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ABSTRACT

HAIPENG GAO: Bayesian Inference for Stochastic Cusp Catastrophe Model
(Under the direction of Chuanshu Ji)

In modern financial econometrics, diffusion processes have been broadly used to model the

stochastic behavior of economic variables such as stock prices, interest rates, and exchange rates.

Well-known models such as Black-Scholes, Vasicek, and Cox-Ingersoll-Ross (CIR mdoel), all as-

sume that the underlying state variables follow diffusion processes. If one believes that the observed

time-series are generated according to some parametric specification, developing rigorous statisti-

cal methods to calibrate the underlying model to measured observations has become a considerable

subject of the field.

The thesis considers cusp model, one of the elementary catastrophe models studied in catas-

trophe theory. The research problem of this thesis is to develop an accurate and computationally

feasible parameter estimation algorithm based on Bayesian principle that can be implemented in

absence of an exact transition distribution for cusp model using discretely sampled observations.

The problem can be further specified as parameter estimations using complete observations and us-

ing partial observations. Accuracy and efficiency of the approach are demonstrated and examined

in a series of simulation-based studies that consist of both trajectory simulations and parameter es-

timations. We extend the developed algorithm and apply it to Bayesian hierarchical modeling and

cusp model with time-varying parameters.

iii



To Grace

iv



ACKNOWLEDGEMENTS

I’m deeply indebted to my advisor Prof. Chuanshu Ji who guided me through my doctorate

level research. I’m extremely grateful for his motivation, patience, encouragement, and continuous

support.

I’m grateful to Prof. Ding-Geng Chen for introducing the research topic, extended discussions

and insightful suggestions which have contributed greatly to the improvement of the thesis. I must

also thank Dr. Bill (Feng) Shi for his unwavering support and invaluable suggestions. I would also

wish to extend my sincere thanks to Prof. Nilay Tanik Argon and Prof. Serhan Ziya for serving on

my PhD committee. The thesis has also benefited from comments and suggestions made by Tony

(Ruito) Fan who inspired me in many aspects.

I never take the opportunity to study for granted, and I believe not everyone is as lucky as I am

who had the opportunity to explore the field that one is genuinely interested in. I appreciate Prof.

Vidyadhar Kulkarni who admitted me to the PhD program for giving me the opportunity to purse

doctorate study at UNC Chapel Hill.

The achievement would not be possible without the support from my family and the extended

family. Especially, I would express my gratitude to Yan Sheng, my mother, for her love, support,

and sacrifice, as well as to Kyungeun, my wife and my best friend, for believing in me at the very

beginning as well as her continuous support.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS AND SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Catastrophe theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Deterministic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Stochastic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Cusp catastrophe model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Cusp stationary density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Cusp model in economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Key research problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Major contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Dissertation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Convergence criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Strong convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Weak convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Ito-Taylor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Euler–Maruyama method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Milstein method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Cusp SDE trajectory simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



2.5.1 Three roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 One root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3 Two roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Bayesian Inference using Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Prior belief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Connections between MLE and MAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Bayesian data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 Motivation of MCMC in Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Metropolis-Hasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Construction of a Markov chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 The Leap Frog Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 The target distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Transition Density Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Closed-form approximation using Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Euler approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Cusp transition density approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 MCMC Convergence Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Trace plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Autocorrelation plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Effective sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Geweke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6 Gelman-Rubin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Inference from Complete Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Model validation criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Simulation study and result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Empirical example: USD/EUR Exchange Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.1 Model identification via AIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.2 Generalized cusp model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3.3 USD/EUR exchange rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Inference from Partial Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.1 Bayesian data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Closed-form approximation using Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Simulation study and result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Effect of number of augmented data points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Cusp Model with More Complex Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1 Bayesian hierarchical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1.1 Population and individual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1.2 Simulation study and result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.2 Cusp model with time-varying parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2.1 Time-varying parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.2.2 Simulation study and result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

APPENDIX A STATIONARY DISTRIBUTION OF CATASTROPHE MODEL . . . . . . . . . . . 88

APPENDIX B CUSP TRANSITIONAL PDF BY HERMITE POLYNOMIALS . . . . . . . . . . . 90

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



LIST OF TABLES

6.1 Simulation study: Inference from complete observations . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Simulation study: Inference from partial observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Simulation study: Effect of number of augmented data points . . . . . . . . . . . . . . . . . . . . . 75

x



LIST OF FIGURES

1.1 Example of degenerate singularity: function f(x) = x3 at x = 0 . . . . . . . . . . . . . . . . . . . 2

1.2 Example of a quartic polynomial potential function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Example of potential function V (x): α = 1, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Example of potential function V (x): α = 3, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Example of potential function V (x): α = 2, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Cusp stationary density plots with varying asymmetry parameter α . . . . . . . . . . . . . . . . 8

1.7 Cusp stationary density plots with varying bifurcation parameter β . . . . . . . . . . . . . . . . 8

1.8 Cusp stationary density plots with fixed β = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 Example of stable and unstable market equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Sample trajectory: Cusp SDE with α = 1, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Sample trajectory: Cusp SDE with α = 3, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Sample trajectory: Cusp SDE with α = 2, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Comparison of Euler and HPE: α = 1, β = 3, x0 = 0 and ∆ = 0.01 . . . . . . . . . . . . . . . 46

4.2 Comparison of Euler and HPE: α = 1, β = 3, x0 = 0 and ∆ = 0.10 . . . . . . . . . . . . . . . 47

4.3 Comparison of Euler and HPE: α = 1, β = 3, x0 = 0 and ∆ = 0.50 . . . . . . . . . . . . . . . 47

5.1 MCMC diagnostics: Trace plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 MCMC diagnostics: Autocorrelaiton plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 MCMC diagnostics: Effective sample size plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 MCMC diagnostics: Geweke plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 MCMC diagnostics: Gelman plot for α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6 MCMC diagnostics: Gelman plot for β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Complete observations: Empirical αMAP with α = 1, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Complete observations: Empirical βMAP with α = 1, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . 61

xi



6.3 Complete observations: Empirical αMAP with α = 2, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Complete observations: Empirical βMAP with α = 2, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . 63

6.5 Complete observations: Empirical αMAP with α = 3, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . 64

6.6 Complete observations: Empirical βMAP with α = 3, β = 3 . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1 Illustration of Bayesian data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Partial observations: Empirical αMAPwith 1 augmented data point . . . . . . . . . . . . . . . . . 73

7.3 Partial observations: Empirical βMAP with 1 augmented data point . . . . . . . . . . . . . . . . . 73

7.4 Partial observations: Empirical αMAP with 2 augmented data points . . . . . . . . . . . . . . . . 76

7.5 Partial observations: Empirical βMAP with 2 augmented data points . . . . . . . . . . . . . . . . 76

7.6 Partial observations: Empirical αMAP with 4 augmented data points . . . . . . . . . . . . . . . . 77

7.7 Partial observations: Empirical βMAP with 4 augmented data points . . . . . . . . . . . . . . . . 77

7.8 Partial observations: Empirical αMAP with 9 augmented data points . . . . . . . . . . . . . . . . 78

7.9 Partial observations: Empirical βMAP with 9 augmented data points . . . . . . . . . . . . . . . . 78

7.10 Partial observations: Empirical αMAP with 15 augmented data points . . . . . . . . . . . . . . . 79

7.11 Partial observations: Empirical βMAP with 15 augmented data points . . . . . . . . . . . . . . . 79

8.1 Bayesian hierarchical modeling: Posterior αs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Bayesian hierarchical modeling: Posterior βs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 Time-varying cusp: Sample trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4 Time-varying cusp: Posterior αs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.5 Time-varying cusp: Posterior βs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xii



LIST OF ABBREVIATIONS AND SYMBOLS

MLE

PDF

SDE

ϕ(z)

Maximum likelihood estimation

Probability density function

Stochastic differential equation

PDF of the standard normal distribution N (0, 1)

xiii



CHAPTER 1

Introduction

In modern financial econometrics, diffusion processes have been broadly applied to model the

stochastic behavior of economic variables such as stock prices, interest rates, and foreign exchange

rates. Well-known models such as Black-Scholes, Vasicek, and Cox-Ingersoll-Ross (CIR mdoel),

all assume the underlying state variables follow diffusion processes. The thesis considers stochastic

cusp model, one of the elementary catastrophe models studied in catastrophe theory.

In this chapter, we give a brief overview of cusp model including its development and appli-

cations in economics. While doing so, we highlight unique characteristics which make cusp model

appealing and valuable in economics and financial econometrics.

1.1 Catastrophe theory

Catastrophe theory is commonly regarded as a branch of bifurcation theory in the study of

dynamic systems in mathematics. A bifurcation occurs when a change, usually small and smooth,

made to the system’s parameter values engenders a sudden “qualitative” change in its behavior.

Catastrophe theory studies the mathematical characteristics of bifurcation phenomena and reveals

that such bifurcations tend to occur as part of well-defined geometrical structures [Ivancevic and

Ivancevic, 2007].

To better illustrate, imagine we have an object inside a system expressed by the simplest cubic

polynomial f(x) = x3 residing at its equilibrium x = 0. When the system is perturbed vaguely by

adding an extra linear term x, x = 0 will no longer be an equilibrium under the new but perturbed

system f(x) = x3 + x (Figure 1.1). In fact, such small perturbation experienced by particular

parameters of some non-linear system could cause equilibria to appear or to disappear, or to change
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from attracting to repelling, and vice versa, that eventually leads to sudden “qualitative” changes

of the behavior of the system [Costantino et al., 2005].

-1.0 -0.5 0.5 1.0

-2

-1

1

2

x3 + x

x3

x3 - x

Figure 1.1: Example of degenerate singularity: function f(x) = x3 at x = 0

1.1.1 Deterministic dynamics

The dynamics of a catastrophe model is often expressed in terms of a potential function V (x),

where V (x) is commonly approximated by polynomials. The deterministic dynamics is then gov-

erned by the ordinary differential equation

dx

dt
= −dV (x; θ)

dx
, x ∈ R and θ ∈ Rp. (1.1)

where x and θ denote location and system parameters respectively.

x0 is an equilibrium point if dV (x)
dx

|x=x0 = 0. An equilibrium point x0 is said to be unstable if
d2V (x)
dx2 |x=x0 < 0, and x0 is a local maximum; x0 is called a stable equilibrium if d2V (x)

dx2 |x=x0 > 0,

and in this case a local minimum. An object inside the system tends to move toward the point of

lowest potential. Furthermore, an equilibrium point x0 is degenerate if d2V (x)
dx2 |x=x0 = 0, and in this

case x0 is neither a local minimum nor a local maximum.
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Figure 1.2: Example of a quartic polynomial potential function

1.1.2 Stochastic dynamics

The stochastic version of dynamics of catastrophe model can be obtained by adding a diffusion

term to Equation 1.1. The corresponding stochastic differential equation is expressed as

dXt = −dV (Xt; θ)

dx
dt+

√
εdWt. (1.2)

One common approach to gain information about Equation 1.2 is to study the transition den-

sity that completely characterizes the stochastic dynamics. To better illustrate, suppose we have a

diffusion process Xt descried by the SDE

dXt = µ (Xt, t; θ) dt+ σ (Xt, t, θ) dWt, (1.3)

with drift µ and diffusion σ.

Let p(x, t) to be the transition probability density function governed by Equation 1.3, i.e.

p(x, t) ≡ d

du
Prob{Xt < u|X0 = x0}.
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p(x, t) is known to satisfy the Fokker-Planck equation, which is also commonly known as the

Kolmogorov forward equation

∂

∂t
p(x, t) = − ∂

∂x
[µ(x, t)p(x, t)] +

1

2

∂2

∂x2
[σ2(x, t)p(x, t)]. (1.4)

Fokker-Planck equation describes the time evolution of the transition density p(x, t) governed

by Equation 1.3.

Unfortunately, unlike few those SDEs with simple expressions for both drift and diffusion

terms, the transition density p(x, t) of Equation 1.2 does not have analytic solution in most cases.

Nonetheless, a less ambitious goal that is to obtain the stationary distribution could be achieved

straightforwardly. The stationary density π is

π(x) = Ne−
2V (x)

ε , (1.5)

where N is the normalizing constant [Cobb, 1981] and proof is given in Appendix A.

1.2 Cusp catastrophe model

The thesis studies cusp model, one of the elementary catastrophe models developed within

the framework of catastrophe theory. Cusp model considers the case when the potential is quartic

polynomial, for example,

V (x;α, β) =
1

4
x4 − 1

2
βx2 − αx.

According to Equation 1.1, the deterministic cusp dynamics therefore has the form

dx

dt
= α + βx− x3. (1.6)

An object that obeys Equation 1.6 has equilibria when

dx

dt
= α + βx− x3 = 0,
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Figure 1.3: Example of potential function V (x): α = 1, β = 3

hence finding the equilibria is equivalent to finding the roots of the cubic function

f(x) = α + βx− x3. (1.7)

Discriminant, defined as ∆disc = 27α2 − 4β3 is often used as an aid to its classification of

solution. In particular,

1. If ∆Disc < 0, Equation 1.7 will have three distinct real roots (Figure 1.3) ;

2. If ∆Disc > 0, Equation 1.7 will have only one real root (Figure 1.4);

3. If ∆Disc = 0, Equation 1.7 will have two distinct roots with one of the two being a double

root (Figure 1.5).

Furthermore, the stochastic version to Equation 1.6, according to Equation 1.2 is

dXt =

(
α + βXt −

1

4
X3

t

)
dt+

√
εdWt, (1.8)

where α, β are often referred to as asymmetry and bifurcation parameters respectively. Parameters

α, β along with ∆Disc differentiate the cusp model from other linear models.
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Figure 1.4: Example of potential function V (x): α = 3, β = 3

1.2.1 Cusp stationary density

According to Equation 1.5, the stationary density of the cusp stochastic differential equation

has the form

π(x) = N exp
{
2

ε

(
αx+

1

2
βx2 − 1

4
x4
)}

(1.9)

The cusp stationary density is characterized by two parametersα and β via∆disc = 27α2−4β3.

In particular,

1. If ∆disc > 0, the stationary density distribution is unimodal. The asymmetric factor α and

bifurcation factor β measure skewness and kurtosis respectively (Figure 1.6).

2. If∆disc < 0, the stationary density distribution is bimodal. In this caseα represent the relative

height of the two modes, and β determines the separation of the two modes (Figure 1.8).

3. Moreover, the modes of stationary density (in either case) correspond to the stable equilibria

of a differential equation.

One of most distinctive characteristics of the cusp stationary density is the flexibility to al-

low for bimodality, along with kewness and kurtosis. In fact cusp stationary density is a bimodal
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Figure 1.5: Example of potential function V (x): α = 2, β = 3

generalization of the Gaussian, gamma, inverse gamma, and beta distributions, and belongs to

the exponential family [Cobb et al., 1983]. Such flexibility makes cusp stationary density an ex-

ceedingly appealing statistical model; for example it requires fewer parameters than corresponding

mixture models (e.g. Gaussian mixture model) since it only needs four parameters. As pointed

out by Chen et al. [2016], cusp stationary distribution is a complement to traditional approaches

such as linear regression and non-parametric regression because of its capacity to simultaneously

handle complex linear and nonlinear cases and the ability to capture sudden qualitative changes in

dependent variables.

Cobb contributed to the development of stochastic cusp model by establishing an integrated

structure for cusp stationary distribution, including parameter estimations of cusp stationary proba-

bility densities using method of moments and the maximum likelihood [Cobb, 1978] [Cobb, 1981].

1.2.2 Cusp model in economics

Zeeman pioneered works on applying cusp model in economics. Zeeman [1973] attempted

to explain crashes on stock market by incorporating two types of major market players into cusp

model, and they are fundamentalists and chartists. Their impact was reflected by incorporating

fundamentalist and chartists into α and β respectively.
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Figure 1.6: Cusp stationary density plots with varying asymmetry parameter α
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Figure 1.7: Cusp stationary density plots with varying bifurcation parameter β

Creedy made claim, based on the fundamental economics concept law of supply and demand,

a cubic drift appears naturally in the stochastic processes governing the dynamics of asset market

prices, and further explained that this is due to the characteristic of cubic equations that have the

flexibility to allow one single root that corresponds to a unique equilibrium price or three roots

corresponding to multiple equilibria [Creedy and Martin, 1993]. As shown in Figure 1.9, the stable

market equilibrium could be impelled to an unstable one, leading to a movement in price that

exhibits a large “sudden jump ” from the initial stable point. Creedy et al. [1996] applied the cusp
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stationary density to US/UK rate over the period 1973 and performed model parameter estimating

using MLE methods.

Fernandes [2006] provided a density matching approach for time-varying parameters with

exogenous variables setting, then applied it to investigate the interest rate differential during the

Swedish twin crisis empirically.

Baruník and Vosvrda [2009] fitted cusp (regression) model to US stock market data and they

showed that cusp (regression) model provides a better goodness-of-fit when fitting crash of stock

market data than other classic regression models such as linear regression and logistic regression.

1.3 Key research problem

Although statistical properties of cusp stationary distribution have been well studied, unified

estimating framework has established, and many empirical studies in economics or other subjects

has been conducted, to best of our knowledge, little work that focuses on the actual stochastic

dynamics of cusp model has been done.

One of themotivation for considering the actual stochastic cusp dynamics (Equation 1.8) comes

from the application of diffusion processes in modeling stochastic behavior of economics variables

in financial econometrics; it is also driven by the nature of the data one collects, in particular time-
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Figure 1.8: Cusp stationary density plots with fixed β = 3
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Figure 1.9: Example of stable and unstable market equilibria

series data. Time series are often collected sequentially in time. If one believes that the observed

time-series are generated according to some parametric specification, developing rigorous statisti-

cal methods to calibrate the underlying model to measured observations has become an important

research topic.

In reality, there’s always some discrepancy between continuous-time model and discrete-time

observations because the underlying model is assumed to be a diffusion process hence written in

continuous time, while the available observations are often sampled discretely in time, and may

not be continuous enough. This model-observation discrepancy should not be neglected, because

otherwise it could lead to inconsistent estimators [Melino, 1996], [Jones, 1998], [Ait-Sahalia et al.,

2008].

Furthermore, based on the quality of the data, inference problem can be specified as parameter

estimation from complete observations and from partial observations. One major difference be-

tween the two is that, sample observations in partial observation scenario are considerably sparse

than that in complete observation scenario. In particular, if one is able to obtain a completely ob-

served data set , where this thesis simply call this case the complete observations scenario, then this

model-observation discrepancymay not be so considerable. According to our simulation study, this

is the relatively easier case to obtain satisfying estimation results. However, this discrepancy issue

is not negligible if the sampled data is partially observed, and let’s call it the partial observation
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scenario. It is not negligible because for example, the actual transition density of the process is

often approximated in some way due to intractability, a larger ∆obs due to missing values would

lead to a larger deviation from the true but intractable transition density. Parameter estimation for

cusp SDE with partially observed data points is a much harder case to handle.

Transition probability density

That being said, if one believes the observed values are generated according to the underly-

ing parametric specification, it is naturally concerned with parameter inference for the underlying

diffusion process Xt. Imagine data points are observed at discrete time points ti = i∆obs with

i = 0, · · · , n, and observed measurements being x = (x0, · · · , xn).

With the assumption that the transition density p(∆, x|x0; θ), the conditional density ofXt+∆ =

x given Xt = x0 is available in the explicit form, by Markov property, the likelihood function is

Ln(θ) =
n∏

i=1

pθ (∆, xi|xi−1) pθ (x0) . (1.10)

Let ℓn(θ) = logLn(θ) be the log-likelihood function, we obtain

ℓn(θ) = logLn(θ) =
n∑

i=1

log pθ (∆, xi|xi−1) + log (pθ (x0)) . (1.11)

The thesis assumes pθ(X0) = 1 for simplicity, since the weight of pθ(X0) in the likelihood

Ln(θ) becomes negligible as n increases.

Cusp transition density p(x, t) is analytically intractable though it is known to satisfy the

Fokker-Planck equation (Equation 1.4). The research problem of this thesis is to develop an accu-

rate and computationally feasible parameter estimation algorithm based on Bayesian principle that

can be implemented in the absence of an analytically exact transition distribution for cusp model

using discretely and perhaps partially sampled observations.
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1.4 Major contributions of the thesis

The dissertation claims following major and original contributions to the topic:

1. Under the complete observations scenario, an accurate and computationally feasible param-

eter estimation algorithm based on Bayesian principle and implemented by Hamiltonian

Monte Carlo was developed. Intensive simulation study was conducted and the results sup-

port the claim made on the algorithm.

2. Under the partial observations scenario, three parameter estimation methods were devel-

oped and compared, they are Euler approximation, closed-from approximation usingHermite

polynomials by Ait-Sahalia, and Euler approximation with data augmentation. We compare

the performances of three different methods by running intensive simulation studies. The

result shows that the Euler approximation with data augmentation outperforms the other two

in the demonstrated cases.

3. Motivated by real-world problems when only sparsely sampled observations are available

(for example, longitudinal-type of data), we also investigated how the number of augmented

data points would affect the parameter estimation result by simulation studies.

4. The parameter estimation algorithm was extended to more complex settings, namely the

Bayesian hierarchical modeling and cusp model with time-varying parameters. The accuracy

of the algorithm is supported by simulation study whose result is also presented in the thesis.

1.5 Dissertation structure

chapter 2 reviews basics of numeric method for SDE trajectory simulation. Derivation of the

Taylor-Ito expansion which plays the same essential role as Taylor expansion does in numerical

analysis is given. We introduce the Euler-Maruyama method for implementing the cusp SDE tra-

jectory simulation.
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chapter 3 reviews the basics of Bayesian inference as well as Markov Chain Monte Carlo as

a means to sample intractable posterior distribution. We introduce Metropolis-Hasting algorithm

and Hamiltonian Monte Carlo from a practitioner’s perspective focusing on their motivation and

implementation. We also highlight the ability of Hamiltonian Monte Carlo that reduces correlation

between successive draws by utilizing Hamiltonian dynamics.

chapter 4 reviews two approaches to approximate the intractable cusp transition density, they

are (1) closed-form approximation using finite Hermite polynomials by Ait-Sahalia [2002], Ait-

Sahalia et al. [2008], and (2) the Euler approximation. We compare two different approximations

by examining their plots with different time increments.

chapter 5 reviews MCMC convergence diagnostics. Regardless of whether the parameter esti-

mation results are satisfying or not, it is necessary to make sure the obtained samples were indeed

coming from the stationary distribution (hence the target posterior distribution) of the constructed

Markov chain as we expect. Several commonly used MCMC convergence diagnostics are intro-

duced and implemented to spot anything undesired.

chapter 6 contains an intensive simulation study under the complete observations scenario.

The results support the claim that the proposed parameter estimation algorithm is accurate and

computationally feasible.

chapter 7 considers the partial observation scenario. We introduce the idea behind formulating

partial observation as missing value problem and attempt to improve the estimation accuracy with

data augmentation. Simply saying, data augmentation in Bayes treats those unobserved or missing

data points between two consecutive observed as unknown parameters in addition to the unknown

model parameters. In particular, our simulation study shows that data augmentation outperforms

both closed-form approximation by Hermite polynomials and Euler approximation in demonstrated

cases. We also investigated how number of augmented data points would affect the parameter

estimation result by running simulation studies.

chapter 8 showed one great advantage of using Bayesian inference by considering two complex

model settings, they are the Bayesian hierarchical modeling and the time-varying parameter with
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exogenous processes setting. Accuracy of the algorithm is supported by simulation study whose

result is also presented in this chapter.
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CHAPTER 2

Numerical Methods

Cusp SDE, like most of SDEs, does not have explicit or analytic solution. Consequently,

trajectory simulation is needed in order to gain information about it. By choosing and implementing

appropriate discretization schemes, numerical simulations give approximations to the continuous

solutions to the underlying cusp SDE. In this chapter, we review the basics of numerical methods

for SDE.

2.1 Convergence criteria

Methods of approximation scheme are often classified based on the task objective. If one

is interested in the whole trajectory, then it requires strong convergence; for other cases that one

only needs approximation to some functional properties such as moment and distribution, weak

convergence is often adequate.

In practice, the choice of the convergence criterion is determined by the type of the problem

one is to investigate, and is often specified before constructing a numerical method and optimizing

its efficiency with respect to the chosen convergence criterion [Platen, 1999].

Definition 1. A time discretization ΠN([0, T ]) over the time interval [0, T ] contains points

0 = τ0 < τ1 < · · · < τn < · · · < τN = T,

and the step-size is commonly chosen to be ∆ = T/N .
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2.1.1 Strong convergence

Definition 2. A time-discretized time approximation

Yn := Yτn , n ∈ {0, · · · , N}

of a continuous-time process Xt, t ∈ [0, T ] governed by an SDE converges in the strong sense

with order γ ∈ (0,∞] if for any fixed time horizon T it holds true that

E |YN −XT | ≤ K∆γ (2.1)

for all step-sizes ∆ ∈ (0, 1) andK is a constant not depending on ∆.

Strong convergence criterion should be used when the task involving trajectory simulations

directly. For example, simulation of a stock price usually requires the simulated sample trajectory

to be close to the solution of geometric Brownian motion, and similarly simulation of a short-term

rate usually requires the simulated sample trajectory be close to the solution Ornstein–Uhlenbeck

process. In these cases, numerical methods are classified according to their strong order γ of con-

vergence, using the absolute error

E |YN −XT |

at the terminal time T .

2.1.2 Weak convergence

Definition 3. A discrete time approximation Y of a solution X of an SDE converges in the weak

sense with order β ∈ (0,∞] if, for any polynomial g, there exists a constantKg <∞ such that

|E (g (YN))− E (g (XT ))| ≤ Kg∆
β (2.2)

for all step-sizes ∆ ∈ (0, 1), provided that these functionals exist.

16



If one is only interested in computing some functional such as probability distributions or

moments that does not require us to approximate the entire trajectory of X , strong convergence

criterion that requires an almost exact replica of the sample path of the solution of the underling

SDE may not be necessary. One typical example is the Monte Carlo simulation of option prices

at a terminal time T , where option prices can be approximated by simply random walk instead of

Brownian motion due to the fact that its first two moments (mean and variance) match the ones for

Brownian motion correspondingly. In such cases, approximations of probability distribution that

corresponds toX is often sufficient, and consequently only a much weaker type of convergence is

needed.

Theorem 1. β ≥ α (Weak order ≥ Strong order)

Proof. Suppose |f ′| ≤ K, then by mean value theorem
∣∣∫ g − h

∣∣ ≤ ∫ |g − h|

|Ef (YN)− Ef (XT )|≤ E |f (YN)− f (XT )|

≤ KE |YN −XT |

≤ K
(
E |YN −XT |2

)1/2
.

2.2 Ito-Taylor expansion

Taylor series expansion plays an essential role in numerical analysis. For a sufficiently smooth

function f(x) in a neighborhood of some given point x0, one could obtain approximations to any

desired order of accuracy by truncating the Taylor series up to certain term.

We now briefly review the derivation of Ito-Taylor expansion, which plays the role of Taylor

series in the stochastic setting.

Given a diffusion process X(t) that obeys

dX(t) = µ (X (t)) dt+ σ (X (t)) dW (t), (2.3)
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we make a further assumption that µ = µ[X(t)], µ = µ[X(t)] (i.e. they do not depend on time

explicitly).

Applying Ito lemma to any twice differentiable function f would lead to

df [X(t)] =

{
µ
∂

∂X
f [X(t)] +

1

2
σ2[X(t)]

∂2

∂X2
f [X(t)]

}
dt+ σ[X(t)]

∂

∂X
f [X(t)]dW (t). (2.4)

To simplify the expression, we define the following two operators:

L0 ≡ µ
∂

∂X
+

1

2
σ2[X]

∂2

∂X2
and L1 ≡ σ[X]

∂

∂X
.

Hence Equation 2.4 can be notation-wise simplified to

df [X(t)] = L0f [X(t)]dt+ L1f [X(t)]dW (t). (2.5)

An equivalent expression in integral form gives

f [X(t)] = f [X (t0)] +

∫ t

t0

L0f [X(s)]ds+

∫ t

t0

L1f [X(s)]dW (s). (2.6)

Since Ito lemma holds for any twice differentialble function f , if we specify our choice of

function f(x) to be f(x) = x, Equation 2.6 gives

X(t) = X (t0) +

∫ t

t0

µ[X(s)]ds+

∫ t

t0

σ[X(s)]dW (s). (2.7)

Similarly, by choosing f(x) = µ(x), and f(x) = σ(x), and apply Ito lemma, Equation 2.6

gives

µ[X(t)] = µ [X (t0)] +

∫ t

t0

L0µ[X(s)]ds+

∫ t

t0

L1µ[X(s)]dW (s), (2.8)

and

σ[X(t)] = σ [X (t0)] +

∫ t

t0

L0σ[X(s)]ds+

∫ t

t0

L1σ[X(s)]dW (s). (2.9)
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Substituting Equation 2.8 and Equation 2.9 into Equation 2.7 leads to

X(t) =X (t0) +

∫ t

t0

{
µ [X (t0)] +

∫ s1

t0

L0µ [X (s2)] ds2 +

∫ s1

t0

L1µ [X (s2)] dW (s2)

}
ds1

+

∫ t

t0

{
σ [X (t0)] +

∫ s1

t0

L0σ [X (s2)] ds2 +

∫ s1

t0

L1σ [X (s2)] dW (s2)

}
dW (s1).

(2.10)

Note that, in the above equation, µ[X(t0)] and σ(t0)] are inside integrand, however both re-

mains constant in time. Therefore, we separate the two terms out from the remaining terms, which

leads to

X(t) = X (t0) + µ [X (t0)]

∫ t

t0

ds1 + σ [X (t0)]

∫ t

t0

dW (s1) +R, (2.11)

with reminder term R being

R ≡
∫ t

t0

∫ s1

t0

L0µ [X (s2)] ds2ds1 +

∫ t

t0

∫ s1

t0

L1µ [X (s2)] dW (s2) ds1

+

∫ t

t0

∫ s1

t0

L0σ [X (s2)] ds2dW (s1) +

∫ t

t0

∫ s1

t0

L1σ [X (s2)] dW (s2) dW (s1) .

(2.12)

Ito-Taylor expansion with higher order terms

Higher order accuracy could be achieved If one uses substitution repeatedly to obtain constant

integrands in higher order terms. To better illustrate how substitution works, we continue working

on the remainder term R Equation 2.12. In particular, the very last term in R, namely

∫ t

t0

∫ s1

t0

L1σ [X (s2)] dW (s2) dW (s1) (2.13)

is of the lowest order in ∆t in R. This is a simple rule according to the box calculus:

dt · dt = 0, dt · dWt = 0, and dWt · dWt = dt.

19



Applying Ito’s lemma to f(x) = L1b(x) gives

L1σ [X (s2)] = L1σ [X (t0)] +

∫ s2

t0

L0L1σ [X (s3)] ds3 +

∫ s2

t0

L1σ [X (s3)] dW (s3) . (2.14)

Substituting Equation 2.14 to Equation 2.13 leads to

∫ t

t0

∫ s1

t0

L1σ [X (s2)] dW (s2) dW (s1)

=

∫ t

t0

∫ s1

t0

{
L1σ [X (t0)] +

∫ s2

t0

L0L1σ [X (s3)] ds3

+

∫ s2

t0

L1σ [X (s3)] dW (s3)

}
dW (s2) dW (s1) .

(2.15)

Clearly L1σ[X(t0)] is the constant in time, hence we separate it out from the remaining terms,

which in turns leads to ∫ t

t0

∫ s1

t0

L1σ [X (t0)] dW (s2) dW (s1) . (2.16)

Note that

L1σ = σσ′,

therefore Equation 2.16 becomes

∫ t

t0

∫ s1

t0

L1σ [X (t0)] dW (s2) dW (s1) = σ [X (t0)]σ
′ [X (t0)]

∫ t

t0

∫ s1

t0

dW (s2) dW (s1) .

Consequently, Equation 2.11 becomes

X(t) =X (t0) + µ [X (t0)]

∫ t

t0

ds1 + σ [X (t0)]

∫ t

t0

dW (s1)

+σ [X (t0)]σ
′ [X (t0)]

∫ t

t0

∫ s1

t0

dW (s2) dW (s1) + R̃,

(2.17)

where R̃ being a new remainder.
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By applying Ito’ lemma again, the double Ito’s integral gives

∫ t

t0

∫ s1

t0

dW (s2) dW (s1) =
1

2
[W (t)−W (t0)]

2 − 1

2
(t− t0)

Consequently,

X(t) =X (t0) + µ [X (t0)]

∫ t

t0

ds1 + σ [X (t0)]

∫ t

t0

dW (s1)

+σ [X (t0)]σ
′ [X (t0)]

{
1

2
[W (t)−W (t0)]

2 − 1

2
(t− t0)

}
+ R̃

(2.18)

2.3 Euler–Maruyama method

Euler–Maruyama method is a numerical method for approximating the solution of a stochastic

differential equation (SDE), and not surprisingly, it’s generalizes Euler method in ordinary differ-

ential equation case. Euler-Maruyama method is obtained by truncating Equation 2.18 at the first

order terms (or simply look at Equation 2.11).

Let {Xt, 0 ≤ t ≤ T} be a solution to the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt

with initial deterministic valueXτ0 over a timewindow [0, T ]. The Euler-Maruyama approximation

of Xt is a continuous stochastic process Yn := Yτn satisfying the following iterative relation

Yi+1 = Yi + µ (Yi) (ti+1 − ti) + σ (Yi) (Wi+1 −Wi) , (2.19)

for i = 0, 1, · · · , N − 1 with Y0 = X0 andWi+1 −Wi ∼ N (0,
√
∆).

Below is a simple implementation of Euler-Maruyama method when simulating sample tra-

jectory of cusp SDE
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x[1] = 0.5

for (i in 2:N){

x[i] = x[i-1] + (alpha + beta * x[i-1] - x[i-1]^3) * Dt + s * rnorm(1,0,sqrt(Dt))

}

Listing 2.1: Euler’s method

2.4 Milstein method

By including the second-order term in Equation 2.18, one obtains the Milstein method which

has a higher accuracy of the approximation compared to Euler method.

The Milstein method is in the following form,

Yi+1 =Yi + µ(ti, Yi)(ti+1 − ti) + σ(ti, Yi)(Wi+1 −Wi)

+
1

2
σ(ti, Yi)σx(ti, Yi){(Wi+1 −Wt)

2 − (ti+1 − ti)}.
(2.20)

The Milstein scheme has both weak and strong order of convergence ∆, which is, not sur-

prisingly, superior to the Euler–Maruyama method who has the same weak order of convergence,

∆, but inferior strong order of convergence,
√
∆. However in our case, since the diffusion term is

constant hence does not depend onXt, Milstein method is in fact equivalent to the Euler-Maruyama

method.

2.5 Cusp SDE trajectory simulations

Recall in chapter one we discussed the sign of∆Disc determines the number of roots of a cubic

function, hence equilibra of the cusp dynamics. In this section, we run trajectory simulations for

three different cases, namely ∆Disc < 0, ∆Disc > 0, and ∆Disc = 0. For all the following trajectory

simulations, we fix the diffusion coefficient σ to be 2 and treat it as known instead of unknown

model parameter.
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2.5.1 Three roots

When ∆Disc < 0, the cusp deterministic dynamic system has three equilibira: two stable at-

tracting equilibria divided by one repelling unstable equilibrium and the cusp stationary density

distribution is bimodal.
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Example of potential function V (x): ∆Disc < 0

One sample trajectory using Euler’s method is given by Figure 2.1. In this case, we observe

one appealing feature hence advantage to the stochastic cusp model over more traditionally used

linear mean-reverting models in describing certain systems - that is a regime-switching type of

behavior with regime being two stable equilibra. A similar behavior to this bimodal cusp SDE

could be obtained by using a switching model involving two linear mean-reverting models.

2.5.2 One root

When ∆Disc > 0, the cusp deterministic dynamic system has only one equilibrium which is a

stable one.
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Figure 2.1: Sample trajectory: Cusp SDE with α = 1, β = 3

In this case, the cusp stationary density distribution is unimodal. According to Figure 2.2 which

compares cusp model with the famous Vasicek model,

dXt = θ (µ−Xt) dt+ σdWt, (2.21)

the sample trajectory exhibits stronger mean reversion than the mean-reverting models with Gaus-

sian stationary densities (for example, Vasicek model in this case) due to the drift term contains a

cubic term, which supports the claim by [Ait-Sahalia, 1996].

2.5.3 Two roots

When ∆Disc = 0, the cusp deterministic dynamic system has two equilibrium, one being sta-

ble and the other unstable. The unstable equilibrium corresponds to the double root of the cubic

function.

In this case, the cusp stationary density distribution is also unimodal, and the behavior from

the sample trajectory (Figure 2.3) is very similar to the one-root case (Figure 2.2).

24



−2 −1 0 1 2

0
5

10
15

x

V
(x

)

−2 −1 0 1 2

−
10

−
5

0
5

x
V

'(x
)

Example of potential function V (x): ∆Disc > 0

 

T in days

x

0 10 20 30 40 50 60

−
2

0
2

4

Vasicek
Cusp

Figure 2.2: Sample trajectory: Cusp SDE with α = 3, β = 3
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Figure 2.3: Sample trajectory: Cusp SDE with α = 2, β = 3

26



CHAPTER 3

Bayesian Inference using Markov Chain Monte Carlo

Model parameters of cusp SDE, namely asymmetry parameter α and bifurcation parameter β,

have well-defined geometric and statistical interpretations, and their values further determine the

unique structural behaviors of cusp dynamics. This makes it particularly important that the model

parameter values need to be estimated accurately and properly; therefore when doing statistical

inference onmodel parameters, wewould expect to include not only their most likely values or point

estimations, but also the associated uncertainties, for example confidence interval estimations.

Bayesian inference is a method of statistical inference where Bayes’ theorem is used to update

one’s prior belief on probability of unknown quantity based on observed data. The goal in carrying

through Bayesian inference is to do parameter estimations for cusp model with discretely sampled

data points. This chapter first reviews basis of Bayesian inference, followed by discussing MCMC

as a means of sampling the intractable posterior distribution in our case.

3.1 Bayesian inference

When performing Bayesian inference for an unknownmodel parameter, one usually starts with

some prior belief about it. As data comes in, one could compute and use the corresponding posterior

distribution to draw conclusion about it. It is a conceptually straightforward application of Bayes’s

theorem:

P (θ|x) = p(θ)p(x|θ)
p(x)

, (3.1)

where p(θ) and P (θ|x) are called the prior and posterior distribution respectively.

Bayesian inference naturally associates unknown model parameters to some probability dis-

tributions and explores the entire distribution region rather than searching for optimal of a given
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function such as likelihood function. Consequently, the uncertainty over the range of model pa-

rameter values could be estimated naturally and directly.

3.1.1 Prior belief

Bayesian inference offers flexibility by incorporating prior belief into model inference. For

example, if an expert (subjectively but reasonably) believes that some parameters might be more

likely than others, that knowledge from the expert can be elicited and used as prior information in

Bayesian inference. The combination of prior knowledge with likelihood of the observation will

result in the posterior distribution. For other cases where little prior information is available, a flat

prior, possibly improper, or other non-informative priors such as Jeffrey’s prior would be a more

proper choice to reflect that (objective) belief.

3.1.2 Connections between MLE and MAP

In statistical inference, from Frequentists’ viewpoint, optimal model parameters are usually

those which maximize the likelihood of the observations. Optimality is usually achieved by apply-

ing various hill-climbing type of optimization methods. The optimization result is therefore point

estimate of parameter value; one could also construct confidence intervals utilizing the asymptoti-

cally Gaussian property of MLE.

In particular, Frequentists would seek for a vector of parameters, θ, that

θMLE = argmax
θ

p(x|θ),

or equivalently the log likelihood function

θMLE = argmax
θ

log p(x|θ). (3.2)

In Bayesian inference, a common choice for point estimation is the Maximum A Posteriori, or

MAP. As the name suggests, the opimality is associated with posterior distribution, instead of the

28



likelihood function:

θMAP = argmax
θ

p(θ|x)

= argmax
θ

p(x|θ)p(θ)
p(x)

= argmax
θ

p(x|θ)p(θ),

(3.3)

or similarly the log-likelihood function

θMAP = argmax
θ

log p(x|θ)p(θ). (3.4)

When comparing MLE (Equation 3.2) and MAP (Equation 3.4), the only thing differs is the

inclusion of prior p(θ) in MAP. It’s not so surprising to see MLE is equivalent to MAP if one

chooses to use the flat prior, perhaps the simplest prior. To better illustrate this,

θMAP = argmax
θ

log p (x|θ) p(θ)

= argmax
θ

log p (x|θ)× constant

= argmax
θ

log p (x|θ)

= θMLE.

(3.5)

3.1.3 Bayesian data augmentation

As discussed earlier, there’s a discrepancy between the continuous underlying model assump-

tion and the discretely sampled data points in reality. The discrepancy is even more magnified

when the observed data points are considerably sparse.

One approach to remedy the discrepancy is via data augmentation. Bayesian inference natu-

rally supports this approach by treating any missing/unobserved data as additional parameters and

to estimate them along with the unknown model parameters in the posterior [Gelman et al., 2013].

More detailed illustration and simulation study is given in chapter 6.
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3.1.4 Motivation of MCMC in Bayesian inference

In Bayesian inference, once prior knowledge is incorporated into the statistical model or the

likelihood function, one expects to perform Bayesian analysis based on the posterior distribution.

Unfortunately, posterior distributions do not have explicit analytic forms in most cases. One way to

resolve this is to utilize prior distribution that is conjugate with respect to the underlying statistical

model. In this conjugate case, posterior distribution p(θ|x) is in the same probability distribution

family as the prior distribution p(θ) so that one could easily obtain posterior distribution in analytic

form. However this approach often fails when the specified prior is not conjugate.

Since analytic posterior distribution is difficult to obtain, a different approach would to obtain

posterior distribution empirically. In particular, one would aim for taking a collection of samples

that are draw from the posterior distribution, and we hope this collection of samples could be used

to represent the true but intractable posterior distribution.

Vanilla Monte Carlo would not work in this case, since it still requires samples to be drawn

from a target distribution (posterior distribution in this case) which as analytic form, which one

does not have.

Markov Chain Monte Carlo (MCMC) provides an alternative route to the vanilla Monte Carlo.

MCMC, as its name suggests, utilize a knowingly constructed Markov chain whose equilibrium

distribution is the target distribution. In Bayesian inference, the target distribution is usually the

posterior distribution. To better explain, let’s assume one would like to draw samples from a target

distribution p(θ|x) with a prior distribution p(θ). According to Bayes’ theorem

p(θ|x) = p(θ)p(x|θ)∫
p(η)p(x|η)dη

, (3.6)

the denominator usually requires high dimensional integration hence analytically intractable.

Instead of draw i.i.d samples from p(θ|x) directly, which is exactly what vanilla Monte Carlo

does, MCMC aims for construction of a large collection of θ values, so that the empirical distribu-
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tion

{θ(1), · · · , θ(S)}

approximates p(θ|x).

In this section we introduce two MCMC methods, namely the Metropolis-Hasting algorithm

and Hamiltonian Monte Carlo. Since there’s really a huge literature on MCMC and HMC, we de-

cide to take the practitioner’s approach focusing on their implementations rather than the theoretical

justification. This chapter greatly benefits from Brooks et al. [2011].

3.2 Metropolis-Hasting

That being said, MCMC involves construction of aMarkov chain whose stationary distribution

is the target distribution. To better illustrate, let’s assume there already exists a collection of sam-

ples {θ(1), · · · , θ(s)} where θ(s) being the latest draw. Now we would like to expand the existing

collection by adding some new value θ(s+1) to it.

3.2.1 Construction of a Markov chain

Start with a proposal value θ∗, which often close to the latest draw θ(s). The question is whether

the proposed value θ∗ should be included into the existing collection or not. Intuitively, for any two

different values θa and θb, one should expect

#
{
θ(s) ’s in the collection = θa

}
# {θ(s) ’s in the collection = θb}

≈ p (θa|y)
p (θb|y)

(3.7)

in the collection [Hoff, 2009].

Our answer to the question should be positive, if p(θ∗|y) > p(θ(s)|y). This is because θ(s)

is already in the working collection and according to the (3.7), more θ∗’s are expected in the set

than θ(s)’s. Therefore, θ∗ is expected to be accepted as well. Conversely, if p(θ∗|y) < p(θ(s)|y),

including θ∗ or not will be determined by the ratio of p(θ∗|y) to p(θ(s)|y) that represents their

relative frequencies. The ratio comparison could bemadewithout even computing p(θ|y) explicitly,
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because

r =
p(θ∗|y)
p(θ(s)|y)

=
p(y|θ∗)p(θ∗)

p(y)

p(y)

p(y|θ(s))p(θ(s))
=

p(y|θ∗)p(θ∗)
p(y|θ(s))p(θ(s))

(3.8)

One great advantage over the vanilla Monte Carlo is that the target distribution only needs to be

proportional to the posterior distribution. This means evaluation the intractable marginal likelihood

is not required, which is just a normalizing constant in parameters of interest.

3.2.2 Algorithm

The Metropolis algorithm produces a value θ(s+1) as follows:

1 Start with a collection of samples {θ(1), · · · , θ(s)} where θ(s) being the latest draw;
2 Generate a proposal parameter value θ∗ according to some proposal function J(θ|θ(s)) -

usually random-walk type;
3 Compute the acceptance ratio:

r =
p(y|θ∗)p (θ∗)
p(y|θ(s))p(θ(s))

4 Accept θ∗ with following acceptance-rejection criterion:

θ(s+1) =

{
θ∗ with probability min(r, 1)
θ(s) with probability 1−min(r, 1)

Algorithm 1:Metropolis- Hasting algorithm

After some burn-in time, the Markov chain with accepted draws is expected to converge to the

equilibrium distribution, regardless where the chain started initially. Samples after the burn-in time

would be a good empirical approximation to the true target distribution. More detailed assessment

on convergence of the chain is given in chapter 5.

3.3 Hamiltonian Monte Carlo

In practice, one often encounters the problem of large autocorrelation hence slow mixing when

applying the (random-walk) Matropolis-Hasting algorithms to sample intractable posterior distri-

bution. Inarguably, the inefficient proposal J(·|·) is responsible for making Markov chain conver-
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gence to the target equilibrium distribution π(x) slow. To reduce the correlation between successive

sampled states, Hamiltonian Monte Carlo has been developed under the framework of MCMC and

it differs from the Metropolis–Hastings algorithm by adopting a Hamiltonian dynamics between

states to achieve the goal of reducing autocorrelation. By utilizing the gradient information rather

than just the probability distribution alone, Hamiltonian Monte Carlo is able to explore the target

distribution much more efficiently compared with metropolis-Hasting, resulting in faster conver-

gence [Neal et al., 2011]. This section on Hamiltonian Monte Carlo benefited greatly from Neal

et al. [2011]and Betancourt [2017].

3.3.1 Hamiltonian dynamics

For an object inside a dynamic system, the object’s state or motion is governed by both location

x ∈ Rn and momentum p ∈ Rn. There is an associated potential energy, commonly denoted by

U(x) for each location the object takes; and similarly there’s an associated kinetic energy commonly

denoted by K(p) for each momentum the object posses. We say the object obeys Hamiltonian

dynamics if the total energy is conserved; in this case, the total energy is called the Hamiltonian,

denoted byH(x, p), which is defined as the sum of potential and kinetic energies for a given object:

H(x, p) = U(x) +K(p) (3.9)

Hamiltonian dynamics expresses how kinetic energy and potential energy are converted to one

or the other as an object inside a system moves in time, and it is mathamatically described by the

Hamiltonian equations:

∂xi
∂t

=
∂H

∂pi
∂pi
∂t

= −∂H
∂xi

(3.10)

for given expressions for ∂H
∂xi

and ∂H
∂pi

.
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Once Equation 3.10 as well as an initial position x0 and initial momentum p0 at time t0 are

given, both the location andmomentum of an object at some future time t = t0+∆ can be computed

by simulating these dynamics for ∆ unit of times.

3.3.2 The Leap Frog Method

The Hamiltonian equations (3.10) describe an object’s motion in time, and the trajectory is

continuous in time. It is necessary to approximate the Hamiltonian equations by discretizing over

time, in order to numerically simulate the trajectory. This can be usually achieved by the Leap Frog

method:

1. Take a half step forward in time δ/2 to update the momentum variable while fixing position

variable at t:

pi(t+ δ/2) = pi(t)− (δ/2)
∂U

∂xi
(t);

2. Take a full step forward in time to update the position variable while fixing momentum vari-

able computed at time t+ δ/2 from previous step:

xi(t+ δ) = xi(t) + δ
∂K

∂pi
(t+ δ/2);

3. Take the remaining half step in time to finish updating the momentum variable while fixing

position variable at time t+ δ:

pi(t+ δ) = pi(t+ δ/2)− (δ/2)
∂U

∂xi
(t+ δ).

It’s common to run Leap Fog method L steps forward to simulate the Hamiltonian dynamics

over L× δ units of time.
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3.3.3 The target distribution

By developing a Hamiltonian functionH(x, p) , the resulting Hamiltonian dynamics could be

used to efficiently explore the target distribution π(x).

For any energy function E(θ) over a set of variables θ, the corresponding Gibbs’ canonical

distribution can be defined as:

π(θ) =
1

Z
e−E(θ) (3.11)

where Z is the normalizing constant. The Hamiltonian is the sum of potential and kinetic energies:

E(θ) = H(x, p) = U(x) +K(p) (3.12)

The canonical distribution for the Hamiltonian dynamics energy function is defined as

π(x, p) ∝ e−H(x,p) = e−[U(x)−K(p)] = e−U(x)e−K(p) ∝ π(x)π(p) (3.13)

The fact that the joint distribution for x and p factorizes implies that the canonical distribution

π(x) is independent of the analogous distribution for the momentum π(p). By introducing mo-

mentum as auxiliary variables, the Markov chain path could be facilitated based on Hamiltonian

dynamics; it would not be possible without momentum. Due to the independence of the canonical

distributions for x and p, theoretically any distribution for sampling momentum variables could be

used. A zero-mean Normal distribution with unit variance is a often good choice for the momentum

variables.

K(p) ∝ pTp

2
(3.14)

3.3.4 Algorithm

Hamiltonian dynamics is mainly used as an efficient proposal function for a Markov Chain

aiming to improve the efficiency when exploring the target probability density π(x) defined by

U(x), compared with a (random-walk) Metropolis-Hasting proposal probability distribution.
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By achieving so, HMC consists of the two alternating steps: one is a stochastic step that per-

forms random transition between energy levels, the other is a deterministic step that performs

leapfrog method along a given energy level followed by determining whether or not accept the

proposal based on the Metropolis acceptance-rejection criterion.

Let (xt−1, pt−1) be the latest draw in the chain. To illustrate how the two alternative steps work,

let’s suppose we are at an initial state (x0, p0) = (xt−1, pt−1), numerical simulation using the Leap

Frog methods is performed according to Hamiltonian dynamics for a short time, which leads to a

new state denoted by (x∗, p∗) at the end of the simulation, and further used as the proposal. Due

to inevitable discretization error, Metropolis acceptance criterion is used again here to determine

whether or not the proposed state is accepted. Specifically if the probability of the proposed state

after Hamiltonian dynamics

π(x∗, p∗) ∝ e−[U(x∗)+K(p∗)] (3.15)

is greater than probability of the state prior to the Hamiltonian dynamics

π(x0, p0) ∝ e−[U(x(t−1)),K(p(t−1))] (3.16)

then the proposed state is accepted; otherwise, the proposed state is accepted randomly with a

computed ratio.

For a given set of initial conditions in x and p, the Hamiltonian dynamics actually follows

contours of constant energy in phase space. Randomly perturb to the dynamics is needed to explore
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all of π(x), which can be achieved by simply drawing a randommomentum from the corresponding

canonical distribution π(p) before running the dynamics prior to each sampling iteration.

1 Start with a collection of samples {x(1), · · · , x(s)} where x(s) being the latest draw;

2 Let x0 be x(s);

3 Sample a new initial momentum variable p0 from pi(p);

4 Run Leap Frog algorithm starting at [x0, p0] for L steps with step-size δ to obtain

proposed states x∗ and p∗ ;

5 Compute the acceptance ratio:

r = exp (−U (x∗) + U (x0)−K (p∗) +K (p0))

6 Accept θ∗ := (α∗, β∗) with following acceptance-rejection criterion:

θ(s+1) =


θ∗ with probability min(r, 1)

θ(s) with probability 1−min(r, 1)

Algorithm 2: Hamiltonian Monte Carlo
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CHAPTER 4

Transition Density Approximations

In previous chapter, we reviewed MCMC as a means to sample intractable posterior distribu-

tion in Bayesian inference, and we also showed posterior distribution requires an explicit likelihood

function. However the transition density of cusp dynamics, hence the likelihood function is ana-

lytically intractable, approximation to the transition density is therefore needed. In this chapter, we

review two different approaches to approximate the transition density of cusp SDE.

4.1 Motivation

Consider a diffusion process Xt governed by

dXt = µ (Xt; θ) dt+ σ (Xt; θ) dWt, (4.1)

where µ and σ are known functions that both might depend on a vector of model parameters θ.

Let pX(∆, x|x0; θ) be the conditional density of Xt+∆ = x given Xt = x0 induced by the

model Equation 4.4, the transition probability density. Further assume data points are observed

at discrete time points ti = i∆obs with i = 0, · · · , n, and observed measurements being x =

(x0, · · · , xn). Due to Markovian property, the log-likelihood function has the simple form

ℓn(θ) ≡
n∑

i=1

ln
{
pX
(
∆, Xi∆|X(i−1)∆; θ

)}
(4.2)
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4.2 Closed-form approximation using Hermite polynomials

Ait-Sahalia [2002] develops two approaches to construct a sequence of closed-form expansions

for the log-likelihood function that approximate the intractable (log) transition density of a diffusion

process. One is based on finding the coefficients of a Hermite expansion for the transition density;

the other takes the form of the Hermite series first, and computes its coefficients by solving the

Fokker-Planck equation which characterize the transition function. The two approaches give the

same final expression [Ait-Sahalia et al., 2008].

4.2.1 Hermite polynomials

The modified Hermite polynomial with degree n is denoted by

Hn(z) = ez
2/2 d

n

dzn

(
e−z2/2

)
, n ≥ 0. (4.3)

If we let ϕ(z) be the pdf of the standard normal distribution, Hn has the property

∫ ∞

−∞
ϕ(z)Hn(z)Hm(z)dz =


0 n ̸= m

n! n = m

4.2.2 Derivation

Consider a continuous-time parametric diffusion

dXt = µ (Xt; θ) dt+ σ (Xt; θ) dWt, (4.4)

and the goal is to find a closed-from approximation to the transition density pX(∆, x|x0; θ).
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First transformation

First, applying the Lamperti transformation γ(·) to Xt gives us a transformed new process Yt

such that

Yt =

∫ Xt du

σ(u; θ)
. (4.5)

By Ito’s lemma, the transformed process Yt satisfies the following SDE

dYt = µ̂(Yt; θ)dt+ dWt, (4.6)

with drift term being

µ̂(Yt; θ) =
µ(X; θ)

σ(Xt; θ)
− 1

2

∂σ(Xt; θ)

∂x
,

and unit diffusion term.

Second transformation

Let Yt be the value of Y corresponding toXt, and we further transform Yt by normalizing it in

Z =
Y − Yt√

∆
. (4.7)

Intuitively, the transition density of p(Zt+∆|Zt = zt) is well, or at least better approximated

by Gaussian with mean µ̂ (Yk; θ)
√
∆ and unit variance. Hence, it suggests using Hermite series

expansion to approximate the transition density f(z, t)

f(z, t) = ϕ(z)
∞∑
n=0

ηn(z, t)Hn(z), (4.8)

where ϕ(z) is the probability density function of standard normal distribution.
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Hermite series expansion

To approximate the transition density, Ait-Sahali proposed to take the form of the Hermite

series and determines its coefficients by solving the Fokker-Planck equation which characterize

the transition function. In particular, first rewrite Equation 4.8 as

f(y, t) =
1√
2πt

exp

(
−(y − Yk)

2

2t

)
× ψ(y, t) exp

(∫ y

Yk

µ̂(u)du

)
. (4.9)

The right hand side of equation Equation 4.9 is the product of ϕ(z) expressed in terms of Y

and two remaining terms that plays the role of the infinite Hermite sum in Equation 4.8.

The goal is to express ψ(y, t) in terms of a convergent power series in t, where the coefficients

of the series are expected to capture the contribution made by the entire family of Hermite poly-

nomials at each order in t. In particular a desired ψ is in the form of a power series expansion in

t,

ψ(y, t) =
∞∑
n=0

cn(y)t
n

n!
, (4.10)

and coefficients are to be determined.

To achieve so, the unit diffusion process Yt is known to satisfy the Fokker-Planck equation,

which gives
∂f

∂t
= −µ̂∂f

∂y
− f

∂µ̂

∂y
+

1

2

∂2f

∂y2
. (4.11)

Solution of equation Equation 4.11 may be represented by expression Equation 4.9 provided

ψ(y, t) satisfies

∂ψ

∂t
=

1

2

∂2ψ

∂y2
− y − Yk

t

∂ψ

∂y
+ λψ, λ = −1

2

(
µ̂2 +

∂µ̂

∂y

)
. (4.12)
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Coefficient functions c0(y), c1(y), · · · can be determined by matching the coefficients of pow-

ers of t. In particular, by substituting Equation 4.11 into Equation 4.12 leads to

∞∑
n=1

cn(y)t
n−1

(n− 1)!
=

1

2

∞∑
n=0

d2cn(y)

dy2
tn

n!
− y − Yk

t

∞∑
n=0

dcn(y)

dy

tn

n!
+

∞∑
n=0

λ(y)cn(y)t
n

n!
. (4.13)

If we re-index summation and re-arrange some of the terms in Equation 4.13, we obtain

∞∑
n=0

tn

n!

[
cn+1(y) +

(y − Yk)

n+ 1

dcn+1(y)

dy
−
(
1

2

d2cn(y)

dy2
+ λ(y)cn(y)

)]
= −y − Yk

t

dc0(y)

dy
,

(4.14)

from which it follows immediately that

dc0(y)

dy
= 0 (4.15)

cn+1(y) +
(y − Yk)

(n+ 1)

dcn+1(y)

dy
=

1

2

d2cn(y)

dy2
+ λ(y)cn(y). (4.16)

The first condition (equation 4.15) implies that c0(y) is a constant in y; furthermore, this con-

stant function must be c0(y) = 1 in order to maintain the correctness of short time asymptotic

expression for the transition density.

The condition that ψ(y, t) being finite at y = Yk for all t > 0 requires the solution of equation

4.16 to be

cn+1(y) =
n+ 1

(y − Yk)
n+1

∫ y

Yk

(u− Yk)
n

(
1

2

d2cn(u)

du2
+ λ(u)cn(u)

)
du, n ≥ 0 (4.17)

More on the recursive formula

By adapting the compact notation given in Ait-Sahalia et al. [2008], the approximation to the

log-transition density for Yt up to orderK has the form:

ln p(K)
Y (y|y0) = −1

2
ln(2π∆)− 1

2
ln
(
σ2(x)

)
+
C

(−1)
Y (y|y0)

∆
+

K∑
k=0

C
(k)
Y (y|y0)

∆k

k!
. (4.18)
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The closed-form expansion can be obtained by the following recursive relations:

C
(−1)
Y (y|y0) = −1

2
(y − y0)

2

C
(0)
Y (y|y0) = (y − y0)

∫ 1

0

µY (y0 + u (y − y0)) du.

(4.19)

For k ≥ 1,

C
(k)
Y (y|y0) = k

∫ 1

0

G
(k)
Y (y0 + u (y − y0) |y0)uk−1du. (4.20)

And the functions G(k)
Y are given by

G
(1)
Y (y|y0) = −∂µY (y)

∂y
− µY (y)

∂C
(0)
Y (y|y0)
∂y

+
1

2

∂2C
(0)
Y (y|y0)
∂y2

+
1

2

(
∂C

(0)
Y (y|y0)
∂y

)2

. (4.21)

For k ≥ 2

G
(k)
Y (y|y0) =− µY (y)

∂C
(k−1)
Y (y|y0)
∂y

+
1

2

∂2C
(k−1)
Y (y|y0)
∂y2

+
1

2

k−1∑
h=0

 k − 1

h

 ∂C
(h)
Y (y|y0)
∂y

∂C
(k−1−h)
Y (y|y0)

∂y

(4.22)

The desired approximation can be determined recursively. Mathematica or some other sym-

bolic tool packages could be used to obtain the coefficients precisely and without any error.

4.2.3 Asymptotic properties

The log-likelihood function ℓn(θ) is therefore approximated by

ℓ(K)(θ) =
n∑

i=1

ln{p(K)
X

(
∆, Xi∆|X(i−1)∆;θ

)
},

and the approximate maximum likelihood estimator is defined as

θ̂K = argmax
θ
ℓ(K)
n (θ).
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Moreover, it has been proved that ifK tends to infinity [Ait-Sahalia, 1996], [Ait-Sahalia et al.,

2008], then

θ̂K → θ̂MLE.

4.3 Euler approximation

Instead of approximating the transition density directly, a different route to obtain some work-

able likelihood function is to approximate or to discretize the path of the process. The approach is

commonly known as the pseudo-likelihood approximation or locally Gaussian approximation.

To better illustrate the idea behind this approach, we again start with a diffusion process gov-

erned by the general SDE

dXt = µ (Xt; θ) dt+ σ (Xt; θ) dWt. (4.23)

We may assume the coefficients µ and σ of the above SDE remain constant over time intervals

[t, t+∆), then Euler scheme would give the discretization

Xt+∆ −Xt = µ (Xt; θ)∆ + σ (Xt; θ) (Wt+∆ −Wt) , (4.24)

with Xt+∆ −Xt being Gaussian with mean µ (Xt; θ)∆ and standard deviation σ (Xt; θ)
√
∆.

The approximated transition density of the process therefore can be written as

pθ(t, xt|x) =
1√

2πtσ2(x; θ)
exp

{
−1

2

(xt − x− µ(x; θ)t)2

tσ2(x, θ)

}
. (4.25)

Definition 4. We say the drift term of a SDE satisfy the polynomial growth condition. if there exist

L > 0 andm > 0 (independent of θ such that

|µ(x; θ)| ≤ L (1 + |x|m) , θ ∈ Θ.
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By assuming the polynomial growth condition, the log-likelihood of the discretized process is

ℓn(θ) = −1

2

{
n∑

i=1

(Xi −Xi−1 − b (Xi−1, θ)∆)2

σ2∆
+ n log

(
2πσ2∆

)}
. (4.26)

Equation 4.26 is commonly referred as the Euler approximation. This approximation often

works well when discretization ∆ is small; however in other case that ∆ being not small enough,

bias maybe introduced and considerable [Iacus, 2009].

Florens-Zmirou [1989] claimed that pseudo-likelihood estimators based methods including

Euler approximation are inconsistent for fixed∆. In practice however, this inconsistency does not

discourage researchers from using it, and in fact this (locally Gaussian approximation) is still a

very convenient choice due to its simplicity and computational efficient, especially for situations

where the ∆ is small hence small bias [Durham and Gallant, 2002]. For others, this estimator is

often used as initial values for other more complete parameter estimation methods even when the

bias introduced by the discretization cannot be disregarded [Jimenez et al., 2005].

4.4 Cusp transition density approximations

Given discretely sampled observation {x0, x1, · · · , xn}, the likelihood function is in the form

Ln(θ) =
n∏

i=1

pθ (∆, Xi|Xi−1) pθ (X0) , (4.27)

with log-likelihood function being

ℓn(θ) = logLn(θ) =
n∑

i=1

log pθ (∆, Xi|Xi−1) + log (pθ (X0))

=
n∑

i=1

li(θ) + log (pθ (X0)) .

(4.28)

In order for us to perform Bayesian inference (or MLE), we need an explicit or closed-form

transition density that is workable. In this section, we introduced two different approaches to obtain
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some workable likelihood function, namely the closed-form approximation by Hermite polynomi-

als by Ait-Sahalia (denoted by HPE) and the locally Gaussian approximation (denoted by Euler).

In this section, we compare two by examining their plots with different discretization step-size ∆.

The explicit approximation using Hermite polynomials by Ait-Sahalia is given in ??.

We fix parameter values to be α = 1 and β = 3, hence ∆disc < 0. In this case, the cusp

stationary density is known to be bimodal.

Euler differs slightly to HPE when∆t is small, suggested by Figure 4.1 and Figure 4.2. How-

ever, a considerable difference appears when ∆t is large, for example shown in Figure 4.3. More

importantly and perhaps more interestingly, with large ∆t, approximation by FHE is actually able

to capture and retain its distinctive bimodality feature associated to cusp stationary distribution

model.
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Figure 4.1: Comparison of Euler and HPE: α = 1, β = 3, x0 = 0 and∆ = 0.01
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Figure 4.2: Comparison of Euler and HPE: α = 1, β = 3, x0 = 0 and∆ = 0.10

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty

HPE 2
Euler

Figure 4.3: Comparison of Euler and HPE: α = 1, β = 3, x0 = 0 and∆ = 0.50
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CHAPTER 5

MCMC Convergence Diagnostics

In chapter 3, we reviewed the basics on Bayesian inference and MCMC as means to sample

intractable posterior distribution. In particular, MCMC is constructed in a way such that the desired

or target distribution is its equilibrium distribution. Regardless of its actual result, we first must

make sure the samples drawn by a MCMC indeed represent the actual posterior distributions. In

this chapter, we review MCMC convergence diagnostics from a practitioner’s perspective.

5.1 Motivation

That being discussed, samples obtained by running an MCMC is expected to be a good repre-

sentation of the true but intractable target distribution, which further requires the obtain samples to

be coming from its equilibrium distribution.

MCMC simulation often starts at some arbitrary point in the parameter space. Inevitably, the

arbitrary starting point may not be even close to the actual high probability region of the posterior

distribution, due to the lack of prior information. Consequently, in most cases samples drawn from

the early stage in fact has not enter the stationary phase yet, hence not a good representation of the

target distribution. From a more global-optimization perspective, samples from MCMC chain in

the early stages of the MCMC runs, particularly those with “far” starting point are unlikely to occur

in samples from the true distribution. The early stage of a MCMC are in fact commonly referred

as the “transient” phase, in contrast to those desired ones drawn from “stationary” phase .

If one were able to correctly identify and separate samples from the transient phase with those

coming from stationary phase as desired, we can therefore confidently claim samples that are good

representations of the posterior distribution by discarding the former. However, it is definitely not
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trivial to determine when the transient phase ends in a chain. Furthermore there is no such universal

cut-off value and the answer varies from problem to problem. In the following sections, we review

several commonly used MCMC diagnostic criterion, some of them can be used to help identify the

transient phase, while others help us assess the convergence of MCMC in general.

Preparation

In the next chapter, chapter 6, we are going to perform a series of intensive simulation studies.

In particular wewould like to sample posterior distributions of model parametersα and β given data

points x = {x1, · · · , x1200} assumed to be generated according to cusp SDE. We use Hamiltonian

Monte Carlo to sample the posteriors. We take warm-up or burn-in period to be the first 200 runs,

and we run HMC a total number of 22,000 runs, which makes the size of kept-samples being 2,000.

By using various MCMC convergence diagnostics, we would like to show this kept ones are

indeed drawing from the desired equilibrium distribution hence a good representation of the true

posterior distributions.

5.2 Trace plot

Trace plot is perhaps always a must in a MCMC diagnostic. In particular, trace plots are used

to assess the quality of mixing of a chain by straightforward visualization. Beside, running multiple

chains from different starting points, and then assess their trace plots to see whether they converge

to the sample plot are even more helpful in practice.

In our example, the two chains have been run for each parameter. We do trace plot for the kept

ones. Trace plots of both parameters clearly show the “caterpillar-like” behavior such as shown in

Figure 5.1, it is in fact a good indication that theMCMC is efficiently sampling from its equilibrium

distribution.
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Figure 5.1: MCMC diagnostics: Trace plot

5.3 Autocorrelation plot

Another “must” diagnostic for MCMC convergence is by the autocorrelation plot. Here auto-

correlation refers to the correlation between the samples drawn by MCMC. In particular, a lag-k

autocorrelation is defined to be the correlation between every sample in the chain and the sample

k steps before.

A converging chain is more likely to be seen accompanied by a decreasing autocorrelation

when k is getting larger. Samples with smaller autocorrelation can be regarded as being more

independent. On the other hand, a high degree of correlation is often accompanied by high auto-

correlation values, especially with large k values, which further suggest slow or inefficient mixing.

Some common explanation includes the chain being stuck in a local maximum therefore needs

more MCMC runs to leave the local maximum in order to continue searching other parts of the

parameter space.

Our autocorrelation plot Figure 5.2 shows an efficient hence desired mixing, which in turn

supports the efficiency of Hamiltonian Monte Carlo.
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Figure 5.2: MCMC diagnostics: Autocorrelaiton plot

5.4 Effective sample size

Both trace plots and autocorrelation plots are visualizaiton techniques used to assess the con-

vergence of MCMC chain. By purely look at plots, it’s very straightforward and quick to spot if

there’s anything undesired happened.

Perhaps a better and more accurate estimate for identifying transient phase is by the effective

sample size (ESS). As its name suggests, effective sample size measures the number of independent

samples or information contained in an autocorrelated samples.

To see how it works, let’s say we have a chain obtained by running an MCMC that includes

all the draws starting from the very first starting point. Intuitively, samples in transient phase are

often not very informative (due to the arbitrarily selected starting point that potentially far from the

high probability region). Consequently,

1. if the burn-in period (up to the last sample of the transient phase) were under-estimated, it

would reduce ESS because non-informative or noise samples are mixed with those desired

ones, hence reduce the overall ESS size. By keeping removing those sample at transient

phase, ESS size is expected to raise.
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2. On the other hand, if the burn-in period is over-estimated instead, desired informative sam-

ples are in fact being thrown away. This would again reduce the ESS because informative

samples are being discarded.

Therefore, the optimal estimate of the (end-of) transient phase would be the one that ESS is

maximized.

From Figure 5.3, it clearly shows the ESS plots for both parameters are monotone decreasing,

in this case, it indicates no transient phase in the chain; or in other words, the plots suggests the

chain is drawn from its stationary phase.
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Figure 5.3: MCMC diagnostics: Effective sample size plot

5.5 Geweke

Geweke et al. [1991] contributed to the MCMC diagnostic community by proposing a single

statistic test for identifying the transient phase.

The basic idea behind this test is that, if samples obtained by running MCMC were indeed

drawn from desired equilibrium distribution, and if we split the chain into three parts, then mean
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of the first part are expected to be equal to the mean of the last part because the whole chain of

samples are assumed to be drawn from the same equilibrium distribution.

Theory

To better illustrate how this works, let’s assume we now have a long enough chain whose trace

plot already suggests convergence to the target distribution. Since the convergence is supported by

the trace plots, we simply assume the second half of the chain has converged to the equilibrium

distribution. We are now interested in testing if the first 10% (can be 20%, or 30% etc., and it

depends on the hypothesis) of the chain we constructed could be be identified as transient phase.

To do so, the diagnostic mimics the simple two�sample test of means. Two-sample X1 and

X2 T test of equality of mean with unequal variance is computed as

T =
X1 −X2√

s21
n
+

s22
m

. (5.1)

We then perform hypothesis test with null hypothesis being the mean of the first 10% equals

to the mean of the last 50%. If the result of hypothesis is statistically significant, we reject null

hypothesis. It can then be perceived as the first 10% are in transient phase.

Result

We utilize the coda package in R, in particular the function geweke.diag for implementing

Geweke diagnostics. This plot (Figure 5.4) describes Geweke’s Z-scores when successively larger

numbers of iterations are discarded from the beginning of the chain.

The first half of the Markov chain, in our cases the first 1, 000 runs, is divided into number of

segments. Geweke’s Z-score is then repeatedly computed with the first Z-score being calculated

with all iterations in the chain, the second after discarding the first segment, the third after discarding

the first two segments, and so on. We only use the samples in the second half chain to compute the

very last Z-score.
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Figure 5.4: MCMC diagnostics: Geweke plot

5.6 Gelman-Rubin

Gelman and Rubin [Gelman et al., 1992] are twomajor contributors to theMCMC convergence

diagnostic community. They proposed a profoundly useful and practical but also general approach

to assess the convergence of MCMC where multiple parallel chains using different and arbitrary

starting values are used.

The idea behind Gelman-Rubin diagnostics is intuitive and straightforward: convergence (to

the stationary distribution) is often obtained when all different chains have passed their transient

phase and the outputs from different chains are somehow “indistinguishable”.

Theory

The Gelman-Rubin diagnostic is based a comparison of within-chain and between-chain vari-

ances that in spirit similar to a analysis of variance (ANOVA) in statistical analysis.

To better illustrate the idea, let {xi,1, · · · , xi,N} be the ith Markov chain sampled, and suppose

there are in totalM independent chains sampled. Let xi. be the mean from the ith chain, and x.. be

the overall mean. LetW be the empirical mean of the variance of with-in chain withM independent
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chains in total, that is

W =
1

M

M∑
m=1

s2m, (5.2)

where

s2m =
1

N − 1

N∑
t=1

(
Xmt −Xm·

)2
, (5.3)

where s2m measures the with-in chain variance for themth chain.

Let B be the variance between chain, that is

B =
N

M − 1

M∑
m=1

(
Xm· −X..

)2
. (5.4)

Now define a new statistics V̂ that combine both the with-in chain and between-chain vari-

ances:

V̂ =

(
N − 1

N

)
W +

(
M + 1

MN

)
B, (5.5)

the desired statistic proposed by Gelman-Rubin,
√
R̂, is computed as

R̂ =
V̂

W
· df + 3

df + 1
, (5.6)

where df = 2V̂ /Var(V̂ ) .

In particular, R̂ near or below 1 suggest convergence.

5.7 Conclusion

Diagnostics cannot guarantee the chain has converged, and in fact the purpose of diagnostics

are to spot anything undesired (i.e. not convergent) [Hoff, 2009]. However, results from various

MCMC diagnostics run in this section are all supporting the convergence of the kept chain.
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Figure 5.5: MCMC diagnostics: Gelman plot for α
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Figure 5.6: MCMC diagnostics: Gelman plot for β
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CHAPTER 6

Inference from Complete Observations

The research problem of this thesis is to develop an accurate and computationally feasible

parameter estimation algorithm based on Bayesian principle that can be implemented in absence

of an exact transition distribution for cusp model using discretely sampled observations. Cloesd-

form approximation using Hermite polynomials and Euler approximation are proposed to tackle

the problem of intractable transition density, while Hamiltonian Monte Carlo is used to sample

the posterior distribution. In this chapter, we carry out a series of simulation studies to verify the

developed parameter estimation algorithm indeedworks as desired under the complete observations

scenario.

6.1 Model validation criterion

The most commonly used criterion for model validation and/or verification purpose is to gen-

erate simulated data with known model parameter values; the simulated data is then used as input

of the developed parameter estimation algorithm to see whether or not the model can recover these

parameters from the data. For example, one may use the maximum a posteriori (MAP) for point

estimation, and Bayesian credible interval for interval estimation, etc. If the algorithm were not

able to recover the pre-fixed parameters, it would be highly questionable to put the algorithm to

work in analyzing real-world data [Jimenez et al., 2005], [Carpenter et al., 2017].

Procedures

The accuracy of the model is to be examined by a series of simulation studies designed as

follow.
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First and foremost, simulation experiment is designed to test the accuracy of the parameter

estimation algorithm in three different case: they correspond to∆disc < 0,∆disc = 0, and∆disc > 0.

We knowingly choose parameters α, β to be (1, 3), (2, 3) and (3, 3) to represent the three cases

respectively. In all cases, we fix the diffusion coefficient to be constant σ = 2 and treat it as

known instead of unknown model parameter. The primary goal of this section is to do parameter

estimation on cusp model parameters α and β; however, the this can be extended easily to estimate

more parameters when introduced. In the section of empirical study on foreign exchange rate, we

do parameter estimation on generalized cusp SDE that consists 3 more parameters beside α and β.

For each of the three cases, after fixing parameter values, we use Euler’s method with ∆ =

0.1 to perform trajectory simulation for T units of times, where T = {30, 60, 120} so that each

trajectory or replication contains T × 10 time-series data points. We repeat this sample trajectory

generating processes for 10, 000 times, so that eventually we will have 10, 000 replications in total,

with each replication containing a length of T × 10 time series data.

For each replication, we draw samples the posterior distribution p(θ|x1, x2 · · · , xT×10) using

Hamiltonian Monte Carlo. We let burn-in to be 200, and run the chain 2, 200 times in total, which

makes the size of the kept draws 2, 000. The choice of burn-in and total number ofMCMC runswere

tuned and showed satisfying convergence result in chapter 5, hence being used here. In particular,

in previous chapter, we showed the chain(s) have passed the transient phase of the constructed

Markov chain, and therefore are good representation of the stationary hence the desired posterior

distribution for both parameters.

Once the sample is obtained by performing Hamiltonian Monte Carlo, and its convergence is

supported by different MCMC convergence diagnostic criteria, we are confident the kept samples

in the chain are good empirical representation of the posterior distributions, we compute and record

the following statistics for both α and β estimates:

• the mode of the posterior samples, denoted by αMAP and βMAP;

• the standard error, denoted by SE αMAP and SE βMAP;
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• Bayesian 95-percent highest credible interval which is the tightest credible interval based on

empirical posterior distributions;

• Whether or not the 95-percent highest credible interval successfully captured the true param-

eter values.

We repeat the above step for 10, 000 replications. Eventually we can obtain

• Two size 10, 000 vectors that hold all the αMAP and βMAP values, we use them as an empirical

distribution of the estimator αMAP whose size is T × 10;

• a size 10, 000 vector that holds all the SEs;

• a scalar that shows total number of successfully captured replications (out of 10, 000). This

is in fact the proportion of replications or sample trajectories where the (known) model pa-

rameter is captured in the confidence interval. This proportion will be used as an estimate

for the empirical coverage probability for the constructed confidence interval.

The final output is summarized in the form of a table that contains 8 columns as follow

αMAP βMAP

Par. T Mean SE Empirical SE CP Mean SE Empirical SE CP

6.2 Simulation study and result

The simulation study results are shown in Table 6.1. Clearly the results supports the claim

made on the parameter estimation algorithm. In particular, under all cases, mean values αMAP

and βMAP are very close to the pre-selected parameter combinations, and this is a very important

evidence that supports the accuracy of the algorithm. Meanwhile, the 95% CI is able to capture

approximately 95% of the time in the total of 10, 000 replications.
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Effect of T

Beside the accuracy of the algorithm has been verified, some interesting observation are worth

pointing out. For example, naturally one would be interested in how the parameter estimation per-

formance differs or perhaps improves by increasing the number of observations T . The simulation

study can help to answer the question.

Intuitively, increasing the number of observations, hence more information would lead to a

better estimation, in the sense of either reducing bias or variance, or both which is even better. This

intuition is actually supported by the simulation study results. In particular, as first of all, more

observations lead to reduced bias, where the SE is decreasing with an order of
√
n, where n is the

number of observations.

The plots for all three testing cases, namely ∆ < 0,∆ > 0, and ∆ = 0 clearly show that as

more data points being collected, the posterior distributions become tighter and show higher peaks

- which is consistent with our expectation. More data points can be viewed as more information,

and a tighter posterior distribution implies more confident on the parameter estimations.
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Figure 6.1: Complete observations: Empirical αMAP with α = 1, β = 3
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Figure 6.2: Complete observations: Empirical βMAP with α = 1, β = 3

6.3 Empirical example: USD/EUR Exchange Rate

In this section, we use an empirical example to show that cusp SDE performs “better” than the

Vasicek model when both applied to the USD/EUR exchange rate example.

6.3.1 Model identification via AIC

The comparison criterion used here is the Akaike information criterion (AIC). AIC is con-

structed to find the best model embedded in a wider class of models [Iacus, 2009].

The idea behind is that AIC rewards models for high likelihood value while penalizing com-

plexity. In particular, too many parameters makes the model over-specified hence less valuable and

less favorable. So when picking a class of competing models, AIC criterion chooses the optimal

one with minimum AIC criterion. Moreover, the true model is assumed to be among the competing

ones.

In particular, the AIC statistic is defined as

AIC = −2ℓn

(
θ̂(ML)
n

)
+ 2 dim(Θ), (6.1)
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Figure 6.3: Complete observations: Empirical αMAP with α = 2, β = 3

where ideally θ̂(ML)
n will be the true maximum likelihood estimator. However, in most cases in-

cluding our cusp SDE case, there is not analytic likelihood function, hence we use approximated

likelihood instead.

6.3.2 Generalized cusp model

Cusp SDE (Equation 1.8) can be generalized by incorporating two additional parameters,

namely the location parameter λ and scaling parameter r,

dXt = r
(
α + β (Xt − λ)− (Xt − λ)3

)
dt+

√
ϵdWt, (6.2)

which is equivalent to the following expression

dXt =
(
a+ bXt + cX2

t + dX3
t

)
dt+ fdWt. (6.3)

We now consider the famous Vasicek model:

dXt = θ (µ−Xt) dt+ σdWt (6.4)
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Figure 6.4: Complete observations: Empirical βMAP with α = 2, β = 3

as a competing model for the given empirical data.

6.3.3 USD/EUR exchange rate

We first define a re-scaling function that maps the actual empirical data to [−2, 2], this can be

achieved by following piece of R code:

ReScaling <- function(x){

4 * ((x-min(x))/(max(x)-min(x)) - 0.5)

}

Listing 6.1: User-defined function

We now apply the re-scaling function to the empirical data, and perform parameter estimation

respectively by letting ∆obs = 0.1. Maximum likelihood parameter estimations hence AIC under

Vasicek (Equation 6.4) can be computed in R:
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Figure 6.5: Complete observations: Empirical αMAP with α = 3, β = 3

## Maximum likelihood estimation

##

## Call:

## mle(minuslogl = OU.lik, start = list(theta1 = 1, theta2 = 0.5,

## theta3 = 1), method = "BFGS")

##

## Coefficients:

## Estimate Std. Error

## theta1 0.01344113 0.09090498

## theta2 0.35880719 0.10449990

## theta3 -0.71284861 0.02055915

##

## -2 log L: -110.1343

##

## AIC = -104.1343

##

Listing 6.2: AIC from Vasicek model

The corresponding estimations and AIC under generalized cusp model (Equation 6.3) can be

computed:
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Figure 6.6: Complete observations: Empirical βMAP with α = 3, β = 3

## Maximum likelihood estimation

##

##

## Coefficients:

## Estimate

## a 0.07596694

## b 0.1999819

## c -0.1546965

## d -0.3916001

## f 0.7143831

##

## -2 log L: -121.6358

##

## AIC = -111.6358

##

Listing 6.3: AIC from Cusp model

Therefore, by AIC criterion, the generalized cusp SDE (Equation 6.3) performs better than the

Vasicek model Equation 6.4 for the given data set.
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CHAPTER 7

Inference from Partial Observations

In reality, complete observations may not be available all the time, and we call this the par-

tial observation scenario. As the names suggest, partial observation scenario differs from com-

plete observations scenario by admitting unobserved observations. One apparent difference is that

two consecutive observed data points are often considerable sparse with partial observations. In

cases where time interval ∆obs between to consecutive observation points are large, the discrep-

ancy between continuous model assumption and discretely observed data points should not be ne-

glected, because otherwise it could lead to inconsistent estimators [Melino, 1996], [Jones, 1998],

[Ait-Sahalia et al., 2008]. In this section, we run simulation studies to compare different methods

and aim for improvement under the partial observations scenario.

7.1 Bayesian data augmentation

Under the partial observations scenario, data points are assumed to be observed more sparsely

in time than the complete observations scenario studied in previous chapter. In particular, if we let

∆obs denote the time difference between two consecutive observed data points, this∆obs would be

considerably bigger than ∆obs that corresponds to the complete observation scenario. We further

let n = nobs be the total number of actual observed data points.

One approach to tackle the problem is to formulate this partial observations scenario as missing

value problem and attempt to improve the estimation accuracy with data augmentation. Simply

saying, data augmentation in Bayes treats those unobserved or missing data points between two

consecutive observed as unknown parameters in addition to the unknown model parameters.
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That being said, Bayesian inference treats unknowns as random variables and naturally asso-

ciates them to probability distributions. In notation,

p(θ, x̃|x) ∝ p(θ, x̃, x) ∝ p(θ)p(x̃, x|θ), (7.1)

where x = {x1, · · · , xn} is the actual observed data points, x̃ is latent or unobserved data points.

By doing so, the unknown model parameters θ (α and β in our cusp model) are to be estimated

alongwith the incorporation x̃, potentially a very high dimensional data. On one hand, the complex-

ity hence the computation cost of the problem has increased substantially due to the introduction

of the high dimensional missing values, on the other hand however, the approximated transition

density now has a much smaller discretization ∆obs hence leads to less biased approximation - we

are hoping more “accurate” estimation result could be attained.

A simple example

To better illustrate how data augmentation works, particularly how the latent variable x̃ are

incorporated into the parameter estimation algorithm, we will now look at a concrete example:

xi,0 xi,1 xi,2 xi,3 xi,4

Figure 7.1: Illustration of Bayesian data augmentation

In the above plot, two end points in blue, namely xi,0 and xi,4 denote two consecutive observed

data points. Beside, there are three points in red, namely xi,1, xi,2 , and xi,3. Not surprisingly, the

three in red represent unobserved data points. They are “synthetic” data in the sense that we do not

have the actual observation, either because we were not able to do so, or we just simply did not do

so, but we assume data points have been generated at those time points. By incorporating those

unobserved data points into our model, here’s some immediate consequences:
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1. the dimension of parameters increased substantially. To see this, let’s suppose we have n

observed data points. Now for each time interval between two consecutive observed data

points, we introduced 3 unobserved data points. Consequently, we introduced (n − 1) × 3

new unknowns to be estimated in addition to the 2 unknown model parameters α and β.

2. On the other hand, by introducing the unobserved data points, the time difference two the

combined data points (i.e. both the actual observed and the synthetic data points) is getting

smaller. To see this, without introducing synthetic data, let’s the time time difference between

the measurement of two consecutive data points is ∆obs, then by introducing additional 3

synthetic data points and inserting them into one observation interval, the difference becomes

δ = ∆obs/4. Recall that the approximated transition density papprox.θ (x, t) will have a better

approximation to the true transition density since∆obs has been reduced to δ = ∆obs/4. From

this perspective, we would expect an improvement in the accuracy of the approximation due

to a better approximated transition density hence likelihood function.

General case

Above example showed how data augmentation works by giving a simple illustration with 3

synthetic observation inserted between two consecutive observed data points. Of course the number

of synthetic observation can be generalized tom.

Let {xi,j}mj=1 be m (m is a non-negative integer) unobserved hence synthetic observations

between two consecutive observed data points xi = xi,0 and xi+1 = xi+1,0. Furthermore, let’s

assume i = {1, · · · .n} and let ∆obs be the time difference between two observed data points, and

let δ = ∆obs

m+1
.

Without assuming any synthetic data points between observed data points, the log-likelihood

function given only the observed ones is:

ℓn(θ) ≡
n∑

i=1

ln {px (∆, xi|xi−1; θ)} , (7.2)
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where the log-likelihood function given both observed and synthetic data points is

ℓn(θ; x̃) ≡
n∑

i=1

m∑
j=1

ln {px (δ, xi,j|xi,j−1; θ)} , (7.3)

where δ = ∆
m+1

.

7.2 Closed-form approximation using Hermite polynomials

In chapter 4, we showed in plot that the closed-form approximation using Hermite polynomial

by Ait-Sahali is able to retain and capture the bimodality feature of the transition density for large∆

(Figure 4.3) when∆disc < 0 - the case when cusp stationary distribution is actually bimodal. Thus,

this theoretically promising approach can be used under this sparse-sampling scenario. Along with

the ordinary Euler approximation, we compare the three different approaches, with the other two

being and the Hermite polynomial approximation, and Euler approximation with data augmenta-

tion.

7.3 Simulation study and result

To compare the three proposed methods, we run simulation study in two cases, one is assuming

∆obs = 0.2, and the other assumes ∆obs = 0.4. Furthermore under both cases, we assume data are

generated at 10 data points per unit time interval (i.e. ∆gen = 0.1) and is simulated using Euler’s

method.

In both demonstrated cases (Table 7.1), Euler approximation with data augmentation outper-

forms Euler approximation and approximation using Hermite polynomial, in terms of coverage

probability and bias.

Moreover, if there were a considerable number of manymissing values, which often resulted in

more sparse sampling than “continuous” which it should be (for example the case with 4 observed

data points and 6 unobserved data points in a unit time interval), Neither Hermite polynomial nor

regular Euler would be able to obtain satisfying simulation study results. The simulation-study
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result is not surprising, since as pointed by Melino [1996], Jones [1998], and Ait-Sahalia et al.

[2008], in cases where time interval ∆obs between to consecutive observation points are large, the

discrepancy between continuous model assumption and discretely observed data points should not

be neglected, because otherwise it could lead to inconsistent estimators. However, by applying

Bayesian data augmentation with Euler, the augmented Euler’s method was able to improve the

performance supported by increasing coverage probabilities with cost of increasing variance (i.e.

bias-variance trade-off).

7.4 Effect of number of augmented data points

In this section, we investigate how number of augmented data points would affect the parameter

estimation result by running simulation studies.

W generate 500 sample trajectories with parameter values α = 1 and β = 3. Each sample

trajectory is simulated using Euler’s method with discretization step size ∆ = 0.1 for 60 unites

of times; therefore 600 data points were generated and considered a nearly “continuous” sample

trajectory. We pretend that we were only able to observe 1 observation per unit time, which leads

us to a total number of 60 observe data points. The goal is to use this 60 data points as observation

to perform parameter estimations. The result is summarized at Table 7.2.

From the Table 7.2, we’ve observed that the coverage probability for both α and β increase as

number of augmented data points being inserted increase; meanwhile the cost is the variance of the

estimator (i.e. αMAP and βMAP ) is getting bigger.

According to the simulation study result, by increasing the number of augmented data points

per unit time interval, what we have gained is the increasing coverage probabilities for both α and

β - this might be more practically desirable in reality; at the same time, the trade-off is the estimator

itself become skewed. From the plots, we clearly see that the empirical estimators become more

skewed as more augmented data points being inserted.
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Figure 7.2: Partial observations: Empirical αMAPwith 1 augmented data point
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Figure 7.3: Partial observations: Empirical βMAP with 1 augmented data point
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Figure 7.4: Partial observations: Empirical αMAP with 2 augmented data points
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Figure 7.5: Partial observations: Empirical βMAP with 2 augmented data points

76



−1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Emprical distribution of the MAPs

α

D
en

si
ty

Figure 7.6: Partial observations: Empirical αMAP with 4 augmented data points
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Figure 7.7: Partial observations: Empirical βMAP with 4 augmented data points
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Figure 7.8: Partial observations: Empirical αMAP with 9 augmented data points
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Figure 7.9: Partial observations: Empirical βMAP with 9 augmented data points
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Figure 7.10: Partial observations: Empirical αMAP with 15 augmented data points
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Figure 7.11: Partial observations: Empirical βMAP with 15 augmented data points
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CHAPTER 8

Cusp Model with More Complex Structure

Bayesian hierarchical modeling, as its name suggests, is a statistical modeling approach that

constructs a model with multiple levels or in hierarchical form and estimates the parameters using

Bayesian inference. Bayesian hierarchical modeling is commonly used when the problem can be

formulated with several levels or hierarchies of observational units, and this hierarchical organiza-

tion often helps understand the relationship of parameters on and between different levels.

8.1 Bayesian hierarchical modeling

A simple Bayesian hierarchical model often consists of three layers, namely the data layer,

process layer, and prior layer. This three-layer organization can be further used to describe two

levels of units, namely the individual level and the population level.

ϕ

stock 1: θ1

x1

stock 2: θ2

x2

· · ·

· · ·

stock J-1: θJ−1

xJ−1

stock J: θJ

xJ

8.1.1 Population and individual

To better illustrate how this hierarchical organization works, we now use a portfolio of stocks

as an example.
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Individual level describes the behavior of individuals over time. For example, if individual

is thought as a particular stock, and we are interested in the stock price movement over some

time interval, denoted by Xj
t . We can further make the underlying model assumption that Xj

t is

a diffusion process governed by cusp SDE with model parameters θj . We track the trajectory Xj
t

over some time interval by taking measurements on discrete time points with interval∆obs, and the

time-series data is denoted by xj = {xj1, · · · , xjn}.

Now suppose there’s a portfolio consists of several individual stocks, this portfolio is the

population level. In particular, Bayesian hierarchical modeling assumes individual parameters

θ1, θ2, · · · , θJ are generated from a common population p that is further governed by a hyper pa-

rameter ϕ. At population level, across-unit analysis can be used to capture the heterogeneity or the

diversity across individuals.

Structurally, a Bayesian hierarchical model often consists of three layers, namely the data layer,

a process layer, and a prior layer. More specifically, in the data layer, observations associated to

jth individual is assumed to be generated by cusp process (Equation 1.8), i.e. xj | θj; In process

layer, individual model parameter is assumed to be generated from population, i.e. θj ∼ p(θj|ϕ);

The prior level simply assigns a prior on hyper-parameters, i.e. ϕ ∼ p(ϕ).

In our case, Bayesian hierarchical model is mainly used to describe (1) the behavior of individ-

uals in a study, which models the with-in unit behavior over a time interval, and (2) the distribution

of responses across individuals, which reflects cross-sectional variation in model parameters, or

the heterogeneity.

8.1.2 Simulation study and result

In simulation study, we first fix the population level parameter to be

µα = 1, σα = 0.1; µβ = 4, σβ = 0.1.
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Then, we generate 20 pairs of parameters, each pair are generated according to the population-

level parameters:

αi ∼ N (µα, µα), βi ∼ N (µβ, σβ).

We then simulate 20 trajectories for each pair of parameters

dXj
t =

(
α + βXj

t −
1

4
Xj

t

3
)
dt+

√
εdWt

using Euler’s method with discretization step size∆ = 0.1 for T = 180 units of time. The param-

eters of interest are population-level parameters µα, µβ, and , while we treat σα and σβ as known

quantities. Again, here we fix
√
ε = 2 and treat it as a constant when estimating other model

parameters. Posteriors are given by Figure 8.1 and Figure 8.2

The posterior plots support the accuracy of the algorithm.
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Figure 8.1: Bayesian hierarchical modeling: Posterior αs

8.2 Cusp model with time-varying parameters

In reality, there are abundant reasons to believe that the underlying data generating process

for many real-world situation might change over time. Needless to say, economic data that reflect
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Figure 8.2: Bayesian hierarchical modeling: Posterior βs

an actual economy in a economy unit may depend on many other economic indicators, economic

policy, etc. This motivates us to extend our cusp model into time-varying process with exogenous

processes.

8.2.1 Time-varying parameters

Following the work of Creedy et al. [1996] and Fernandes [2006], one could naturally extent

parameters α and β governing the number of stable equilibria of the cusp model to be time-varying,

specifically they can be model in such a way that both parameters are depended on some strictly

exogenous process or processes ζt. Here strictly is with respect to process Xt.

The stochastic differential equation of the cusp model with time-varying parameters α(ζt) and

β(ζt) takes the form

dXt =
(
α (ζt) + β (ζt)Xt − (Xt)

3) dt+ σdWt. (8.1)
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Let’s assume we have two strictly exogenous process ζ1t and ζ2t which will be used as covariate

processes, and consider the linear dependence of both αt and βt on ζ1, ζ2 in the way

αt ≡ α
(
ζ1t , ζ

2
t

)
= α0 + α1ζ

1
t + α2ζ

2
t

βt ≡ β
(
ζ1t , ζ

2
t

)
= β0 + β1ζ

1
t + β2ζ

2
t ,

where θ = {α0, α1, α2, β0, β1, β2}⊤ are the model parameters hence to be estimated.

8.2.2 Simulation study and result

In our simulation study, the pre-fixed model parameters are

α0 = 0, α1 = 2, α2 = −2; β0 = 5, β1 = −2, β2 = 1.

The choice of ζ1 and ζ2 being trigonometric (periodic) functions is motivated by two major

reasons, one is because covariate (or independnent) processes are often more “predictable” than

the target process; the other is because some economic factors indeed exhibit periodic behaviors or

cycles.

We are hoping to use observations denoted by y plus two exogenous processes, denoted by

ζ1 and ζ2 to estimate model parameters {α0, α1, α2, β0, β1, β2}. Sample trajectories of y, ζ1 and ζ2

with pre-fixed model parameters are simulated as shown in Figure 8.3 with discretization step-size

∆gen = 0.01 for T = 180 units of time. Posterior distributions are given below. The simulation

study result supports the accuracy of the parameter estimation method.
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Figure 8.3: Time-varying cusp: Sample trajectories
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Figure 8.4: Time-varying cusp: Posterior αs
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Figure 8.5: Time-varying cusp: Posterior βs
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CHAPTER 9

Conclusion

Bayesian inference on non-linear diffusion models such as cusp model, is an interesting re-

search topic. Exploring how one can apply cusp model in financial econometrics or other subjects

is also very interesting and exciting.

In this thesis, we considered cusp model, one of the elementary catastrophe models studied in

catastrophe theory. We demonstrated howBayesian inference can be used as a solution to cusp SDE

inference problem via Hamiltonian Monte Carlo with different likelihood approximation methods.

The proposed method has been tested by a series of intensive simulation studies under different

scenarios, including inference from complete observations, from partial observations, as well as

inference for more complex models such as Bayesian hierarchical modeling and time-varying pa-

rameters setting. Particularly, in the partial observations scenario, we (1) showed how Bayesian

data augmentation could be used to help remedy the model-observation discrepancy when obser-

vations are sparsely taken, and (2) investigated how number of augmented data points would affect

the result of parameter estimation by running simulation studies.

Advantages and limitations of the methods from the simulation studies have been presented

hoping to support practitioners to select suitable methods for their real-world problems, as well as

to encourage further theoretical and empirical studies related to cusp model.
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APPENDIX A

STATIONARY DISTRIBUTION OF CATASTROPHE MODEL

Fokker-Planck equation reveals that the transition probability density p(t, x|x0, θ) of an

stochastic differential equation obeys a deterministic partial differential equation. Instead of fo-

cusing on the individual trajectory x, this section explores the time evolution of the transition prob-

ability density p(t, x|x0, θ).

In one spatial dimension x, for an Itô process driven by standard Wiener process Wt and de-

scribed by the stochastic differential equation

dXt = µ (Xt, t) dt+
√
ν (Xt, t)dWt (A.1)

with drift µ(Xt, t) and diffusion coefficient ν, the Fokker-Planck equation, also known as the Kol-

mogorov forward equation for the probability density

p(x, t) ≡ d

du
Prob{x(t) < u|x(0) = x0}

of the random variable Xt is

∂

∂t
p(x, t) = − ∂

∂x
[ν(x, t)p(x, t)] +

1

2

∂2

∂x2
[ν(x, t)p(x, t)]. (A.2)

The Fokker-Planck equation can be used to obtain the transition probability density of the

solution process p(t, x|x0, θ) and perhaps a less ambitious goal - the stationary solution of the

transition probability density.

The stationary distribution denoted by ps can be obtained by solving ∂tp(x, t) = 0 (i.e. con-

stant in t), that is
d

dx
[µ(x)ps(x)]−

1

2

d2

dx2
[ν(x)ps(x)] = 0. (A.3)
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Upon integrating once we have

µ(x)ps(x)−
1

2

d

dx
[ν(x)ps(x)] = c1 = const. (A.4)

If we write

ν(x)ps(x) = h(x) (A.5)

then equation becomes
d

dx
h(x)− 2

µ(x)

ν(x)
h(x) = −2c1. (A.6)

Hence the general solution for ps is, upon substituting into

ps(x) =
c2
ν(x)

exp
[
2

∫ x

0

µ(s)

ν(s)
ds

]
− 2c1
ν(x)

∫ x

0

exp
[
2

∫ x

r

µ(s)

ν(s)
ds

]
dr (A.7)

The constants of integration, c, and c2, are determined from normalization and boundary con-

ditions. If we assume that

ps(x)(±∞) = 0 and
d

dx
ps(x)

∣∣∣∣
x=±∞

= 0, (A.8)

It’s seen from Eqs that c1 = 0 and we have

ps(x) =
c2
ν(x)

exp
[
2

∫ x µ(s)

ν(s)
ds

]
= c2 · exp

[
2

∫ x µ(s)

ν(s)
− 1

2

ν ′(s)

ν(s)
ds

] (A.9)

If the underlying stochastic differential equation happens to have a constant diffusion term ε,

(A.9) can be further simplified to

ps(x) = c2e
− 2V (x)

ε (A.10)
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APPENDIX B

CUSP TRANSITIONAL PDF BY HERMITE POLYNOMIALS

For cusp stochastic differential equation expressed in the form

dXt = (a+ bXt + cX2
t + dX3

t )dt+ fdWt, (B.1)

by using (4.18), we can obtain a closed-form approximation up to ∆2 to the transition probability

density p(∆, x|x0, θ), and its log-likelihood function is given by

p(2)(∆, x|x0, θ) = − log(2π∆)/2− log(f) + cm1/∆ + c0 + c1∆+ c2∆
2/2. (B.2)

Closed-form approximation using Hermite polynomial up to the second order is given in form

of R user-defined function:

cusp2 <- function(x, x0, delt, a, b, c, d, f ){

sx = f

cm1 = -(x - x0) ^ 2 / (2 * f ^ 2)

c0 = (4 * c * x ^ 3 + 3 * d * x ^ 4 + 12 * a * (x - x0) - 4 * c * x0 ^ 3 - 3 *

d * x0 ^ 4 + 6 * b * (x ^ 2 - x0 ^ 2)) / (12 * f ^ 2)

c1 = -1 / (420 * f ^ 2) * (

210 * a ^ 2 + 70 * b ^ 2 * (x ^ 2 + x * x0 + x0 ^ 2) +

35 * a * (

6 * b * (x + x0) + 4 * c * (x ^ 2 + x * x0 + x0 ^ 2) +

3 * d * (x ^ 3 + x ^ 2 * x0 + x * x0 ^

2 + x0 ^ 3)

) +

21 * b * (

10 * f ^ 2 + 5 * c * (x ^ 3 + x ^ 2 * x0 + x * x0 ^ 2 + x0 ^ 3) +

4 * d * (x ^ 4 + x ^ 3 * x0 + x ^ 2 *
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x0 ^ 2 + x * x0 ^ 3 + x0 ^ 4)

) +

2 * (

21 * c ^ 2 * (x ^ 4 + x ^ 3 * x0 + x ^ 2 * x0 ^ 2 + x * x0 ^ 3 + x0 ^ 4) +

35 * c * (x + x0) * (3 * f ^ 2 + d * (x ^

4 + x ^ 2 * x0 ^ 2 + x0 ^ 4)) +

15 * d * (

7 * f ^ 2 * (x ^ 2 + x * x0 + x0 ^ 2) +

d * (x ^ 6 + x ^ 5 * x0 + x ^ 4 *

x0 ^ 2 + x ^ 3 * x0 ^ 3 + x ^ 2 * x0 ^ 4 + x * x0 ^ 5 +

x0 ^ 6)

)

)

)

c2 = 1.0 / 210 * (

-35 * b ^ 2 - 105 * d * f ^ 2 - 63 * c ^ 2 * x ^ 2 - 140 * c * d * x ^ 3 - 75 *

d ^ 2 * x ^ 4 -

84 * c ^ 2 * x * x0 - 210 * c * d * x ^ 2 * x0 - 120 * d ^2 *

x ^ 3 * x0 - 63 * c ^ 2 * x0 ^ 2 -

210 * c * d * x * x0 ^ 2 - 135 * d ^ 2 * x ^ 2 * x0 ^2 -

140 * c * d * x0 ^ 3 - 120 * d ^ 2 * x * x0 ^ 3 -

75 * d ^ 2 * x0 ^ 4 - 35 * a * (2 * c + 3 * d * (x + x0)) -

21 * b * (5 * c * (x + x0) + 2 * d * (3 * x ^ 2 + 4 *

x * x0 + 3 * x0 ^ 2)

)

)

return(exp(-log(2 * pi * delt) / 2 - log(sx) + cm1 / delt + c0 + c1 * delt + c2 *

delt ^ 2 / 2 ))

}

Listing B.1: HPE: J = 2
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