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ABSTRACT 

Rahul Gondalia: Epigenetic Mediation of Particulate Matter-Associated Changes in Heart Rate 

Variability and QT Interval Duration 

(Under the direction of Eric A. Whitsel) 

 

Background. Ambient particulate matter (PM) air pollution is a modifiable exposure that 

has been consistently associated with higher cardiovascular disease (CVD) risk, at least in part 

through autonomic dysfunction and prolonged ventricular repolarization, as observed by 

decreases in heart rate variability (HRV) and increases QT interval duration (QT) on the 

electrocardiogram. However, the molecular mechanisms underlying these associations are not 

well understood.  

Methods. PM associations with leukocyte count, proportions, and DNA methylation were 

estimated using linear mixed, covariate-adjusted models using multiply-imputed, multi-center, 

longitudinal data in racially, ethnically and environmentally diverse populations of U.S. women 

and men. Then, PM-associated changes in HRV and QT – and epigenetic mediation of those 

associations – were estimated.  

Results. Monthly to yearly mean PM2.5 concentrations were associated with = higher 

leukocyte counts, higher granulocyte proportions, and lower CD8+ T cell proportions. 

Methylome-wide association analyses identified three significant CpG sites (cg19004594, 

cg24102420, and cg12124767) annotated to MATN4, ARPP21 and CFTR at which higher 

monthly mean PM10 and PM2.5-10 concentrations were associated with leukocyte DNAm. 

However, neither monthly mean PM10 or PM2.5-10 nor methylation at cg19004594, cg24102420, 
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or cg12124767 were appreciably associated with HRV or QT, thereby yielding null PM-DNAm-

HRV and PM-DNAm-QT mediation associations.   

Conclusions. Findings suggest that PM is associated with leukocyte count, composition 

and DNAm at concentrations below U.S. Environmental Protection Agency National Ambient 

Air Quality Standards. However, monthly exposures to coarser particulates, while associated 

with DNAm, did not exert appreciable, epigenetically mediated effects on cardiac autonomic 

function or ventricular repolarization. Nonetheless, the methods and results described herein may 

inform causal and mediation methods at the junction of epigenetics, environmental and 

cardiovascular epidemiology, and the findings have implications for policy-relevant decision-

making and standard setting by the US Environmental Protection Agency under the Clean Air 

Act.  
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CHAPTER 1. SPECIFIC AIMS 

Ambient particulate matter (PM) air pollution is a modifiable exposure that has been 

consistently associated with cardiovascular disease (CVD) morbidity and mortality, partly 

through changes in cardiac autonomic function and ventricular repolarization as measured by 

heart rate and its variability (HRV) and QT interval duration (QT). Despite the ubiquity of air 

pollution exposure and the continued population burden of PM, the putative mechanisms 

underlying PM-associated CVD have not been adequately investigated.  

One such mechanism involves methylation of deoxyribonucleic acids (DNAm), 

conventionally measured at Cytosine-phosphate-Guanine (CpG) sites in DNA. As measured, 

DNAm is a heritable, but dynamic epigenetic modification that can influence gene expression 

without altering the genome and may be central to mediation of PM-associated CVD risk. 

Indeed, PM exposure has been implicated in DNAm near candidate genes involved in 

inflammation, oxidative stress, and coagulation, abnormalities of which have established 

associations with CVD. 

However, few studies have agnostically evaluated PM and leukocyte DNAm associations 

on a methylome-wide scale. They also were conducted in geographically and socio-

demographically homogenous populations. Moreover, its analyses neither characterized the 

inflammatory effects of PM – a driver of leukocyte DNAm values – nor attempted to elucidate 

putative epigenetic mechanisms linking PM with increased CVD risk.   
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To carefully address limitations of the extant research in this area using data from large, 

multi-ethnic and geographically diverse US populations enrolled in the Women’s Health 

Initiative (WHI) and Atherosclerosis Risk in Communities study (ARIC), I therefore propose to: 

(1) Estimate associations between PM and leukocyte traits (count; proportions), 

(2) Estimate methylome-wide associations between PM and leukocyte DNAm, using models 

informed by (1), and 

(3) Assess mediation of PM-HRV and PM-QT associations by DNAm at PM-sensitive CpG sites  

Collectively addressing the three aims will provide insight into epigenetic mechanisms 

underlying environmentally induced cardiac autonomic dysfunction and prolonged ventricular 

repolarization, the existence of which may help substantiate the biological plausibility and 

causality of PM-CVD associations being considered by US Environmental Protection Agency as 

it sets National Ambient Air Quality Standards for PM under the Clean Air Act. 
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CHAPTER 2. BACKGROUND AND SIGNIFICANCE 

A. Cardiovascular disease burden 

Cardiovascular disease (CVD) carries a substantial healthcare burden in the United States 

(US), where it accounts for approximately $396 billion in direct medical costs and is projected to 

increase to over $900 billion by 2030. Although CVD incidence and mortality in the US has 

been declining since the 1970s, CVD still accounts for nearly 31% of all deaths.1 Consequently, 

lifestyle and therapeutic interventions have been directed at high-risk groups in an attempt to 

reduce its prevalence and incidence. However, implementing population-level interventions on 

ubiquitous risk factors, such as exposure to ambient particulate matter (PM) air pollution, could 

also decrease the overall burden of CVD.  

B. Particulate matter  

B1. Background 

The relationship between ambient air pollution exposure and disease led the US to make 

substantial air quality improvements beginning with the 1970 establishment of the US 

Environmental Protection Agency and amendment of the Clean Air Act.2 Accordingly, ambient 

air pollution decreased over time and related public health benefits have been observed.3,4 

However, the ubiquity of exposure and its potential threat to public health even at today’s lower 

concentrations remain concerning. Indeed, a Global Burden of Diseases Study estimates that 

around 4.2 million deaths annually are attributable to PM exposure, which is the fifth leading 

cause of global mortality5, with significant contributions to CVD-related morbidity and 

mortality.2,5-7  
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B2. Particulate matter composition, sources, and size 

PM is a complex, aerosolized mixture of solid and liquid matter that can consist of 

inorganic ions (nitrates, sulfates, ammonium, chlorides, hydrogen ions), carbonaceous aerosols 

(organic and black carbon), metals (trace and crustal elements), and other organic matter (e.g. 

bacteria, viruses, pollen, mold, fungal spores).8-10 The size and composition of PM varies 

spatiotemporally and by source, with the majority of PM stemming from human activity (i.e. 

anthropogenic) and including combustion-related products of power generation, industry, and 

transportation.2,6  

PM is measured as a concentration in micrograms per meter cubed (µg/m3) and is 

classified by its aerodynamic diameter, which affects where it typically deposits in the human 

airway. Specifically, PM ≤ 2.5, 2.5-10, and ≤ 10 micrometers (µm) in diameter (PM2.5, PM2.5-10, 

and PM10,) refer to fine, coarse, and thoracic particulates that often deposit in alveoli/small 

airways, bronchi/trachea, and both regions of the respiratory tract. Notably, PM10 includes 

particulates from the PM2.5 and PM2.5-10 size fractions.6,7  

B3. Policy 

The 1970 Clean Air Act requires the US Environmental Protection Agency (EPA) to set 

and enforce National Ambient Air Quality Standards (NAAQS) for six “criteria” air pollutants 

(PM, carbon monoxide, lead, nitrogen dioxide, ozone, and sulfur dioxide; Table 2-1) to protect 

health, including that of “sensitive” populations (e.g. children, elderly, persons with asthma). As 

of 2013, 24-hour and annual averages of PM2.5 may not exceed 12 µg/m3 and 35 µg/m3, while 

24-hour averages for PM10 may not exceed 150 µg/m3. Although prior standards for annual PM10 

(at 50 µg/m3) were once in place, they were revoked in 2006 due to purported lack of a scientific 

basis linking long-duration PM10 exposure to poor health.11 No standards are currently in place 

for PM2.5-10.  
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Table 2-1. National Ambient Air Quality Standards 

Pollutant 
Averaging 

duration 

Standar

d 
Form 

Particle 

matter 

(PM) 

PM2.5 

Annual 
15 

μg/m3 
Annual mean, averaged over 3 years 

24-hour 
35 

μg/m3 

98th percentile, averaged over 3 

years 

PM10 24-hour 
150 

μg/m3 

Not to be exceeded more than once 

per year on average over 3 years  

 

 

B4. Cardiovascular disease and mortality associations 

Short- (< 1 month) and long- (≥ 1 month) duration exposures to ambient PM2.5, PM10, 

and PM2.5-10 have been associated with CVD and mortality in epidemiologic studies.6,7 Short-

duration increases in PM2.5 and PM10 were associated with a slight but consistent increase in 

daily mortality risk, ranging from 0.4% to 1.0% for a 10 µg/m3 increase in PM2.5, PM10 or PM2.5-

10.
7 Relative to short-duration exposure, long-duration exposure to PM was more prominently 

associated with mortality. Three notable studies observed elevated mortality risk with an increase 

of long-duration PM2.5 by 10 µg/m3: the Harvard Six Cities study observed increases in all-cause 

and CVD mortality risk by 14% (95% confidence interval [CI]: 1.07, 1.22) and 26% (95% CI: 

1.14, 1.40)3; the Women’s Health Initiative (WHI) Observational Study (OS) of postmenopausal 

women in the US observed a substantial, 76% (95% CI: 1.25, 2.47) increase in CVD mortality 

risk;12 and a recent study in over sixty million US Medicare beneficiaries found a 7.3% (95% CI: 

7.1, 7.5) increase in all-cause mortality risk.13 In addition, the Nurses Health Study found a 

similar increase in all-cause (1.11, 95% CI: 1.01, 1.23) and CVD (1.35, 95% CI: 1.03, 1.77) 

mortality risk with a 10 µg/m3 increase in PM10 concentrations among women living in the north 

eastern region of the US.14  

Ambient PM exposure was also associated with nonfatal CVD, particularly with coronary 

heart disease (CHD). The European Study of Cohorts for Air Pollution Effects (ESCAPE) of 
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100,000 participants across eleven European cohorts found 13% (95% CI: 0.98, 1.30) and 12% 

(95% CI: 1.01, 1.25) increases in CHD risk with a 5 µg/m3 increase of long-duration PM2.5 and a 

10 µg/m3 increase of long-duration PM10 exposures.15 The WHI OS study mentioned earlier 

similarly observed elevated CHD and myocardial infarction (MI) risk with long-duration PM2.5 

exposure.12 Short-duration PM exposure was also associated with incident MI in several case-

crossover studies,16-20 and a study in US Medicare beneficiaries estimated a reduction of 1,523 

(95% CI: 19, 2,976) CHD-related hospitalizations per year with a 10 µg/m3 decrease of short-

duration PM2.5 exposure.21 

Finally, PM exposure was associated with other nonfatal forms of CVD, including heart 

failure and cardiac arrhythmias. A meta-analysis of thirty-five studies found that a 10 µg/m3 

increase in PM2.5 or PM10 was associated with an approximate 2% increase in heart failure risk.22 

Associations with cardiac arrhythmias were also observed, but largely in case-crossover studies 

of patients with implantable cardioverter defibrillators23-31, with mixed results32-40 possibly due to 

variations in study design, socio-demographic characteristics, and exposure duration and 

composition.7,34 Two epidemiologic analyses in the Reasons for Geographic And Racial 

Differences in Stroke study (REGARDS), a bi-racial study of men and women in the US, found 

increases in risk of premature ventricular and atrial contractions with PM2.5 exposure.41,42 

However, associations between PM and physician-confirmed ventricular ectopy in WHI were 

only observed in smokers.36  

C. Particulate matter and leukocyte traits 

C1. Leukocyte background 

 Leukocytes, also known as white blood cells, originate from primitive stem cells in bone 

marrow and constitute a major portion of the immune system. As such, they represent a 

nonspecific indicator of immune response and inflammation related to acute or chronic infection 



 

 7 

or exposure to toxicant stimuli. Leukocytes are classified into three types, approximately 65%, 

30% and 5% of which are granulocytes, lymphocytes, and monocytes. Granulocytes are further 

sub-classified as neutrophils (~95%), eosinophils (~4%), and basophils (~1%), while 

lymphocytes are sub-classified as B (~13%), T (~75%), and natural killer (NK; ~12%) cells.43,44 

Leukocyte composition is determined by the proportions of leukocyte cell types present in 

peripheral blood, the so-called “differential” of clinical hematology.   

Leukocytes have been implicated in endothelial injury, atherosclerotic disease 

progression, and subsequent increases in CVD risk. Several factors that promote endothelial 

dysfunction are well known, such as cigarette smoking, hypertension, hypercholesterolemia, and 

hyperglycemia. Resultant microvascular injury stimulates adhesion and coagulation molecules, 

thereby recruiting monocytes into atherosclerotic lesions. As inflammation progresses, the 

recruitment of monocytes and lymphocytes from peripheral blood increases leukocyte content 

within the atherosclerotic plaque, making it more vulnerable to rupture.45-47 Due to the 

pathogenicity inflammation plays in atherogenesis, the effects of leukocyte counts and 

proportions on cardiovascular health have been studied.  

C2. Leukocyte epidemiology 

 The biological underpinnings linking systemic inflammation with CVD risk have been 

well supported in studies of leukocyte counts. In patients with prevalent CVD, higher leukocyte 

counts were associated with increased risks of recurrent cardiovascular events48,49 and 

mortality.50-55 Associations for CVD and all-cause mortality risk were also observed in 

community-based studies in the US56-63 and abroad.64-68 In fact, a meta-analysis of nineteen 

prospective studies found a 40% (95% CI: 1.3-1.5) increase in CHD risk with a 2.8x109/liter 

increase in leukocyte count.69 Associations were also observed with other nonfatal forms of CVD 
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(e.g. heart failure,70 atrial fibrillation,71 hypertension,72,73 ischemic stroke,60 diabetes,74,75 chronic 

kidney disease76,77) and behavioral risk factors (e.g. smoking78 and physical inactivity).79  

 Studies of leukocyte cell types are fewer, but yielded consistent results primarily driven 

by neutrophils. In a systematic review of patients with acute coronary syndromes, neutrophil 

count was a strong and independent predictor of cardiovascular outcomes.80 A meta-analysis of 

seven prospective cohort studies (n = 30,374) also found that participants with neutrophil counts 

in the upper tertile had a 33% (95% CI: 1.17, 1.50) increase in CHD risk relative to the lower 

tertile.81 Finally, community-based studies observed elevated CVD and all-cause mortality risk 

with increases in neutrophil and monocyte counts.60,82,83  

C3. Particulate matter and leukocyte count associations 

 Exposure to ambient PM concentrations can stimulate immune response and enhance the 

release and redistribution of leukocytes in peripheral blood.47,84 However, PM-leukocyte 

associations in previous studies were generally mixed. In panel and other small-scale studies of 

specialized populations, short-duration exposure to PM were sometimes associated with 

leukocyte counts, though results were variable,47,85-97 likely attributable to differing study 

designs, participant characteristics, PM mass fractions, and exposure durations. In larger, 

community- or population-based studies, short-duration PM10 exposure was largely not 

associated with leukocyte counts,98-100 with the exception of associations observed in 

NHANES.101  

Long-duration exposure to ambient PM was more consistently associated with leukocyte 

and neutrophil counts. Cross-sectional NHANES data linked long-duration PM10 exposure to 

leukocyte counts.102 Comparable findings with PM2.5 and PM10 were also observed using 

longitudinal data from the German Heinz Nixdorf Recall Study103 and cross-sectional data from 

Social Environment and Biomarkers of Ageing Study (SEBAS) in Taiwan.104 
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C4. Summary and limitations 

Inflammation plays a major role in atherogenesis, plaque formation and rupture, and 

subsequent downstream cardiovascular consequences. Indeed, studies observed that increases in 

systemic inflammation, as measured by leukocytes, are associated with CVD incidence, CVD 

mortality, and all-cause mortality.  

As such, it has been hypothesized that systemic inflammation evoked by PM inhalation 

may be a mechanism by which PM increases CVD risk. Epidemiologic evidence has generally 

supported this hypothesis; however, results have been mixed and the quality of evidence in the 

US has been subpar. Specifically, all three community-based longitudinal studies of this topic 

were conducted abroad,98,99,103 which limits the generalizability to US populations due to 

differing socio-demographic and exposure characteristics (e.g. PM composition and 

concentrations). Also, there has not been an exhaustive evaluation of associations between 

leukocyte count, cell type proportions, and PM size fractions over short to long exposure 

durations. Finally, estimating associations between PM exposure and leukocyte DNA 

methylation (DNAm) is an emerging area of study that can additionally enhance the 

understanding of the inflammatory consequences of PM inhalation.  

D. Particulate matter and DNA methylation 

D1. DNA methylation background 

Epigenetics is the study of heritable, but dynamic, changes in gene expression 

(transcription) due to factors other than changes in the DNA sequence itself.105,106 Epigenetic 

modification of DNA can take several forms, one of which is methylation. DNAm is an 

enzymatic reaction catalyzed by specific DNA methyltransferases. In this reaction, methyl 

groups (CH3) from S-adenosyl-L-methionine donors are bound to 5’ cytosine nucleotides linked 

to 3’ guanine nucleotides by phosphate bridges, i.e. Cytosine-phosphate-Guanine (CpG) sites. 
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The products of the reaction are 5-methyl-cytosine (5-mC) residues on the DNA sequence.106 

CpG methylation thereby changes the physical structure around a DNA sequence without 

actually altering the order of its nucleotides. Two major ways CpG methylation can in turn 

influence, and oftentimes suppress gene expression are by: 1) physically interfering with binding 

of transcription factors to gene promoters, thereby inhibiting transcription, and 2) binding to 

methyl-CpG-domain binding proteins, thereby recruiting chromatin remodeling proteins, 

modifying histones, and forming inactive heterochromatin.106,107 

D2. Cardiovascular disease epidemiology of DNA methylation 

 Given the influential role of DNAm in gene expression, studying it may plausibly 

elucidate underlying mechanisms of disease. Research in human heart tissues and animal models 

found links between DNAm and biological origins of CVD108,109 in the form of 

atherosclerosis,110,111 aortic fatty streaks,112 cardiomyopathy,113 and inflammation.114  

Although heart and other (e.g. nervous) tissues are appropriate for studying the role of 

DNAm in cardiovascular disease, their collection is highly invasive and not practical, especially 

in large populations.108,115 As such, leukocytes extracted from peripheral blood have been widely 

used surrogate tissues108 in part given demonstrated consistency of DNAm patterns across 

relevant tissues types.116-118 In peripheral blood leukocytes, small-scale human studies related 

inflammation,119 hypertension,120 and mortality119 with global and candidate-gene DNAm. 

Larger and more generalizable studies leveraged existing peripheral blood samples to examine 

DNAm mechanisms and observed associations with prevalent and incident CHD,121-123 prevalent 

and incident stroke,121,123 and CVD and all-cause mortality.121 DNAm also was found to differ 

across populations by age,124-129 sex,124,130,131 and race/ethnicity130,132, and by behavioral CVD 

risk factors such as diet,133-139 smoking,140-151 and exercise,152 all of which suggest that epigenetic 

processes play a role in cardiovascular health. 
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D3. Particulate matter and DNA methylation associations 

DNAm has been associated with air pollution exposure in occupational, panel, and 

community-based studies. Several small-scale, occupational or panel studies in adults suggested 

inverse relationships between exposure to PM and global DNAm,153-158 while other results were 

mixed.159-161 They also detected inverse relationships with DNAm at candidate genes involved in 

oxidative stress response,155,156,162,163 coagulation,154 and vasoconstriction.154,158,163 Parallel 

associations were also observed at candidate genes involved in inflammation,154,155,164 but the 

literature is less consistent.165  

Research in the Normative Aging Study (NAS) – a prospective cohort study of white, 

elderly male veterans living in the greater Boston area166 – has provided well-powered, high-

quality epidemiologic evidence suggestive of PM influences on DNAm. By leveraging repeated 

PM and DNAm data from up to four study visits, results suggested inverse associations between 

ambient concentrations of PM2.5 over short-durations167 with global DNAm of long interspersed 

nucleotide element-1 [LINE-1]. However, associations were not observed with LINE-1 

methylation at long-duration exposure168 or with methylation of short interspersed nucleotide 

Alu repetitive elements (Alu).167,168 In candidate gene studies, short-duration exposure to PM2.5 

was associated with decreasing methylation in genes related to inflammation (i.e. GCR and 

ICAM-1),169,170 oxidative stress (i.e. iNOS),169 and coagulation (i.e. F3).164 However, exposure 

was also suggestively associated with increasing methylation (i.e. IL-6)164 and no change in 

methylation (i.e. IFN-γ and TLR-2)164,170 in other inflammation-related genes.  

The Multi-Ethnic Study of Atherosclerosis (MESA) – a diverse, community-based cohort 

study of men and women in the US – investigated exposure to long-duration concentrations of 

PM2.5 with monocyte DNAm at 2,713 CpG sites linked with mRNA expression and global 

methylation at LINE-1 and Alu. PM2.5 was statistically associated with methylation at five CpG 
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sites (increases at one and decreases at four sites), with a false discovery rate < 0.05, and was 

non-significantly associated with decreases in LINE-1 and Alu methylation.171  

Few studies investigated the relationship between exposure to ambient concentrations of 

PM and DNAm on a methylome-wide scale (i.e. at over 450,000 CpG sites), although in 

demographically and geographically homogeneous populations172-174. Only one, a collaborative 

assessment of PM2.5-DNAm associations in NAS and Cooperative Health Research in the Region 

of Augsburg study (KORA) – a community-based study of European ancestry men and women 

living in Augsburg, Germany – identified statistically significant CpG sites (one for 2-, one for 

7-, and ten for 28-day PM2.5 averages) with Bonferroni-corrected p-values < 7.5x10-8, of which 

three were associated with an increase and nine with a decrease in methylation.173 

D4. Summary and limitations 

The complex interplay between epigenetic and environmental risk factors may reveal 

underlying mechanisms for increased CVD risk, but they have not been thoroughly evaluated. 

Nevertheless, recent research has described associations between exposure to ambient PM and 

DNAm globally, at candidate genes, and at specific CpG sites from methylome-wide association 

studies. While global methylation metrics can be valuable biomarkers for exposure, their links to 

specific disease pathways are unclear.175 Candidate gene approaches can inform biological 

mechanisms with statistical efficiency, but findings may be prone to type I error, as observed in 

early genetic epidemiology studies.176,177 With this caveat, evidence from candidate gene studies 

supports previously described mechanisms that relate PM to inflammation, oxidative stress, 

coagulation, and vasoconstriction.7 To discover epigenetic associations agnostically, NAS and 

KORA conducted a methylome-wide association study and discovered twelve novel CpG sites 

associated with PM2.5 concentrations, however associations have not yet been replicated in 

demographically, geographically, and environmental diverse populations.173  
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The current state of PM and methylation research relies on results from mostly panel and 

occupational studies, and a few community-based studies. Although panel and occupational 

studies of DNAm can efficiently provide biological insight, participant characteristics and PM 

exposure characteristics are not often representative of the broader population. Community-

based studies of PM and DNAm in NAS and KORA have similarly limited generalizability in 

terms of demographic, behavioral, and exposure characteristics. MESA allowed for analyses in 

multi-ethnic US populations, however associations have not been evaluated and replicated 

methylome-wide.  

Finally, all prior studies relied on methylation data from peripheral blood with varying 

proportions of leukocyte cell types, each type of which possesses a distinct methylation pattern. 

Consequently, peripheral blood DNAm is partially driven by leukocyte composition. A common 

practice178,179 is therefore to restrict assay of DNAm to a single type of leukocyte.171 More 

commonly, DNAm exposure-outcome models are statistically adjusted for leukocyte proportions 

determined via cytometry as part of a complete blood count / differential, or in its absence, by 

constraining the sum of estimated CD8+ T cells, CD4+ T cells, NK cells, B cells, monocytes, 

and granulocytes in whole blood to 100% and regressing them on DNAm data.173 However, PM 

may plausibly influence DNAm by affecting leukocyte proportions (see section C3), so without 

its adjustment it may yield spurious associations of PM with DNAm through its inflammatory 

rather than epigenetic mechanisms. Additionally, current mediation analyses of DNAm may be 

biased if leukocyte proportions confound the DNAm-outcome association (Figure 2-1).180,181  
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Figure 2-1. Diagram of the association between particulate matter (PM) and outcome Y, partly 

mediated though DNA methylation (DNAm) and leukocyte proportions (LP). Adjustment for LP 

would 1) block the path from PM to Y through LP, thereby attenuating the total effect of PM on 

Y, and 2) block the path from PM to Y through LP and DNAm, biasing estimates for DNAm 

mediation.  

 

 

E. Particulate matter and cardiac autonomic function 

E1. Cardiac autonomic function  

 Intrinsic heart rate and rhythm are modulated by the sinoatrial (SA) node (Figure 2-2) 

which is largely regulated by vasomotor centers in the hypothalamus, brainstem, and spinal cord, 

via autonomic (parasympathetic and sympathetic) efferent innervation of the heart.   

Parasympathetic neurons in the midbrain, pons, and medulla oblongata of the brain stem 

decrease SA node activity via tenth cranial (vagus) nerve-mediated release of acetylcholine, 

muscarinic cholinergic receptor activation, and hyperpolarization. More specifically, vagal 

activity increases transmembrane potassium current and decreases the rate of SA node 

depolarization during Phase 4 of the SA node action potential (Figure 2-3). Conversely, 

sympathetic nerves originating from the thoracic segments of the spinal cord increase SA node 

activity by releasing norepinephrine; activating beta-adrenergic receptors; increasing 

transmembrane calcium, sodium, and potassium currents; and thereby increasing the rate of SA 

node depolarization during Phase 4 (Figure 2-3).182-187  

PM 

LP 

DNAm Y 
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Figure 2-2. Structure of the heart (figure 

reproduced from Sperelakis  2001188) 

 

Figure 2-3. Sinoatrial (SA) node action 

potential. Abbreviations: mV, millivolts, iK, 

potassium current; iCa(L), L-type calcium 

channel current, iCa(T), T-type calcium 

channel current; if, funny current (figure 

reproduced from Klabunde 2017189) 

 

Autonomic nervous system control of heart rate and rhythm appear to involve underlying 

genetic influences in multi-ethnic populations.190-192 For example, a recent genome-wide 

association study (n = 53,174) implicated seventeen single nucleotide polymorphisms across 

eight genes associated with heart rate variability (HRV), including HCN4 (hyperpolarization 

activated cyclic nucleotide gated potassium channel 4) GNG11 (G protein subunit gamma), and 

RGS6 (regulator of G-protein signaling).  HCN4’s putative role involves the enhanced HCN 

channel permeability and increased rate of SA node depolarization characteristic of sympathetic 

activity while those of GNG11 and RGS6 involve the blunting of G protein-gated inwardly 

rectifying potassium (GIRK) channel activity and decreased rate of SA node depolarization 

characteristic of parasympathetic activity.190 

Parasympathetic and sympathetic activity dynamically influences the beat-to-beat sinus 

rhythm resulting in fluctuations of the heart rate around the mean. Consequently, an increase in 

sympathetic activity reduces HRV, while an increase in parasympathetic activity increases HRV. 

Although both systems are continuously reacting to exogenous demands, their imbalance may 

signal lack of cardiovascular adaptability and resilience. Such autonomic dysfunction is typically 
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manifested as an overactive sympathetic and underactive parasympathetic system, resulting in 

decreases in HRV on electrocardiograms (ECGs).183,185  

E2. Heart rate variability 

 Autonomic function can be quantified non-invasively in the frequency and time domains 

using HRV measures derived from ECGs. Frequency domain measures in Hertz (Hz) are 

obtained from power spectral analysis that decomposes the heart rate (beats/min) or its unit-

corrected inverse, RR interval (RR, ms), over a given time period into sinusoidal functions of 

fluctuating amplitudes and frequencies.183,193,194 Two commonly used frequency domain 

measures are low and high frequency spectral powers (LF and HF).185 LF (0.04 – 0.15 Hz) 

reflects both sympathetic and parasympathetic activity, while HF (0.15 – 0.40 Hz) typically 

represents only parasympathetic activity.185 Frequency domain measures can be computed from 

short (i.e. 0.5 – 5 minute) and long (i.e. 24-hour) duration ECGs.183 

Time domain measures of autonomic function estimate HRV in milliseconds (ms) using 

mathematical functions of successive RR intervals between normally conducted beats, i.e. 

normal-to-normal (NN) intervals. Two common measures are the standard deviation of 

successive NN intervals (SDNN) given by, 

 

𝑆𝐷𝑁𝑁 =  √
∑ (𝑁𝑁𝑚𝑒𝑎𝑛 − 𝑁𝑁𝑖)2𝑛

𝑖=1

𝑛 − 1
 

 

and the root mean square of successive differences between NN intervals (RMSSD), given by 

 

𝑅𝑀𝑆𝑆𝐷 =  √
∑ (𝑁𝑁𝑖+1 − 𝑁𝑁𝑖)2𝑛−1

𝑖=1

𝑛
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where 𝑛 is the total number of NN intervals over the ECG duration. When measured using long 

duration ECGs, SDNN is a marker of total HRV (sympathetic + parasympathetic activity), but it 

becomes more representative of parasympathetic activity as recording duration decreases,182 

while RMSSD is a marker of parasympathetic activity for short and long duration ECGs.182,183,185   

 Although long-duration ECGs are ideal for quantifying HRV, ultra-short duration, i.e. 10-

second ECGs can be more conveniently and consistently recorded in various settings.195-197 In the 

epidemiologic context, time domain measures of SDNN and RMSSD from resting, standard 

twelve-lead ECGs are reliable and valid 195,198,199 measures of parasympathetic activity.200  

E3. Epidemiology of heart rate variability 

Epidemiologic evidence suggests that autonomic dysfunction (i.e. hyperactive 

sympathetic and hypoactive parasympathetic system), as characterized by decreases in HRV, is a 

common indicator of declining cardiovascular health.185 Specifically, studies demonstrated that 

HRV is inversely associated CVD 201-203 and all-cause mortality,202-205 with similar mortality 

susceptibility in patients with CHD,206-212 diabetes,203,213 hypertension,203 and heart failure.214-216 

Additionally, decreases in HRV were predictive of increasing serum glucose217-220, insulin217,219, 

and cholesterol221-223, incident hypertension,220,223-225 and CVD202,220,226-228; and associated with 

risk factors for CVD, including male sex,229-231 increasing age,230,231 physical inactivity,229,230,232-

234 and smoking.235-238 

E4. Particulate matter and heart rate variability associations 

 One hypothesized pathway linking the association of air pollution exposure to CVD is 

through changes in cardiac autonomic function. Indeed, many occupational, panel, and 

community-based studies observed decreases in HRV associated with increasing PM exposure. 

A meta-analysis of 29 studies (total n = 18,667) found that SDNN, RMSSD, HF, and LF 

decreased  -0.1%, -2.2%, -2.4%, and -1.7% per 10 μg/m3 increase in ambient, short-duration 



 

 18 

PM2.5 concentrations.239 These associations were consistent with studies of short-duration 

exposure to PM10
240-242 and PM2.5-10 size fractions.243-247 Importantly, a separate meta-analysis 

observed magnitudes of short-duration PM10-HRV associations further from the null when 

substituting imputed concentrations of personal PM10 exposure for ambient concentrations, 

suggesting that the effects of ambient PM exposure on HRV are likely underestimates of the true 

association.248 

Longer-duration exposures to PM2.5 and PM2.5-10 in MESA yielded similar, but 

attenuated, associations.200,249 However in a Swiss study, long-duration PM10 was associated with 

decreases in HRV only among participants taking ACE inhibitors, suggesting that underlying 

health conditions may confer susceptibility.250 Indeed, such susceptibility was observed among 

the elderly89,251-257 and in those with asthma,244,246 dyslipidemia,200 hypertension,200,242,252,253,258 

glucose dysregulation,241 diabetes,200,253 metabolic syndrome,200 and coronary heart 

disease.245,253,259-261   

E5. Particulate matter and heart rate variability mechanisms 

The biological mechanisms underlying PM-associated decreases in HRV are not fully 

established. It has been hypothesized that inhaled PM induces a reflexive, sympathetic stress 

response by directly activating pulmonary chemoreceptors. PM also may be translocated through 

nasal epithelium, the first cranial (olfactory) nerve, and / or alveolar epithelium to the blood, 

vasomotor centers of the brain, and / or heart where it may act directly on receptors or indirectly 

by stimulating release of macrophages and pro-inflammatory cytokines resulting in downstream 

sympathetic activation, parasympathetic withdrawal, increased heart rate, and decreased 

HRV.239,262,263 

Oxidative stress-response mechanisms were also implicated from gene-environment 

interaction studies within the NAS cohort.264-268 In these studies, the PM2.5-HRV association was 
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modified by GSTM1 (glutathione-S-transferase M1),265,267 HMOX-1 (heme oxygenase-1),267 and 

HFE (a hemochromatosis gene),264 all genes directly or indirectly responsible for reactive 

oxygen species metabolism. This hypothesis is further supported by the attenuation of PM-HRV 

associations with statin use,265 methyl nutrients,266 and omega-3 fatty acids.269  

Lastly, PM-induced changes in DNAm at CpG sites proximal to genes190-192 associated 

with cardiac autonomic function (see section E1), such as HCN4, GNG11, and RGS6, offer other 

pathways by which particulate exposure may indirectly decrease HRV.   

E6. Summary and limitations 

HRV measures the cardiac response to the autonomic nervous system, which consists of 

sympathetic and parasympathetic nerves that modulate beat-to-beat variation in heart rate. 

Increases in heart rate and decreases in HRV are characterized by sympathetic activation and 

parasympathetic withdrawal and have been associated with CVD and mortality.185 

Ambient PM air pollution has been consistently associated with decreases in HRV, 

suggesting autonomic dysfunction as a pathophysiological pathway linking PM with 

cardiovascular morbidity and mortality. However, the state of evidence largely relies on small-

scale panel and occupational studies which do not accurately describe the demographic, clinical, 

and exposure characteristics of the general population, thereby limiting generalizability. Indeed, 

of the twenty-nine studies included in a recent meta-analysis of PM and HRV,239 only five were 

community-based studies,200,241,242,253,270 of which one leveraged longitudinal data.241 Still, all 

studies yielded mostly consistent results,239 and true magnitudes of associations are plausibly 

larger than what was observed in studies of ambient PM exposure.248  

Finally, the biological mechanisms linking PM and autonomic dysfunction remain 

unclear, but likely involve reflexive pulmonary responses to PM or its translocation to the blood, 

brain, or heart where it may act directly or indirectly though inflammatory, oxidative, or 
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epigenetic pathways that potentiate sympathetic activity. However, these mechanisms are 

uncertain and the degree to which they contribute to disease is unknown. 

F. Particulate matter and ventricular repolarization 

F1. Ventricular repolarization 

The cardiac cycle consists of diastolic (relaxation) and systolic (contraction) periods that 

depend on cardiac depolarization initiated in the SA node then reaching the ventricles through 

the atrioventricular (AV) node and His-Purkinje system.271 Action potentials within the 

ventricles rely on coordinated sequences of transmembrane depolarizing and mostly repolarizing 

cation fluxes in ventricular myocytes.272 The action potentials have five phases. Phase 0 

represents rapid depolarization caused by an influx of Na+ followed by initial repolarization 

through a transient efflux of K+ in Phase 1. Repolarization is subsequently delayed in Phase 2 

(the plateau phase) by a steady influx of Ca2+ through the voltage-gated L-type Ca2+ channel and 

an efflux of K+ primarily through rapid delayed rectifier channels.  In Phase 3, myocytes undergo 

rapid repolarization caused by the inactivation of the L-type Ca2+ channel and K+ efflux through 

rapid and slow delayed rectifier channels and K+ influx through inward rectifier channels. 

Finally, delayed K+ rectifier current ends while inward K+ rectifier current continues when 

resting potential is reached in Phase 4 (Figure 2-4).273  
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Figure 2-4. Ventricular action potential 

currents. Abbreviations. INa, sodium current; 

ICa-L, L-type Ca2+ current; Ito, transient 

outward K+ current; IKr, rapid delayed 

rectifier K+ current; IKs, slow delayed 

rectifier K+ current; IK1, inward rectifier K+ 

current  (reproduced from Cutler et al. 

2011273) 

   

Figure 2-5. Waves and intervals on the ECG 

(reproduced from Houghton and Roebuck 

2015274 

 

As with cardiac autonomic function, genetic underpinnings of ventricular repolarization 

have been described in multi-ethnic populations.275-277 A recent genome-wide association study 

in 76,198 individuals of European ancestry with replication in up to 103,331 individuals 

identified sixty-eight single nucleotide polymorphisms across thirty-five genes associated with 

QT interval duration, a electrocardiographic measure of ventricular repolarization (Figure 2-5, 

see section F2). Implicated genes highlighted the role of calcium signaling and included ATP2A2 

(ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2), PLN (phospholamban), 

PRKCA (protein kinase C alpha), SRL (sarcalumenin), and SLC8A1 (solute carrier family 8 

member A1). ATP2A2 encodes the SERCA2a cardiac sarcoplasmic reticulum calcium pump that 

is responsible for Ca2+ sequestration. ATP2A2 is negatively regulated by PLN, which itself is 

negatively regulated by PRKCA. SRL encodes sarcalumenin and SLC8A1 encodes a Na+/Ca2+ 

exchanger, both of which regulate Ca2+ flux in cardiac myocytes.  
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 Because ventricular repolarization depends on cation gradients in cardiac myocytes – 

particularly those of Ca+2 and K+– genetic, pharmacologic and / or environmental factors that 

lengthen Ca2+ influx or shorten K+ efflux during Phase 2 lead to an intracellular excess of 

cations.  The excess causes a depolarizing flux and prolongs ventricular repolarization, resulting 

in a prolonged QT interval as quantified noninvasively using ECGs.272,275,278  

F2. QT interval duration 

Ventricular repolarization as measured electrocardiographically from the onset of the 

QRS complex to the end of the T wave (Figure 2-5) is called the QT interval (QT, ms). As 

defined, QT is composed of the QRS complex and the subsequent JT interval, which itself 

consists of the ST segment and T wave.272 The QRS complex represents the initial period of 

ventricular repolarization during Phase 1 of the ventricular action potential that directly follows 

rapid depolarization occurring in Phase 0. The JT interval represents Phase 2, the plateau phase 

with little repolarization, (i.e. the ST segment) followed by rapid repolarization in Phase 3 (i.e. 

the T wave).  

 QT varies inversely as a function of heart rate, and therefore increases with increasing 

RR. As such, analyses often rely on the heart rate-corrected QT (QTc) or statistical adjustment 

for RR when modeling QT-exposure associations. The most common form of heart rate 

correction involves Bazett’s formula, in which QTc is estimated by dividing QT by the square 

root of RR.  However, it produces biased measures at high and low of heart rates279,280 so various 

alternatives have been proposed.280-285  

 While variability in QT can be explained by biological and environmental factors, it is 

additionally subject to technical variation, such as lead placement, that can artificially increase 

QT dispersion.286 That said, QT as measured on ECGs is a valid and reliable time domain 

estimate of ventricular repolarization over the short- and long-term.287,288   
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F3. Epidemiology of QT interval duration  

Epidemiologic studies have demonstrated that prolonged ventricular repolarization 

manifest on ECGs as prolonged QT is a risk factor for ventricular arrhythmias (e.g. Torsades de 

pointes)289,290, coronary heart disease291,292, congestive heart failure293, stroke294, cardiovascular 

mortality (particularly sudden cardiac death) 295-298, and all-cause mortality293,295-297 in the 

general population. Moreover, QT prolongation has been associated with female sex299-301 and 

CVD risk factors that include increasing age300, subclinical atherosclerosis302,303, diabetes304-311, 

increasing obesity312,313, physical inactivity311, and smoking.311 Other known causes of prolonged 

QT are Mendelian conditions that affect Na+, K+ and Ca2+ ion channels (i.e. congenital long QT 

syndrome [LQTS])271, use of medications known to induce long QT (types of e.g. antiarrythmics, 

antimicrobials, and tricyclic antidepressants)290,299,314,315,  and electrolyte imbalances (e.g. 

hypokalemia and hypocalcemia).300,316,317  

F4. Particulate matter and QT interval duration associations 

PM’s association with ventricular arrhythmias 23-25,27,28,30,31,37 may depend on prolonged 

ventricular repolarization. Several community-based and panel studies of short- and long-

duration exposures to PM2.5 and QT have been conducted. While short-duration exposures to 

PM2.5 were not associated with QT in NAS318,319, they were associated with a minor 0.23% 

increase in QT with a 7 μg/m3 increase in 5-day mean PM2.5 in a North Carolina study of patients 

who underwent cardiac catheterization (CATHGEN).320 Additionally, in a subset of WHI and 

ARIC participants, higher (≥ 90th percentile) exposures to 2-day mean PM10 were associated with 

higher QT in those with the TT allele of rs1619661, a single nucleotide polymorphism proximate 

to CXCL12, suggesting possible genetic susceptibility to PM-associated increases in QT. In panel 

studies, positive associations with QT also were detected with short-duration PM2.5 in adults that 

were healthy and nonsmoking321, with coronary heart disease322,323, and with diabetes.324  
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Only two community-based studies evaluated associations between QT and longer 

duration exposures to PM, but they similarly yielded positive associations. In NAS, PM2.5 

averaged over 28 and 365 days was associated with a 7.0 (95% CI: 2.3, 12.0) and a 6.3 (1.8, 

11.0) ms increase in QT per interquartile range (3.4 and 1.9 μg/m3) increase in PM2.5.
319 In 

MESA, a 10 μg/m3 increase in 365-day mean PM2.5 was associated with an increase in odds of 

QT prolongation (odds ratio [95% CI]: 1.6 [1.0, 2.6]).325  

F5. Particulate matter and QT interval mechanisms 

While the biological pathways underlying PM-associated increases in QT are not well 

understood, the mechanisms of prolonged ventricular repolarization may include particulate-

induced sympathetic stress responses (see section E5) resulting in decreased HRV and increased 

heart rate and QT. However, PM-QT associations are robust to heart rate correction and 

adjustment for HRV321, suggesting that mechanisms independent of autonomic dysfunction also 

play a role. Such mechanisms include pulmonary oxidative stress, hematogenous translocation of 

PM to the heart, induction of reactive oxygen species, and production of pro-inflammatory 

cytokines326 that directly or indirectly modulate327-331 ventricular cation (i.e. Na+, Ca2+, K+) 

gradients332-335 and increase QT duration.336-338  

In fact, such mechanisms have been highlighted in gene-environment interaction studies 

of QT. Specifically, NFE2L2 (nuclear factor, erythroid 2 like 2) modified PM-QT associations in 

a panel of participants with previous myocardial infarction. Also, CXCL12 (C-X-C motif 

chemokine ligand 12), which encodes a stromal cell-derived factor (SDF1) that modulates 

calcium influx through the L-type Ca2+ channel in cardiomyocytes, also was implicated in a 

genome-wide, gene-environment study of multi-ethnic populations within the WHI and ARIC.339 

Furthermore, PM has been inversely associated with DNAm at iNOS (inducible oxide 

synthase), a regulator of pro-inflammatory cytokine responses and oxidative stress340, and other 
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inflammation-related candidate genes163 in epidemiologic studies.156,163,169 PM-DNAm 

associations at other CpG sites proximal to genes implicated in recent ventricular repolarization 

genome-wide association studies275-277 (see section F1) also may reveal other potential 

mechanisms.   

F6. Summary and limitations 

QT is a temporal measure of ventricular repolarization that depends heavily on 

transmembrane cation gradients in ventricular myocytes during Phase 2 of the ventricular action 

potential.273 QT prolongation is associated with ventricular arrhythmias290 and sudden cardiac 

death, as well as other cardiovascular diseases and all-cause mortality.296  

Ambient PM has been associated with increases in QT, suggesting that changes in 

ventricular repolarization mediate PM-associated CVD. However, evidence of short-duration 

PM2.5 associations is based on small-scale panel or larger community-based studies (i.e. in 

NAS318 and CATHGEN320) that lack the demographic, clinical, and exposure characteristics that 

would allow generalization of the results to broader populations. Evidence of longer-duration 

PM2.5 exposures also relied on NAS319 in addition to MESA325, a more diverse study population. 

However, MESA results were based on cross-sectional data and a dichotomous (versus an 

interval-scale) indicator for QT prolongation, which would not capture modest, population-level, 

PM-associated increases in QT. Only one study investigated PM10-QT associations, however it 

was in a subset of WHI and ARIC participants with genomic data.339 The aggregate evidence 

nonetheless suggests that PM exposure is associated with increases in QT. 

While the mechanisms that underlie PM-associated increases in QT are unknown, they 

are hypothesized in include autonomic, oxidative stress, pro-inflammatory, or epigenetic 

responses to PM inhalation and hematogenous translocation to the heart. However, supporting 

evidence, is scant.  
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CHAPTER 3. RESEARCH PLAN 

A. Overview 

This work will be conducted in three parts with data from participants in the Women’s 

Health Initiative (WHI) and the Atherosclerosis Risk in Communities (ARIC) study. In Specific 

Aim 1, the association between ambient particulate matter (PM) air pollution and leukocyte traits 

will be estimated to inform the causal framework and modeling strategies for Specific Aims 2 

and 3. In Specific Aim 2, the methylome-wide association between PM and leukocyte DNA 

methylation (DNAm) at Cytosine-phosphate-Guanine (CpG) sites will be evaluated. Specific 

Aim 2 will provide a set of PM-sensitive CpG sites that will be used to assess DNAm mediation 

of the PM-heart rate variability (HRV) and QT interval duration (QT) associations in Specific 

Aim 3. 

B. Study populations 

B1. Women’s Health Initiative 

The Women’s Health Initiative197,341 (WHI) is a multicenter prospective study of risk 

factors for cardiovascular disease (CVD), cancer, osteoporotic fractures, and other causes of 

morbidity and mortality among postmenopausal women. Between 1993 and 1998, 68132 and 

93676 women aged 50-79 years from forty WHI clinical centers throughout the United States 

(Figure 3-1) were enrolled in the Clinical Trials (CT) or Observational Study (OS). Of eligible 

women during 2004-2005, 77% consented to be followed through 2010 for WHI Extension 

Study I and 87% again consented in 2010 to be followed through 2015 for WHI Extension Study 

II.342 
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The WHI CT197,341 investigated the effects of hormone therapy (i.e. estrogen with or 

without progestin), calcium and vitamin D supplementation, and dietary modification on risk of 

breast and colorectal cancer, CVD, and osteoporotic fractures. The WHI OS197,341 participants 

were recruited if they were interested in the diet modification or hormone therapy arms of the 

WHI CT, but were otherwise ineligible, unwilling, or unresponsive to a direct invitation.  

The WHI CT and OS participants were asked to complete a screening visit (SV), at which 

fasting blood was drawn and other demographic, socioeconomic, behavioral, and medical 

information was collected, and annual mailed, self-administered questionnaires following the 

SV. WHI CT participants were also asked to participant in detailed examinations at one, three, 

six, and nine years after randomization / enrollment (AV1, AV3, AV6, AV9), while WHI OS 

participants were asked to participate in only one detailed follow-up examination at AV3. 

B1.2. WHI LLS 

 The WHI Long Life Study343 (LLS) consisted of 7,875 consenting, non-institutionalized 

women from the WHI Medical Records Cohort, a group of 1) Hormone Trial participants and 2) 

African Americans or Hispanic/Latinos enrolled in WHI Extension Study II with genetic and 

CVD biomarker data at baseline. At this one-time, in-person visit between 2011 and 2012, a 

blood draw, clinical assessment, and a functional status assessment were conducted.  

B1.3. WHI-MIMS  

The WHI – Myocardial Ischemia and Migraine Study344 (WHI-MIMS) study was a ten-

center ancillary study in a sample of WHI OS participants that consisted of 3,369 women 

recruited between 1997 and 2000 between the screening to the third annual follow-up visit (SV 

or AV3). The objective of WHI-MIMS was to investigate the relationships among migraine 

headache, myocardial ischemia as measured by a 24-hour ambulatory ECG Holter monitor, and 

panic symptoms.  
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B1.4. WHI-EMPC 

WHI – Epigenetic Mechanisms of PM-Mediated CVD345 (WHI-EMPC) is a WHI 

ancillary study of epigenetic mechanisms underlying associations between ambient PM air 

pollution and CVD in the WHI CT cohort. WHI-EMPC focused on an exam site- and 

race/ethnicity-stratified, randomly selected 6% minority oversample of WHI CT participants 

who had repeated, fasting blood draws and resting, standard, twelve-lead ECGs beginning at 

baseline. From this population, WHI-EMPC randomly selected 2,200 participants at SV, AV3, or 

AV6 that had 1) an available aliquot of DNA between 1993 and 2001 for peripheral blood 

leukocyte methylation assay, 2) core analyte data, 3) an address in the contiguous forty-eight US, 

4) no conditions that affect the availability or accuracy of DNA methylation or ECG measures, 

and 5) estimated concentrations of ambient particulate matter air pollution, but were not taking 

anti-arrhythmic medications at the time. In 200 participants, DNAm was measured at a second 

visit (AV3 or AV6) and in 43 participants, it was measured at a third visit (LLS) yielding 2,443 

total observations.   

B1.5. WHI-BAA23 

WHI – Broad Agency Award 23 (WHI-BAA23)346, also known as Integrative Genomics 

and Risk of CHD and Related Phenotypes in the Women’s Health Initiative, is a case-control 

study of coronary heart disease (CHD) among women who were enrolled in the WHI CT 

(n=1,546) or OS (n=442). Women who had previously undergone genome-wide genotyping and 

profiling of seven CVD-related biomarkers (total cholesterol, high density lipoprotein, low 

density lipoprotein, triglycerides, C-reactive protein, creatinine, insulin, and glucose) were 

selected from two WHI ancillary studies. The first was the WHI Single Nucleotide 

Polymorphism (SNP) Health Association Resource (SHARe) cohort of over 8,000 African 

American women and over 3,500 Hispanic American women.347,348 The second consisted of 
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European Americans from the Hormone Therapy trials.349,350 Participants were sampled in two 

sets—one including 637 CHD cases and 631 non-cases identified as of Sept 30, 2010 and 

another including 432 CHD cases and 472 non-cases identified as of September 17, 2012. For 

each participant, DNAm was measured in blood collected at the SV.  

B1.6. WHI-AS311 

WHI – Ancillary Study 311351 (WHI-AS311), also known as the Bladder Cancer and 

Leukocyte Methylation study, is a case-control study of bladder cancer among women nested 

within the WHI CT (n = 405) and OS (n = 455). Bladder cancer cases were identified during 

cohort follow-up through annual medical questionnaires as of September 2012 and adjudicated 

by blinded and trained physicians using pathology, cytology, operative reports, and hospital 

discharge information. Cases were selected if diagnosed with urothelial carcinoma, the most 

common subtype of transitional cell carcinoma that originates in urothelial cells lining the inner 

bladder. Controls were matched to cases on age (+/- 2 years), year of enrollment, follow-up time 

(≥ their matched case), and DNAm extraction method. After excluding cases lacking a matched 

control, cases with a self-reported history of any cancer, and participants without an available 

aliquot of high-quality DNA at baseline, 441 cases and 442 controls were eligible for the study 

and DNAm was measured in blood collected at the SV.  

B2. Atherosclerosis Risk in Communities study 

The Atherosclerosis Risk in Communities196 study (ARIC) was a community-based 

prospective cohort study of atherosclerosis and its clinical outcomes (e.g. CHD, heart failure, 

stroke) conducted in four communities in the US: Washington County, Maryland; Forsyth 

County, North Carolina; selected suburbs of Minneapolis, Minnesota; Jackson, Mississippi 

(Figure 3-2). During enrollment in 1987-1989, ARIC participants were selected as a community-

stratified probability sample of 15,792 African American and European American men and 
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women aged 45-64. The cohort participated in up to four subsequent examinations (Visit 2-5 

[V2-V5]) following the baseline clinical examination (Visit 1 [V1]), at which demographic, 

socioeconomic, behavioral, and medical data were collected.  

The ARIC DNA Methylation Working Group selected 2,796 African Americans (ARIC- 

from Forsyth County or Jackson (ARIC-AA) and 1,139 European Americans from Forsyth 

County or Minneapolis enrolled in the BrainMRI/Omics study and had cerebral magnetic 

resonance imaging data352 (ARIC-EA) who were consenting participants from V2 (1990-1992) 

or V3 (1993-1995), had an available aliquot of DNA for peripheral blood leukocyte methylation 

assay, and had no conditions that affect the availability or accuracy of DNA methylation. ARIC-

EA participants. 

 

 

Figure 3-1. Forty WHI clinical centers 

 

Figure 3-2. Four ARIC centers

C. Covariate assessment 

C1. Particulate matter 

 The proposed study will focus on three ambient particulate matter (PM) air pollutants 

(µg/m³), two of which (PM2.5; PM10) are regulated under the Clean Air Act by the US 

Environmental Protection Agency (EPA) according to its National Ambient Air Quality 

Standards (NAAQS).  
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PM exposures have been estimated at all geocoded353,354 WHI and ARIC participant 

addresses in the contiguous US since the baseline examinations using US EPA Air Quality 

System (AQS) monitoring data for PM10 (since 1987) and PM2.5 (since 1999).355 Estimation of 

daily mean concentrations involved a spherical model for spatial interpolations and national-

scale, log-normal ordinary kriging.356-358 Validity of the estimation was assessed using standard 

cross-validation statistics: average prediction error (PE), standardized prediction error (SPE), 

root mean square standardized (RMSS), and the standard error (SE). Observed values of PE and 

SPE near zero, RMSS near one, and RMS near SE have provided evidence of model validity.355  

Because daily mean concentrations of ambient PM2.5 were not available until 1999 when 

EPA AQS monitoring data for PM2.5 became more widely available, monthly mean 

concentrations between 1987 and 1999 were instead spatiotemporally estimated using 

generalized additive mixed models, the log-transformed ratio of PM2.5 to predicted PM10, and 

geographic information system-based predictors. Monthly mean concentrations of PM10 were 

also estimated in this way. A five- to ten-fold, out-of-sample cross-validation of the estimates in 

which the squared Pearson correlation between excluded monthly observations and model 

predictions (R2 = 0.68-0.77) suggested that estimation models performed well.359  

Daily mean concentrations of PM will be averaged over 2, 7, 28, and 365 days before 

(and including) examination days. Monthly mean concentrations of PM2.5 and PM10 also will be 

averaged over twelve months before (and including) examination months to estimate 12-month 

exposures. Finally, PM2.5-10 concentrations for each averaging duration will be calculated as 

differences between PM10 and PM2.5 concentrations. 

C2. DNA methylation 

Peripheral blood leukocytes were isolated from visit-specific fasting blood draws for 

WHI-EPMC, WHI-BAA23, WHI-AS311, ARIC-AA and ARIC-EA study participants (Table 3-
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1). Samples were then processed and stored at -70°C according to WHI and ARIC protocols. 

DNA was extracted from peripheral blood leukocyte samples and then DNAm was measured on 

a methylome-wide scale using the Illumina 450K Infinium Methylation BeadChip (Illumina Inc.; 

San Diego, CA, USA). Specifically, DNAm was measured at 485,577 potentially relevant 

Cytosine-phosphate-Guanine (CpG) sites including CpG shores / islands, miRNA promoter 

regions, and disease-associated regions. Methylation was quantitatively represented by beta, the 

proportion of methylated cytosines over the sum of methylated and unmethylated cytosines.  

To adjust for probe bias, DNAm data were normalized using Beta Mixture Quantile 

(BMIQ).360 To control for variation due to batch effects, information on assay plate, chip, and 

row were collected. Leukocyte proportions for CD8+ T cells, CD4+ T cells, B cells, NK cells, 

monocytes, and granulocytes were estimated using Houseman methods to adjust for leukocyte 

composition.179 Study-specific quality control filters were applied, yielding DNAm beta values 

from 461,014 to 463,916 CpG sites in 8,983 participants (Table 3-1).  
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Table 3-1. Methylome-wide DNAm data exclusions in WHI and ARIC 

  Sample Exclusions Probe Exclusions 

Study 
N after 

exclusions1 

Detection  

p-value4 

n CpGs after 

exclusions2 

Detection  

p-value5 

Y 

Chr 
Bead Count5 

Non-CpG 

CH3 

WHI-EMPC 3 2,200 
> 0.01 in 

> 1% 
463,916 

> 0.01 in 

> 10% 
Yes No No 

WHI-BAA23 1,988 No 461,014 
> 0.01 in 

> 10% 
Yes No Yes 

WHI-AS311 860 No 461,136 
> 0.01 in 

> 1% 
Yes < 3 in > 10% Yes 

ARIC-AA 2,796 
> 0.01 in 

> 1% 
463,431 

> 0.01 in 

> 1% 
No  < 3 in > 5% No 

ARIC-EA 1,209 
> 0.01 in 

> 1% 
462,543 

> 0.01 in 

> 5% 
No < 3 in >5% No 

1Additional study-specific sample exclusions: gender mismatch or SNP discordance with previous genotyping, and / or outliers in 

principal component analysis 
2Additional probe exclusion: CpG sites with multi-modal DNAm distributions in ≥ 1 study 
3200 participants had a second and 43 had a third DNAm measure at a subsequent visit (n observations = 2,443) 
4Of probes 
5Of samples 
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C3. Leukocyte count and proportions 

Analysis of fasting blood samples collected from all WHI CT and OS participants at SV 

by certified staff at each of WHI Clinical Center included measurement of leukocyte count on 

automated hematology cell counters at local laboratories following standard quality-assurance 

procedures. Measurement of leukocyte count was repeated among subsets of WHI OS 

participants at the AV3 (Table 3-2).  

Fasting blood samples from ARIC participants at V1 and V2 were collected361 and within 

24 hours, leukocyte count was measured in local hospital-based hematology laboratories using 

automated cell counters (Coulter Diagnostics, Hialeah, Florida). Measurement of leukocyte 

count was repeated among subsets of Washington County participants at V3-V5, Forsyth 

Country participants at V4-V5, and Jackson / Minneapolis participants at V5 (Table 3-3). 

 

Table 3-2. Leukocyte counts in WHI by study & visit 

Study  
Participants w/ leukocyte counts 

SV AV3 

WHI 160,116 75,677 

   WHI CT 68,084 -- 

   WHI OS 92,032 75,677 

 

 

Table 3-3. Leukocyte counts in ARIC by center & visit 

Center  
Participants w/ leukocyte counts 

V1 V2 V3 V4 V5 

ARIC 15,546 14,213 3,404 6,003 6,303 

   Forsyth County 3,991 3,629 -- 2,825 1,393 

   Jackson, MS 3,540 3,088 -- -- 1,296 

   Minneapolis, MN 4,006 3,811 -- -- 1,889 

   Washington County 4,009 3,685 3,404 3,178 1,725 

 

Leukocyte proportions were estimated for CD8+ T cells, CD4+ T cells, NK cells, B cells, 

monocytes, and granulocytes using Houseman methods179 in WHI-EMPC, WHI-BAA23, WHI-

AS311, ARIC-AA, and ARIC-EA (Table 3-1). Briefly, Houseman and others developed 
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validated179,362 statistical methods that leveraged differentially methylated regions among 

leukocyte cell types i.e. CpG sites with stable DNAm within, but differing DNAm among types, 

to impute proportions from peripheral blood leukocyte samples. Estimated proportions using 

Houseman methods were deemed valid with a median root-mean-square-error (rMSE) of 8.2% 

(range: 5.4-11.6%)179 for CD8+ T cell, CD4+ T cell, NK cell, B cell, monocyte, and granulocyte 

proportions and an rMSE of 5% and 6% for monocytes and aggregated lymphocyte 

proportions.362 

C4. Heart rate variability and QT interval duration 

Heart rate variability (HRV) and QT interval duration (QT) was assessed at participant 

examinations and examination sites in WHI and ARIC (Tables 3-4 and 3-5) using three 

reliably195,287 estimated HRV measures (mean RR interval duration [RR, ms], i.e. the unit-

corrected inverse of mean heart rate; the standard deviation of normally conducted RR intervals 

[SDNN, ms]; and the square root of mean squared differences in successive, normally conducted 

RR intervals [RMSSD, ms] and median QT (QT, ms) from orthogonal XYZ leads. In the WHI 

CT and ARIC, the estimates were based on ten-second, resting, supine, standard twelve-lead 

ECGs363,364 recorded by MAC PCs (MAC PC, GE Marquette Electronics Inc., Milwaukee, WI), 

then transmitted to a central laboratory (Epidemiological Cardiology Research Center, Wake 

Forest School of Medicine, Winston-Salem, NC) for visual inspection, identification of technical 

errors / inadequate quality, and analysis using the 2001 version of the GE Marquette 12-SL 

program (GE Marquette, Milwaukee, WI). In WHI-MIMS, the estimates were based on 24-hour, 

ambulatory three-lead ECGs recorded by a Holter monitor and a Zymed Model 3100–001 digital 

recorder. 
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Table 3-4. ECG data in WHI by study & visit 

 Study SV AV3 AV6 AV9 

WHI CT 62,915 54,350 50,019 10,843 

WHI-MIMS* 3,372 -- -- -- 

*24-hour electrocardiograms 

 

 

Table 3-5. ECG data in ARIC by visit 

Study  V1 V2 V3 V4 V5 

ARIC 15,697 14,303 12,778 11,594 5,475 

 

 

C5. Other variables 

Other variables will be considered in analyses as statistical adjustments: 

Socio-demographic variables: age (years), race/ethnicity (European, African, 

Hispanic/Latino, Native American, Asian/Pacific, and other), sex (male, female), individual-

level education (high school education or lower, more than high school), and neighborhood 

socioeconomic status365; 

Health behaviors: smoking status (current, former, never), alcohol use (current, former, 

never), physical activity (metabolic equivalent of task [MET-hours/week]), and body mass index 

(BMI, kg/m2); 

Clinical outcomes: hypertension (anti-hypertensive medication use, history, systolic 

blood pressure ≥ 140 mmHg, or diastolic blood pressure ≥ 90 mmHg), hyperlipidemia (anti-

hyperlipidemic medication use; history; or in ARIC, total cholesterol > 240 mg/dL), diabetes 

(anti-diabetic medication use; history; or in ARIC, fasting glucose ≥ 126 mg/dL), chronic lung 

disease (history of asthma, emphysema, or lung cancer), coronary heart disease (anti-anginal 

medication use; history of angina, myocardial infarction, or coronary artery revascularization; or 

interim CHD presentation, based on physician review of medical records, incident event 

classification, and adjudication), and heart failure (HF; cardiac glycoside and loop or potassium-
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sparing diuretic use; history of HF; or interim HF presentation, based on physician review of 

medical records, incident event classification, and adjudication); 

Relevant meteorological and temporal variables: mean temperature (°C), dew point (°C), 

barometric pressure (kPa), season (using sine/cosine functions)366, and interval-scale measures 

for calendar time; 

Methylation-related variables: ten principal components (PCs) for genetic ancestry, 

estimated leukocyte proportions (CD8+ T cells, CD4+ T cells, B cells, NK cells, monocytes, and 

granulocytes), technical covariates (assay plate, chip, and row).  

All analyses will consider socio-demographic (including sex in ARIC) and behavioral 

variables, study center, randomly assigned treatment group (in WHI CT), case-control status (in 

WHI-AS311 and WHI-BAA23), and other sampling-related variables in WHI-AS311 

(enrollment year, age at enrollment, follow-up time, DNAm extraction method). Additionally, 

Specific Aim 1 will consider interval-scale measures for calendar time and meteorological 

variables. Specific Aim 2 will consider meteorological and methylation-related variables. 

Specific Aim 3.1 will consider meteorological and clinical variables, Specific Aim 3.2 will 

consider clinical and methylation-related variables, and Specific Aim 3.3 will consider 

meteorological, clinical, and methylation-related variables.   
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D. Data availability 

Table 3-6. Number of participants with available data for each Specific Aim and study 

population 

  

n SA 1.1 

(PM-

LC) 

n SA 1.2 

(PM-

LP) 

n SA 2 

(PM-

DNAm) 

n SA 3.1 

(PM-

ECG) 

n SA 3.2 

(DNAm-

ECG) 

n SA 3.3 

(PM-DNAm-

ECG) 

WHI CT 68,084 -- -- 62,915 -- -- 

WHI OS 92,032 -- -- -- -- -- 

WHI-

EMPC 
-- 2,200 2,200 -- 2,200 2,200 

WHI-

BAA23 
-- 1,988 1,988 -- 1,546 1,546 

WHI-

MIMS 
-- -- -- 3,372 -- -- 

WHI-

AS311 
-- 860 860 -- 405 405 

ARIC 15,546 -- -- 15,697 -- -- 

ARIC-AA -- 2,796 2,796 -- 2,796 2,796 

ARIC-EA -- 1,139 1,139 -- 1,139 1,139 

Total 175,662 8,983 8,983 81,984 8,086 8,086 

Abbreviations: AA, African American; ARIC, Atherosclerosis Risk in Communities; AS311, 

Ancillary Study 311; BAA23OS, Broad Agency Award 23; CT, clinical trial; DNAm, DNA 

methylation; EA, European American; EMPC, Epigenetic Mechanisms of PM-Mediated CVD; 

ECG, electrocardiographic traits (i.e. heart rate variability and QT interval duration); LC, 

leukocyte count; LP, leukocyte proportions; MIMS, Myocardial Ischemia and Migraine Study; 

OS observational study; PM, particulate matter 

 

 

E. Meta-analysis 

For each Specific Aim and sub-aim, subpopulation-specific (i.e. study- and /or study- and 

race/ethnicity-specific) association estimates will be forest plotted to visualize consistency and 

assessed for heterogeneity using Cochran’s Q test statistics,367 a test of homogeneity where Q is a 

χ2 test statistic equal to the weighted sum of squared deviations between study-specific and 

combined estimates, with degrees of freedom equal to the number of contributing subpopulations 

minus one.368 If there is not enough evidence to reject the null hypothesis of homogeneity 

(PCochran’s Q < 0.10), then fixed-effects, inverse variance-weighted meta-analysis will be used to 
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combine estimates; otherwise estimates will be reported separately and combined using random-

effects meta-analytic methods.369  

F. Specific Aim 1 

F1. Overview 

To assess the association between PM and leukocyte traits, PM-leukocyte count 

associations will be estimated in WHI CT, WHI OS, and ARIC then PM-leukocyte proportion179 

associations will be estimated in WHI-EMPC, WHI-BAA23, WHI-AS311, ARIC-AA, and 

ARIC-EA (Table 3-6).  

F2. Exclusions 

  Observations in WHI centers outside of the contiguous 48 states, on study visit dates for 

which PM was not estimable, among participants with leukocytosis, leukopenia, and common 

conditions associated with established abnormalities of leukocyte count and/or proportions, 

including hematological malignancy or use of an oral/parenteral glucocorticosteroid, 

granulocyte/macrophage colony stimulating factor, lithium, or antibiotic (as a proxy for 

infection) will be excluded. 

F3. Covariates 

  Covariates that will be considered for analysis are socio-demographic, behavioral, 

meteorological variables, interval-scale variables for calendar date, and randomly assigned 

treatment group in WHI CT.  

F4. Multiple imputation 

To address potential selection bias in complete-data analyses when data are missing at 

random370, multivariate imputation by chained equations (MICE)371,372 will be used to impute ten 

datasets to address missingness in PM2.5, PM10, and PM2.5-10 exposures (for all averaging 

durations), leukocyte counts, leukocyte proportions, and other model covariates. Briefly, MICE 
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will cycle through covariates with the lowest to highest number of missing values using a series 

of conditional regression models for robust imputation based on predicted values of each 

covariate regardless of their scale (e.g. interval, binary, count, and categorical).371,372 MICE will 

be implemented for participants present at visits within centers where leukocyte counts (for 

Specific Aim 1.1; Tables 3-2 and 3-3) and proportions (for Specific Aim 1.2; Table 3-1) are 

expected to be available. 

F5. Specific Aim 1.1 

F5.1. Attrition weights 

To address potential bias due to non-random attrition over time in WHI and ARIC 

(Tables 3-2 and 3-3), stabilized inverse probability of attrition weights for each participant will 

be calculated at each examination using logistic regressions, where the numerator will be the 

marginal probability of the participant not being lost to follow-up at an examination and the 

denominator will be the probability of the participant not being lost to follow-up at an 

examination conditional on their covariate patterns at the prior examination.373  

F5.2. Statistical analyses 

Study- and center-stratified, attrition-weighted and covariate-adjusted, two-level, linear 

mixed-effects longitudinal models will leverage repeated measures to estimate associations 

between PM and leukocyte count. The models will have a random intercept for examination at 

the participant, as given by 

 

(1) 𝐿𝐶𝑖𝑗 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗 + 𝛽2𝑍𝑖𝑗 + 𝑏0𝑗
𝑃 + 𝜀𝑖𝑗

𝐸 , 

 

 

where 𝑖 and  𝑗 denote the 𝑖𝑡ℎ examination (level 1) of the 𝑗𝑡ℎ participant (level 2), 𝐿𝐶 is the 

leukocyte count, 𝛽0 is the intercept, 𝑃𝑀 is 2-, 7-, 28-, or 365-day or 1- or 12-month means of 

PM2.5, PM10, and PM2.5-10, and 𝑍 is a vector of covariates. The terms (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a random 
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intercept for examination at the participant level and 𝜀𝐸 ~ (𝑂, 𝜎2) is the random error at the 

examination level. The study- and center-stratified measures of association (𝛽1) and their 95% 

confidence intervals (CIs) using 𝛽1 ± 1.96 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 (𝑆𝐸) will be reported for a 10 

µg/m³ increase in PM, forest plotted, and pooled in random-effects meta-analyses 369 after testing 

homogeneity of associations among strata (PCochran’s Q < 0.10) 374.  

F6. Specific Aim 1.2 

For analyses of estimated leukocyte proportions, multivariate, compositional data 

analysis methods by Aitchison375 and Egozcue376 will be implemented. Briefly, compositional 

data comprise a set of positive, mutually exclusive components, such as proportions, that 

represent parts constituting a whole. Therefore, a composition is defined as a set of components 

that are multi-collinear and collectively sum to 1. As such, the components exist in a constrained 

space called a simplex (which conforms to Atchison geometry). Standard multivariate 

approaches, however, assume that compositional data are unconstrained, thereby existing in a 

real space (which conforms to Euclidean geometry), thus erroneously imposing that the 

components vary independently. To appropriately allow for standard multivariate analyses of 

compositional data, Atchison and others have defined log-ratio transformations that transfer 

compositional data from the simplex to real space.377 Although several log-ratio transformations 

exist, isometric log-ratio (ilr) transformations376 allow for the relative positions between d 

components in the simplex space to be retained when transferred,377,378 resulting in d-1 

orthogonal coordinates (i.e. that are not multi-collinear). The ilr is also relatively advantageous in 

standard multivariate analyses because transformed values can be back-transformed into 

component proportions from multivariate results.379   
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F6.1. Statistical analyses 

In each subpopulation, covariate-adjusted, cross-sectional models will estimate 

multivariate associations between PM and leukocyte composition determined by estimated 

leukocyte proportions. Proportions will be isometrically log-ratio transformed (ilr) in preparation 

for compositional data analysis models, as given by 

 

(2) 𝑖𝑙𝑟(𝐿𝑃) = 𝛽0 + 𝛽1𝑃𝑀 + 𝛽3𝑍 + 𝜀 

 

where 𝑖𝑙𝑟(𝐿𝑃) denotes the isometrically log-ratio transformed estimated leukocyte proportions, 

𝛽0 is the intercept, 𝑃𝑀 is 2-, 7-, 28-, or 365-day or 1- or 12-month mean of PM2.5, PM10, and 

PM2.5-10, and 𝑍 is a vector of covariates, and 𝜀 ~ (𝑂, 𝜎2) is the random error term.  The vector of 

association measures (𝛽1) denotes the five orthogonal coordinates, the back-transformation of 

which represents the corresponding change in each of the six leukocyte proportions per 10 µg/m³ 

increase in PM. Because the standard errors of 𝛽1 cannot be back-transformed, the standard 

errors of back-transformed leukocyte proportion associations will be estimated using 1,000 

bootstrap samples. Subpopulation-specific measures of association will be reported as absolute 

percentage changes (%) and pooled in random effects meta-analyses 369 after testing 

homogeneity of associations among strata (PCochran’s Q < 0.10) 374. 

G. Specific Aim 2 

G1. Overview  

Analyses of study- and race/ethnicity-stratified (i.e. European-, African-, and 

Hispanic/Latino-American) PM-DNAm associations will be conducted at each CpG methylation 

site on the Illumina 450K Infinium Methylation BeadChip. The association analyses will be 

based on DNAm data from seven studies: WHI-EMPC, WHI-BAA23 CT & OS, WHI-AS311 

CT & OS and ARIC- AA and ARIC-EA (n = 8,983; Table 3-6). Association estimates for each 
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CpG site will be meta-analytically combined within and among races/ethnicities (see section F), 

then ranked according to statistical significance. Functional characterization of CpG sites will be 

conducted using publicly accessible genomic databases to assess their putative function and 

biological plausibility and replication will be attempted in subpopulations within the Cooperative 

Health Research in the Region Augsburg (KORA) study. 

G2. Covariates 

Covariates that will be considered for analysis are socio-demographic, behavioral, 

meteorological, and methylation-related variables, as well as study-specific covariates, including 

randomly assigned treatment group (CT subpopulations of WHI-AS311, WHI-BAA23, WHI-

EMPC); case-control status (WHI-AS311, WHI-BAA23); and control matching criteria (WHI-

AS311). 

G3. Multiple imputation 

MICE370-372 (see section F4) will be used to impute ten datasets to address missingness in 

PM2.5, PM10, and PM2.5-10 exposures (for all averaging durations) and other model covariates for 

all participants who underwent DNAm profiling (Table 3-1), but will not involve imputation of 

DNAm and methylation-related variables.  

G4. Statistical analyses 

In each subpopulation, covariate-adjusted, multi-level, linear mixed-effects models will 

estimate PM-DNAm associations: 

In WHI-EMPC, three-level longitudinal models will have a random intercept for 

examination at the participant level, a random intercept and slope and for PM at the WHI center 

level, and a random intercept for chip (ComBat will be used to adjust for plate; see Table 3-1), as 

given by 

 



 

 44 

(3) 𝐷𝑁𝐴𝑚𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗𝑘 + 𝛽2𝑍𝑖𝑗𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑗𝑘 + 𝑏0𝑗𝑘
𝑃 + 𝑏0𝑖𝑗𝑘

𝐸 + 𝜀𝑖𝑗𝑘
𝐸 . 

 

In WHI-BAA23 CT & OS, and WHI-AS311 CT & OS, two-level cross-sectional models will 

have a random intercept and slope for PM at the WHI center level and a random intercept for 

plate and chip, as given by 

 

(4) 𝐷𝑁𝐴𝑚𝑖𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑘 + 𝛽2𝑍𝑖𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑘 + 𝑏0𝑖𝑘
𝐸 + 𝜀𝑖𝑘

𝐸 . 

 

In ARIC-AA and ARIC-EA, one-level cross-sectional models will have a random intercept for 

plate and chip, as given by 

 

(5) 𝐷𝑁𝐴𝑚𝑖 = 𝛽0 + 𝛽1𝑃𝑀𝑖 + 𝛽2𝑍𝑖 + 𝑏0𝑖
𝐸 +  𝜀𝑖

𝐸 . 

 

where 𝑖, 𝑗 and 𝑘 denote the 𝑖𝑡ℎ examination of the 𝑗𝑡ℎ participant in the 𝑘𝑡ℎ center, 𝐷𝑁𝐴𝑚 is the 

beta value at a given CpG site, 𝛽0 is the intercept, 𝑃𝑀 is 2-, 7-, 28-, or 365-day or 1- or 12-

month means of PM2.5, PM10, and PM2.5-10, and 𝑍 is a vector of covariates. The terms (𝑏0
𝐶, 𝑏1

𝐶) ~ 

𝑁(𝑂, 𝐺) are a random intercept and a random slope for 𝑃𝑀 at center level, (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a 

random intercept for examination at the participant level, and (𝑏0
𝐸) ~ 𝑁(𝑂, 𝐺) represents random 

intercepts for technical covariates and 𝜀𝐸 ~ (𝑂, 𝜎2) is the random error at the examination level. 

Measures of association (𝛽1) and their 95% confidence intervals (𝛽1 ± 1.96 𝑥 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟) 

will be reported as an absolute percentage change in DNAm per 10 µg/m³ increase in PM. 

G5. Meta-analysis 

For each PM size fraction and exposure averaging duration in association analyses, 

subpopulation-specific estimates will be meta-analytically combined within and among 

race/ethnicities (n = 8,983). Established protocols will be followed for subpopulation-specific 

and meta-analyzed results, including review of results by graphing the observed -log10-
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transformed P values for each CpG site against the expected values from a theoretical χ2 

distribution in quantile-quantile (QQ) plots; and estimating the genomic inflation factor (λ), 

where λ is defined as the ratio of the median observed to median expected -log10P value.380,381 In 

the proposed analyses, genomic inflation is expected due to residual confounding by batch 

effects, leukocyte heterogeneity, and unmeasured biological factors. Inflation is also likely 

because DNAm across many CpG sites is plausibly correlated and / or associated with PM 

exposure.  

G6. Technical validation 

In a random subset of 200 WHI-EMPC participants, bisulfite pyrosequencing will be 

used to validate the Illumina 450K measures of DNAm at ten PM-sensitive CpG sites (P < 1 x 

10-5). CpG sites with poor next generation sequencing data or situated in CpG-rich, repetitive 

element, or low sequence complexity regions of the genome will be excluded as candidates for 

pyrosequencing. Site-specific comparisons of DNAm measures will be based on mean Illumina 

450K minus bisulfite pyrosequencing differences (Δ), Pearson correlation coefficients (r), and 

Deming regression estimates of their intercepts (α) and slopes (β).382 When the two measures are 

nearly identical, Δ, r, α, and β approach values of 0, 1, 0, and 1, respectively.  

G7. Functional annotation 

Statistically significant (P < 1 x 10-7) CpG sites will be functionally characterized using 

publicly accessible genomic databases, including National Human Genome Research Institute 

(NHGRI) Genome-Wide Association Study Catalog383, Genotype-Tissue Expression (GTEx) 

database384, associations between DNAm and gene expression in human blood cells were 

obtained from a study of approximately 400,000 CpG sites and > 13,000 transcripts in the Multi-

Ethnic Study of Atherosclerosis (MESA) and Grady Trauma Project (GTP) cohorts385, and 

experimentally derived Functional element Overlap analysis of ReGions from EWAS (eFORGE) 
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v2.0386 with data from the Encyclopedia of DNA elements (ENCODE) 387, Roadmap 

Epigenomics Project 388, and BLUEPRINT.389 Overlap of CpG site-specific PM sensitivity, 

histone modification, and DNase I hypersensitivity will be evaluated in eFORGE with a false 

discovery rate (FDR) threshold of 0.05. 

G8. Replication 

The Cooperative Health Research in the Region of Augsburg (KORA) study is a 

population-based cohort from the region of Augsburg, Southern Germany. Replication will 

involve up to 2,176 participants from two studies of the population-based KORA cohort: F3 (n = 

464) and F4 (n = 1,712). KORA F3 (2004-2005) and F4 (2006-2008) are follow-up studies of the 

KORA S3 and S4 cohort participants, including German nationals aged 25-74 years from 

Augsburg, Germany 390,391. 

Significant CpG sites that are not heterogeneous across subpopulations (P < 1.0x10-7; 

PCochran’s Q > 0.10) will undergo replication and meta-analyses in KORA F3 and F4. Pollutant- 

and averaging duration-specific replication thresholds were Bonferroni-corrected by dividing the 

conventional alpha level (0.05) by the number of CpG sites carried into replication. 

H. Specific Aim 3 

H1. Overview 

Mediation of the PM-ECG (i.e. PM-HRV and PM-QT) associations by DNAm will be 

assessed in populations within WHI and ARIC (Table 3-6). Mediation typically requires 

associations between the exposure and outcome, between the exposure and mediator, and 

between the mediator and the outcome.180 The association between PM (i.e. the exposure) and 

HRV and QT (i.e. the outcomes) will be evaluated in this aim using longitudinal data from 10-

second ECGs in the WHI CT and ARIC, and 24-hour ECGs in WHI MIMS (total n=81,924; 

Table 3-6). The association between PM and DNAm (i.e. the mediator) will have been evaluated 
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in Specific Aim 2. Then, associations of CpG sites identified as being sensitive to PM (P < 1.0 x 

10-7) with HRV and QT will be estimated in studies with both DNAm and ECG data, i.e. WHI-

EMPC, WHI-BAA23 CT, WHI-AS311 CT, ARIC-AA, and ARIC-EA (total n = 8,086; Table 3-

6). Then, DNAm associations at those CpG sites will be estimated with HRV and QT in the same 

studies. Finally, causal mediation analyses will determine the degree to which DNAm mediates 

the PM-HRV and PM-QT associations.180,392,393  

H2. Exclusions 

  Observations in WHI centers outside of the contiguous 48 states, on study visit dates for 

which PM was not estimable, and among participants with conditions that affect the availability 

or quality of HRV or QT interval duration measures including electronic pacers; poor quality 

grades; Wolff Parkinson White syndrome; atrial fibrillation; atrial flutter; atrioventricular block; 

antiarrhythmic medication will be excluded. HRV analyses will also exclude observations made 

on participants with ventricular or supraventricular tachycardia, supraventricular rhythm, pauses, 

< 5 or 50% normal-to-normal RR intervals, or ventricular ectopy. QT analyses will exclude 

observations made on participants with heart failure or QRS interval > 120 ms. 

H3. Covariates 

  Covariates that will be considered for analyses are socio-demographic, meteorological 

(for Specific Aims 3.1 and 3.3), behavioral, clinical, and methylation-related variables and study-

specific covariates (for Specific Aims 3.2 and 3.3) including randomly assigned treatment group 

(in WHI), case-control status (in WHI-AS311 and WHI-BAA23), and other sampling-related 

variables in WHI-AS311 (enrollment year, age at enrollment, follow-up time, DNAm extraction 

method). 
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H4. Multiple imputation 

MICE370-372 (see section F4) will be used to impute ten datasets to address missingness in 

PM2.5, PM10, and PM2.5-10 exposure (for all averaging durations), HRV measures (i.e. RR, 

RMSSD, and SDNN), QT interval duration, and other model covariates. For Specific Aim 3.1, 

MICE will be performed for all participants present at each visit (Tables 3-4 and 3-5). For 

Specific Aims 3.2 and 3.3, MICE will be performed for all participants who underwent 

methylation profiling (Table 3-1), but will not involve imputation of DNAm and methylation-

related variables.  

H5. Specific Aim 3.1 

H5.1. PM-HRV and PM-QT association 

The PM-HRV and PM-QT associations will be estimated for mean concentrations of 

ambient PM2.5, PM10, and PM2.5-10 that are associated with DNAm (P < 1 x 10-7). The right-

skewed HRV measures from WHI CT, WHI-MIMS, and ARIC (Table 3-4 and 3-5) will be log-

transformed for use in study-specific analyses. MICE will be used to impute missing and attrition 

weights will be calculated to control for bias related to loss to follow-up (see section F5.1). 

H5.2. Statistical analyses 

In each subpopulation, covariate-adjusted, linear mixed-effects models will estimate PM-

HRV and PM-QT associations: 

In WHI CT, attrition-weighted and covariate-adjusted, three-level longitudinal models 

will contain a random intercept for examination at the participant level and a random intercept 

and slope for PM at the study center level, as given by  

 

(6) 𝐸𝐶𝐺𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗𝑘 + 𝛽3𝑍𝑖𝑗𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑗𝑘 + 𝑏0𝑗𝑘
𝑃 + 𝜀𝑖𝑗𝑘

𝐸  
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In ARIC, attrition-weighted and covariate-adjusted, two-level longitudinal models will adjust for 

clinical center as a fixed effect and had a random intercept for examination at the participant 

level, as given by 

 

(7) 𝐸𝐶𝐺𝑖𝑗 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗 + 𝛽3𝑍𝑖𝑗 + 𝑏0𝑗
𝑃 + 𝜀𝑖𝑗

𝐸  

 

In WHI MIMS, covariate-adjusted, two-level cross-sectional models will contain a random 

intercept and slope for PM at the study center level, as given by  

 

(8) 𝐸𝐶𝐺𝑖𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑘 + 𝛽3𝑍𝑖𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑘 + 𝜀𝑖𝑘
𝐸  

 

where 𝑖, 𝑗, and 𝑘 denote the 𝑖𝑡ℎ examination of the 𝑗𝑡ℎ participant in the 𝑘𝑡ℎ center, 𝐸𝐶𝐺 is the 

QT interval or the log-transformed measure of RR, RMSSD, or SDNN, 𝛽0 is the intercept, 𝑃𝑀 is 

2-, 7-, 28-, or 365-day or 1- or 12-month means of PM2.5, PM10, and PM2.5-10, and 𝑍 is a vector of 

covariates. The terms (𝑏0
𝐶 , 𝑏1

𝐶) ~ 𝑁(𝑂, 𝐺) are a random intercept and a random slope for 𝑃𝑀 at 

the center level, (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a random intercept for examination at the participant level, 

and 𝜀𝐸 ~ (𝑂, 𝜎2) is the random error at the examination level.  

 Measures of association (𝛽1) and 95% confidence intervals (CI) from analyses of QT 

interval duration will be reported as milliseconds changes (∆, 𝑚𝑠) and of log-transformed HRV 

measures will be reported as percent changes (∆, %) in HRV per 10 µg/m3 increase in PM, where 

 

∆, % = 100(1010𝛽1 − 1), 95% 𝐶𝐼: 100(1010(𝛽1±1.96𝑆𝐸) − 1). 

 

H6. Specific Aim 3.2 

H6.1. Selecting potential mediators  

The DNAm-HRV and DNAm-QT associations will be estimated for each PM-sensitive 

CpG site identified in Specific Aim 2 (P < 1.0 x 10-7). ECG measures will include only 10-
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second ECG measures from WHI-EMPC, WHI-BAA23 CT, ARIC-AA, and ARIC-EA due to 

the lack of available DNAm data in WHI-MIMS (Table 3-6). 

H6.2. DNAm-ECG association 

In each subpopulation, covariate-adjusted, linear mixed-effects models will estimate 

DNAm-HRV and DNAm-QT associations: 

In WHI-EMPC, two-level longitudinal models will contain a random intercept for 

examination at the participant level and a random intercept for chip, as given by 

 

(9) 𝐸𝐶𝐺𝑖𝑗 = 𝛽0 + 𝛽1𝐷𝑁𝐴𝑚𝑖𝑗 + 𝛽2𝑍𝑖𝑗 + 𝑏0𝑗
𝑃 + 𝑏0𝑖𝑗

𝐸 +  𝜀𝑖𝑗
𝐸 . 

 

In WHI-BAA23 CT, WHI-AS311 CT, ARIC-AA, and ARIC-EA, one-level cross-sectional 

models will estimate DNAm-HRV and DNAm-QT associations with a random intercept for plate 

and chip, as given by  

 

(10) 𝐸𝐶𝐺𝑖 = 𝛽0 + 𝛽1𝐷𝑁𝐴𝑚𝑖 + 𝛽2𝑍𝑖 + 𝑏0𝑖
𝐸 + 𝜀𝑖

𝐸 . 

 

where 𝑖 and 𝑗 denote the 𝑖𝑡ℎ examination of the 𝑗𝑡ℎ participant, 𝐸𝐶𝐺 is the QT interval or the log-

transformed measure of RR, RMSSD, or SDNN from a 10-second ECG, 𝛽0 is the intercept, 

𝐷𝑁𝐴𝑚 is the beta value at a given CpG site, and 𝑍 is a vector of covariates. The term (𝑏0
𝑃) ~ 

𝑁(𝑂, 𝐺) is a random intercept for examination at the participant level, and (𝑏0
𝐸) ~ 𝑁(𝑂, 𝐺)  

represents random intercepts for technical variables plate and/or chip and 𝜀𝐸 ~ (𝑂, 𝜎2) is the 

random error at the examination level. The measures of association (𝛽1) and 95% CIs (𝛽1 ±

1.96𝑆𝐸) will be reported as millisecond changes (∆, 𝑚𝑠) in QT interval duration and percent 

changes (∆, %) in HRV per 10% increase in DNAm. 
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H7. Specific Aim 3.3 

H7.1 Mediation Analysis 

For each CpG site and corresponding HRV / QT measure, mediation methods180,392,393 

will be used to decompose the total effect (TE) between PM and HRV / QT into a natural direct 

effect (NDE) i.e. the effect of PM on HRV / QT independent of DNAm; and a natural indirect 

effect (NIE), i.e. the effect of PM on HRV / QT through DNAm; where the sum of NDE and NIE 

is the TE.  

First, for each PM-sensitive CpG site identified in Specific Aim 2 (P < 1.0 x 10-7), PM-

DNAm associations will be re-estimated as previously described (see section G.4) but in the 

subpopulations with HRV and QT data meeting inclusion criteria.   

Next, in each subpopulation, covariate-adjusted, linear mixed-effects models will 

estimate PM-HRV / -QT and estimate DNAm-HRV / -QT associations and PM x DNAm 

interactions:  

In WHI-EMPC, three-level longitudinal models will have a random intercept for 

examination at the participant level, a random intercept and slope and for PM at the WHI center 

level, and a random intercept for chip, as given by 

 

(11) 𝐸𝐶𝐺𝑖𝑗𝑘 = 𝜃0 + 𝜃1𝑃𝑀𝑖𝑗𝑘 + 𝜃2𝐷𝑁𝐴𝑚𝑖𝑗𝑘 + 𝜃3𝑃𝑀𝑖𝑗𝑘𝑥𝐷𝑁𝐴𝑚𝑖𝑗𝑘 + 𝜃4𝑍𝑖𝑗𝑘 + 𝑏0𝑘
𝐶 +

𝑏1𝑘
𝐶 𝑃𝑀𝑖𝑗𝑘 + 𝑏0𝑗𝑘

𝑃 + 𝑏0𝑖𝑗𝑘
𝐸 + 𝜀𝑖𝑗𝑘

𝐸 . 

 

In WHI-BAA23 CT, and WHI-AS311 CT, two-level cross-sectional models will have a random 

intercept and slope for PM at the WHI center level and a random intercept for plate and chip, as 

given by 
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(12) 𝐸𝐶𝐺𝑖𝑘 = 𝜃0 + 𝜃1𝑃𝑀𝑖𝑘 + 𝜃2𝐷𝑁𝐴𝑚𝑖𝑘 + 𝜃3𝑃𝑀𝑖𝑘𝑥𝐷𝑁𝐴𝑚𝑖𝑘 + 𝜃4𝑍𝑖𝑘 + 𝑏0𝑘
𝐶 +

𝑏1𝑘
𝐶 𝑃𝑀𝑖𝑘 + 𝑏0𝑖𝑘

𝐸 + 𝜀𝑖𝑘
𝐸 . 

 

In ARIC-AA and ARIC-EA, one-level cross-sectional models will have a random intercept for 

plate and chip, as given by 

 

(13) 𝐸𝐶𝐺𝑖 = 𝜃0 + 𝜃1𝑃𝑀𝑖 + 𝜃2𝐷𝑁𝐴𝑚𝑖 + 𝜃3𝑃𝑀𝑖𝑥𝐷𝑁𝐴𝑚𝑖 + 𝜃4𝑍𝑖 + 𝑏0𝑖
𝐸 + 𝜀𝑖𝑘

𝐸 . 

 

where 𝑖, 𝑗 and 𝑘 denote the 𝑖𝑡ℎ examination of the 𝑗𝑡ℎ participant in the 𝑘𝑡ℎ center, 𝐸𝐶𝐺 is the 

QT interval or the log-transformed measure of RR, RMSSD, or SDNN from a 10-second ECG, 

𝛽0 is the intercept, 𝐷𝑁𝐴𝑚 is DNAm at a relevant CpG site, 𝑃𝑀 is 2-, 7-, 28-, or 365-day or 1- or 

12-month mean  PM2.5, PM10, and PM2.5-10, 𝑃𝑀𝑥𝐷𝑁𝐴𝑚 is the PM-DNAm interaction term, and 

𝑍 is a vector of covariates. The terms (𝑏0
𝐶, 𝑏1

𝐶) ~ 𝑁(𝑂, 𝐺) are a random intercept and a random 

slope for 𝑃𝑀 at center level, (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a random intercept for examination at the 

participant level, and (𝑏0
𝐸) ~ 𝑁(𝑂, 𝐺) represents random intercepts for technical covariates plate 

and/or chip and 𝜀𝐸 ~ (𝑂, 𝜎2) is the random error at the examination level. 

The NDE and NIE will be estimated for a change in PM exposure from level 𝑎∗ (i.e. 0 

µg/m3) to level 𝑎 (i.e. 10 µg/m3) using 

 

(14) 𝑁𝐷𝐸 = [𝜃1 + 𝜃3(𝛽0 + 𝛽1𝑎∗ + 𝛽2𝑍)](𝑎 − 𝑎∗) 

 

 

(15) 𝑁𝐼𝐸 = 𝛽1(𝜃2 + 𝜃3)(𝑎 − 𝑎∗) 

 

 

(16) 𝑇𝐸 = 𝑁𝐷𝐸 + 𝑁𝐼𝐸 

 

 

where 𝛽0, 𝛽1, and 𝛽2 denote the intercept, the 𝑃𝑀 coefficient, and a vector of coefficients for 

covariates 𝑍 in models of relevant CpG from that were re-estimated from Specific Aim 2 (i.e. re-
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estimated values from Equations 3, 4, and 5); and 𝜃1, 𝜃2, and 𝜃3 are coefficients for 𝑃𝑀, 𝐷𝑁𝐴𝑚, 

and the 𝑃𝑀𝑥𝐷𝑁𝐴𝑚 interaction from Equations 11, 12, add 13.  

Bootstrapping over 500 samples will be implemented to estimate standard errors and 95% 

CIs for the NDE and NIE estimates (𝑁𝐷𝐸 𝑜𝑟 𝑁𝐼𝐸 ± 1.96𝑆𝐸).24-26 Finally, if the NDE and NIE 

are both positive or both negative (i.e. have the same signs), the proportion mediated (%) will be 

estimated by dividing the NIE by the TE.180,394 When the NDE and NIE have opposite signs, or 

when the total effect is small, the proportion mediated can be unstable and interpretable, with 

values greater than one or less than zero.394,395 
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CHAPTER 4. STUDY POWER 

For all Specific Aims, minimum detectable associations (MDAs) with 80% power were 

estimated assuming a one-visit, cross-sectional study design, a given sample size (Table 3-6), 

standard deviations for independent and dependent variables from a subset available data, and a 

type I error rate (α) of 0.05, with Bonferroni-correction for multiple testing applied when stated. 

MDAs were represented as a change (Δ) or percent change (Δ,%) in the outcome using the US 

EPA PM Integrated Science Assessment standard increment (10 µg/m3) in concentration10 or a 

1% increment in DNAm. Cross-sectional power calculations relied on the powerMediation 

package in R.396,397 

A. Specific Aim 1.1 

MDAs (Δ) for leukocyte counts (x103/mm3) were estimated per 10 µg/m3 increase in PM 

in a sample size of 175,662 participants with a type I error rate of 0.05. With 80% power, MDAs 

ranged from 0.010 to 0.039 x103 leukocytes/mm3 (Table 4-1), values consistent with associations 

detected in previous literature.100 Although well-powered in the cross-sectional setting, analyses 

will also involve 89,890 measures from participants’ second visit and 20,049 measures (Tables 

3-2 and 3-3) from all following visits. Therefore, the tabulated MDAs are at the upper bound. 

Analyses over 100 simulations leveraging repeated measures data across two visits, while 

allowing for loss to follow-up, also suggested that power to detect the tabulated MDAs (Table 4-

1) ranges from 91% to 100% (data not shown). 
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Table 4-1. Minimum detectable associations (Δ) for leukocyte counts per 10 µg/m3 increase in 

PM with 80% power (n=175,662) 

Exposure 
Δ for LC 

LC, SD2: 1.8 

PM Duration SD1 α = 0.05 

PM10 

2 days 12.16 0.010 

7 days 9.26 0.013 

28 days 7.17 0.016 

365 days 5.16 0.023 

1 month 5.84 0.021 

12 months 4.11 0.029 

PM2.5 

2 days 7.16 0.016 

7 days 6.1 0.020 

28 days 5.19 0.023 

365 days 3.23 0.038 

1 month 4.4 0.027 

12 months 3.09 0.039 

PM2.5-10 

2 days 8.82 0.014 

7 days 6.59 0.018 

28 days 5.45 0.022 

365 days 3.08 0.039 

1 month 4.19 0.029 

12 months 3.31 0.037 

Abbreviations: α, type I error rate; LC, leukocyte count; n, 

number of participants; PM, particulate matter; SD, standard 

deviation.; 1Calculated from the first available visit from WHI-

EMPC, WHI-BAA23, and ARIC-AA; 2and WHI CT, WHI OS, 

and ARIC  

 

 

B. Specific Aim 1.2 

MDAs (Δ, %) for six leukocyte cell type proportions were estimated per 10 µg/m3 

increase in PM in a sample of 8,983 participants (Table 3-6) with a Bonferroni-corrected type I 

error rate of 0.05/6 = 0.0083 to conservatively account for the compositional nature of the data. 

Although the proposed multivariate analyses involve isometric log-ratio transformation of 

leukocyte proportions due to their dependence, for simplicity, power calculations were based on 

univariate associations for each cell type proportion. The MDAs are therefore likely to be higher 
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than MDAs in the actual compositional data analyses.  Even so, estimated MDAs were largely 

well below 1% with 80% power (Table 4-2).  

 

Table 4-2. Minimum detectable associations (Δ, %) for leukocyte proportions per 10 µg/m3 

increase in PM with 80% power (n=8,983) 

Exposure 

Δ for leukocyte proportions (%) 

CD8+ T, 

SD1: 0.08 

CD4+ T, 

SD1: 0.07 

B cell, 

SD1: 0.04 

NK, 

SD1: 0.05 

Monocyte,

SD1: 0.04  

Granulocyte

,SD1: 0.13 

PM Duration SD1 
α =  

0.0083 

α = 

0.0083 

α = 

0.0083 

α = 

0.0083 

α =  

0.0083 

α =  

0.0083 

PM10 

2 days 12.16 0.2 0.2 0.2 0.2 0.1 0.4 

7 days 9.26 0.3 0.3 0.2 0.2 0.2 0.5 

28 days 7.17 0.3 0.4 0.2 0.3 0.2 0.6 

365 days 5.16 0.5 0.6 0.3 0.4 0.3 0.9 

1 month 5.84 0.5 0.5 0.3 0.3 0.3 0.8 

12 months 4.11 0.6 0.7 0.4 0.5 0.3 1.1 

PM2.5 

2 days 7.16 0.3 0.4 0.2 0.3 0.2 0.6 

7 days 6.1 0.5 0.5 0.3 0.3 0.2 0.7 

28 days 5.19 0.5 0.6 0.3 0.4 0.3 0.9 

365 days 3.23 0.8 0.8 0.5 0.6 0.5 1.4 

1 month 4.4 0.6 0.6 0.3 0.5 0.3 1.1 

12 months 3.09 0.8 0.9 0.5 0.6 0.5 1.5 

PM2.5-10 

2 days 8.82 0.3 0.3 0.2 0.2 0.2 0.5 

7 days 6.59 0.4 0.5 0.3 0.3 0.2 0.7 

28 days 5.45 0.5 0.5 0.3 0.3 0.3 0.8 

365 days 3.08 0.8 0.9 0.5 0.6 0.5 1.5 

1 month 4.19 0.6 0.7 0.4 0.5 0.3 1.1 

12 months 3.31 0.8 0.8 0.5 0.6 0.5 1.4 

Abbreviations: α, type I error rate; LC; n, number of participants; NK, natural killer cell; PM, particulate 

matter; SD, standard deviation. 
1Calculated from the first available visit from WHI-EMPC, WHI-BAA23, and ARIC-AA 

 

 

C. Specific Aim 2 

MDAs represented as a change in DNAm (%) were estimated per 10 µg/m3 increase in 

PM in a sample size of 8,983 participants (Table 3-6) with a Bonferroni-corrected type I error 

rate of 1x10-7 that accounts for multiple testing of DNAm at 500,000 CpG sites. With 80% 

power, MDAs ranged from 0.21% to 0.69% per 10 µg/m3 increase in PM (Table 4-3), which are 

similar to those observed in a previous methylome-wide association study.173  
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Table 4-3. Minimum detectable associations (Δ, %) for DNAm per 10 µg/m3 increase in PM 

with 80% power (n=8,983) 

Exposure 

Δ for DNAm (%)  

DNAm, SD1: 

0.03 

PM Duration SD1 α = 1x10-7 2 

PM10 

2 days 12.16 0.21 

7 days 9.26 0.25 

28 days 7.17 0.30 

365 days 5.16 0.38 

1 month 5.84 0.35 

12 months 4.11 0.45 

PM2.5 

2 days 7.16 0.30 

7 days 6.1 0.34 

28 days 5.19 0.38 

365 days 3.23 0.65 

1 month 4.4 0.43 

12 months 3.09 0.69 

PM2.5-10 

2 days 8.82 0.26 

7 days 6.59 0.32 

28 days 5.45 0.37 

365 days 3.08 0.69 

1 month 4.19 0.45 

12 months 3.31 0.63 

Abbreviations. α, type I error rate; DNAm, DNA methylation; n, 

number of participants; PM, particulate matter; SD, standard 

deviation. 1Calculated from the first available visit from WHI-EMPC, 

WHI-BAA23, and ARIC-AA. 2Bonferroni-corrected α for discovery 

at 500,000 CpG sites 

 

 

D. Specific Aim 3.1 

MDAs (Δ, %) for log-transformed measures of HRV and interval-scale QT (Δ, ms) were 

estimated per 10 µg/m3 increase in PM in a sample of 81,984 participants with a type I error rate 

of 0.05. With 80% power, MDAs ranged from 0.2% to 0.6% for RR, 0.6% to 2.3% for RMSSD, 

0.5% to 2.2% for SDNN, and 0.2 and 0.9 ms for QT (Table 4-4), values similar to those detected 

in a previous study of the PM-HRV and PM-QT association in WHI241,339 and a separate meta-

analysis of 29 studies.239 Although well-powered in the cross-sectional setting, analyses will also 

involve an additional 68653, 62797, and 22437 PM and HRV/ QT measures from participants’ 
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second through fourth visits (Tables 3-4 and 3-5). Therefore, the tabulated MDAs are at the 

upper bound. Simulation-based analyses leveraging repeated measures data over four visits 

suggested that power to detect the tabulated MDAs (Table 4-4) ranges from 99% to 100% for 

RR, 98% to 100% for RMSSD, 99% to 100% for SDNN, and 99% and 100% for QT (data not 

shown). Power was estimated using 100 simulations and assumed constant covariance of PM and 

HRV / QT across study visits and loss to follow-up patterns across visits representative of those 

observed in WHI and ARIC. 

 

Table 4-4. Minimum detectable associations (Δ, %) for HRV and (Δ, ms) for QT per 10 µg/m3 

increase in PM assuming 80% power (n=81,984) 

Exposure 

Δ % for HRV,  Δ ms for QT 

log(RR),  

SD2: 0.15 

log(RMSSD), 

SD2: 0.70 

log(SDNN),  

SD2: 0.66 

QT, 

 SD2: 29.9 

PM Duration SD1 α = 0.05 α = 0.05 α = 0.05 α = 0.05 

PM10 

2 days 12.16 0.1 0.5 0.5 0.2 

7 days 9.26 0.2 0.8 0.7 0.3 

28 days 7.17 0.2 1.0 0.9 0.4 

365 days 5.16 0.3 1.3 1.3 0.6 

1 month 5.84 0.2 1.2 1.1 0.5 

12 months 4.11 0.4 1.7 1.6 0.7 

PM2.5 

2 days 7.16 0.2 1.0 0.9 0.4 

7 days 6.1 0.2 1.1 1.1 0.5 

28 days 5.19 0.3 1.3 1.3 0.6 

365 days 3.23 0.4 2.1 2.0 0.9 

1 month 4.4 0.4 1.6 1.5 0.7 

12 months 3.09 0.5 2.2 2.1 0.9 

PM2.5-10 

2 days 8.82 0.2 0.8 0.7 0.3 

7 days 6.59 0.2 1.1 1.0 0.4 

28 days 5.45 0.3 1.3 1.2 0.5 

365 days 3.08 0.5 2.3 2.1 0.9 

1 month 4.19 0.4 1.7 1.6 0.7 

12 months 3.31 0.5 2.1 2.0 0.9 

Abbreviations. α, type I error rate; ms, milliseconds; n, number of participants; QT, QT 

interval duration; RMSSD, root mean square of successive differences; RR, RR interval; SD, 

standard deviation; SDNN, SD of NN intervals. 1Calculated from the first available visit from 

WHI-EMPC, WHI-BAA23, and ARIC-AA; 2and WHI CT, WHI OS, and ARIC. 
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E. Specific Aim 3.2 

MDAs (Δ, %) for HRV and (Δ, ms) for QT were estimated per 1% increase in DNAm in 

a sample of 8,086 participants with Bonferroni-corrected type I error rates of 0.05, 0.01, and 

0.005 for associations at one, five, and ten CpG sites. With 80% power, MDAs ranged from 

0.2% to 0.2% for RR, 1.1% to 1.6% for RMSSD, 1.0% to 1.4% for SDNN, and 0.3 to 0.4 ms for 

QT (Table 4-5).  

 

Table 4-5. Minimum detectable associations (Δ, %) for HRV and (Δ, ms) for QT per 1% 

increase in DNAm assuming 80% power (n=8,086) 

Exposure   Δ % for HRV, Δ ms for QT  

DNAm, SD1 α 
log(RR),  

SD2: 0.15 

log(RMSSD), 

SD2: 0.70 

log(SDNN),  

SD2: 0.66 

QT, 

 SD2: 29.9 

0.03 0.05 0.2 1.1 1.0 0.3 

0.03 0.01 0.2 1.4 1.3 0.4 

0.03 0.005 0.2 1.6 1.4 0.4 

Abbreviations: α, type I error rate; DNAm, DNA methylation; HRV, heart rate variability; 

ms, milliseconds; n, number of participants; QT, QT interval duration; RMSSD, root mean 

square of successive differences; RR, RR interval; SD, standard deviation; SDNN, SD of 

NN intervals. 1Calculated from the first available visit from WHI-EMPC, WHI-BAA23, 

and ARIC-AA; 2and WHI CT, WHI OS, and ARIC. 

 

 

F. Specific Aim 3.3 

To obtain 80% power to detect mediation, approximately 89.4% power is needed398 for 

both PM-DNAm and DNAm-HRV / DNAm-QT analyses. Therefore, MDAs were recalculated, 

under the same assumptions as specified for Specific Aims 2 and 3.2, but now assuming 89.4% 

power in the mediation sample (n = 8,086). The MDAs (Δ, %) in DNAm ranged from 0.2% to 

0.7% per 10 µg/m3 increase in PM (Table 4-6). The MDAs (Δ, %) in for RR, RMSSD, SDNN, 

and (Δ, ms) QT ranged from 0.2% to 0.3%, 1.3% to 1.9%, 1.2% to 1.7%, and 0.4 to 0.4 ms per 

1% increase in DNAm (Table 4-7).   
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Table 4-6. Minimum detectable associations (Δ, %) for DNAm per 10 µg/m3 increase in PM 

assuming 89.4% power (n=8,086) 

Exposure 
Δ for DNAm (%)  

DNAm, SD1: 0.03 

PM Duration SD1 α = 1x10-7 

PM10 

2 days 12.16 0.2 

7 days 9.26 0.3 

28 days 7.17 0.3 

365 days 5.16 0.4 

1 month 5.84 0.4 

12 months 4.11 0.6 

PM2.5 

2 days 7.16 0.3 

7 days 6.1 0.4 

28 days 5.19 0.4 

365 days 3.23 0.7 

1 month 4.4 0.5 

12 months 3.09 0.7 

PM2.5-10 

2 days 8.82 0.3 

7 days 6.59 0.3 

28 days 5.45 0.4 

365 days 3.08 0.7 

1 month 4.19 0.6 

12 months 3.31 0.7 

Abbreviations. α, type I error rate; DNAm, DNA methylation; Minimum detectable association; 

PM, particulate matter; SD, standard deviation; n, number of participants. 1Calculated from the 

first available visit from WHI-EMPC, WHI-BAA23, and ARIC-AA 

 

 

Table 4-7. Minimum detectable associations (Δ, %) for HRV and (Δ, ms) for QT per 1% 

increase in DNAm assuming 89.4% power (n=8,086) 

Exposure   Δ % for HRV, Δ ms for QT  

DNAm, SD1 α 
log(RR),  

SD2: 0.15 

log(RMSSD), SD2: 

0.70 

log(SDNN),  

SD2: 0.66 

QT, 

 SD2: 

29.9 

0.03 0.05 0.2 1.3 1.2 0.4 

0.03 0.01 0.2 1.7 1.5 0.4 

0.03 0.005 0.3 1.9 1.7 0.4 

Abbreviations: α, type I error rate; DNAm, DNA methylation; HRV, heart rate variability; n, 

number of participants; QT, QT interval duration; RMSSD, root mean square of successive 

differences; RR, RR interval; SD, standard deviation; SDNN, SD of NN intervals. 1Calculated 

from the first available visit from WHI-EMPC, WHI-BAA23, and ARIC-AA; 2and WHI CT, 

WHI OS, and ARIC. 
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CHAPTER 5. LEYKOCYTE TRAITS AND EXPOSURE TO AMBIENT PARTICULATE 

MATTER AIR POLLUTION IN THE WOMEN’S HEALTH INITIATIVE AND 

ATHEROSCLEROSIS RISK IN COMMUNITIES STUDY 

A. Overview 

Inflammatory effects of ambient particulate matter (PM) air pollution exposures may 

underlie PM-related increases in cardiovascular disease risk and mortality, although evidence of 

PM-associated leukocytosis is inconsistent and largely based on small, cross-sectional, and / or 

unrepresentative study populations. We therefore estimated PM-leukocyte associations among 

U.S. women and men in the Women’s Health Initiative and Atherosclerosis Risk in Communities 

study (n=165,675). We based the estimation on up to four study visits per participant, at which 

peripheral blood leukocytes and geocoded address-specific concentrations of PM≤10, ≤2.5, and 

2.5-10 μm in diameter (PM10; PM2.5; PM2.5-10) were available. We multiply imputed missing data 

using chained equations and estimated PM-leukocyte count associations over daily to yearly PM 

exposure averaging periods using center-specific, linear, mixed, longitudinal models weighted 

for attrition and adjusted for sociodemographic, behavioral, meteorological, and geographic 

covariates. In a subset of participants with available data (n = 8,457), we also estimated PM-

leukocyte proportion associations in compositional data analyses. We found a 12 cell/uL (95% 

confidence interval: -9, 33) higher leukocyte count, a 1.2% (0.6%, 1.8%) higher granulocyte 

proportion, and a -1.1% (-1.9%, -0.3%) lower CD8+ T cell proportion per 10 μg/m3 increase in 

1-month mean PM2.5. However, shorter-duration PM10 exposures were inversely and only 

modestly associated with leukocyte count. The estimates, albeit imprecise, suggest that among 
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racially, ethnically, and environmentally diverse U.S. populations, sustained, ambient exposure 

to fine PM may induce subclinical, but epidemiologically important inflammatory effects.  

B. Introduction 

Exposures to airborne particulate matter (PM) ≤ 10, ≤ 2.5 and between 2.5 and 10 um in 

diameter (PM10; PM2.5; PM2.5-10) can trigger inflammatory responses that involve the release and 

hematogenous redistribution of leukocytes 47,399,400. Such responses may be key to the 

pathophysiology underpinning established associations between ambient PM, cardiovascular 

(CVD) disease risk, and mortality 7,12,13,401,402. However, evidence of PM-associated leukocytosis 

is inconsistent and mostly based on small studies and panels with limited generalizability 85-

96,400,403,404.  

In larger, community- and population-based studies, short-duration PM10-leukocyte count 

associations are similarly inconsistent 98-101, although longer-duration PM10 - and PM2.5-

leukocyte count associations tend to be positive in published cross-sectional and longitudinal 

studies 102-104. Moreover, associations between short- and longer-term PM exposures, leukocyte 

count, and its differential composition have not been thoroughly evaluated controlling for known 

relationships among leukocyte traits (count and component proportions).  

Associations between ambient PM exposures and leukocyte traits could nevertheless lend 

support to the hypothesized role of inflammation in PM-related pathogenesis. Furthermore, their 

magnitude would provide insight into PM associations with leukocyte-derived biomarkers like 

DNA methylation (DNAm), a heritable but dynamic epigenetic modification that can influence 

gene expression. Indeed, epidemiologic studies often rely on peripheral blood leukocytes as a 

source of DNA for DNAm assays given the relative ease with which they are collected and 

archived in large populations 108,115. Because DNAm and other epigenetic biomarkers 405 differ 

among leukocyte subtypes, e.g. granulocytes versus monocytes 178,179, leukocyte composition 
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may plausibly mediate their associations with environmental exposures.  

To expand on prior work evaluating PM-leukocyte count associations, and to address the 

limitations of studies examining PM-leukocyte compositional associations, we estimated 

associations of leukocyte traits with short- to longer-duration exposures to ambient PM2.5, PM10, 

and PM2.5-10 in large, multi-racial/ethnic, and geographically diverse United States populations 

enrolled in the Women’s Health Initiative (WHI) and the Atherosclerosis Risk in Communities 

study (ARIC).  

C. Methods 

C1. Study populations 

The WHI is a multicenter prospective study of risk factors for CVD, breast / colorectal 

cancer, and osteoporotic fractures 197,341. From forty clinical centers throughout the US, 

postmenopausal women aged 50-79 years were either randomized in the Clinical Trials (CT, 

n=68,132) or enrolled in the Observational Study (OS, n=93,676) between 1993 and 1998. The 

WHI CT included three interventions: hormone therapy (i.e. estrogen with or without progestin 

vs. placebo), calcium and vitamin D supplementation (vs. placebo), and dietary modification (vs. 

usual diet). The WHI OS 197,341 recruited participants interested in the dietary modification or 

hormone therapy trials of the WHI CT, but were otherwise ineligible, unwilling, or unresponsive 

to a direct invitation.  

The WHI CT and OS participants completed a baseline screening visit (SV), at which 

fasting blood and other demographic, socioeconomic, behavioral, and medical information was 

collected by trained and certified staff. The present study additionally included WHI CT 

participant data from annual visits (AVs) at three and six years after randomization (AV3 and 

AV6) and WHI OS participant data three years after enrollment (AV3), at which fasting blood 

was re-drawn. 
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The ARIC study is a prospective epidemiologic study of atherosclerosis and CVD in four 

U.S. communities: Washington County, Maryland; Forsyth County, North Carolina; selected 

suburbs of Minneapolis, Minnesota; and Jackson, Mississippi 196. Participants were selected as a 

community-stratified probability sample of 15,792 mostly African- and European-American men 

and women aged 45-64 and participated in a baseline visit (V1; 1987-1989) at which fasting 

blood and other demographic, socioeconomic, behavioral, and medical information was collected 

by trained and certified staff. The present study also included participant data from up to three 

subsequent visits (V2-V4; 1990-1998) during which fasting blood was re-drawn.  

Leukocyte composition analyses were conducted in five WHI and ARIC subpopulations 

with available DNAm data. The three WHI subpopulations included: Epigenetic Mechanisms of 

PM-Mediated CVD Risk (WHI-EMPC; n = 2,200) 345, Broad Agency Announcement 23 (WHI-

BAA23; n = 1,988) 346 and Ancillary Study 311 (WHI-AS311; n = 860) 351. WHI-EMPC is a 

study of epigenetic mechanisms underlying associations between PM and CVD within randomly 

selected WHI CT participants at the SV, AV3, or AV6. WHI-BAA23, also known as Integrative 

Genomics and Risk of CHD and Related Phenotypes in the Women’s Health Initiative, is a case-

control study of coronary heart disease. By design, WHI-BAA23 oversampled African 

Americans and Hispanic/Latino Americans and required all participants to have undergone 

genome-wide genotyping and profiling of seven CVD biomarkers. DNAm was measured in 

blood collected at the SV, before the incidence of coronary heart disease. WHI-AS311, also 

known as the Bladder Cancer and Leukocyte Methylation study, is a nested case-control study of 

bladder cancer. Bladder cancer cases were matched to controls based on enrollment year, age at 

enrollment, follow-up time, and DNAm extraction method. DNAm was measured in blood 

collected at the SV, before the incidence of bladder cancer. The two ARIC subpopulations 
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included 2,796 African Americans from Forsyth County or Jackson (ARIC-AA) with DNA and 

1,139 European Americans from Forsyth County or Minneapolis (ARIC-EA) with cerebral 

magnetic resonance imaging data 352, all at Visits 2 (1990-1992) or 3 (1993-1995). 

C2. Leukocyte counts and composition 

Leukocyte count was measured among WHI CT and OS participants at the SV, among 

OS participants at AV3, and among ARIC participants at V1-V2 on automated cell counters at 

local laboratories following standard quality-assurance procedures 361. Leukocyte count was re-

measured among ARIC participants in Washington County at V3-V4 and Forsyth County at V4.  

Leukocyte composition, i.e. the proportions of CD8+ T cells, CD4+ T cells, natural killer 

(NK) cells, B cells, monocytes, and granulocytes were validly estimated 179 among WHI and 

ARIC participants with DNAm data using methods that leverage differentially methylated 

regions, i.e. stably methylated CpG sites within, but variably methylated CpG sites among 

leukocyte cell types 179,362.  

C3. Particulate matter exposure estimation 

 The study focused on PM2.5, PM10 and (coarse) PM2.5-10, the first two of which are 

regulated under the Clean Air Act by the U.S. Environmental Protection Agency (EPA) 11. PM 

exposures were based on either daily and monthly estimation methods. Daily mean 

concentrations (µg/m³) of PM10 were spatially estimated at all geocoded participant addresses 

353,354 using EPA Air Quality System (AQS) data and national-scale, log-normal ordinary kriging 

355,406. For each participant, daily mean concentrations of PM10 were averaged over 2 and 7 days 

prior to and including the day of the study visit.  

Geocoded participant address-specific monthly mean concentrations (µg/m³) of PM10 and 

PM2.5 were spatiotemporally estimated using generalized additive mixed models and geographic 

information system-based predictors. Because EPA AQS monitoring data for PM2.5 were not 
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widely available until 1999, spatiotemporal estimation also involved the log-transformed ratio of 

PM2.5 to predicted PM10 between 1987 and 1999 359. Monthly mean concentrations were 

averaged over the 12 months prior to and including examination months to obtain annual means. 

PM2.5-10 concentrations for 1- and 12-month means were defined as the monthly differences 

between PM10 and PM2.5 concentrations.  

C4. Covariates 

Demographic, socioeconomic, behavioral, and medical covariates included study center, 

visit, self-identified race/ethnicity, age (years), individual-level education (high school education 

or lower, more than high school), neighborhood socioeconomic status 365, smoking status 

(current, former, never), alcohol use (current, former, never), body mass index (BMI, kg/m2), 

physical activity (metabolic equivalent of task [MET-hours/week]), mean temperature (°C), 

mean dew point (°C), mean barometric pressure (kPa), season (using sine/cosine functions) 366, 

and to control for longer-term temporal trends, an interval-scale variable for calendar date. 

Subpopulation-specific covariates included sex (in ARIC); randomly assigned treatment group 

(in WHI), case-control status (in WHI-AS311 and WHI-BAA23); and other sampling-related 

variables in WHI-AS311 (enrollment year, age at enrollment, follow-up time, DNAm extraction 

method).  

C5. Exclusions 

  Of all observations in WHI and ARIC (n = 285,548), small percentages were excluded 

because they were made on participants in one WHI center outside of the contiguous 48 states 

(2%), on study visit dates for which PM was not estimable (2%), among participants with a 

study-specific leukocyte count > 99.5th percentile (leukocytosis, 0.5%), study-specific leukocyte 

count < 0.5th percentile (leukopenia, 0.5%), or conditions associated with abnormal leukocyte 

traits, e.g. hematological malignancy (1.7%) or oral/parenteral use of a granulocyte/macrophage 
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colony stimulating factor (< 0.01%), lithium (0.2%), glucocorticosteroid (1.1%), or antibiotic use 

(2.6%).  

C6. Multiple imputation 

To avoid potential for selection bias in complete-data analyses when data are missing at 

random 370, multivariate imputation by chained equations (MICE) 371,372 was used to impute 

missing data (% missing range: 0.6% - 5.8%). Binary and categorical data were imputed using 

logistic regression while continuous variables were imputed using predictive means matching. 

C7. Attrition weights 

To address potential for bias due to non-random attrition over time in leukocyte count 

analyses in WHI and ARIC, stabilized inverse probability weights for each participant were 

calculated at each examination using logistic regression, where the numerator was the marginal 

probability of the participant not being lost to follow-up at an examination and the denominator 

was the probability of the participant not being lost to follow-up at an examination conditional 

on their covariate patterns at prior examination 373.  

C8. Statistical analysis: leukocyte count 

Study- and center-stratified, PM-leukocyte count associations were estimated using an 

attrition-weighted and covariate-adjusted, two-level, linear, mixed-effects, longitudinal model 

including a random intercept for examination at the participant level. The model was given by 

 

(17) 𝐿𝐶𝑖𝑗 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗 + 𝛽2𝑍𝑖𝑗 + 𝑏0𝑗
𝑃 + 𝜀𝑖𝑗

𝐸 , 

 

where 𝑖 and 𝑗 denote the 𝑖𝑡ℎ examination (level 1) of the 𝑗𝑡ℎ participant (level 2), 𝐿𝐶 is the 

leukocyte count, 𝛽0 is the intercept, 𝑃𝑀 is 2- or 7-day mean of PM10 or 1- or 12-month mean of 

PM2.5, PM10, or PM2.5-10, and 𝑍 is a vector of covariates. The term (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a random 
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intercept for examination at the participant level and 𝜀𝐸 ~ (𝑂, 𝜎2) is the random error at the 

examination level. Study- and center-specific measures of association (𝛽1) and their 95% 

confidence intervals (CIs) were estimated as 𝛽1 ± 1.96 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 (𝑆𝐸) per 10 µg/m³ 

increase in PM, forest plotted, and pooled in random-effects meta-analyses 369 after testing 

homogeneity of associations among strata (PCochran’s Q < 0.10) 374. 

C9. Statistical analysis: leukocyte composition 

Subpopulation-stratified, cross-sectional, PM-leukocyte proportion associations were 

analyzed using multivariate methods for compositional data 375,376, i.e. a set of positive, mutually 

exclusive components (such as proportions, p) that represent parts constituting a whole, are 

multi-collinear, and collectively sum to 1 within a constrained space called a simplex. 

Proportions were isometrically log-ratio (ilr)-transformed from the simplex to real (Euclidean 

geometric) space. Transformation—which allowed for the dependent variation 376,377 and relative 

positioning of components in the simplex 377,378—resulted in p-1 orthogonal (i.e. non-multi-

collinear) coordinates. It also allowed for back-transformation of multivariate results into 

component proportions 379. Back-transformation was based on compositional data analysis 

models, as given by 

 

(18) 𝑖𝑙𝑟(𝐿𝑃) = 𝛽0 + 𝛽1𝑃𝑀 + 𝛽3𝑍 + 𝜀, 

 

where 𝑖𝑙𝑟(𝐿𝑃) denotes the ilr-transformed estimated leukocyte proportions, 𝛽0 is the intercept, 

𝑃𝑀 is 2- or 7-day mean of PM10 or 1- or 12-month mean of PM2.5, PM10, or PM2.5-10, 𝑍 is a 

vector of covariates, and 𝜀 ~ (𝑂, 𝜎2) is the random error term.  The vector of association 

measures (𝛽1) denotes the five orthogonal coordinates, the back-transformation of which 

represents the corresponding change in each of the six leukocyte proportions per 10 µg/m³ 
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increase in PM. Because the standard errors of 𝛽1 cannot be back-transformed, the standard 

errors of back-transformed leukocyte proportion associations were estimated using 1,000 

bootstrap samples. Subpopulation-specific measures of association were reported as absolute 

percentage changes (%), forest plotted, and pooled in random effects meta-analyses 369 after 

testing homogeneity of associations among strata (PCochran’s Q < 0.10) 374.  

C10. Statistical analysis: sensitivity 

 In leukocyte count analyses, Model 1 adjusted for self-identified race/ethnicity, age, sex 

(in ARIC), randomly assigned treatment group (in WHI), visit, mean temperature, mean dew 

point, mean barometric pressure, season to control for within-year variation, and a restricted 

cubic natural spline function of calendar date 407-409 with one knot per year to control for secular 

trends in PM and leukocyte count methods. Model 2 also adjusted for potential socioeconomic 

confounders (individual-level education and neighborhood socioeconomic status).  Model 3 

additionally adjusted for behavioral variables that explain variation in leukocyte traits or account 

for residual confounding (smoking status, alcohol use, BMI, and physical activity). Sensitivity of 

Model 3 results to use of two knots per calendar year, one knot for every two calendar years, and 

no calendar date adjustment was assessed.  Although leukocyte composition analyses also 

adjusted for subpopulation-specific covariates, the models did not adjust for calendar date 

because leukocyte proportions were estimated using the same methods across subpopulations. 

Leukocyte composition models also were not center-stratified due to small sample sizes, and 

instead adjusted for U.S. Census region (Midwest, Northeast, South, West). Lastly, sensitivity of 

leukocyte count associations to PM estimation method was examined by substituting spatially 

estimated 28- and 365-day mean concentrations of PM10 for spatiotemporally estimated 1- and 

12-month mean concentrations of PM10.  
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D. Results 

Of the 150,328 WHI participants and 15,347 ARIC participants with leukocyte count data 

(total n = 165,675; Figure 5-1), 96% and 94% had baseline data after exclusions. At baseline, 

participants were aged 62.3 years on average, mostly female (96%), white (84%), more than high 

school educated (74%), never/former smokers (91%), and current alcohol users (70%). Mean 

BMI, physical activity, and leukocyte count were 28.0 kg/m2, 12.3 MET-hours/week, and 5,908 

cells/μL (Table 5-1). Participants in the WHI and ARIC subpopulations with leukocyte 

composition data (n = 8,457; Table 5-S1) were more likely to be younger (mean age: 61.5 years) 

and male (16%) and less likely to be white (45%), more than high school educated (52%), 

never/former smokers (85%), and current alcohol users (52%). Among these subpopulations, 

mean estimated leukocyte cell type percentages were 9% (CD8+ T cells), 18% (CD4+ T cells), 

7% (natural killer cells), 7% (B cells), 10% (monocytes), and 49% (granulocytes).  

Mean PM10 concentrations in the populations with leukocyte count and composition data 

were below EPA National Ambient Air Quality Standards (NAAQS) in place during the study 

period (24-hour PM10 ≤ 150 μg/m3; annual PM10 ≤ 50 μg/m3) 11. However, 1- and 12-month 

mean PM2.5 concentrations in ARIC approached or exceeded the annual standard in place during 

the study period (≤ 15 μg/m3) (Table 5-2 and Table 5-S2). PM10 and PM2.5 concentrations were 

higher, while PM2.5-10 concentrations were lower among subpopulations with leukocyte 

composition data.  

In Models 1-3, short-term mean PM10 concentrations were inversely associated with 

leukocyte count when pooled across study- and center-specific strata. For example, in Model 3, 

there were 7 (95% confidence interval [CI]: -13, -1) and 11 (-20, -2) cell/μL lower leukocyte 

count per 10 μg/m3 increase in 2- and 7-day mean PM10 concentration (Table 5-3; Figure 5-2).  
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In Model 1, longer-term mean PM10, PM2.5, and PM2.5-10 concentrations were more 

strongly and positively, but imprecisely associated with leukocyte count. However, the 

associations also were attenuated by additional adjustment for potential socioeconomic 

confounders (Model 2) and behavioral variables (Model 3). For example, there were 114 (65, 

163), 64 (15, 114), and 28 (-20, 75) cell/μL higher leukocyte count per 10 μg/m3 increase in the 

12-month mean PM2.5 concentration in Models 1-3 (Table 5-3; Figure 5-S1). In sensitivity 

analyses, estimates were generally robust to variation in the method of controlling for calendar 

date (Figure 5-S2). Leukocyte count associations with 28- and 365-day mean PM10 

concentrations also were imprecise and no different from the null associations (data not shown), 

like those between leukocyte count and 1- and 12-month mean PM10.     

Across PM concentrations and averaging durations, PM-leukocyte compositional 

associations in Model 3 (Table 5-4) differed little from those in Models 1 and 2 (data not shown). 

Higher 7-day mean PM10 concentrations were associated with somewhat higher, while 1- and 12-

month mean PM10 concentrations were associated with somewhat lower CD8+ T cell proportions 

(Table 5-4; Figure 5-S3). One- and 12-month mean concentrations of PM2.5 were associated with 

lower CD8+ T, NK and B cell proportions and higher granulocyte proportions. For example, 

there was a 1.1% (-1.9%, -0.3%) lower CD8+ T cell proportion and 1.2% (0.6%, 1.8%) higher 

granulocyte proportion per 10 μg/m3 increase in 1-month mean PM2.5 (Figure 5-3). In contrast, 

there were 0.6% (-1.3%, 0.1%) and 1.2% (-2.4%, 0.1%) lower granulocyte proportions per 1- 

and 12-month mean PM2.5-10 (Figure 5-S3).  

E. Discussion 

Results from this study suggest that mid- to longer-duration exposures to PM2.5 

concentrations below EPA NAAQS may be associated with a higher leukocyte count, higher 
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granulocyte proportion, and lower CD8+ T cell proportion among multi-ethnic and 

geographically diverse populations of U.S. women and men.  

While leukocyte count associations also were observed with 1- and 12-month mean PM10 

and PM2.5-10 concentrations, adjusting for potential socioeconomic confounders attenuated them. 

Indeed, lower socioeconomic status has been related both to increases in CVD risk 410 and higher 

concentrations of ambient PM 411. Further attenuation was observed with additional adjustment 

for behavioral variables (smoking, alcohol use, BMI, physical activity) suggesting that they may 

account for residual confounding by socioeconomic or other unmeasured characteristics. Taken 

together with prior evidence suggesting positive 102 and null 103 associations between longer-

duration PM10 with leukocyte counts, the present results were unable to clarify the relationship. 

Nevertheless, positive – yet imprecise – leukocyte count estimates remained for PM2.5, 

supporting evidence first reported in the Heinz Nixdorf Recall study 103. Moreover, the 

magnitudes of estimates presently observed are on par with those previously associated with a 

one-cigarette/day increase in smoking 412-414.  

PM2.5 concentrations also were associated with leukocyte composition; particularly, with 

higher granulocyte and lower CD8+ T cell proportions. This observation is consistent with 

results from the Social Environment and Biomarkers of Aging Study (SEBAS) in Taiwan that 

found positive associations between long-duration PM2.5 exposure and the proportion of 

neutrophils, the most abundant type of granulocyte. SEBAS also detected similar associations 

with long-duration PM10 concentrations, but they were not observed in the present study. Results 

are also consistent with small-scale occupational studies that found higher neutrophil 415 and 

lower lymphocyte / CD8+ T cell proportions 415,416 albeit with short-duration exposure to PM2.5, 

which was further demonstrated in rats 417-419. Indeed, observed lower CD8+ T cell proportions 
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may be related to PM-responsive migration of CD8+ lymphocytes from the blood to bronchial 

tissues 85, contraction of the CD8+ regulatory (suppressor) T cell pool, and / or latter phase 

homeostatic contraction of the CD8+ cytotoxic T cell pool 420. 

Persistent systemic inflammation due to longer-duration PM exposure is a biologically 

plausible mechanism linking PM with adverse health. Indeed, systemic inflammation has been 

implicated in endothelial injury, atherosclerotic disease progression, and subsequent increases in 

CVD risk 45. In the epidemiologic context, systemic inflammation, as measured by leukocyte 

count, has been consistently and independently associated with CVD and mortality in WHI 61,62, 

ARIC 60, and other populations 57,63,69.  

The results presented herein support the hypothesis that chronic exposure to PM 

contributes to systemic inflammation and may partly explain the established connection between 

PM and CVD risk 12,401. They support prior studies that mechanistically linked atherosclerosis 

and the inflammatory responses to PM 421-425. Such studies observed higher pro-inflammatory 

cytokines following inhalation and deposition of PM in the lungs 47,399,400,426,427 and the activation 

of coagulation and adhesion molecules 400,428-432, which could ultimately lead to increased 

leukocyte content within and vulnerability to rupture of atherosclerotic plaques 45,46,422. 

Although the inverse relationship between short-duration (i.e. 2- and 7-day mean) 

ambient PM10 exposures and leukocyte counts may be at odds with this suggestion, PM exposure 

may initiate pulmonary alveolar microvascular sequestration of monocytes and granulocytes 433-

435, thereby reducing their concentrations in peripheral blood over the short-term 93,434. Animal 

studies of monocytes and acute PM10 exposure also suggest that atherosclerotic plaques may 

recruit leukocytes from the circulation 434. The inverse PM10-leukocyte count associations with 

short-duration exposure in the present study are in contrast to null 98,100 and positive 99,101 
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epidemiologic associations observed in other contexts. However, they are consistent with 

observed inverse associations with short-duration exposure to PM2.5 in the Normative Aging 

Study 436. 

The characterization of PM-leukocyte associations in the compositional context is 

particularly relevant given the increasing availability of epigenomic biomarkers that are based on 

DNA extracted from peripheral blood with leukocyte proportions that can vary widely among 

participants. However, leukocyte cell types possess distinguishing patterns of DNAm, so 

measurements of methylation are driven in part by leukocyte composition 178. Common practice 

is therefore to restrict measurement of DNAm to a single cell type 171, to statistically adjust 

associations with DNAm for leukocyte proportions determined via cytometry as part of a 

complete blood count / differential, or in its absence, to adjust for DNAm-based estimates of 

CD8+ T cell, CD4+ T cell, NK cell, B cell, monocyte, and granulocyte proportions 173,179. 

Mindful of the PM-leukocyte compositional associations detected herein, causal diagrams 437 

may benefit from thoughtful consideration of their potential effects on causal association and 

mediation analyses 180,438 involving DNAm and other leukocyte-derived biomarkers. Indeed, 

leukocyte composition may itself be a mediator of PM-DNAm associations. As such, DNAm 

associations with PM2.5 – without control for leukocyte composition – may reflect mechanisms 

that involve inflammation, epigenetics, or both.  

The present results are nevertheless limited by the variances of the observed association 

estimates. The analyses weighted for attrition to avoid potential selection bias due to non-random 

loss to follow-up, however the loss of bias came at the cost of precision 439. Furthermore, 

precision was influenced by technical, temporal, and biological variation of leukocyte count 

measurements. Participant blood samples were collected, processed, and analyzed by local 
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laboratories across the U.S. using different automated hematology cell counters. Indeed, secular 

trends in methods of determining leukocyte count 63 may have affected the precision or accuracy 

of association estimates. And while lack of adjustment for other cell (erythrocyte; platelet) 

counts capable of explaining some variation in leukocyte counts may have contributed to the 

precision of estimates observed herein, there also is evidence to suggest high within-laboratory 

reliability of leukocyte counts 440 and robustness of study- and center-stratified, longitudinal 

model results to multiple methods of calendar date adjustment. Moreover, erythrocyte and 

platelet counts—plausible intermediates of PM-leukocyte count associations—were neither 

uniformly available nor necessarily appropriate candidates for statistical adjustment 441.  

 Additional limitations include error in estimated leukocyte proportions and PM 

concentrations. While cytometrically determined leukocyte proportions for the cell types of 

interest were not available herein at participant visits with corresponding PM data, estimation of 

the CD8+ T cell, CD4+ T cell, NK cell, B cell, monocyte, and granulocyte proportions at hand 

was associated with a low root-mean-square-error (median rMSE: 8.2%, range: 5.4%-11.6%) 

179,362. Furthermore, the validity of spatially estimated daily PM10 estimates was demonstrated 

with an average prediction error and standardized prediction error near zero, a root mean square 

standardized near one, and a root mean square prediction error near the standard error 355,406. 

Similarly, models for spatiotemporally estimated monthly mean PM10 and PM2.5 estimation 

performed well, with high squared Pearson correlations between excluded monthly observations 

and model predictions (R2 = 0.68-0.77) in a five- to ten-fold, out-of-sample cross-validation 359. 

Therefore, outcome and exposure measurement error were less likely to bias observed 

associations.  



 

 76 

Limitations aside, this longitudinal study observed that 1- and 12-month mean ambient 

PM2.5 concentrations were associated with higher leukocyte count. It is the first to do so in large, 

multi-ethnic and geographically diverse populations of women and men from two well-

characterized cardiovascular disease cohorts. Furthermore, this study is the first to use 

compositional data analysis methods to estimate associations between ambient PM2.5 

concentrations and leukocyte composition. Its analyses accounted for known relationships 

among proportions, thereby avoiding methodological biases inherent in conventional analyses 

that erroneously assume compositional data are independent. Results from them are therefore 

relatively well-positioned to inform future causal analyses using leukocyte-derived biomarkers. 

In conclusion, findings suggest that mid- to longer-duration ambient exposure to fine 

particulate matter air pollution may induce subclinical, but epidemiologically important 

inflammatory responses among racially, ethnically, and environmentally diverse U.S. 

populations in EPA regions 1-10.
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F. Tables and Figures 

 

Table 5-1. Characteristics of n=165,675 participants with leukocyte count data, Women's Health Initiative (1993-2002) and 

Atherosclerosis Risk in Communities study (1986-1998) 
Characteristic WHI SV & ARIC  

V1 

n = 159,162 

WHI ARIC 

SV 

n = 144,744 

AV3a 

n = 77,096 

V1 

n = 14,418 

V2 

n = 13,000 

V3b 

n = 3,100 

V4c 

n = 5,433 

Male, n (%) 6,563 (4.1) 0 (0.0) 0 (0.0)    6,563 (45.5)     5,892 (45.3)     1,470 (47.4)     2,497 (46.0)  

Age (years), mean (SD) 62.3 (7.6)   63.2 (7.2)   66.5 (7.3)   54.2 (5.8)   57.0 (5.7)   60.6 (5.6)   63.3 (5.7) 

Race / ethnicity, n (%)   
  

  
   

   American Indian or Alaskan 

Native 

658 (0.4)     647 (0.4)      315 (0.4)       11 (0.1)       10 (0.1)        2 (0.1)        5 (0.1)  

   Asian or Pacific islander 1,633 (1.0)    1,601 (1.1)     1,018 (1.3)       32 (0.2)       29 (0.2)        9 (0.3)       16 (0.3)  

   Black or African American 15,809 (10.0)   11,990 (8.3)     5,675 (7.4)     3,819 (26.5)     3,221 (24.8)       25 (0.8)      244 (4.5)  

   Hispanic/Latino 5,967 (3.8)    5,967 (4.1)     2,681 (3.5)  --d --d --d --d 

   Other 1,353 (0.9)    1,353 (0.9)      740 (1.0)  0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

   White (not of Hispanic 

origin) or European 

American 

133,400 (84.0)  122,844 (85.1)    66,457 (86.4)    10,556 (73.2)     9,740 (74.9)     3,064 (98.8)     5,168 (95.1)  

Education, n (%)   
 

  
    

   High school education or 

lower 

40,473 (25.6)   32,358 (22.5)    15,677 (20.5)     8,115 (56.4)     7,136 (55.0)     2,115 (68.3)     3,148 (58.0)  

   More than high school 117,654 (74.4)  111,377 (77.5)    60,818 (79.5)     6,277 (43.6)     5,842 (45.0)      982 (31.7)     2,279 (42.0)  

Smoking status, n (%)   
  

  
   

   Never 78,794 (50.1)   72,760 (50.9)    37749 (51.1)     6,034 (41.9)     5,173 (39.9)     1,378 (44.5)     2,270 (41.9)  

   Former 64,941 (41.2)   60,314 (42.2)    32,708 (44.2)     4,627 (32.1)     4,897 (37.7)     1,259 (40.6)     2,331 (43.0)  

   Current 13,564 (8.6)    9,821 (6.9)     3,465 (4.7)     3,743 (26.0)     2,909 (22.4)      463 (14.9)      822 (15.2)  

Alcohol use, n (%)   
  

  
   

   Never 18,683 (11.8)   15,101 (10.5)     6,807 (9.1)     3,582 (24.9)     2,917 (22.5)      783 (25.3)     1,273 (23.5)  

   Former 28,972 (18.3)   26,274 (18.3)    15,040 (20.1)     2,698 (18.8)     2,678 (20.6)      761 (24.6)     1,680 (31.0)  

   Current 110,366 (69.8)  102,289 (71.2)    5,2866 (70.8)     8,077 (56.3)     7,384 (56.9)     1,554 (50.2)     2,474 (45.6)  
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Characteristic WHI SV & ARIC  

V1 

n = 159,162 

WHI ARIC 

SV 

n = 144,744 

AV3a 

n = 77,096 

V1 

n = 14,418 

V2 

n = 13,000 

V3b 

n = 3,100 

V4c 

n = 5,433 

Body mass index (kg/m2), 

mean (SD) 

28.0 (5.8)   28.9 (5.9)   27.4 (5.7)   27.7 (5.3)   28.0 (5.4)   28.8 (5.5)   28.3 (5.4) 

Physical activity (MET-

hours/week), mean (SD) 

12.3 (13.7) 12.5 (13.7) 13.7 (14.6) 10.2 (12.7) 10.7 (11.5) 10.7 (12.9) 11.7 (12.9) 

Leukocyte count (cell/uL), 

mean (SD) 

5,908 (1,553) 5,882 (1,529) 5,794 (1,500) 6,076 (1,761) 5,952 (1,677) 6,435 (1,680) 6,394 (1,671) 

aWHI Observational Study participants only 
bParticipants from Washington County only 
cParticipants from Forsyth County (46%) or Washington County (54%) 
dARIC recruitment and data collection occurred before the National Instutite of Health required collection of information about Hispanic/Latino ethnicity 
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Table 5-2. Mean (SD) particulate matter concentrations among n=165,675 participants with leukocyte count data, Women's Health 

Initiative (1993-2002) and Atherosclerosis Risk in Communities study (1986-1998) 

PM (μg/m3) 

WHI SV & ARIC 

V1 

n = 159,162 

WHI ARIC 

SV 

n = 144,744 

AV3a 

n = 77,096 

V1 

n = 14,418 

V2 

n = 13,000 

V3b 

n = 3,100 

V4c 

n = 5,433 

PM10           
   2-day 29.5 (11.9)  28.4 (11.1)  28.4 (11.2)  39.8 (14.1)  35.4 (12.3)  31.9 (11.9)  28.2 (10.1) 

   7-day 28.7 (9.3)  27.6 (8.3)  27.6 (8.6)  39.2 (10.3)  34.4 (8.5)  30.9 (8.1)  27.4 (7.4) 

   1-month 20.9 (6.7)  20.6 (6.6)  20.6 (6.6)  25.2 (7.1)  22.0 (5.7)  24.3 (6.5)  21.2 (5.4) 

   12-month 20.9 (5.1)  20.8 (5.1)  20.7 (5.0)  24.4 (4.4)  22.6 (3.8)  23.4 (2.6)  21.1 (2.1) 

PM2.5          

   1-month 12.2 (4.3)  12.0 (4.1)  12.0 (4.2)  15.2 (5.2)  13.6 (4.2)  15.2 (4.2)  15.2 (4.0) 

   12-month 12.1 (3.0)  12.0 (3.0)  12.0 (2.9)  14.7 (3.6)  13.8 (3.2)  14.9 (1.4)  14.8 (1.3) 

PM2.5-10          

   1-month 8.7 (4.7)   8.6 (4.8)   8.6 (4.8)  10.0 (3.4)   8.4 (2.7)   9.0 (3.0)   6.0 (2.5) 

   12-month 8.7 (3.9)   8.7 (4.0)   8.7 (4.0)   9.7 (2.1)   8.8 (1.7)   8.5 (1.5)   6.2 (1.7) 

Abbreviations: ARIC, Atherosclerosis Risk in Communities; CI, confidence intervals; PM, particulate matter; PM10, PM < 10 μm in diameter; 

PM2.5-10, PM > 2.5 and < 10 μm in diameter; WHI, Women's Health Initiative 
aWHI Observational Study participants only 
bParticipants from Washington County only 
cParticipants from Forsyth County (46%) or Washington County (54%) 
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Table 5-3. Pooled change in leukocyte count (Δ, cell/μL) per 10 μg/m3 increase in PM concentrations among n=165,675 participants, 

Women's Health Initiative (1993-2002) and Atherosclerosis Risk in Communities study (1986-1998) 
  Model 1a Model 2b Model 3c 

  Δ cell/μL 95% CI PCochran's Q Δ cell/μL 95% CI PCochran's Q Δ cell/μL 95% CI PCochran's Q 

PM10 (μg/m3)                   

   2-day mean -6 -12,   0 0.89 -7  -12,   -1 0.90 -7 -13, -1 0.91 

   7-day mean -10 -19,  -1 0.49 -10  -20,  -1 0.53 -11 -20, -2 0.42 

   1-month mean 22  3,  41 2.5E-03 8   -8,  25 0.08 -2 -18, 14 0.08 

   12-month mean 65  26, 103 6.5E-04 32    4,  59 0.37 8 -17, 33 0.56 

PM2.5 (μg/m3)            

   1-month mean 33  9,  56 0.21 21    0,  43 0.51 12  -9, 33 0.45 

   12-month mean 114  65, 163 0.59 64   15, 114 0.99 28 -20, 75 0.99 

PM2.5-10 (μg/m3)            

   1-month mean 18  -8,  44 0.01 -1  -24,  21 0.13 -13 -36,  9 0.12 

   12-month mean 67  8, 127 6.5E-06 18  -30,  66 0.04 -5 -47, 36 0.15 

Abbreviations: ARIC, Atherosclerosis Risk in Communities; CI, confidence intervals; PM, particulate matter; PM10, PM < 10 μm in diameter; 

PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter; WHI, Women's Health Initiative 
aModel 1 adjusted for race/ethnicity, age, gender (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean dew point, 

mean barometric pressure, season, and a restricted cubic natural spline function of calendar time with one knot per calendar year 
bModel 2 adjusted for all covariates in Model 1 and additionally for individual-level education and neighborhood socioeconomic status 
cModel 3 adjusted for all covariates in Model 2 and additionally for smoking status, alcohol use, body mass index, and physical activity 
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Table 5-4. Pooled change in estimated leukocyte proportion (Δ, %) per 10 μg/m3 increase in PM concentrations among n=8,457 

participants, Women's Health Initiative (1993-2002) and Atherosclerosis Risk in Communities study (1990-1995) 

  CD8+ T cells CD4+ T cells Natural Killer cells B cells Monocytes Granulocytes 

  Δ %a 95% CI PCochran's Q Δ %a 95% CI PCochran's Q Δ %a 95% CI PCochran's Q Δ %a 95% CI PCochran's Q Δ %a 95% CI PCochran's Q Δ %a 95% CI PCochran's Q 

PM10 (μg/m3)                                     

   2-day mean 0.1 -0.4, 0.6 0.15 -0.1 -0.4, 0.2 0.12 0.0 -0.2, 0.3 0.93 -0.2 -0.4, 0.0 0.46 0.0 -0.1, 0.2 0.49 0.1 -0.1, 0.3 0.69 

   7-day mean 0.3 -0.3,  0.8 0.28 -0.2 -0.5,  0.1 0.63 -0.1 -0.6,  0.4 0.18 -0.4 -0.7, -0.1 0.93 -0.1 -0.3,  0.2 0.49 -0.2 -0.5,  0.2 0.25 

   1-month mean -0.4 -1.2, 0.3 0.30 0.0 -0.5, 0.5 0.26 -0.3 -1.0, 0.4 0.16 -0.2 -0.7, 0.2 0.64 0.2 -0.4, 0.8 0.06 0.4 -0.1, 0.9 0.28 

   12-month mean -0.5 -1.4, 0.4 0.63 0.1 -0.5, 0.6 0.38 -0.3 -1.5, 0.8 0.14 -0.5 -1.1, 0.2 0.58 -0.3 -0.7, 0.1 0.41 0.0 -0.9, 1.0 0.13 

PM2.5 (μg/m3)                         

   1-month mean -1.1 -1.9, -0.3 0.58 -0.2 -1.0,  0.6 0.18 -0.6 -2.2,  1.0 0.00 -0.5 -1.1,  0.1 0.72 -0.1 -0.5,  0.3 0.44 1.2  0.6,  1.8 0.75 

   12-month mean -1.3 -2.4, -0.1 0.84 0.2 -0.7,  1.2 0.34 -1.4 -3.7,  0.8 0.03 -0.9 -1.9,  0.2 0.42 -0.4 -0.9,  0.2 0.65 1.1 -0.2,  2.4 0.25 

PM2.5-10 (μg/m3)                         

   1-month mean 0.5 -0.9, 1.8 0.23 0.0 -0.6, 0.6 0.80 -0.1 -0.8, 0.7 0.63 -0.2 -0.9, 0.5 0.80 0.1 -0.7, 0.8 0.14 -0.6 -1.3, 0.1 0.33 

   12-month mean 0.0 -2.4, 2.3 0.13 -0.2 -1.0, 0.6 0.51 0.3 -0.9, 1.4 0.80 -0.3 -1.3, 0.7 0.71 -0.2 -0.9, 0.4 0.60 -1.2 -2.4, 0.1 0.17 

Abbreviations: ARIC, Atherosclerosis Risk in Communities; CI, confidence intervals; PM, particulate matter; PM10, PM < 10 μm in diameter; PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and < 
10 μm in diameter; WHI, Women's Health Initiative 
aModel adjusted for race/ethnicity, age, gender (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean dew point, mean barometric pressure, season, individual-level education, 
neighborhood socioeconomic status, smoking status, alcohol use, body mass index and physical activity 
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Figure 5-1. Map of geocoded Women's Health Initiative (1993-2002) and Atherosclerosis Risk in Communities study (1986-1998) 

participants and centers at baseline. WHI centers (n=39) followed 1,238-3,690 participants. ARIC centers followed 3,588-3,943 

participants.  WHI and ARIC centers were co-located in Minneapolis, MN and Winston-Salem, NC.   
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Figure 5-2. Pooled change in leukocyte count (Δ, cell/μL) per 10 μg/m3 increase in PM concentrations among n=165,675 participants, 

Women's Health Initiative (1993-2002) and Atherosclerosis Risk in Communities study (1986-1998). Model 1 adjusted for 

race/ethnicity, age, sex (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean dew point, mean barometric 

pressure, season, and a restricted cubic natural spline function of calendar date with one knot per year. Model 2 adjusted for all 

covariates in Model 1 plus individual-level education and neighborhood socioeconomic status. Model 3 adjusted for all covariates in 

Model 2 plus smoking status, alcohol use, body mass index, and physical activity.  
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Figure 5-3. Pooled change in leukocyte composition (Δ, %) per 10 μg/m3 increase in A) 1- and B) 12-month mean PM2.5 

concentrations among n=8,457 participants, Women's Health Initiative (1993-2002) and Atherosclerosis Risk in Communities study 

(1990-1995). Model 1 adjusted for race/ethnicity, age, sex (in ARIC), randomly assigned treatment group (in WHI), mean 

temperature, mean dew point, mean barometric pressure, season, and subpopulation-specific covariates. Model 2 also adjusted for 

individual-level education and neighborhood socioeconomic status. Model 3 additionally adjusted for smoking status, alcohol use, 

body mass index, and physical activity. 
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G. Supplement 

 

Table 5-S1. Characteristics of n=8,457 participants with estimated leukocyte composition data, Women's Health Initiative (1993-

2002) and Atherosclerosis Risk in Communities study (1990-1995) 
Characteristic WHI & ARIC 

n = 8,457 

WHI-EMPC 

n = 2,160 

WHI-AS311 

n = 822 

WHI-BAA23 

n = 1,910 

ARIC-AAa 

n = 2,534 

ARIC-EAb 

n = 1,031 

Male, n (%) 1,380 (16.3) 0 (0.0) 0 (0.0) 0 (0.0) 943 (37.2) 437 (42.4) 

Age (years), mean (SD) 61.5 (7.4) 63.7 (7.0) 65.4 (7.1) 64.8 (7.1) 56.6 (5.9) 59.9 (5.5) 

Race / ethnicity, n (%) 
      

   American Indian or Alaskan Native 51 ( 0.6) 50 (2.3) 1 (0.1) 0 (0.0) 0 (0.0) 0 (0.0) 

   Asian or Pacific islander 147 ( 1.7) 132 (6.1) 15 (1.8) 0 (0.0) 0.0 (0.0) 0 (0.0) 

   Black or African American 3,737 (44.2) 544 (25.2) 58 (7.1) 601 (31.5) 2534 (100.0) 0 (0.0) 

   Hispanic/Latino 717 ( 8.5) 314 (14.5) 24 (2.9) 379 (19.8) --c --c 

   Other 42 ( 0.5) 33 (1.5) 9 (1.1) 0 (0.0) 0 (0.0) 0 (0.0) 

   White (not of Hispanic origin) or European American 3763 (44.5) 1,087 (50.3) 715 (86.9) 930 (48.7) 0 (0.0) 1,031 (100.0) 

Education, n (%) 
      

   High school education or lower 4,030 (47.9) 591 (28.6) 177 (21.7) 609 (32.2) 1,562 (61.8) 479 (46.5) 

   More than high school 4,378 (52.1) 1,551 (71.4) 640 (78.3) 1,283 (67.8) 964 (38.2) 552 (53.5) 

Smoking status, n (%) 
      

   Never 4,044 (48.5) 1,126 (53.3) 367 (45.5) 1,007 (53.6) 1,113 (44.9) 431 (41.8) 

   Former 3,042 (36.5) 828 (39.2) 371 (46.0) 685 (36.4) 756 (30.1) 402 (39.0) 

   Current 1,255 (15.0) 158 (7.5) 69 (8.6) 188 (10.0) 642 (25.6) 198 (19.2) 

Alcohol use, n (%) 
      

   Never 1,883 (22.4) 289 (13.6) 90 (11.0) 307 (16.1) 876 (34.9) 321 (31.1) 

   Former 2,156 (25.7) 610 (28.7) 155 (18.9) 450 (23.6) 795 (31.6) 146 (14.2) 

   Current 4,351 (51.9) 1,225 (57.7) 575 (70.1) 1,146 (60.2) 841 (33.5) 564 (54.7) 

Body mass index (kg/m2), mean (SD) 29.2 (6.1) 29.5 (5.9) 28.0 (6.2) 29.9 (6.1) 30.1 (6.3) 26.2 (4.4) 

Physical activity (MET-hours/week), mean (SD) 12.3 (12.9) 10.3 (12.5) 11.6 (12.6) 10.0 (12.6) 12.8 (11.3) 20.6 (14.2) 
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Characteristic WHI & ARIC 

n = 8,457 

WHI-EMPC 

n = 2,160 

WHI-AS311 

n = 822 

WHI-BAA23 

n = 1,910 

ARIC-AAa 

n = 2,534 

ARIC-EAb 

n = 1,031 

Leukocyte count (cell/uL), mean (SD) 5,846 (1,607) 5,864 (1,507) 5,924 

(1,481) 

6,074 (1,610) 5,609 (1,675) 5,972 (1,611) 

   CD8+ T cells (%) 9 (6) 10 (7) 9 (4) 5 (5) 12 (5) 10 (4) 

   CD4 +T cells (%) 18 (7) 20 (7) 17 (7) 21 (7) 16 (7) 16 (6) 

   Nature killer cells (%) 7 (5) 2 (2) 9 (5) 9 (5) 7 (5) 7 (4) 

   B cells (%) 7 (4) 5 (4) 6 (3) 9 (4) 8 (3) 6 (3) 

   Monocytes (%) 10 (3) 12 (3) 11 (3) 8 (3) 9 (3) 8 (3) 

   Granulocytes (%) 49 (12) 50 (12) 49 (12) 48 (12) 48 (13) 54 (12) 

Abbreviations: AA, African Americans; ARIC, Atherosclerosis Risk in Communities; AS311, Ancillary Study 311; BAA23, Broad Agency Award 23; EA, 

European Americans; EMPC, Epigenetic Mechanisms of Particulate Matter-Mediated CVD Risk; SD, standard deviation; WHI, Women's Health Initiative 
aParticipants were from Jackson (90%) or Forsyth County (10%) 
bParticipants were from Forsyth County (90%), Minneapolis (8%) or Washington County (2%) 
cARIC recruitment and data collection occurred before the National Institute of Health required collection of information about Hispanic/Latino ethnicity 
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Table 5-S2. Mean (SD) particulate matter concentrations among n=8,457 with estimated leukocyte composition data, Women's Health 

Initiative (1993-2002) and Atherosclerosis Risk in Communities study (1990-1995) 

PM (μg/m3) 
WHI & ARIC 

n = 8,457 

WHI-EMPC 

n = 2,160 

WHI-AS311 

n = 822 

WHI-BAA23 

n = 1,910 

ARIC-AAa 

n = 2,534 

ARIC-EAb 

n = 1,031 

PM10          
   2-day 31.7 (12.1)  28.5 (11.1)  28.2 (10.8)  28.4 (10.9)  36.1 (12.4)  35.9 (11.5) 

   7-day 30.8 (9.3)  27.6 (7.9)  27.2 (8.2)  27.8 (8.3)  35.2 (9.3)  34.9 (8.2) 

   1-month 21.90 (5.9)  20.8 (6.6)  20.1 (6.1)  20.9 (6.5)  20.5 (4.6)  23.1 (5.2) 

   12-month 21.0 (4.2)  21.1 (5.3)  20.4 (4.8)  21.1 (4.8)  19.9 (1.7)  23.7 (2.4) 

PM2.5         

   1-month 13.3 (4.5)  13.8 (5.7)  12.1 (3.9)  12.2 (4.1)  13.1 (3.1)  15.4 (4.3) 

   12-month 13.2 (3.2)  13.8 (4.4)  12.1 (2.8)  12.2 (2.9)  12.7 (1.3)  15.9 (2.1) 

PM2.5-10         

   1-month 7.7 (4.0)   7.0 (5.2)   8.0 (4.3)   8.8 (4.8)   7.3 (2.1)   7.7 (2.5) 

   12-month 7.8 (3.2)   7.3 (4.2)   8.3 (3.8)   8.9 (4.0)   7.2 (0.8)   7.8 (1.4) 

Abbreviations: AA, African Americans; ARIC, Atherosclerosis Risk in Communities; AS311, Ancillary Study 311; BAA23, Broad Agency 

Award 23; CI, confidence intervals; EA, European Americans; EMPC, Epigenetic Mechanisms of Particulate Matter-Mediated Cardiovascular 

Disease; PM, particulate matter; PM10, PM < 10 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter; SD, stadard deviation; WHI, 

Women's Health Initiative 
aParticipants were from Jackson (90%) or Forsyth County (10%)   
bParticipants were from Forsyth County (90%), Minneapolis (8%) or Washington County (2%) 
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Figure 5-S1. Center-specific and pooled change in leukocyte count (Δ, cell/μL) per 10 μg/m3 

increase in 1- and 12-month mean concentrations of PM2.5 among n=165,675 participants, 

Women's Health Initiative (1993-2002) and Atherosclerosis Risk in Communities study (1986-

1998). The models adjusted for race/ethnicity, age, sex (in ARIC), randomly assigned treatment 

group (in WHI), mean temperature, mean dew point, mean barometric pressure, season, and a 

restricted cubic natural spline function of calendar date with one knot per year, individual-level 

education, neighborhood socioeconomic status, smoking status, alcohol use, body mass index, 

and physical activity. 
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Figure 5-S2. Pooled change in leukocyte count (Δ, cell/μL) per 10 μg/m3 increase in PM among n=165,675 participants, Women's 

Health Initiative (1993-2002) and Atherosclerosis Risk in Communities study (1986-1998). The models adjusted for race/ethnicity, 

age, sex (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean dew point, mean barometric pressure, 

season, individual-level education, neighborhood socioeconomic status, smoking status, alcohol use, body mass index, and physical 

activity (⚫), with additional adjustment for a restricted cubic natural spline function of calendar date with 1 knot for every 2 years (▼), 

1 knot per year (■), and 2 knots per year (+).  
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Figure 5-S3. Pooled change in leukocyte composition (Δ, % point) per 10 μg/m3 increase in A) 

2- and B) 7-day mean PM10; C) 1- and B) 12-month mean PM10; and E) 1- and F) 12-month 

mean PM2.5-10 concentrations among n=8,457 participants, Women's Health Initiative (1993-

2002) and Atherosclerosis Risk in Communities study (1990-1995). Model 1 adjusted for 

race/ethnicity, age, sex (in ARIC), randomly assigned treatment group (in WHI), mean 

temperature, mean dew point, mean barometric pressure, season, and subpopulation-specific 

covariates. Model 2 also adjusted for individual-level education and neighborhood 

socioeconomic status. Model 3 additionally adjusted for smoking status, alcohol use, body mass 

index, and physical activity.
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CHAPTER 6. METHYLOME-WIDE ASSOCIATION STUDY PROVIDES EVIDENCE OF 

PARTICULATE MATTER AIR POLLUTION-ASSOCIATED DNA METHYLATION 

A. Overview 

DNA methylation (DNAm) may contribute to processes that underlie associations 

between air pollution and poor health. Therefore, our objective was to evaluate associations 

between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5-10 μm 

in diameter (PM2.5; PM10; PM2.5-10). We conducted a methylome-wide association study among twelve 

cohort- and race/ethnicity-stratified subpopulations from the Women’s Health Initiative and the 

Atherosclerosis Risk in Communities study (n = 8,397; mean age: 61.5 years; 83% female; 45% African 

American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and 

monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which 

we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM 

associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, 

mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse 

variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and 

were not heterogeneous across subpopulations (P < 1.0x10-7; PCochran’s Q > 0.10), we characterized 

associations using publicly accessible genomic databases and attempted replication in the Cooperative 

Health Research in the Region Augsburg (KORA) study. Analyses identified significant DNAm-PM 

associations at three CpG sites. Twenty-eight-day mean PM10 was positively associated with 

DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33x10-8). One-month mean PM10 and 

PM2.5-10 were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 

5.84x10-8) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 
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9.86x10-8). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and 

cardiovascular disease-related genes, but DNAm at those sites was not associated with gene 

expression in blood cells and did not replicate in KORA. Ambient PM concentrations were 

associated with DNAm at genomic regions potentially related to poor health among racially, 

ethnically and environmentally diverse populations of U.S. women and men. Further 

investigation is warranted to uncover mechanisms through which PM-induced epigenomic 

changes may cause disease. 

B. Introduction 

Ambient particulate matter (PM) air pollution is a modifiable exposure that has been 

consistently associated with morbidity and mortality 5,12,13 attributed to cardiovascular disease 6,7, 

respiratory disease 21,442,443, and lung cancer 444,445. Despite the ubiquity of air pollution exposure 

and the continued population burden of PM 5, the causal mechanisms underlying PM 

associations with poor health have not been adequately investigated. 

One such mechanism could involve methylation of deoxyribonucleic acids (DNAm), 

conventionally measured at Cytosine-phosphate-Guanine (CpG) sites. DNAm is a heritable, but 

dynamic epigenetic modification that can influence gene expression without altering the DNA 

sequence 106,107 and may be central to mediation of PM-associated disease risk 105,108,109. Indeed, 

PM exposure has been implicated in whole blood DNAm near candidate genes involved in 

inflammation, oxidative stress, coagulation and vasoconstriction 154-156,162,163, abnormalities of 

which have established associations with cardiovascular and respiratory disease. A few studies 

have agnostically evaluated DNAm associations with PM on a methylome-wide scale 173,174,446, 

but none have done so in large, sociodemographically and environmentally diverse, well-

characterized populations of adult women and men.  
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The present study therefore examined methylome-wide associations between DNAm and 

ambient concentrations of PM ≤ 2.5, ≤ 10, and 2.5-10 μm in diameter (PM2.5, PM10, and PM2.5-10) 

within the Women’s Health Initiative (WHI) and the Atherosclerosis Risk in Communities study 

(ARIC) cohorts, and their replication in subpopulations of the Cooperative Health Research in 

the Region Augsburg (KORA) study.   

C. Methods 

C1. Study design and populations 

The study included 8,397 consenting participants from subpopulations within the WHI 

and ARIC cohorts who had available peripheral blood leukocyte DNA.  

The WHI is a multicenter prospective study of risk factors for cardiovascular disease 

(CVD), cancer, osteoporotic fractures, and other causes of morbidity and mortality among 

postmenopausal women 197,341. Between 1993 and 1998, women aged 50-79 years from forty 

WHI clinical centers throughout the United States (US) were enrolled in the Clinical Trials (CT) 

(n = 68,132) or Observational Study (OS) (n = 93,676). All WHI participants completed a 

screening visit (SV). CT participants also completed an annual visit (AV) at one, three, six, and 

nine years after randomization (AV1, AV3, AV6, AV9), and OS participants three years after 

enrollment (AV3). An additional visit of CT and OS participant subsets occurred between 2011 

and 2012 (ranging from 14 to 19 years after enrollment) as part of the WHI Long Life Study 

(LLS) 343.   

For the current study, WHI participants were drawn from three ancillary studies: 

Epigenetic Mechanisms of PM-Mediated CVD Risk (WHI-EMPC) 345, Broad Agency 

Announcement 23 (WHI-BAA23) 346 and Ancillary Study 311 (WHI-AS311) 447. WHI-EMPC is 

a study of epigenetic mechanisms underlying associations between ambient PM air pollution and 

CVD within the WHI CT. From this population, DNAm was measured in 2,200 randomly 
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selected participants (stage 1:  SV, AV3, or AV6), remeasured in 200 participants at a second 

visit (stage 2:  AV3 or AV6), and remeasured again in 43 participants at a third visit among those 

who participated in the WHI Long Life Study (stage 3:  LLS), yielding 2,443 total observations. 

WHI-BAA23, also known as Integrative Genomics and Risk of CHD and Related Phenotypes in 

the Women’s Health Initiative, is a case-control study of coronary heart disease within the WHI 

CT (n = 1,546) and OS (n = 442). By design, WHI-BAA23 oversampled African Americans and 

Hispanic/Latino Americans and required all participants to have undergone genome-wide 

genotyping and profiling of seven cardiovascular disease biomarkers. DNAm was measured in 

blood collected at the SV, before the incidence of coronary heart disease. WHI-AS311 is a 

matched case-control study of bladder cancer among women within the WHI CT (n = 405) and 

OS (n = 455). Bladder cancer cases were matched to controls based on enrollment year, age at 

enrollment, follow-up time, and DNAm extraction method. DNAm was measured in blood 

collected at the SV, before the incidence of bladder cancer.  

ARIC is a community-based prospective study of atherosclerosis and its clinical 

outcomes in four US communities: Washington County, Maryland; Forsyth County, North 

Carolina; selected suburbs of Minneapolis, Minnesota; and Jackson, Mississippi 196. Enrollment 

in 1987-1989 (Visit 1) was followed by five subsequent visits (Visits 2-6) between 1990-2017. 

The present study included all 2,796 African Americans from Forsyth County or Jackson (ARIC-

AA) with DNA and 1,139 European Americans from Forsyth County or Minneapolis (ARIC-

EA) with cerebral magnetic resonance imaging data 352, all at Visits 2 (1990-1992) or 3 (1993-

1995).  

Replication involved up to 2,176 participants from two studies of the population-based 

KORA cohort: F3 (n = 464) and F4 (n = 1,712). KORA F3 (2004-2005) and F4 (2006-2008) are 
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follow-up studies of the KORA S3 and S4 cohort participants, including German nationals aged 

25-74 years from Augsburg, Germany 390,391. 

C2. Particulate matter exposure estimation 

 The study focuses on three ambient particulate matter (PM) air pollutants, including two 

(PM2.5 and PM10) that are regulated under the Clean Air Act by the US Environmental Protection 

Agency (EPA) according to its National Ambient Air Quality Standards (NAAQS) 11.  

 PM exposures were estimated at all geocoded WHI and ARIC participant addresses 353,354 

in the contiguous US since the baseline examinations using two exposure modeling approaches, 

both based on US EPA Air Quality System (AQS) monitoring data for PM10 (since 1987) and 

PM2.5 (since 1999). In the WHI, the median distance from geocoded participant addresses to 

PM10 and PM2.5 EPA monitors was 7.8 and 7.6 kilometers. In ARIC, it was 4.8 and 7.2 

kilometers. Geocoded address-specific daily mean PM10 concentrations (µg/m³) were spatially 

estimated using national-scale, log-normal ordinary kriging. Exposure measurement error using 

kriging methods may yield misclassification and increase variance or bias associations 448,449, 

therefore validity of the estimation was assessed, using standard cross-validation statistics: 

average prediction error (PE), standardized prediction error (SPE), root mean square 

standardized (RMSS), and standard error (SE). Observed values of PE and SPE near zero, RMSS 

near one, and RMS near SE have provided evidence of model validity 355,406.  

 Also, geocoded address-specific monthly mean concentrations (µg/m³) were 

spatiotemporally estimated using generalized additive mixed models and geographic information 

system-based predictors. Because EPA AQS monitoring data for PM2.5 were not widely available 

until 1999, spatiotemporal estimation also involved the log-transformed ratio of PM2.5 to 

predicted PM10 between 1987 and 1999. A five- or ten-fold, out-of-sample cross-validation of 

the estimates in which the squared Pearson correlation between excluded monthly observations 
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and model predictions (R2 = 0.68-0.77) indicated that estimation models performed well 359. 

 Daily mean concentrations of PM10 were averaged over the 2-, 7-, 28-, and 365-day 

periods ending on (including) the examination day. Monthly mean concentrations of PM2.5 and 

PM10 were averaged over the 12-month period ending on (including) the calendar month of 

examination. Finally, coarse PM (PM2.5-10) concentrations for each averaging duration were 

calculated as differences between PM10 and PM2.5 concentrations. 

C3. DNA methylation 

Peripheral blood leukocytes were isolated from visit-specific, fasting blood drawn from 

study participants. DNA was extracted from the peripheral blood leukocytes and then DNAm 

was measured on a methylome-wide scale at 485,577 CpG sites using the Illumina 450K 

Infinium Methylation BeadChip (Illumina Inc.; San Diego, CA, USA). Methylation was 

quantitatively represented by beta, the proportion of methylated cytosines over the sum of 

methylated and unmethylated cytosines across the same loci. The data from all studies were 

quality controlled (Table S1), Beta Mixture Quantile (BMIQ)-normalized to adjust for probe bias 

360, and in WHI-EMPC, ComBat-adjusted for stage and plate using empirical Bayes methods 450. 

Otherwise, technical covariates (assay plate, chip, and row) were available to control for batch 

effects; and leukocyte proportions (CD8+ T cell, CD4+ T cell, B cell, natural killer cell, 

monocyte, and granulocyte) to account for leukocyte composition 179. Among ARIC-AA 

participants, missing lymphocyte, monocyte, neutrophil, eosinophil, and basophil proportions 

were imputed based on measured proportions. Analyses excluded CpG sites at which DNAm 

distributions were multi-modal 451 in at least one study.       

C4. Multiple imputation 

To avoid potential for selection bias in complete-data analysis when data are missing at 

random 370, multivariate imputation by chained equations (MICE) 371,372 as implemented in SAS 
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9.3 (Cary, NC) was used to impute infrequently missing PM2.5, PM10, and PM2.5-10 

concentrations (missing range: 3.3%, 3.5%) and other covariates (missing range: 0%, 10.4%), 

excluding methylome-wide DNAm. Binary and categorical data were imputed using the logistic 

and discriminant functions whereas interval-scale data were imputed using predictive means 

matching with a k-nearest neighbor (k=5) approach. 

C5. Statistical analysis 

All analyses were stratified by cohort and race/ethnicity (African-, European-, and 

Hispanic/Latino-American) and adjusted for age (years) at blood draw, education (high school 

education or lower, more than high school), smoking status (current, former, never), alcohol use 

(current, former, never), physical activity (metabolic equivalent of task [MET-hours/week]), 

body mass index (BMI, kg/m2), neighborhood socioeconomic status 365, mean temperature (°C), 

mean dew point (°C), mean barometric pressure (kPa), season, and methylation-related variables, 

which included ten principal components (PCs) for genetic ancestry (when available), leukocyte 

proportions, and technical covariates. Analyses additionally controlled for cohort-specific 

covariates, including binary sex (male, female) in ARIC; randomly assigned treatment group (CT 

subpopulations of WHI-AS311, WHI-BAA23, WHI-EMPC); case-control status (WHI-AS311, 

WHI-BAA23); and control matching criteria (WHI-AS311). 

In each subpopulation, covariate-adjusted, multi-level, linear, mixed-effects models 

(LMMs) were used to estimate DNAm-PM associations. In WHI-EMPC, three-level, 

longitudinal models had a random intercept for examination at the participant level, a random 

intercept and slope for PM at the WHI center level, and a random intercept for chip, as given by 

(19) 𝐷𝑁𝐴𝑚𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗𝑘 + 𝛽2𝑍𝑖𝑗𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑗𝑘 + 𝑏0𝑗𝑘
𝑃 + 𝑏0𝑖𝑗𝑘

𝐸 + 𝜀𝑖𝑗𝑘
𝐸 . 
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In WHI-BAA23 CT & OS, and WHI-AS311 CT & OS, two-level cross-sectional models had a 

random intercept and slope for PM at the WHI center level and a random intercept for plate and 

chip, as given by 

 

(20) 𝐷𝑁𝐴𝑚𝑖𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑘 + 𝛽2𝑍𝑖𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑘 + 𝑏0𝑖𝑘
𝐸 + 𝜀𝑖𝑘

𝐸 . 

 

In ARIC-AA and ARIC-EA, one-level cross-sectional models had a random intercept for plate 

and chip, as given by 

 

(21) 𝐷𝑁𝐴𝑚𝑖 = 𝛽0 + 𝛽1𝑃𝑀𝑖 + 𝛽2𝑍𝑖 + 𝑏0𝑖
𝐸 +  𝜀𝑖

𝐸 . 

 

Above, 𝑖, 𝑗 and 𝑘 denote the 𝑖𝑡ℎ examination of the 𝑗𝑡ℎ participant in the 𝑘𝑡ℎ center; 𝐷𝑁𝐴𝑚 is 

the CpG site-specific beta value; 𝛽0 is the intercept; 𝑃𝑀 is the 2-, 7-, 28-, 365-day, or 1- or 12-

month mean of PM2.5, PM10, or PM2.5-10; and 𝑍 is a vector of covariates. The terms (𝑏0
𝐶, 𝑏1

𝐶) ~ 

𝑁(𝑂, 𝐺) are a random intercept and a random slope for 𝑃𝑀 at the center level, (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is 

a random intercept for examination at the participant level, (𝑏0
𝐸) ~ 𝑁(𝑂, 𝐺) are random intercepts 

for technical covariates, and 𝜀𝐸 ~ (𝑂, 𝜎2) is the random error at the examination level. Measures 

of association (𝛽1) and their 95% confidence intervals (𝛽1 ± 1.96 𝑥 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟) were 

reported as an absolute percentage change in DNAm per 10 µg/m³ increase in PM.  

Given the focus on fixed effects, LMMs were fit with maximum likelihood using the 

MixedModels package 452 in Julia v0.6 453. Stratum-specific results were combined using fixed-

effects, inverse-variance weighted meta-analysis. Homogeneity of associations was assessed 

using Cochran’s Q test statistic 374. A PCochran’s Q < 0.10 and Bonferroni-corrected threshold of P 

< 1 x 10-7 (i.e. assuming 500,000 independent CpG tests) were used to identify significant CpG 

associations. The threshold of suggestive significance was P < 1 x 10-5. 
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Examination of stratified and meta-analyzed results included reviewing quantile-quantile 

(QQ) plots of the observed -log10-transformed P values for each CpG site against the expected 

values from a theoretical χ2 distribution and estimating the associated genomic inflation factor 

(λ), where λ is defined as the ratio of the observed to expected median -log10P values 380. 

C6. Technical validation 

In a random subset of 200 WHI-EMPC participants, bisulfite pyrosequencing was used to 

validate the Illumina 450K measures of DNAm at ten PM10- or PM2.5-sensitive CpG sites (P < 1 

x 10-5). CpG sites with poor next generation sequencing data or situated in CpG-rich, repetitive 

element, or low sequence complexity regions of the genome were not candidates for 

pyrosequencing. Site-specific comparisons of DNAm measures were based on mean Illumina 

450K minus bisulfite pyrosequencing differences (Δ), Pearson correlation coefficients (r), and 

Deming regression estimates of their intercepts (α) and slopes (β) 382. When the two measures are 

nearly identical, Δ, r, α, and β approach values of 0, 1, 0, and 1, respectively.  

C7. Functional annotation 

Published genotype-phenotype associations for variants annotated to or within 100 

kilobases of genes containing statistically significant PM-sensitive CpG sites were identified in 

the National Human Genome Research Institute (NHGRI) Genome-Wide Association Study 

(GWAS) Catalog 383. Tissue-specific gene expression was assessed using the Genotype-Tissue 

Expression (GTEx) database 384 and associations between DNAm and gene expression in human 

blood cells were obtained from a study of approximately 400,000 CpG sites and > 13,000 

transcripts in the Multi-Ethnic Study of Atherosclerosis (MESA) and Grady Trauma Project 

(GTP) cohorts 385. PM-sensitive CpG sites (P < 1 x 10-5) were functionally characterized using 

experimentally derived Functional element Overlap analysis of ReGions from EWAS (eFORGE) 

v2.0 386 with data from the Encyclopedia of DNA elements (ENCODE) 387, Roadmap 
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Epigenomics Project 388, and BLUEPRINT 389. Overlap of CpG site-specific PM sensitivity, 

histone modification, and DNase I hypersensitivity were evaluated in eFORGE with a false 

discovery rate (FDR) threshold of 0.05.  

C8. Replication 

Significant CpG sites that were not heterogeneous across subpopulations (P < 1.0x10-7; 

PCochran’s Q > 0.10) underwent replication and meta-analyses in KORA F3 and F4. Pollutant- and 

averaging duration-specific replication thresholds were Bonferroni-corrected by dividing the 

conventional alpha level (0.05) by the number of CpG sites carried into replication. 

D. Results 

The study consisted of twelve ARIC and WHI subpopulations, collectively representing 

8,397 participants, of whom 45.8% were African American, 8.4% were Hispanic/Latino 

American, and 83.0% were female (Table 1). Participants were on average 61.3 years of age and 

contributed methylation data at ≥ 461,014 CpG sites. One-month mean concentrations of PM10, 

PM2.5, and PM2.5-10 were 20.9, 13.2, and 7.7 μg/m3; varied by subpopulation and race/ethnicity 

(Tables 1 and S2); and did not exceed NAAQS in place at the time of data collection. Between-

pollutant Pearson correlation coefficients depended on size fraction and averaging duration 

(Table 2). Overall, the median (range) was 0.35 (-0.14, 0.79) and among 2-, 7-, 28, and 365-day 

mean PM10 concentrations, it was 0.64 (0.43, 0.79). Correlations between PM10 and PM2.5 

concentrations were 0.73 and 0.64 when they were averaged over 1 and 12 months. 

QQ plots (Fig. 1) based on the trans-ethnic, fixed-effects, inverse variance-weighted 

meta-analyses provided little evidence of inflation across pollutants and averaging durations: 

median (range) λ = 1.01, (0.89-1.07). Manhattan plots (Fig. 2) show three significant (P < 1 x 10-

7) and 55 suggestively significant (1 x 10-5 < P < 1 x 10-7) PM-sensitive CpG sites (Tables 3 and 

S3). The three significant CpG sites (cg19004594; cg24102420; cg12124767) were neither 
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within ten base pairs of single nucleotide polymorphisms (minor allele frequency > 1%) nor 

previously identified as cross-reactive probes 454.  

On chromosome 20 within an exonic CpG island of MATN4, a 10 μg/m3 increase in 28-

day mean PM10 was associated with a 0.3% (95% confidence interval [CI]: 0.2, 0.4) higher 

DNAm at cg19004594 (P = 3.33 x 10-8; Fig. 3A). On chromosome 3 intronic to ARPP21, a 10 

μg/m3 increase in 1-month mean PM10 was associated with a 0.5% (95% CI: 0.3, 0.7) lower 

DNAm at cg24102420 (P = 5.84 x 10-8; Fig. 3B). Cg24102420 is approximately 200 base pairs 

upstream from the transcriptional start site for microRNA 128-2 (miR128-2). On chromosome 7 

intronic to CFTR, a 10 μg/m3 increase in 1-month mean PM2.5-10 was associated with a 0.5% 

(95% CI: 0.3, 0.7) lower DNAm at cg12124767 (P = 9.86 x 10-8; Fig. 3C). Furthermore, PM 

associations with cg19004594, cg24102420, and cg12124767 were similar across race/ethnic 

strata (Fig. S1). Complete annotations for all PM-sensitive CpG sites (P < 1 x 10-7) are available 

in Excel Table S1. 

D1. Technical validation  

Overall, bisulfite pyrosequencing and Illumina 450K-based DNAm measures were 

similar (Table S4). The medians (interdecile ranges) of Δ, r, α and β were: 0.01 (-0.06, 0.07), 

0.73 (0.20, 0.83), 0.04 (-0.27, 0.24), and 0.98 (0.09, 1.62). Corresponding estimates (95% CIs) 

for cg24102420 were -0.04 (-0.04, -0.03), 0.79 (0.73, 0.83), -0.16 (-0.38, 0.07) and 1.13 (0.88, 

1.39). Cg19004594 and cg12124767 were not pyrosequenced. 

D2. Functional annotation 

MATN4 is highly expressed in the pancreas, reproductive tract, and skin (Fig. S2), but 

variants of this gene have not been significantly associated (P < 5 x 10-8) with any phenotypes in 

prior GWAS. ARPP21 is primarily expressed in the brain (Fig. S3), is significantly associated 

with neuroticism and severe H1N1 influenza, and suggestively associated (5 x 10-8 < P  < 5 x 10-
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6) with entorhinal cortical thickness and childhood-onset asthma in prior GWAS. CFTR is 

expressed in various tissues, including the pancreas, colon, minor salivary gland, digestive tract, 

and lung (Fig. S4). CFTR polymorphisms are associated with cystic fibrosis (CF), Barrett’s 

esophagus / esophageal carcinoma, and coronary artery disease.  

Differential methylation at cg19004594, cg24102420, or cg12124767 was not associated with 

gene expression in blood cells at any of the > 13,000 transcripts evaluated (P > 10-5) in the 

MESA/GTP cohorts. Although genomic regions around PM-sensitive CpG sites were associated 

with tri-methylation of histone 3 at lysine 9 (H3K9me3) in natural killer cells, derived 

mesenchymal stem cells, the fetal adrenal gland, fetal lung fibroblasts, and foreskin fibroblasts 

(FDR < 0.05; Fig. 4), they were not associated with mono- or tri-methylation of histone 3 at 

lysine 4, 27, or 36 (H3K4me1, H3K4me3, H3K27me3, or H3K36me3) or DNase I 

hypersensitivity in any tissues catalogued by eFORGE. 

D3. Replication 

The three statistically significant, non-heterogeneous PM-sensitive CpG sites 

(cg19004594; cg24102420; cg12124767) did not replicate in KORA F3 / F4 (Table S5). 

E. Discussion 

This methylome-wide association study (MWAS) discovered three CpG sites at which higher 

levels of monthly mean ambient particulate matter air pollution concentrations were associated with 

DNAm. The DNAm-PM associations at all three CpG sites were homogeneous across the twelve 

subpopulations and each site was annotated to a neurological, pulmonary, endocrine, or cardiovascular 

disease-related gene (MATN4, ARPP21 or CFTR). Although a recent MWAS also implicated cigarette 

smoking in DNA methylation at ARPP21 and CFTR 140—two genes that may underlie epigenetically 

mediated responses to inhalable environmental exposures—the CpG sites discovered herein are in 
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different regions of ARPP21 and CFTR, suggesting varied responses to particulate exposures, and none of 

them were associated with gene expression of blood cells in MESA/GTP. 

Methylation of cg19004594 (exon of MATN4) was positively associated with 28-day 

mean PM10 concentrations. Although MATN4-encoded Matrilin 4, a von Willebrand factor A 

domain-containing protein, contributes to cardiac remodeling 455 and inhibits the proliferation of 

hematopoietic stem cells at rest, environmental stressors trigger expression of the CXCL12-

encoded chemokine (SDF1) 456, activation of its G protein-coupled receptor (CXCR4), inhibition 

of Matrilin 4, and subsequent expansion of hematopoietic stem cell pools 457. SDF1-activated 

CXCR4 also inhibits beta-adrenergically activated calcium influx through myocardial L-type 

calcium ion channels 458, a process that may affect PM10-associated ventricular action potential 

and electrocardiographic QT interval duration 339. Methylation of MATN4 may therefore underlie 

commonly observed hematological and electrocardiographic of effects of PM10. 

Methylation at cg24102420 (intron of ARPP21) was positively associated with 1-month 

mean PM10 concentrations. ARPP21 encodes a neuronal cAMP-regulated phosphoprotein, a 

regulator of calmodulin signaling (RCS) that is highly enriched in medium spiny neurons within 

the basal ganglia, cerebral cortex, and other regions of the brain 459, with dual evidence of 

expression in cardiac tissues 460-462. Variants of ARPP21 have been associated with entorhinal 

cortical thickness 463. Calmodulin signaling 464, entorhinal cortical thickness 465, and PM air 

pollution 466 are all associated with Alzheimer’s disease progression, suggesting a potential 

epigenetic mechanism of PM10-related neuropathology.  

Indeed, ARPP21 and miR128-2, a microRNA within ARPP21, are both regulators of 

dendritic growth 467. In a study of rats, exposure to ammonium sulfate, a major component of 

PM2.5, was associated with diminished dendritic complexity in hippocampal neurons 468. 

Additionally, miR128 expression in peripheral blood of steel plant workers increased with 
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increases in PM exposure, as was confirmed by an in vitro study of PM-treated pulmonary tissue 

469. Additional roles of miR128 include the inhibition of ABCA1 and ABCG1, adenosine 

triphosphate-binding cassette (ABC) transporter genes also involved in homeostasis of 

cholesterol 470, an established risk factor for stroke, myocardial infarction, and other common 

forms of cardiovascular disease.  

Methylation at cg12124767 (intron of CFTR) was inversely associated with 1-month 

mean PM2.5-10 concentrations. CFTR encodes a transmembrane conductance regulator; 

specifically, an ABC transporter of chloride and thiocyanate ions. The CFTR-encoded ABC 

transporter controls fluid secretion and absorption in epithelial tissues 471. Its most common 

mutation impairs folding and trafficking of the encoded protein in pulmonary and pancreatic 

epithelia, causing CF and CF-related diabetes 472. However, cigarette smoke and chronic 

inflammation also reduce CFTR chloride channel function 473, a hypothesized molecular pathway 

underlying the development of chronic obstructive pulmonary disease 474. Furthermore, CFTR 

chloride channel currents in the myocardium shorten action potential and QT interval duration 

475. Their activation by cAMP protein kinase A (PKA), protein kinase C (PKC), or extracellular 

adenosine triphosphate (ATP) through purinergic receptors 475,476 can be arrhythmogenic 477-481. 

Hypomethylation of CFTR at this site therefore highlights another epigenetic mechanism that 

may underlie PM10-related pulmonary and electrocardiographic manifestations of disease. 

While the putative mechanisms described above are biologically plausible, analyses on 

which they are based are limited by their reliance on DNAm derived from leukocytes. Although 

other (e.g. heart, lung, nervous) tissues may be more appropriate for studying the role of DNAm 

on human disease, their collection is highly invasive 108,115; as such, leukocytes extracted from 

peripheral blood are widely used surrogate tissues 108 with demonstrated consistency of DNAm 
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patterns across relevant tissues types 116-118. Still, DNAm at cg19004594, cg24102420, 

cg12124767 was not associated with gene expression of blood cells in GTP/MESA 385. Unlike 

DNAm patterns though, gene expression is highly variable by tissue type 482, and MATN4, 

ARPP21 and CFTR are primarily expressed in other tissues.  

The inability to replicate associations in KORA F3 and F4 participants is noteworthy. 

Although independent from the discovery populations, KORA represents a population of white, 

European men and women living in Augsburg, Germany, one distinct from that of the 

environmentally diverse, multi-racial/ethnic U.S. populations in the discovery. In addition, PM 

composition in ARIC and WHI (1990-2012) may differ from that in Augsburg during KORA F3 

and F4 (2004-2006). Furthermore, PM concentrations in KORA were measured at community 

monitors, while those in WHI and ARIC were spatially or spatiotemporally estimated at 

participant geocoded addresses from monitoring networks in the 48 contiguous US states.  

DNAm associations with PM2.5 – often cited as the driver for PM-associated disease 7 – 

were not detected in this study. Inability to do so may be due to lower power to detect PM2.5 

versus PM10 associations with DNAm given lower-variance PM2.5 exposure estimates, lack of 

short-duration PM2.5 data before 1999 when EPA AQS started monitoring it, and / or induction 

of PM2.5 health effects that are not epigenetically mediated. 

The analyses also were limited by predominantly cross-sectional data, high multiple 

testing burden, small effect sizes, and residual need for functional characterization. However, 

repeated measures of PM and DNAm over time were leveraged in WHI-EMPC to increase 

statistical power. Among-pollutant correlations also were moderate in this context, so the 

multiple comparisons made were not strictly independent. Similarly, the Bonferroni-corrected 

threshold used herein (P < 1 x 10-7) is conservative because of methylome-wide correlations 
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among CpG sites 483,484, decreasing the likelihood of false positivity. Moreover, observed effect 

sizes were consistent with those seen in other epigenetic studies of particulate matter exposure 

173,174,446 and smoking 140. Further investigation is nonetheless needed to determine the clinical 

impact of CpG-specific changes in methylation although functional validation of epigenetic 

associations was outside the scope of presently funded work. Still, this is a well-powered study 

of geographically diverse, multi-racial/ethnic populations of women and men with methylome-

wide DNAm and geocoded address-specific PM data, that leveraged multivariate imputation to 

minimize selection-related biases otherwise known to affect epidemiologic associations in 

complete data analyses. 

F. Conclusions 

Findings from this large, racially/ethnically and environmentally diverse methylome-

wide association study of women and men in EPA regions 1-10 suggest that ambient particulate 

matter air pollution affects DNAm at regions of the genome potentially related to neurological, 

pulmonary, endocrine, and cardiovascular disease. Although the discovered associations are 

biologically plausible, functional characterization in relevant tissues or animal models remain 

necessary to validate associations and elucidate putative epigenetic mechanisms of PM-

associated disease.   
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G. Tables and Figures 

 

Table 6-1. Characteristics of the study participants, by subpopulation 

Subpopulation 
Race / 

ethnicity 
n 

% 

female 

Age, yrs  Maximum 

CpGs 

PM (μg/m3), 1 mo x̄ (SD) 

x̄ (SD) PM10 PM2.5 PM2.5-10 

ARIC   AA 2,664 63% 56.6 (5.9) 463,431 20.5 (4.6) 13.2 (3.1) 7.3 (2.1) 

      EA 1,100 58% 59.9 (5.4) 462,543 23.2 (5.3) 15.4 (4.3) 7.8 (3.5) 

WHI AS311 CT EA 351 100% 64.7 (7.1) 461,136 19.8 (6.6) 11.9 (3.82) 7.9 (4.6) 
   OS EA 395 100% 66.2 (6.9) 461,136 19.9 (5.7) 12.0 (3.9) 7.9 (4.1) 
 BAA23 CT AA 371 100% 61.8 (6.3) 461,014 22.6 (6.2) 14.3 (4.2) 8.3 (3.8) 
   EA 926 100% 67.8 (6.2) 461,014 19.7 (5.7) 11.7 (3.7) 8.0 (4.4) 
    HLA 220 100% 60.7 (6.4) 461,014 21.4 (8.1) 10.3 (4.1) 11.1 (5.7) 
 

  
OS AA 259 100% 62.8 (6.8) 461,014 22.3 (5.9) 14.0 (4.0) 8.3 (4.2) 

   HLA 174 100% 62.8 (7.3) 461,014 23.0 (8.1) 11.0 (4.2) 11.9 (6.4) 
 EMPCa  AA 553 100% 62.7 (6.9) 463,916 22.2 (6.2) 15.2 (5.1) 7.0 (4.7) 
   EA 1,072 100% 64.6 (7.1) 463,916 19.4 (6.0) 13.0 (5.0) 6.4 (5.2) 

      HLA 312 100% 61.5 (6.1) 463,916 21.9 (7.1) 12.8 (6.3) 9.1 (5.3) 

All    AA (45.8%)         

   HLA (8.4%) 8,397 83% 61.3 (7.4) 463,916 20.9 (5.8) 13.2 (4.3) 7.7 (4.0) 

      EA (45.8%)               

Abbreviations: AA, African American; ARIC, Atherosclerosis Risk in Communities; AS311, Ancillary Study 311; BAA23, Broad Agency Award 

23; CpG, Cytosine-phosphate-Guanine; CT, Clinical Trial; EA, European American; EMPC, Epigenetic Mechanisms of PM-Mediated CVD Risk; 

HLA, Hispanic/Latino American; mo, month; OS, Observational Study; PM10, PM < 10 μm in diameter; PM2.5, PM < 2.5 μm in diameter; PM2.5-10, 

PM > 2.5 and < 10 μm in diameter; SD, standard deviation; WHI, Women's Health Initiative; x̄, mean 
aAt the 1st visit. Methylation data also were available among 185 & 43 WHI-EMPC participants @ the 2nd & 3rd visits  
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Table 6-2. Particulate matter concentration (µg/m³) means and Pearson correlations in the total population (n = 8,397) 
    PM10 PM10 PM10 PM10 PM10 PM10 PM2.5 PM2.5 PM2.5-10 PM2.5-10 
  2 d 7 d 28 d 365 d 1 mo 12 mo 1 mo 12 mo 1 mo 12 mo 

  
x̄  

(SD) 

31.9 

(12.1) 

31.1 

(9.2) 

30.9 

(7.1) 

31.2 

(5.1) 

20.9 

(5.8) 

20.9 

 (4.0) 

13.2 

(4.3) 

13.2 

(3.0) 
7.7 (4.0) 7.8  (3.1) 

PM10 2 d 1.00          

PM10 7 d 0.74 1.00         

PM10 28 d 0.58 0.79 1.00        

PM10 365 d 0.43 0.56 0.70 1.00       

PM10 1 mo 0.39 0.48 0.54 0.27 1.00      

PM10 12 mo 0.15 0.18 0.24 0.35 0.62 1.00     

PM2.5 1 mo 0.29 0.36 0.41 0.17 0.73 0.39 1.00    

PM2.5 12 mo 0.11 0.12 0.15 0.23 0.40 0.64 0.66 1.00   

PM2.5-10 1 mo 0.25 0.31 0.35 0.21 0.67 0.48 -0.02 -0.13 1.00  

PM2.5-10 12 mo 0.08 0.12 0.17 0.23 0.41 0.67 -0.14 -0.14 0.74 1.00 

Abbreviations: d, day; mo, month; PM, particulate matter; PM10, PM < 10 μm in diameter; PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and 

< 10 μm in diameter; SD, standard deviation; x̄, mean 
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Table 6-3. Findings from trans-ethnic, fixed-effects meta-analyses (P < 1 x 10-7, PCochran's Q > 0.10) 
Chr Positiona CpG Exposure %Δ (95% CI)b P nobs Gene 

20 43926884 cg19004594 PM10, 28 d 0.3 (0.2, 0.4) 3.33 x 10-8 8,622 MATN4 

3 35785890 cg24102420 PM10, 1 mo -0.5 (-0.7, -0.3) 5.84 x 10-8 8,575 ARPP21 / MIR128-2  

7 117299297 cg12124767 PM2.5-10, 1 mo -0.5 (-0.7, -0.3) 9.96 x 10-8 8,577 CFTR 

Abbreviations: Δ, change; Chr, chromosome; CI, confidence interval; CpG, Cytosine-phosphate-Guanine; d, days; mo, month; PM10, PM < 10 μm 

in diameter; PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter 
aBuild 37 
bAbsolute percentage point per 10 μg/m3 increase in PM10 
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Figure 6-1. Quantile-quantile (QQ) plot of observed vs. expected -log10 p-value of each CpG site 

from trans-ethnic, fixed-effects meta-analyses of 2-, 7-, 28-, and 365-day PM10 and 1- and 12-

month PM10 and PM2.5. The red diagonal line references the methylome-wide significance 

threshold (P < 1.0×10−7). Lambda (λ) is the inflation factor. 
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Figure 6-2. Manhattan plot of −log10 p-value vs. chromosomal position of each CpG site from 

trans-ethnic, fixed-effects meta-analyses of 2-, 7-, 28-, and 365-day PM10 and 1- and 12-month 

PM10 and PM2.5. The red line references the methylome-wide significance threshold (P < 1.0 

×10−7) 
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Figure 6-3. Forest plots of PM-CpG associations (95% confidence intervals) for A) cg19004594, B) cg2410240, and C) cg12124767 

with a 10 µg/m³ increase in PM by subpopulation and overall after fixed-effects meta-analysis  
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Figure 6-4. Enrichment of PM-sensitive CpG sites in regions overlapping H3K9me3 using 

Roadmap data   
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H. Supplement 

The Cooperative Health Research in the Region of Augsburg (KORA) study is a 

population-based cohort from the region of Augsburg, Southern Germany. Replication analyses 

involved data from the F3 (n = 3,006; 2004-2005) and F4 (n = 3,080; 2006-2008) follow-up 

studies of the KORA S3 and S4 participants 485,486.   

DNA methylation was analyzed from whole blood samples in 500 (F3) and 1799 (F4) 

participants using the Infinium HumanMethylation450 BeadChip Array (Illumina). Probes with 

signals from less than three functional beads, a detection P value > 0.05 in > 1% of samples, or 

covered single nucleotide polymorphisms (minor allele frequency in Europeans > 5%) were 

excluded. Sample exclusions included participants with a detection P value > 0.05 for > 1% of 

probes and those with a gender mismatch. DNAm measures were Beta Mixture Quantile 

(BMIQ)-normalized to adjust for probe bias 360. DNAm at three CpG sites was analyzed: 

cg19004594, cg24102420, and cg12124767. Analyses controlled for technical variation by 

adjusting for CD4 T-cells, plasmablasts, natural killer cells, CD8 naive T-cells, monocytes, 

granulocytes, and a linear combination of CD8, CD45RA, and CD28 T-cells 487.  Analyses also 

controlled for plate and batch effects using 20 principal components calculated from the control 

probes. Moreover, analyses controlled for demographic and clinical variables collected via 

standardized questionnaires at each visit, as well as meteorological variables: age, sex, years of 

education, smoking status (current regular, current irregular, former, never), alcohol 

consumption (alcohol usage, no alcohol usage), physical activity (active, inactive), body mass 

index 485, mean temperature, mean barometric pressure, and mean relative humidity. 
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Table 6-S1. Methylome-wide DNAm data exclusions in WHI and ARIC 
  Sample Exclusions Probe Exclusions 

Study 
N after 

exclusionsa 

Detection  

p-value 

n CpGs after 

exclusionsb 

Detection  

p-value 

Y 

Chr 
Bead Count 

Non-CpG 

CH3 

WHI-EMPC c 1,937 > 0.01 in > 1%d 463,916 > 0.01 in > 10%e Yes No No 

WHI-BAA23 1,950 No 461,014 > 0.01 in > 10%e Yes No Yes 

WHI-AS311 746 No 461,136 > 0.01 in > 1%e Yes < 3 in > 10%e Yes 

ARIC-AA 2,664 > 0.01 in > 1%d 463,431 > 0.01 in > 1%e No  < 3 in > 5%e No 

ARIC-EA 1,100 > 0.01 in > 1%d 462,543 > 0.01 in > 5%e No < 3 in >5%e No 
aAdditional study-specific sample exclusions: gender mismatch or SNP discordance with previous genotyping, and / or outliers in principal 

component analysis 
bAdditional probe exclusion: CpG sites with multi-modal DNAm distributions in ≥ 1 study 
c185 participants had a second and 43 had a third DNAm measure at a subsequent visit (n observations = 2,165) 
dOf probes 
eOf samples 
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Table 6-S2. Mean concentrations (μg/m3) of particulate matter (PM) by study 

Study 
Race / 

Ethnicity 

PM10 PM2.5 PM2.5-10 

2 d 7 d 28 days 365 d 1 mo 12 mo 1 mo 12 mo 1 mo 12 mo 

x̄ (SD) x̄ (SD) x̄ (SD) x̄ (SD) x̄ (SD) x̄ (SD) x̄ (SD) x̄ (SD) x̄ (SD) x̄ (SD) 

ARIC AA 
36.0 

(12.3) 
35.1 (9.1) 34.8 (6.3) 35.5 (3.3) 20.5 (4.6) 19.9 (1.69) 13.2 (3.1) 12.7 (1.3) 7.3 (2.1) 7.2 (0.8) 

ARIC EA 
36.1 

(11.5) 
34.9 (8.2) 34.4 (5.8) 34.8 (3.0) 23.2 (5.3) 23.7 (2.4) 15.4 (4.3) 15.9 (2.1) 7.8 (3.5) 7.8 (1.4) 

WHI-AS311a EA 
28.0 

(11.0) 
27.1 (7.9) 27.4 (6.5) 27.5 (4.1) 19.8 (6.6) 20.0 (4.8) 11.9 (3.82) 11.9 (2.7) 7.9 (4.6) 8.1 (3.8) 

WHI-AS311b EA 
28.7 

(11.1) 
27.7 (8.9) 27.6 (6.6) 27.6 (4.2) 19.9 (5.7) 20.2 (4.5) 12.0 (3.9) 12.0 (2.6) 7.9 (4.1) 8.2 (3.5) 

WHI-BAA23a AA 
28.2 

(12.2) 
27.0 (7.5) 27.8 (5.6) 28.3 (2.8) 22.6 (6.2) 22.3 (3.7) 14.3 (4.2) 14.1 (2.2) 8.3 (3.8) 8.2 (2.6) 

WHI-BAA23a EA 
28.1 

(10.7) 
27.2 (8.4) 27.2 (6.4) 27.5 (4.0) 19.7 (5.7) 20.0 (4.5) 11.7 (3.7) 11.8 (2.5) 8.0 (4.4) 8.2 (3.7) 

WHI-BAA23a HLA 
28.9 

(10.4) 
29.3 (8.3) 29.3 (6.8) 29.2 (4.1) 21.4 (8.1) 21.5 (5.9) 10.3 (4.1) 10.3 (3.0) 11.1 (5.7) 11.2 (4.5) 

WHI-BAA23b AA 
28.8 

(11.1) 
28.8 (8.5) 28.1 (6.1) 28.1 (2.3) 22.3 (5.9) 22.6 (3.7) 14.0 (4.0) 14.1 (2.2) 8.3 (4.2) 8.5 (3.1) 

WHI-BAA23b HLA 
30.2 

(10.7) 
29.3 (8.6) 29.9 (7.2) 30.0 (4.7) 23.0 (8.1) 23.1 (6.1) 11.0 (4.2) 10.9 (3.2) 11.9 (6.4) 12.2 (5.2) 

WHI-EMPCa,c AA 
29.2 

(11.2) 
27.9 (7.3) 27.7 (5.5) 28.1 (3.0) 22.2 (6.2) 22.4 (4.3) 15.2 (5.1) 15.1 (3.8) 7.0 (4.7) 7.3 (3.4) 

WHI-EMPCa,c EA 
28.3 

(11.5) 
27.3 (8.1) 27.2 (6.4) 27.5 (3.8) 19.4 (6.0) 19.8 (5.8) 13.0 (5.0) 12.9 (3.6) 6.4 (5.2) 6.8 (4.1) 

WHI-EMPCa,c HLA 28.5 (9.8) 28.4 (8.3) 28.3 (6.2) 28.3 (4.2) 21.9 (7.1) 22.3 (6.1) 12.8 (6.3) 12.9 (5.4) 9.1 (5.3) 9.4 (4.9) 

All  
31.9 

(12.1) 
31.1 (9.2) 30.9 (7.1) 31.2 (5.1) 20.9 (5.8) 20.9 (4.0) 13.2 (4.3) 13.2 (3.0) 7.7 (4.0) 7.8 (3.1) 

Abbreviations: AA, African American; ARIC, Atherosclerosis Risk in Communities; AS311, Ancillary Study 311; BAA23OS, Broad Agency Award 23; CpG, 

Cytosine-phosphate-Guanine site; d, day; EA, European American; EMPC, Epigenetic Mechanisms of PM-Mediated CVD Risk; HLA, Hispanic/Latino 

American; mo, month; PM, particulate matter; SD, standard deviation; WHI, Women's Health Initiative 
aWHI clinical trials participants 
bWHI observational study participants 
cData from the first visit are presented for WHI-EMPC; 185 participants had a second and 43 had a third DNAm measure from a subsequent visit 
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Table 6-S3. Findings from trans-ethnic, fixed-effects inverse variance-weighted meta-analyses (P < 1 x 10-5, PCochran's Q > 0.10) with 

Illumina 450K Infinium Methylation 

Chr Position (B37) CpG Pollutant Duration Beta SE P value 

20 43926884 cg19004594 PM10 28 days 3.16E-04 5.72E-05 3.33E-08 

3 35785890 cg24102420 PM10 1 month -4.96E-04 9.14E-05 5.84E-08 

7 117299297 cg12124767 PM2.5-10 1 month -5.40E-04 1.01E-04 9.96E-08 

19 55013954 cg19547155 PM10 1 month -1.21E-03 2.31E-04 1.90E-07 

7 73183394 cg12169661 PM10 7 days 7.15E-04 1.40E-04 3.11E-07 

9 132383003 cg09731694 PM2.5 1 month -5.23E-04 1.02E-04 3.18E-07 

11 114493710 cg20057398 PM10 28 days 2.66E-04 5.29E-05 4.88E-07 

7 107385716 cg14590325 PM2.5-10 1 month -8.26E-04 1.65E-04 5.20E-07 

2 64682236 cg01948201 PM2.5 12 months -6.41E-04 1.29E-04 6.89E-07 

6 159466542 cg16180082 PM10 365 days -9.85E-04 2.01E-04 9.02E-07 

5 88307760 cg02412399 PM2.5-10 1 month -4.69E-04 9.57E-05 9.60E-07 

22 30639730 cg07316313 PM2.5 12 months -6.73E-04 1.38E-04 1.15E-06 

10 102473022 cg13583895 PM10 1 month -4.10E-04 8.50E-05 1.44E-06 

7 27225396 cg24988255 PM2.5 12 months -7.74E-04 1.61E-04 1.58E-06 

19 18549689 cg01065977 PM2.5-10 1 month 1.03E-03 2.16E-04 1.82E-06 

10 135342413 cg25330361 PM10 365 days 9.91E-04 2.08E-04 1.88E-06 

7 15726411 cg18580296 PM2.5 1 month -2.96E-04 6.23E-05 1.97E-06 

8 144790656 cg09754549 PM10 365 days 1.74E-03 3.66E-04 2.01E-06 

4 8230847 cg01945624 PM10 2 days -2.28E-04 4.81E-05 2.12E-06 

18 11855 cg25023094 PM2.5-10 12 months 1.03E-03 2.17E-04 2.29E-06 

5 35617730 cg11438448 PM10 28 days -3.88E-04 8.23E-05 2.38E-06 

6 30421218 cg26690915 PM10 7 days -3.37E-04 7.17E-05 2.60E-06 

7 48963408 cg05563813 PM2.5-10 12 months -5.37E-04 1.14E-04 2.70E-06 

1 104068488 cg07878955 PM2.5-10 1 month -3.09E-04 6.60E-05 2.81E-06 

10 131592483 cg02656060 PM2.5-10 12 months 3.44E-04 7.37E-05 3.13E-06 

7 2968595 cg22989995 PM10 28 days 2.13E-04 4.58E-05 3.21E-06 

1 71512973 cg15201877 PM2.5 12 months -6.54E-04 1.41E-04 3.35E-06 

19 40736427 cg15153957 PM2.5-10 1 month -6.57E-04 1.42E-04 3.44E-06 

17 57233042 cg02573089 PM2.5 12 months 1.22E-04 2.64E-05 3.77E-06 

12 131865279 cg00014484 PM10 28 days 3.41E-04 7.37E-05 3.80E-06 

6 49755105 cg21080533 PM2.5-10 1 month -5.13E-04 1.11E-04 3.92E-06 

5 167719548 cg15232798 PM2.5 12 months -4.70E-04 1.02E-04 4.33E-06 

9 44745070 cg14641231 PM10 365 days -6.35E-04 1.39E-04 4.55E-06 

2 32853039 cg19757253 PM2.5-10 12 months -1.39E-04 3.04E-05 4.74E-06 

20 57583188 cg12787553 PM2.5-10 12 months 3.86E-04 8.47E-05 5.11E-06 

19 43969886 cg24950222 PM2.5-10 1 month 7.46E-04 1.64E-04 5.44E-06 
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Chr Position (B37) CpG Pollutant Duration Beta SE P value 

4 38667430 cg22453435 PM2.5 12 months 6.65E-04 1.46E-04 5.46E-06 

17 17929033 cg21187669 PM10 365 days -7.29E-04 1.60E-04 5.60E-06 

11 115088907 cg16061656 PM2.5-10 1 month -5.33E-04 1.18E-04 5.79E-06 

7 958244 cg27572072 PM10 7 days -2.24E-04 4.94E-05 5.98E-06 

19 46456210 cg21632975 PM2.5 12 months -7.03E-04 1.56E-04 6.11E-06 

5 140700583 cg15351446 PM10 28 days -6.11E-04 1.35E-04 6.52E-06 

X 19141251 cg16641638 PM2.5-10 1 month 9.81E-04 2.18E-04 6.53E-06 

5 67583609 cg24797508 PM10 28 days -5.73E-04 1.27E-04 6.80E-06 

3 133393119 cg24405999 PM2.5-10 12 months -1.15E-03 2.55E-04 6.84E-06 

6 28698008 cg09294156 PM10 7 days 4.05E-04 9.00E-05 6.93E-06 

1 90231240 cg12857520 PM2.5-10 12 months 7.55E-04 1.68E-04 6.96E-06 

13 30088615 cg09750646 PM2.5-10 12 months 2.46E-04 5.48E-05 7.30E-06 

16 31235824 cg10085057 PM10 28 days 2.66E-04 5.94E-05 7.52E-06 

2 32852828 cg26189067 PM2.5-10 1 month 2.12E-04 4.77E-05 8.29E-06 

1 38260988 cg02851558 PM2.5-10 1 month 8.69E-04 1.95E-04 8.41E-06 

7 149809179 cg21015808 PM10 365 days 1.21E-03 2.72E-04 8.42E-06 

19 15488783 cg03654623 PM10 28 days -5.16E-04 1.16E-04 8.44E-06 

7 142045032 cg12155684 PM10 28 days -5.36E-04 1.20E-04 8.74E-06 

20 30619137 cg27531587 PM10 365 days -1.10E-03 2.47E-04 8.82E-06 

5 33936752 cg02341815 PM2.5 1 month -3.83E-04 8.64E-05 9.21E-06 

13 19919758 cg03941975 PM10 1 month -3.26E-04 7.37E-05 9.85E-06 

2 27166550 cg18990157 PM10 1 month -5.09E-04 1.15E-04 9.85E-06 
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Chr FDR nobs Direction PCochran's Q 

Infinium 

Design 

Type 

Strand Probe SNPs 

Probe 

SNPs 

within 10 

bases 

UCSC RefGene Name 

20 0.008 8,622 +-++++-+++++ 0.63 I R   MATN4;MATN4;MATN4 

3 0.027 8,575 ------------ 0.42 II F   MIR128-2;ARPP-21 

7 0.046 8,577 ---------+-- 0.84 II R   CFTR 

19 0.044 7,476 -?---------- 1.00 II R   LAIR2;LAIR2 

7 0.145 8,619 +-+++--+--++ 0.11 II R   CLDN3;CLDN3 

9 0.049 8,580 -+++-+------ 0.20 II F   C9orf50;C9orf50 

11 0.057 8,617 ++++++++++++ 0.51 II F    
7 0.121 8,574 --+--------- 0.75 II F   CBLL1;CBLL1 

2 0.245 8,575 +-----+-+--- 0.27 II F   HSPC159 

6 0.210 8,617 ---+-+----+- 0.12 II F   TAGAP;TAGAP;TAGAP 

5 0.149 8,575 -++--------- 0.21 II F    
22 0.245 8,568 ------+----- 0.73 II R   LIF 

10 0.224 8,582 ------+--+-- 0.94 II F    
7 0.245 8,581 +----------- 0.45 II F  rs61741589 HOXA11AS;HOXA11 

19 0.169 8,578 +++-++-+++++ 0.56 I F   ISYNA1;ISYNA1;ISYNA1 

10 0.233 8,617 -+++++++++++ 0.69 I R   CYP2E1 

7 0.229 8,578 -----+------ 0.40 II R rs917442  MEOX2 

8 0.233 8,618 +--++-++++++ 0.40 II F   LOC100130274 

4 0.985 8,619 -----++-+--- 0.51 II R   SH3TC1 

18 0.364 8,578 +++-++++-+++ 0.59 I F rs6505962   
5 0.222 8,625 ------------ 0.97 II F   SPEF2;SPEF2 

6 0.606 8,621 -----++----- 0.37 II R    
7 0.364 8,554 ------------ 0.50 II R   CDC14C 

1 0.218 8,581 +-----+----- 0.58 II R   RNPC3 

10 0.364 8,575 +-++++++++++ 0.72 II F    
7 0.249 8,620 ++++++-+++++ 0.67 II F   CARD11 

1 0.250 8,577 -+-+----+--- 0.58 II F   

PTGER3;PTGER3;PTGER3;PT

GER3;PTGER3;PTGER3;PTGE

R3;PTGER3;PTGER3;PTGER3 

19 0.228 8,576 ------------ 0.31 II F rs79228552  AKT2 

17 0.250 8,578 ++-+++++++-+ 0.53 I F rs80342392  PRR11;SKA2;SKA2 

12 0.253 8,601 +++++-++++++ 0.56 I F    

6 0.228 8,575 ----+------- 0.46 II R   PGK2 
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Chr FDR nobs Direction PCochran's Q 

Infinium 

Design 

Type 

Strand Probe SNPs 

Probe 

SNPs 

within 10 

bases 

UCSC RefGene Name 

5 0.252 8,580 +--+-++----- 0.18 II F   WWC1;WWC1;WWC1 

9 0.379 8,613 ------------ 0.62 II F rs10908153   
2 0.377 8,570 -----+------ 0.89 I R   TTC27 

20 0.377 8,568 ++-+++++++++ 0.35 II F  rs79270271 CTSZ 

19 0.269 8,577 ++++++++++++ 0.80 II F   LYPD3 

4 0.282 8,578 ++++++++-+++ 0.28 II F   FLJ13197;KLF3 

17 0.379 8,618 ------------ 0.66 II R   ATPAF2 

11 0.269 8,569 ---------+-- 0.73 II R   CADM1;CADM1 

7 0.645 8,618 ---+-+------ 0.53 II F rs1534410  ADAP1 

19 0.284 8,577 ---+--+----- 0.96 II R   NOVA2 

5 0.339 8,619 ------+----- 0.88 II R   TAF7 

X 0.276 8,565 +++-++++++++ 0.71 I R   GPR64;GPR64;GPR64;GPR64 

5 0.339 8,620 ------------ 0.93 II R   PIK3R1;PIK3R1 

3 0.377 8,579 ---+-------- 0.80 II R  rs79353799  
6 0.645 8,619 ++--++++-+++ 0.10 I R    
1 0.377 8,568 +--+-++-++++ 0.52 II R    

13 0.377 8,577 -+++++++-+-+ 0.11 II F   SLC7A1 

16 0.339 8,614 ++++++++++++ 0.95 II R   TRIM72 

2 0.289 8,582 +-+-+-++++++ 0.11 II R   TTC27 

1 0.289 8,577 -++-+++++-++ 0.10 II F   MANEAL;MANEAL;MANEAL 

7 0.379 8,604 +-+++-++++++ 0.33 II R    
19 0.339 8,620 --++----+--- 0.49 II F rs34428373  AKAP8 

7 0.339 8,620 -++------+-- 0.37 II F rs2855868   
20 0.379 8,587 +--+-+---+-- 0.22 II F   C20orf160 

5 0.466 8,562 -+---------- 0.94 II R   RXFP3;RXFP3 

13 0.916 8,576 ---------+-- 0.71 II F   LOC100101938 

2 0.916 8,575 ----+----+-- 0.34 II R   rs34064589 DPYSL5 
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Chr 
UCSC RefGene 

Accession 

UCSC RefGene 

Group 

UCSC CpG 

Islands 

Name 

Relation 

to UCSC 

CpG 

Island 

Phantom Enhancer 
HMM 

Island 

Regulatory 

Feature 

Name 

Regulatory 

Feature 

Group 

DHS 

20 

NM_030592;NM_0

30590;NM_003833 Body;Body;Body 

chr20:439265

94-43927171 Island   

20:433

60020-

43360

585    

3 

NR_029824;NM_01

6300 TSS200;Body         

7 NM_000492 Body    TRUE     

19 

NM_002288;NM_0

21270 TSS200;TSS200         

7 

NM_001306;NM_0

01306 3'UTR;1stExon 

chr7:7318337

9-73185115 Island  TRUE 

7:7282

0924-

72823

026    

9 

NM_199350;NM_1

99350 1stExon;5'UTR 

chr9:1323824

32-

132383004 Island  TRUE 

9:1314

21972-

13142

2825 

9:132381722-

132383326 Unclassified  

11       

11:113

99890

8-

11399

9055    

7 

NM_024814;NR_02

4199 Body;Body 

chr7:1073836

57-

107385021 S_Shore       

2 NM_014181 Body 

chr2:6468101

1-64682237 Island   

2:6453

4584-

64535

741    

6 

NM_152133;NM_1

38810;NM_054114 

TSS1500;TSS150

0;TSS1500      

6:159465693-

159466558 

Promoter_A

ssociated  
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Chr 
UCSC RefGene 

Accession 

UCSC RefGene 

Group 

UCSC CpG 

Islands 

Name 

Relation 

to UCSC 

CpG 

Island 

Phantom Enhancer 
HMM 

Island 

Regulatory 

Feature 

Name 

Regulatory 

Feature 

Group 

DHS 

5      TRUE     

22 NM_002309 Body 

chr22:306397

29-30639994 Island  TRUE     

10   

chr10:102473

206-

102474026 N_Shore       

7 

NR_002795;NM_00

5523 Body;TSS1500 

chr7:2722505

0-27225629 Island   

7:2719

0555-

27192

145    

19 

NM_016368;NM_0

01170938;NM_001

170939 

TSS1500;TSS150

0;TSS1500 

chr19:185438

28-18549161 S_Shore  TRUE     

10 NM_000773 Body 

chr10:135341

255-

135342561 Island   

10:135

19225

7-

13519

2927 

10:13534240

6-135343123 

Unclassified

_Cell_type_

specific 

TRU

E 

7 NM_005924 TSS200     

7:1569

2873-

15693

735    

8 NM_001162914 TSS1500 

chr8:1447884

91-

144791059 Island   

8:1448

60480-

14486

3032    

4 NM_018986 Body    TRUE  

4:8229970-

8231542 Unclassified 

TRU

E 

18   

chr18:11708-

12372 Island   

18:166

8-2363 

18:11623-

11949 

Unclassified

_Cell_type_

TRU

E 
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Chr 
UCSC RefGene 

Accession 

UCSC RefGene 

Group 

UCSC CpG 

Islands 

Name 

Relation 

to UCSC 

CpG 

Island 

Phantom Enhancer 
HMM 

Island 

Regulatory 

Feature 

Name 

Regulatory 

Feature 

Group 

DHS 

specific 

5 

NM_024867;NM_1

44722 

TSS1500;TSS150

0 

chr5:3561785

5-35618339 N_Shore    

5:35617465-

35618744 

Promoter_A

ssociated  

6   

chr6:3041884

4-30419630 S_Shore   

6:3052

8709-

30529

646 

6:30420915-

30421864 Unclassified  

7 NR_003595 TSS1500 

chr7:4896396

7-48964348 N_Shore       

1 NM_017619 TSS200 

chr1:1040684

87-

104068913 Island 

high-

CpG:1038

40904-

10384144

9  

1:1038

40702-

10384

1560 

1:104067619-

104069204 

Promoter_A

ssociated_C

ell_type_spe

cific  

10   

chr10:131592

393-

131592616 Island   

10:131

48238

4-

13148

2606    

7 NM_032415 Body 

chr7:2968234

-2968596 Island       

1 

NM_198718;NR_02

8294;NM_198714;

NR_028293;NM_19

8716;NM_198717;

NR_028292;NM_00

1126044;NM_1987

19;NM_198715 

1stExon;Body;1st

Exon;Body;1stEx

on;1stExon;Body;

1stExon;1stExon;

1stExon 

chr1:7151222

4-71513804 Island  TRUE 

1:7128

4815-

71286

418 

1:71512684-

71513685 

Unclassified

_Cell_type_

specific 

TRU

E 

19 NM_001626 3'UTR 

chr19:407320

75-40732665 S_Shelf       
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Chr 
UCSC RefGene 

Accession 

UCSC RefGene 

Group 

UCSC CpG 

Islands 

Name 

Relation 

to UCSC 

CpG 

Island 

Phantom Enhancer 
HMM 

Island 

Regulatory 

Feature 

Name 

Regulatory 

Feature 

Group 

DHS 

17 

NM_018304;NM_0

01100595;NM_182

620 

TSS200;TSS1500

;TSS1500 

chr17:572318

55-57232655 S_Shore   

17:545

86469-

54588

061 

17:57232097-

57233543 

Promoter_A

ssociated 

TRU

E 

12      TRUE 

12:130

43123

0-

13043

1297    

6 NM_138733 TSS200         

5 

NM_001161662;N

M_015238;NM_001

161661 Body;Body;Body 

chr5:1677185

23-

167719688 Island   

5:1676

51074-

16765

2234    

9   

chr9:4474398

7-44744258 S_Shore       

2 NM_017735 TSS200 

chr2:3285300

7-32853270 Island   

2:3270

6435-

32707

015 

2:32852291-

32853612 

Promoter_A

ssociated  

20 NM_001336 TSS1500 

chr20:575819

02-57582595 S_Shore       

19 NM_014400 TSS200 

chr19:439672

47-43968625 S_Shore       

4 

NR_026804;NM_01

6531 TSS1500;5'UTR 

chr4:3866464

9-38666531 S_Shore       

17 NM_145691 Body    TRUE    

TRU

E 

11 

NM_001098517;N

M_014333 Body;Body         

7 NM_006869 Body chr7:959724- N_Shore       
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Chr 
UCSC RefGene 

Accession 

UCSC RefGene 

Group 

UCSC CpG 

Islands 

Name 

Relation 

to UCSC 

CpG 

Island 

Phantom Enhancer 
HMM 

Island 

Regulatory 

Feature 

Name 

Regulatory 

Feature 

Group 

DHS 

959959 

19 NM_002516 Body 

chr19:464562

09-46456503 Island  TRUE 

19:511

47814-

51148

279   

TRU

E 

5 NM_005642 TSS1500 

chr5:1406998

98-

140700495 S_Shore   

5:1406

80760-

14068

0833 

5:140699328-

140700860 

Promoter_A

ssociated 

TRU

E 

X 

NM_005756;NM_0

01079859;NM_001

079860;NM_00107

9858 

TSS1500;TSS150

0;TSS1500;TSS1

500 

chrX:191399

37-19140629 S_Shore   

X:190

49688-

19051

204    

5 

NM_181523;NM_1

81524 Body;TSS1500 

chr5:6758421

3-67584451 N_Shore    

5:67583598-

67584704 

Promoter_A

ssociated  

3   

chr3:1333931

18-

133393657 Island   

3:1348

75552-

13487

6347    

6       

6:2880

5742-

28805

992    

1   

chr1:9022874

4-90229173 S_Shelf    

1:90231189-

90231313 

Unclassified

_Cell_type_

specific  
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Chr 
UCSC RefGene 

Accession 

UCSC RefGene 

Group 

UCSC CpG 

Islands 

Name 

Relation 

to UCSC 

CpG 

Island 

Phantom Enhancer 
HMM 

Island 

Regulatory 

Feature 

Name 

Regulatory 

Feature 

Group 

DHS 

13 NM_003045 3'UTR 

chr13:300885

58-30088772 Island   

13:289

86598-

28986

848    

16 NM_001008274 Body 

chr16:312355

25-31236104 Island   

16:311

43042-

31143

605 

16:31235797-

31235920 

Unclassified

_Cell_type_

specific  

2 NM_017735 TSS1500 

chr2:3285300

7-32853270 N_Shore   

2:3270

6200-

32706

369 

2:32852291-

32853612 

Promoter_A

ssociated  

1 

NM_001113482;N

M_001031740;NM_

152496 

Body;Body;TSS2

00 

chr1:3825909

5-38260427 S_Shore       

7       

7:1494

39733-

14944

0113    

19 NM_005858 Body 

chr19:154898

56-15491258 N_Shore    

19:15488773-

15489081 

Unclassified

_Cell_type_

specific  

7           

20 NM_080625 3'UTR 

chr20:306187

93-30619138 Island  TRUE 

20:300

82455-

30082

986 

20:30618596-

30620114 Unclassified  

5 

NM_016568;NM_0

16568 1stExon;5'UTR 

chr5:3393616

8-33938309 Island  TRUE 

5:3397

1926-

33974

929   

TRU

E 
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Chr 
UCSC RefGene 

Accession 

UCSC RefGene 

Group 

UCSC CpG 

Islands 

Name 

Relation 

to UCSC 

CpG 

Island 

Phantom Enhancer 
HMM 

Island 

Regulatory 

Feature 

Name 

Regulatory 

Feature 

Group 

DHS 

13 NR_027248 TSS1500 

chr13:199185

85-19919221 S_Shore       

2 NM_020134 Body       TRUE         

Abbreviations: B37, build 37; Chr, chromosome; CpG, cytosine-phosphate-guanine site; DHS, DNase 1 hypersensitivity site; F, forward; FDR, false 

discovery rate;HMM, Hiden Markov Model; PM, particulate matter; R, reverse; SE, standard error; SNP, single nucleotide polymorphism; UCSC, University 

of California Santa Cruz 
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Table 6-S4. Comparison of DNA methylation measures from the Illumina 450K Infinium Methylation BeadChip versus bisulfite 

pyrosequencing 

Chr Position (B37) CpG 
Δ r α β 

(95% CI) (95% CI) (95% CI) (95% CI) 

4 8230847 cg01945624 
0.07 0.83 0.17 0.76 

(0.06, 0.07) (0.78, 0.87) (0.14, 0.20) (0.68, 0.83) 

2 64682236 cg01948201 
0.02 0.71 0.04 0.91 

(0.02, 0.02) (0.63, 0.77) (0.01, 0.08) (0.78, 1.04) 

22 30639730 cg07316313 
-0.15 0.75 -0.58 1.52 

(-0.15, -0.14) (0.68, 0.81) (-0.74, -0.42) (1.33, 1.72) 

9 132383003 cg09731694 
0.08 0.78 0.03 1.36 

(0.08, 0.08) (0.72, 0.83) (0.01, 0.06) (1.21, 1.51) 

8 144790656 cg09754549 
-0.03 0.86 -0.06 1.04 

(-0.04, -0.02) (0.82, 0.90) (-0.21, 0.09) (0.85, 1.23) 

6 159466542 cg16180082 
0.04 0.61 -0.23 2.49 

(0.04, 0.05) (0.52, 0.69) (-0.35, -0.12) (1.90, 3.07) 

7 15726411 cg18580296 
0 0.22 0.08 0.09 

(-0.01, 0.00) (0.08, 0.34) (0.08, 0.09) (0.04, 0.15) 

7 2968595 cg22989995 
-0.05 0.04 0.82 0.07 

(-0.06, -0.05) (-0.10, 0.18) (0.60, 1.04) (-0.17, 0.30) 

3 35785890 cg24102420 
-0.04 0.79 -0.16 1.13 

(-0.04, -0.03) (0.73, 0.83) (-0.38, 0.07) (0.88, 1.39) 

7 27225396 cg24988255 
0.07 0.4 0.12 0.55 

(0.07, 0.08) (0.27, 0.51) (0.09, 0.15) (0.27, 0.82) 

Abbreviations: B37, build 37; Δ, mean Illumina 450K minus bisulfite pyrosequencing difference in DNAm; Chr, chromosome; CI, 

confidence interval; CpG, cytosine-phosphate-guanine site; ICC, intra-class correlation; r, Pearson correlation coefficient 
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Table 6-S5. Findings from Cooperative Health Research in the Region Augsburg study (KORA) 
Chr Positiona CpG Exposure %Δ (95% CI)b P nobs Gene 

20 43926884 cg19004594 PM10, 28 d -0.1 (-0.3, 0.1) 0.42 2,168 MATN4 

3 35785890 cg24102420 PM10, 30 d  -0.2 (-0.6, 0.1) 0.13 2,176 ARPP21 / MIR128-2  

7 117299297 cg12124767 PM2.5-10, 30 d 0.4 (-0.2, 1.0) 0.21 2,036 CFTR 

Abbreviations: Δ, change; Chr, chromosome; CI, confidence interval; CpG, Cytosine-phosphate-Guanine; d, days; PM10, PM < 10 μm in diameter; 

PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter 
aBuild 37 
bAbsolute percentage point per 10 μg/m3 increase in PM10 
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Figure 6-S1. Forest plots of PM-CpG associations (95% confidence intervals) for A) cg19004594, B) cg2410240, and C) cg12124767 

with a 10 µg/m³ increase in PM by subpopulation and by race/ethnicity and overall after fixed-effects meta-analysis.  
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Figure 6-S2. Gene expression for MATN4  
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Figure 6-S3. Gene expression for ARPP21  
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Figure 6-S4. Gene expression for CFTR 
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CHAPTER 7. EPIGENETICALLY MEDIATED ELECTROCARDIOGRAPHIC 

MANIFESTATIONS OF SUB-CHRONIC EXPOSURES TO AMBIENT PARTICULATE 

MATTER AIR POLLUTION  

A. Overview 

Short-duration exposure to ambient particulate matter (PM) air pollution is associated 

with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, 

associations with sub-chronic exposures to coarser particulates are relatively poorly 

characterized as are molecular mechanisms underlying their potential relationships with 

cardiovascular disease. We therefore estimated associations between monthly mean 

concentrations of PM < 10μm and 2.5-10μm in diameter (PM10; PM2.5-10) with time-domain 

measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and 

men in the Women’s Health Initiative and Atherosclerosis Risk in Communities Study (nHRV = 

82,107; nQT = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations 

by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, 

cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a 

subset of the participants (nHRV = 7,169; nQT = 6,895). After multiply imputing missing data, we 

estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for 

sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed 

mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by 

DNAm. Overall, we found little evidence of PM-HRV association, PM-QT association, or 

mediation by DNAm. The findings suggest that among racially / ethnically and environmentally 

diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert 
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appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular 

repolarization, although further investigation of shorter duration exposures to finer particulates 

and non-electrocardiographic outcomes among relatively susceptible populations is warranted. 

B. Introduction 

Exposure to ambient particulate matter (PM) air pollution has been consistently 

associated with increases in cardiovascular disease (CVD) risk.6,7,12 For example, short-duration 

exposures to PM have been associated with decreased heart rate variability (HRV)239,241,242 and 

increased QT interval duration (QT)319,321,325, both of which are established cardiovascular 

disease risk factors.202,226,227,291,293,295,296,488 However, most epidemiologic studies of PM, HRV 

and QT rely on short-duration (≤ 2-day) exposure averaging and electrocardiographic recordings. 

Moreover, studies of longer (monthly) exposures to coarser particulates, i.e. PM ≤ 10 and 2.5-10 

μm in diameter (PM10; PM2.5-10) remain uncommon.  

Although molecular mechanisms underlying PM-associated effects also remain 

inadequately characterized to date, methylation of deoxyribonucleic acids (DNAm) at Cytosine-

phosphate-Guanine (CpG) sites is an environmentally modifiable process by which epigenetic 

modifications may affect gene expression, cardiac electrophysiology, and their 

electrocardiographic manifestations.105,108,109,173,174 Indeed, we recently discovered that DNAm 

was associated with higher monthly mean PM10 and PM2.5-10 concentrations at three PM-

sensitive CpG sites annotated to neurological, pulmonary, endocrine, and / or cardiovascular 

disease-related genes (MATN4; ARPP21; CFTR) that can affect cardiac electrophysiology.489 

However, the actual role of DNAm at these sites in PM-associated, quantitative 

electrocardiographic traits is unclear.  

In the present study, we therefore estimated the associations between monthly mean 

ambient PM10 and PM2.5-10 concentrations, HRV, and QT in two large, racially, ethnically, and 
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geographically diverse U.S. populations enrolled in the Women’s Health Initiative (WHI) and 

the Atherosclerosis Risk in Communities study (ARIC), then examined mediation of the monthly 

mean PM-HRV and PM-QT associations by DNAm.  

C. Methods 

C1. Study populations 

The WHI is a multicenter, prospective study of risk factors for cardiovascular disease, 

breast / colorectal cancer, and osteoporotic fractures.197,341 From forty clinical centers throughout 

the U.S., postmenopausal women aged 50-79 years were either randomized in the Clinical Trials 

(CT, n = 68,132) or enrolled in the Observational Study (OS, n = 93,676) between 1993 and 

1998. The WHI CT included three interventions: hormone therapy (i.e. estrogen with or without 

progestin), calcium and vitamin D supplementation, and dietary modification. The WHI OS197,341 

recruited participants interested in the dietary modification or hormone therapy trials of the WHI 

CT, but were otherwise ineligible, unwilling, or unresponsive to a direct invitation.  

All WHI participants completed a baseline screening visit (SV; 1993-1998) at which 

demographic, socioeconomic, behavioral, and medical information was collected by trained and 

certified staff. WHI CT participants also completed annual visits three, six, and nine years after 

randomization (AV3, AV6, AV9; 1996-2005) and WHI OS participants three years after 

enrollment (AV3). A resting, supine, ten-second, standard twelve-lead electrocardiogram (ECG) 

was collected at each visit in the WHI CT and an ambulatory, 24-hour, three-lead ECG was 

collected at the baseline exam of the Myocardial Ischemia and Migraine Study344 (MIMS, n = 

3,369), an ancillary study of WHI OS participants enrolled by ten clinical centers (SV or AV3; 

1997-2000).  

The ARIC study is a prospective, epidemiologic study of atherosclerosis and CVD in four 

U.S. communities: Washington County, Maryland; Forsyth County, North Carolina; selected 
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suburbs of Minneapolis, Minnesota; and Jackson, Mississippi.196 Participants were selected as a 

community-stratified probability sample of 15,792 African- and European-American men and 

women aged 45-64 years. Participants completed a baseline visit (V1; 1987-1989) and follow-up 

visits (V2-V4; 1990-1998) at which resting, supine, ten-second, standard twelve-lead ECGs and 

demographic, socioeconomic, behavioral, and medical information were collected by trained and 

certified staff.  

Three WHI CT subpopulations contributed DNAm data to the present study: Epigenetic 

Mechanisms of PM-Mediated CVD Risk (WHI-EMPC; n = 2,200)345, Broad Agency 

Announcement 23 (WHI-BAA23; n = 1,546)346, and Ancillary Study 311 (WHI-AS311; n = 

405)351. WHI-EMPC is study of epigenetic mechanisms underlying associations between PM and 

CVD within randomly selected participants at the SV, AV3, or AV6. WHI-BAA23, also known 

as Integrative Genomics and Risk of CHD and Related Phenotypes in the Women’s Health 

Initiative, is a case-control study of coronary heart disease. By design, WHI-BAA23 

oversampled African Americans and Hispanic/Latino Americans and required all participants to 

have undergone genome-wide genotyping and profiling of seven CVD biomarkers. DNAm was 

measured in blood collected at the SV, before the incidence of coronary heart disease. WHI-

AS311, also known as the Bladder Cancer and Leukocyte Methylation study, is a nested case-

control study of bladder cancer. Bladder cancer cases were matched to controls based on 

enrollment year, age at enrollment, follow-up time, and DNAm extraction method. DNAm was 

measured in blood collected at the SV, before the incidence of bladder cancer.  Two ARIC 

subpopulations also contributed DNAm data to the present study, one involving African 

Americans (ARIC-AA; n = 2,796) from Forsyth County or Jackson with DNA and another 

involving European Americans (ARIC-EA; n = 1,139) from Forsyth County or Minneapolis with 
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DNA and cerebral magnetic resonance imaging data352, all at Visits 2 (1990-1992) or 3 (1993-

1995). 

C2. Heart rate variability and QT interval duration measurement 

In the WHI CT and ARIC, ten-second, resting, supine, standard twelve-lead ECGs363,364 

were recorded by MAC PCs (MAC PC, GE Marquette Electronics Inc., Milwaukee, WI), then 

transmitted to a central laboratory (Epidemiological Cardiology Research Center, Wake Forest 

School of Medicine, Winston-Salem, NC) for visual inspection, identification of technical errors 

/ inadequate quality, and analysis using the 2001 version of the GE Marquette 12-SL program 

(GE Marquette, Milwaukee, WI).  HRV and QT were reliably measured from ECGs in the WHI 

CT and ARIC195,287. The measures included the mean RR interval duration (RR, ms), i.e. unit-

corrected inverse of mean heart rate; standard deviation of normally conducted RR intervals 

(SDNN, ms); square root of mean squared differences in successive, normally conducted RR 

intervals (RMSSD, ms); and median QT (ms) from orthogonal XYZ leads. In WHI MIMS, 

ambulatory, 24-hour, three-lead (Holter) ECGs were digitally recorded (Zymed Model 3100–

001) then RR and SDNN were measured from them. 

C3. Particulate matter exposure estimation 

 The study focused on ambient PM10 and (coarse) PM2.5-10, the first of which is regulated 

under the Clean Air Act by the U.S. Environmental Protection Agency (EPA).11 Daily mean 

PM10 concentrations (µg/m³) were spatially estimated at all geocoded participant addresses353,354 

using U.S. EPA Air Quality System (AQS) data and national-scale, log-normal ordinary kriging. 

Daily mean concentrations of PM10 were averaged over 28 days prior to and including the day of 

the study visit.  

Because EPA AQS monitoring data for PM2.5 were not widely available until 1999, 

geocoded participant address-specific monthly mean PM10 and PM2.5 concentrations (µg/m³) also 
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were spatiotemporally estimated using generalized additive mixed models and geographic 

information system-based predictors. Spatiotemporal estimation involved the log-transformed 

ratio of PM2.5 to predicted PM10 between 1987 and 1999 359. Monthly mean concentrations of 

PM2.5-10 concentrations were defined as the differences between PM10 and PM2.5 concentrations.  

C4. DNA methylation 

Peripheral blood leukocytes were isolated from visit-specific, fasting blood drawn from 

study participants in WHI-EMPC, WHI-BAA23, WHI-AS311, ARIC-AA, and ARIC-EA. DNA 

was extracted from the peripheral blood leukocytes and then DNAm was measured on a 

methylome-wide scale at 485,577 potentially relevant Cytosine-phosphate-Guanine (CpG) sites 

using the Illumina 450K Infinium Methylation BeadChip (Illumina Inc.; San Diego, CA, USA). 

Methylation was quantitatively represented by beta, the proportion of methylated cytosines over 

the sum of methylated and unmethylated cytosines. The data were quality-controlled, Beta 

Mixture Quantile (BMIQ)-normalized to adjust for probe bias 360, and in WHI-EMPC, ComBat-

adjusted for stage and plate using empirical Bayes methods.450 Otherwise, WHI-AS311 control 

matching criteria (enrollment year, age at enrollment, follow-up time, DNAm extraction method) 

were available to control for variation in study design; technical covariates (assay plate, chip, and 

row) to control for batch effects; and leukocyte (CD8+ T cell, CD4+ T cell, B cell, natural killer 

cell, monocyte, and granulocyte) proportions to adjust for leukocyte composition 179. Analyses 

focused on DNAm at three CpG sites previously identified as PM-sensitive: cg19004594, 

cg24102420, and cg12124767.489  

C5. Covariates 

Demographic, socioeconomic, behavioral, and meteorological covariates included 

clinical center, visit, race/ethnicity, age (years), individual-level education (high school 

education or lower, more than high school), neighborhood socioeconomic status 365, smoking 
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status (current, former, never), alcohol use (current, former, never), body mass index (BMI, 

kg/m2), physical activity (MET-hours/week), mean temperature (°C), mean dew point (°C), mean 

barometric pressure (kPa), and season (using sine/cosine functions).366 Clinical covariates 

included coronary heart disease (CHD: anti-anginal medication use; history of angina, 

myocardial infarction, or coronary artery revascularization; or interim CHD presentation, based 

on physician review of medical records, incident event classification, and adjudication), diabetes 

(anti-diabetic medication use; history; or in ARIC, fasting glucose ≥ 126 mg/dL), hyperlipidemia 

(anti-hyperlipidemic medication use; history; or in ARIC, total cholesterol > 240 mg/dL), 

hypertension (anti-hypertensive medication use, history, systolic blood pressure ≥ 140 mmHg, or 

diastolic blood pressure ≥ 90 mmHg), chronic lung disease (history of asthma, emphysema, or 

lung cancer), and heart failure (HF: cardiac glycoside and loop or potassium-sparing diuretic use; 

history of HF; or interim HF presentation, based on physician review of medical records, 

incident event classification, and adjudication). Subpopulation-specific covariates included sex 

(in ARIC), randomly assigned treatment group (in WHI), case-control status (in WHI-AS311 and 

WHI-BAA23), and other sampling-related variables in WHI-AS311 (enrollment year, age at 

enrollment, follow-up time, DNAm extraction method).  

C6. Exclusions 

  Of all observations in WHI and ARIC with ECG data (n = 234,344), 2% made on 

participants at a WHI clinical center outside of the contiguous 48 states and 3% with conditions 

affecting the availability or accuracy of ECG measures (electronic pacers; poor quality grades; 

Wolff Parkinson White syndrome; atrial fibrillation; atrial flutter; atrioventricular block; 

antiarrhythmic medication) were excluded. HRV analyses excluded an additional 1% of 

observations made on participants with ventricular or supraventricular tachycardia, 

supraventricular rhythm, pauses, < 5 or 50% normal-to-normal RR intervals, or ventricular 
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ectopy. QT analyses excluded an additional 7% of observations made on participants with heart 

failure or QRS interval > 120 ms.  

C7. Multiple imputation 

To avoid potential for selection bias in complete-data analyses when data are missing at 

random370, multivariate imputation by chained equations (MICE)371,372 was used to impute 

missing data (range: 0.1% - 6.0%). Binary and categorical data were imputed using the logistic 

and discriminant functions whereas interval-scale data were imputed using predictive means 

matching. 

C8. Attrition weights 

To address potential bias due to non-random attrition over time in longitudinal analyses, 

stabilized inverse probability of attrition weights for each participant were calculated at each 

examination using logistic regression, where the numerator was the marginal probability of the 

participant not being lost to follow-up at an examination and the denominator was the probability 

of the participant not being lost to follow-up at an examination conditional on their covariate 

patterns at the prior examination.373 

C9. Statistical analysis: PM-HRV and PM-QT associations 

In each subpopulation, the right-skewed HRV measures were log-transformed, then 

attrition-weighted, covariate-adjusted, multi-level, linear, mixed-effects models were used to 

estimate PM-HRV and PM-QT associations. In the WHI CT, three-level, longitudinal models 

had a random intercept for examination at the participant level and a random intercept and slope 

for PM at the clinical center level, as given by 

 

(22) 𝐸𝐶𝐺𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗𝑘 + 𝛽3𝑍𝑖𝑗𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑗𝑘 + 𝑏0𝑗𝑘
𝑃 + 𝜀𝑖𝑗𝑘

𝐸  
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In ARIC, two-level, longitudinal models adjusted for clinical center as a fixed effect and had a 

random intercept for examination at the participant level, as given by 

 

(23) 𝐸𝐶𝐺𝑖𝑗 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗 + 𝛽3𝑍𝑖𝑗 + 𝑏0𝑗
𝑃 + 𝜀𝑖𝑗

𝐸  

 

In WHI-MIMS, two-level, cross-sectional models had a random intercept and slope for PM at the 

clinical center level, as given by  

 

(24) 𝐸𝐶𝐺𝑖𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑘 + 𝛽3𝑍𝑖𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑘 + 𝜀𝑖𝑘
𝐸  

 

where 𝑖, 𝑗, and 𝑘 denote the 𝑖𝑡ℎ examination (level 1) of the 𝑗𝑡ℎ participant (level 2) in the 𝑘𝑡ℎ 

clinical center (level 3); 𝐸𝐶𝐺 is a measure of RR, SDNN, RMSSD, or QT; 𝛽0 is the intercept; 

𝑃𝑀 is 28-day or 1-month mean PM10 or 1-month mean PM2.5-10; and 𝑍 is a vector of covariates. 

The terms (𝑏0
𝐶 , 𝑏1

𝐶) ~ 𝑁(𝑂, 𝐺) are a random intercept and a random slope for 𝑃𝑀 at the clinical 

center level, (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a random intercept for examination at the participant level, and 𝜀𝐸 

~ (𝑂, 𝜎2) is the random error at the examination level.  

Measures of association (𝛽1) and 95% confidence intervals (CI) were reported as 

millisecond changes (∆, 𝑚𝑠) in QT analyses and percent changes (∆, %) in log-transformed HRV 

analyses, per 10 µg/m3 increase in PM, where 

 

∆, % = 100(1010𝛽1 − 1), 95% 𝐶𝐼: 100(1010(𝛽1±1.96𝑆𝐸) − 1). 

 

Subpopulation-specific measures of ∆ and their 95% CIs were combined in fixed-effects inverse 

variance-weighted meta-analyses369 after testing homogeneity of associations (PCochran’s Q < 

0.10).374   
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C10. Statistical analysis: mediation 

Mediation analyses were implemented in subpopulations with available DNAm and ECG 

data: WHI-EMPC, WHI-BAA23 CT, ARIC-AA, and ARIC-EA. All mediation analysis models 

were subpopulation-stratified and covariate-adjusted. Standard errors were estimated in 500 

bootstrapped samples. Subpopulation-specific results were then combined using fixed-effects, 

inverse variance-weighted meta-analysis after testing homogeneity of associations (PCochran’s Q < 

0.10).374  

A detailed description of the mediation analysis is reported in the Supplement. Briefly, 

associations of 28-day mean PM10, 1-month mean PM10, and 1-month mean PM2.5-10 with 

DNAm at cg19004594, cg24102420, and cg12124767 were estimated. Estimated PM-DNAm 

(exposure-mediator) associations and their 95% CIs were reported as absolute percentage 

changes (∆, % ) in DNAm per 10 µg/m³ increase in PM. Then associations between DNAm and 

ECG measures were estimated. Estimated DNAm-ECG measure (mediator-outcome) 

associations and their 95% CIs were reported as millisecond changes (∆, 𝑚𝑠) in QT analyses and 

percent changes (∆, %) in HRV analyses, per 10% increase in DNAm. Lastly, for CpG sites at 

which methylation was associated with at least one ECG trait and one PM exposure after 

Bonferroni correction (P < 0.016; PCochran’s Q  < 0.10), mediation methods180,392,393 were used to 

decompose the total effect (TE) of PM on the ECG measure into its natural direct effect (NDE), 

i.e. effect of PM on the ECG measure independent of DNAm; and natural indirect effect (NIE), 

i.e. mediated effect of PM on the ECG measure through DNAm; where the sum of NDE and NIE 

is the TE. If the NDE and NIE were both positive or both negative (i.e. identically signed), the 

proportion mediated (%) was estimated as the NIE divided by the TE.394,395  
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C11. Statistical analysis: sensitivity  

All PM-HRV and PM-QT models adjusted for race/ethnicity, age, sex (in ARIC), 

randomly assigned treatment group (in WHI), study visit, mean temperature (°C), mean dew 

point (°C), mean barometric pressure (kPa), season, and RR (in QT analyses). Model 2 

additionally adjusted for other potential confounders (individual-level education; neighborhood 

socioeconomic status); Model 3, for variables that explain variation in ECG traits or may account 

for residual confounding (smoking status; alcohol use; BMI; physical activity); and Model 4, for 

health conditions (coronary heart disease; diabetes; hyperlipidemia; hypertension; chronic lung 

disease; heart failure, in HRV analyses). Model 5 also assessed sensitivity of PM2.5-10 results 

from Model 4 to additional adjustment for 1-month mean PM2.5 concentrations. Mediation 

models relied on Model 4 adjustments plus methylation-related variables (ten principal 

components for genetic ancestry, when available; leukocyte proportions; technical covariates) 

and subpopulation-specific covariates including case-control status (WHI-AS311; WHI-BAA23) 

and case selection criteria (AS311; enrollment year; age at enrollment; follow-up time; DNAm 

extraction method). 

D. Results 

Of the 82,107 and 76,711 participants included in analyses of HRV and QT, 91% (72,820 

and 69,857) had baseline data after exclusions. On average at baseline, participants were aged 61 

years, mostly female (91%), white (82%), more than high school educated (70%), never smokers 

(49%) and current alcohol users (68-69%). Mean physical activity and BMI were 10.6 MET-

hours/week and 28.6 kg/m2 (Table 7-1). Participants with DNAm data (nHRV = 7,169; nQT = 

6,895; Table 7-S1) were less likely to be female (81%), white (46%), more than high school 

educated (55%) and current alcohol users (50%). RR was relatively low and SDNN, high in the 

WHI MIMS subpopulation with longer duration ECGs. QT was relatively high in the ARIC 
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subpopulations. In all subpopulations, monthly mean PM10 concentrations were below EPA 

National Ambient Air Quality Standards (NAAQS) for 24-hour and annual mean PM10 in place 

during the study period, i.e. ≤ 150 and ≤ 50 μg/m3. 11 

 After meta-analysis, PM-HRV associations were mostly homogenous among 

subpopulations (PCochran’s Q < 0.10) and generally null among Models 1-4, varying only slightly 

among exposures and HRV measures (Figure 7-1A-C). For example in Model 4, SDNN was 1.0 

ms (-0.1, 2.0) higher per 10 μg/m3 increase in PM2.5-10 concentration (Table 7-2), but the estimate 

fell to 0.7 ms (-0.4, 1.8) after adjusting for 1-month mean PM2.5 concentration in Model 5. 

Although RR also was -0.8% (-1.6%, 0.0%) and -1.2% (-2.1%, -0.2%) lower per 10 μg/m3 

increase in 1-month PM10 and PM2.5-10 concentrations in WHI-MIMS participants with 24-hour 

ECGs, meta-analyses combining information on ARIC and WHI-CT participants with ten-

second ECGs also attenuated these estimates. Moreover, QT was -0.2 ms (-0.3, 0.0) and -0.4 ms 

(-0.6, -0.1) lower per 10 μg/m3 increase in 28-day and 1-month mean PM10 (Figure 7-1D; Table 

7-2). Results for SDNN and RMSSD with were robust to additional adjustment for RR (data not 

shown).  

In participants with available DNAm and HRV data, DNAm was 0.2% (0.1%, 0.3%) 

higher at cg19004594, -0.4% (-0.6%, -0.2%) lower at cg24102420, and -0.3% (-0.5%, 0.0%) 

lower at cg12124767 per 10 μg/m3 increase in 28-day mean PM10, 1-month mean PM10, and 1-

month mean PM2.5-10, respectively, (Table 7-3). Estimates were similar in participants with 

available DNAm and QT data. DNAm associations with RR, SDNN, RMSSD, and QT did not 

meet statistical significance at α= 0.016; however, SDNN was 3.9% (-0.2%, 8.2%; P = 0.6) 

higher and QT was -0.9 ms (-2.0, 0.2; P = 0.09) lower per 10% increase in DNAm at 

cg24102420 (Table 7-4). Estimates of natural indirect (i.e. DNAm-mediated) effects of PM on 
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the ECG measures and proportions mediated by DNAm were imprecise and non-significant 

(Table 7-5). 

E. Discussion 

 This multi-center, longitudinal study represents the culmination of an innovative attempt 

to examine epigenetically mediated electrocardiographic effects of PM in a racially, ethnically 

and environmentally diverse population of U.S. women and men. Sound motivation for that 

attempt was provided by the recent identification of PM-sensitive epigenomic loci capable of 

affecting cardiac electrophysiology in the same populations.489 Despite that motivation, we found 

little evidence of PM-HRV association, PM-QT association, or mediation by DNAm in the 

present study. Indeed, the findings suggest that sub-chronic exposures to coarser particulates may 

not exert appreciable or epigenetically mediated effects on cardiac autonomic function or 

ventricular repolarization.  

The lack of an observed PM-HRV association in this context is at odds with evidence of 

negative associations with shorter duration exposures to ambient PM2.5, PM10, and PM2.5-10 in a 

variety of other settings. For example, a large meta-analysis of PM-HRV associations found that 

RMSSD and SDNN was 0.1% to 2.0% lower per 10 μg/m3 increase in 2-hour to 3-day mean 

PM2.5 or PM10 concentrations.239
 Two, small-scale controlled exposure panel studies of shorter 

duration PM2.5-10-HRV associations also found similarly inverse associations.243,246 Although 

studies of longer duration exposures to PM are limited, results from the Multi-Ethnic Study of 

Atherosclerosis (MESA) and Normative Aging Study (NAS) of monthly and yearly exposures to 

ambient PM2.5 and PM2.5-10 also identified only slightly negative to slightly positive associations 

with HRV200,249,490. In jointly suggesting that cardiac autonomic function as measured by brief 

ECG recordings may well be more sensitive to acute than sub-chronic PM exposure,249 these 

studies offer a plausible explanation for the absence of PM-HRV association herein.  
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Lack of population-wide susceptibility to PM effects in WHI and ARIC provides an 

equally plausible explanation for the absence of an observed PM-HRV association. Indeed, a 

Swiss study of middle-aged adults found that 10-year exposures to PM10 were associated with 

lower HRV only among participants taking angiotensin-converting enzyme inhibitors, suggesting 

that underlying health conditions or their treatments may confer susceptibility.250 Susceptibility 

to shorter duration PM2.5- and PM10-associated decreases in HRV also have been observed in e.g. 

elderly adults with cardiovascular conditions251 as well as middle-aged adults with 

hypertension242, diabetes241, or metabolic syndrome.200 Other susceptible groups have been 

identified in small-scale studies of PM2.5-10, including elderly adults245,491 and populations with 

asthma244 or coronary heart disease.245 

Scant evidence of PM-QT association in this study also may be related to its explicit 

focus on exposures to PM10 and PM2.5-10 in a racially, ethnically and environmentally diverse 

population. In prior studies, for example, an array of shorter321,323 to longer duration319,325 PM2.5 

exposures have been consistently associated with higher QT. Notable in this regard is the 7.0 ms 

per 3.4 μg/m3 increase in 28-day mean PM2.5 in the NAS,319 a geographically and 

demographically homogenous population, by comparison. Although shorter duration PM10 

exposures also have been associated with QT-related risk of ventricular arrhythmias24,30, 

generalizable results from epidemiologic studies of PM10, PM2.5-10, and QT remain relatively 

uncommon. Their rarity suggests that the study of epigenetically mediated, QT-prolonging 

effects of coarser particulates in diverse populations may be especially challenging.  

Despite the challenge, the present study explored potential epigenetic mechanisms 

linking PM exposure to changes in autonomic function and ventricular repolarization by 

estimating associations between DNAm at cg19004594, cg24102420, and cg12124767 with 
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HRV and QT. Although DNAm at these CpG sites were associated with higher sub-chronic 

exposures to PM10 and PM2.5-10—both herein and in a prior methylome-wide association study in 

the same population489 —there was little evidence of DNAm-HRV, DNAm-QT, or as described 

above, PM-HRV or PM-QT association. Therefore, the study’s mediation analyses yielded null 

results in this population.   

 Having said that, the results from this study may have been affected by missing data, 

participant attrition, outcome or exposure measurement error, and dependence on monthly mean 

PM concentrations. Potential for bias related to missingness and attrition was nevertheless 

reduced using conventional epidemiologic tools: multivariate imputation and inverse-probability 

weights. Time-domain measures of HRV and QT also are valid and reliable, even when based on 

resting, supine, ten-second, standard twelve-lead ECGs.195,287 Furthermore, the accuracy of the 

study’s geocoding353,354 and validity of its PM estimation355,359,406 have been demonstrated. 

Finally, shorter duration PM exposures may be more relevant to studies of cardiac autonomic 

function as measured by brief ECG recordings, but unlike monthly mean PM concentrations, 

they were not associated with DNAm in prior work.489   

On the basis of the above, we therefore conclude that sub-chronic exposures to coarser 

particulates may not exert appreciable or epigenetically mediated effects on cardiac autonomic 

function and ventricular repolarization. Nevertheless, future investigation of the mechanisms 

underlying shorter duration exposures to finer particulates or non-electrocardiographic outcomes 

in relatively susceptible populations is warranted, given the preceding discussion. Such 

investigation may provide insight into epigenetic mechanisms linking PM with cardiovascular   
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disease, the existence of which may help substantiate the biological plausibility and causality of 

associations being considered by U.S. Environmental Protection Agency as it sets National 

Ambient Air Quality Standards for PM under the Clean Air Act.  
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F. Tables and Figures 

 

Table 7-1. Characteristics of nHRV = 72,820 / nQT = 69,587 study participants at baseline, Women's Health Initiative Clinical Trials 

(1993-2005), Women's Health Initiative Myocardial Ischemia and Migraine Study (1993-2005), and Atherosclerosis Risk in 

Communities study (1986-1998) 

Characteristic 

Heart rate variability QT Interval 

WHI CT SV & 

ARIC V1 & WHI 

MIMS 

n = 72,820 

WHI CT SV 

n = 55,906 

WHI MIMS 

n = 2,196 

ARIC V1 

n = 14,718 

WHI CT SV 

& ARIC V1 

n = 69,857 

WHI CT SV 

n = 55,651 

ARIC V1 

n = 14,206 

Age (years), mean (SD)  61 (8) 63 (7) 65 (7)  54 (5.7)  61 (8)  63 (7)  54 (5.7) 

Male, n (%)   6,585 (9)  0 (0) 0 (0)   6,585 (45)    6,383 (9)  0 (0)   6,383 (45)  

Race / ethnicity, n (%) 
          

   American Indian or Alaskan Native    245 (0)     237 (0)       8 (0)  0 (0)    230 (0)     230 (0)  0 (0) 

   Asian or Pacific islander    523 (1)     502 (1)      21 (1)  0 (0)    508 (1)     508 (1)  0 (0) 

   Black or African American   9,327 (13)    5,242 (9)     159 (7)  3,926 (27)   8,855 (13)    5,128 (9)  3,727 (26) 

   Hispanic/Latino   2,464 (3)    2,399 (4)      65 (3)  --a   2,391 (3.4)    2,391 (4)  --a 

   Other    526 (1)     500 (1)      26 (1)  0 (0)    494 (1)     494 (1)  0 (0) 

   White (not of Hispanic origin) or 

European American 
 59,611 (82)   46,906 (84)    1,913 (87)   10,792 (73)   57,259 (82)   46,780 (84)   10,479 (74)  

More than high school, n (%) 50,546 (70)   42,297 (76)    1,772 (81)    6,477 (44)   48,546 (70)   42,213 (76)    6,333 (45)  

Smoking status, n (%) 
        

   Never  35,560 (49)   28,266 (51)    1,160 (53)    6,134 (42)   34,050 (49)   28,084 (51)    5,966 (42)  

   Former  28,305 (39)   22,656 (41)     903 (42)    4,746 (32)   27,124 (39)   22,582 (41)    4,542 (32)  

   Current   8,275 (12)    4,350 (8)     101 (5)    3,824 (26)    8,049 (12)    4,365 (8)    3,684 (26)  

Alcohol use, n (%) 
        

   Never   9,537 (13)    5,661 (10)     233 (11)    3,643 (25)    9,120 (13)    5,606 (10)    3,514 (25)  

   Former  13,291 (18)   10,075 (18)     446 (21)    2,770 (19)   12,394 (18)    9,795 (18)    2,599 (18)  

   Current  49,465 (68)   39,720 (72)    1,497 (69)    8,248 (56)   47,845 (69)   39,806 (72)    8,039 (57)  

Physical activity (MET-hours/week), 

mean (SD) 
 10.6 (12.6)  10.6 (12.5)  13.7 (14.0)  10.2 (12.8)  10.6 (12.6)  10.7 (12.5)  10.3 (12.8) 



 

 

1
5
1
 

Characteristic 

Heart rate variability QT Interval 

WHI CT SV & 

ARIC V1 & WHI 

MIMS 

n = 72,820 

WHI CT SV 

n = 55,906 

WHI MIMS 

n = 2,196 

ARIC V1 

n = 14,718 

WHI CT SV 

& ARIC V1 

n = 69,857 

WHI CT SV 

n = 55,651 

ARIC V1 

n = 14,206 

Body mass index (kg/m2), mean (SD)  28.6 (5.8)  28.9 (5.9)  27.2 (5.7)  27.7 (5.4)  28.6 (5.7)  28.9 (5.8)  27.5 (5.2) 

Clinical characteristics, n (%) 
        

   Hypertension  30,570 (42)   25,612 (46)    1,033 (47)    3,920 (27)   28,184 (40)   24,861 (45)    3,323 (23)  

   Hyperlipidemia   10,332 (15)    6,794 (12)     407 (19)    3,640 (25)   10,056 (14)    6,576 (12)    3,480 (25)  

   Diabetes   4,428 (6)    3,491 (6)     142 (7)     805 (6)    3,940 (6)    3,245 (6)     695 (5)  

   Chronic lung disease   6,820 (9)    5,309 (10)     203 (9)    1308 (9)    6,370 (9)    5,234 (9)    1,136 (8)  

   Coronary heart disease   4,353 (6)    3,375 (6)     160 (7)     818 (6)    3,585 (5)    2,951 (5)     634 (5)  

   Congestive heart failure   1,939 (3)    1,161 (2)      61 (3)     717 (5)   0 (0)   0 (0)   0 (0)  

ECG traits (ms), mean (SD) 
        

   RR 

925 (127)b /  

802 (94)c 
925 (137)b 802 (94)c 928 (142)b 926 (138)b 925 (137)b 929 (141)b 

   SDNN  20 (16)b / 116 (32)c  20 (16)b 116 (32)c  22 (16)b  20 (16)b  20 (16)b  22 (16)b 

   RMSSD  22 (20)b  22 (21)b --  24 (20)b  22 (21)b  22 (20.7)b  24 (20)b 

   QT 403 (30)b 402 (31)b -- 409 (28)b 403 (30)b 401 (30.3)b 408 (27)b 

PM (μg/m3) 
        

   PM10, 28 days  29.9 (8.2)  27.5 (6.4)  30.5 (7.2)  39.1 (7.5)  29.8 (8.2)  27.5 (6.4)  39.1 (7.5) 

   PM10, 1 month  21.4 (6.9)  20.5 (6.6)  24.4 (6.9)  25.1 (7.0)  21.3 (6.9)  20.5 (6.6)  25.1 (7.0) 

   PM2.5-10, 1 month   8.7 (4.7)   8.6 (4.8)   6.3 (5.5)   10.0 (3.4)   8.8 (4.6)   8.59 (4.8)   10.0 (3.4) 

Abbreviations: ARIC, Atherosclerosis Risk in Communities; CT, clinical trials; METS, metabolic equivalent; MIMS, Myocardial Ischemia and Migraine 

Study; PM, particulate matter; PM10, PM < 10 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter; QT, QT interval; RMSSD, root mean square of 

successive differences between RR intervals; RR, RR interval; SD, standard deviation; SDNN, SD of normally conducted RR intervals; SV, screening visit; 

V1, visits 1; WHI, Women's Health Initiative 
aARIC recruitment and data collection occurred before the National Instutite of Health required collection of information about Hispanic/Latino ethnicity 
bBased on 10-second ECGs in WHI CT and ARIC participants 
cBased on 24-hour ECGs in WHI MIMS participants 
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Table 7-2. Stratified and meta-analyzed changesa  in heart rate variability and QT interval duration per 10 μg/m3 increase in PM 

concentrations among nHRV = 82,107 / nQT = 76,711 study participants, Women's Health Initiative (1993-2005) and Atherosclerosis 

Risk in Communities study (1986-1998) 

Exposure Subpopulation 
RR SDNN RMSSD QT 

Δ % 95% CI PCochran's Q Δ % 95% CI PCochran's Q Δ % 95% CI PCochran's Q Δ ms 95% CI PCochran's Q 

PM10, 28 days 

ARIC 0.2 -0.2, 0.7   -0.5 -3.1, 2.3  -1.5 -4.1, 1.1   -0.1 -0.4, 0.1  

WHI CT 0.0 -0.3, 0.2   -0.1 -0.8, 0.6  0.2 -0.6, 1.0   -0.2 -0.5, 0.1  

WHI MIMS 0.0 -0.9, 0.8   1.1 -1.3, 3.5  
-- -- -- -- -- -- 

Pooled 0.0 -0.2, 0.2 0.66 -0.0 -0.7, 0.6 0.62 0.0 -0.7, 0.8 0.23 -0.2 -0.3, 0.0 0.80 

PM10, 1 month 

ARIC -0.2 -0.8, 0.4   1.0 -2.0, 4.1  -0.8 -3.7, 2.3   -0.5 -0.8, -0.2   

WHI CT 0.0 -0.2, 0.2   0.0 -0.8, 0.8  0.0 -1.0, 1.0   -0.2 -0.5, 0.1  

WHI MIMS -0.8 -1.6, 0.0   -1.3 -4.5, 1.9  
-- -- -- -- -- -- 

Pooled -0.0 -0.2, 0.1 0.14 0.0 -0.8, 0.8 0.58 -0.1 -1.0, 0.9 0.64 -0.4 -0.6, -0.1 0.16 

PM2.5-10, 1 month 

ARIC -0.6 -1.6, 0.4   1.1 -4.3, 6.7  -0.7 -6.0, 4.9   -0.3 -0.8, 0.2  

WHI CT 0.2 -0.2, 0.6   1.1 -0.1, 2.3  0.6 -0.8, 2.0   0.1 -0.4, 0.6  

WHI MIMS -1.2 -2.1, -0.2   0.3 -2.5, 3.1  
-- -- -- -- -- -- 

Pooled -0.1 -0.5, 0.3 0.02 1.0 -0.1, 2.0 0.88 0.5 -0.9, 1.9 0.64 -0.1 -0.5, 0.3 0.28 

Abbreviations: Δ, change; ARIC, Atherosclerosis Risk in Communities; CI, confidence intervals; CT, clinical trials; MIMS, Myocardial Ischemia and Migraine 

Study; PM, particulate matter; PM10, PM < 10 μm in diameter; PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter; QT, QT 

interval; RMSSD, root mean square of successive differences between RR intervals; RR, RR interval; SDNN, SD of normally conducted RR intervals; WHI, 

Women's Health Initiative 
aModel 4: Adjusted for race/ethnicity, age, gender (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean dew point, mean barometric 

pressure, season, individual-level education, neighborhood socioeconomic status, smoking status, alcohol use, body mass index, physical activity, hypertension, 

hyperlipidemia, diabetes, coronary heart disease, and coronary heart disease (in HRV analyses only), and RR interval (in QT analyses only) 
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Table 7-3. Meta-analyzed changesa in DNA methylation per 10 μg/m3 increase in PM concentrations among nHRV = 7,169 / nQT = 

6,895 study participants, Women's Health Initiative (1993-2005) and Atherosclerosis Risk in Communities study (1986-1998) 

Exposure CpG 
Participants with HRV data (n = 7,169) Participants with QT data (n = 6,895) 

Δ % 95% CI P PCochran's Q Δ (ms) 95% CI P PCochran's Q 

PM10, 28 days cg19004594 0.2 0.1, 0.3 9.0E-04 0.16 0.2 0.1, 0.3 3.1E-04 0.25 

PM10, 1 month cg24102420 -0.4 -0.6, -0.2 1.7E-04 0.82 -0.3 -0.5, -0.1 1.0E-03 0.74 

PM2.5-10, 1 

month 
cg12124767 -0.3 -0.5, -0.0 2.1E-02 0.51 -0.3 -0.5, -0.0 2.3E-02 0.38 

Abbreviations: ARIC, Atherosclerosis Risk in Communities; CI, confidence intervals; CpG, Cytosine-phosphate-Guanine 

site; PM, particulate matter; PM10, PM < 10 μm in diameter; PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and < 

10 μm in diameter; QT, QT interval;  WHI, Women's Health Initiative 
aAdjusted for race/ethnicity, age, gender (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean 

dew point, mean barometric pressure, season, individual-level education, neighborhood socioeconomic status, smoking 

status, alcohol use, body mass index, physical activity, hypertension, hyperlipidemia, diabetes, coronary heart disease, and 

congestive heart failure (in the heart rate variability subset only) 
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Table 7-4. Meta-analyzed changesa in heart rate variability and QT interval duration per 10 percentage point increase in DNA 

methylation among nHRV = 7,169 / nQT = 6,895 study participants, Women's Health Initiative (1993-2005) and Atherosclerosis Risk in 

Communities study (1986-1998) 

CpG 

RR RMSSD SDNN QT 

Δ 

% 
95% CI P 

PCochran's 

Q 

Δ 

% 
95% CI P 

PCochran's 

Q 

Δ 

% 
95% CI P 

PCochran's 

Q 
Δ ms 95% CI P 

PCochran's 

Q 

cg19004594 0.5 -0.8, 1.8 0.43 0.93 3.2 -2.7, 9.4 0.30 0.43 2.3 -3.3, 8.3 0.42 0.45 -0.7 -2.9, 1.4 0.41 0.14 

cg24102420 0.0 -0.9, 0.9 0.98 0.75 2.0 -2.2, 6.4 0.35 0.74 3.9 -0.2, 8.2 0.06 0.88 -0.9 -2.0, 0.2 0.09 0.47 

cg12124767 0.0 -0.9, 1.0 0.97 0.67 -3.0 -7.2, 1.5 0.19 0.97 -0.7 -4.9, 3.6 0.75 0.81 0.4 -0.8, 1.6 0.51 0.68 

Abbreviations: Δ, change; ARIC, Atherosclerosis Risk in Communities; CI, confidence intervals; Cytosine-phosphate-Guanine site; PM, particulate 

matter; PM10, PM < 10 μm in diameter; PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter; QT, QT interval; 

RMSSD, root mean square of successive differences between RR intervals; RR, RR interval; SDNN, SD of normally conducted RR intervals; WHI, 

Women's Health Initiative 
aModel 4: adjusted for race/ethnicity, age, gender (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean dew point, 

mean barometric pressure, season, individual-level education, neighborhood socioeconomic status, smoking status, alcohol use, body mass index, 

physical activity, hypertension, hyperlipidemia, diabetes, coronary heart disease, and coronary heart disease (in HRV analyses only), and RR 

interval (in QT analyses only) 
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Table 7-5. Analyses investigating the mediation of PM-HRV and PM-QT associations by DNA methylation among nHRV = 7,169 / nQT 

= 6,895 study participants, Women's Health Initiative (1993-2005) and Atherosclerosis Risk in Communities study (1986-1998) 

      
Natural direct effect Natural indirect effect 

Proportion 

mediatedd 

Exposure CpG ECGa Estimatea 95% CI P Estimatea 95% CI P % 

PM10, 28 days cg19004594 

RRb 

0.9 -0.2, 0.4 0.58 0.00 -0.02, 0.02 0.79 0 

PM10, 1 month cg24102420 0.6 -0.2, 0.3 0.61 0.00 -0.02, 0.03 0.86 0 

PM2.5-10, 1 month cg12124767 0.2 -0.2, 0.7 0.30 0.01 -0.04, 0.05 0.74 3 

PM10, 28 days cg19004594 

SDNNb 

-0.1 -4.0, 3.9 0.95 0.00 -0.28, 0.29 0.98 -- 

PM10, 1 month cg24102420 3.9 0.1, 7.8 0.04 -0.10 -0.49, 0.29 0.61 -- 

PM2.5-10, 1 month cg12124767 3.6 -2.0, 9.5 0.21 0.08 -0.21, 0.36 0.60 2 

PM10, 28 days cg19004594 

RMSSDb 

0.6 -3.4, 4.7 0.78 0.03 -0.27, 0.32 0.86 5 

PM10, 1 month cg24102420 4.7 0.7, 8.8 0.02 -0.09 -0.48, 0.30 0.66 -- 

PM2.5-10, 1 month cg12124767 4.3 -1.7, 10.7 0.16 0.12 -0.20, 0.46 0.46 3 

PM10, 28 days cg19004594 

QTc 

-0.5 -1.5, 0.5 0.32 0.00 -0.07, 0.08 0.90 -- 

PM10, 1 month cg24102420 -0.1 -1.0, 0.9 0.88 -0.01 -0.11, 0.09 0.86 12 

PM2.5-10, 1 month cg12124767 0.4 -1.0, 1.8 0.55 -0.02 -0.13, 0.10 0.78 -- 

Abbreviations: ARIC, Atherosclerosis Risk in Communities; CI, confidence intervals; CpG, Cytosine-phosphate-Guanine site; PM, particulate 

matter; PM10, PM < 10 μm in diameter; PM2.5, PM < 2.5 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter; RMSSD, root mean 

square of successive differences between RR intervals; SDNN, SD of normally conducted RR intervals; WHI, Women's Health Initiative 
aModel 4: adjusted for race/ethnicity, age, gender (in ARIC), randomly assigned treatment group (in WHI), mean temperature, mean dew point, 

mean barometric pressure, season, individual-level education, neighborhood socioeconomic status, smoking status, alcohol use, body mass 

index, physical activity, hypertension, hyperlipidemia, diabetes, coronary heart disease, and coronary heart disease (in HRV analyses only), 

and RR interval (in QT analyses only) 
bUnit of Estimate is % change (% Δ) 
cUnit of Estimare is millisecond (ms) 
proportion mediated not estimated when the indirect effect and direct effects were oppositely signed 
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Figure 7-1. Pooled, adjusted changes in heart rate variability (Δ, %) and QT interval duration (Δ, 

ms) per 10 μg/m3 increase in PM concentrations among nHRV = 82,107 / nQT = 76,711 study 

participants, Women's Health Initiative (1993-2005) and Atherosclerosis Risk in Communities 

study (1986-1998). Model 1 adjusted for race/ethnicity, age, sex (in ARIC), randomly assigned 

treatment group (in WHI), mean temperature, mean dew point, mean barometric pressure, 

season, and RR interval duration (for QT analyses). Model 2 adjusted for all covariates in Model 

1 plus individual-level education and neighborhood socioeconomic status. Model 3 adjusted for 

all covariates in Model 2 plus smoking status, alcohol use, body mass index, and physical 

activity. Model 4 adjusted for all covariates in Model 3 plus coronary heart disease, diabetes, 

hyperlipidemia, hypertension, chronic lung disease, and congestive heart failure (in HRV 

analyses only). For only PM2.5-10 analyses, Model 5 adjusted for all covariates in Model 4 plus 1-

month mean concentrations of PM2.5 
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G. Supplement 

G1. Mediation methods 

Mediation analyses involved three steps: 1) estimating exposure-mediator (PM-DNAm) 

associations, 2) estimating mediator-outcome (DNAm-ECG measure) associations, and 3) using 

mediation methods to estimate the natural direct effect (NDE) i.e. effect of PM on the ECG 

measure independent of DNAm; and the natural indirect effect (NIE), i.e. mediated effect of PM 

on the ECG measure through DNAm; where the sum of NDE and NIE is the TE. Then, the 

proportion mediated (%) was calculated as the NIE divided by the TE.  

1) Estimating PM-DNAm associations 

In each subpopulation, covariate-adjusted, multi-level, linear, mixed-effects models were 

used to estimate DNAm-PM associations. In WHI-EMPC, three-level, longitudinal models had a 

random intercept for examination at the participant level, a random intercept and slope and for 

PM at the WHI center level, and a random intercept for chip, as given by 

 

(25) 𝐷𝑁𝐴𝑚𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑗𝑘 + 𝛽2𝑍𝑖𝑗𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑗𝑘 + 𝑏0𝑗𝑘
𝑃 + 𝑏0𝑖𝑗𝑘

𝐸 + 𝜀𝑖𝑗𝑘
𝐸 . 

 

In WHI-BAA23, and WHI-AS311, two-level cross-sectional models had a random intercept and 

slope for PM at the WHI center level and a random intercept for plate and chip, as given by 

 

(26) 𝐷𝑁𝐴𝑚𝑖𝑘 = 𝛽0 + 𝛽1𝑃𝑀𝑖𝑘 + 𝛽2𝑍𝑖𝑘 + 𝑏0𝑘
𝐶 + 𝑏1𝑘

𝐶 𝑃𝑀𝑖𝑘 + 𝑏0𝑖𝑘
𝐸 + 𝜀𝑖𝑘

𝐸 . 

 

In ARIC-AA and ARIC-EA, one-level cross-sectional models had a random intercept for plate 

and chip, as given by 

 

(27) 𝐷𝑁𝐴𝑚𝑖 = 𝛽0 + 𝛽1𝑃𝑀𝑖 + 𝛽2𝑍𝑖 + 𝑏0𝑖
𝐸 +  𝜀𝑖

𝐸 . 
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Above, 𝑖, 𝑗 and 𝑘 denote the 𝑖𝑡ℎ examination of the 𝑗𝑡ℎ participant in the 𝑘𝑡ℎ center; 𝐷𝑁𝐴𝑚 is 

the site-specific beta (i.e. DNAm) value from cg19004594, cg24102420, or cg12124767; 𝛽0 is 

the intercept; 𝑃𝑀 is 28-day or 1-month mean PM10 or 1-month mean PM2.5-10; and 𝑍 is a vector 

of covariates. The terms (𝑏0
𝐶, 𝑏1

𝐶) ~ 𝑁(𝑂, 𝐺) are a random intercept and a random slope for 𝑃𝑀 

at the center level, (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a random intercept for examination at the participant level, 

and (𝑏0
𝐸) ~ 𝑁(𝑂, 𝐺) are random intercepts for technical covariates and 𝜀𝐸 ~ (𝑂, 𝜎2) is the 

random error at the examination level. Measures of association (𝛽1) and their 95% confidence 

intervals (𝛽1 ± 1.96 𝑥 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟) were reported as an absolute percentage change in 

DNAm (∆, %) per 10 µg/m³ increase in PM. Stratum-specific results were combined using fixed-

effects, inverse-variance weighted meta-analysis. Homogeneity of associations was assessed 

using Cochran’s Q test statistic.374 

2) Estimating DNAm-ECG measure associations 

In each subpopulation, covariate-adjusted, linear mixed-effects models were used to 

estimate DNAm-ECG measure associations. In WHI-EMPC, two-level longitudinal models had 

a random intercept for examination at the participant level and a random intercept for chip, as 

given by 

 

(28) 𝐸𝐶𝐺𝑖𝑗 = 𝛽0 + 𝛽1𝐷𝑁𝐴𝑚𝑖𝑗 + 𝛽2𝑍𝑖𝑗 + 𝑏0𝑗
𝑃 + 𝑏0𝑖𝑗

𝐸 +  𝜀𝑖𝑗
𝐸 . 

 

In WHI-BAA23, WHI-AS311, ARIC-AA, and ARIC-EA, one-level cross-sectional models of 

DNAm-HRV associations had a random intercept for plate and chip, as given by  

 

(29) 𝐸𝐶𝐺𝑖 = 𝛽0 + 𝛽1𝐷𝑁𝐴𝑚𝑖 + 𝛽2𝑍𝑖 + 𝑏0𝑖
𝐸 +  𝜀𝑖

𝐸 . 
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where 𝑖 and 𝑗 denote the 𝑖𝑡ℎ examination (level 1) of the 𝑗𝑡ℎ participant (level 2); 𝐸𝐶𝐺 is the QT 

interval or the log-transformed measure of RR, RMSSD, or SDNN from a 10-second ECG; 𝛽0 is 

the intercept; 𝐷𝑁𝐴𝑚 is the beta value at cg19004594, cg24102420, or cg12124767; and 𝑍 is a 

vector of covariates. The term (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a random intercept for examination at the 

participant level, (𝑏0
𝐸) ~ 𝑁(𝑂, 𝐺) represents random intercepts for technical variables plate and/or 

chip, and 𝜀𝐸 ~ (𝑂, 𝜎2) is the random error at the examination level. The measures of association 

(𝛽1) and 95% CIs (𝛽1 ± 1.96𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 [𝑆𝐸]) were reported as millisecond changes 

(∆, 𝑚𝑠) in QT interval duration and percent changes (∆, %) in HRV per 10% increase in DNAm.  

3) Estimating NDE, NIE, TE, and proportion mediated 

For each CpG site associated with at least one ECG trait and PM exposure after 

Bonferroni correction (P < 0.016; PCochran’s Q  < 0.10), mediation methods180,392,393 were used to 

decompose the total effect (TE) between PM and the ECG measure into the NDE and DIE. The 

mediation effect estimation required models 1-3 (above) as well as models 6-8 described below:  

In each subpopulation, covariate-adjusted, linear mixed-effects models were used to 

estimate adjusted PM-ECG measure and DNAm-ECG measure associations. PM x DNAm 

interactions were also assessed, while none were statistically significant at P < 0.016; the 

interaction terms were nonetheless included in mediation models. In WHI-EMPC, three-level 

longitudinal models had a random intercept for examination at the participant level, a random 

intercept and slope and for PM at the WHI center level, and a random intercept for chip, as given 

by 

 

(30) 𝐸𝐶𝐺𝑖𝑗𝑘 = 𝜃0 + 𝜃1𝑃𝑀𝑖𝑗𝑘 + 𝜃2𝐷𝑁𝐴𝑚𝑖𝑗𝑘 + 𝜃3𝑃𝑀𝑖𝑗𝑘𝑥𝐷𝑁𝐴𝑚𝑖𝑗𝑘 + 𝜃4𝑍𝑖𝑗𝑘 + 𝑏0𝑘
𝐶 +

𝑏1𝑘
𝐶 𝑃𝑀𝑖𝑗𝑘 + 𝑏0𝑗𝑘

𝑃 + 𝑏0𝑖𝑗𝑘
𝐸 + 𝜀𝑖𝑗𝑘

𝐸 . 
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In WHI-BAA23 CT, and WHI-AS311 CT, two-level cross-sectional models had a random 

intercept and slope for PM at the WHI center level and a random intercept for plate and chip, as 

given by 

 

(31) 𝐸𝐶𝐺𝑖𝑘 = 𝜃0 + 𝜃1𝑃𝑀𝑖𝑘 + 𝜃2𝐷𝑁𝐴𝑚𝑖𝑘 + 𝜃3𝑃𝑀𝑖𝑘𝑥𝐷𝑁𝐴𝑚𝑖𝑘 + 𝜃4𝑍𝑖𝑘 + 𝑏0𝑘
𝐶 +

𝑏1𝑘
𝐶 𝑃𝑀𝑖𝑘 + 𝑏0𝑖𝑘

𝐸 + 𝜀𝑖𝑘
𝐸 . 

 

In ARIC-AA and ARIC-EA, one-level cross-sectional models had a random intercept for plate 

and chip, as given by 

 

(32) 𝐸𝐶𝐺𝑖 = 𝜃0 + 𝜃1𝑃𝑀𝑖 + 𝜃2𝐷𝑁𝐴𝑚𝑖 + 𝜃3𝑃𝑀𝑖𝑥𝐷𝑁𝐴𝑚𝑖 + 𝜃4𝑍𝑖 + 𝑏0𝑖
𝐸 +∈𝑖𝑘

𝐸 . 

 

where 𝑖, 𝑗 and 𝑘 denote the 𝑖𝑡ℎ examination (level 1) of the 𝑗𝑡ℎ participant (level 2) in the 𝑘𝑡ℎ 

center (level 3); 𝐸𝐶𝐺 is the QT interval or the log-transformed measure of RR, RMSSD, or 

SDNN from a 10-second ECG; 𝛽0 is the intercept; 𝐷𝑁𝐴𝑚 is DNAm at a relevant CpG site; 𝑃𝑀 

is 28-day or 1-month mean PM10 or PM2.5-10; 𝑃𝑀𝑥𝐷𝑁𝐴𝑚 is the PM-DNAm interaction term; 

and 𝑍 is a vector of covariates. The terms (𝑏0
𝐶, 𝑏1

𝐶) ~ 𝑁(𝑂, 𝐺) are a random intercept and a 

random slope for 𝑃𝑀 at center level, (𝑏0
𝑃) ~ 𝑁(𝑂, 𝐺) is a random intercept for examination at the 

participant level, (𝑏0
𝐸) ~ 𝑁(𝑂, 𝐺) represents random intercepts for technical covariates plate 

and/or chip, and 𝜀𝐸 ~ (𝑂, 𝜎2) is the random error at the examination level. 

The NDE and NIE were estimated for a 10 μg/m3 increase PM exposure using 

 

(33) 𝑁𝐷𝐸 = 10[𝜃1 + 𝜃3(𝛽0 + 𝛽2𝑍)], 

 

(34) 𝑁𝐼𝐸 = 10(𝛽1𝜃2 + 10𝛽1𝜃3), and 

 

(35) 𝑇𝐸 = 𝑁𝐷𝐸 + 𝑁𝐼𝐸 
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where 𝛽1 denotes the 𝑃𝑀 coefficients in models of PM-DNAm associations (from equations 25, 

26, and 27); and 𝜃1,𝜃2, and 𝜃3 are coefficients for 𝑃𝑀, 𝐷𝑁𝐴𝑚, and 𝑃𝑀𝑥𝐷𝑁𝐴𝑚 interaction term 

(from equations 31, 31, and 32).  

Bootstrapping was implemented to estimate standard errors and 95% CIs for the NDE 

and NIE estimates. 24-26 Finally, if the NDE and NIE were both positive or both negative (i.e. had 

the same signs), the proportion mediated (%) was estimated by dividing the NIE by the TE.180,394 

When the NDE and NIE have opposite signs, or when the total effect is small, the proportion 

mediated can be unstable and interpretable, with values greater than one or less than zero.394,395  
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Table 7-S1. Characteristics of nHRV = 7,169 / nQT = 6,895 study participants with DNA methylation data, Women's Health Initiative 

(1993-2005) and Atherosclerosis Risk in Communities study (1990-1995) 

Characteristic 

Heart rate variability 

WHI & ARIC 

n = 7,169 

WHI-EMPCa 

n = 1,980 

WHI-AS311 

n = 308 

WHI-BAA23 

n = 1,331 

ARIC-AA 

n = 2,514 

ARIC-EA 

n = 1,036 

Age (years), mean (SD)  61 (7)  64 (7)  64 (7)  65 (7)  56 (6)  60 (5) 

Male, n (%)   1,342 (19)       0 (0)       0 (0)       0 (0)     910 (36)     432 (42)  

Race / ethnicity, n (%)       

   Black or African American   3,390 (47)     560 (28)       0 (0)     316 (24)    2,514 (100)       0 (0)  

   Hispanic/Latino    510 (7)     318 (16)       0 (0)     192 (14)  --c --c 

   White (not of Hispanic origin) or European American   3,269 (46)    1,102 (56)     308 (100)     823 (62)       0 (0)    1,036 (100)  

More than high school, n (%)   3,905 (55)    1,403 (72)      66 (22)     425 (32)    1,526 (61)     485 (47)  

Smoking status, n (%)       

   Never   3,408 (48)    1,012 (52)     127 (42)     709 (54)    1,122 (45)     438 (42)  

   Former   2,541 (35)     771 (40)     148 (49)     478 (36)     750 (30)     394 (38)  

   Current   1,135 (16)     154 (8)      28 (9)     126 (10)     624 (25)     203 (20)  

Alcohol use, n (%)       

   Never   1,662 (23)     238 (12)      32 (10)     196 (15)     879 (35)     317 (31)  

   Former   1,859 (26)     561 (29)      53 (17)     300 (23)     794 (32)     151 (15)  

   Current   3,593 (50)    1,151 (59)     223 (72)     829 (63)     823 (33)     567 (55)  

Physical activity (MET-hours/week), mean (SD)  12.4 (12.7)   9.7 (11.7)  10.8 (12.7)  10.0 (12.7)  12.7 (11.3)  20.2 (14.0) 

Body mass index (kg/m2), mean (SD)  29.3 (6.0)  29.7 (6.0)  28.5 (5.6)  29.9 (6.0)  30.1 (6.2)  26.2 (4.4) 

Clinical characteristics, n (%)       

   Hypertension   3,069 (43)     999 (51)     143 (46)     726 (55)    1,002 (40)     199 (19)  

   Hyperlipidemia  1,341 (19)    300 (15)      38 (12)     196 (15)     572 (23)     235 (23)  

   Diabetes    776 (11)     182 (9)      17 (6)     161 (12)     383 (15)      33 (3)  

   Chronic lung disease    701 (10)     194 (10)      27 (9)     146 (11)     199 (8)     135 (13)  

   Coronary heart disease    486 (7)     128 (7)      24 (8)      90 (7)     183 (7)      61 (6)  

   Congestive heart failure 341 (5)     56 (3)      10 (3)      14 (1)     222 (9)      39 (4)  

ECG traits (ms), mean (SD)       

   RR 925 (142) 925 (140) 924 (128) 910 (139) 924 (148) 948 (137) 

   RMSSD  23 (22)  23 (24)  22 (18)  21 (20)  26 (22)  20 (16) 

   SDNN  20 (16)  20 (18)  20 (14)  18 (14)  22 (18)  19 (14) 

   QT 406 (30) 402 (31) 402 (27) 401 (31) 411 (31) 413 (26) 

PM (μg/m3)       

   PM10, 28 days  27.4 (6.2)  27.5 (6.2)  26.6 (6.0)  27.5 (6.3)  34.8 (6.3)  34.4 (5.8) 

   PM10, 1 month  20.3 (6.1)  20.6 (6.5)  19.4 (5.5)  20.4 (6.1)  20.4 (4.5)  23.2 (5.2) 

   PM2.5-10, 1 month   8.4 (4.5)   6.9 (5.2)   7.9 (4.2)   8.5 (4.5)   7.3 (2.1)   7.8 (2.4) 
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Characteristic 

QT interval 

WHI & ARIC 

n = 6,895 

WHI-EMPCb 

n = 1,872 

WHI-AS311 

n = 300 

WHI-BAA23 

n = 1,339 

ARIC-AA 

n = 2,365 

ARIC-EA 

n = 1,019 

Age (years), mean (SD)  61 (7)  63 (7)  64 (7)  65 (7)  56 (6)  60 (5) 

Male, n (%)   1,300 (19)       0 (0)       0 (0)       0 (0)     880 (37)     420 (41)  

Race / ethnicity, n (%)         

   Black or African American   3,198 (46)     515 (28)        0 (0)     318 (24)    2,365 (100)       0 (0.0)  

   Hispanic/Latino    501 (7)     310 (17)       0 (0)     191 (14)  --c --c 

   White (not of Hispanic origin) or European American   3,196 (46)    1,047 (56)     300 (100)     830 (62)       0 (0.0)    1,019 (100)  

More than high school, n (%)   3,697 (54)    1,328 (72)      64 (22)     427 (32)    1,408 (60)     470 (46)  

Smoking status, n (%)        

   Never   3,274 (48)     949 (52)     124 (42)     707 (54)    1,060 (45)     434 (43)  

   Former   2,446 (36)     732 (40)     142 (48)     484 (37)     698 (30)     390 (38)  

   Current   1,098 (16)     151 (8)      30 (10)     131 (10)     591 (25)     195 (19)  

Alcohol use, n (%)        

   Never   1,576 (23)     222 (12)      30 (10)     193 (15)     822 (35)     309 (30)  

   Former   1,733 (25)     514 (28)      50 (17)     299 (22)     724 (31)     146 (14)  

   Current   3,536 (51)    1,107 (59)     220 (73)     842 (63)     803 (34)     564 (55)  

Physical activity (MET-hours/week), mean (SD)  12.6 (12.8)   9.9 (11.9)  10.8 (12.7)   10.0 (12.4)  13.1 (11.5)  20.4 (14.1) 

Body mass index (kg/m2), mean (SD)  29.2 (5.9)  29.6 (5.9)  28.6 (5.7)  29.9 (6.0)  29.9 (6.1)  26.1 (4.4) 

Clinical characteristics, n (%)        

   Hypertension   2,804 (41)     911 (49)     131 (44)     725 (54)     859 (36)     178 (18)  

   Hyperlipidemia   1,249 (18)     267 (14)      40 (13)     198 (15)     519 (22)     225 (22)  

   Diabetes    687 (10)     157 (8)      16 (5)     162 (12)     323 (14)      29 (3)  

   Chronic lung disease    631 (9)     179 (10)      28 (9)     146 (11)     151 (6)     127 (13)  

   Coronary heart disease    374 (5)     101 (5)      19 (6)      88 (7)     120 (5)      46 (5)  

   Congestive heart failure 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

ECG traits (ms), mean (SD)        

   RR 927 (142) 927 (141) 923 (129) 910 (140) 928 (148) 950 (137) 

   RMSSD  23 (22)  23 (24)  22 (19)  21 (20)  26 (22)  20 (16) 

   SDNN  20 (17)  21 (18)  20 (14)  18 (14)  22 (18)  19 (14) 

   QT 405 (30) 401 (31) 400 (26) 400 (31) 410 (30) 412 (26) 

PM (μg/m3)        

   PM10, 28 days  31.0 (7.2)  27.5 (6.2)  26.7 (6.0)  27.4 (6.3)  34.8 (6.3)  34.4 (5.8) 

   PM10, 1 month  20.8 (5.7)  20.6 (6.5)  19.4 (5.6)  20.4 (6.2)  20.4 (4.6)  23.1 (5.2) 

   PM2.5-10, 1 month   7.5 (3.9)   7.0 (5.2)   7.8 (4.2)   8.4 (4.6)   7.3 (2.1)   7.9 (2.5) 

Abbreviations: AA, African Americans; ARIC, Atherosclerosis Risk in Communities; AS311, Ancillary Study 311; BAA23, Broad Agency Award 23; EA, 

European Americans; ECG, electrocardiography; EMPC, Epigenetic Mechanisms of Particulate Matter-Mediated CVD Risk; PM, particulate matter; PM10, 

PM < 10 μm in diameter; PM2.5-10, PM > 2.5 and < 10 μm in diameter; RMSSD, root mean square of successive differences between RR intervals; SD, 
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standard deviation; SDNN, SD of normally conducted RR intervals; WHI, Women's Health Initiative 
aAt the 1st visit. Methylation & HRV data also were available among 186 WHI-EMPC participants @ the 2nd visit 
bAt the 1st visit. Methylation & QT data also were available among 178 WHI-EMPC participants @ the 2nd visit 
cARIC recruitment and data collection occurred before the National Instutite of Health required collection of information about Hispanic/Latino ethnicity 
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CHAPTER 8. DISCUSSION AND CONCLUSION 

Ambient particulate matter (PM) air pollution is a modifiable exposure that has been 

consistently associated with cardiovascular disease (CVD), partly through changes in autonomic 

function and ventricular repolarization, as measured by heart rate variability (HRV) and QT 

interval duration (QT) on the electrocardiogram. However, the molecular mechanisms 

underlying PM-associated cardiac autonomic dysfunction and QT prolongation are not well 

understood. Therefore, a series of well-powered analyses evaluating PM associations with 

leukocyte count, proportions, and DNA methylation were conducted. Additionally, epigenetic 

mediation of PM-associated changes in HRV and QT was analyzed to examine the biological 

plausibility and causality of PM-CVD associations being considered by the U.S. Environmental 

Protection Agency (EPA) as it sets National Ambient Air Quality Standards (NAAQS) for PM.  

The analyses provided evidence of PM-associated health effects, including associations 

of mid- to longer-duration (i.e. monthly to yearly) mean PM2.5 concentrations with higher 

leukocyte counts, higher granulocyte proportions, and lower CD8+ T cell proportions. While 

shorter-duration (i.e. daily to weekly) mean PM10 concentrations were inversely associated with 

leukocyte counts – potentially due to relatively acute, PM-induced leukocyte sequestration from 

peripheral blood – the latter associations were modest. Additionally, methylome-wide 

association analyses identified three significant CpG sites (cg19004594, cg24102420, and 

cg12124767) at which higher monthly mean PM10 and PM2.5-10 concentrations were associated 

with leukocyte DNAm. Each of the three sites was annotated to a neurological, pulmonary, 

endocrine, or cardiovascular disease-related gene (MATN4, ARPP21 and CFTR), potentially 
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linking PM exposure to poor health through epigenetic mechanisms. Although monthly mean 

concentrations of these coarser particulates were associated with DNAm within biologically 

intriguing genes, neither they nor methylation at cg19004594, cg24102420, or cg12124767 were 

appreciably associated with HRV and QT. As such, mediation analyses of PM-DNAm-HRV and 

PM-DNAm-QT associations yielded null results in this study.   

Collectively, the results of this study provide insight into PM-related inflammatory 

processes while generating hypotheses regarding methylomic pathways that may help explain the 

established relationship between PM and CVD risk. Although DNAm at the discovered CpG 

sites was not associated with gene expression in whole blood, examining gene expression in 

myocardial, pulmonary, and neural tissues – those arguably more relevant to cardiovascular and 

respiratory health – is warranted in future research aimed at elucidating molecular underpinnings 

of PM-associated CVD risk. 

Similarly, monthly mean concentrations of coarser particulates were not associated with 

HRV or QT, but their associations with shorter duration, finer particulates in susceptible (e.g. 

diabetic or hypertensive) populations have been observed in previous studies. Future research 

therefore should consider short-duration exposures to ambient PM2.5 and PM10 in such 

populations when investigating the environmental and epigenetic determinants of ten-second, 

resting, standard twelve-lead electrocardiographic measures. 

Finally, future research should consider methylome-wide association, causal association, 

and mediation analyses that adjust for leukocyte composition to avoid spurious associations of 

PM with DNAm through its inflammatory, rather than methylomic effects. Mediation analyses 

may otherwise be biased or uninformative if leukocyte composition confounds what is in effect a 

multiply mediated PM-DNAm-outcome association, thereby complicating its decomposition. As 
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DNAm and other leukocyte-derived genomic biomarkers become more common, causal 

modeling would benefit from thoughtful consideration of PM-leukocyte composition-DNAm-

outcome associations when attempting to elucidate the complex pathways of exposure-induced 

disease.  

The culmination of this dissertation – an innovative attempt to examine epigenetically 

mediated electrocardiographic effects of PM using multi-center, longitudinal data in racially, 

ethnically and environmentally diverse populations of U.S. women and men – provides further 

understanding of these pathways. Specifically, it identified inflammatory effects of and putative 

epigenetic mechanisms by which PM may affect health at concentrations below EPA NAAQS, 

while simultaneously informing causal and mediation methods at the junction of epigenetics, 

environmental and cardiovascular epidemiology. Its findings have implications for the next PM 

Integrated Science Assessment, a comprehensive evaluation of relevant literature that provides 

the scientific basis for policy-relevant decision-making and standard setting under the Clean Air 

Act. 
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