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ABSTRACT

Michael T. Lawson: Advances in Data-driven Research Methodology for Precision Public Health
(Under the direction of Michael R. Kosorok)

The rise of precision medicine has ushered in manifold opportunities and challenges, many

of them linked. For instance: precision medicine offers an avenue to revisit assumption-rich,

knowledge-driven research practices, but requires careful and creative thinking to replace them.

In this manuscript, we turn our attention to three such areas of interest: subgroup determina-

tion, modeling of dynamical systems, and accounting for measurement error. In each case, we

construct a statistical and machine learning framework for the problem at hand, develop method-

ology to address it, and present theoretical and numerical justifications for the methodology.

In the first chapter, we develop a data-driven method for subgroup determination in a clinical

trial of treatment or intervention, where subgroups are based on predicted efficacy of treatment

and not based on a limited number of a priori-specified markers. The proposed subgroup deter-

mination method is illustrated in a trial of a lifestyle intervention in type 1 diabetes, where we

use it to determine subgroups who are expected to benefit from intervention and from control

conditions. In the second chapter, we formulate a fully nonparametric stochastic differential equa-

tion model that performs model selection for factors affecting both the mean and variability of

a dynamic process. The model is applied to data arising from a type 1 diabetes trial. In the third

chapter, we turn our attention to developing model-agnostic influence statistics to assess the im-

pact of observations’ mismeasurement on analysis results. This method is illustrated in detail in

three different settings, one of which is a study of water quality with a complex mechanism of

measurement error.
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“He would have to look up quickening dark & say: Me. I do. It’s mine.”

For those who inspire.
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CHAPTER 1: INTRODUCTION

The rise of big data, “-omics,” and precision approaches have revolutionized many areas of

healthcare and health research. New technologies have engendered powerful and innovative data,

whose size and complexity dwarf those of traditional health research data. High-dimensional and

complex data have inspired novel methods capable of utilizing them. But perhaps the most poten-

tially impactful shift is one of mindset: the precision medicine framework offers health research

the opportunity to trade knowledge-driven, assumption-rich tools for data-driven, assumption-

light approaches. In this research, we examine three areas of health research and propose new

data-driven tools for use in those areas.

Simmons et al. (2011) coined the term “researcher degrees of freedom” to refer to a number

of related breakdowns in the scientific method that can lead to misleading, non-reproducible, or

even outright incorrect conclusions from a study or analysis that is, for the most part, carried out

proficiently and correctly. Examples include post hoc modifications to inclusion and exclusion

criteria, procedures for handling missing data, flexibility in choice of analysis method, and so on.

While there is no solitary correct answer to the question raised by researcher degrees of freedom,

data-driven research methodology presents a principled approach to many of these issues. The

aim of this research is to provide data-driven tools to use in areas of research where they may cur-

rently be lacking, and ultimately provide additional support to conducting scientifically rigorous

and reproducible research.

Our first area of focus is subgroup analysis of clinical trials, which seeks to clarify the results

of a trial by dividing a patient population with heterogeneous intervention response into smaller

segments in which intervention response is more homogeneous. Standard methods in subgroup
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analysis involve specifying the variables which subgroups can be based on a priori, and many

involve purely descriptive subgroups, where only a patient’s overall prognosis is considered. In

Chapter 2, we propose a data-driven method for subgroup determination that is prescriptive in

nature, i.e. based on the predicted efficacy of treatment for patients within subgroups.

Our second area of focus is the analysis of continuous-time data arising from dynamical

processes. The differential equation models used in many applications involving dynamical pro-

cesses can involve strong assumptions on the functional forms of the terms involved, or even

stronger assumptions on the degree of the derivative involved. Additionally, they perform in-

ference only on factors affecting the mean of the process of interest, when the variability of the

process may be of direct biological interest. In Chapter 3, we propose a flexible nonparametric

first-order stochastic differential equation model that makes minimal assumptions on the func-

tional forms of its covariates to recover the true support for both the mean and variability of a

process of interest with multiple covariate processes.

Our final area of focus is the handling of measurement error. In studies with imperfect mea-

surements that are expensive to collect, while it is ideal to correct errors in measurement before

their effects can propagate downstream, it is usually not possible, much less efficient, to catch

all measurement errors. In Chapter 4, we propose a method for determining the influence of

potential mismeasurement in the outcome variable on the results of a study. The proposed mea-

sure is model-agnostic, working in a wide variety of study settings, and extensible to the case of

simultaneous mismeasurements.

The remainder of this document proceeds as follows. We first carry out a thorough review of

the literature surrounding our research topics. Chapter 2 presents our new method for data-driven

subgroup determination. Chapter 3 explores our method for learning the mean- and variance-

level dynamics of a system. Chapter 4 lays out our method for determining the measurement

error-based influence of observations in a study. Chapter 5 discusses directions for future re-

search in these areas. Technical details such as proofs are deferred to the appendices.
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CHAPTER 2: PRECISION MEDICINE SUBGROUP ANALYSIS

2.1 Introduction

The Flexible Lifestyles Empowering Change trial (FLEX), an NIH-funded 18-month ran-

domized trial, tested the efficacy of an adaptive behavioral intervention to promote self-management

and improve measures of blood glucose control in 258 youth ages 13-16 with type 1 diabetes

(T1D). The goal of the FLEX intervention was to increase adherence to type 1 diabetes self-

management, including testing blood sugar levels throughout the day, counting carbs, and cal-

culating and delivering insulin doses. Motivational interviewing and problem-solving skills

training tailored to participants and their families were integrated into the interventions coun-

seling (Mayer-Davis et al., 2018b). Despite high retention and fidelity, the FLEX study did not

show efficacy with respect to the primary outcome of HbA1c at 18 months post-randomization

(Mayer-Davis et al., 2018b). However, the intervention was associated with improvements in

several secondary psychosocial outcomes, including motivation, problem solving skills, diabetes

self-management, and health-related and general quality of life (Mayer-Davis et al., 2018b).

Within any clinical trial, the average treatment effect across all participants may mask impor-

tant heterogeneous treatment effects visible across different study subjects or subgroups of sub-

jects (Baum et al., 2017). Heterogeneity in response can also obfuscate whether some strategies

helped some participants while harming others (Chakraborty and Murphy, 2014; VanderWeele

and Knol, 2011). For this reason, statistical analyses that estimate aggregate effects over time

for all patients are limited, since they do not account for the fact that treatment ‘responders’ and

‘non-responders’ can exhibit vastly divergent patterns of response (Gueorguieva et al., 2011).
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In settings where heterogeneity in participant profiles reliably predicts differential response

to the efficacy of treatment, the precision medicine approach offers promise (Burton et al., 2012).

The precision medicine approach seeks to develop an individualized treatment rule (ITR), a math-

ematical function that gives recommendations for whether a patient should receive intervention

or not. In the FLEX trial, treatments were assigned at baseline, so the ITR based its recommen-

dations solely on patient characteristics available at baseline. As the goal of the FLEX trial was

to optimize a patient’s improvement over the full 18-month course of the study, the ITR was es-

timated based on those 18-month improvements in outcome, also called clinical rewards. Once

an ITR is estimated, it can be used to target intervention to those patients whom it estimates

will benefit most from intervention. An ITR can be summarized based on its value, the average

expected reward that results from applying the ITR. That is, the value of an ITR represents the

average reward the patient population would have received if that ITR were followed, rather than

the observed randomization scheme. ITRs that deliver the best achievable reward are termed op-

timal. Estimating and applying optimal ITRs may lead to increases in efficiency of prevention

and treatment while simultaneously reducing costs of care (Burton et al., 2012; Trusheim et al.,

2007). As such, gaining a deeper understanding of the subgroups defined by an optimal ITR—

understanding which patients receive improved outcomes under an intervention and which do

not—is critical to inform future tailoring of interventions.

Here, we describe a method for the analysis of randomized trials that leverages the full

dataset to identify subgroups defined by an estimated optimal ITR. We demonstrate how this

method may be applied to data from the FLEX trial to quantify and describe the subgroups where

key clinical outcomes were improved on intervention, the subgroups where outcomes were im-

proved on usual care, and the subgroups where outcomes were the same between intervention

and usual care. To be consistent with the primary and secondary outcomes of the parent study,

we characterized the effect of the FLEX intervention in terms of 18-month changes in HbA1c

(primary outcome), perceived quality of life (QoL), and body mass index z-score (BMIz). We

focused on baseline predictors, including sociodemographic characteristics, clinical variables, or
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psychosocial and behavioral measures, as these can serve as markers to physicians in the future to

guide optimal treatment recommendations with regards to the FLEX intervention using the data

available at that time.

2.2 Methods

Study sample

We analyzed data from the baseline visit of the Flexible Lifestyles Empowering Change

randomized trial (FLEX). FLEX was a randomized clinical trial testing an adaptive, 18 month in-

tervention which includes behavioral skills and problem solving for youth with T1D, with respect

to HbA1c (primary outcome), glycemic variability, CVD risk factors, health-related quality of

life, and cost effectiveness (Mayer-Davis et al., 2018b; Kichler et al., 2018). Eligible participants

were youth ages 13-16 years with type 1 diabetes for ≥ 1 year, literacy in English, HbA1c 8.0-

13.0%, and ≥ 1 primary caregiver with no other serious medical conditions or pregnancy (Kichler

et al., 2018). Detailed considerations of the FLEX design and baseline participant characteristics

have been described elsewhere (Kichler et al., 2018).

Inclusion Criteria

FLEX enrolled 258 adolescents with T1D who were instructed to wear blinded CGM sys-

tems for 7 days at baseline. Participants were excluded from the present analysis if they did not

have complete CGM data at baseline (n = 40) or were missing the outcomes of HbA1c, QoL, or

BMIz at baseline or the 18-month measurement visit (n = 2).

Measures

All data collection was standardized as per FLEX study protocol, and FLEX assessment staff

were trained and certified to perform all study procedures. The full set of study measurements

was obtained at baseline and 6 and 18 months post-randomization; a limited set of measurements
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was obtained at 3 and 9 months post-randomization (Kichler et al., 2018). Standardized measure-

ments, laboratory data, clinical measures, and questionnaires from the FLEX study are described

in detail in Section 2.5.

Outcome Measures

Univariate Outcomes. To assess the intervention’s efficacy for our outcomes of interest in-

dividually, we considered three univariate outcomes: change in HbA1c, change in self-reported

QoL measured by the PedsQLTM score (QoL) (Varni et al., 2001), and constrained change in

BMIz. For each univariate outcome, we considered changes between baseline and the 18-month

study visit. For HbA1c and QoL, this change was directly equal to the difference between 18-

month and baseline outcomes. Change in BMIz was constrained to reward patients who com-

pleted the study with a healthy BMIz or who improved their BMIz over the course of the study.

For full mathematical definitions of the univariate outcomes, see Section 2.5.

Composite Outcome. To assess the intervention’s effect on all outcomes of interest simul-

taneously, we considered a composite outcome of change in HbA1c, QoL, and BMIz between

baseline and 18-mo. The composite outcome is an approximation of constrained optimization

based on a hierarchy of the univariate outcomes, HbA1c prioritized the highest and BMIz pri-

oritized the lowest. In essence, patients with an unacceptably high HbA1c will receive a low

composite outcome, regardless of their quality of life and BMIz; patients with an acceptable

HbA1c but an unacceptably low quality of life will receive slightly higher composite outcomes,

regardless of their BMIz; and patients will receive the highest composite outcomes if they have

acceptable HbA1c and quality of life, with the magnitude determined by their BMIz. For a full

discussion of the composite outcome’s definition and properties, see Sections 2.5 and 2.6.

Analysis

Imputation. Missing data in non-CGM covariates were imputed via Multiple Imputation

by Chained Equations (MICE) (White et al., 2011). A flexible imputation method, MICE can ac-
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count for mixed data types with minimal assumptions when paired with random forests (Stekhoven

and Bühlmann, 2011). We generated eleven imputed datasets with MICE, with which we em-

ployed a modified version of multiple imputation. We chose the number eleven as the smallest

odd number, precluding the possibility of ties in a majority vote, larger than 10. As a sensitivity

analysis, we performed all analyses on the subset of patients with complete cases in all covariates

and outcomes (n = 197; see Section 2.7).

ITR Estimation. We estimated the optimal ITR in our sample with Reinforcement Learning

Trees (RLT). An extension of Breiman’s Random Forest model, RLT uses reinforcement learn-

ing to better discriminate between signal and noise variables among the covariates (Breiman,

2001; Zhu et al., 2015). An important aspect of RLT is its ability to mute covariates, i.e. set their

effect identically equal to zero, in subsets of the covariate space. The details of how and why

muting occurs are best left for the technical discussion in (Zhu et al., 2015); for this analysis, it

suffices to state that the predicted outcome under the different values of a binary variable, such as

intervention status, can be exactly equal for some patients but different for other patients.

Using RLT allowed us to pose a nonparametric model between the baseline covariates X and

the observed clinical rewards R within each imputed dataset. Using this model, we obtained the

expected reward for a given patient under both FLEX intervention and usual care. The imputed

dataset-specific ITR assigned a patient to one of three groups. If the expected reward was higher

under FLEX intervention, the intervention was expected to benefit that patient, and they were as-

signed to the Intervention Group. If the expected reward was higher under usual care, then usual

care was expected to benefit that patient, and they were assigned to the Usual Care Group. And

if the expected reward was identical under usual care and FLEX intervention, then intervention

status was expected to have no effect for that patient, and they were assigned to the Muted Group.

For each patient, we obtained eleven assignments to Intervention, Control, or Muted Group, one

assignment per imputed dataset. The estimated optimal ITR assigned each patient to the group

designated by a plurality vote of these 11. Once the groups were defined by the ITR, we exam-

ined their baseline demographic, clinical, and psychological/social characteristics.

7



To test the robustness of our modeling assumptions in the FLEX dataset, mild as they were,

we estimated the optimal ITR via Outcome Weighted Learning (OWL) (Zhao et al., 2012), a non-

model-based approach, and fully characterized the OWL ITR-assigned subgroups in additional

exploratory analyses. A comparison of OWL’s performance to RLT and a full discussion of OWL

can be found in Sections 2.7 and 2.8, respectively.

ITR Evaluation. Once estimated, each ITR was evaluated on the basis of its value V , the

expected reward resulting from applying the ITR to the sample rather than the observed random-

ization scheme. To facilitate comparisons between model-based and non-model-based ITRs, we

used the following definition of V:

V (π) =

∑n
i=1RiI {Ai = π(Xi)}∑n
i=1 I {Ai = π(Xi)}

(2.1)

where I{E} is the indicator function that takes the value 1 when event E is true and 0 otherwise,

i indexes patients, A is the vector of observed intervention assignments, and π is the ITR whose

value is being obtained. Point estimates of ITR values were computed using this formula, and

confidence intervals for ITR values and differences in ITR values were computed via bootstrap-

ping, as described in Section 2.9.

Statistical Considerations

Descriptive data are presented as mean (standard deviation (SD)), n (%), or median (in-

terquartile range) for variables that are not normally distributed, such as measures of hypo-

glycemia. Characteristics of individuals in each ITR-defined subgroup were compared using

chi-square or ANOVA (Fisher’s Exact and Wilcoxon-Mann-Whitney where appropriate). Pair-

wise comparisons were performed using chi-squared or t-tests (Fischer’s exact or Wilcoxon

signed-rank test where appropriate). A two-sided p-value of < 0.05 was considered statistically

significant. These analyses were exploratory, and the results of this study are not intended to

deterministically guide future intervention assignments; as such, p-values were not adjusted for
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multiple comparisons. Imputation and ITR estimation were carried out in R, version 3.4.1, using

the packages missForest, RLT, and DTRlearn. Descriptive analyses were conducted using SAS,

version 9.4.

2.3 Results

The final study sample included 216 adolescents with T1D in the FLEX trial. The sample

was 77% non-Hispanic White and 50% female with a mean (SD) age of 14.9 (1.1) years and

mean (SD) type 1 diabetes duration of 6.3 (3.7) years at baseline of the trial. At baseline, the

mean (SD) HbA1c was 9.6% (1.2%), mean (SD) BMIz was 0.73 (0.91), and the mean (SD) QOL

measure was 81.2 (12.4).

Table 2.1 depicts two measures of interest for evaluating the RLT ITR. The first measure is

the estimated value of V across the composite outcome and each univariate outcome. The second

is the comparison between the value of the estimated optimal ITR and the fixed treatment effects

for both intervention and usual care, which are computed as V with π(X) assigning interven-

tion or usual care to all patients, respectively. Note that each column of this table has a different

natural scale due to the particular distribution of outcomes in question. All estimates of fixed

treatment comparisons lie above zero, and all but one of the 95% confidence intervals lie entirely

above zero, indicating the estimated optimal ITR achieved higher expected rewards than blanket

assignment of treatment or usual care.

Estimate HbA1c QoL BMIz Composite
V̂opt 0.6738 0.6739 0.9737 2.6985

V̂opt − V̂trt 0.0109 0.0152 0.0233 1.2085
CI V̂opt − V̂trt (-0.0028, 0.0372) (0.0004, 0.0766) (0.0018, 0.0376) (1.1058, 1.3716)
V̂opt − V̂ctrl 0.0171 0.0225 0.0234 1.0067

CI V̂opt − V̂ctrl (0.0033, 0.0433) (0.0077, 0.0839) (0.0019, 0.0377) (0.9040, 1.1698)

Table 2.1: Estimated Value (Bootstrap 95% Confidence Interval) of RLT Imputed ITR by Out-
come Variable
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Table 3A-D also depicts the characteristics found to be significantly different across FLEX

participants in the subgroups assigned to Intervention and Usual Care for the composite outcome

and each univariate outcome. For full descriptive tables, please see Table S8. With the exception

of the composite outcome, a large number of participants were assigned to the Muted Group.

Regarding the composite outcome, 91 participants (42%) were assigned to the Intervention,

while the remaining 125 participants (58%) were assigned to the Control Group. Individuals

assigned to intervention subgroup were less likely to have private health insurance (60% in the

Intervention Group versus 78% in the Control Group, P = 0.01) (Table 3A).

Regarding the HbA1c univariate outcome, 105 participants (49%) were assigned to the

Muted Group, 54 participants (25%) were assigned to the Intervention Group, and 57 partici-

pants (26%) were assigned to the Control Group. Individuals assigned to the Intervention Group

did not have a significantly higher Hba1c than those assigned to Usual Care (9.4% versus 9.2%;

P = 0.44), but individuals in the Muted Group had higher mean HbA1c at baseline than those

assigned to Intervention or Control (9.9%; P = 0.02 and P < 0.01, respectively). Individuals

in the Muted group also had a higher incidence of clinical and clinically serious hypoglycemia

(P < 0.01), with no significant differences between the Intervention and Control Group (Table

3B).

Regarding the QoL univariate outcome, 63 participants (29%) were assigned to the Muted

Group, 89 participants (41%) were assigned to the Intervention Group, and 64 participants (30%)

were assigned to the Control Group. Individuals in the Intervention Group were more likely to

have an elevated HbA1c at baseline compared to the Muted Group (75% versus 54%, P = 0.01)

but not the Control Group (61%; P = 0.08). Individuals in the Intervention Group also had

higher significantly higher depressive symptoms at baseline compared to those in the Muted

Group (mean (SD) CESD 9.8 (8.5) versus mean (SD) CESD score 6.9 (5.4); P < 0.01), with no

significant differences from the Control Group (P = 0.44) (Table 3C).

Regarding the BMIz univariate outcome, 136 participants (63%) were assigned to the Muted

Group, 44 participants (20%) were assigned to the Intervention Group, and 36 participants (17%)
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were assigned to the Control Group. Mean BMIz at baseline of individuals assigned to the In-

tervention Group was higher than that of those assigned to the Control Group (P < 0.01); this

group also had a higher proportion of under- or normal weight individuals using weight status

cut-offs (54.6% versus 30.6%; P < 0.01). Mean BMIz was not significantly different between

the Intervention Group and the Control Group (P = 0.06; Table 3D).

2.4 Discussion

In this study, we present a method to identify subgroups of participants in a clinical trial for

whom the studied intervention would have been beneficial, for whom the usual care condition

would have been beneficial, and for whom the intervention did not make a difference, with re-

gards to key clinical outcomes. We then apply this method to re-analyze data from the FLEX

trial, which showed no effects of the intervention on the primary study outcome, to demonstrate

that there are distinct subgroups with different optimal treatment assignments. We focus the dis-

cussion first on the findings from the post hoc analysis of the FLEX trial, and then turn to a more

general discussion of the method itself.

The application of a method to find distinct subgroups within a single randomized trial sam-

ple is appropriate given previous reports of heterogeneity in response to behavioral interventions

(Hampson et al., 2000), including heterogeneity of response to the same intervention in different

samples of youths with T1D (Channon et al., 2007; Wang et al., 2010). The relative proportions

of these subgroups, especially with regards to the large muted group for HbA1c as a univariate

outcome, highlight the challenges with glycemic control in this age range (Mayer-Davis et al.,

2018b). By contrast, a larger group was estimated to benefit from the FLEX intervention with

regards to QoL, which agrees with the main trial’s findings that the FLEX intervention had a

positive aggregate effect on multiple measures of psychosocial well-being (Mayer-Davis et al.,

2018b).

The results also reveal interesting dynamics in the interplay between the three univariate

outcomes. Clinical markers that link interventions to subgroups of patients they are likely to ben-
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efit take a central role in precision application of interventions (Kichler et al., 2018); as such, it

would be ideal to have a large variety of markers corresponding to differential estimated response

patterns (Trusheim et al., 2007; Khoury et al., 2012). Although we considered a range of par-

ticipant characteristics, in the FLEX study, only a limited subset of characteristics emerged to

distinguish the ITR-assigned subgroups. Furthermore, the markers were not consistent across the

three univariate outcomes. For example, patients expected to be indifferent to intervention when

optimizing for 18-month improvement in HbA1c had higher baseline HbA1c, while patients ex-

pected to benefit more from intervention when optimizing for 18-month improvement in QoL had

higher HbA1c at baseline. We believe these antagonistic effects may contribute to the paucity of

reliable predictors for the subgroups governed by the composite outcome, even among covariates

that helped predict subgroups for subgroups governed by univariate outcomes.

The results suggest that RLT estimated an optimal ITR that performed well for the FLEX

data. As Table 2.1 shows, the estimated optimal ITR achieved a high V for each outcome. For

each outcome, the estimated optimal ITR nominally outperformed the two fixed treatment effects.

All but one confidence interval corresponding to these fixed treatment comparisons lay entirely

above zero, suggesting that these improvements in value were reliable. The size of the differences

in Table 2.1 suggests the treatment effect is generally small in this trial, though the natural scale

present in this table may make it appear misleadingly so—the interquartile range for HbA1c re-

wards, for instance, is 0.108 units, and the interquartile range for BMIz rewards is a mere 0.041

units. While we chose RLT to estimate the optimal ITR for the FLEX data based on its perfor-

mance, an additional philosophical advantage of using RLT is its specification of a Muted Group.

Conceptually, this group represents a phenomenon that is distinct from the other two assignments:

this subgroup can be thought to contain “true” non-responders, since they do not show a response

to either treatment or usual care conditions. In this study, the large size of the Muted Group for

each univariate outcome is likely a reflection of a marginal treatment effect, combined with noise

in the data. More work is needed to understand the subgroup of adolescents with T1D who fall
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into this category, as these represent the population who may be the most difficult to reach via

intervention work and may be at the highest risk of long-term complications of the disease.

This analysis is conceptually and analytically distinct from standard subgroup analysis meth-

ods, representing a novel approach to subgroup determination. There are several advantages to

this method for post hoc analysis of randomized trial data. First, in contrast to descriptive meth-

ods such as effect modification analysis, which show how treatment response differs across levels

of a third modifying variable, this method is prescriptive, determining patients for whom the

intervention is expected to be most beneficial. Second, unlike common approaches that start

with a priori defined subgroups and identify optimal treatment rules for each group, this analysis

identifies an optimal treatment strategy across the entire study sample and uses it to determine

subgroups of interest. As these subgroups are not specified a priori based on hypothesized mech-

anism of disease, they may represent previously uncharacterized subgroups that are nevertheless

relevant to the optimal delivery of intervention. Moreover, the data-driven nature of this method

may help remove “researcher degrees of freedom” that can hinder reproducibility (Ioannidis,

2005; Simmons et al., 2011). Third, estimating an optimal ITR pools information from the entire

study sample, not just the arm randomized to intervention. Finally, RLT allows us to model the

intervention effect with a remarkably small number of assumptions, and its ability to handle high

dimensionality allows us to consider a broad range of participant characteristics as suitable clini-

cal markers, including aspects of clinical care, sociodemographic characteristics, and behavioral

measures at baseline that may reinforce or challenge the efficacy of a given therapy over time

(Khoury et al., 2012).

Limitations of this analysis include the small sample size and high degree of noise in the

data, especially in relation to the small effect size of the intervention. Future work may explore

the application of ITR-based subgroups to other trial data of different sample sizes with a range

of intervention effect magnitudes. However, these results are important groundwork to expand

the available tools for matching individuals and subgroups of individuals to existing and newly

studied interventions. There remains a striking lack of consensus about the best approach to
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promote adherence and improve glycemic control among youth with T1D. The precision delivery

of interventions, based on a diverse breadth of data, as modeled in this study, offers a promising

road forward.

2.5 Measures

In this section, we present details surrounding the measurement of key variables in the FLEX

trial. We first give the details of measurement methodology for several covariates and outcomes.

We then present the mathematical definitions of the four outcome variables used for our ITR

estimation methods.

2.5.1 Measurement Methodology

Standardized Measurements

All data collection was standardized as per FLEX study protocol, and FLEX assessment staff

were trained and certified to perform all study procedures. Adolescents and participating care-

givers could choose to complete questionnaires online, through the secure FLEX study website,

or during in-person study measurement visits. The full set of study measurements was obtained at

baseline and 6 and 18 months post-randomization; a limited set of measurements was obtained at

3 and 9 months post-randomization (Mayer-Davis et al., 2018b).

Laboratory data

A central laboratory (Northwest Lipid Metabolism and Diabetes Research Laboratories, Seat-

tle, WA, USA) provided oversight and conducted all assays. At all timepoints, hemoglobin A1c

(HbA1c) was measured in whole blood by using an automated nonporous ion exchange HPLC

system (model G-7; Tosoh Bioscience). Measurements of plasma cholesterol, triglycerides, and

HDL cholesterol concentrations were performed on a Hitachi 917 autoanalyser (Boehringer

Mannheim Diagnostics) at the full measurement visits, after the patient had fasted for at least
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eight hours. LDL cholesterol was calculated by the Friedewald equation for those with triglyc-

erides <4.52 mmol/l and by the beta-quantification procedure for those with triglycerides >4.52

mmol/l.

Clinical measures

At baseline and at 6- and 18-months post-randomization, patients wore a blinded CGM

(iPro®2 Professional CGM; Medtronic Diabetes, Northridge, CA) for a seven-day period to mea-

sure interstitial glucose levels in real time throughout the day and night. Cut-points for glucose

used to describe hypoglycemia were established according to recommended values (Danne et al.,

2017). Height was measured using a stadiometer, and weight was measured to the nearest 0.1

kg using an electronic scale. Body mass index (BMI, weight (kg) / height2 (m2)) was calculated

and converted to an age- and sex-specific BMI z-score (BMIz) according to Centers for Disease

Control and Prevention growth charts. Blood pressure was measured after five minutes of rest

using an aneroid manometer. The second and third of three measures were averaged for systolic

and diastolic pressures.

Questionnaires

Patients self-reported race, highest level of parental education, duration of diabetes, insulin

delivery method (pump versus multiple daily injections (MDI)), and past use of CGM outside

the study in standardized questionnaires. Self-reported race and ethnicity was classified as non-

Hispanic white, non-Hispanic Black, Black, and other including Asian/Pacific Islander, Native

American, or unknown.

The Diabetes Self-Management Profile Self Report (DSMP-SR) (Wysocki et al., 2012) was

used to assess usual practices of diabetes management during the preceding three months, across

five domains: exercise, management of hypoglycemia, diet, blood glucose testing, and insulin

administration and dose adjustment. Higher scores indicated more diabetes self-management

behaviors. The DSMP-SR was modified for the present study to allow a single questionnaire
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to be administered regardless of insulin regimen. Symptoms of depression were assessed using

the Centers for Epidemiologic Study Depression Scale (CES-D), with higher scores reflecting

more depressive symptoms (Radloff, 1977). The composite Pediatric Quality of Life InventoryTM

Generic Core Scales (PedsQLTM) was used to assess quality of life (QoL) across four domains

(physical, emotional, social, and school functioning) during the previous month, with higher

scores reflecting better QoL (Varni et al., 2001). Fear of hypoglycemia was completed by both

the adolescent and parents and measured three domains (Shepard et al., 2014): maintaining high

blood sugar, helplessness/worry about low blood sugar, and worry about negative social conse-

quences.

2.5.2 Outcome Variables

We first introduce notation that will be helpful in our mathematical definitions. Let R1,0 and

R1,1 denote the vector of patient HbA1c at baseline and 18 months, respectively. Let R2,0 and

R2,1 denote the vector of patient quality of life, as determined by the PedsQL Generic scale, at

baseline and 18 months, respectively. Finally, let R3,0 and R3,1 denote the vector of patient BMI

Z-score at baseline and 18 months respectively. Let i = 1, . . . , n index patients, such that R1,0,i

denotes patient i’s HbA1c at baseline, and so on.

We will define the three univariate outcomes before presenting the definition of the compos-

ite outcome.

2.5.2.1 HbA1c univariate outcome

The raw univariate outcome vector for HbA1c is simply given by R1,raw = R1,1 − R1,0, i.e.

the diffence between HbA1c at baseline and at 18 months. Elevated HbA1c is related to the risk

for long-term complications of type 1 diabetes (Nathan et al., 2014). All participants in the FLEX

trial had an elevated HbA1c at baseline, meaning reductions in HbA1c are expected to reduce the

risk of long-term complications. As such, the raw univariate outcome is scaled such that more

negative values are preferable, as they correspond to the greatest reductions in HbA1c.
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By convention, the clinical reward in ITR estimation settings is strictly positive, with larger

values corresponding to better rewards. As such, we define the scaled univariate HbA1c outcome

as follows:

R1 =
max(R1,raw)−R1,raw

max(R1,raw)−min(R1,raw)
. (2.2)

Note that by definition R1 is restricted between 1 and 0, with larger values corresponding to

better outcomes (i.e. greater reductions in HbA1c).

2.5.2.2 QoL univariate outcome

The raw univariate outcome vector for quality of life is given by R2,raw = R2,1 −R2,0, i.e. the

diffence between QoL scores at baseline and at 18 months. The raw univariate outcome is scaled

such that more positive values are preferable, as they correspond to the largest increases in QoL.

By convention, the clinical reward in ITR estimation settings is strictly positive, with larger

values corresponding to better rewards. As such, we define the scaled univariate QoL outcome as

follows:

R2 =
R2,raw −min(R2,raw)

max(R2,raw)−min(R2,raw)
. (2.3)

Note that by definition R2 is restricted between 1 and 0, with larger values corresponding to

better outcomes (i.e. larger increases in QoL).

2.5.2.3 BMIz univariate outcome

While the raw univariate outcome for BMIz, R3,raw = R3,1 − R3,0, offers computational

simplicity, it is not preferred because it does not take into account the patient’s starting BMIz.

Poor glycemic control can result in glucose purging and weight loss (Group et al., 1988; Carlson

and Campbell, 1993). Given the elevated HbA1c levels at baseline in the FLEX study, it was

expected that some participants might gain weight if glycemic control, the primary endpoint,

were improved. Moreover, a substantial portion of the patients ended the trial with a BMIz in

the healthy range below 1.04, some of whose BMIz did increase over the course of the 18 month
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period. Giving these patients a poor clinical reward is inappropriate given the relationship be-

tween glycemic control and body weight and the goals of the study. As such, we define the BMIz

outcome to selectively penalize weight gain that results in excess body weight in relation to sex-

and age-specific BMI percentiles. Let R 6=1
3 be the subvector of R3,raw corresponding to all i such

that R3,1,i ≥ 1.04 and R3,1,i > R3,0,i for each i. As such, we consider the following constrained

BMIz outcome:

R3 =



1, if R3,1 < 1.04

1, if R3,1 −R3,0 < 0

max(R 6=1
3 )−R3,raw

max(R 6=1
3 )−min(R 6=1

3 )
, otherwise.

(2.4)

By definition, R3 is constrained to lie between 0 and 1, with larger values corresponding to better

outcomes.

2.5.2.4 Composite Outcome

We introduce the composite outcome, a combination of the three univariate outcomes into a

single outcome. The composite outcome is an approximation of constrained optimization, and

corresponds to a hierarchy of the univariate outcomes. Befitting the goals of the FLEX interven-

tion, we prioritized HbA1c highest, QoL next, and BMIz third. Heuristically, the composite out-

come is defined as follows. We specify thresholds for “failure” for HbA1c and QoL, such that a

patient is considered to have unacceptable values of that outcome if they fall on the wrong side of

that threshold at the end of the study. Patients who fail HbA1c, regardless of their QoL and BMIz,

are placed into the first category and take the lowest numerical reward values, between 0 and 1,

with the magnitude determined by how poor their HbA1c is. Patients who have an acceptable

HbA1c but fail QoL are placed into the second category, with numerical reward values falling

between 1 and 2 depending on how poor their QoL is. Finally, patients who end the trial with

acceptable HbA1c and QoL are placed into the third category and given the highest numerical

values, with values ranging from 2 to 3 depending on how much their BMIz improved. Both fail-
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ure criteria can be circumvented by strong enough improvement—for instance, a patient whose

HbA1c at 18 months is 9.0 but whose HbA1c fell by 0.7 over the course of the intervention is not

considered to have failed HbA1c for the purposes of the composite outcome.

We define the mutually exclusive outcome threshold events E1, E2, E3 to simplify notation.

E1 is the indicator that R1,1 > 8.5 and R1,1 − R1,0 > 0.5. E2 is the indicator that E1 = 0,

R2,1 < 60, and R2,1 −R2,0 < 10. E3 is the indicator that both E1 and E2 equal 0. The thresholds

for HbA1c were chosen based on clinical cut-points, and the thresholds for QoL were chosen

based on sample quantiles of QoL in the sample. The composite outcome is defined as follows:

R =



R1,1 − 8.5

max(R1,1)− 8.5
, E1 = 1

1 +
60−R2,1

60−min(R2,1)
, E2 = 1

2 +R3, E3 = 1.

(2.5)

2.6 Properties of composite outcome

In this section, we explore the properties of the composite outcome. The composite outcome

is a method of approximating constrained optimization over multiple outcome variables, and to

our knowledge represents a novel approach to doing so. Constrained problems are of frequent

interest in medicine, particularly in complex diseases where it is unlikely for one outcome vari-

able to dominate all others. Type 1 diabetes alone, for instance, presents many sets of outcome

variables that lend themselves to a constrained approach. Investigators may wish to enforce ideal

glycemic control while discouraging weight gain, a known side effect of intensive insulin ther-

apies (Carlson and Campbell, 1993); they may wish to lower long-term measures of glycemic

control such as HbA1c while simultaneously keeping patients out of the acutely dangerous hypo-

glycemic range measured by a continuous glucose monitor; or they may have more complex sets

of goals corresponding to several outcome variables, as is the case in the FLEX trial.
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As the mathematical definition presented in 2.5.2.4 suggests, the distribution of the com-

posite outcome depends directly upon an explicit hierarchy of the outcome variables in a trial,

as well as meaningful regional thresholds that define failure events for those outcome variables.

Both the hierarchy and the thresholds rely on domain knowledge. In the FLEX trial, for instance,

domain knowledge suggested the regions of interest for one of our outcome variables—HbA1c

below 8.5 is considered a significant improvement for this population, which was recruited with

high baseline HbA1c (Association, 2016)—and informed the other, while the priorities of the

trial dictated the order of the hierarchy. HbA1c was prioritized highest, as it was the outcome of

primary interest and directly related to long-term complications of diabetes. QoL was prioritized

second, as it was an outcome of secondary interest and represents an important patient-oriented

outcome. Due to natural growth in this age range complicating BMI-based outcomes, and due

to the complicated relationship between body weight and glycemic control alluded to in Sec-

tion 2.5.2.3, BMIz was prioritized after both HbA1c and QoL (Mayer-Davis et al., 2018b). Note

that the shape of the regions need not always be as simple as those presented in the FLEX trial—

failure thresholds for raw BMI, for example, would likely penalize measurements that are too

high as well as those that are too low.

This approach offers one main advantage over constrained optimization: ease of use. Con-

strained optimization can be difficult to implement, especially when the regions of interest are

complex, and the burden introduced by considering additional outcome variables can be far from

trivial. So long as the hierarchy and the failure regions remain clear, it is simple to add outcome

variables into a composite outcome constructed as in 2.5.2.4. Any analyst equipped to carry out

ITR estimation via RLT or OWL should be equipped to create a composite outcome and carry

out an almost exactly analogous analysis with it; the same cannot be said of coding constrained

optimization by hand.
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2.6.1 Numerical Experiments

We examine the finite-sample performance of the composite outcome for ITR-based sub-

group determination in a trial with heterogeneous treatment effects through a brief set of numer-

ical experiments. In the first, we examine a very simple model to explore the properties of the

method and the composite outcome, particularly regarding the muted group. In the second, we

examine the performance of the method in settings more akin to those likely to be observed in

real studies, paying special attention to comparing the performance of RLT and OWL-based

subgroups.

Several features are similar across experiments. In both cases, the covariates X are drawn

i.i.d. from U(−1, 1), with a corresponding Gaussian p + 1-vector β that governs the baseline

link between covariates and clinical reward R. The observed treatment A is chosen independent

of covariates and rewards so that patients are randomized equally to intervention (Ai = 1) and

control (Ai = −1). Each experiment has two clinical rewards, R1 and R2. We specify true sub-

groups for each patient, stored in the n-vector S, where Si ∈ {−1, 0, 1} denotes whether the

patient benefits from control, has identical reward under control and treatment, or benefits from

treatment, respectively. We assume that these subgroups apply to each outcome for the sake of

simplifying comparisons to the gold standard; the details of how each subgroup is determined

varies between experiments. R1 and R2 are constructed similarly across experiments. Given fixed

treatment effects δ1 and δ2 for R1 and R2 respectively, each experiment considers two settings. In

the first, termed synergistic, the treatment effects point in the same direction for both outcomes:

Rj = Xβ + ε+ δjAS, (2.6)
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for j = 1, 2. In the reverse scenario, termed antagonistic, the treatment effects point in opposite

ways for the two outcomes:

R1 = Xβ + ε+ δ1AS (2.7)

R2 = Xβ + ε− δ2AS.

The threshold q defines the failure event for R1: patients with R1 < q have “failed” R1 and

receive composite outcome R ∈ [0, 1] based on the magnitude of their R1, while patients with

R1 ≥ q have “acceptable” R1 and receive R ∈ [1, 2] based on the magnitude of their R2, in the

manner described in Section 2.5.2.4. We set q to the first quartile of R1 in the sequel. In each

simulation, once the data were generated, we estimated the optimal ITR in the sample using RLT

(and, in the second experiment, OWL), then used it to obtain subgroup estimates Ŝ. One set of

evaluation metrics for the method is the subgroup recovery sensitivity and specificity, defined as

sensj =

∑n
i=1(Ŝi = j ∩ Si = j)∑n

i=1 Si = j
(2.8)

specj =

∑n
i=1(Ŝi 6= j ∩ Si 6= j)∑n

i=1 Si 6= j
,

where j = −1, 0, 1. Another evaluation metric is available for the RLT ITR due to the simulated

nature of the data. Let R1 and R−1 denote the true value of R under intervention and control.

Since we know the magnitude and direction of the true treatment effect for both R1 and R2, we

can calculate the difference in R obtained by switching a patient on intervention to control or

vice versa. For instance, in the synergistic setting, a patient with Si = 1 and Ai = 1 would have

R−1i1 = Ri1−δ1 and R−1i2 = Ri2−δ2. Then R−1i could be obtained by recalculating R in the manner

described in (2.5) with these perturbed values. Let Q̂1(X) and Q̂−1(X) denote the RLT-predicted

values of R under treatment and control, respectively. Then we can examine the mean squared
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error in treatment effect, defined as

MSE = n−1
n∑
i=1

[(
R1
i −R−1i

)
−
(
Q̂1(Xi)− Q̂−1(Xi)

)]2
. (2.9)

2.6.1.1 Experiment in Simple Conditions

We first explored a basic model to assess the performance of the method when when all

factors are straightforward, particularly with regards to the muted group. In this model, we set

n = 200 and p = 1.

As briefly discussed in Section 2.6.1, we intentionally built a muted group into our simulated

data. In particular, we allotted the true subgroup membership according to

S =


1, X > 0.5

−1, X < −0.5

0, otherwise.

(2.10)

In this experiment, we considered both the synergistic and antagonistic setting, and we consid-

ered three values for each δj: 1, 3, and 10.

As our goal in this simulation was to examine the behavior of the method surrounding the

muted group, we used only RLT to estimate the optimal ITR.

Table 2.2 gives the subgroup recovery sensitivity and specificity in the synergistic setting

by δ1, δ2, and value of S. Overall, we see high sensitivity for both the intervention and control

group, especially when the treatment effect for either outcome variable is large. Specificity is

less impressive in these groups for large and small treatment effects alike. This is attributable to

a curious phenomenon: in none of these simulations did the proposed method recover a muted

group. While this seems an indictment of the method, examining the treatment effect MSE in

the synergistic setting, displayed in Table 2.3, reveals a different story: the treatment effect MSE

is small even when the treatment effects are modest, and very small when treatment effects are
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large, which suggests the method is performing well. Figure 2.1 illustrates the disconnect be-

tween the conclusions drawn from these evaluation metrics. In particular, when Xi ∈ [−0.5, 0.5],

we know Si = 0, so a method that performs perfectly would have Q̂1(Xi)− Q̂−1(Xi) within this

range. The method does not set any of these differences identically equal to zero for any combina-

tion of (δ1, δ2); however, for each (δ1, δ2), the estimated differences are smaller in this range than

outside it, with this trend increasing as the true treatment effect increases. We will return to this

observation in our discussion in Section 2.6.1.3.

Table 2.4 gives the treatment effect MSE in the antagonistic setting. Again, MSE is low

throughout, suggesting the method performs well even in this conceptually more difficult setting.

Figure 2.2 illustrates the predictions and estimated vs. true treatment effects plotted against the

true splitting variable X in the antagonistic setting. Again, the predicted differences between

interention and control are smaller in magnitude inside the range of the true muted group than

outside it, on average, though none are set identically to zero. We also note the somewhat unintu-

itive behavior of the true treatment effects: although the treatment effect is truly positive for one

of the outcome variables, nearly all the true treatment effects are negative. Optimizing on either

outcome in a univariate manner would fail to discover this interesting trend, as Figure 2.3 demon-

strates: the trend for the univariate outcome appears similar to that exhibited in the synergistic

setting.

2.6.1.2 Experiment in Trial-Like Conditions

We briefly explore the performance of the method in conditions more similar to those ob-

served in the FLEX trial. In this experiment, we set n = 200 and p = 30.
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RLT Predictions and Predicted Differences (Synergistic)

●
● ● ●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
● ●

●

●

●
●

●

● ●

●

●

●
●

●

0.50

0.75

1.00

1.25

1.50

−1.0 −0.5 0.0 0.5 1.0

P
re

ds

A

●● ● ●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●
●●●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
● ●

●

●● ●

●

●
●

●
●

● ●

●

●
●

●

●

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0

P
re

ds

B

●● ● ● ●●

●

●
●

●●●
●

●

●●
●

●● ●

●
●

●

●

●

●
●

●
● ●●

●
●

●
●

●

● ●●
●●●●

●
●●● ●

● ●●
●

●

●
●●●

●

●

●
●

●
●

●
●● ●

●

●

●●
●

●

●
●

●

●● ●●

●

● ● ●

●

●● ●
●

● ●
●●

● ●
●

●● ●●

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0

X

P
re

ds

C

A ● −1 1

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●
● ●

●

●
●

●●

●

●
●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●
●

●
●

●

● ●

●

●
●

● ●●

●

●●●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5 1.0

P
re

d 
D

iff
s

D

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

● ●

● ●

●
●

●
●●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5 1.0

P
re

d 
D

iff
s

E

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●● ●●●●

●
●

●

●

● ●

●

●

● ●

●

●

● ●

●●

●

●
●

●

●

●●
●

●●

●

●
●

● ●●●

●
●

●●
●

●

●

●

●

●
●

●

● ●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●

●

●

● ●●

●

●●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5 1.0

X

P
re

d 
D

iff
s

F

ITR ●● −1 1 2

Figure 2.1: (A-C). RLT-predicted values of R by true treatment effect, intervention status, and true splitting
variable X for the simple numerical experiment of Section 2.6.1.1, synergistic setting. The true treatment effects
for R1 and R2 are set to δ1 = δ2 = 1, 3, 10 in A, B, and C, respectively. (D-F). Differences in predicted composite
reward R between intervention and control by true treatment effect, RLT ITR assignment, and true splitting variable
X , as well as the true treatment effect for R, for the same numerical experiment. ITR=2 denotes the true treatment
effect for R. The true treatment effects for R1 and R2 are set to δ1 = δ2 = 1, 3, 10 in D, E, and F, respectively.

25



RLT Predictions and Predicted Differences (Antagonistic)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

0.75

1.00

1.25

1.50

1.75

−1.0 −0.5 0.0 0.5 1.0

P
re

ds

A

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●● ●

●
●

●
●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0

P
re

ds

B

●●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●● ●

●
●

● ●

●●●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●
●

●●

●

●● ●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0

X

P
re

ds

C

A ● −1 1

●

●●

●● ●

●

●
●

●

●●

● ●

●

●

●

●
●

●
●

●

●

●

●●●
●

●

●

●

● ●

●
●

●

●
● ●

●

● ●

● ●●
●●

●

●

● ●

●

●

●

●

●
●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●●

●●

● ●●

●
●

●
●

●
●

●●

●
●

●

●●
●

● ●

●
●●

●

●

●

●
●

●
●

●
●

●●●

●

●

●

●

●●

●

●●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
● ●

●

−0.8

−0.4

0.0

0.4

−1.0 −0.5 0.0 0.5 1.0

P
re

d 
D

iff
s

D

●
●

● ●

● ●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

−1.2

−0.8

−0.4

0.0

−1.0 −0.5 0.0 0.5 1.0

P
re

d 
D

iff
s

E

●
●

●
●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

● ●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

−1.5

−1.0

−0.5

0.0

−1.0 −0.5 0.0 0.5 1.0

X

P
re

d 
D

iff
s

F

ITR ●● −1 1 2

Figure 2.2: (A-C). RLT-predicted values of R by true treatment effect, intervention status, and true splitting
variable X for the simple numerical experiment of Section 2.6.1.1, antagonistic setting. The true treatment effects
for R1 and R2 are set to δ1 = δ2 = 1, 3, 10 in A, B, and C, respectively. (D-F). Differences in predicted composite
reward R between intervention and control by true treatment effect, RLT ITR assignment, and true splitting variable
X , as well as the true treatment effect for R, for the same numerical experiment. ITR=2 denotes the true treatment
effect for R. The true treatment effects for R1 and R2 are set to δ1 = δ2 = 1, 3, 10 in D, E, and F, respectively. Note
the differences in shape between this panel and Figure 2.1.
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Univariate Predictions and Predicted Differences (Antagonistic)
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Figure 2.3: (A-C). RLT-predicted values of R1 by true treatment effect, intervention status, and true splitting
variable X for the simple numerical experiment of Section 2.6.1.1, antagonistic setting. The true treatment effect
for R1 is set to δ1 = 1, 3, 10 in A, B, and C, respectively. (D-F). Differences in predicted reward R1 between
intervention and control by true treatment effect, RLT ITR assignment, and true splitting variable X , as well as the
true treatment effect for R1, for the same numerical experiment. ITR=2 denotes the true treatment effect for R1. The
true treatment effect for R1 and R2 is set to δ1 = 1, 3, 10 in D, E, and F, respectively. Note the similarities in shape
between this panel and Figure 2.1.
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δ1 δ2 Measure S = −1 S = 0 S = 1
1 1 Sens 0.962 0.000 0.917

Spec 0.541 1.000 0.750
3 Sens 0.981 0.000 1.000

Spec 0.581 1.000 0.743
10 Sens 1.000 0.000 1.000

Spec 0.669 1.000 0.664
3 1 Sens 1.000 0.000 0.917

Spec 0.547 1.000 0.757
3 Sens 1.000 0.000 1.000

Spec 0.581 1.000 0.750
10 Sens 1.000 0.000 1.000

Spec 0.581 1.000 0.750
10 1 Sens 1.000 0.000 0.938

Spec 0.534 1.000 0.776
3 Sens 1.000 0.000 1.000

Spec 0.601 1.000 0.730
10 Sens 1.000 0.000 1.000

Spec 0.588 1.000 0.743

Table 2.2: Subgroup Recovery Sensitivity and Specificity by Treatment Effect (Simple Experi-
ment, Synergistic Setting)

δ2 = 1 δ2 = 3 δ2 = 10
δ1 = 1 0.054 0.035 0.053
δ1 = 3 0.040 0.027 0.015
δ1 = 10 0.036 0.022 0.012

Table 2.3: Treatment Effect MSE by True Treatment Effect (Simple Experiment, Synergistic
Setting)

As in the simple simulation of Section 2.6.1.1, we divide the sample into a true intervention,

control, and muted group. The subgroup divisions are given by

S =


−1, atXk,int < c1

1, atXk,int > c2

0, otherwise,

(2.11)

where Xk,int is a matrix composed of the first k columns of X and all their pairwise interactions,

a is a random Gaussian vector of the corresponding length, and c1 and c2 are specified thresholds.
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δ2 = 1 δ2 = 3 δ2 = 10
δ1 = 1 0.035 0.049 0.057
δ1 = 3 0.027 0.040 0.069
δ1 = 10 0.030 0.043 0.066

Table 2.4: Treatment Effect MSE by True Treatment Effect (Simple Experiment, Antagonistic
Setting)

In the sequel, we choose k = 2 and set c1 and c2 to the first and third quartiles of aTXk,
∫ , respec-

tively. In this experiment, we considered both the synergistic and antagonistic setting, and we

considered three values for the true univariate treatment effects δj, j = 1, 2: 1, 3, and 10. Addi-

tionally, we considered both RLT and OWL to estimate the optimal ITR. We ran 100 simulations

for each combination of ITR method, δ1, δ2, and setting.

Table 2.5 gives the average subgroup recovery sensitivity and specificity over the 100 simula-

tions for both RLT and OWL for the synergistic setting, divided by true subgroup status and true

value of the univariate treatment effects δ1 and δ2. Both methods show improvements in sensitiv-

ity for the intervention and control groups as the true treatment effect sizes increase. RLT once

again struggles to pick up a muted group in any setting, failing to do so entirely when effect sizes

are large. Unlike in the numerical experiment of Section 2.6.1.1, RLT does succeed in discover-

ing a muted group with high specificity when effect sizes are small, albeit with modest sensitivity.

As noted before, OWL is incapable of discovering a muted group; its sensitivity and specificity

remain admirably high in the groups it can recover.

Tables 2.6 and 2.7 give the average treatment effect MSE over the 100 simulations by true

value of univariate treatment effects δ1 and δ2 for the synergistic and antagonistic settings, re-

spectively. As in Section 2.6.1.1, MSE values are generally low in this numerical experiment,

especially in the synergistic setting, suggesting that the method performs well at estimating the

true treatment effect in trial-like settings even when its performance in identifying members of

the muted group appears to suffer.
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δ1 δ2 Measure Method=RLT Method=OWL
S = −1 S = 0 S = 1 S = −1 S = 0 S = 1

1 1 Sens 0.445 0.293 0.427 0.722 0.000 0.719
Spec 0.678 0.705 0.698 0.610 1.000 0.609

3 Sens 0.719 0.067 0.801 0.810 0.000 0.824
Spec 0.706 0.934 0.650 0.667 1.000 0.646

10 Sens 0.928 0.000 0.941 0.866 0.000 0.876
Spec 0.740 1.000 0.690 0.693 1.000 0.674

3 1 Sens 0.964 0.009 0.718 0.929 0.000 0.727
Spec 0.521 0.992 0.830 0.550 1.000 0.775

3 Sens 0.986 0.000 0.934 0.938 0.000 0.868
Spec 0.678 1.000 0.778 0.654 1.000 0.744

10 Sens 0.991 0.000 0.983 0.945 0.000 0.919
Spec 0.723 1.000 0.759 0.697 1.000 0.730

10 1 Sens 0.999 0.000 0.832 0.991 0.000 0.624
Spec 0.568 1.000 0.843 0.436 1.000 0.868

3 Sens 0.999 0.000 0.972 0.984 0.000 0.835
Spec 0.671 1.000 0.809 0.596 1.000 0.809

10 Sens 0.999 0.000 0.998 0.974 0.000 0.939
Spec 0.715 1.000 0.778 0.702 1.000 0.750

Table 2.5: Subgroup Recovery Sensitivity and Specificity by Method and Treatment Effect
(Trial-Like Conditions, Synergistic Setting)

δ2 = 1 δ2 = 3 δ2 = 10
δ1 = 1 0.109 0.129 0.139
δ1 = 3 0.153 0.137 0.119
δ1 = 10 0.091 0.080 0.055

Table 2.6: Treatment Effect MSE by True Treatment Effect (Trial-Like Conditions, Synergistic
Setting)

2.6.1.3 Discussion of Numerical Experiments

One salient take-away from the simple numerical experiment of Section 2.6.1.1, especially

the disconnect between subgroup recovery sensitivity and specificity and treatment effect MSE

illustrated by Figure 2.1, is that slight alterations to this method may lead to improvements in its

performance as measured by subgroup recovery sensitivity and specificity. In real data, we will

not know the true treatment effect—the method will, for better or worse, be judged on its effi-

cacy in determining the correct subgroup label. In this experiment, the method reliably estimated
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δ2 = 1 δ2 = 3 δ2 = 10
δ1 = 1 0.099 0.107 0.123
δ1 = 3 0.150 0.146 0.137
δ1 = 10 0.094 0.104 0.141

Table 2.7: Treatment Effect MSE by True Treatment Effect (Trial-Like Conditions, Antagonistic
Setting)

much smaller treatment effects in the range defined by the muted group than the range defined

by the intervention and control groups, but failed to set these effects identically equal to zero. An

“ε-insensitive” version of the method, in which predicted values under treatment and control must

differ by at least ε to be placed into either the control or intervention group, might offer improved

performance with the same attractive interpretability. As discussed more fully in Section 2.8,

the implementation of OWL used here cannot create a muted group, but an ε-insensitive exten-

sion of OWL might offer the same attractive features. For either potential ε-insensitive method,

challenges prove to arise from determining the best automated procedure for choosing ε.

Another notable trend observed in the numerical experiments in both Sections 2.6.1.1 and

2.6.1.2 is the high specificity for the muted group even when effect sizes were small. This fact

may increase our confidence in the existence of the muted group assigned by RLT in the FLEX

trial, while the satisfactory sensitivity and specificity for both the intervention and control groups

in numerical experiments is promising for those groups as well.

2.7 Sensitivity Analyses

In this section, we present sensitivity analyses pertaining to two of our methodological de-

cisions: the decision to impute missing covariates with MICE, and the decision to use RLT to

compute the estimated optimal ITR. We address the former by carrying out the method on the

subset of patients with complete cases in all covariates and outcomes; we address the latter by

estimating the optimal ITR with OWL. As such, we ultimately explored four settings: complete

cases and RLT; complete cases and OWL; imputed cases and RLT; and imputed cases and OWL.
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Table 2.8 gives V̂opt for each combination of dataset, ITR estimation method, and outcome

trained upon. Each column of table 2.8 has its own natural numerical scale, due to the distribu-

tion of the underlying rewards. The combination of method and dataset that performed the best

for each outcome, in terms of value, is shown in bold. 95% confidence intervals for each value es-

timate are given by the bootstrap, described in fuller detail in Section 2.9. For the three univariate

outcomes, the different ITRs show only minor differences in value. OWL in the imputed dataset

performs nominally best for HbA1c and QoL, while OWL in the complete cases performs nom-

inally best for BMIz. Of these comparisons, only one seems to indicate a significant difference:

RLT in the imputed dataset appears to perform worse than OWL in the imputed dataset for the

univariate HbA1c outcome, with the former’s 95% CI lying entirely above the latter’s. For the

composite outcome, however, RLT in the imputed dataset provides a substantial improvement in

value over all other estimated ITRs, with its 95% CI lying well above all other ITR’s.

Dataset Method HbA1c QoL BMIz Composite
Complete cases RLT 0.6786 0.6434 0.9670 2.1359

(0.660,0.702) (0.643,0.702) (0.954,0.984) (2.030,2.272)
OWL 0.6905 0.7006 0.9857 2.0734

(0.693,0.707) (0.698,0.722) (0.984,0.989) (2.060,2.167)
Imputed RLT 0.6738 0.6739 0.9737 2.6985

(0.661,0.689) (0.669,0.722) (0.960,0.988) (2.696,2.858)
OWL 0.7044 0.7021 0.9855 1.9867

(0.702,0.705) (0.701,0.703) (0.985,0.986) (1.959,2.070)

Table 2.8: Estimated Value (Bootstrap 95% Confidence Interval) of ITR by Method, Dataset, and
Outcome Variable

This improvement in value is the primary reasons we chose RLT in the imputed dataset

as the primary ITR estimation method of interest. The others are more philosophical in nature.

RLT’s creation of the muted group, as described in the main text, is another argument in favor of

RLT—the muted group may prove to be an important consideration for real-life decisions about

targeting inteventions. In particular, the fact that the majority of adolescents are “indifferent”

to the FLEX intervention with regards to HbA1c, as Table 3 in the main text demonstrates, is a

reflection of the challenges in controlling glycemia within the age range studied by the trial, as
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well as an indication that future work is needed to better tailor the FLEX intervention toward the

specific needs of adolescents. Additionally, the arguments that typically apply to imputation—it

allows us to use more data, and the assumptions required to impute are least impactful when the

amount of total observations filled in by imputation is small—apply to the FLEX trial as well.

For completeness, we present Table S8, the “full” version of Table 3 in the main text with all

covariates that were considered instead of only those that had significant differences between sub-

groups for at least one ITR. We also present Table S9, the analogue of Table S8 for the subgroups

defined by OWL in the imputed dataset. For conciseness, we do not present the analogous tables

for the ITRs estimated in the complete cases dataset.

Table S9 depicts the characteristics of FLEX participants in the subgroups assigned by the

OWL ITR to intervention and usual care for the composite outcome and each univariate outcome.

Regarding the composite outcome, 101 participants (47%) were assigned to intervention, while

the remaining 115 participants (53%) were assigned to usual care. Individuals assigned to the

intervention subgroup were more likely to be female (57% versus 44%; P= 0.04), more likely to

be non-Hispanic White race/ethnicity (85% versus 70%; P=0.05), and less likely to have private

health insurance (57% versus 82%; P < 0.01). Participants assigned to intervention had a longer

disease duration at baseline (7.3 (3.7) years versus 5.5 (3.5) years; P < 0.01) and were less

likely to use an insulin pump (57% versus 83.5%; P < 0.01). They also reported lower problem-

solving abilities at baseline (SPSI score of 103.2 (13.0) versus 108.4 (12.5); P < 0.01).

Regarding the HbA1c univariate outcome, 118 participants (55%) were assigned to interven-

tion and 98 participants (45%) were assigned to Usual Care. Individuals assigned to intervention

were more likely to be non-Hispanic white race/ethnicity (91% versus 60%; P < 0.01), less

likely to use an insulin pump (64% versus 80%; P < 0.01) and experienced more clinically seri-

ous hypoglycemia at baseline. They also reported higher motivation at baseline (P = 0.03) and

lower diabetes-related family conflict (P = 0.04).

Regarding the QoL univariate outcome, 123 participants (57%) were assigned to inter-

vention and 93 participants (43%) were assigned to usual care. Individuals assigned to inter-
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vention showed higher glycemic variability (coefficient of variation of 41.5% (8.0%) versus

37.9% (7.4%) and experienced more clinical and clinically serious hypoglycemia at baseline (all

P < 0.01).

Regarding the BMIz univariate outcome, 116 participants (54%) were assigned to inter-

vention and 100 participants (46%) were assigned to usual care. Individuals assigned to inter-

vention showed a longer disease duration at baseline (7.8 (3.8) months versus 4.7 (3.0) months;

P < 0.01). They also showed a higher frequency of clinical hypoglycemia (P < 0.01), higher

diabetes adherence (DSMP score of 57.0 (12.0) versus 53.9 (10.7); P = 0.05), and lower fear of

hypoglycemia as measured by the helplessness/worry (P = 0.01) and worry about negative social

consequences (P = 0.02) subscales.

Compared to RLT (depicted in Table S8), the OWL ITR (depicted in Table S9) assigned a

larger proportion of the FLEX sample to the intervention group, ranging from 47% for the com-

posite outcome to 57% for quality of life. Characteristics that were significantly different across

RLT-assigned subgroups were not consistent with the characteristics that were significantly dif-

ferent across the OWL-assigned subgroups. In some cases, the OWL-assigned subgroups showed

significant differences in additional characteristics. For example, individuals assigned to interven-

tion for the composite outcome were less likely to have public health insurance in the subgroups

defined by both RLT and OWL, but those in the OWL-defined group showed additional differ-

ences in sex, race/ethnicity, disease duration, and insulin pump use versus the participants that

OWL assigned to receive usual care. In other cases, differences across the RLT-assigned sub-

groups were not replicated across the OWL-assigned subgroups. One compelling explanation

for this fact is the ability of RLT to form a muted group, in contrast to OWL, which results in pa-

tients from the OWL-assigned intervention and usual care groups being reassigned to the muted

group. For example, the individuals muted by RLT for the HbA1c univariate outcome had signifi-

cantly higher HbA1c at baseline compared to the intervention and usual care groups. By contrast,

the OWL-assigned subgroups showed no differences in HbA1c, although both groups showed

consistent differences in hypoglycemia at baseline.
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2.8 Outcome weighted learning (OWL)

Outcome weighted learning (OWL) is a precision medicine method for estimating the opti-

mal ITR in a sample. Unlike RLT, which poses a model between X and R and inverts it to find

the ITR, OWL considers a class of functions Π to which all estimated ITRs can belong, then di-

rectly estimates the optimal ITR π̂opt by minimizing a loss function applied to this class (Zhao

et al., 2012). The challenge in implementing OWL comes from specifying a class Π that is ro-

bust enough to allow sufficiently close estimation of the true optimal ITR π∗opt but also compu-

tationally tractable. For details on the specific implementation of OWL we employed, Residual

Weighted Learning with a linear kernel, see Zhou et al. (Zhou et al., 2017).

One key difference between RLT and OWL is that OWL does not create a muted group.

Residual weighted learning ultimately relies on support vector machines, which are strict classifiers—

all observations are assigned to either treatment or control.

This implies that OWL and RLT may be suited to different scenarios. In scenarios where the

true muted group is small, OWL’s focus on direct estimation of the ITR may lead to improve-

ments in overall value. But in scenarios where the true muted group is large, OWL will classify

them into either intervention or control regardless of the estimated treatment effect. This may

impact value estimates, but more importantly misrepresents the efficacy of both intervention and

control. And naturally, any attempt to characterize the ITR-based treatment or control group

through their covariates will be highly influenced by having additional group members under

OWL, especially group members whose differential treatment response suggests they may in-

crease the heterogeneity of the group.

2.9 Imputation Bootstrapping Procedure

In this section we describe the bootstrapping procedure we employed to estimate the variabil-

ity of an ITR which was estimated from multiple imputed datasets. We begin by restating, and

introducing notation for, our multiple imputation procedure.
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Let k = 1, . . . , K index the K datasets imputed by MICE, Ximp,k. As noted in the main text,

we used K = 11 to preclude the possibility of ties on a majority vote for OWL, but we leave K

general here. As before, let i = 1, . . . , n index patients and j = 1, . . . , p index covariates, such

that each Ximp,k is an n× p matrix. Let π̂opt,k denote the estimated optimal ITR estimated from the

data Ximp,k, and let V̂opt,k denote its estimated value. Let the estimated optimal ITR for the whole

sample be denoted π̂opt, with estimated value V̂opt. Our multiple imputation procedure follows

the steps outlined in Algorithm 1.

Algorithm 1 Multiple imputation procedure for π̂opt
1. Generate Ximp,k, k = 1, . . . , K, via MICE

2. For k = 1, . . . , K, compute π̂opt,k via the method of interest

3. Set π̂opt to the plurality vote of the π̂opt,k

4. Obtain the estimated value V̂ = (
∑

iRiI {Ai = π̂opt(Xi)}) / (
∑

i I {Ai = π̂opt(Xi)})

We can use Algorithm 1 to obtain point estimates of Vopt. However, due to multiple imputa-

tion, large-sample theory no longer provides a simple form for an estimate of the variability of

Vopt. Although the bootstrap is not guaranteed to be valid in all precision medicine settings, under

reasonable regularity conditions for the estimated ITR, bootstrap validity will hold.

The first and second steps of Algorithm 1 are, unsurprisingly, its most computationally inten-

sive. To avoid replicating as many computationally intensive steps as possible when bootstrap-

ping, we adopt the bootstrapping procedure described in Algorithm 2.

Strictly speaking, the bootstrapping procedure in Algorithm 2 does not capture all of the

variability that arises from MICE, in the sense that we do not impute via MICE after generating

each bootstrap sample. As the proportion of missing data in any one column in this sample was

quite low, however, we did not believe capturing this particular source of variance was crucial

given the computational costs it would incur.

Bootstrap procedures to estimate the confidence interval of a single ITR’s value, or the dif-

ference in estimated value between two ITRs, proceed in a manner analogous to Algorithm 2,

following the usual bootstrapping recommendations that B should be higher to estimate a con-
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Algorithm 2 Bootstrapping to estimate the variability of Vopt
1. Sample the indices i = 1, . . . , n B times with replacement to generate the bootstrapping

index vectors, Ib, b = 1, . . . , B

2. For b = 1, . . . , B:

(a) For k = 1, . . . , K:
i. Generate the bth bootstrap sample of the kth imputed dataset X̃b

imp,k, by stacking
the rows of Ximp,k corresponding to Ib

ii. Compute π̂bopt,k via the method of interest

(b) Set π̂bopt to the plurality vote of the π̂bopt,k
(c) Compute V̂ b

opt =
(∑

iRiI
{
Ai = π̂bopt(Xi)

})
/
(∑

i I
{
Ai = π̂bopt(Xi)

})
3. Compute ŜE(V̂opt) = 1

B

B∑
b=1

(
V̂ b
opt − V̄opt

)

fidence interval than a variance. As the procedure is entirely analogous, we do not explicitly

outline it here. For the sensitivity analyses presented in Section 2.7, we calculated 95% CIs based

on B = 1000 bootstrap replicates.
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CHAPTER 3: VOLATILITY LEARNING IN DYNAMICAL SYSTEMS

3.1 Introduction

Ordinary differential equations (ODEs) offer an attractive avenue for modeling random pro-

cesses that vary in continuous-time. They have been employed in a variety of health science

research settings, including metabolic modeling in type 1 diabetes (Lehmann and Deutsch, 1992),

multi-stage modeling in cancer (Spencer et al., 2004), and recovery of gene regulatory networks

in several diseases (Wu et al., 2014b; Song et al., 2018). We consider the setting where the dy-

namics of one process are of particular interest, but several other history or covariate processes

vary along with the process of interest. We can represent such a setting as

dX(t; θ) = f(Z(t; θ), θ)dt; t ∈ [0, 1], (3.1)

where the process of interest X(t; θ) and the history processes H1(t; θ), . . . , Hp−1(t; θ) are col-

lected in Z(t; θ) ≡ (X(t), H1(t), . . . , Hp−1(t))
T , and the functional form of f may be known or

unknown. The index t is over time, and is condensed to [0, 1] without loss of generality. Typically,

an ODE of the form given in (3.1) will include a scalar initial condition X(0; θ) = C. Together

with an initial condition, (3.1) describes the mean motion of the process of interest in a general

way.

In some applications, however, merely describing the mean motion of the process is not suf-

ficient. In type 1 diabetes, for instance, the variability of serum glucose may serve as a better

predictor of long-term complications (Monnier et al., 2008) and certain comorbidities (Saisho,

2014) than exposure to sustained hyperglycemia; in cancer epigenomics, the volatility of methyla-
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tion may be linked to informative changes in the genome (Wagner et al., 2014). In such settings,

an attractive approach is to model the dynamical system with a Stochastic Differential Equation

(SDE), taking the form

dX(t; θ) = µ(Z(t; θ), θ)dt+ σ(Z(t; θ), θ)dW (t); t ∈ [0, 1], (3.2)

where W (t) is standard Brownian motion and the functional forms µ and σ may be known or

unknown. The form (3.2) contains a drift term governed by µ that describes the motion of the

drift of X(t; θ) and a diffusion term governed by σ that describes the volatility of X(t; θ). In

practice, we will assume the processes are observed at n + 1 discrete time points 0 = t0 < t1 <

· · · < tn = 1, and that the observations Yji are subject to measurement error exogenous to the

process, such that

Yji = Zj(ti; θ
∗) + εi, j = 1, . . . , p, i = 1, . . . , n, (3.3)

where θ∗ is a true parameter vector and the ε represent independent measurement errors. For ease

of expression, we will frequently suppress the dependence of Z(t; θ) on θ.

If the number of covariate processes, p, is high, it is frequently of scientific and practical

interest to discover which of the processes in Z(t) inform the dynamics of X(t) in some sense

that is significant. The structure in (3.2) provides a convenient way to express this concept: if µ

is a function of Zj , then we say Zj regulates the drift of X , while if σ is a function of Zj , we say

Zj regulates the volatility of X . Note that these conditions are neither disjoint nor necessarily

co-occurring. Several well-studied statistical tools are suited to the task of inducing sparsity,

and thus estimating regulators. Examples include the Least Absolute Shrinkage and Selection

Operator (LASSO) (Tibshirani, 1996) and the group LASSO (Yuan and Lin, 2006), which have

been applied and adapted to a variety of research settings. Recent work provides substantive

insight into the questions of parameter estimation and model selection in the context of high-

dimensional ODEs (Lu et al., 2011; Henderson and Michailidis, 2014; Wu et al., 2014a; Chen
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et al., 2017), including several that do not make strong assumptions on the form of f in (3.1).

Chen et al. (2017) in particular provides theoretical justifications for a model selection scheme in

the context of ODEs. These tasks remain relatively unexplored in the context of SDEs, however,

especially with similarly weak assumptions on functional forms for µ and σ.

In this paper, we propose a nonparametric method for estimating the unknown functions µ

and σ and recovering the true regulators of both the drift and volatility of X in (3.2). The remain-

der of the paper is laid out as follows. In Section 3.2, we propose our procedure. In Section 3.3,

we explore its theoretical properties. In Section 3.4, we study its performance in finite samples

by means of numerical experiments. In Section 3.5, we apply it to a dataset arising from a clini-

cal study of youth with type 1 diabetes. We conclude with a discussion and directions for future

research in this vein in Section 3.6. Details of proofs are provided in the supplementary material.

3.2 Methods

In this section, we propose a method for parameter estimation and model selection at both

the drift and volatility level for a process of interest characterized by an ODE.

3.2.1 Notation

Let t be the time index of the dynamical system. Without loss of generality, assume we ob-

serve the system at n + 1 times 0 = t0 < t1 < · · · <, tn = 1. As before, we let X ∈ X (·) denote

the process of interest, H1, H2, . . . , Hp−1 ∈ X (·) denote the covariate or history processes, and

Z(t) = (X(t), H1(t), . . . , Hp−1(t))
T denote the entire p-vector of the process at time t.

Let Yij denote the observation of the jth process at the ith time point, where the numbering

of j is the same as that of Z. Let X (h) denote a nonparametric class of functions defined on

[0, 1] and indexed by smoothing parameters h, and let X p(h) denote the pth Cartesian product

of X (h). Let Q(·) refer to an arbitrary function from X (·). We will refer to the `2-norm of a

vector or matrix as ‖ · ‖2 and the `2-norm of a function f on the interval [0, 1] as ‖f‖2,[0,1], i.e.

‖f‖22,[0,1] ≡
∫ 1

0
f 2(t)dt. The minimum and maximum eigenvalues of a square matrix A will be
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denoted Λmin(A) and Λmax(A), respectively. True values of processes and parameters will be

identified by an asterisk: for instance, α∗ denotes the true value of α.

3.2.2 Proposed Model

As in Chen et al. (2017), we allow components of the ODE to be high-dimensional, although

we assume the main process of interest X is univariate. We assume that the ODE for the process

of interest describes the behavior of the process drift and volatility together. That is, we assume

its derivative takes the form

dX(t) = µ (Z(t)) dt+ σ (Z(t)) dW (t), (3.4)

where µ : X p(·) → R and σ : X p(·) → R are unknown functional forms, and W (·) is standard

Brownian motion.

We assume that the true form of µ and σ is additive. That is, there exist functions f1, f2, . . . , fp

and g1, g2, . . . , gp such that (3.4) can be written

dX(t) =

[
p∑
j=1

fj (Zj(t))

]
dt+

[
p∑
j=1

gj (Zj(t))

]
dW (t). (3.5)

If the true function f ∗j in (3.5) is nonzero, we refer to Z∗j as a true regulator of the drift of X∗.

Similarly, if the true function g∗j is nonzero, we refer to Z∗j as a true regulator of the volatility of

X∗. Let Sµ ≡ {j : ‖f ∗j ‖2 6= 0, j = 1, . . . , p} denote the set of true drift regulators of X∗, and

similarly let Sσ ≡ {j : ‖g∗j‖2 6= 0, j = 1, . . . , p} denote the set of true volatility regulators of X∗.

We will use finite and known bases of functions, φ(·) ≡ (φ1(·), φ2(·), . . . , φM1(·))T and

ψ(·) ≡ (ψ1(·), ψ2(·), . . . , ψM2(·))T , to approximate f and g, respectively. Note that M1 and M2

are not necessarily equal, but φ and ψ in general will be of the same form (e.g. cubic spline or
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Fourier functions). We assume that the basis φ approximates f by

fj(x) = φ(x)Tαj + δµ,j(x), αj ∈ RM1 (3.6)

gj(x) = ψ(x)Tβj + δσ,j(x), βj ∈ RM2 ,

where δµ,j and δσ,j are residuals. Using these basis functions, we can express the ODE for the

process of interest in the form

dX(t) =

[
α0 +

p∑
j=1

φ(Zj(t))
Tαj +

p∑
j=1

δµ,j(Zj(t))

]
dt (3.7)

+

[
β0 +

p∑
j=1

ψ(Zj(t))
Tβj +

p∑
j=1

δσ,j(Zj(t))

]
dW (t).

3.2.3 Estimating the Process Mean

To estimate α, as in (Chen et al., 2017), we proceed by integrating both sides of (3.7) from 0

to t, which yields

X(t)−X(0) =

[
α0t+

p∑
j=1

Φj(t)
Tαj +

p∑
j=1

∫ t

0

δµ,j(Zj(s))ds

]
(3.8)

+

[
β0(W (t)−W (0)) +

p∑
j=1

{∫ t

0

ψ(Zj(s))dW (s)

}T
βj +

p∑
j=1

∫ t

0

δσ,j(Zj(s))dW (s)

]
,

where the integrated basis Φ(·) is defined as

Φj(t) = (Φj1(t),Φj2(t), . . . ,ΦjM1(t))
T =

∫ t

0

φ(Zj(s))ds, j = 1, 2, . . . , p, (3.9)

and Φ0(t) = t.
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The proposed method solves for α by taking the expectation of both sides of (3.8), yielding a

form similar to that in (Chen et al., 2017):

α̂ = arg min
C0∈R,α0∈R,α1,...,αp∈RM1

1

2n
(3.10)

×
n∑
i=1

[
Yi1 − C0 − α0Φ̂0(ti)−

p∑
j=1

αTj Φ̂j(ti)

]2

+ χn

n∑
i=1

[
1

n

p∑
j=1

{
αTj Φ̂j(ti)

}2
]1/2

,

where

Ẑ(·;h) = arg min
Q(·)∈X (h)

n∑
i=1

‖Yi −Q(ti)‖22, (3.11)

and

Φ̂0(t) = t, Φ̂j(t) =

∫ t

0

φ(Ẑj(s;h))ds, j = 1, . . . , p. (3.12)

In (3.10), χn is a nonnegative and group sparsity-inducing tuning parameter. We will estimate Sµ

with the estimated set of drift regulators, Ŝµ ≡ {j : ‖α̂j‖2 6= 0, j = 1, . . . , p}.

3.2.4 Estimating the Process Volatility

We first note that rearranging, integrating over the interval (0, ti), and squaring both sides of

(3.4) gives us an estimator of the volatility of the process of interest in that interval, defined as

V (ti) ≡
[
X(ti)−X(0)−

∫ ti

0

µ (Z(s)) ds

]2
=

[∫ ti

0

σ (Z(s)) dW (s)

]2
. (3.13)

We will sometimes use the shorthand Vi to denote V (ti). Once we obtain α̂, we can estimate µ(·)

with

µ̂ (Z(t)) ≡ α̂0 +

p∑
j=1

φ(Ẑj.(t))
T α̂j, (3.14)
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which in turn allows us to estimate V (ti) with

V̂ (ti) ≡
[
X̂(ti)− X̂(0)−

∫ ti

0

µ̂ (Z(s)) ds

]2
. (3.15)

We proceed by taking the expectation of both sides of (3.13). After some simplification, this

yields

E [V (ti)] = βT
(∫ ti

0

[
2(ti − s)Ũ(s)

]
ds

)
β = βTUiβ, (3.16)

where β = (β0, β
T
1 , β

T
2 , . . . , β

T
p )T , Ũ(s) is an M2p+ 1×M2p+ 1 symmetric matrix with

Ũ(s) ≡



1 0 0 . . . 0

0 Ψ11(s) Ψ12(s) . . . Ψ1p(s)

0 Ψ21(s) Ψ22(s) . . . Ψ2p(s)

...
...

... . . . ...

0 Ψp1(s) Ψp2(s) . . . Ψpp(s)


, (3.17)

where

Ψjk(s) = ψ(Zj(s))ψ(Zk(s))
T , j = 1, . . . , p, k = 1, . . . , p, (3.18)

and

Ui ≡
∫ ti

0

[
2(ti − s)Ũ(s)

]
ds. (3.19)

For each (j, k), we will estimate Ψjk(s) with

Ψ̂jk(s) = ψ
(
Ẑj(s)

)
ψ
(
Ẑk(s)

)T
, (3.20)

and the estimators of Ũ(s) and Ui,
ˆ̃U(s) and Ûi respectively, follow analogously.

One approach is to directly find an estimator β̃ that satisfies

β̃ = arg min
β

n∑
i=1

(
Vi − βTUiβ

)2
+ λnJ(β), (3.21)
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where J(β) is a penalty term added in accordance with bias-variance tradeoff logic to control

the complexity of β̃. It is quite challenging to find appropriate solutions from (3.21), however,

especially ones that enforce group sparsity in a satisfactory manner through J(β). Consider

beginning with an estimator β̃ from (3.21), then enacting a one-step update ∆ to reach a new

estimator β̂ ≡ β̃+ ∆. First note that for any M2p+ 1×M2p+ 1 positive definite symmetric matrix

A,

β̂TAβ̂ − β̃TAβ̃ = (β̃ + ∆)TA(β̃ + ∆)− β̃TAβ̃ (3.22)

= 2β̃TAβ̃ + 2β̃TA∆ + ∆TA∆− 2β̃TAβ̃

= 2β̃TAβ̂ − 2β̃TAβ̃ + ∆TA∆.

Then we can say

1

n

n∑
i=1

(Vi − β̂T Ûiβ̂)2 =
1

n

n∑
i=1

(
Vi − β̃T Ûiβ̃ − (β̂T Ûiβ̂ − β̃T Ûiβ̃)

)2
(3.23)

=
1

n

n∑
i=1

(
Vi + β̃T Ûiβ̃ − 2β̃TUiβ̂ + ∆T Ûi∆

)2
,

where the last equality follows from (3.22). As we will discuss in further detail in Section 3.3,

provided β̃ is consistent, we may ignore the final term inside the parentheses in (3.23), giving us

the objective function

β̂ = arg min
β∈RM2p+1

(
Vi + β̃T Ûiβ̃ − 2β̃TUiβ

)2
+ λn

[
1

n

n∑
i=1

(
βT Ûiβ

)2]1/2
. (3.24)

Thus we arrive at Algorithm 3.

In practice, the group LASSO of Yuan and Lin (2006) assists in inducing group sparsity as

desired in Algorithm 3. The groups are defined by the groups of basis functions in the same way

as the rows of Ũ in (3.17), i.e., a single group of length 1 followed by p groups of length M2.
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Algorithm 3 Estimation of locally linear β̂

1. Find a consistent estimator β̃′ from (3.21).

2. Rescale to β̃ = γ̃1/2β̃, where γ̃ = arg min
γ

n∑
i=1

(
Vi − γβ̃′T Ûiβ̃′

)
.

3. While ε > εmax, where εmax is a pre-specified threshold:

(a) Find β̂′ using (3.24).

(b) Rescale to β̂ = γ̂1/2β̂′, where γ̂ = arg min
γ

1

n

n∑
i=1

(
V̂i − γβ̂′T Ûiβ̂′

)2
.

(c) Compute ε = ‖β̃ − β̂‖/‖β̂‖.
(d) Set β̃ = β̂.

4. Return β̂.

Let β̂ denote the final estimate provided by Algorithm 3 after convergence, and let β̂ =

(β̂0, β̂
T
1 , β̂

T
2 , . . . , β̂

T
p )T as before. We can estimate Sσ with the estimated set of volatility regulators

implied by β̂, Ŝσ ≡ {j : ‖β̂j‖2 6= 0, j = 1, 2, . . . , p}.
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3.3 Theoretical Properties

In this section, we establish consistency for the proposed method’s variable selection. In

this section, we provide the main assumptions and theoretical results required to do so; detailed

proofs are deferred to section A.1 of the supplementary material. In this section, we will let |S|

denote the cardinality of set S. For ease of notation, we will let S0 = 0 ∪ S.

A crucial first step in establishing variable selection consistency is bounding the error in-

troduced by using the smoothed estimates Ẑ(·;h) instead of the true trajectories Z∗(·). The

smoothed estimates are obtained from local polynomial regression.

For ease of presentation, we have assumed the measurement errors in (3.3) are normally

distributed; as explored in Tsybakov (2009), generalizations to bounded or sub-Gaussian errors

are possible, though not explored further in this paper.

Assumption 3.1. The measurement errors in (3.3) in are independent, and εij ∼ N (0, σ2), i =

1, . . . , n, j = 1, . . . , p.

We assume that the true trajectories Z∗j , j = 1, . . . , p, are smooth. Note that the form of our

model in (3.4), in particular the Brownian motion term, bounds the amount of smoothness we can

assume for X∗—namely, the `th derivative of X∗j will not exist for any ` ≥ 1/2. For the sake of

simplicity, we have extended this limitation to the rest of the Z∗j .

Assumption 3.2. Assume that the solutions Z∗j , j = 1, . . . , p, belong to the Hölder class Σ(τ1, L1),

where 0 < τ1 <
1
2
. That is, for ` ∈ (0, τ1),

|Z∗(`)j (t)− Z∗(`)j (t′)| ≤ L1|t− t′|τ1−`, ∀t, t′ ∈ [0, 1], j = 1, . . . , p.

Using these assumptions, we can obtain a concentration inequality for ‖Ẑj − Z∗j ‖.
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Theorem 3.1. Suppose that Assumptions 1-2 are satisfied. Let Ŵj be the local polynomial re-

gression estimator of order ` ≥ 3 with bandwidth

hn ∝ n(υ−1)/(2τ1+1) (3.25)

for some positive υ < 1. Then, for each j = 1, . . . , p,

‖Ẑj − Z∗j ‖2 ≤ C2n
2τ1

2τ1+1
(υ−1) (3.26)

holds with probability at least 1− 2 exp {−nυ/(2C3σ
2)} for some constants C2 and C3.

The concentration inequality in Theorem 3.1 relies on the concentration bounds for Gaussian

errors established in Boucheron et al. (2013). Note that our rate is slower than that established

in Chen et al. (2017). This slower rate is the cost of including Brownian motion in (3.4), as dis-

cussed above, and thereby indirectly the cost of being able to model the volatility of X .

Note that, as the bound in (3.26) holds uniformly for j = 1, . . . , p with probability at least

1 − 2p exp {−nυ/(2C3σ
2)}, the bound will hold uniformly for j = 1, . . . , p with probability

converging to 1 if p = o(exp {nυ/(2C3σ
2)}.

In Section 3.2.4, we argued that the final term in the final equality of (3.23) could be ignored.

We state our reasoning more clearly here. We must make one assumption about the estimator β̃.

Condition 3.1. The estimator β̃ is almost surely consistent. That is,β̃ →
as
β∗.

Note that the almost sure convergence in Condition 3.1 is stronger than we need for our

present argument; however, it will assist with further theoretical results later in this section. We

also briefly define oas(·) notation for completeness:

Definition 3.1. We say Xn = oas(Yn) if there exists a set A such that P (A) = 1 and ∀ω ∈ A,

Xn(ω)
Yn(ω)

→ 0.
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Define the optimization problem in (3.23) with

Mn(β̂) =
1

n

n∑
i=1

(
Vi + β̃T Ûiβ̃ − 2β̃TUiβ̂ + ∆T Ûi∆

)2
. (3.27)

Then we have

Mn(β̂) = M̃n(β̂) +
2

n

n∑
i=1

[
(Vi − β̃T Ûiβ̃)∆T Ûi∆

]
+

1

n

n∑
i=1

(
2β̃T Ûi∆ + ∆T Ûi∆

)2
, (3.28)

where

M̃n(β̂) =
1

n

n∑
i=1

(
Vi + β̃T Ûiβ̃ − 2β̃TUiβ̂

)2
. (3.29)

The rightmost term in (3.28) is clearly oas(‖∆‖2). Under Condition 3.1, the middle term will be

oas(‖∆‖2) provided that E[‖U‖] is bounded. Hence we have

Mn(β̂) = M̃n(β̂) + oas(‖∆‖2),

and thus M̃n(β), the left-hand term in (3.24), locally approximates Mn(β).

The proof of variable selection consistency for β̂ requires four additional assumptions about

the true process X∗(t), given here, along with one technical assumption and four technical condi-

tions, which are presented in the supplementary materials.

Assumption 3.3. The expectation of the derivative of X∗ is an additive function of Z∗j , j =

1, . . . , p. In other words,

E [dX∗(t)] =

[
α∗0 +

p∑
j=1

f ∗j (Z∗j (t))

]
dt, α∗0 ∈ R,

where
∫ 1

0
f ∗j (Z∗j (t))dt = 0 for all j. Additionally, the functions f ∗j , j = 1, . . . , p, belong to a

Sobolev class W (τ2, L2) on a finite interval with τ2 ≥ 3. Furthermore, for any j = 2, . . . , p,
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assume that the basis function residuals δµ,j satisfy

∫ 1

0

δ2µ,j(s)ds =

∫ 1

0

[
f ∗j (Z∗j (s))− φT (Z∗j (s))α∗j

]2
ds ≤ Qµ(M1 + 1)−2τ2 ,

where Qµ is a global constant.

We further assume that the derivative of X∗(t) minus its drift is an additive function of

Z∗j , j = 1, . . . , p. In other words,

dX∗(t)− µ∗(X∗(t)dt) =

[
β∗0 +

p∑
j=1

g∗j (Z
∗
j (t))

]
dW (t), β∗0 ∈ R, (3.30)

where
∫ 1

0
g∗j (Z

∗
j (t))dt = 0 for all j. Additionally, the functions g∗j , j = 1, . . . , p, belong to a

Sobolev class W (τ3, L3) on a finite interval with τ3 ≥ 3. Furthermore, for any j = 2, . . . , p,

assume that the basis function residuals δσ,j satisfy

∫ 1

0

δ2σ,j(s)ds =

∫ 1

0

[
g∗j (Z

∗
j (s))− ψT (Z∗j (s))β∗j

]2
ds ≤ Qσ(M2 + 1)−2τ3 , (3.31)

where Qσ is a global constant.

Assumption 3.4. The eigenvalues of
∫ 1

0
ΦS0

µ
ΦT
S0
µ
dt are bounded above by Cmax and bounded

below by a positive number Cmin, and for all k /∈ S0
µ, the eigenvalues of

∫ 1

0
ΦkΦ

T
k dt are bounded

below by Cmin. In other words,

0 < Cmin ≤ Λmin

(∫ 1

0

ΦS0
µ
ΦT
S0
µ
dt

)
≤ Λmax

(∫ 1

0

ΦS0
µ
ΦT
S0
µ
dt

)
≤ Cmax,

and

Cmin ≤ Λmin

(∫ 1

0

ΦkΦ
T
k dt

)
∀k /∈ S0

µ.

Additionally, assume that the eigenvalues of
∫ 1

0

(
ΨS0

σ

)
ijk

(
ΨS0

σ

)
ilm

dt are bounded above by

Dmax and bounded below by a positive number Dmin, and for all k /∈ S0
σ, the eigenvalues of
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∫ 1

0
(Ψk)ijk (Ψk)ilm dt are bounded below by Dmin, where (·)ijk(·)ilm denotes a tensor product

with Einstein notation.

Assumption 3.5. Assume that

max
j /∈S0

µ

∥∥∥∥∥
(∫ 1

0

ΦjΦ
T
S0
µ
dt

)(∫ 1

0

ΦS0
µ
ΦT
S0
µ
dt

)−1∥∥∥∥∥
2

≤ ι,

and

max
j /∈S0

σ

∥∥∥∥∥
(∫ 1

0

(Ψj)ijk
(
ΨS0

σ

)
ilm

dt

)(∫ 1

0

(
ΨS0

σ

)
ijk

(
ΨS0

σ

)
ilm

dt

)−1∥∥∥∥∥
2

≤ κ, (3.32)

where (·)ijk(·)ilm denotes a tensor product with Einstein notation.

Assumption 3.6. Assume that

fmin > χn
4
√

2sµCmax

Cmin

and ι <
1

4

√
Cmin

sµCmax

,

where fmin = minj∈Sµ

{∫ 1

0
[f ∗j (Z∗j (t))]2dt

}1/2

is the minimum regulatory effect for the drift of

X∗.

Similarly, assume that

gmin > λn
4
√

2sσDmax

Dmin

and κ <
1

4

√
Dmin

sσDmax

, (3.33)

where gmin = minj∈Sσ

{∫ 1

0
[g∗j (Z

∗
j (t))]2dt

}1/2

is the minimum regulatory effect for the volatility

of X∗.

Assumption 3.4 addresses the identifiability of the elements of {t, Z∗Sµ} and {t, ZSσ} and the

non-degeneracy of the integrated basis functions outside of S0
µ and S0

σ. Assumption 3.5 restricts

the amount of interaction allowed between elements in {t, Z∗Sµ} and outside it, and between

elements in {t, ZSσ} and outside it. These assumptions preclude concurvity, a necessary con-

dition for parameters in an additive model to be identifiable, as explored more deeply in Buja
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et al. (1989). Assumption 3.6 relates the quantities in prior assumptions to the sparsity tuning

parameter λn, as is typical in the LASSO literature.

Given these assumptions, the proof of variable selection consistency for α̂ follows Chen et al.

(2017). For the sake of brevity, we exclude it here and refer interested readers to Section A of the

supplementary materials of that paper.

We are now ready to state the primary theoretical result.

Theorem 3.2. Suppose that Assumptions 3.1-3.3, Assumption A.1 in the supplementary material,

and Conditions A.1-A.4 in the supplementary material hold. Then β̂, the estimator from Algo-

rithm 3, is asymptotically almost sure consistent for the true value β∗. Furthermore, almost surely

for sufficiently large n, the estimator β̂ from Algorithm 3 recovers the correct support for σ, i.e.

Ŝσ = Sσ.

The full proof is deferred to the supplement, but follows two main steps. We first establish

the overall consistency of the estimator β̃ in (3.21) when J(β) takes a ridge-like form. We then

show that, given any consistent estimator β̃, the one-step improvement schema proposed in Algo-

rithm 3 will provide estimation consistency as well as support recovery consistency.

3.4 Simulations

We examine the finite-sample performance of the proposed method in simulations. In each

setting, data are generated from Gaussian processes, some endogenous (i.e. their future values

rely only on their current state) and some exogenous (i.e their drift and/or volatility are allowed

to rely on other processes in the dynamical system). In each case, the process of interest is exoge-

nous. Following the convention set by other statistical work in ODE systems, we use smoothing

splines with bandwidth specified by GCV to find the smoothing estimates Ẑ in (3.11). We con-

sider two choices of basis functions for φ and ψ in (3.12) and (3.20): the Fourier basis and cubic

splines with two internal knots. We compute the integrals in (3.12) and (3.16) numerically with

step size 0.001.
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3.4.1 Variable selection in additive ODEs

In this simulation, we examine the performance of the proposed method in simultaneous vari-

able selection for drift-level and volatility-level effects. A subset of size pendo of the p− 1 history

processes are generated endogenous, and the remainder of the history processes and the process

of interest are exogenous. We enforce strict unidirectional dependence. That is, the first of the

exogenous history processes is allowed to depend only on the pendo endogenous processes, the

next is allowed to depend on the pendo endogenous processes and the first exogenous processes,

and so on. The process of interest’s drift and volatility each depend on a fraction π of the p − 1

history processes, with the groups not necessarily overlapping. In all cases, the true influence

set is chosen randomly, as are the functional forms of the dependence. Due to the unidirectional

dependence in this system, we can generate these processes directly rather than solving them via

Euler’s method, which may be complicated by the stochastic nature of the equations.

After generating the data, we apply the proposed method and determine Ŝµ and Ŝσ. We

assess the performance of the method with the model selection sensitivity and specificity for X ,

defined as

sensµ =
|{j : j ∈ Sµ ∩ Ŝµ}|
|{j : j ∈ Ŝµ}|

(3.34)

specµ =
|{j : j /∈ Sµ ∪ Ŝµ}|
|{j : j /∈ Ŝµ}|

,

and analogously for sensσ and specσ. We ran N = 100 independent simulations for each combi-

nation (n, p, π).

Table 3.1 gives the model selection sensitivity plus specificity for µ(·) and σ(·), averaged

across N = 100 simulations and both values of π, for the specified values of n and p. The results

show fairly strong performance in group recovery for µ(·), especially when p is small or n is

large, but more middling performance in group recovery for σ(·).
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Component n p = 10 p = 25 p = 50
µ 50 1.40 1.18 1.10

100 1.68 1.32 1.25
200 1.76 1.32 1.27

σ 50 1.14 1.09 1.05
100 1.15 1.11 1.07
200 1.15 1.12 1.09

Table 3.1: Average sens + spec for Ŝµ and Ŝσ across N = 100 independent simulation runs and
various values of n and p.

3.5 Clinical Application

In this section, we illustrate one of our method’s applications to clinical data arising from a

clinical study of youth with type 1 diabetes (T1D). We first (Section 3.5.1) introduce the clinical

study and explain the data we use. We then (Section 3.5.2) apply our method to these data and

discuss the results.

3.5.1 CCAT study and data

T1D is the cell-mediated autoimmune destruction of the beta-cells of the pancreas, resulting

in an absolute insulin deficiency and hyperglycemia. As a result, patients with type 1 diabetes

are tasked with the daily management of blood glucose levels using exogenous insulin replace-

ment in the form of multiple daily injections or continuous infusions (Mayer-Davis et al., 2018a;

Association et al., 2018). Levels of blood glucose outside the normal range can lead to adverse

consequences: sustained hyperglycemia, or high serum glucose, is associated with increased risk

of complications such as cardiovascular disease and stroke (Nathan et al., 2014; Maahs et al.,

2014), while acute hypoglycemia, or low serum glucose, invites the risk of coma or even death

(Cryer et al., 2003). A growing body of research, however, suggests that due to its effect on ox-

idative stress, the volatility of serum glucose may be as important as the raw levels, if not more,

when it comes to predicting complications of T1D (Monnier et al., 2008; Saisho, 2014).

Hemoglobin A1c is a well-studied and commonly used measure of a patient’s glycemic con-

trol, representing average exposure to hyperglycemia over the preceding three months. However,
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hemoglobin A1c does not capture transient glucose excursions or glycemic variability. With the

recent emergence of continuous glucose monitoring (CGM) systems, which provide a reading

of blood glucose levels on a minute-to-minute scale, attention has turned to this data to better

characterize dysglycemia in the setting of type 1 diabetes. While the physiologic effect of in-

sulin on blood glucose levels is causal and clear, the exact effect of physical activity and dietary

intake can be more heterogenous and is less well-characterized, although these factors play im-

portant parts in the overall management of diabetes (Wright and Hirsch, 2017; Beck et al., 2017;

Monnier et al., 2008; Kilpatrick et al., 2008). Additionally, the exact nature of the dependence

between blood glucose volatility and these factors is not well-studied, especially at the resolution

that CGM data provide. Due to the density of blood glucose readings that CGM data provide as

well as the physiologic and patient-oriented implications of blood glucose variabilty, we chose to

apply our method to data arising from CGM. We note that best practices for linking measures of

blood glucose process volatility to clinically meaningful thresholds of blood glucose variability

remain to be established; however, our approach is at least as likely as existing methods to offer a

sufficient resolution for system volatility to do so.

The Carbohydrate Counting in Adolescents with T1D (CCAT) study followed 30 adolescent

outpatients with T1D over 5 days with the goal of measuring acute changes to their blood glu-

cose levels as well as key factors known to affect blood glucose levels: insulin, dietary intake,

and physical activity (Maahs et al., 2012). Participants wore a CGM and an accelerometer-based

tracker of physical activity (PA) for these 5 days. During the entire course of the study, patients’

insulin doses were tracked, either by an insulin pump (20 participants) or an insulin pen record-

ing multiple daily injections (10 participants). During day 1 and 3 of observation, participants

logged their dietary intake, which was confirmed using time-stamped cell phone photographs. Di-

etary intake was then divided into a number of macronutrient categories, including carbohydrates,

fats, and protein.
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3.5.2 Application to CCAT study

We illustrate a proof-of-concept of our method by applying it to data from one CCAT pa-

tient. As the primary process of inferential and predictive interest in the CCAT study was blood

glucose, we let X(·) represent blood glucose (mg/dL), while H(·) contained PA (counts/min),

bolus insulin dose (U), carbohydrates consumed (g), fat consumed (g), and protein consumed

(g). As the effects of dietary data were of scientific interest, we limited ourselves to the two days

containing dietary data. We averaged the data from this patient over ten-minute intervals, giving

us n = 288 evenly spaced measurements through the 2-day period.

The results of our CCAT analysis revealed a few interesting trends. First, all explanatory

factors in Z(t) were found to have a significant effect on both the patient’s drift and volatility

of blood glucose—that is, Ŝµ = Ŝσ = {1, . . . , p}. Given the posited causal links between

blood glucose and the explanatory factors considered in this study, this should perhaps come as

little shock for the glycemic drift; the fact that all factors appear to play a significant role in the

volatility of blood glucose may represent an interesting finding worth exploring at a larger scale,

though. The saturation of the regulator set has large potential implications on future interventions

aimed at controlling blood glucose in a patient population similar to the patient analyzed here:

namely, it suggests that physical activity, bolus dose, and the macronutrient breakdown are all

important factors to consider intervening upon. We note, however, that this statement carries a

hefty caveat: this is merely a proof-of-concept analysis. Substantial work must be done to study

the properties of this method in already-collected data of this nature before we can make any

practical suggestions for the collection of future research data. On the more technical side of

things, we found that M1 = 3 and M2 = 6 this patient. This mirrors the trend discussed in

Section 3.4.1: σ(·) appears to be a more complicated function than µ(·), as using further basis

depth to characterize its shape appears to be justified by cross-validation error.
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3.6 Discussion

In this chapter, we present a method for the analysis of a system of continuous-time stochas-

tic processes, performing parameter estimation and model selection for both the drift and the

volatility of the process of interest. Our model requires only light assumptions, relying on addi-

tivity for its composite functions and a Brownian motion term to govern the process of interest’s

drift. The algorithm employed in this chapter to fit the chosen model can function in settings

where p > n and perform model selection thanks to its underlying reliance on the group LASSO,

though other choices of algorithm are possible. We demonstrate several attractive theoretical

properties of the algorithm, including model selection consistency, and explore its application to

both simulated and clinical data.

We observe several caveats and limitations. One limitation we must address is the middling

performance of the method at model detection sensitivity and specificity for σ(·) in numerical

experiments with modest sample sizes. We believe that this stems from the fact that estimation of

σ(·) is a more difficult task than estimation of µ(·), due in part to the fact that the former depends

upon the latter. Additionally, we would like to highlight that this is, to our knowledge, a novel

approach to the problem. We are not naı̈ve enough to believe our estimation method cannot be

improved upon with further research, and improvements in the estimation of σ(·) will afford im-

provements in the operating characteristics studied here. Another limitation is the computational

burden imposed by the chosen algorithm—in particular, fitting the group LASSO many times

incurs a nontrivial computational cost. Tasks involved in computation are parallelizable, which

mitigates this burden. The final limitation pertains to the chosen model: while additivity is a light

assumption, among the least restrictive posed for any model of derivatives in a dynamical system,

it is still an assumption. It is possible that relaxing strict additivity, for example by including in-

teraction terms, would lead to improved performance without incurring substantial changes to the

underlying algorithm.
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Dynamic systems pose a unique set of challenges to researchers interested in learning from

their data. In cases where it is not enough to simply know where a process will drift, but also

to understand how volatile it will be when it does, new approaches are required. This research

presents one such approach.
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CHAPTER 4: MEASUREMENT INFLUENCE DIAGNOSTICS

4.1 Introduction

In real-world studies, measurements may be measured imperfectly for any of a variety of rea-

sons: instrument failure, errors in sampling methodology or data collection, even the faulty nature

of human memory. In many settings, observations can be observed again, or re-measured, poten-

tially more carefully, to obtain a measurement with a higher degree of certainty. In settings where

measurements are costly, however, the ideal approach from the perspective of data quality—re-

measuring all suspect data points until they are measured reliably well—is unlikely to be feasible,

and even less likely to be cost-effective. Additionally, not all data points are created equal. The

concept that some observations are especially influential is well-known and accepted when it

comes to correctly measured data impacting the results of data analysis, and there is no reason

the same logic should not apply to the concept of measurement error. As such, choosing points to

re-measure at random may prove inefficient.

In such settings, a reliable way to assess the importance of re-measuring any given obser-

vation, which we term measurement influence, may provide useful guidelines for real-world

practice. In this chapter, we develop a method for determining the measurement influence of ob-

servations in error-prone and costly-to-measure data scenarios. We furthermore extend its utility

by allowing it to be agnostic to the modeling assumptions employed and by allowing it to assess

the influence of k-tuples of observations together.

Our method adapts the concept of leave-one-out influence metrics, such as the jackknife

residual and Cook’s distance, to the setting of measurement error. Namely, rather than calculating

the change in a single-number summary of the model when an observation is removed, we calcu-
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late the change in a single-number summary of the model when that observation is mismeasured

by up to a pre-specified amount. This formulation of the influence statistic is model-agnostic,

relying on modeling assumptions only so far as they are required to determine the single-number

summary—in fact, it works for model-free approaches, provided that a suitable single-number

summary of performance is available.

This chapter is laid out as follows. In Section 4.2, we present the general mathematical

framework and specific data settings we will consider in this paper. In Section 4.3, we describe

the method. In Section 4.4, we present numerical experiments examining the performance of the

method in finite samples in the specific data settings previously outlined. In section 4.5, we apply

the method to datasets arising from clinical and environmental applications. We conclude with a

discussion in Section 4.6. Directions for future work are presented in Chaper 5.

4.2 General Framework

We present the most general framework in which the proposed method applies. Let X ∈

X ⊂ Rp be an n × p covariate matrix, which is considered measured without error. Note that

this assumption is reasonable in many settings, such as settings where the covariates include

geographic location, year, and so on. Let Y ∈ Y ⊂ R be an n × 1 outcome vector, which may

be subject to errors in measurement. Let P ∈ P denote the possibly nonparametric model used

to obtain the performance summary of interest, Ψ(P ) ∈ Ψ(P). Note that Ψ(P ) need not be a

functional of a model in the most traditional sense—the value of an individualized treatment rule

estimated by Outcome Weighted Learning suffices, for instance. In general, it we require that

an efficient influence function D(·), as in Van Der Laan and Rubin (2006), can be defined for

P . Finally, let δ : Ψ(P) × Ψ(P) → R be a distance metric that quantifies how far apart two

realizations of the summary of model performance lie.

We now specify two data settings which we will return to in simulations and data applica-

tions in Sections 4.4 and 4.5.
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In the regression setting, we will presume Y is continuous in nature, and that the focus of

modeling is predictive accuracy. That is, we set Ψ(P ) = Ŷ , the predicted value of Y obtained

by predicting at the observed points X1, . . . , Xn using P . There are many possible choices of

regression model P , each with their own set of required assumptions and benefits regarding

predictive accuracy. Choices of P include ordinary least squares (OLS) regression, penalized

regression such as the elastic net, and tree-based methods such as random forests (RF). We will

primarily illustrate the impact of assumptions in the regression setting by comparing OLS and RF.

In this setting, a natural distance metric δ is the Euclidean distance between n-vectors.

In the precision medicine setting, we will presume we observe {Xi, Ai, Yi}, i = 1, . . . , n,

where Xi ∈ X ⊂ Rp is a covariate vector, Ai ∈ {−1, 1} is the assigned treatment, and Yi ∈ R

is the clinical reward. We will assume that the goal of analysis is to estimate an individualized

treatment rule (ITR), a function π : X → {−1, 1} which recommends treatment based on covari-

ate state, that is optimal in the sense of achieving the highest value V (π) = Eπ[X]. As such, the

natural summary of model performance is Ψ(P ) = V̂ (π) =
n∑
i=1

YiI{Ai = π(Xi)}/
n∑
i=1

I{Ai =

π(Xi)}, and the natural distance metric δ is univariate squared distance. Particular choices of

model P can be supplied by direct ITR estimation methods, such as outcome weighted learning

(OWL), or indirect ITR estimation methods, in which an explicit model is posed between (X,A)

and Y and then inverted to obtain π.

4.3 Method

In this section, we describe the proposed method in the most general data setting. We first in-

troduce the maximal perturbation range of Yi, i = 1, . . . , n, denoted Γ(Yi). Γ(Yi) is the range of

values Yi is assumed able to take if it is mismeasured. In many settings, the simple and symmetric

form Γ(Yi) = (Yi − γ, Yi + γ) will suffice, where γ > 0 heuristically represents the “biggest”

plausible measurement error. Other settings may suggest other choices for Γ: if Y is nonnegative,

for instance, Γ(Yi) = [max(0, Yi − γ), Yi + γ) is more appropriate. In practice, we will only use a

grid of K values from Γ(Yi), which we will denote Γk(Yi), k = 1, . . . , K.
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As described in Section 4.2, we must also specify a distance metric δ : Ψ(P)×Ψ(P)→ R+,

which quantifies the distance between two realizations of Ψ(·). In many applications, the choice

of δ will be obvious. If Ψ(P ) ∈ R ∀P ∈ P , for instance, a natural choice is δ(Ψ(P1),Ψ(P2)) =

(Ψ(P1)−Ψ(P2))
2, while the Euclidean norm is a natural choice when Ψ(P ) ∈ Rp.

The method proceeds in a manner similar to leave-one-out methods such as jackknife residu-

als or Cook’s distance. The key difference is that instead of dropping the observation Yi entirely,

we assume it has been measured incorrectly, such that it lies within the range given by Γ(Yi).

We then compute the largest change in Ψ(P ) resulting from mismeasurement in the set Γ(Yi)

and save this value as ∆i, the measurement influence of observation i. Algorithm 4 provides the

mathematical details of this procedure.

Algorithm 4 Estimation of Measurement Influence
1. For i = 1, . . . , n:

(a) For k = 1, . . . , K:
i. Set Ỹ(ik) = (Y1, . . . ,Γk(Yi), . . . , Yn)T .

ii. Let P̃(ik) denote the model incorporating X, Ỹ(ik).

iii. Compute ∆ik = δ(Ψ(P ),Ψ(P̃(ik))).
(b) Compute ∆i = max

k
∆ik.

Algorithm 4 provides stable and easily interpretable results when P is low in modeling un-

certainty. For some choices of P , however—especially machine learning models whose relative

lack of traditional influence statistics may make our method particularly attractive—this may

not be a reasonable assumption. In cases where P is subject to greater modeling uncertainty, we

propose a simple adaptation of Algorithm 4: average the results of M runs of the model when

computing ∆ik. Algorithm 5 provides the details of this procedure. We explore the rationale

behind Algorithm 5 more thoroughly in Section 4.4.1.1.
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Algorithm 5 Estimation of Measurement Influence with Modeling Uncertainty
1. For i = 1, . . . , n:

(a) For k = 1, . . . , K:
i. For m = 1, . . . ,M :

A. Set Ỹ(ikm) = (Y1, . . . ,Γk(Yi), . . . , Yn)T .

B. Let P̃(ikm) denote the mth realization of the model incorporating X, Ỹ(ikm).

C. Compute ∆ikm = δ(Ψ(P ),Ψ(P̃(ikm))).

ii. Compute ∆ik = 1
M

M∑
m=1

∆ikm

(b) Compute ∆i = max
k

∆ik.

4.4 Numerical Experiments

We explore the performance of the proposed measurement influence statistic in several nu-

merical experiments. This section is laid out as follows. First, in Section 4.4.1, we assess our

measurement influence statistic in the regression data setting, taking special care to illustrate how

the properties vary with different choices of P . We devote Section 4.4.1.1 to an analysis of the

impact of modeling uncertainty. In Section 4.4.2, we assess the performance of our measurement

influence statistic in the precision medicine setting.

4.4.1 Regression Setting

We first consider the regression setting. As outlined in Section 4.2, in the regression setting,

we assume Y is a continuous real-valued outcome variable. In these simulations, we set Y ∈ Y =

R, and we allow mismeasurement to occur symmetrically up to a distance γ from the observed

values, i.e. Γ(Yi) = [Yi − γ, Yi + γ], i = 1, . . . , n. Our summary of model performance is

Ψ(P ) = Ŷ = (Ŷ (X1), . . . , Ŷ (Xn)), the model-predicted values of the outcome at the n observed

points in covariate space, with distances between realizations of Ψ(P ) given by the Euclidean

norm in Rn.
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To facilitate visualization of ∆ values, we first consider the case of an underlying linear

relationship between X and Y with low-dimensional X . Specifically, we consider n = 25 and

p = 1, 2, with Y ∼ N (Xintβ, σ
2), where Xint is X with an intercept column of ones appended.

Figure 4.1 compares the values of ∆ given by an OLS and RF model as P , along with X and

Y , when n = 25 and p = 1. We can immediately observe a strong trend in Figure 4.1: ∆ values

computed using OLS are synonymous with extreme values of X . We do not observe the same

trend for ∆ values computed using RF. To illustrate this disconnect, we can visualize the predic-

tion curves obtained when the maximal and minimal impact measurement error occurs for both

models. Figure 4.2 compares the OLS prediction lines from the observed, minimal impact, and

maximal impact measurement errors, along with an analogous plot using the observed, minimal

impact, and maximal impact RF prediction curves. The rationale is clear: the OLS prediction line

takes a strong predetermined shape, and mismeasurements near the extremes of X change that

shape the most. Meanwhile, the RF prediction curve is more local, allowing points with greater

impacts on local prediction to attain higher ∆ values. Figures 4.3 and 4.4 are analogous to panels

(a) and (b) of Figure 4.1, respectively, in the case where p = 2, and they reveal similar trends.

We note that raw distance from the origin does not govern OLS-based ∆ values as strongly as

distance normalized by the variability of X . Figures 4.5 and 4.6, analogously to panels (a) and

(b) of Figure 4.2, show the observed, minimal impact, and maximal impact prediction planes

and surfaces from OLS and RF, respectively. We note a similar difference in the placement and

interpretation of high-∆ observations between OLS and RF as in the p = 1 case.

We now consider the case where the underlying relationship between X and Y is locally

linear, but not linear overall. We begin again with p = 1. Figure 4.7 shows the difference in ∆

values between OLS and RF in this setting. Note that the OLS ∆ values still exclusively consist

of values extreme in X , a trend that no longer appears reasonable given the data structure at

hand, while the RF ∆ values identify points more in line with the local nature of the data. We

can again visualize this disconnect with the use of prediction curves, as Figure 4.8 illustrates.

When we consider a locally planar model with p = 2, the same trends emerge as before: OLS

64



−3

−2

−1

0

1

2

−0.5 0.0 0.5 1.0
X

Y

0.010

0.015

0.020
Delta

a

−3

−2

−1

0

1

2

−0.5 0.0 0.5 1.0
X

Y

1.0
1.1
1.2
1.3

Delta

b

Figure 4.1: ∆ values from an (a) OLS and (b) RF model in the regression data setting with a true
underlying linear relation between X and Y and n = 25, p = 1. Deeper blue points have lower
relative ∆, while brighter red points have higher relative ∆. Note the tendency of high ∆ values
from an OLS model to seek extreme values of X , while ∆ values from RF do not exhibit the
same trend.
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Figure 4.2: Prediction curves incorporating the observed, maximal impact, and minimal impact
measurement errors from an (a) OLS and (b) RF model in the regression data setting with a true
underlying linear relation between X and Y and n = 25, p = 1. The black points represent the
observed data, while the red and blue points represent Γk(Yi) : ∆ik = ∆i for the observation i with
the maximal and minimal values of ∆i, respectively. Note the increased overall distance between
the red and black curves, compared to the blue and black curves.

66



Figure 4.3: ∆ values from an OLS model in the regression data setting with a true underlying
linear relation between X and Y and n = 25, p = 2. Deeper blue points have lower relative ∆,
while brighter red points have higher relative ∆. Note the tendency of high ∆ values from an
OLS model to seek variance-weighted extreme values of X , a tendency that carries over from the
p = 1 case. A fully interactive version of this plot can be found at https://plot.ly/ mtlawson/19/#/.
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Figure 4.4: ∆ values from an RF model in the regression data setting with a true underlying
linear relation between X and Y and n = 25, p = 2. Deeper blue points have lower relative ∆,
while brighter red points have higher relative ∆. Note that high ∆ values are no longer restricted
to variance-weighted extreme values of X , a tendency that carries over from the p = 1 case. A
fully interactive version of this plot can be found at https://plot.ly/ mtlawson/21/#/.
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Figure 4.5: OLS prediction surfaces incorporating the observed data, minimal impact mismea-
surement, and maximal impact mismeasurement, based on ∆ values from an OLS model. The
black points and black plane correspond to the observed data and the prediction surface from
them, the blue point and plane correspond to the minimum-∆ observation after mismeasurement
and the prediction surface after incorporating this point, and the red point and plane correspond
to the maximum-∆ observation after mismeasurement and the prediction surface after incorporat-
ing this point. Note the increased distance between the red and black planes, relative to the red
and blue planes.
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Figure 4.6: RF prediction surfaces incorporating the observed data, minimal impact mismeasure-
ment, and maximal impact mismeasurement, based on ∆ values from an RF model. The black
points and black surface correspond to the observed data and the prediction surface from them,
the blue point and surface correspond to the minimum-∆ observation after mismeasurement and
the prediction surface after incorporating this point, and the red point and surface correspond to
the maximum-∆ observation after mismeasurement and the prediction surface after incorporating
this point. Note the differences in how the blue and red surfaces depart from the black. The blue
surface largely departs from the black in the margin of lowest X2 values, where few points lie,
with the rest adheres closely to the observed prediction surface. The red surface, meanwhile, has
a large ridge through the central body of the points, where many observations lie, separated from
the black surface, while again it adheres closely in other regions.
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continues to ignore the local structure and seek extreme X values (Figure 4.9), while RF does

not solely identify extreme values of X (Figure 4.10). The impact on prediction is most evident

when we examine the predictive surfaces: only extreme values of X have a large impact on the

OLS predictive plane when mismeasured (Figure 4.11), while mismeasured values that have large

impact on the RF predictive surface appear to take local structures into account (Figure 4.12).

4.4.1.1 Impact of Modeling Uncertainty

In Section 4.3, we alluded to the need to account for modeling uncertainty when calculating

∆. We explore this concept briefly. Consider the regression setting with a true locally linear

model, analogous to that described in Section 4.4.1, with n = 100 and p = 10. Fix a value γ

and allow Γ(Yi) = [Yi − γ, Yi + γ], i = 1, . . . , n. Suppose we choose P to be the random

forest model. Then, holding X , Y , and γ constant, suppose we fit M independent runs of the

random forest model, P1, . . . , PM , and computed ∆i for each observation i as in Algorithm 4.

Let ∆im denote the ∆ value for the ith observation obtained by considering the mth model run.

If modeling uncertainty has low overall importance, we would expect ∆i1, . . . ,∆iM , to be very

close.

Figure 4.13 shows side-by-side boxplots across M = 100 model runs for each of the n = 100

observations in this simulated dataset. Clearly, modeling uncertainty has a nonzero effect in this

setting. High and low ∆ values appear to be distinguishable from each other: if we compare the

mean ∆ values across the M = 100 runs between each of the
(
100
2

)
= 4950 pairs of observations

using pairwise two-sample t-tests of equality, 574 or 11.6% of pairwise comparisons remain

significant after Bonferroni correction. However, modeling uncertainty does appear to threaten

the ability of Algorithm 4’s approach to distinguish between more similar ∆ values. Familiar

statistical arguments suggest that the mean of M model runs will provide a more precise estimate

of the ∆ values for each observation. While we refrain from providing a blanket statement on

what values of M are preferable, we suggest that M should be chosen to reflect the tradeoff

between increased precision and increased computational burden.
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Figure 4.7: ∆ values from an (a) OLS and (b) RF model in the regression data setting with a true
underlying locally linear relation between X and Y and n = 25, p = 1. Deeper blue points have
lower relative ∆, while brighter red points have higher relative ∆. Note the tendency of ∆ values
from an OLS model to seek extreme values of X—a tendency that is no longer attractive for this
data setup—while ∆ values from RF do not exhibit the same behavior.

72



−2.5

0.0

2.5

−0.5 0.0 0.5 1.0
X

Y

Obs Type
Obs
Max
Min

a

−2.5

0.0

2.5

5.0

−0.5 0.0 0.5 1.0
X

Y

Obs Type
Obs
Max
Min

b

Figure 4.8: Prediction curves incorporating the observed, maximal impact, and minimal impact
measurement errors from an (a) OLS and (b) RF model in the regression data setting with a
true underlying locally linear relation between X and Y and n = 25, p = 1. The black points
represent the observed data, while the red and blue points represent Γk(Yi) : ∆ik = ∆i for
the observation i with the maximal and minimal values of ∆i, respectively. Note the increased
overall distance between the red and black curves, compared to the blue and black curves.
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Figure 4.9: ∆ values from an OLS model in the regression data setting with a true underlying
local relation between X and Y and n = 25, p = 2. Deeper blue points have lower relative ∆,
while brighter red points have higher relative ∆. Note the tendency of high ∆ values from an
OLS model to seek extreme values of X , a tendency that carries over from the p = 1 case, and
which does not take into account the full trends present in these data. A fully interactive version
of this plot can be found at https://plot.ly/ mtlawson/23/#/.
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Figure 4.10: ∆ values from an RF model in the regression data setting with a true underlying
local relation between X and Y and n = 25, p = 2. Deeper blue points have lower relative ∆,
while brighter red points have higher relative ∆. Note that high ∆ values are no longer restricted
to extreme values of X , a tendency that carries over from the p = 1 case. A fully interactive
version of this plot can be found at https://plot.ly/ mtlawson/25/#/.
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Figure 4.11: OLS prediction surfaces incorporating the observed data, minimal impact mismea-
surement, and maximal impact mismeasurement, based on ∆ values from an OLS model when
the underlying data structure is nonlinear. The black points and black plane correspond to the
observed data and the prediction surface from them, the blue point and plane correspond to the
minimum-∆ observation after mismeasurement and the prediction surface after incorporating this
point, and the red point and plane correspond to the maximum-∆ observation after mismeasure-
ment and the prediction surface after incorporating this point. While all three prediction planes
are close together, note that the red plane is more distant from the black than the blue plane.
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Figure 4.12: RF prediction surfaces incorporating the observed data, minimal impact mismea-
surement, and maximal impact mismeasurement, based on ∆ values from an RF model when
the underlying data structure is nonlinear. The black points and black surface correspond to the
observed data and the prediction surface from them, the blue point and surface correspond to the
minimum-∆ observation after mismeasurement and the prediction surface after incorporating
this point, and the red point and surface correspond to the maximum-∆ observation after mismea-
surement and the prediction surface after incorporating this point. Note the differences in how
the blue and red surfaces depart from the black. The blue surface departs from the black only to
a small degree and only in the region where X1 values are high and X2 values are low. The red
surface, meanwhile, has a large peak fairly close to the origin that juts above the black surface,
visually represented by a lighter red.
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Figure 4.13: Side-by-side boxplots of ∆im values computed via RF according to Algorithm 4
for n = 100 observations across M = 100 model runs in the regression data setting. Note the
wide range for each observation, though some observations’ main IQRs are nonoverlapping with
others.
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γ % within 10 ranks
0.5 18%
1 20%
2 26%
3 18%
4 23%
6 21%
8 27%

12 35%
16 40%

Table 4.1: Percentage of observations with |rank(∆i`)− rank(∆i,`−1)| < 10, by value of γ`.

Note also that modeling uncertainty appears to affect the value of ∆ less as the maximal

perturbation range Γ(Y ) grows. Using the setup of the paragraph above, instead suppose we hold

model runs constant and vary the radius of the mismeasurement interval. That is, we specify

` = 1, . . . , L values of γ, γ1, . . . , γL, then compute ∆i` corresponding to each. Panel (a) of Figure

4.14 demonstrates the values of ∆i` for each of the n = 100 observations across each value of

γ`. Note that the average magnitude of ∆ rises as γ rises, which is expected—as such, it is more

informative to consider how ∆ values change relatively. Panel (b) depicts this concept by plotting

the rank of each observation’s ∆i among all n = 100 values of ∆i at a given value of γ, across

the different values of γ. As γ increases in magnitude, we see fewer crossing lines, and fewer

lines that cross by large relative amounts, between subsequent values of γ. Table 4.1 summarizes

this phenomenon numerically by reporting the number of observations i that, at a given value of

γ, had their ∆ rank less than 10 ranks distant from the rank at the next smallest value of γ. This

fraction tends to increase as γ grows, suggesting that modeling uncertainty disrupts ∆ values less

when the measurement uncertainty is relatively large.

4.4.2 Precision Medicine Setting

We now consider the precision medicine setting. As outlined in Section 4.2, in this setting

we observe the data {Xi, Ai, Ri}, i = 1, . . . , n, where Xi ∈ X ⊂ Rp is a vector of covariates

independent of treatment, Ai ∈ {−1, 1} is the assigned treatment, and Ri ∈ Y ⊂ R is a clinical
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Figure 4.14: Values of (a) ∆i` and (b) rank(∆i`) by value of γ` for n = 100 observations and
L = 10 values of γ. Note that the average magnitude of ∆i` rises as γ` rises, visible in (a) but the
amount of large relative change in ∆i` drops. The dropoff in large crossing lines is more clearly
visible in (b), where the scale is held constant.
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reward. Following conventions in the field, we assume that higher values of the clinical reward

indicate more favorable rewards; as in Zhou et al. (2017), we will allow rewards to be real-valued

rather than strictly non-negative. The model P estimates an ITR π : X → {−1, 1}, a function

that takes a value in the covariate space and recommends a value of treatment. We will index

π by P for the remainder of this section to stress the dependence of the estimated ITR on the

model P . In particular, P estimates an ITR that is optimal in the sense of maximizing the value

V attainable within a class of policies, where V (π) = Eπ[Y ] is the expected reward obtained

by following the policy π. The natural summary of model performance for this setting is given

by Ψ(P ) = V̂ (πP ), where V̂ is a consistent estimator of V ; in particular, we use V̂ (πP ) =
n∑
i=1

RiI{Ai = πP (Xi)}/
n∑
i=1

I{Ai = πP (Xi)}. As Ψ(P ) ∈ R, a natural choice of distance metric

δ is squared univariate distance. We assume that potential mismeasurement occurs symmetrically

at the level of the clinical reward up to a prespecified amount γ—that is, Γ(Ri) = [Ri − γ,Ri +

γ], i = 1, . . . , n.

In our numerical experiment, we set n = 100 and p = 8. We generated X ∼ U(−1, 1) and

A ∼ Bernoulli(1
2
) independent of X . We mimicked data setup 1 from the simulations of Zhou

et al. (2017), setting µ(X) = 1 + X1 + X2 + 2X3 + 0.5X4 and ν(X) = 1.8(0.3 − X1 − X2)

and then generating R ∼ N (µ(X) + ν(X), 1). As discussed in that paper, this creates a moderate

treatment effect size with a true linear decision boundary that depends on X1 and X2 alone. We

use Residual Weighted Learning (RWL) as our model P , and we set γ = 2.

We examine the influence of measurement error in this setting through a series of three

graphs. Figure 4.15, which displays the ITR assignment by R, X1, and X2, demonstrates that

our RWL model is estimating the true linear decision boundary well. Figure 4.16, which shows

the values of ∆i for each of the n = 100 observations by R, X1, and X2, demonstrates that RWL

does not strictly seek either points near the decision boundary or points near the extremes of

X , instead finding what appears to be a mixture of such points. And Figure 4.17, which demon-

strates which points switch ITR assignment from the observed ITR to the minimally and maxi-

mally different ITR, in terms of estimated value V̂ , demonstrates why the point with the largest
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Figure 4.15: RWL ITR assignments from the precision medicine simulation described in Section
4.4.2, by values of X1, X2, and R. Note the decision boundary’s approximate linearity in X1 and
X2, which matches the true data-generating mechanism despite the presence of noise covariates.

∆i value has high measurement influence: when it is mismeasured, observations with large re-

ward magnitudes switch ITR assignment.

Note that, in this experiment, the ITR with maximal perturbation has higher estimated value

than the observed (V̂ (πP ) = 2.26, V̂ (π(imax)) = 2.49). This is not at all required, though—the ITR

with maximal perturbation under measurement may achieve worse value instead. If gains and

losses in value are not equally weighted—if achieving a worse value than the observed is more

costly than failing to achieve a higher value than the observed, for instance—users of this method

may wish to calibrate ∆ to consider these cost weights.
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Figure 4.16: Values of ∆ computed via RWL from the precision medicine simulation described
in Section 4.4.2, by values of X1, X2, and R. Deeper shades of blue correspond to lower ∆
values, while brighter shades of red correspond to higher ∆ values. Note that high ∆ values do
appear near the decision boundary, and near the extremes of X , but are not confined to these
locations deterministically.
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Figure 4.17: Depiction of ITR assignment switching between the observed, minimal impact,
and maximal impact measurement errors. Black points have the same ITR assignment in all
three ITRs. Red points switch assignment between the observed and maximal impact ITRs, blue
points switch assignment between the observed and minimal impact ITRs, and green points
switch assignment beween the observed and both the minimal and maximal impact ITRs. In this
case, the minimal impact ITR departs only slightly from the observed because the blue points
essentially balance each other out in terms of reward, leaving only the impact of the green points
shared by the maximal impact ITR; meanwhile, the maximal impact ITR gains an additional
high-reward point. Befitting this scenario, we observe V̂ (πP ) = 2.26, V̂ (πP(imin)

) = 2.32, and
V̂ (πP(imax)

) = 2.49.
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4.5 Environmental Applications

We illustrate the utility of our method by applying it to two datasets arising from the environ-

mental sciences. The first, presented in Section 4.5.1, predicts the burn area of a forest fire based

on a set of environmental and geological covariates, and therefore presents an application of our

method to the regression setting. The second, presented in Section 4.5.2, evaluates the efficacy of

an engineering intervention on the microbial content of a household compound’s water source,

and therefore presents an application of our method to the ITR estimation setting. In each case,

aspects of the dataset complicate the construction of Γ(Y )—especially Section 4.5.2, in which

the mechanism of the outcome’s measurement must be taken into account.

4.5.1 Forest Fires

We illustrate the use of our method by applying it to a dataset arising from the environmental

sciences. Cortez and Morais (2007) present an open-source dataset listing the hectares of forest

burned in 517 wildfires in the Montesinho natural park in the Trás-os-Montes region of Portugal

between January 2000 and December 2003. The dataset contains 12 design and meteorological

covariates. Design and geological covariates comprise the month and day of the week the fire

occurred and the X and Y coordinates within the Montesinho park area. Meteorological covari-

ates comprise the temperature in Celsius, the relative humidity in %, the wind speed in km/h, the

amount of rain in mm/m2, and four components of the forest Fire Weather Index: the Fine Fuel

Moisture Code (FFMC), the Duff Moisture Code (DMC), the Drought Code (DC), and the Initial

Spread Index (ISI). Cortez and Morais (2007) propose support vector regression, single-layer

neural networks, and random forest as candidates for P ; we elect to use the random forest model.

As the goal is prediction of the area burned by forest fires, we let Ψ(P ) = Ŷ , and we choose δ to

be the Euclidean distance between n-vectors.

As in the original analysis, we log-transform the outcome of interest to account for its right

skew, which gives rise to some consideration on how to construct Γ(Y ). We propose poten-
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tial mismeasurement at the scale of the original burn area in hectares. This mismeasurement

is symmetrical but bounded below at the value of zero. That is, if we let Ỹ denote the pre-log-

transformed outcome, we set Γ(Ỹi) = [(Ỹi − γ)+, Ỹi + γ], where (·)+ = max(0, ·) is the positive

part function. We obtain Γ(Y ) by log-transforming the points of Γ(Ỹ ).

Table 4.2 gives the fifteen highest measurement influence forest fires among the 517 ob-

served, including the value of ∆, the raw area burned in hectares, the (X,Y) coordinates, the

month, the FFMC, the ISI, the temperature in Celsius, the relative humidity in %, and the wind

speed. Most covariates appear in general ranges consistent with their overall distributions, with

some exceptions. The appearance of a December fire in the fifteen most measurement influential

fires is noteworthy, as only 9 fires, or 1.7%, occurred in December, and especially given that this

December fire was quite large, lying in the 84th percentile of all fires by size. Only 5.2% of fires

had an FFMC of 84.1 or lower, so the appearance of two in the fifteen highest by ∆ is also pe-

culiar. Although several fires that burned 0 hectares, the minimum and mode in these data, were

highly influential if mismeasured, notably, none of the very largest fires were—the largest fire

in this top fifteen burned 11.19 hectares, placing it in only the 84th percentile of fires by area

burned.

4.5.2 Water Source Microbial Content

[Author’s note: These data are still undergoing cleaning, and we are still awaiting the full

study committee’s approval to use this dataset. A full analysis will follow once the data are

available. In my view, though, this section’s consideration of a mechanistic motivation for the

construction of Γ(Y ) still warrants its inclusion at the current state.]

Studies of microbe concentration provide an intriguing application of the proposed method

due to the mechanistic nature of the measurement error involved. In the MapSan study, house-

hold compounds in the vicinity of Maputo, Mozambique, were visited at baseline and 12 months

after baseline. After the baseline visit, each household compound went through a standardized

de-worming procedure, then approximately half of household compounds were assigned to an

86



∆ Area (X,Y) Month FFMC ISI Temp RH Wind Speed
1.627 0.43 (1,4) Sep 91 7 21.7 38 2.2
1.593 0 (5,4) Sep 92.1 9.6 10.1 75 3.6
1.591 0 (6,5) Feb 84.1 2.2 5.3 68 1.8
1.584 11.19 (8,6) Dec 84 5.3 5.1 61 8
1.582 0 (7,5) Aug 93.7 8.4 26.4 33 3.6
1.578 0 (3,5) Sep 93.5 8.1 17.2 43 3.1
1.578 4.53 (1,4) Aug 90.2 8.9 20.3 39 4.9
1.577 0 (8,6) Aug 92.3 8.5 24.1 27 3.1
1.575 0 (5,5) March 90.9 8 11.6 48 5.4
1.575 2.69 (8,6) Aug 85.6 6.6 17.4 50 4
1.569 0 (8,6) Aug 91.1 5.8 23.4 22 2.7
1.566 0.17 (6,5) Aug 94.3 22.7 19.4 55 4
1.560 1.75 (4,5) Sep 91.1 12.5 15.9 38 5.4
1.559 0 (3,4) Sep 91.8 9.2 18.9 35 2.7
1.556 7.21 (1,4) Sep 92.8 7.5 16.8 28 4

Table 4.2: The ∆ values, area burned (ha), X and Y coordinates within the Montesinho park
area (both ordinal from 1 to 9), month, FFMC index, ISI index, temperature in degrees Celsius,
relative humidity in %, and wind speed in km/h of the fifteen most measurement influential forest
fires in the data of Cortez and Morais (2007). ∆ values were obtained using the RF model with
Ψ(P ) = Ŷ and Γ(Y ) lying symmetrically about the raw burned area Ỹ , clipped below at zero,
and then log-transformed before analysis as the outcome variable was.

engineering intervention intended to improve the cleanliness of the water supply. At the base-

line and 12-month visits, water from the household compound’s main water source was sampled,

frozen, and transported to Chapel Hill, NC. There, the water samples were tested for the presence

and abundance of certain microbial targets, such as E. coli, via quantitative polymerase chain

reaction (qPCR). The goal of analysis is to assess the efficacy of the intervention in reducing the

microbial content in the household compound’s primary water source. We view this as essen-

tially an ITR estimation problem, as an ITR can estimate those patients expected to benefit from

receiving the intervention.

In qPCR, a target segment of DNA that corresponds to the microbe of interest is specified,

then a given sample is run through many cycles of the PCR loop, with each cycle increasing the

abundance of the target DNA in the sample. After a given cycle, if the target DNA is detected at a

certain level of abundance, known as the detection limit, or greater, then the relative abundance of

the DNA is calculated using the number of cycles until detection normalized by a control curve
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constructed from a known quantity of DNA (Filion, 2012). After a given cycle, or even a full

set of cycles, the abundance of the target DNA may still lie below the detection limit, indicating

that the abundance is not distinguishable from zero; in practice, in these cases the abundance

is often artificially set to either zero or the midpoint between zero and the detection limit. In

practice, detection limits can be quite high relative to zero, meaning the amount of potential

mismeasurement can be non-negligible (Filion, 2012).

The mechanism of measurement in qPCR suggests a particular form for Γ(Y ). Let λi denote

the limit of detection for sample i. Let Ỹi denote sample i’s partially-observed “true” microbial

abundance, and let Yi denote sample i’s “processed” abundance output, where any values below

the detection limit λi are considered not reliably measurable and are set to λi/2. Let Yλ denote

the set of processed outcomes lying below their detection limits, and let Y c
λ denote the set of

processed outcomes lying above it. If Yi ∈ Yλ, Ỹi could reasonably lie anywhere in [0, λi]. If Yi ∈

Y c
λ , it may still be reasonable to assume some level of potential mismeasurement γ < λmin/2,

where λmin = min(λ1, . . . , λn). As such, we can define

Γ(Yi) =


[0, λi], Yi = λi/2

[Yi − γ, Yi + γ], Yi > λi.

(4.1)

To account for skew, microbial qPCR abundances are sometimes log-transformed before analysis;

in this case, the limits of Γ(Y ) can be long-transformed along with Y .

4.6 Discussion

In this paper, we present a statistic quantifying the influence that a given observation’s po-

tential mismeasurement has on the performance of the model at large. To our knowledge, this

combination of measurement error and observation influence is novel, and as such may represent

a fruitful avenue for interesting future research. The measurement influence statistic is presented

in a model-agnostic form that is adaptable to a variety of data settings, as well as to different
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modeling goals within a given data setting. We explore the measurement influence statistic’s

performance in a series of numerical experiments, in which we clarify certain ways in which the

statistic depends on its underlying model. And we show the influence statistic’s real-world appli-

cability by analyzing an environmental dataset to identify which potentially costly measurements

are most important to have measured correctly.

We would like to highlight salient aspects of this approach that we believe to be strengths.

First, this approach is straightforward to conceptualize. The focus of this method began with, and

was centered on, utility in the real world—the ability to simply explain this method’s rationale

for selecting an observation to spend actual cost on remeasuring should be immediately apparent

as a boon. Second, this approach is flexible and allows easy incorporation of domain knowledge.

We demonstrate this fact clearly in both environmental applications in Section 4.5: knowledge

of the underlying data measurement mechanism is reflected in the construction of Γ(Y ). Third,

this approach concurs with well-studied properties of some models. In particular, the tendency of

values of ∆ computed via OLS to seek the extremes of covariate space, as seen in Section 4.4.1,

mirrors the approach of Zhou et al. (2002), which notes that sampling from the extremes can

increase efficiency in the estimation of OLS parameters.

This approach is not without caveats. First, although the measurement influence statistic is

model-agnostic, it is not free of impact from the chosen model, as seen quite plainly in Section

4.4.1. While we choose to view this as a positive factor, as it clarifies aspects of the modeling

approach chosen, some may view it otherwise. Second, computing our measurement influence

statistic may incur a hefty computational burden, depending on the underlying model. At worst,

it may multiply the computational cost by a factor of nM—albeit in a highly parallelizable way.

Finally, it is possible that the proposed approach may be misled in some data settings by the fact

that it only perturbs one observation at a time. Extensions of this approach, in which k-tuples of

points are perturbed at once, may be a natural approach to tackle this limitation—though we will

note these extensions incur a further combinatorial burden of computation.
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In Animal Farm, George Orwell wrote that “All animals are equal, but some animals are

more equal than others.” Removing the totalitarian timbre of that quote, we contend that the same

holds true for errors in measurement: while measurement errors may occur in similar ways, for

the same reasons, and with equal probabilities across a sample, not all potential measurement

errors have the same importance when it comes to the end goal of an analysis. The proposed

method provides a way of identifying the highest-impact errors in measurement. In a world

where measurement errors may be costly and difficult to avoid, this represents a powerful new

tool available to investigators.
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CHAPTER 5: DISCUSSION AND FUTURE RESEARCH

In this chapter, we discuss several directions for future research. We begin with the subgroup

determination method of Chapter 2. We briefly mentioned one potential direction for future re-

search in Section 2.6.1.3. Namely, as Figures 2.1, 2.2, and 2.3 demonstrate, subgroup recovery

sensitivity and specificity, particularly sensitivity regarding the muted group and specificity re-

garding the intervention and control groups, may be improved by an ITR estimation method that

is less sensitive to differences between treatment and control. In the case of an indirect estimation

method like RLT, this may take the form of ε-insensitivity to differences in predicted values. That

is, where the RLT-based ITR is currently assigned by

π̂(Xi) =


−1, Q̂−1(Xi)− Q̂1(Xi) > 0

0, Q̂−1(Xi)− Q̂1(Xi) = 0

1, Q̂−1(Xi)− Q̂1(Xi) < 0,

(5.1)

it would instead be assigned by

π̂(Xi) =


−1, Q̂−1(Xi)− Q̂1(Xi) > ε

0, |Q̂−1(Xi)− Q̂1(Xi)| ≤ ε

1, Q̂−1(Xi)− Q̂1(Xi) < −ε,

(5.2)

where Q̂−1 and Q̂1 are defined in Section 2.6.1. The details of finding an automated procedure to

choose the most desirable ε in (5.2)—and indeed the correct metric to evaluate the desirability of

a given choice of ε—remain for future research. Yuan and Wegkamp (2010) provide a method for
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“rejecting” the choice between intervention and control in an OWL framework by penalizing mis-

classification more heavily than failing to classify. While this procedure creates a third group, the

algorithmic justification of this group is not identical to that of the muted group. The “rejection”

group of Yuan and Wegkamp (2010) consists of those patients who are likely to be misclassified

if the algorithm is forced to choose; the muted group described in Chapter 2 consists of those

patients who experience no difference in predicted outcome between intervention and control

(or, if the algorithm is amended as in (5.2), a sufficiently small difference). It is reasonable to

presume that patients likely to be misclassified by OWL are also likely to experience no (or very

small) RLT-predicted differences between intervention and control. This is, however, merely a

presumption, and it must be verified.

Another natural extension of the work presented in Chapter 2 is to more complex interven-

tion options than binary. For indirect estimation methods such as RLT, the K-intervention setting

does not induce a particular mathematical burden in ITR estimation, with the potential exception

of needing to adaptively scale ε in (5.2) by intervention pair. The concept of the muted group,

however, must be extended to “muted for a given intervention set.” A patient may, for instance,

experience identical predicted outcomes under interventions A and B but identical, higher pre-

dicted outcomes under interventions C and D. Such a case clearly recommends one set of inter-

ventions over another set, but does not distinguish between the interventions within either set.

In the same way, extending indirect estimation methods to the ordinal treatment or dose-finding

setting may not pose especially great mathematical challenges, but the challenges in interpreta-

tion are non-trivial. For the direct estimation method of OWL, extensions to the K-treatment (Fu

et al., 2016), ordinal (Chen et al., 2018), and dose-finding (Chen et al., 2016) settings that do not

consider a muted group are feasible given existing methods. None of these methods are currently

adapted to include a “rejection” region, and the ordinal treatment and dose-finding settings in

particular would seem to present mathematical challenges for doing so. Even still, the potential

for disconnect between the muted group and the “rejection” group remains here.
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There are similarly several extension of interest for the differential equation model presented

in Chapter 3. First, one potential factor that hinders the flexibility of our model is its strict ad-

ditivity. Adding first-order interactions between the functional forms in (3.5) would relax the

strictness of our model’s additivity while maintaining computational feasibility. In particular, we

can estimate the interaction term fjk (Zj(t), Zk(t)) with a tensor product of the basis functions in

phi, then enforce the proper interaction hierarchy using overlapping group penalties in LASSO,

as outlined in Bien et al. (2013). An analogous procedure will apply for interaction terms gjk in

the dW (t) piece of (3.5). This extension of the model should not disrupt any of the theory pre-

sented in Chapter 3, and its impact on computational complexity should be minor in terms of ease

to implement, as LASSO is a method that is suited for n � p. The primary cost is likely to be

computation time, as each individual run of LASSO with overlapping group penalties is slower

than the standard group LASSO.

A further extension of the model in Chapter 3 is to relax the assumption that our error term

takes a Brownian motion form—that is, to replace dW (t) with dL(t), where L(·) is a more gen-

eral Lévy process. This substitution would complicate the presented approach in several ways.

First, the calculus that leads from (3.13) to (3.16) would no longer apply, causing the estimating

equation to take a potentially less tractable form. Second, the rates in Theorem 3.1, which depend

on the properties of Brownian motion, would no longer apply, likely leading to slower rates of

convergence.

Another extension of the work presented in Chapter 3 is an alternative method for solving

for β̂ in (3.16). Namely, rather than solve for β̂ through our bilinear estimation scheme, we could

proceed in a manner similar to that of forward stagewise regression, starting from 0 and tak-

ing many small steps in directions governed by the correlations between the covariates and the

current residual vector (Efron et al., 2004). As Efron et al. (2004) describes, forward stagewise re-

gression is not preferred in linear models, where the Least Angular Regression (LARS) algorithm

provides a more efficient solution for asymptotically equivalent covariate paths. In the setting of

(3.16), however, where the tensor structure of the data violates the linear independence assump-
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tions of LARS, an adaptation of forward stagewise regression that accounts for the tensor nature

of the data may still prove feasible, and furthermore this algorithm may not prove inefficient

compared to fitting LASSO many times, as our current estimation approach requires.

The research of Chapter 4, to our knowledge, represents a novel union of two concepts, mea-

surement error and influence statistics. As such, there are many possible avenues to extend the

work presented in this chapter. A natural concern with the present approach of Algorithms 4 and

5 is that perturbing a single observation at a time may fail to reveal the underlying trends related

to measurement error, as a single observation may not have a substantial enough impact on the

overall summary of model performance. The clearest way to address these concerns is to perturb

not a single observation, but a q-tuple of observations simultaneously, where 1 < q � n. It

should be immediately noted that, without improvements in the underlying computational algo-

rithm, this extension of the method would incur a combinatorial increase in the computational

burden of the algorithm.

In the current approach, we specify a grid of values Γk(Y ), k = 1, . . . , K, then select

∆i = max
k∈1,...,K

∆ik. Implicitly, this approach ignores all perturbations within the range of measure-

ment error Γ(Y ) except the perturbation with maximum impact. While there are arguments for

why this approach is logical—focusing on the worst case allows us to take a minmax approach

to the risk associated with measurement error—it may hinder the ability to make probabilistic

statements. Approaches that incorporate multiple values of Γk(Y ), or Bayesian formulations of

this problem, may provide an avenue toward doing so.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 3

A.1 Proofs

In this section, we prove Theorems 3.1 and 3.2 from Section 3.3 in the main paper. Sub-

section A.1.1 gives the full explanation of commonly used notation in this section. Subsection

A.1.2 presents the proof of Theorem 3.1. Subsection A.1.3 presents several additional technical

conditions required for the proof of Theorem 3.2, then presents the proof.

A.1.1 Notation

We begin by introducing notation that will be used throughout this section. We first define a

frequently referenced index set, S0
σ = (0, Sσ). That is, S0

σ denotes the set of true regulators of σ(·)

in union with the intercept β0.

We next note that we will frequently use sets to index several quantities, including various

variations of β. For instance, βj = (βj1, . . . , βjM2)
T is an M2-vector, while βS0

σ
is an sσM2-

vector, where sσ = |Sσ|, corresponding to
⋃
j∈Sσ

βj arranged in the proper order. We will apply set

subscripts to several other vector quantities in the same manner in the course of the proof.

In Section 3.2.4, we introduced Ûi, an (M2p + 1) × (M2p + 1) matrix corresponding to

the ith time point. In that section, we noted that Ûi had a first row and column consisting of a

single 1 and many 0s, and the rest of Ûi had a block structure, with each of the p2 M2 ×M2 blocks

corresponding to one (j, k) ∈ {1, . . . , p} × {1, . . . , p}. That is, we can write

Ûi =



1 0 0 . . . 0

0 Ûi(11) Ûi(12) . . . Ûi(1p)

0 Ûi(21) Ûi(22) . . . Ûi(2p)
...

...
... . . . ...

0 Ûi(p1) Ûi(p2) . . . Ûi(pp)


. (A.1)
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We will use parenthetical indices, as shown above, to reference these blocks. Set notation applies

here as well: Ûi(S0
σS

0
σ)

is an (sσM2 + 1)× (sσM2 + 1) matrix, for instance. We will use the centered

dot (·) to denote the entire row or column set: for instance, Ûi(j·) is the M2 × (pM2 + 1) matrix

equal to the jth “block row” of Ûi, and Ûi(··) is another way to write Ûi.

A.1.2 Proof of Theorem 3.1

The error in covariates nature of our problem requires additional care—before we can es-

tablish more desirable theoretical results, we must first ensure that the smoothed processes

Ẑj, j = 1, . . . , p are sufficiently close to the true processes Z∗j , j = 1, . . . , p.

Minor, and standard, assumptions of smoothness of the estimators Ẑj must be met. In particu-

lar, if we use the local polynomial estimator for Ẑj ,

Ẑj(t;h) =
n∑
i=1

YjiWni(t;h), (A.2)

where Wni is defined as in Section 1.6 of Tsybakov (2009), then we must make three additional

assumptions. For the sake of brevity, those assumptions are omitted here; we direct the inter-

ested reader to that book. These assumptions allow us to use Lemma 1.3 of Tsybakov (2009),

presented here for clarity:

Lemma A.1. Under the given assumptions, for all n > n0, h > 1/(2n), and t ∈ [0, 1], the

weights Wni in (A.2) satisfy:

1. supi,t |Wni(t;h)| ≤ C3/(nh);

2.
n∑
i=1

|Wni(t;h)| ≤ C3.

We are now ready to prove Theorem 3.1 of the main paper.
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Proof.

∥∥∥Ẑj − Z∗j ∥∥∥2 =

∫ 1

0

[Ẑj(s;h)− Z∗j (s;h)]2ds =

∫ 1

0

{
1

n

n∑
i=1

YjiWni(s;h)− Z∗j (s)

}2

ds (A.3)

=

∫ 1

0

{
n∑
i=1

[Z∗j (ti) + εji]Wni(s;h)− Z∗j (s)

}2

ds

≤ 2

∫ 1

0

{
n∑
i=1

[Z∗j (ti)− Z∗j (s)]Wni(s;h)

}2

ds+ 2

∫ 1

0

{
n∑
i=1

εjiWni(s;h)

}2

ds,

where the last inequality follows from the fact that the weight sum to one and the fact that (a +

b)2 ≤ 2a2 + 2b2. Thus we can characterize our inequality as

∥∥∥Ẑj − Z∗j ∥∥∥2 ≤ 2

∫ 1

0

bias2(s)ds+ 2

∫ 1

0

v2(εj/σ, s, h)ds, (A.4)

where bias(·) is clearly defined in the final line of (A.3) and

v(a, s, h) = σ
1

n

n∑
i=1

aiWni(s;h), εj = (εj1, . . . , εjn)T , (A.5)

with σ arising from Assumption 3.1 in the main paper.

We scrutinize (A.4). First, from Assumption 3.2, we note that for any t ∈ [0, 1] and h > 1/n,

|bias(t)| ≤
n∑
i=1

|Z∗j (ti)− Z∗j (t)||Wni(t;h)| (A.6)

≤
n∑
i=1

L1|ti − t|τ1|Wni(t)|

≤
n∑
i=1

L1h
τ1|Wni(t)|

≤ L1h
τ1C3 ≡ q1h

τ1 ,

where C3 comes from Lemma A.1. Thus we can bound the first term in (A.4). Next, we can use

Theorem 5.6 from Boucheron et al. (2013) to bound
∫ 1

0
v2(εj/σ, s, h)ds by nν−1h−1 for some
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positive ν < 1 with at least probability 1 − 2 exp{−nν/(2σ2C3)} in the exact same manner as

done in Chen et al. (2017). For a full explication of this portion of the proof, including a proof

that v is Lipschitz, we direct the reader to Section A of the supplementary materials of that paper.

Hence we can say ∥∥∥Ẑj − Z∗j ∥∥∥2 ≤ 2q21h
2τ1 + 2nν−1h−1, (A.7)

with probability no smaller than 1− 2 exp{−nν/(2σ2C3)}. When we minimize the right-hand side

of (A.7) with respect to h, we find that the minimizer hn satisfies 2τ1q
2
1h

2τ1+1
n = nν−1. With this

bandwidth, the error bound is therefore

∥∥∥Ẑj − Z∗j ∥∥∥2 ≤ C2n
2τ1

2τ1+1
(ν−1)

,

where C2 is a global constant.

Note that this particular proof uses the local polynomial model (A.2). This is not necessary; a

similar proof will hold for other well-behaved and sufficiently smooth estimators Ẑj .

A.1.3 Proof of Theorem 3.2

The estimation scheme presented in 3 rests on two facets: finding an overall consistent es-

timator from (3.21), then updating it with a standardized LASSO-like penalty, as in Simon and

Tibshirani (2012), to correctly induce variable selection. As discussed in Chen et al. (2017), the

fact that the regressors Ûi, i = 1, . . . , n are estimated poses additional challenges.

Define the true coefficients β∗ by

E[V ∗(ti)] = β∗TU∗i β
∗,

where U∗i is analogous to Ûi using the true function values ψ(Z∗(ti)). Here we build upon the

work of Chen et al. (2017) and extend the result of variable selection consistency for group

LASSO regression with errors in variables to the estimation of process volatility. In order for
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this consistency to hold, we need one additional assumption and four conditions, presented here.

Of note, several of these conditions rely on an existing consistent estimate β̃; this mimics the

proposed estimation scheme, which begins with a consistent estimator and improves it to induce

variable selection.

Assumption A.1. Assume that β ∈ B, where B is compact.

Condition A.1. Suppose that, for any almost surely consistent estimator β̃, the following holds

almost surely:

0 <
1

2
Dmin ≤ Λmin

(
1

n

n∑
i=1

Ûi(S0
σ ·)β̃β̃

T Ûi(·S0
σ)

)
,

Λmax

(
1

n

n∑
i=1

Ûi(S0
σ ·)β̃β̃

T Ûi(·S0
σ)

)
≤ 2Dmax,

0 <
1

2
Dmin ≤ Λmin

(
1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·j)

)
, j /∈ S0

σ,

where Dmin and Dmax are introduced in Assumption 3.4.

Condition A.2. Suppose that, for any almost surely consistent estimator β̃, we have almost

surely that

max
k/∈S0

∥∥∥∥∥∥
(

1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·S0

σ)

)(
1

n

n∑
i=1

Ûi(S0
σ ·)β̃β̃

T Ûi(·S0
σ)

)−1∥∥∥∥∥∥
2

≤ 2κ, (A.8)

where κ is introduced in Assumption 3.5.

Condition A.3. For j = 1, . . . , p, let Γ = maxj=1,...,p

∥∥∥Ẑj − Z∗j ∥∥∥. Assume that, for any almost

surely consistent estimator β̃, we have almost surely that

∥∥∥∥∥ 1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·S0

σ)
β∗S0

σ
− 1

n

n∑
i=1

β̃T Ûi(S0
σ ·)(Vi + β̃T Ûiβ̃)

∥∥∥∥∥
2

≤ η, (A.9)

where η depends only on n, M2, Γ, ‖β∗Sσ‖, and global constants.
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Condition A.4. The following inequalities hold:

2
√
s+ 1

Dmin

η + λn
2
√

2sDmax

Dmin

≤ 2

3
βmin,

2κ
√
s+ 1 + 1

λn
η + 2κ

√
2sDmax ≤

√
Dmin/2,

where βmin = minj∈S0
σ
‖β∗j ‖2, and κ, η,Dmin, and Dmax are introduced in Assumptions 3.4-3.6.

We are now ready to give the proof of Theorem 3.2.

Proof. The proof is divided into two main steps. First, we verify the consistency (but not support

recovery consistency) of the Ridge-like estimator proposed in (3.21). Second, we verify that,

given the starting point of any consistent estimator β̃ of β∗, a one-step Lasso-like improvement of

β̃ has support recovery consistency.

We use standard M-estimation theory to show that β̃ from (3.21) is consistent for β∗. Define

Mn(β) as

Mn(β) ≡ 1

n

n∑
i=1

(
Vi − βT Ûiβ

)2
+ λn

[
1

n

n∑
i=1

(
βTS Ûi(SS)βS

)2]
, (A.10)

and define its expectation M0(β) as

M0(β) ≡ E
(
V − βT Ûβ

)2
+ λn

[
E
(
βTS Û(SS)βS

)2]
. (A.11)

As Mn is a sum of quadratic forms, only mild assumptions are necessary to ensure that it has a

global minimizer β0. Then, as we have assumed β ∈ B, where B is compact, it suffices to show

that

sup
β∈B
|Mn(β)−M0(β)| →

p
0. (A.12)
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The verification of (A.12) is clear when we decompose Mn:

Mn(β) =
1

n

n∑
i=1

V 2
i − 2βT

1

n

n∑
i=1

(
ViÛi

)
β +

(
βT

1

n

n∑
i=1

Ûiβ

)2

(A.13)

+ λn

[
1

n

n∑
i=1

(
βTS Ûi(SS)βS

)2]
.

Note that M0(β) has an analogous decomposition. The first term in (A.13) clearly converges to

its analogue from M0(β) by the law of large numbers. The convergence of each other piece is

guaranteed by Theorem 3.1. Hence we have shown consistency for the Ridge-like estimate β̃ridge

in (3.21).

Now suppose we have any estimator β̃ that is consistent for β∗. As discussed in Section 3.3

in the main paper, we can examine the properties of a one-step improvement estimator β̂ = β̃ + ∆

by analyzing M̃n(β̂) from (3.29).

We will prove support recovery consistency using the primal-dual witness method given

in Wainwright (2009). The estimator β̂ minimizes (3.24) if it satisfies the Karush-Kuhn-Tucker

(KKT) condition, which for this problem is given by

− 1

n

n∑
i=1

[
2
(
Vi + β̃T Ûiβ̃ − 2β̃T Ûiβ̂

)
Ûi(j·)β̃

]
+ λnr̂j = 0, j = 1, . . . , p, (A.14)

where

r̂Tj

(
1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·j)

)−1
r̂j < 1, β̂j = 0 (A.15)

r̂j =

[
n−1∆̂T

j

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·j)∆̂j

]−1/2 [
n−1

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·j)∆̂j

]
, β̂j 6= 0.

We construct an oracle primal-dual pair
(

∆̂, r̂
)

as follows:

1. Set β̂j = 0 for j /∈ S0
σ.
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2. Let

β̂S0
σ

= arg min
β
S0σ
∈RsσM2+1

1

n

n∑
i=1

[
Vi + β̃T Ûiβ̃ − β̃TS0

σ
Ûi(S0

σS
0
σ)
βS0

σ

]2
+ λn

[
1

n

n∑
i=1

(
βTSσ Ûi(SσSσ)βSσ

)2]1/2
.

3. Define r̂S0
σ

= (0, r̂TSσ)T as in (A.15).

4. Solve r̂j from the subgradient condition in (A.14) for k /∈ S0
σ.

We need to verify the following statements:

max
j∈S0

σ

‖β̂j − β∗j ‖2 ≤
2

3
βmin (A.16)

max
j /∈S0

σ

r̂Tj

(
1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·j)

)−1
r̂j < 1. (A.17)

(A.16) ensures support recovery consistency, while (A.17) ensures strict dual feasibility.

To establish (A.16), we begin by stating a convenient formulation of the subgradient condi-

tion for (A.14):

− 1

n

n∑
i=1

[
2
(
Vi + β̃T Ûiβ̃ − 2β̃T Ûi(·S0

σ)
β̂S0

σ

)
Ûi(S0

σ ·)β̃
]

+ λnr̂j = 0. (A.18)

After absorbing the constant 2 into λn and adding and subtracting 2
n

n∑
i=1

Ûi(S0
σ ·)β̃β̃

T Ûi(·S0
σ)
β∗S0

σ
, then

rearranging terms, we have

β̂S0
σ
− β∗S0

σ
=

(
2

n

n∑
i=1

Ûi(S0
σ ·)β̃β̃

T Ûi(·S0
σ)

)−1
(RS0

σ
+ λnr̂S0

σ
), (A.19)

where

Rj =
1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·S0

σ)
β∗S0

σ
− 1

n

n∑
i=1

β̃T Ûi(S0
σ ·)(Vi + β̃T Ûiβ̃). (A.20)
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We scrutinize (A.19). Condition A.3 states that ‖Rj‖2 ≤ η for each j ∈ S0
σ. Thus Condition A.3

implies

‖RS0
σ
‖2 ≤ η

√
sσ + 1. (A.21)

Additionally, Condition A.1 implies

Λmax


(

1

n

n∑
i=1

Ûi(S0
σ ·)β̃β̃

T Ûi(·S0
σ)

)−1 ≤ 2

Dmin

. (A.22)

From the KKT conditions in (A.15) and the almost sure consistency of β̃, for j ∈ Sσ, we have

‖r̂j‖22 ≤

r̂Tj
(

1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·j)

)−1
r̂j

Λmax

(
1

n

n∑
i=1

Ûi(S0
σ ·)β̃β̃

T Ûi(·S0
σ)

)
≤ 2Dmax, (A.23)

and we know ‖r̂0‖ = 0 by construction. Hence we can say

‖r̂S0
σ
‖2 = ‖r̂S0

σ
‖2 ≤

√
2sDmax. (A.24)

Finally, it follows from (A.19) and (A.21), (A.22), and (A.24) that for each j ∈ S0
σ,

‖β̂j − β∗j ‖2 ≤ ‖β̂S0
σ
− β∗S0

σ
‖2 ≤

2η
√
s+ 1

Dmin

+ λn
2
√

2sDmax

Dmin

.

Then clearly by Condition A.4 we have verified (A.16).

To prove strict dual feasibility, we begin with the subgradient condition for j /∈ S0
σ,

− 1

n

n∑
i=1

[
2
(
Vi + β̃T Ûiβ̃ − 2β̃T Ûi(·S0

σ)
β̂S0

σ

)
Ûi(j·)β̃

]
+ λnr̂j = 0. (A.25)
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After adding and subtracting
1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·S0

σ)
β∗S0

σ
, rearranging terms, and plugging in (A.19)

and (A.20), we have

λnr̂j =
1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·S0

σ)

(
1

n

n∑
i=1

Ûi(S0
σ ·)β̃β̃

T Ûi(·S0
σ)

)−1
(RS0

σ
+ λnr̂S0

σ
)−Rj. (A.26)

Using (A.21) and (A.24) together with Condition A.2, we see from (A.26) that

‖r̂j‖2 ≤
2κ
√
sσ + 1

λn
η + 2κ

√
2sDmax, j /∈ S0

σ. (A.27)

Therefore, applying Condition A.3, we observe that

r̂Tj

(
1

n

n∑
i=1

Ûi(j·)β̃β̃
T Ûi(·j)

)−1
r̂j ≤

2‖r̂j‖22
Dmin

, j /∈ S0
σ. (A.28)

Applying Condition A.4 leads directly to the desired result, (A.17).

Thus we have shown that the oracle primal-dual pair recovers the support of β∗ and solves

the optimization problem in (3.24). If the optimal solution to (3.24) is unique, then the oracle

estimator is the unique estimator. If not, then the null set of any optimal solution should contain

S0c
σ , meaning any optimal solution should satisfy the construction of the oracle estimator, as

explored in Roth and Fischer (2008). That is, any optimal solution to the optimization problem

should recover the correct support S0
σ.

Furthermore, we note that in Algorithm 3, we may use a finite series of one-step improve-

ments rather than a single one-step improvement. The proof of support recovery consistency

trivially holds for such an estimation scheme, as the one-step improvement of a consistent estima-

tor β̃ will produce another consistent estimator β̃′.

Finally, we note that in Algorithm 3, we scale β̂ by γ̂, where γ̂ is defined in step 3(b). Due

to the almost sure convergence of β̃ and the argument in the preceding paragraph, we have that

γ̂ converges to 1 almost surely. Furthermore, multiplying β̂ by a scalar does not change its esti-
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mated support. Thus β̂ from Algorithm 3 is almost surely consistent and almost surely recovers

the correct support.
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