For

all data sets, a nearly one-to-one correlation was observed, which strengthens the confidence of deconvolved

identifications.

Finally, a detailed inspection was performed on a chimeric spectrum that resulted in three distinct

peptide identifications (Figure 4.7). The MS1 spectrum acquired prior to the MS2 spectrum contained four

identified precursors, and four other unexplained peaks within the bounds of the isolation window. The

monoisotopic peak of the green precursor is located at the edge of the isolation window which causes poor

isolation efficiency that is unaccounted for in the template generation process. After deconvoluting the spectra,

AA sequences for the three intense peptides were identified, while the low-intensity precursor remained

unidentified. The deconvolved spectra still contained interfering peaks from the other peptides, particularly

in the spectrum for VMLMASPSMEDLYHK, which contained most of the peaks from the original chimeric

spectrum. Regardless, the three peptide-spectrum-matches were high scoring and all passed a 0.1% FDR.
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Figure 4.6: Scan number correlations. Scan numbers for peptides identified from deconvolved spectra were
plotted against scan numbers from the original spectra that identified the same peptide. Only identifications
with different scan numbers between the two experiments were included.

66



0

2e5

4e5

6e5

584 585 586m/z

s
ig

n
a

l 
in

te
n

s
it
y

M

M+1

M+2

M+3

M+4

M

M

M

M+1

M+1

M+1

M+2

M+2

M+2

M+3

Isolation window

0

2e5

4e5

6e5

500 1000m/z

s
ig

n
a

l 
in

te
n

s
it
y

0

5e4

1e5

300 600 900 1200

s
ig

n
a

l 
in

te
n

s
it
y

Chimeric MS2 spectrum

MS1 spectrum

Monoisotopic deconvolved spectra

B
2

+

Y
6

−
N

H
3

+
+

+

B
3

+

Y
4

+

Y
6

+

Y
7

+ Y
8

+

0

1e5

2e5

3e5

4e5

250 500 750 1000

AVFVPDIYSR

Y
1

+

Y
2

+

B
3

+

Y
3

+

Y
9

+
+

Y
1

0
+

+
Y

1
1

+
+

Y
5

+ Y
1

2
+

+

Y
6

+

Y
7

+ Y
8

+

Y
9

+

Y
1

0
+

Y
1

1
+

Y
1

2
+

0

2e5

4e5

500 1000m/z

VMLMASPSMEDLYHK

Y
1

1
+

+

Y
1

2
−

N
H

3
+

+
Y

1
2

+
+

Y
6

+ Y
1

4
+

+

Y
8

+

Y
9

+

Y
1

0
+

Y
1

1
+

Y
1

2
+

0

5e4

1e5

500 1000
m/z

TFVVQGFGNVGLHSMR

Figure 4.7: MS2 scan number 20990 from the HELA 1ug Major experiment and its prior MS1 scan. Four
precursor peptides are in the bounds of the isolation window used for the subsequent MS2 scan. The chimeric
MS2 spectrum was deconvolved and de-isotoped, and three distinct peptides were identified. Non-grey colors
correspond to peaks from distinct peptide species.
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4.4 Discussion

Due to the complexity of the human proteome, and the limitations of peptide chromatography, chimeric

spectra are often unavoidable. In fact, in many experiments they are more common than single-peptide

spectra. The NNLS model developed in this work provides a novel method to deconvolve these spectra.

To use this method, MS2 spectra must be acquired on a high-resolution, accurate-mass instrument. Low-

resolution instruments, such as ion traps, are unable to resolve signals from different nominal isotopes and

therefore fragment isotopic distributions cannot be examined. Additionally, some instrument settings have a

large impact on the quality of deconvolution. Low AGC targets create spectra with highly variable isotopic

distributions, and should be avoided. Isolation widths should be kept narrow to avoid isolating a precursor’s

entire isotopic distribution, otherwise the relationship between a fragment and precursor encoded by the

fragment isotopic distributions would be eliminated. Lastly, some instruments automatically choose the

m/z scan range of an MS2 scan based on the mass of the targeted precursor. Using this functionality, some

fragments from an inadvertently co-isolated precursor with a larger mass will be missed. Nevertheless, the

improvement observed in this study on four varying experiments demonstrates that the deconvolution method

is robust to vastly different instrument settings.

Though the increase in PSMs following deconvolution was substantial, there are opportunities for further

improvement. Penalty parameters should be optimized for each data set, and possibly for each spectrum.

Efficient optimization procedures need to be developed, as the one used here involved a computationally

intensive grid-based search of possible penalty values evaluated on the entire data set. Two improvements can

be made to increase the quality of fragment isotopic distribution templates. First, the non-uniform isolation

efficiency during MS2 scans is currently ignored, but can be taken into account when calculating approximate

fragment isotope distributions. Second, the distribution of heavy isotopes along a peptide may be determined

from deviations in the fragment isotopic distributions. It may be possible to iterate between generating

templates, solving the NNLS model, and adjust the templates to compensate for the deviations.

Deconvolution of chimeric spectra through fragment isotopic distributions creates possibilities for new

analysis pipelines and data acquisition strategies. From the analysis side, the deconvolution method presented

here is complementary to previous methods to sequence chimeric spectra and they can be integrated together.

For example, iterations of database searches and the subsequent subtraction of matching peaks can be

performed after deconvolution. When co-fragmented peptides have similar masses and the same set of
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isotopes were isolated, subsequent subtraction may be the only option to identify multiple peptides as their

fragments would have nearly identical isotopic distributions.

In the context of data acquisition strategies, improvements can be made to both data-dependent and

data-independent acquisition. For data-dependent acquisition, instead of using the same isolation window

parameters throughout an experiment, isolation windows can be adjusted in real-time to maximize the

difference between fragment isotopic distributions. By shifting the isolation width and offset, the set of

isolated precursor isotopes can be controlled and chosen to improve deconvolution. Furthermore, the isolation

of only the monoisotopic peak can be avoided, which is a problematic case for the NNLS model.

For data-independent acquisition, narrower isolation windows can used as opposed to the current practice

of wide isolation. Though the limited scan speed of contemporary mass spectrometers will force a small

m/z range to be interrogated per experiment, the MS2 spectra are more amenable to analysis. Moreover,

the utilization of fragment isotopic distributions will be greater because a precursor’s isotopes will be split

between adjacent scans and create complementary fragment isotopic distributions that can be identified. This

additional constraint may significantly improve chimeric spectrum deconvolution.

Finally, for any acquisition strategy the chromatographic gradient can be shortened. This will require

less instrument time, but concomitantly increase peptide co-elution and therefore generate more chimeric

spectra. With successful chimeric spectra deconvolution, the disadvantages of short experiments may no

longer out-weight the benefits.

4.5 Conclusion

I developed a method to deconvolve chimeric spectra into separate components for each co-fragmented

peptide. I treated an observed spectrum as a linear combination of possible fragment isotopic distributions and

solved a non-negative least squares model (NNLS) regularized with a sparse group lasso. Using the positive

coefficients, individual spectra were created for each peptide. Furthermore, the deconvolved spectra were de-

isotoped and converted into monoisotopic versions. The resultant single-peptide spectra are compatible with

any sequencing algorithm. The NNLS model was tested on whole-cell lysate mass spectrometry experiments

obtained from multiple laboratories. The deconvolved spectra increased peptide-spectrum-matches, unique

peptides, and proteins. This algorithm describes the first application of approximate fragment isotope

distributions in the literature.
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CHAPTER 5: SIMULATION OF DATA ACQUISITION

5.1 Introduction

Mass spectrometry is an analytical technique used in proteomics to identify and quantify proteins. Many

of its applications share the underlying goal of uncovering the full protein complement in a biological sample.

However, for complex samples this is rarely achieved partly because the number of ion populations exceeds

that which contemporary instruments can individually target for AA sequence analysis with an MS2 scan

(Jurgen et al., 2011). Acquisition algorithms are necessary to control the data acquisition process and manage

the limited scan speed.

Data-dependent acquisition (DDA) constitutes a major class of data acquisition algorithms. DDA

algorithms perform an MS1 scan to determine the mass-to-charge ratio (m/z) and signal intensity of ions

currently entering the mass spectrometer, followed by sequence determining MS2 scans on ions from a subset

of detected peaks. The standard DDA algorithm, TopN, selects ions for MS2 scans that contributed to peaks

of greatest signal intensity from the latest MS1 spectrum. Several other approaches, as well as adjustments

to TopN, have been proposed in order to increase peptide and protein identifications (Zerck et al., 2013;

Graumann et al., 2012; Liu et al., 2011; Rudomin et al., 2009; Scherl et al., 2004). However, TopN continues

to be the dominant choice for acquisition control despite its bias towards abundant proteins and relatively

poor reproducibility.

Currently, evaluation of novel acquisition strategies requires access to both a mass spectrometer and

its application programming interface (API). Unfortunately, few instrument vendors provide an API, and

therefore the pool of researchers with the necessary tools to explore this field is extremely limited. An alter-

native is to evaluate algorithms with in silico simulations. Existing simulator software for mass spectrometry

proteomics has focused on generating ground truth data and realistic signals for MS1 and MS2 spectra (Smith

and Prince, 2015; Noyce et al., 2013; Schulz-Trieglaff et al., 2008; Bielow et al., 2011). However, the size

of the simulations is limited due to speed, memory, and/or disk space requirements. Most importantly, the

simulated MS2 spectra lead to nearly perfect peptide-spectrum-matches (PSMs) when analyzed with existing
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Figure 5.1: A. Distribution of PSM probabilities from AcquisitionSimulator using TopN. Both false positive
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sampled from an exponential distribution with a user-specified lambda parameter. Lambda=8 was used for
this simulation. Both peptide and protein-level false discovery rates can be estimated using the decoys. B.
Peptide probability distributions from a real whole-cell lysate experiment using Crux and Percolator (Park
et al., 2008).

database search algorithms. The reasons for this include the absence of co-fragmentation from neighboring

ions within an isolation window, the difficulty of predicting fragmentation patterns, and potentially other

not yet understood phenomena. This limitation makes evaluating any acquisition strategy impractical as the

metrics for success are based on the number of confident peptide and protein identifications.

Here, I present an acquisition simulator that produces PSMs with realistic peptide AA sequences and

probability assignments for DDA strategies by foregoing fragmentation simulation and instead directly

generating PSMs based on the precursor ion fractions of MS2 scans. It builds upon previous work on LC-MS

simulations and scales to larger data sets due to probabilistic models of ion generation and subsequent pruning

of rare ions. This allows for an increased number of proteins, peptides, and post-translational modifications

that can be simulated.

5.2 Methods

MSAcquisitionSimulator consists of three standalone command line programs. The first, FASTASampler,

assists users in creating a FASTA file containing the proteins to be included in the simulation. Users select a

protein FASTA file, the distribution of protein abundance and the number of proteins to be sampled. The
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output contains a random subset of proteins with each header appended with a ”#” followed by the protein’s

abundance.

The second program, GroundTruthSimulator, uses the previously created FASTA file and a configuration

file containing simulation parameters to simulate digestion, AA modifications, elution time, elution profiles,

ionization efficiency, and charge and isotope distributions. It outputs the tab delimited ground truth data on

the generated ions, which will be used for testing acquisition algorithms. In contrast to previous simulators,

there are no limits on missed cleavages, enzymatic termini, or modifications. A probabilistic approach is

taken instead and rare peptides are efficiently pruned.
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generate MS2 spectra in a very different fashion from MSAcquisitionSimulator, so this feature was turned off
for JAMSS and MSSimulator, but still enabled for AcquisitionSimulator. JAMSS simulations were stopped
after 1,600 proteins due to the long runtime, and MSSimulator was stopped after 12,800 proteins due to
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Finally, the third program, AcquisitionSimulator, takes as input the previously generated ground truth file

and another configuration file. This program takes a data-dependent acquisition algorithm developed by a

user and simulates it on the ground truth data. It models ion accumulation, MS1 spectra, scan time duration,

and database search PSMs (Figure 5.1). Currently, MS2 spectra are not simulated. Instead, the PSMs are

generated by sampling from the list of precursors isolated in an MS2 scan and candidate peptides from a

database search. This approach leads to true positives, false positives, and reversed decoy matches similar to

real experiments (Figures 5.2, 5.3). Ion accumulation is simulated by numerically integrating an ion’s elution

profile. Ion isolation efficiency is not modeled and assumed to be 100%. The elapsed time for a scan is equal

to the scan overhead time plus the larger of either the injection time or the transient time. This models the

scan time for a QExactive-like instrument. The output includes an mzML file and a PSM graph file, which

is used as input for the Fido protein inference algorithm (Serang et al., 2010). Speed and memory usage

comparisons with existing simulation software are provided in (Figure 5.4).

Model parameters are described in Table 5.1. To model digestion, all enzymes specify a probability of

cleavage given the AA present at the N-terminal side of the cleavage site, N , and the AA present at C-terminal

side of cleavage site, C, and are assumed to be independent of each other. That is:
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Table 5.1: Variable definitions

Variable Description
e Array of enzymes in the simulation
ion An ion and all its attributes (sequence, charge, neutrons relative to the monoisotopic isotope,

PTMs, etc)
ioni The AA at position i of the peptide represented by ion
Nion Random variable for the index of the N-terminus of ion
Cion Random variable for the index of the C-terminus of ion
Zion Random variable for the charge state of ion
IEpeptide Random variable for the ionization efficiency of peptide
Mion Random variable for the number of neutrons greater than the monoisotopic form of ion
cleavage Random boolean variable for a peptide cleavage event
ionizationion Random boolean variable for an ionization event for the peptide corresponding to this ion
PTMion Array of the modification state for each AA on ion. This includes the state of no modification.
P ion Array of proteins that can generate ion

Pr(cleavage|N = n,C = c, e) (5.1)

is given for all e ∈ e. The probability of a peptide’s cleavage from a single copy of its protein is then

equal to the probability of cleavage at the peptide’s N-terminus, C-terminus, and no cleavages in between,

conditional on the enzymes in the simulation:

Pr(Nion = nion, Cion = cion|e) =
(
1−

∏
e∈e

1− Pr(cleavage|N = ionnion−1, C = ionnion , e)
)

·
(
1−

∏
e∈e

1− Pr(cleavage|N = ioncion , C = ioncion+1 , e)
)

·
( cion−1∏

i=nion

∏
e∈e

1− Pr(cleavage|N = ioni, C = ioni+1, e)
)

(5.2)

Each modification has a probability of occupying a particular site (e.g. there are probably serines that are

never phosphorylated), and a percentage of that AA that will be modified (e.g. if a particular serine is chosen

to be phosphorylated, maybe only 1% of it ever exists in that form at any given time), given as Pr(PTM).

Candidate modification sites are first randomly assigned to each protein based on each PTM’s probability of

occupying a particular site. Afterwards, for each peptide created during the digestion process, modification

combinations are created and their probability of existing is calculated as:
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Pr(PTMion) =

cion∏
i=nion

Pr(PTMioni) (5.3)

For the case where PTMi is the state of no modification:

Pr(PTMioni = no mod) = 1−
∑

possible PTMs assigned to this AA

Pr(PTM) (5.4)

If the sum of probabilities for PTMs assigned to a particular AA is greater than 1, then their probabilities

for that AA are normalized to sum to 1.

During simulation of the ground truth data, the ionization efficiency of each ion is randomly selected

from a uniform random distribution. All ions of the same peptide have the same ionization efficiency.

Pr(ionizationion) = IEpeptide (5.5)

IEpeptide ∼ uniform(0, 1) (5.6)

The probability of an ion having a particular charge is modeled as a binomial distribution, with the

binomial distribution’s probability of success chosen randomly for each peptide in the simulation.

Pr(Zion = zion) = binomial(n, zion, p) (5.7)

n = 1 + number of basic AAs in peptide (5.8)

p = 0.7 + r (5.9)

r ∼ uniform(0, 0.3) (5.10)

The isotopic distribution for a molecule is computed using Mercury++ which uses a fast-Fourier transform

to convolve the various element isotopes and their probabilities (Rockwood and Haimi, 2006). For the

purposes of our model, it is assumed the value of Pr(Mion = mion) is given.
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The probability of a particular ion’s existence is assumed to be based on all the previous equations, and

that they are all independent of each other. Therefore the probability of an ion is given by:

Pr(ion|e) = Pr(Nion = nion, Cion = cion|e)

·Pr(PTMion) · Pr(ionizationion)

·Pr(Zion = zion) · Pr(Mion = mion)

(5.11)

Furthermore, the number of copies of a particular ion Aion is its probability of existence from a single

protein, times the total protein abundance of proteins that can generate that ion P ion:

Aion = Pr(ion|e) ·
∑

protein∈P ion

Aprotein (5.12)

The elution time for each peptide is determined by the BioLCCC (Liquid Chromatography of Biomacro-

molecules at Critical Conditions) library (Gorshkov et al., 2006). BioLCCC models the adsorption of peptides

on porous media and can calculate the expected elution time for a particular molecule given the dimensions

of column length and diameter, pore size, solvent concentrations, gradients, and flow rates. The effects

of post-translational modifications can be modeled by specifying estimates of binding energy, which are

user-specified parameters found in the ground truth configuration file.

The shape of an ion’s elution profile due to liquid chromatography is modeled by an Exponential Gaussian

Hybrid (EGH) function (Lan and Jorgenson, 2001). The EGH takes into account the tailing typically observed

at the end of a elution profile. The two parameters of the EGH are elution width (σ) and the amount of tailing

(τ ) (Figure 5.5). These elution profiles are used to determine the number of ions reaching the ion detector

by numerically integrating the profiles using Simpson’s method at one-millisecond intervals for every ion

present at the current time and m/z constraints. This integration continues until either a desired total ion count

is reached, or the maximum injection time is reached.

To generate realistic PSMs, the precursor ion fraction (PIF) is first calculated for each peptide in an

MS2 scan. The PIF is defined as the sum of ion intensities for a given peptide (i.e., the sum of all its isotope

intensities) divided by the total ion intensity of the scan. Next, one peptide is randomly selected from these

peptides—weighted by their PIF. If the peptide is contained in the peptide database (including reversed decoy

sequences) that is being used to mimic a database search, and within the precursor mass tolerance, then the
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Figure 5.5: Elution profile modeled by an Exponential Gaussian Hybrid function. The two parameters, σ and
τ , control the width of the distribution and the amount of tailing, respectively. Default parameters of σ = 6
and τ = 4 are shown in orange.

PSM AA sequence is set to this peptide and the PSM probability is set to the corresponding PIF. If peptide is

not in the peptide database, then a peptide is chosen in a uniform random fashion from the peptides in the

database search within the mass tolerance of the targeted precursor m/z, and given a PSM probability sampled

from a truncated exponential distribution.

5.3 Case study

To demonstrate the utility of MSAcquisitionSimulator, I evaluated three simple DDA algorithms–TopN,

RandomN, and WeightedN. TopN selects the most intense peaks for MS2 scans, RandomN samples from

a uniform random distribution of the observed peaks, and WeightedN samples from a random distribution

weighted by observed peak intensity. Dynamic exclusion was enabled, and MS1 spectra were de-isotoped

prior to MS2 selection decisions. FASTASampler was executed on the human proteome provided by

UniProtKB using a log-normal abundance distribution and 50% of the proteins, resulting in 45,809 protein AA

sequences. Default configuration files were used with both GroundTruthSimulator and AcquisitionSimulator.

TopN resulted in the greatest number of confident protein and peptide identifications, closely followed

by WeightedN, and RandomN provided far fewer protein identifications (Figure 5.6). RandomN’s poor

performance stemmed from the challenges in targeting low-intensity ions. The wide MS2 isolation window

of 2 m/z captured neighboring intense ions and created spectra dominated by peptides whose monoisotopic

mass fell outside the small precursor mass tolerance used to simulate the database search. Additionally, fewer

scans were performed due to increased injection time.
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Figure 5.6: Distribution of protein probabilities using three different DDA algorithms on simulated data. Fido
was used for protein inference with parameters alpha=0.1, beta=0.01, and gamma=0.5.

5.4 Conclusion

Data-dependent acquisition simulation will assist in the development and assessment of novel algorithms.

The next generation of algorithms will likely further integrate data generation with data analysis, such as real-

time peptide sequencing and protein inference. They may also become more goal-oriented, seeking to identify

subsets of proteins, specific modifications, or to improve quantification. Their sophistication may also come

at a computational cost too great for their implementation on contemporary mass spectrometers. Previous

simulation software only support TopN data-data dependent acquisition and do not provide a software

architecture for convenient modification of the acquisition algorithm. Furthermore, previous simulators are

prohibitively slow and memory intensive for simulations of realistically complex peptide mixtures. Finally,

they require re-generation of ground truth data for each simulation, which adds unnecessary time when

testing multiple acquisition algorithms on the identical data set. MSAcquisitionSimulator overcomes these

limitations and is the only practical tool for the simulation and evaluation of novel data-dependent acquisition

algorithms.
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CHAPTER 6: PREDICTING PROTEIN-PROTEIN INTERACTIONS

6.1 Introduction

Mapping the global protein-protein interaction network and defining its dynamic reorganization during

specific cell state changes will provide an invaluable and transformative knowledgebase for many scientific

disciplines. Recent advancements in two-hybrid technologies and affinity purification-mass spectrome-

try (APMS) have dramatically increased protein connectivity information, and therefore a high-coverage

proteome-wide interaction map may be realized in the not-so-distant future. Specifically, technological and

computational advancements in MS-based proteomics have increased sample throughput, detection sensitivity

and mass accuracy, all with decreasing instrumentation costs. Consequently, to date ∼2,400 human proteins

have been analyzed by APMS, as estimated through BioGRID and data presented herein (Stark et al., 2011).

Similarly, the generation of arrayed human clone sets has revealed binary interactions among approximately

13,000 proteins (HI-2012 Human Interactome, Center for Cancer Systems Biology) (Rolland et al., 2014).

While both approaches detect direct protein interactions, only APMS can detect indirect interactions—though

with limited ability to distinguish between the two types.

In general, APMS-based protein interaction experiments are performed by selectively purifying a specific

protein, termed the bait, along with its associated proteins from a cell or tissue lysate. Mass spectrometry is

then used to identify and more recently quantify the bait and associated proteins within the affinity-purified

protein complex, collectively termed the prey. Though a prey’s presence supports its existence within

a complex, high numbers of non-specific contaminants—owing largely to technical artifacts during the

biochemical purification—lead to false protein complex identifications and therefore significantly hamper

data interpretation. As such, numerous computational methods have been developed to differentiate between

genuine APMS protein complex interactions and false-positive discoveries.

These methods can be broadly grouped along two axes: the type of quantitative data used, and which

connectivity model is adopted. The first axis contains two categories: whether they use binary or quantitative

APMS data. The binary presence of the protein is used as evidence for an interaction by methods such as
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SAI, Hart, Purification Enrichment scores and Dice Coefficients (Gavin et al., 2006; Collins et al., 2007;

Bader and Hogue, 2002; Bader et al., 2004; Gilchrist et al., 2004; Hart et al., 2007; Zhang et al., 2008).

By ignoring the quantitative aspects of APMS data, many candidate interactions are treated equally even

though there is more evidence for one over the other. More recently, computational approaches employed

by SAINT (Choi et al., 2011; Teo et al., 2014), MiST (Jäger et al., 2011), CompPASS (Sowa et al., 2009)

and HGSCore (Guruharsha et al., 2011) achieved improved scoring accuracy by taking advantage of label-

free quantification using spectral counts, a semi-quantitative reflection of the abundance of a protein after

purification. Additionally, SAINT-MS1 is an extension of SAINT that uses label-free MS1 intensities for

quantification, which is better suited for low-abundant interactors (Choi et al., 2012). Along the second axis,

there are also two categories: whether a spoke or matrix model is used to represent protein connectivity. The

spoke model represents only bait-prey interactions, while the matrix model—used by the Hart and HGSCore

methods—additionally represents all prey-prey interactions, resulting in a quadratic number of candidate

interactions per experiment instead of linear, and therefore contain an order of magnitude more interactions to

test. Though the matrix model has the potential to detect more true complex co-memberships, it not only has

to determine whether either of the two prey proteins are contaminants, but also whether pairs of prey are in

the same or distinct complexes with the bait—leading to more false positives. Each method has its merits and

has been successfully applied in APMS experiments; however, their widespread utilization has been limited.

In addition to using features from APMS experiments to predict the validity of putative protein-protein

interactions, success in the de novo prediction of protein interactions has been achieved through the analysis

of indirect data (Beyer et al., 2007; Myers and Troyanskaya, 2007; Qiu and Noble, 2008; Qi et al., 2006).

Specifically, mRNA co-expression has been shown to positively correlate with co-complexed proteins, and

the Gene Ontology’s (GO) biological process and cellular component annotations have proven to be useful

for interaction prediction by utilizing semantic similarity (Resnik, 1995; Jain and Bader, 2010; Yang et al.,

2012). Both co-expression and GO co-annotation are also commonly used metrics for evaluating the quality

of predicted interactions. AA sequence and structural homology at the domain and whole-protein levels

have established themselves as powerful predictors as well (Deng et al., 2002; Ben-Hur and Noble, 2005).

Though individually useful, integration of these indirect sources using machine learning techniques such as

support vector machines (Koike and Takagi, 2004), Random Forests (Lin et al., 2004), naı̈ve Bayes (Jansen

et al., 2003), and logistic regression (Bader et al., 2004) have further increased prediction accuracy. APMS

data have also been used as a discriminative feature, once as a binary value representing an interaction’s
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presence—far less powerful than the sophisticated APMS scoring methods now available (Qi et al., 2006),

and once using a novel method that lacked rigorous comparison to other methods (Havugimana et al., 2012).

Among the label-free methods, only SAINT’s software is available for public use. It can be executed as a

standalone program, or through two separate web applications—Prohits (Liu et al., 2010) and the CRAPome

(Mellacheruvu et al., 2013). CompPASS provides a public web interface to search its data, but no option to

employ the algorithm on private data sets. Aside from APMS scoring methods, numerous web applications

are available for de novo protein-protein interaction prediction (Franceschini et al., 2013; McDowall et al.,

2009). These methods do not incorporate new APMS data, and therefore provide an insufficient resource for

researchers wishing to integrate their own experiments into the predictions.

Given the independent successes of using direct and indirect data to predict protein-protein interactions,

I enhanced HGSCore, CompPASS, and SAINT by incorporating a variety of indirect data using logistic

regression classification models to identify genuine interactions from human APMS experiments. To foster

its use within the proteomics community, I developed Spotlite, a web application for executing both the

enhanced and original APMS scoring methods on novel data sets. In addition to providing an integrated

scoring tool, the resulting protein interactions are annotated for function, model organism phenotype and

human disease relevance.

6.2 Methods

6.2.1 Data collection

To develop a classification strategy capable of efficiently segregating false positive protein inter-

actions from true interactions within APMS-derived data, I collected five publicly available and well-

diversified APMS data sets (Table I). These data were received directly from the authors or from their

respective publications, whose sequencing parameters and filtering criteria are described in their meth-

ods. The data contained spectral counts, baits, and preys for each experiment. For the purposes of es-

tablishing a classifier, I defined known protein-protein interactions as those deposited in iRefWeb (Turner

et al., 2010) (http://wodaklab.org/iRefWeb/ Release 4.1), physical interactions from BioGRID

(http://thebiogrid.org/ Release 3.2.105), and the HI-2012 Human Interactome project’s two-

hybrid data from the Center for Cancer Systems Biology at the Dana-Farber Cancer Institute (http:

//interactome.dfci.harvard.edu/) (Rolland et al., 2014).
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Protein AA sequences and cross database accession mappings were downloaded from IPI (Kersey et al.,

2004) (http://www.ebi.ac.uk/IPI/ final releases) and UniProt/SwissProt (UniProt Consortium,

2012) (http://www.uniprot.org/ Release 09/2013). Protein domains were determined with Pfam-

Scan (Punta et al., 2012) (http://pfam.sanger.ac.uk/ Release 26.0) using an e-value threshold of

0.05. Entrez Gene IDs, official symbols, aliases, and gene types were extracted from NCBI Gene’s FTP site,

http://www.ncbi.nlm.nih.gov/gene (gene history.gz and gene info.gz - downloaded 10/05/13).

Gene homolog data was downloaded from NCBI’s Homologene (http://www.ncbi.nlm.nih.

gov/homologene Build 66). Pearson correlation coefficients for co-expression data were downloaded

from COXPRESdb (Obayashi and Kinoshita, 2011) (http://coxpresdb.jp/) for Homo sapiens (ver-

sion c4.1), Mus musculus (version c3.1), Caenorhabditis elegans (version c2.0), Gallus gallus (version c2.0)

Macaca mulatta (version c1.0), Rattus norvegicus (version c3.0), and Danio rerio (version c2.0). Ontology

hierarchies and annotations were downloaded on 10/05/13. The Gene Ontology supplied the biological

process and cellular component ontology hierarchies, where the annotations were downloaded from NCBI

Gene’s FTP site (Ashburner et al., 2000). The Mammalian Phenotype Ontology (relevant organism: Mus

Musculus) hierarchy and annotations were downloaded from Mouse Genome Informatics (Smith and Ep-

pig, 2009) (http://www.informatics.jax.org/). The Human Phenotype Ontology’s hierarchy

and annotations were downloaded from www.humanphenotype-ontology.org (Robinson et al.,

2008). The Disease Ontology annotations were taken from its associated publication’s supplemental data

(http://projects.bioinformatics.northwestern.edu/do_rif/) and the hierarchy from

the OBO Foundry (Osborne et al., 2009) (http://obofoundry.org/).

6.2.2 Feature calculation

For classification, all putative APMS-derived protein-protein interactions were characterized by one

APMS scoring method feature and several indirect features. The APMS feature is the negative natural log

p-value of either the HGSCore, CompPASS WD-score, or SAINT probability. The HGSCore is capable

of testing matrix model interactions, however, for implementation within Spotlite, I restricted it to spoke

model interactions for consistency with the other methods and computational efficiency. SAINT scores

were computed using the spectral count version of SAINTexpress (Teo et al., 2014) version 3.1. I modified

this version to output the full precision of probability calculations, as opposed to the default 2 digits. Only

the TIP49 and HDAC data sets were applicable, as the SAINTexpress model requires control experiments.
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The number of virtual controls and replicates were set to the number of controls and maximum number of

replicates for each data set. For CompPASS, in cases where both proteins of a candidate interaction were

tested as baits, the smaller p-value was chosen.

Listing 6.1: Pseudo code for permuting an APMS dataset
input : mean prey per exp, mean TSC per exp, bait TSC, prey2TSC

a vector of length p, exp2bait a vector of length e
output: e × p matrix representing spectral counts of a permuted dataset.

permuted dataset = new e × p matrix;
// Ensure each prey has at least one experiment

for prey = 1 to p do
exp = random integer from 1 to e;
permuted dataset[exp, prey] = 1;
prey2TSC[prey] -= 1;

// Fill each experiment with prey

for exp = 1 to e do
for i = 1 to mean prey per exp do

prey = sample without replacement from prey2TSC, excluding
prey already in experiment exp;

permuted dataset[exp, prey] = 1;

// Fill each experiment with spectral counts

for exp = 1 to e do
for i = 1 to mean TSC per exp do

prey = sample without replacement from prey2TSC, including
only prey already in experiment exp;

permuted dataset[exp, prey] += 1;

// Distribute bait spectral counts

for i = 1 to bait TSC do
exp = random integer from 1 to e, excluding experiments that were
controls;

bait = exp2bait[exp];
permuted dataset[exp, bait] += 1;

Sampling without replacement decrements prey2TSC to a minimum of 1 to ensure sampling
is never performed on an empty set

The p-values for APMS scores in each data set were computed by generating simulated data sets via

permutation of spectral counts and protein identifications (Listing 6.1) and is similar to a previously described

approach (Sowa et al., 2009). First, each prey protein was represented by its total spectral count (TSC) in

the original data set, excluding instances where it was the bait. Simulated experiments were generated by

randomly sampling without replacement from this weighted set of prey until each experiment contained

the average number of proteins per experiment of the original data set. Sampling without replacement then

continued until each experiment had a TSC equal to the average experiment TSC (excluding the bait) of
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Figure 6.1: Distributions of SAINT, HGSCore, and CompPASS scores on data sets having different numbers
of replicates per bait experiment (TIP49 and Complexome). SAINT was not tested on the Complexome data
set because it did not contain the necessary control experiments.
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Figure 6.2: ROC curves of SAINT and CompPASS p-values and scores on data sets having different numbers
of replicates per bait experiment (TIP49 and Complexome). SAINT was not tested on the Complexome data
set because it did not contain the necessary control experiments.

the original data set. Finally, experiments were randomly sampled and given one bait spectral count at a

time until the TSC of all baits in the simulated data set equaled that of the original. Replicate and control

experiments went through the identical process, except controls were not given bait spectral counts. For the

HGSCore, the simulated data sets were generated until the number of simulated interactions was 200 times

the number of unique interactions in the original data set. However, for CompPASS and SAINT, since the

distribution of scores depends on the number of replicates for a particular bait (Figure 6.1), the simulations

were continued until the number of simulated interactions for each replicate number was equal to 200 times

the number of total unique interactions in the original data set. Sorting interactions based on these conditional

p-values had a slight increase in classification accuracy compared to raw scores on data sets with variable

number of replicates (Figure 6.2).

In addition to these direct APMS-dependent features, indirect characteristics of a putative protein-protein

interaction were also included. The correlation between mRNA expression patterns of two genes was

quantified using the Pearson correlation coefficient (PCC). In total, seven co-expression features—one for

each species discussed in Data Collection—were added to the classification model. The human feature is

the PCC for the pair of human genes to be classified. There often exist multiple homologs of a gene within
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a different species; therefore the co-expression features for genes i and j, in non-human species k, were

defined as the maximum PCC among the set of homolog pairs for that species, Hijk:

Coexijk = max(PCCmn);m,n ∈ Hijk (6.1)

A separate feature was used for each of the five ontologies: biological process, cellular component,

mouse mutant phenotype, human mutant phenotype, and human disease. Semantic similarity scores were

utilized to determine how similar two gene’s sets of annotations were to each other. I computed semantic

similarity scores using the SimGIC method with downward random walks (Yang et al., 2012; Pesquita et al.,

2008). Genes with zero annotations were assigned the root annotation for the corresponding ontology.

I used the Maximum Likelihood Estimation (Deng et al., 2002) method to calculate the probability of

each potential domain-domain interaction. This required all interactions for Homo sapiens determined via an

experimental method testing for direct interactions—two-hybrid, FRET, co-crystal structure, protein-peptide,

and reconstituted complex. During cross-validation, interactions present in the APMS data sets were excluded

to avoid training a feature on data I would later test against. A single protein AA sequence was used for each

gene, with preference given to the longest UniProt/SwissProt sequence, followed by the longest IPI sequence.

A false positive rate of 0.00063 and a false negative rate of 0.7 were used, which are required parameters, and

were calculated in the same manner as previously described—assuming 130,000 total direct protein-protein

interactions in the human interactome as was previously estimated (Venkatesan et al., 2009). The feature

score was the probability of a protein pair interacting and is equal to the probability of at least one of their

domains interacting. Computations were performed using the method’s original software.

The final feature used was based on database interactions among the homologs of the two proteins in

question. It is more likely a pair of proteins will physically interact if their homologs interact, however the

extent to which these homolog interactions predict the human interactions depends on a number of factors

such as the evolutionary distance of the homolog and the reliability of experimental systems used to determine

the interaction. A naı̈ve Bayes model was trained to determine the probability of a human database interaction

given the presence or absence of homolog interactions using specific experimental systems. Specifically, I

calculated:
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Pr(C | F1, . . . , FN ) ∝ Pr(C) ·
N∏
i=1

Pr(Fi | C) (6.2)

C =


1 co-complexed protein pair

0 otherwise
(6.3)

Fi =


1 co-complexed homolog pair using experimental system i

0 otherwise
(6.4)

The model probabilities were estimated from all human protein pairs, except during cross-validation

where the test interactions were excluded from training this feature. The prior probability, P (C), is equal to

the percentage of all possible protein pairs that are annotated to be co-complexed interactions. Though ideally

this would be replaced with an estimation of the true percentage, the predicted number of co-complexed

interactions—unlike the predicted number of direct interactions—is an open problem. Fortunately, the true

probability of an interaction given homologous interactions is not necessary for our machine learning classifier,

but rather a proportional likelihood relative to other proteins. The model did not include evolutionary distance

due to very small samples for many combinations of species and experimental systems.

6.2.3 Missing data imputation

Co-expression features are subject to missing values due to lack of microarray probes, and unknown

homologs among the various species. Since the chosen species’ co-expression patterns are strongly correlated

(Obayashi and Kinoshita, 2011), missing values for a specific gene pair were imputed from its available

co-expression values. Specifically, a linear regression model was calculated using each species’ co-expression

values as the response variable and every combination of remaining species’ co-expression values as explana-

tory variables. With seven species, this corresponded to 5,040 models. When imputing a missing value, the

model with the best R2 using available data was applied. If no co-expression values were available for a gene

pair, then pre-imputed feature averages were used.
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6.2.4 Training data set construction

To segregate false positive protein interactions from true interactions, I trained and tested a two-layer

classifier using a supervised learning approach on a subset of the human interactome and five APMS data sets.

The first layer was a model for non-APMS features, and was trained on a data set comprising all database

interactions as the positive class, while the negative class was a sampled subset of all unknown interactions

equaling 20 times the size of the positive set. The negative set is commonly constructed in this manner

because a very small percentage of all possible protein pairs are believed to physically interact, and therefore

a random sample of all unknown interactions is expected to have few false negatives (Qiu and Noble, 2008;

Qi et al., 2006; Jain and Bader, 2010; Ben-Hur and Noble, 2005; Koike and Takagi, 2004). Interactions

present in any of the APMS data sets were excluded. The second layer was trained on the probability output

of the first layer and the APMS scores of five published human APMS data sets. Each data set was scored

with the three APMS scoring approaches—except for SAINT, which was only used on the data sets with

controls, TIP49 and HDAC—resulting in five training data sets for each HGSCore and CompPASS, and

two for SAINT. When used for training the model, each APMS data set was appended with all unobserved

known and unknown interactions with its corresponding baits and given an APMS score of 0. Conversely,

when used for testing, only observed interactions were included. Database interactions in the APMS data

sets represented by a single publication employing either CompPASS, HGSCore, or SAINT were treated as

unknown, as this would create a bias towards one of the methods.

6.2.5 Model training and evaluation

I approached the probabilistic scoring of APMS protein-protein interactions as a binary classification

problem in which the two classes are: 1) pairs of proteins that directly or indirectly form a complex together

(positive class), and 2) pairs of proteins that are never members of the same complex (negative class). In order

to enhance each of the popular APMS scoring methods—HGSCore, CompPASS, and SAINT—a separate

model was trained for each of the three, using that particular method as one of the features for the second layer

of the classification model. For the first layer, three classification algorithms were evaluated—Random Forest,

logistic regression, and SVM. For the second layer, logistic regression was used to combine the predictions of

the first layer and one of the APMS scores. For cross-validation, the model of the first layer was trained, then

each APMS data set was tested with the second layer classifier trained on the remaining data sets that used
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the same APMS scoring approach. Some overlap was present among data sets; therefore interactions present

in the data set being tested were removed from the training set, avoiding the mistake of testing on trained

data. The metric for success was the area under the partial receiver operating characteristic (ROC) curve, up

to a false positive rate of 10%, as this region encapsulates the likely interval in which a 5% FDR threshold

would lie. For SVM and logistic regression, each feature was centered and standardized by subtracting

the feature mean and dividing by the feature standard deviation of all possible protein-protein interactions.

For Random Forests—which are unable to extrapolate beyond the range of their training data—features

were scaled to have the same range between each data set. Support vector machines were trained using

either a linear or Gaussian kernel with no feature interactions. A grid-based search determined optimal

cost parameters. Logistic regression was also performed without feature interactions. The Random Forest

classifier was trained with 300 decision trees and splitting from a subset of four randomly selected features

at each node. Ultimately, a linear kernel SVM and logistic regression were the best performing algorithms

for the first layer model on these data, and logistic regression was chosen for its faster calculation speed.

Features deemed insignificant by logistic regression were removed from the model and were comprised of the

semantic similarity scores for human disease, human mutant phenotype, and mouse mutant phenotype. Many

true interactions exist in our set of negative APMS interactions, resulting in a diminished estimate of true

interaction prevalence, and therefore an inaccurate estimate of the logistic regression’s intercept parameter,

β0. To correct for this, let β̂0 be the original intercept, π be the training data set’s ratio of known to unknown

interactions, and π̂ be the expected ratio, estimated by accepting interactions with a 5% false discovery rate

based on the model’s APMS method. The second layer’s intercept was then adjusted using the following

equation:

β∗0 = β̂0 + log
( π

1− π
)
− log

( π̂

1− π̂
)

(6.5)

6.2.6 False discovery rate calculation

I currently compute false discovery rates (FDR) for only the APMS scoring algorithm used. First,

p-values are calculated for each interaction’s two scores by comparing them to their corresponding empirical

null distributions determined via the previously mentioned simulation method. The p-value for a particular
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Table 6.1: Public dataset statistics

Dataset AP/IP Method Experiments Baits Controls Distinct Interactions Mean Clustering
Coefficienta

Complexome Antibody 3,268 1,082 0 253,598 0.1226
DUB HA 201 101 0 36,066 0.1290
AIN HA 127 64 0 19,676 0.2013
TIP49 FLAG 35 27 9b 5,412 0.3333
HDAC EGFP 30 10 7 10,175 0.2523
a Computed using a protein-protein interaction network comprised of only bait nodes, and edges between them

derived from BioGRID using experiments testing direct interactions - reconstituted complex, co-crystal structure,
protein-peptide, FRET, and two-hybrid.

b Merged from 27 initial control experiments.

score is then equal to 1 plus the number of simulated scores greater than or equal to that score, divided

by 1 plus the number of simulated scores. The adjustment by a pseudo count of 1 is necessary because

the null distributions were not generated by an exhaustive permutation method (Phipson and Smyth, 2010).

Finally, with all p-values calculated, the FDR is controlled by the Benjamini-Hochberg method (Benjamini

and Hochberg, 1995). FDRs for the Spotlite classifiers will be the subject of future work.

6.2.7 FLAG affinity purification and western blot analyses

For FLAG affinity purification, HEK293T cells were lysed in 0.1% NP-40 lysis buffer (10% glycerol,

50mM HEPES, 150 mM NaCl, 2mM EDTA, 0.1% NP-40) containing protease inhibitor mixture (1861278,

Thermo Scientific, Waltham, MA) and phosphatase inhibitor (78427, Thermo Scientific, Waltham, MA). Cell

lysates were cleared by centrifugation and incubated with FLAG resin (F2426, Sigma-Aldrich Corporation,

St. Louis, MO) before washing with lysis buffer and eluting with NuPAGE loading buffer (Life Technologies,

Carlsbad, CA). Detection of proteins by Western blot was performed using the following antibodies: anti-

FLAG M2 monoclonal (Sigma-Aldrich Corporation, St. Louis, MO), anti-MAD2L1 (A300-301A, Bethyl

Labs, Montgomery, TX), anti- MCM3 (A300-192A, Bethyl Labs, Montgomery, TX), anti-SLK (A300-499A,

Bethyl Labs, Montgomery, TX), anti-actin polyclonal (A2066, SigmaAldrich Corporation, St. Louis, MO),

anti-KEAP1 polyclonal (ProteinTech. Chicago, IL), anti-DPP3 polyclonal (97437, Abcam, Cambridge, MA),

and anti-VSV polyclonal (A190-131A, Bethyl Labs, Montgomery, TX)
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6.3 Results and discussion

6.3.1 Comparisons to existing methods on public data

Existing spectral count-based APMS scoring methods demonstrate a high level of accuracy in predicting

protein complex co-membership, thus making them appealing features for classification. I analyzed their

performance on five data sets describing protein complexes associated with unique biological functions

deubiquitination (DUB) (Sowa et al., 2009), autophagy (AIN) (Behrends et al., 2010), chromatin remodeling

(TIP49) (Sardiu et al., 2008), histone modification (HDAC) (Joshi et al., 2013), and transcriptional regulation

(Complexome) (Malovannaya et al., 2011) (Table 6.3.1). These data sets range extensively in their number of

experiments, interaction network connectivity and purification technique, resulting in a diverse training set

capable of testing the generalizability of APMS methods and our classifier. A direct comparison of three

popular and fundamentally distinct scoring algorithms-HGSCore, CompPASS, SAINT-revealed overlapping

and complementary prediction accuracies (Figure 6.3). Specifically, the three methods were applied separately

to each data set, and the top 5% of interactions were accepted as a good and consistent point estimate of a

5% FDR. Although some methods performed better than others, each approach was capable of identifying

known protein-protein interactions disjoint from the remaining two. That said, the intersection of the three

data sets showed strong enrichment for validated protein interactions. Interestingly, despite the high overlap

among known interactions (mean Jaccard coefficient of 0.512), there was large disagreement among the

yet-to-be determined interactions (mean Jaccard coefficient of 0.206). As expected, no single method

identified all of the previously annotated protein interactions. Each has their own scenarios where they are

more appropriate to use than the other. The HGSCore, for example, performs poorly on small data sets

such as HDAC (Figure 6.4) and as discussed in the method’s original paper. SAINT is limited to data sets

with appropriate and comprehensive controls, and CompPASS can have difficulty with data sets comprising

of highly interconnected baits such as TIP49 (Figure 6.4). Therefore, I chose to improve each method

individually through integration with indirect data to broaden and strengthen the confidence of selected

interactions, and to allow users to choose the most suitable APMS method for their data set.

To further improve upon interaction predictions, I chose to include data outside of APMS that had

previously been shown to correlate with co-complexed proteins. These indirect sources of evidence were

mRNA co-expression patterns among seven species, GO annotation similarity, phenotypic similarity, domain-
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Figure 6.3: Comparison of accepted interactions using various APMS scoring methods. Overlaps of the top
5% of interactions for each APMS scoring method are shown for each data set. Areas are approximately
proportional to the total number of interactions within their respective subsets.
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Figure 6.4: Classifier cross-validation and comparison. Receiver operating characteristic curves for each data
set. Each scoring method’s partial area under the curve is displayed in the graph insets.
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domain binding affinities, and homologous interactions. Each was encoded into a feature, and along with

the APMS scoring methods, describe a putative pair of interacting proteins. Then, using a two-layer logistic

regression classifier, these interactions were predicted to be genuine based on the values of their corresponding

features.

In order to benchmark these Spotlite classifiers against the standalone APMS scoring methods, I

performed a variation of cross-validation by training our classifier on each combination of data sets, excluding

one, and then testing on the remaining data set (Figure 6.4). Spotlite versions consistently outperformed

their corresponding APMS only methods based on ROC curve analysis and partial AUC, which demonstrates

greater sensitivity and specificity toward previously determined interactions. These data also demonstrate that

the discriminatory patterns learned from each data set were generally applicable, as classification accuracy

was superior across all cross-validation instances. Mutant phenotype and disease similarity were not selected

as significantly discriminating features and were excluded from the model, but remain in the database for

annotation purposes. To generate our final classifier for use in the Spotlite web application, all data sets were

used for training. Table 6.3.1 shows each feature’s coverage within the Spotlite database and its logistic

regression log-odds coefficients. As expected, the APMS features were the most important features used for

distinguishing between known and false or unknown co-complexed proteins.

6.3.2 Spotlite web application

Spotlite has been made available to the research community through a user-friendly web application that

follows a simple workflow (Figure 6.5). Users may upload a tab-delimited file containing each experiment,

its bait, prey, and each prey’s spectral count. Next, identifier mapping is performed to determine the NCBI

entrez gene id of the protein’s gene. APMS scores are then calculated, as well as their corresponding p-values

by determining the empirical null distribution via permutations of the original data set. Next, the indirect

feature data, which has been pre-computed for every potential pair of genes, is retrieved from the database.

Unmapped proteins, which have no retrievable indirect data, use raw feature averages to avoid bias towards

predicting either true or false interactions. Finally, the data are scored by the logistic regression classifier.

The false discovery rates are calculated and users can then explore and visualize their results through the

website or export them to a spreadsheet. Users can choose whether use to the logistic regression classifier,

or only the APMS methods. This is particularly useful for data sets that are not entirely of human origin
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Table 6.2: Feature importances for logistic regression classifiers

Log-odds coefficientsd

Feature Typea Database
Coverageb

Training
Coveragec

First Layer
Model

HGSCore CompPASS SAINT

-ln(HGSCore p-value) Direct 11.79% 100.00% - 0.506 - -
-ln(CompPASS p-value) Direct 11.79% 100.00% - 0.348 - -
-ln(SAINT p-value) Direct 11.79% 100.00% - - - 0.496
Non-APMS model - - - - 0.230 0.230 0.197
Intercept - - - -2.699 -2.371 -2.370 -2.680
Domain-domain binding
affinity

Sequence 70.32% 88.33% 2.693 - - -

Homologous interactions Sequence 85.86% 99.53% 0.585 - - -
Cellular localization GO Functional 61.69% 86.02% 0.324 - - -
Chicken co-expression Expression 29.90% 41.21% 0.266 - - -
Mouse co-expression Expression 53.91% 66.68% 0.210 - - -
Biological process GO Functional 48.66% 84.33% 0.178 - - -
Human co-expression Expression 70.42% 82.04% 0.153 - - -
Monkey co-expression Expression 33.93% 39.33% 0.091 - - -
Fish co-expression Expression 8.51% 15.63% 0.065 - - -
Rat co-expression Expression 33.49% 45.45% 0.022 - - -
Worm co-expression Expression 2.73% 5.23% 0.015 - - -
a Classification of the type of evidence a feature represents with respect to co-complexed proteins.
b Percentage of all potentially co-complexed pairs of genes within the Spotlite database containing values for a feature.

APMS score coverages represent the percentage of bait-prey interactions tested, including preys with 0 spectra.
Ontology coverages computed by taking the percentage of gene pairs in which both genes have at least 1 annotation.
Homologous interactions coverage - both genes must have a known homolog in the same species. Domain-domain
binding affinity coverage - both genes must contain a known domain.

c Coverages calculated identically to b - restricted to the training dataset.
d Coefficients are for scaled and centered features in the first layer model, and raw features in the second layers.
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Figure 6.5: Schematic of Spotlite workflow. Users perform parameter selection and supply input APMS data.
Spotlite parses and scores the candidate protein-protein interactions. Options for visualization and data export
are available through the user interface. The grey box represents the two-layer logistic regression classifier.

and therefore do not have indirect features contained within the Spotlite database. To maintain privacy, all

uploaded APMS data and results are deleted after 24 hours of upload, or destroyed on command by the user.

6.3.3 Spotlite analysis of KEAP1 APMS data

To demonstrate its utility, performance, and ease in identifying true interacting proteins from APMS

data, our previously published data on the KEAP1 E3 ubiquitin ligase affinity purified from HEK293T cells

was re-analyzed (Hast et al., 2013). Specifically, cells engineered to stably express FLAG-tagged KEAP1

were detergent solubilized and subjected to FLAG affinity purification and shotgun mass spectrometry. Using

biological triplicate KEAP1 APMS experiments and a reference set of an additional 44 FLAG purifications

performed on 21 different baits, the KEAP1 protein interaction network was scored and visualized with
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(B) FLAG affinity purified protein complexes from HEK293T cells stably expressing FLAG-GFP or FLAG-
KEAP1 were analyzed by Western blot for the indicated endogenously expressed proteins.

Spotlite. The unfiltered KEAP1 data set contained 1,010 prey proteins, of which 32 were annotated as

being previously identified as KEAP1 interactors (Figure 6.6A). After application of Spotlite-CompPASS

and a global 5% FDR threshold based on CompPASS scores, the network reduced to 34 proteins. The

same number of proteins were accepted for the Spotlite-CompPASS classifier, of which 16 were database

interactions and 18 were putative novel interactors. Next, I selected seven KEAP1 interacting proteins that

passed Spotlite thresholding for further validation by immunoprecipitation and Western blot analysis: MCM3,

DPP3, SLK, MCC, MCMBP, MAD2L1, SQSTM1. All seven endogenously expressed proteins co-purified

with FLAG-tagged KEAP1 (Figure 6.6B).

In addition to providing the logistic regression classification score, the Spotlite web application lists

the following individual features for each protein pair: HGSCore, CompPASS, SAINT, gene ontologies for

biological process (BP) and cellular component (CC), gene co-expression for seven species (CXP), domain-

domain binding score (Domain), homologous interactions (Homo int), shared mutant mouse phenotypes

(Phen), shared human diseases (Disease) and whether the proteins have previously been shown to interact

(DB). As an example, Spotlite’s visualization for the KEAP1-MAD2L1 interaction is provided in Figure

6.7. Both proteins affect growth and size in mice, specifically postnatal growth retardation with KEAP1 and
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Figure 6.7: Screenshots of Spotlite visualization for KEAP1-MAD2L1 data. Column headers on the main
results screen are the following: Spotlite score (Classifier), APMS score (HGSCore, CompPASS, SAINT),
gene ontologies for biological process (BP) and cellular component (CC), gene co-expression for seven
species (CXP), domain-domain binding score (Domain), naı̈ve Bayes’ homologous interaction classifier
(Homo int), shared phenotypes (phen), shared human diseases (Disease) and whether the proteins have
previously been shown to interact (DB; H=high throughput, L=low throughput). Transparency is provided
through a series of user-triggered pop-up windows which details the information used to generate the Spotlite
feature scores.

decreased embryo size with MAD2L1. Additionally, both proteins are encoded by mRNAs, which positively

correlate across human tissues, and both proteins are strongly associated with oncogenesis.

6.4 Conclusion

Protein mass spectrometry is quickly becoming a staple technology in academic laboratories. The rapidly

decreasing instrumentation costs, often pre-packaged and streamlined bioinformatic pipelines, and enhanced

mass accuracy and scan speeds are no doubt driving the recent explosion of protein mass spectrometry data.

With similar advances in two-hybrid technologies, it is now economically feasible to pursue, and in fact
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achieve a fairly comprehensive proteome-wide binary interaction network. A key step in this endeavor is the

computational filtering of spurious interactions within the resulting data sets.

After performing hundreds of APMS experiments directed at mapping protein connectivity central to

various signal transduction pathways, the Ben Major lab and others quickly found the high rate of false-

positive identification rate limiting and exceedingly expensive. Appreciating the need for an accessible and

accurate APMS scoring algorithm, I developed Spotlite as a new computational tool capable of discriminating

between true interactions and the contaminants within APMS data. Importantly, Spotlite was deployed

through a web-based application that provides open access and transparency to any interested scientist. The

implementation of popular APMS scoring methods provides researchers the ability to use the most appropriate

method for their particular data set. Inclusion of indirect data as features within Spotlite’s logistic regression

model not only achieves increased prediction accuracy but also yields valuable information regarding shared

biological function, phenotype and disease relationships among protein pairs.

Given the success of established scoring approaches employed by CompPASS, HGSCore and SAINT, I

initially set out to define their relative performance on various APMS data sets, and by doing so to identify the

most accurate approach for implementation within a classification scheme. However, our analyses revealed

valuable complementarity between the algorithms, which appeared partially dependent upon the network

architecture and size of the analyzed APMS data set, as well as the presence of control experiments. As

such, the greatest success was found by providing a separate classification model for HGSCore, CompPASS,

and SAINT—allowing the user to choose the most appropriate method for their data set. Though Spotlite’s

performance shows a marked improvement over existing methods, its success is governed by the small

number of known protein interactions (positive data set), the lack of validated non-interactions (negative

data set), and mislabeled instances used during training. Furthermore, many indirect features lacked high

coverage, resulting in missing values. While these limitations may place a ceiling on current performance,

data will continue to pour in and fill the gaps. Spotlite is expected to improve over time due to increased

feature coverage, and re-training of the classifiers as larger and more comprehensive interaction networks

become available.

A critical aspect of any supervised learning approach is the selection of a gold standard data set containing

accurately labeled examples that are representative of the future data to be classified. While many protein-

protein interactions are annotated, proteins known not to interact are rare—the Negatome being the sole

available resource and of prohibitively small size (Smialowski et al., 2010). The common practice of treating
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all unknown interactions as false interactions leads to an issue when evaluating the performance of a classifier

by ROC curves, because they require accurate knowledge of the ground truth. Though the number of true

negatives in the training data sets is expected to greatly exceed the number of false negatives, the number

of true positives is likely less than the number of false negatives--as there are many novel interactions still

to discover. As I have shown, it is possible to train different classifiers that agree on the already known

interactions-resulting in similar ROC curves-but with extremely different predictions for novel interactions.

In this case it would be difficult to objectively decide which classifier had superior classification accuracy. An

expensive and time-consuming solution would be to update the ROC curves after attempting low-throughput

validation of many of the predictions. It would instead be desirable for the research community to generate

several well-annotated interaction networks with extremely high accuracy and coverage.

Spotlite currently includes APMS scoring algorithms designed for spectral counting data; however, with

the recent accessibility of high-resolution mass spectrometry and its accompanying software, scientists are

transitioning to protein quantification based on peptide signal intensity for its superior limits of quantification

and linearity. Accordingly, APMS computational methods will also need to support these in the future—

as SAINT-MS1 has already accomplished, and Spotlite will as well. Additionally, labeled experiments

comparing bait and control purifications within the same sample using SILAC, iTRAQ, or TMT tags are

common, but still lack dedicated software for interaction prediction.

Presently, Spotlite classification using indirect features is only available for human APMS data; however,

HGSCore, CompPASS, and SAINT themselves can still be used on any data set through the web application.

Aside from integrating other species’ indirect data using the current workflow, I envision the possibility of

using APMS from multiple species to improve predictions through homologous interactions, which is already

a powerful feature in our implementation. Along these lines, merging data sets from various laboratories has

the potential to further increase accuracy. While this is currently possible with Spotlite, it should be done

with great care as contaminants will vary due to differences in cell lines, mass spectrometers and protocols,

leading to improperly high APMS feature values for mutually exclusive contaminants which now appear

more unique. This combined analysis of data sets is an area of future research. A further limitation is that

FDRs are based on the APMS scores instead of the Spotlite classifiers. Machine learning classifiers often use

cross-validation to determine a threshold that achieves desired levels of specificity and sensitivity, however

this would be far from accurate due to the community’s limited knowledge of the true positives. Instead, it is

recommended to accept the same number of interactions as the chosen APMS method would at the desired
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FDR. This approach is expected to be conservative as the Spotlite classifiers have superior ROC curves. In

the future, determining the empirical null distribution of the classifier scores will allow for controlling the

FDR directly on the classifier scores.

A major focus of the Major lab’s research is on the development of proteomic and functional genomic

technologies to define the mechanics and disease contribution of the KEAP1. The KEAP1 protein functions

as a CUL3-based E3 ubiquitin ligase, most well-known for its ubiquitination of the NFE2L2 transcription

factor (Cullinan et al., 2004; Furukawa and Xiong, 2005; Zhang et al., 2004). Recently, somatic inactivating

mutations in KEAP1 have been reported in a variety of solid human tumors, particularly in lung cancer

(Padmanabhan et al., 2006; Singh et al., 2006; Ohta et al., 2008; Satoh et al., 2010; Solis et al., 2010; Takahashi

et al., 2010; Konstantinopoulos et al., 2011; Li et al., 2011; Muscarella et al., 2011). The leading model

posits that KEAP1 inactivation results in constitutive NFE2L2 transcriptional activation of antioxidant and

pro-survival genes (Sykiotis and Bohmann, 2010; Ogura et al., 2010). APMS analysis of KEAP1 followed by

Spotlite scoring and a 5% FDR filter revealed 34 associated proteins. Of the eight proteins validated to reside

within KEAP1 protein complexes by IP/Western blot, the indirect data as visualized through the Spotlite

web application drew attention to the KEAP1-MAD2L1 protein association. Specifically, the MAD2L1

protein is known to function pivotally within the spindle assembly checkpoint complex, which holds cells in

metaphase until chromosome-spindle attachment is complete (Hoyt et al., 1991; Li and Murray, 1991). Like

KEAP1, MAD2L1 is strongly associated with cancer; its over-expression drives chromosomal instability

and aneuploidy (Sotillo et al., 2007; Schvartzman et al., 2011). MAD2L2 is also known to be ubiquitinated,

although the E3 ubiquitin ligase is unknown (Osmundson et al., 2008; Kim et al., 2011). An intriguing

possibility is that KEAP1 ubiquitinates MAD2L1 to control its activity and/or stability. Within cancer

systems, somatic mutation of KEAP1 may coincide with elevated MAD2L1 activity, thus driving aneuploidy.

In conclusion, I have provided a user-friendly web application for predicting complex co-membership

from APMS data. This web application employs a novel, logistic regression classifier that integrates existing,

proven APMS scoring approaches, gene co-expression patterns, functional annotations, protein domains, and

homologous interactions, which I have shown outperforms existing APMS scoring methods.
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CHAPTER 7: CONCLUSION

The main objective of this dissertation work was to improve mass spectrometry (MS)-based proteomics

through computational techniques. This objective was accomplished at three levels: 1) low-level signal

analysis through pattern recognition of isotopic distributions, 2) instrument operation via the development

of simulation software to evaluate novel data acquisition algorithms, and 3) post-processing data analysis

through the creation of a machine learning classifier to predict protein-protein interactions from affinity

purification-mass spectrometry (APMS) experiments.

7.1 Summary of results

In the following subsections, the major results of Chapters 3-6 are described.

7.1.1 Isotope distributions

The isotope distribution of a molecule is a fundamental characteristic that contains a wealth of information.

The isotopic distribution is one of the few features measured by MS whose patterns can be accurately predicted.

For fragment molecules, these patterns have been largely ignored or used inappropriately because the correct

mathematical equations have not been available. I derived the equation to compute theoretical isotope

distributions of fragment biomolecules in Section 3.2.1. On its own, this equation is of limited utility because

it requires a priori knowledge of a molecule’s elemental composition. However, I used this equation as

the basis for two approximation methods developed in Sections 3.2.3 and 3.2.4. One of these outlined

methods uses splines that were fit to the isotope probabilities of in silico generated peptides. The splines

approximate isotope distributions 20x faster compared to the classic approximation approach which relies on

the fast-Fourier transform. Importantly, the spline approach is equivalently accurate when compared to the

fast-Fourier method.

I evaluated the methods to calculate fragment isotope distributions in three stages: 1) comprehensive in

silico comparisons to theoretical peptides, 2) low-throughput experiments on a well-characterized peptide, and
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3) in high-throughput using a typical MS-proteomics workflow on a whole-cell lysate. The approximations

derived from the described algorithms matched the observed fragment isotopic distributions.

To facilitate utilization by the greater MS community, I contributed both methods for calculating

theoretical and approximate isotope distributions to the OpenMS software library. Novel tools can now be

implemented for tasks such as MS2 de-isotoping and chimeric spectra deconvolution. Additionally, the

expected isotopic distributions can be integrated into the scoring approaches used by sequencing algorithms,

which currently only reward monoisotopic fragments.

7.1.2 Chimeric spectra deconvolution

Chimeric mass spectra contain fragments from multiple distinct peptides and are therefore difficult

for sequencing algorithms to assign matches for. I developed a method to deconvolve the spectra into

separate components for each peptide in Chapter 4. I treated an observed spectrum as a linear combination of

possible fragment isotopic distributions. Using the the CVX MATLAB package, I then created and solved

a non-negative least squares model (NNLS) regularized with a sparse group lasso, and created individual

spectrum for each peptide. The resultant single-peptide spectra are compatible with any sequencing algorithm.

This algorithm describes the first application of approximate fragment isotope distributions in the literature.

To test and refine the NNLS model in a controlled setting, I created chimeric spectra by purposely co-

isolating and co-fragmenting two distinct peptides (angiotensin I and neurotensin). Following the successful

deconvolution of this two-peptide mixture, I tested a more complex peptide mixture. I obtained whole-cell

lysates from multiple laboratories and deconvolved them with the NNLS model. More peptide-spectrum-

matches, unique peptides, and unique proteins were identified following deconvolution. The smallest increases

were from an experiment that isolated detrimentally small ion populations during MS2 scans, which leads to

high variability in isotopic distributions, and fewer detected peaks. This suggests that it may be best to obtain

higher quality data rather than larger quantities of less-refined data.

Although the developed method was successful, opportunities for improvement remain. Parameter

optimization was performed on one data set, and these identical parameters were used for all other data

sets. Parameter optimization on each data set, or even on each spectrum, could provide even better results if

over-fitting can be avoided. Additionally, some peptides are difficult to deconvolve due to having similar

fragment isotopic distributions. In these cases, it may be better to not attempt deconvolution.
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7.1.3 Data acquisition simulation

Mass spectrometers require data acquisition strategies to perform sample analysis. Data-dependent and

data-independent acquisition are the most common approaches used, but many variations exist for each of

these strategies. Developing and testing novel strategies requires programmatic control of a mass spectrometer,

yet few manufacturers provide an application programming interface (API). The simulator I developed and

described in Chapter 5 is the first simulator designed for and capable of simulating custom data acquisition

methods. Separate simulation of data acquisition and ground truth generation allows different acquisition

strategies to be evaluated on identical data without re-generation of ground truth data. Furthermore, since

most ground truth data are only needed once per simulation, its storage on disk and on-demand memory

loading provides a low memory footprint. Pruning strategies effectively limit the number of peptides included

in the simulation by only including those likely to be detected. A case study showed that a simulated

TopN strategy, which targets the most intense peaks for fragmentation, results in similar peptide and protein

identifications as a real experiment that used TopN.

The next generation of acquisition algorithms will likely further integrate data generation with data

analysis, such as real-time peptide sequencing and protein inference. They may also become more goal-

oriented, seeking to identify subsets of proteins, specific modifications, or improved quantification. Though

simulations require many assumptions and cannot replace experimental validation, the acquisition simulator

will be a great tool for evaluating new methods prior to the laborious implementation on a mass spectrometer.

7.1.4 Protein-protein interaction prediction

A major application of MS-based proteomics is the high-throughput elucidation of protein-protein

interactions via APMS. The high rate of false-positive identifications have been recognized as problematic,

and the subsequent failures during low-throughput validation experiments are exceedingly expensive with

respect to both time and finances. Appreciating the need for an accessible and accurate APMS scoring

approach, I developed a new computational tool, Spotlite, capable of classifying candidate protein pairs as

bona fide interactions or contaminants. Importantly, I deployed Spotlite through a web-based application

that provides open access and transparency to any interested scientist. This web application employs novel

logistic regression classifiers that integrate existing, proven APMS scoring approaches, gene co-expression

patterns, protein domains, homologous interactions, and the semantic similarity of functional annotations.
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Spotlite outperforms existing APMS scoring methods by an average AUC of 16%. The implementation

and enhancement of popular APMS scoring approaches provides researchers the freedom to use the most

appropriate method for their particular study. Inclusion of orthologous data as features within Spotlite’s

logistic regression model not only increases prediction accuracy but also provides valuable information

regarding shared biological function, phenotypic, and disease-relevant relationships among protein pairs.

Since its publication, both the Major lab and other research laboratories have successfully identified bona fide

interactions using Spotlite.

Though cross-validation showed improved sensitivity and specificity over other scoring approaches,

Spotlite’s classification accuracy is limited by the training data set. The small number of known protein

interactions leads to a small positive data set, and the lack of validated non-interactions creates a negative

data set with mislabeled instances. Furthermore, many features lacked high coverage, which necessitated

error-prone missing value imputation. Spotlite is expected to continuously improve as increased feature

coverage and more accurate training data become available to re-train the classifiers.

7.2 Open questions and future work

The work presented in this dissertation lends itself to improvement, extension, and future projects. Here,

the possibilities are briefly discussed.

7.2.1 Isotope distributions

As described in Chapters 3 and 4, approximate fragment isotope distributions have multiple applications.

However, the work I described in this dissertation was limited to nominal isotope distributions. Nominal

isotope distributions assume that isotopes with the same nominal number of neutrons contribute to the same

m/z peak. While this is true for low- and high-resolution mass analyzers, ultra-high resolution mass analyzers

have recently been introduced. These instruments can distinguish between the same nominal isotopes of

different elements such as carbon, nitrogen, oxygen, and hydrogen. Due to differences in the nuclear energy

necessary to keep an atom nuclei intact, a slightly different amount of mass is converted to energy for

each isotope—element combination, resulting in slightly different masses. As a result, these fine isotope

distributions contain more information about a molecule’s elemental composition. The accuracy and utility

of approximate fine isotope distributions has not been evaluated thus far and is an avenue for future research.
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Additionally, the equations I developed for fragment isotope distributions are limited to fragments

resulting from a single round of isolation and fragmentation. These peaks are observed in MS2 scans.

However, modern instruments are capable of MS3 scans in which further rounds of isolation, fragmentation,

and mass analysis are performed on peaks found in an MS2 spectrum. These MS3 spectra have different

isotopic distributions whose theoretical equations have not yet been derived, though the distributions have the

same uses as described in Chapter 3.

Finally, the assumption that isolation efficiency is uniform within the bounds of an isolation window and

that nothing is isolated from outside of the window is not entirely accurate. In reality, isolation efficiency

depends on isolation width, the isolation m/z center, and the m/z position relative to the center of isolation

window. Modeling and compensating for this non-uniformity will improve the accuracy of fragment isotope

distribution predictions.

7.2.2 Dynamic isolation windows

Currently, isolation window parameters for MS2 scans are defined at the beginning of an experiment

and do not change over the course of the experiment. Ideally, the isolation window’s width and offset would

be adjusted in real time to meet user-defined objectives based on observed data. One potential objective is

to maximize isolation purity in order to avoid chimeric spectra; this can be thought of as a variation of the

maximum sub-array problem. However, as demonstrated in Chapter 4, chimeric spectra can be deconvolved

and sequenced when a different subset of isotopes are isolated for distinct peptides. Therefore, an alternative

strategy is to make deconvolution of chimeric spectra more effective. Isolation windows can be chosen that

maximize the difference between fragment isotope distributions belonging to different peptides by adjusting

which precursor isotopes were isolated. Furthermore, the isolation of only the monoisotopic peak can be

avoided, which is a problematic case for the NNLS model. Determining dynamic isolation windows requires

extremely fast computation due to the real-time constraints of operating on a mass spectrometer.

7.2.3 Chimeric spectra sequencing pipeline

Chimeric spectra deconvolution using fragment isotope distributions is not always possible. When

distinct peptides have nearly identical mass and the same isotopes are isolated, the isotopic distributions

will be indistinguishable. Unfortunately, this is a common occurrence in complex samples. For such cases,

iterations of sequence identification and subsequent subtraction of matching peaks allows multiple peptides to
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be identified from a single spectrum. This approach is completely independent of the deconvolution approach

using the NNLS model, and the two approaches can be integrated into a pipeline. Chimeric spectra can be

initially deconvolved using the NNLS model, followed by iterations of identification and subtraction. The

deconvolution step may even make the iterative steps more likely to succeed due to having fewer interfering

signals that result in lower sequence identification rates.

7.2.4 Data acquisition strategies

The dominant data acquisition strategy is to select the N most intense peaks observed in an MS1 scan for

isolation and fragmentation. It has been shown, however, that signal intensity is a poor predictor of successful

sequence identification. A better indicator is isolation purity. Instead of targeting the N most intense peaks

within an MS1 scan, a combination of intensity and purity can be used to prioritize the ions for fragmentation

and identification.

Furthermore, when the goal of an experiment is to maximize protein identifications, many peptides

provide redundant data. If a protein is already confidently identified, sequencing another peptide belonging

to that protein provides little information gain. Rather than prioritizing peptide targets with the highest

likelihood of successful sequence identification, targets can be chosen that have the most mutual information

with the current set of protein identifications. Such a strategy will prefer targets that are not only likely to

be identified, but that also lead to new protein identifications. This approach would also necessitate the

development of real-time, online protein inference algorithms.

Finally, real-time sequencing algorithms can be used to drive data acquisition decisions. Low probability

peptide-spectrum-matches can be improved by the isolation and fragmentation of fragments observed in the

MS2 spectrum. These MS3 scans can provide the AA sequence identity of the fragment, helping to break ties

between two possible peptides or increasing the confidence of a low scoring match. Real-time sequencing

algorithms are needed to guide the optimal selection of targets for MS3 scans. Novel sequencing algorithms

will need to be developed that can integrate data from multiple scans with different levels of fragmentation.

7.3 Closing remarks

In its current state, MS-based proteomics has many opportunities for improvement, especially via

computational techniques. These opportunities range from basic signal analysis to instrument operation and
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post-processing techniques. Integration of data analysis and data acquisition is a relatively untapped field that

will likely play a large role in the near future. The work presented here contributes to the beginning of this

transition and to fundamental data analysis techniques.
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