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ABSTRACT

ZHENGLING Qi: SOME CONTRIBUTIONS TO DATA DRIVEN INDIVIDUALIZED
DECISION MAKING PROBLEMS
(Under the direction of Yufeng Liu)

Recent exploration of the optimal individualized decision rule (IDR) for patients in preci-

sion medicine has attracted a lot of attentions due to the potential heterogeneous response of

patients to different treatments. In the current literature, an optimal IDR is a decision function

based on patients’ characteristics for the treatment that maximizes the expected outcome. My

dissertation research mainly focuses on how to estimate optimal IDRs under various criteria

given experimental data.

In the first part of this dissertation, focusing on maximizing expected outcome, we propose

an angle-based direct learning (AD-learning) method to efficiently estimate optimal IDRs with

multiple treatments for various types of outcomes. This contributes to the literature, where

many existing methods are designed for binary treatment settings with the interest of a con-

tinuous outcome. In the second part, motivated by complex individualized decision making

procedures, we propose two new robust criteria to estimate optimal IDRs: one is to control the

average lower tail of the subjects’ outcomes and the other is to control the individualized lower

tail of each subject’s outcome. In addition to optimizing the individualized expected outcome,

our proposed criteria take risks into consideration, and thus the resulting IDRs can prevent

adverse events caused by the heavy lower tail of the outcome distribution. In the third part

of this dissertation, motivated by the concept of Optimized Certainty Equivalent (OCE), we

generalize the second part and propose a decision-rule based optimized covariates dependent

equivalent (CDE) for individualized decision making problems. Our proposed IDR-CDE not

only broadens the existing expected outcome framework in precision medicine but also enriches

the previous concept of the OCE in the risk management. We study the related mathematical

problem of estimating an optimal IDRs both theoretically and numerically.
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CHAPTER 1

Introduction

In this chapter, we outline the contributions in the subsequent development of the disser-

tation.

1.1 Multi-armed Angle-based Direct Learning for Estimating Optimal Individu-
alized Decision Rules with Various Outcomes

Estimating an optimal individualized decision rule (IDR) based on patients’ information

is an important problem in precision medicine. An optimal IDR is a decision function that

optimizes patients’ expected clinical outcomes. Many existing methods in the literature are

designed for binary treatment settings with the interest of a continuous outcome. Much less

work has been done on estimating optimal IDRs in multiple treatment settings with good

interpretations. In this paper, we propose an angle-based direct learning (AD-learning) method

to efficiently estimate optimal IDRs with multiple treatments. Our proposed method can be

applied to high dimensional settings under various types of outcomes, such as continuous,

survival or binary outcomes. Moreover, it has an interesting geometric interpretation on the

effect of different treatments for each individual patient, which can help doctors and patients

make better decisions. Finite sample error bounds have been established to provide a theoretical

guarantee for AD-learning. Finally, we demonstrate the superior performance of our method

via extensive simulation studies and real data applications.

1.2 Estimating Individualized Decision Rules with Tail Controls

Most existing literature has focused on finding optimal IDRs that can maximize the ex-

pected outcome for each individual. Motivated by complex individualized decision making

procedures and popular conditional value at risk (CVaR) measures, in the second part of this
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dissertation, we propose two new robust criteria to estimate optimal IDRs: one is to control the

average lower tail of the subjects’ outcomes and the other is to control the individualized lower

tail of each subject’s outcome. In addition to optimizing the individualized expected outcome,

our proposed criteria take risks into consideration, and thus the resulting IDRs can prevent

adverse events caused by the heavy lower tail of the outcome distribution. Interestingly, from

the perspective of duality theory, the optimal IDR under our criteria can be interpreted as the

decision rule that maximizes the “worst-case” scenario of the individualized outcome within a

probability constrained set. The corresponding estimating procedures are implemented using

two proposed efficient non-convex optimization algorithms, which are based on the recent de-

velopments of difference-of-convex (DC) and majorization-minimization (MM) algorithms. We

provide a comprehensive statistical analysis for our estimated optimal IDRs under the proposed

criteria such as consistency and finite sample error bounds. Simulation studies and a real data

application are used to further demonstrate the robust performance of our methods.

1.3 Estimation of Individualized Decision Rules Based on an Optimized
Covariate-Dependent Equivalent of Random Outcomes

In third part of this dissertation, motivated by the concept of Optimized Certainty Equiva-

lent (OCE), we propose a decision-rule based optimized covariates dependent equivalent (CDE)

for individualized decision making problems. Our proposed IDR-CDE not only broadens the

existing expected-mean outcome framework in precision medicine but also enriches the previous

concept of the OCE. Under a functional margin description of the decision rule modeled by an

indicator function as in the literature of large-margin classifiers, we study the mathematical

problem of estimating an optimal IDRs in two cases: in one case, an optimal solution can be

obtained “explicitly” that involves the implicit evaluation of an OCE; the other case requires

the numerical solution of an empirical minimization problem obtained by sampling the underly-

ing distributions of the random variables involved. A major challenge of the latter optimization

problem is that it involves a discontinuous objective function. We show that, under a mild

condition at the population level of the model, the epigraphical formulation of this empirical

optimization problem is a piecewise affine, thus difference-of-convex (dc), constrained dc, thus

nonconvex, program. A simplified dc algorithm is employed to solve the resulting dc program
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whose convergence to a new kind of stationary solutions is established. Numerical experiments

demonstrate that our overall approach outperforms existing methods in estimating optimal

IDRs under heavy-tail distributions of the data. In addition to providing a risk-based approach

for individualized medical treatments, which is new in the area of precision medicine, the main

contributions of this work in general include: the broadening of the concept of the OCE, the

epigraphical description of the empirical IDR-CDE minimization problem and its equivalent dc

formulation, and the optimization of resulting piecewise affine constrained dc program.
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CHAPTER 2

Multi-armed Angle-based Direct Learning for Estimating Optimal Individualized
Decision Rules with Various Outcomes

2.1 Introduction

Precision medicine, which recommends different treatments for individual patients, has

been a popular research area in the scientific community. Compared with traditional “one-

size-fits-all” medical procedures, precision medicine provides an individualized decision for each

patient based on their information, such as clinical covariates, genetics, in order to maximize

the outcome of each patient. In practice, there exists various types of outcomes such as time

to event, health index or the disease indicator.

There are a number of existing statistical methods for estimating optimal IDRs in the

literature. These methods can be roughly characterized into two types. The first type includes

indirect methods such as Q-learning ((Watkins and Dayan, 1992; Watkins, 1989; Murphy, 2005;

Qian and Murphy, 2011) and A-learning ((Murphy, 2003; Robins, 2004)). Q-learning estimates

optimal IDRs via modeling the conditional outcome function based on covariates while A-

learning models the contrast between rewards of two treatments. The second type of methods

directly targets the decision rules. One major approach is to recast the estimating IDRs problem

into weighted classification problems and use different machine learning techniques to estimate

optimal IDRs ((Zhang et al., 2012; Zhao et al., 2012; Zhou et al., 2017; Zhao et al., 2015a; Tao

and Wang, 2017)). In order to enhance interpretability of decision rules, different tree based

methods were also proposed ((Zhang et al., 2015; Foster et al., 2011; Laber and Zhao, 2015)).

Other direct-search methods include (Tian et al., 2014) and Direct Learning (D-learning) ((Qi

and Liu, 2018)), which directly estimate the decision function that leads to optimal IDRs by

regression techniques. Recently, a general statistical framework to estimate optimal IDRs was

proposed by (Chen et al., 2017).

4



Censored data are commonly seen in practice because of early drop out or other reasons.

Thus, it is also important to develop methods to estimate optimal IDRs for the survival outcome.

Various methods have been proposed in the literature to estimate optimal IDRs for survival

outcomes, such as (Goldberg and Kosorok, 2012; Zhao et al., 2015b) and (Cui et al., 2017).

Recently, (Bai et al., 2016) and (Jiang et al., 2016) proposed several methods to estimate the

optimal IDR that can maximize the survival probability of patients.

In the current literature, most of these existing methods are designed for binary treatment

settings only. But there are many multi-armed IDR problems in pratice ((Baron et al., 2013)).

To the best of our knowledge, not much has been done for estimating the optimal IDR for

the multi-armed treatment settings with various outcomes, such binary and survival outcomes.

Thus it is essential to develop methods to take multiple treatments into consideration simul-

taneously and estimate optimal IDRs for various outcomes, which can help to improve the

estimating efficiency and the classification accuracy.

Besides the accurate estimation of IDRs, good interpretations are also important for multi-

armed treatment settings. For binary treatment settings, indirect methods can report a single

value difference function between two treatments to illustrate the relative effectiveness. For clas-

sification based methods such as O-learning ((Zhao et al., 2012)), interpretation of the decision

rule for binary treatment settings may not be as clear. Meanwhile for K-armed treatment set-

tings, at least K(K−1)
2 pairwise value difference functions need to be estimated to illustrate the

relative performance of treatments for each patient. Although such an extension can be simple

to implement, it does not use the data simultaneously and consequently may yield suboptimal

decision rules.

5



−1.0 −0.5 0.0 0.5 1.0
−1

.0
−0

.5
0.0

0.5
1.0

x

y
Patient

θ

A

B

C

Figure 2.1: Graphical illustration of the estimated IDR for a given patient in a three-treatment setting.
Vertices A,B and C represent 3 treatments. The estimated IDR of the patient has the least angle with
treatment B which is thus more preferable than the other two treatments.

To get accurate estimation of optimal IDRs and obtain a good interpretation jointly under

the multi-armed setting, we consider a K-vertex simplex structure in an Euclidean space, where

each vertex represents one treatment. The simplex lies in a K-1 dimensional space with the

origin as the center and has equal inner products among vertices. Using the expression of the

optimal IDR, we transform the problem of maximizing the value function into maximizing the

inner product between the decision function vector and the corresponding vertex in the simplex

space. Such a transformation allows us to estimate the optimal IDR using multiple response

regression methods. In particular, for each patient, our estimated decision function vector maps

the covariates into this K−1 dimensional space. The angle between each treatment vertex and

the estimation function vector can be interpreted as a measure of preference to this treatment.

We recommend a patient to take the corresponding treatment having the least angle with our

estimated decision function vector. Figure 2.1 shows an example with our estimated IDR for a

given patient. In this case, we recommend treatment B as the best option for this patient. In

addition, we can see treatment C is more preferable than treatment A for this patient based

on their corresponding angles.

We call our method angle-based direct learning (AD-learning) which can directly estimate

optimal IDRs under multi-armed treatment settings using multiple response regression tech-

niques. Furthermore, our proposed AD-learning can be extended to various types of outcome
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such as binary and survival responses. Compared with existing methods, our proposed AD-

learning enjoys several advantages. In particular, our method is robust in the sense that it is not

necessary to model the main effect function of the conditional outcome. Due to direct learning

scheme, our method does not suffer from the mismatch problem between minimizing prediction

errors and maximizing value functions in model based methods such as l1-PLS ((Qian and Mur-

phy, 2011)) and can perform better in high dimensional settings. Moreover, by representing

each treatment as a vertex of a standard simplex in the Euclidean space, our proposed method

provides an attractive geometric interpretation of the relative effectiveness of all treatments for

a given patient. The resulting relative effectiveness of different treatments can be interpreted as

the angles between the decision function vector for the patient and each vertex corresponding

to the treatment. These angles can be scaled between [0, π]. In addition, flexible structures

such as group and low rank sparsity can be also incorporated to further improve the model

interpretation and simplicity, which can be applied in high dimensional settings. Finally, our

proposed method is easy to implement with efficient algorithms.

The remainder of Chapter 2 is organized as follows. In Section 2.2, we introduce our AD-

learning to estimate optimal IDRs in multiple treatment settings. In Section 2.3, we discuss

how to extend our proposed method to binary and survival outcomes. In Section 2.4, we provide

a theoretical guarantee for our AD-learning under some mild assumptions. In Section 2.5, we

conduct an extensive simulation study to evaluate the finite sample performance of our method

with implementation details including algorithms. Furthermore, we illustrate our method using

the AIDS data in Section 2.6. We conclude our paper with some discussions and possible future

extensions in Section 2.7. Details of proof and additional simulation results are given in the

Appendix A.

2.2 Angle Based Direct Learning

For notation of this Chapter, we use boldface capital and lowercase symbols to denote

matrices and vectors respectively. For a matrix B, we define a mixed l1 and l2 norm as ||B||2,1 =∑
||Bj ||2, where Bj is the j-th row vector of B. We use Tr(B) to denote the sum of the diagonal

value of the matrix B.
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We consider a randomized treatment framework for estimating optimal IDRs. For each

patient, we observe a triplet random vector (x, A,R). In particular, x = (1, X1, · · · , Xp) ∈ X

denotes patients’ p-dimensional covariates with an intercept. The random variable A represents

the randomized treatment that a patient receives. Here we consider the K-treatment-armed

setting where A ∈ {1, 2, · · · ,K} with a known prior probability distribution π(A,x), which is

the conditional probability depending on x. In a general setting other than the randomized

trial study, π(A,x) denotes the propensity score and can be estimated by the generalized

linear models such as multinomial logistic regression. The variable R is a patient’s outcome

after receiving the treatment A. Without loss of generality, we assume that the outcome R is

bounded and the larger R is, the better the treatment works for this patient.

One of the most important goals of our problem is to estimate the optimal IDR that

can maximize the expected clinical outcome of each patient under this IDR. Mathematically

speaking, an IDR is a decision function d(x) : X → A, mapping from the covariate space into

the treatment space. According to (Qian and Murphy, 2011) and (Zhao et al., 2012), the value

function under the IDR d can be expressed as

V (d) =: E[R|d(x) = A] = E[
RI(A = d(x)

π(A,x)
], (2.1)

where I(•) is the indicator function. Then the optimal IDR is defined as

d0(x) = argmaxd∈DV (d) (2.2)

within a pre-specified class of treatment rules D. Before introducing our proposed AD-learning,

we first discuss the direct learning framework.

2.2.1 The Direct Learning Framework

Consider a binary problem with K = 2. We encode treatment A to be 1 or −1. Then from

the value function and optimal IDRs defined in (2.1) and (2.2) respectively, we can further
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represent the optimal IDR as

d0(x) = sign(E[R|x, A = 1]− E[R|x, A = −1])

= sign(E[
RA

π(A|x)
|x]) := sign(f0(x)).

(2.3)

Using Equation (2.3), similarly in (Tian et al., 2014), the IDR problem is equivalent to estimate

the optimal decision function f0(x) = E[ RA
π(A|x) |x] via various regression methods such as l1

penalized regression (LASSO). The final decision rule is determined by the sign of this estimator.

Binary D-learning directly estimates the decision rule. It is very different from the out-

come weighted learning (OWL) proposed by (Zhao et al., 2012) because binary D-learning uses

regression methods to estimate the optimal IDR directly. Note that binary D-learning can be

simply extended to the K-treatment-arm setting by rewriting the optimal IDR as

d0(x) = argmax
k∈{1,··· ,K}

E[R|x, A = k]

= argmax
k∈{1,··· ,K}

KE[R|x, A = k]−
K∑
i=1

E[R|x, A = i]

= argmax
k∈{1,··· ,K}

K∑
i ̸=k

{E[R|x, A = k]−E[R|xA = i]}

= argmax
k∈{1,··· ,K}

K∑
i ̸=k

E[
RAki

πki(Aki,x)
|x, A = k or i]

:= argmax
k∈{1,··· ,K}

K∑
i ̸=k

fki(x) := argmax
k∈{1,··· ,K}

fk(x),

(2.4)

where Aki ∈ {−1, 1} represents treatments k and i, and fki(x) is defined as the optimal decision

function between treatment k and i. Each pairwise decision function can be estimated by a

binary D-learning method. The final treatment decision rule is to compare the cumulative sum

of pairwise decison functions fk(x) for k = 1, · · · ,K, and select the largest one. We refer this

pairwise method as pairwise D-learning.

Binary D-learning gives us a directed way to estimate optimal IDRs. However, pairwise

D-learning, which is based on binary D-learning, focuses only on pairwise comparisons between

treatments without considering all treatments simultaneously. Although the proposed effect
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measure fk(x) can capture the relative strength of a treatment for a given patient, it may be

suboptimal.

To handle multi-armed IDR problems, we propose AD-learning that considers all treatments

together to estimate the optimal IDR. Moreover, the AD-learning can provide a more effective

measure of treatments for patients with a good interpretation.

2.2.2 Angle Based D-learning for Continuous Outcomes

For a K-armed IDR problem, one natural approach is to estimate K functions for all

treatments. Since only one function is needed for the binary IDR problem, one indeed only

needs K − 1 functions for a K-armed problem. Instead of using K functions with a constraint

on these functions, we aim to directly estimate K − 1 functions. To that end, we project

the treatment A into K simplex vertices defined on RK−1. Specifically, we encode the j-th

treatment as a vector wj ∈ RK−1 with

wj =


(K − 1)−1/21K−1, if A = 1

−(1 +
√
K)/(K − 1)3/21K−1 + ( K

K−1)
1/2eA−1, if 2 ≤ A ≤ K,

(2.5)

where ei is a K − 1 dimensional vector with every element being 0, except the i-th location

being 1. Define w as a random vector with P[w = wj |x] = P[A = j|x]. This simplex encoding

scheme has several properties. In particular, the center of these vertices is the origin of the

space, that is
∑K

j=1wj = 0 with ||wj ||2 = 1 for j = 1, · · · ,K. The angle between each pair of

vertices is equal, that is wT
i wj = C(K) < 1 for i ̸= j, where the constant C only depends on
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K. Interestingly, we can then express the optimal IDR as

d0(x) = argmax
k∈{1,··· ,K}

E[R|x, A = k]

= argmax
k∈{1,··· ,K}

(1− c(K))E[R|x, A = k]

= argmax
k∈{1,··· ,K}

{(1− c(K))E[R|x, A = k] + c(K)

K∑
j=1

E[R|x, A = j]}

= argmax
k∈{1,··· ,K}

{E[R|x, A = k] + c(K)

K∑
j ̸=k

E[R|x, A = j]}

= argmax
k∈{1,··· ,K}

{wT
kE[Rw|x, A = k] +wT

k

K∑
j ̸=k

E[Rw|x, A = j]}

= argmax
k∈{1,··· ,K}

wT
kE[

Rw

π(A,x)
|x] := argmax

k∈{1,··· ,K}
wT
k f0(x),

(2.6)

where f0(x) is a function vector from Rp+1 to RK−1 with some abuse of notation. Then the

optimal IDR is given by comparing the inner product between wk and f0(x) for each treatment

k. We define the angle between each pair of vertices in [0, π]. Then wT
k f0(x) is the largest if

and only if the angle between wk and f0(x) is the least, for k = 1, · · · ,K. Thus we call our

proposed method as Angle based D-learning (AD-learning). Note that the simplex coding is

unique up to the orthogonal rotation.

Our proposed AD-learning has an attractive geometric interpretation. In particular, this

least angle decision rule can be understood through newly defined treatment regions for each

patient. For example, when K = 3, as shown in Figure 2.2 (b), vectors wk; k = 1, · · · ,K

form an equilateral triangle in the R2 space, where each divided region represents a treatment

region. The decision function vector f0(x) maps from the covariate space into the treatment

region. One can observe that the angles between vertices are the same, and consequently each

treatment is treated equally. Such a simplex coding scheme does not require a balanced group

size for each treatment since treatment proportions are taken into account by the term π(A,x)

in Equation (2.6). We name the angle between each wk and f0(x) as the treatment score which

lies in a bounded interval [0, π]. If a patient has the angle of 0 with the i-th treatment, then

the i-th treatment is a perfect fit for this patient compared with other treatments. Figure 2.2

gives a geometric explanation of our AD-learning.

11



w2 = −1 O = 0 w1 = 1

f̂

(a) K = 2

x

y

w1

w2

w3

O

f̂

θ1

θ2

θ3

(b) K = 3
w1

w2 w3

w4

O

f̂

(c) K = 4

Figure 2.2: Geometric interpretation of our least angle decision rule. When K = 3 or K = 4,
the estimate f̂ has the smallest angle with treatment 1 so we recommend treatment 1 as the optimal
treatment. When K = 2, we can see f̂ has the smallest angle with vector w2 and the optimal rule for
this patient is treatment 2.

To further illustrate our AD-learning, we propose the following alternative interpretation.

Suppose the clinical outcome R can be expressed as

R = µ(x) +

K∑
i=1

δi(x)I(A = i) + ϵ, (2.7)

where µ(x) is main effect function, δi(x) is the interaction effect between covariates and the

i-th treatment, and ϵ is mean zero random error. Then we can get

E[
Rw

π(A,x)
|x] = µ(x)E[

w

π(A,x)
|x] +

K∑
i=1

δi(x)iE[
wI(A = i)

π(A,x)
|x] + E[

w

π(A,x)
|x]E[ϵ|x]

=
K∑
i=1

δi(x)wi.

(2.8)

Furthermore, the optimal IDR is

d0(x) = argmaxk∈{1,··· ,K}w
T
kE[

Rw

π(A|x)
|x]

= argmaxk∈{1,··· ,K}w
T
k

K∑
i=1

δi(x)wi

= argmaxk∈{1,··· ,K}C(K)
K∑
i=1

δi(x) + (1− C(K))δk(x)

= argmaxk∈{1,··· ,K}δk(x),

(2.9)

which is exactly to compare each treatment interaction effect with the covariates.
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As a remark, we note that extensions of methods for binary treatment settings to multiple

treatment settings using all treatments jointly can be nontrivial since we need to account for

multiple treatment effect comparisons without sacrificing too much efficiency. Our proposed

AD-learning achieves this by first projecting treatments into a K-1 dimensional space. A

simplex with K vertices is used to represent the K treatments. Then Equation (2.6) provides

an innovative but direct way to efficiently estimate the decision function vector and considers

all the data simultaneously. Inherited from the simplex structure, our proposed method has

an attractive geometric interpretation to show the relative effectiveness of different treatments

for a patient. Thus it provides an informative comparison of all treatments for patients and

doctors to make decisions.

Note that the simplex coding scheme has previously been used by (Wu and Lange, 2010)

and (Zhang and Liu, 2014) for classification problems. However, our proposed AD-learning is

very different because it is not a classification method. Consequently, our method is not an

extension of O-learning proposed by (Zhao et al., 2012). Instead, by transforming the problem

(2.2) into (2.6), our goal is to estimate the decision function f0(x) directly, using multiple

response regression introduced in Section 2.2.3.

2.2.3 Estimation Procedures of AD-learning

In order to estimate the optimal IDR, it is equivalent to estimating f0(x) from Section 2.2.2.

The next lemma provides us a way for estimation of f0(x).

Lemma 2.2.1. Under the exchange of differential and expectation condition, f0(x) is an optimal

solution to

argmin
f∈RK−1

E[
1

π(A,x)
(KRw − f(x))TΣ(KRw − f(x))], (2.10)

where Σ can be any positive definite matrix that characterizes the dependency among responses.

Without knowing any prior knowledge, one could simply let Σ = IK−1.

Assume we observe independent identically distributed data {(xi, Ai, Ri), i = 1, · · · , n}.

Then we can estimate f0(x) via empirical average approximation

argmin
f∈F

1

n(K − 1)

n∑
i=1

1

π(Ai,xi)
(KRiwi − f(xi))

T (KRiwi − f(xi)), (2.11)
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where F is a pre-specified class of decision functions. For simplicity, we first consider the class

of linear decision rules, that is, F := {f(x) = BTx,B ∈ Rp×(K−1)}. By observing KRiwi as

multivariate responses, one can apply ordinary least square estimates for each of the responses

separately. However, since the responses share the same clinical outcome Ri for the i-th sample,

it is clear that pooling multivariate responses together can efficiently improve the estimation of

f0(x) ((Breiman and Friedman, 1997)). This motivates us to incorporate shrinkage and selection

strategies that explore the correlations among different responses by

argmin
B∈Rp×(K−1)

1

n(K − 1)

n∑
i=1

1

π(Ai,xi)
(KRiwi −BTxi)

T (KRiwi −BTxi) + λJ(B), (2.12)

where λ is a positive tuning parameter. Then our final least angle decision rule becomes

d0(x) = argmaxk∈{1,··· ,K}w
T
kB

Tx. In this decision rule, the corresponding coefficient for the

j-th variable of x is wT
kBj , for j = 1, · · · , p, where Bj is the j-th row vector of B. Note that

for any orthogonal matrix Γ ,

||BΓ||2,1 =
p∑
j=1

||BT
j Γ||2 =

p∑
j=1

√
BT
j ΓΓ

TBj

=

p∑
j=1

||Bj ||2 = ||B||2,1,
(2.13)

which implies that ||B||2,1 remains to be the same under any orthogonal transformation of w.

This is essential since our simplex coding is unique up to the orthogonal rotation. In addition,

Bj = 0K−1 implies the j-th variable has no effect on our least angle decision rule. These

motivate us to use the group sparsity penalty, i.e., the mixed l1/l2 norm as follows

argmin
B∈Rp×(K−1)

1

n(K − 1)

n∑
i=1

1

π(Ai,xi)
(KRiwi −BTxi)

T (KRiwi −BTxi) + λ||B||2,1. (2.14)

Model (2.14) is best suited for the case that all treatments share the common interaction covari-

ates. The group sparsity structure of B will not change under any orthogonal transformation

of w.

It is known that group sparsity of a matrix is a special case of a low rank matrix. If B =

UVT such that U ∈ Rp×r and V ∈ Rr×(K−1) with r < min(p,K − 1). Then BTx = V(UTx)
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implies potential r orthogonal latent factors in the covariates. Hence we can also use the nuclear

norm penalty to control the complexity of coefficient matrix B if there is a low rank structure

or exists latent factors in the covariates by

argmin
B∈Rp×(K−1)

1

n(K − 1)

n∑
i=1

1

π(Ai,xi)
(KRiwi −BTxi)

T (KRiwi −BTxi) + λ||B||∗, (2.15)

where ||B||∗ denotes the sum of all singular values of coefficient matrix B. The nuclear norm

penalty, unlike the rank constraint, provides a soft and stable shrinkage on the singular values.

Moreover, it is also invariant to orthogonal rotation of w.

So far, we have only focused on linear decision rules. If f0(x) belongs to some classes of

nonlinear functions, we can adapt our method to nonlinear learning via kernel learning or basis

function expansions. For kernel learning, we can apply kernel ridge regression for each response

separately, using Equation (2.11). However, it may lose some efficiency since it does not consider

the dependence among the responses. How to perform kernel learning with multiple responses

in our setting will be an interesting future research. For basis function expansions, depending

on the problem, we can use spline basis functions, interaction functions, wavelet functions, etc.

to approximate the nonlinear decision function.

To summarize, Models (2.14) and (2.15) are proposed to control the complexity of coefficient

matrix B and consequently can enhance the estimation and prediction. As our proposed AD-

learning directly targets on the decision function f0(x), it does not suffer the mismatch problem

between minimizing prediction errors and maximizing value functions happened for model-based

methods such as l1-PLS. Thus our proposed method tends to perform better in high dimensional

settings. If there are group signals in the covariates for optimal IDRs, we recommend to use

Model (2.14). If there are latent factors in the covariates for optimal IDRs, we recommend to

use Model (2.15). One can always use the cross-validation procedure to select Model (2.14) or

(2.15) that maximizes the empirical value function on the validation dataset. The computation

of these models relies on convex optimization and thus can be solved efficiently.
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2.3 Extensions to Other Types of Outcomes

In Sections 2, we proposed AD-learning for continuous outcomes. In practice, especially in

clinical studies, other types of outcomes such as binary, count responses, or survival time can

also be used. In this section, we extend our AD-learning to more general types of outcomes

motivated by the following lemma.

Lemma 2.3.1. Under the exchange of differential and expectation condition, f0(x) is an optimal

solution to

argmin
f∈F

E[
1

π(A,x)
(

K

K − 1
R−wT f(x))2]. (2.16)

Based on the optimization problem (2.16), one can write a corresponding working model as

K

K − 1
R = wT f(x) + ϵ, (2.17)

where ϵ is the random error. Note that when f ∈ F , wT f(x) = wTBTx = Tr(BT (xwT )). Then

xwT can be regarded as modified covariates. Then the multiple response regression model in

(2.11) can be extended to a more general model, namely trace regression model ((Rohde et al.,

2011)).

Motivated by the optimization problem (2.16) and the corresponding working model, we can

extend our proposed AD-learning to more general settings. In particular, instead of the least

squared loss for continuous outcome in (2.16), we can use other loss functions for corresponding

outcomes.

2.3.1 Binary Outcomes

When R is binary, motivated by Lemma 2.3.1 and the connection between (2.16) and

working model (2.17), we consider to replace the least squared loss in (2.16) by the deviance

loss of logistic regression models. Then we have the following lemma.

Lemma 2.3.2. Under the exchange of differential and expectation condition, an optimal solu-

tion to

argmin
f∈F

E[− RwT f

π(A,x)
+

log(1 + exp(wT f))

π(A,x)
] (2.18)

16



is the function f0(x) satisfying

P[R = 1|x, A = i] =
exp(wT

i f0(x))

1 + exp(wT
i f0(x))

. (2.19)

Analogous to (2.17), solving (2.18) is equivalent to fitting a logistic regression working

model (2.19). Based on Lemma 2.3.2, we can derive the optimal decision rule for the binary

outcome as

d0(x) = argmaxk∈{1,··· ,K}P[R = 1|x, A = i]

= argmaxk∈{1,··· ,K}w
T
i f0(x),

(2.20)

which can be also interpreted as the least angle decision rule. Then we can fit a weighted

logistic regression with modified covariates x∗ = xwT by modeling

P[R = 1|x, A] =
exp(Tr(BTx∗))

1 + exp(Tr(BTx∗))
, (2.21)

and estimate the coefficient matrix B by maximum likelihood estimation

argmin
B∈Rp×(K−1)

l(B) =− 1

n

n∑
i=1

RiTr(B
Tx∗

i )

π(Ai,xi)
+

1

n

n∑
i=1

log(1 + exp(Tr(BTx∗
i )))

π(Ai,xi)
+ λJ(B), (2.22)

where J(B) is either the mixed l1/l2 penalty or the nuclear norm penalty under different model

assumptions. We can use the accelerated proximal gradient method to solve this problem

((Beck and Teboulle, 2009)). However, the gradient of the exponential loss function for this

model may need relatively large computational time. The efficient group coordinate descent

algorithm proposed by (Breheny and Huang, 2015) can be used as an alternative to solve Model

(2.22) with the mixed l1/l2 penalty by vectorizing the modified covariates.

2.3.2 Survival Outcomes

When R is the survival outcome, due to the potential censoring of observations, we do not

always observe the exact outcomes of patients in clinical studies. Thus R becomes a pair of

random variables defined as R = (Y, δ) = (Ỹ ∧ C, δ), where Ỹ is the patient’s survival time,

C is the censoring time, and δ is an indicator about whether this patient is censored or not.

Motivated by Lemma 2.3.1 and a similar derivation as in Section 3.1, we can replace squared
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error loss in (2.16) for continuous outcomes by the negative log-likelihood of the Cox model for

survival outcomes. Then we have the following lemma for survival outcomes.

Lemma 2.3.3. Under the exchange of differential and expectation condition, an optimal solu-

tion to

argmin
f∈F

E[

∫ τ

0

logE[ef
TwI(Y ≥ u)]

π(A,x)
− fTw

π(A,x)
dN(u)] (2.23)

is the function f∗ satisfying

exp(wT
i f

∗)E[Λ∗(Y (i))|x, A = i] = P[δ = 1|x, A = i] (2.24)

for a monotone nondecreasing function Λ∗(u), where N(u) = I(Ỹ ≤ u)δ, and τ is a fixed time

point with P[Ỹ ≥ τ ] > 0. If the censoring time is non-informative and the censoring rate for

each treatment group is the same, then

argmaxi∈{1,··· ,K} −wT
i f

∗ = argmaxi∈{1,··· ,K}E[Λ(Y )|x, A = i]. (2.25)

Using Lemma 2.3.3, the optimal decision rule for the survival outcome can be written as

d0(x) = argmaxk∈{1,··· ,K}w
T
i (−f∗). (2.26)

This is equivalent to fitting a weighted Cox Proportional Hazard (CPH) model with modified

covariates x∗ = xwT , by defining the hazard function as

λ(t|x, A) = λ0(t)e
Tr(BTx∗), (2.27)

where λ0(t) is a baseline hazard function. Then we can estimate the coefficient matrix B by

maximum likelihood estimation such as

argmin
B∈Rp×(K−1)

l(B) =
1

n

∑
i:δi=1

{−YiTr(B
Tx∗

i )

π(Ai,xi)
+

1

π(Ai,xi)
log

∑
j:Yj≥Yi

exp(Tr(BTx∗
i ))}+ λJ(B),

(2.28)

where J(B) is either the mixed l1/l2 penalty or the nuclear norm penalty under different

model assumptions. As the gradient of the Cox loss function for this model requires heavy
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computation, similar to Section 2.3.1, efficient group coordinate descent ((Breheny and Huang,

2015)) can be used to optimize (2.28) with the mixed l1/l2 penalty through vectorizing the

modified covariates.

Note that the modified covariates x∗ in Equation (2.27) contain the treatment information

that can be incorporated into the baseline hazard function. Thus baseline hazard functions

can be different for different treatments. For Lemma 2.3.3, we assume the censoring rate to be

equal for all treatment groups so that our proposed method can be directly extended to the

survival outcome. This assumption can possibly be removed by estimating the censoring rate

for each group and then adjusting Equation (2.24).

2.4 Theoretical Properties of AD-learning

In this section, we show our proposed AD-learning is consistent under some mild conditions

and establish finite value reduction bounds for our method. We first state the generalized

margin condition used in our theory.

Assumption 1. For any ϵ > 0, there exists some constants C > 0 and α > 0 such that

P[|(wi −wj)
T f0(x)| ≤ ϵ] ≤ Cϵα (2.29)

for every i, j = 1, · · · ,K.

Assumption 1 is an extension of margin condition used in binary classification problems to

obtain sharper bounds on the excess 0-1 risk ((Audibert et al., 2007)). For our IDR problems,

this generalized margin condition characterizes the behavior of the decision function vector

f0(x) around the boundary among different treatment regions, thus the level of difficulty in

finding the optimal IDR. In the literature, (Zhao et al., 2012) used a similar assumption in

the binary IDR problem. Using Assumption 1, we have the following theorem for the value

reduction bound.

Theorem 2.4.1. For the estimator f̂n by our proposed AD-learning and the corresponding IDR

d̂n, we have

V (d0)− V (d̂n) ≤
2K(K − 1)

1− C(K)
(E||f0 − f̂n||22)

1
2 . (2.30)
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Furthermore, if Assumption 1 holds, we can improve the bound by

V (d0)− V (d̂n) ≤ C1(K,α)(E||f0 − f̂n||22)
1+α
2+α , (2.31)

where C1(K,α) is the constant that only depends on K and α.

Remark 1. Based on (2.31), we can see that when α = 0 and C = 1, Assumption (1) always

holds for any ϵ > 0. In this case, (2.31) reduces to (2.30). Based on (2.29), if α increases,

the outcomes corresponding to various treatments become more different. As a result, the

corresponding exponent 1+α
2+α becomes larger, and consequently a sharper bound in (2.31) can

be obtained.

Theorem 2.4.1 gives an upper bound for the value function reduction in terms of the predic-

tion error. For simplicity, we first consider Model (2.14) with equal π(Ai,xi) for each treatment.

Then we can use the main idea from (Lounici et al., 2009). We first vectorize the multiple re-

sponses and the coefficient B so that the model becomes

argmin
β∈Rp(K−1)

1

n(K − 1)

K−1∑
k=1

(yk −Xβk)
T (yk −Xβk) + λ||β||2,1, (2.32)

where vector yk = KRwk ∈ Rn for k = 1, · · · ,K − 1 and X is a design matrix with the

i-th row being the i-th patient covariates xi. Denote each column of the coefficients B as

βk, for k = 1, · · · ,K − 1. Then β ∈ Rp(K−1) is formed by stacking the coefficient βk, for

k = 1, · · · ,K − 1. We further define the (K − 1)n× p(K − 1) block diagonal matrix Z with its

k-th block formed by the design matrix X.

We assume the underlying true f0 is linear with coefficient β0. Define S(β) = {j : βkj ̸=

0, k = 1, · · · ,K − 1} and the cardinality of S(β) as ||S(β)||0. We make the following two

assumptions as in (Lounici et al., 2009). The first one is the Restricted Eigenvalue (RE)

assumption considered by (Bickel et al., 2009) with an extension to the mixed l1/l2 norm.

Assumption 2. [RE(s)] For any nonzero β with ||S||0 ≤ s and ||βSc ||2,1 ≤ 3||βS ||2,1, there

exists a positive real number ρ(s) such that

√
βΣ̂β ≥ ρ(s)||βS ||, (2.33)
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where S denotes the short notation of S(β) and Σ̂ = 1
nZ

TZ.

The next assumption is to control the stochastic error term in Model (2.14) with the

bounded variance assumption.

Assumption 3. (1) Assume that the random error eki = (yki − xTi βk); i = 1, · · · , n, k =

1, · · · ,K−1, are independent among different i with mean zero and finite variance E[e2ki] ≤

σ2.

(2) There exists a constant c such that max1≤i≤nmax1≤j≤p |xij | ≤ c.

With the assumptions in place, we have the following theorem.

Theorem 2.4.2. Consider Model (2.14), for p ≥ 3 and K,n ≥ 1. Assume S(β0) ≤ s, As-

sumptions 2 and 3 and the RE(2s) assumption hold. Let

λ = σ

√
(log p)1+δ

n(K − 1)
,

for any δ > 0. Then with probability at least 1 − (2e log p−e)c2
(log p)1+δ , for the solution B̂ to the Model

(2.14), we have

V (d0)− V (d̂n) ≤
√
K − 1K(K − 1)

1− C(K)

4
√
10c

ρ2(2s)
σ

√
s(log p)1+δ

n
. (2.34)

Furthermore, if Assumption 1 is satisfied, we can improve the bound by

V (d0)− V (d̂n) ≤ C(K,α)
32

ρ2(s)
σ2s(

(log p)1+δ

n
)
1+α
2+α , (2.35)

where C(K,α) only depends on K and the margin condition constant α.

Theorem 2.4.2 gives us the value reduction bound of order nearly 1
n as long as α is large

enough. This value bound is consistent with l1-PLS proposed by (Qian and Murphy, 2011) if

we assume the underlying true function is linear. For a general function approximation, an

additional approximation error to f0(x) needs to be considered.

For Model (2.15), (Rohde et al., 2011) has obtained the same rate O( 1n) for the prediction

error and thus the order of value reduction bound for Model (2.15) is the same as Theorem

21



2.4.2. For Model (2.22), it can be regarded as usual logistic regression with modified covariates.

If we consider the mixed l1/l2 penalty, error bounds of the same order were developed in (Meier

et al., 2008). These results are applicable to our proposed AD-learning. However, to the best

of our knowledge, the finite sample properties of other settings such as CPH models with the

mixed l1/l2 penalty or low rank penalty require further developments and we leave it as the

future work.

2.5 Simulation Study

In this section, we perform an extensive simulation study to investigate the finite sample

performance of AD-learning for various types of outcomes. For all simulation settings, we con-

sider four-armed (K = 4) randomized trials with equal probabilities of patients being assigned

to each treatment group. For the low dimensional simulation setting, we set the sample size n

to be 200, 400, and 800. The number of covariates p is set to be 20 and 40. For high dimensional

simulation settings, we let the sample size be 400 and p be 1000. Each simulation is repeated

for 120 times. Additional simulation results are in the supplementary material, such as settings

with n = 200, low rank decision function simulation studies, etc.

For the implementation details of AD-learning, two types of algorithms can be applied. The

first one is the accelerated proximal gradient method. In particular, Models (2.14) and (2.15)

can be represented as

minF (B) := L(B) + λJ(B), (2.36)

where L(B) is a smooth convex function with its gradient being Lipschitz continuous and J(B)

is a non-smooth convex function, of which the proximal operator can be computed efficiently.

Then we can use the accelerated proximal gradient method to solve it with low computational

complexity. It achieves the optimal converge rate O( 1
m2 ) for gradient methods, where m is the

number of iterations for the algorithm. More details can be found in (Nesterov, 2013) and (Toh

and Yun, 2010).

In binary and survival outcome settings, the gradient of function L(B) may need large

computational cost to calculate. To address the problem, the stochastic block coordinate decent

algorithm can be applied instead when J(B) is the mixed l1/l2 penalty. By using this algorithm,
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each gradient decent iteration can be efficiently computed. Thus the stochastic block coordinate

decent algorithm may cost less time than the accelerated proximal gradient method.

The tuning parameter λ is selected based on the cross-validation procedure. The criterion

is to select λ that maximizes the average of estimated value functions on the validation data

set defined as

V̂ (d) =
En[RI(A = d(x))/π(A,x)]

En[I(A = d(x))/π(A,x)]
, (2.37)

where En denotes the empirical average.

2.5.1 Study of Continuous Outcomes

When the clinical outcome R is continuous, we generate our data from Model (2.7). Specif-

ically, for i = 1, · · · , n, let

Ri = µ(xi) + δ(xi) + ϵi,

where δ(xi) =
∑K

k=1(x
T
i βk)I(A = k), each covariate is generated by the uniform distribution

from −1 to 1, and ϵi follows from the standard normal distribution. For each simulation

scenario, we consider µ(x) = 1 + X1 + X2 and consider other types of main effect functions

in the supplementary material. We design the following three interaction functions similar to

those in (Zhou et al., 2017) and (Zhang et al., 2015):

1. δ(x) = (1+X1+X2+X3+X4)I(A = 1)+ (1+X1−X2−X3+X4)I(A = 2)+ (1+X1−

X2 +X3 −X4)I(A = 3) + (1−X1 −X2 +X3 +X4)I(A = 4);

2. δ(x) = (3I(X1 ≤ 0.5)(I(X2 > −0.6)−1))I(A = 1)+((I(X3 ≤ 1))(2I(X4 ≤ −0.3)−1)I(A =

2) + (4I(X5 ≤ 0)− 2)I(A = 3) + (4I(X6 ≤ 0)− 2)I(A = 4);

3. δ(x) = (0.2 + X2
1 + X2

2 − X2
3 − X2

4 )I(A = 1) + (0.2 + X2
2 + X2

3 − X2
2 − X2

4 )I(A =

2) + (0.2 +X2
1 +X2

4 −X2
2 −X2

3 )I(A = 3) + (0.2 +X2
2 +X2

3 −X2
1 −X2

4 )I(A = 4).

The first scenario corresponds to linear interaction effects. For the second scenario, we consider

tree-type interaction effects. The last scenario includes polynomial interaction effects and we

use degree 2 polynomials as basis functions for all methods. For each simulation scenario, we

compare our proposed AD-learning using the group sparsity penalty with the following methods:
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(1) l1-PLS proposed by (Qian and Murphy, 2011) with basis (1,x,xA);

(2) pairwise D-learning;

(3) the decision list (DL) method proposed by (Zhang et al., 2015);

(4) adaptive contrast weighted learning (ACWL-1 and ACWL-2) methods proposed by (Tao

and Wang, 2017);

(5) the method of virtual twins (VT) proposed by (Foster et al., 2011),

where we use degree 2 polynomials as basis functions for all methods in the last scenario.

Additional simulation study results on AD-learning using the low rank sparsity penalty are

included in the supplementary material. In addition, we also perform the comparison between

group l1-PLS and l1-PLS in the supplementary material, which shows little differences between

l1-PLS and group l1-PLS in our simulation studies. This confirms our appropriate use of l1-PLS

instead of group l1-PLS unless there are some prior information about strong group sparsity

structures.

All the tuning parameters are selected via 10-fold cross-validation. We report the value

functions and misclassification errors for p = 40 on 10000 independently generated test data in

Table 2.1. From Table 2.1, we can see that our AD-learning has competitive performance among

all methods. When we consider linear interaction effect, it is expected that our proposed AD-

learning and l1-PLS perform the best compared with other methods. In particular, our method

will potentially be better than l1-PLS because l1-PLS suffers the mismatch problem discussed

previously. For the second simulation scenario that corresponds to simple tree type interaction

effect, while those tree based methods such as VT, DL and ACWL perform well, our method

is still competitive. Similar results for p = 20 are included in the supplementary material.

An interesting observation for this scenario is that although VT has the largest empirical

value function among all methods, its misclassification rate is similar to that of our proposed

method when n = 400. One potential reason is that VT is focused on model fitting while our

method directly targets on decision rules. For the last scenario, since the basis functions we

used correctly identify the interaction effect, our proposed AD-learning and l1-PLS enjoy some

advantages over other methods.
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Table 2.1: Results of average means (standard deviations) of empirical value functions and misclas-
sification rates for four continuous-outcome simulation scenarios with 40 covariates. The best value
functions and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

Pair-D 2.67(0.06) 0.49(0.02) 3.01(0.02) 0.32(0.02)
l1-PLS 3.05(0.04) 0.24(0.01) 3.15(0.01) 0.16(0.01)
DL 2.6(0.04) 0.54(0.01) 2.78(0.02) 0.47(0.01)
ACWL-1 2.69(0.05) 0.46(0.01) 2.9(0.02) 0.37(0.01)
ACWL-2 2.77(0.05) 0.43(0.01) 3.02(0.01) 0.31(0.01)
VT 2.66(0.03) 0.5(0.01) 2.81(0.02) 0.45(0.01)
Group-AD 3.06(0.05) 0.22(0.02) 3.14(0.03) 0.15(0.02)

Scenario 2

Pair-D 2.84(0.12) 0.32(0.04) 2.93(0.1) 0.3(0.03)
l1-PLS 2.93(0.11) 0.36(0.04) 3.01(0.1) 0.32(0.04)
DL 2.89(0.12) 0.34(0.04) 3.04(0.11) 0.28(0.04)
ACWL-1 2.76(0.11) 0.38(0.02) 2.96(0.11) 0.32(0.02)
ACWL-2 2.81(0.11) 0.38(0.02) 3.03(0.1) 0.29(0.03)
VT 3.07(0.09) 0.31(0.02) 3.12(0.1) 0.27(0.02)
Group-AD 2.97(0.1) 0.31(0.03) 2.97(0.1) 0.3(0.03)

Scenario 3

Pair-D 1.2(0.03) 0.75(0.03) 1.2(0.03) 0.75(0.03)
l1-PLS 1.42(0.18) 0.61(0.13) 1.58(0.22) 0.47(0.18)
DL 1.38(0.08) 0.64(0.06) 1.5(0.08) 0.57(0.06)
ACWL-1 1.29(0.08) 0.7(0.04) 1.49(0.07) 0.56(0.05)
ACWL-2 1.3(0.07) 0.69(0.04) 1.57(0.06) 0.51(0.05)
VT 1.39(0.05) 0.64(0.03) 1.44(0.04) 0.6(0.03)
Group-D 1.57(0.14) 0.5(0.11) 1.76(0.04) 0.3(0.05)

2.5.2 Study of Binary and Survival Outcomes

For the binary outcome R, the dataset is independently generated by the logistic regression

model

logit(P[Ri = 1]) = µ(xi) +
K∑
k=1

(xTi βk)I(A = k),

where the link function logit(x) = log x
1−x . We consider same interaction effects as the first two

scenarios of the continuous outcome simulation study.

Since pairwise D-learning and ACWL are not intended for the binary outcome, after modi-

fying the l1-PLS by using l1 penalized logistic regression (l1-PLR), we compare l1-PLR, DL and

VT with our AD-learning. Table 2.2 shows the value functions and misclassification rates for

p = 40 and n = 400, 800. We can see that our proposed AD-learning has largest value functions

and lowest misclassification rates in both scenarios. Moreover, there are some mismatches in

model based methods such as l1-PLS, where the misclassification rates and the value functions

are both high. One potential reason is the mismatch between the optimization criterion and the
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tuning procedure in l1-PLS. The other potential reason is the mismatch between minimizing

prediction error and maximizing value function in model based methods.

Table 2.2: Results of average means (standard deviations) of empirical value functions and misclassi-
fication rates for two binary-outcome simulation scenarios with 40 covariates. The best value functions
and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

l1-PLR 0.88(0.01) 0.58(0.02) 0.91(0) 0.45(0.02)

DL 0.85(0.01) 0.67(0.01) 0.87(0.01) 0.61(0)

VT 0.84(0.01) 0.68(0.01) 0.84(0) 0.69(0)

Binary-AD 0.9(0.01) 0.44(0.02) 0.92(0) 0.32(0.02)

Scenario 2

l1-PLR 0.83(0.01) 0.66(0.05) 0.86(0) 0.61(0.05)

DL 0.81(0.01) 0.53(0.01) 0.85(0.01) 0.44(0.01)

VT 0.83(0.01) 0.43(0.01) 0.83(0.01) 0.51(0)

Binary-AD 0.86(0.01) 0.43(0.04) 0.87(0.01) 0.4(0.04)

Next we consider R to be the outcome of time to event. The simulated data are generated

by the following model with the exponential distribution

Ri = exp(λi),

where exp denotes the exponential distribution and λi = µ(xi) +
∑K

k=1(x
T
i βk)I(A = k) for i =

1, · · · , n. The censoring time Ci; i = 1, · · · , n, are generated from an exponential distribution

with mean θ to induce around 25% censoring rate. We consider the same settings as those in

the binary case. For comparisons, we apply the l1 penalized CPH models and compare it with

AD-learning, since other methods we use previously are not designed for the survival outcome.

From Table 2.3 with p = 40, we can see that our proposed AD-learning has clear advantages

over l1-CPH. In addition, we also observe the mismatch phenomena of l1-CPH in Scenario 2 of

Table 2.3.

26



Table 2.3: Results of average means (standard deviations) of empirical value functions and misclassifi-
cation rates for two survival-outcome simulation scenarios with 40 covariates. The best value functions
and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

l1-CPH 41.35(2.2) 0.33(0.04) 45.05(1.1) 0.21(0.02)

Surv-AD 43.91(1.3) 0.25(0.02) 45.56(1.06) 0.18(0.01)

Scenario 2

l1-CPH 21.95(0.63) 0.57(0.04) 23.21(0.59) 0.5(0.04)

Surv-AD 22.1(0.62) 0.46(0.02) 22.78(0.53) 0.44(0.02)

2.5.3 Study of High Dimensional Problems

We evaluate our AD-learning performance for high dimensional settings. We consider the

sample size n = 400 so that each treatment group has roughly 100 patients and number of

covariates p = 800. Scenarios 1-2, 3-4, 5-6 correspond to continuous, binary, and survival

outcomes respectively. The interaction effects considered here are the same as the first two

scenarios in the continuous setting in Section 5.1.

From Table 2.4, we can find that our proposed AD-learning performs better than l1-PLS.

One of the possible reasons is that our proposed method tends to select right covariates for

the interaction effect function due to the direct learning of the decision rule. An interesting

observation is that although pairwise D-learning has the lowest misclassification rate in Scenario

2, its corresponding value function is the lowest. This mismatch comes from the potential sub-

optimality of pairwise comparisons.
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Table 2.4: Results of average means (standard deviations) of empirical value functions and misclassifi-
cation rates for six high dimensional simulation scenarios. The best value functions and misclassification
rates are in bold.

Method Value Misclassification

Scenario 1 l1-PLS 5.3(0.02) 0.17(0.01)

Pair-D 4.51(0.14) 0.47(0.03)

Group-AD 5.31(0.04) 0.15(0.02)

Scenario 2 l1-PLS 5.64(0.03) 0.22(0.01)

Pair-D 5.51(0.02) 0.2(0.01)

Group-AD 5.65(0.04) 0.21(0.01)

Scenario 3 l1-PLR 0.88(0.02) 0.64(0.04)

Binary-AD 0.92(0.02) 0.46(0.06)

Scenario 4 l1-PLR 0.84(0.01) 0.7(0.02)

Binary-AD 0.87(0.01) 0.45(0.03)

Scenario 5 l1-CPH 771.35(126.2) 0.41(0.09)

Surv-AD 1004.57(40.19) 0.2(0.02)

Scenario 6 l1-CPH 150.87(7.71) 0.63(0.02)

Surv-AD 158.92(4.73) 0.45(0.02)

2.6 Real Data Applications

In this section, we perform a real data analysis to further evaluate our proposed AD-

learning. We consider a clinical trial dataset from “AIDS Clinical Trials Group (ACTG) 175”

in (Hammer et al., 1996) to study whether there is a subgroup of patients suitable for different

combination treatments of AIDS. In this study, with equal probabilities, a total number of 2139

patients with HIV infection were randomly assigned into four treatment groups: zidovudine

(ZDV) monotherapy, ZDV combined with didanosine (ddI), ZDV combined with zalcitabine

(ZAL), and ddI monotherapy.

We choose 12 baseline covariates in our model: age (year), weight(kg), CD4+T cells amount

at baseline, CD8 amount at baseline, Karnofsky score (scale at 0-100), gender (1 = male, 0 =

female), race (1 = non white, 0 = white), homosexual activity (1 = yes, 0 = no), history of in-

travenous drug use (1 = yes, 0 = no), symptomatic status (1=symptomatic, 0=asymptomatic),

antiretroviral history (1=experienced, 0=naive) and hemophilia (1=yes, 0=no). The first five

covariates are continuous and have been scaled before estimation. The remaining seven covari-

ates are binary categorical variables.
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We consider two outcomes for our analysis. The first outcome is the difference between the

early stage (around 25 weeks) CD4+ T (cells/mm3) cell amount and the baseline CD4+ T cells

prior to the trial. This was also studied in (Lu et al., 2013) and (Fan et al., 2017). Using this

short term outcome, our goal is to use AD-learning to find the short term optimal IDR for each

patient with AIDS among four treatment groups. We report the estimator of the coefficient

wT
i B

T for each treatment in Table 2.5.

Table 2.5: Results of coefficients estimation for comparison functions.

Variable Name (1-7) ZDV ZDV+ddI ZDV+Zal ddI

Intercept −49.86 44.66 −3.53 8.73

Age −0.47 4.33 −3.34 −0.52

Weight 0 0 0 0

Karnofsky Score 0 0 0 0

CD4 baseline 3.58 −14.79 −14.78 9.46

Days pre-anti-retroviral therapy 0 0 0 0

Hemophilia 0 0 0 0

Homosexual activity −0.28 −3.96 0.65 3.60

History of drug use −2.50 8.20 4.03 −9.74

Race 0 0 0 0

Gender 0 0 0 0

Antiretroviral history 0 0 0 0

Symptomatic indicator 0 0 0 0

In Table 2.5, we can see that four covariates including Age, CD4 baseline, homosexual

activity and history of drug use, are identified to play an important role in our estimated

optimal IDRs. These variables were also identified in the previous literature such as (Lu et al.,

2013) and (Fan et al., 2017). According to the analysis in (Hammer et al., 1996), ZDV alone

is inferior to the other treatments, which is also confirmed in our estimated IDR. Based on

the CD4 change in the early stage, Zal treatment is generally not recommended in our finding

with one possible reason that Zal has the most serious adverse event compared with ZDV

and ddI ((Kakuda, 2000)). According to our estimated IDRs, those old patients with small

amount of CD4 T cell baseline and having history of drug use but not homosexual activity, are

recommended to take ZDV + ddI. The patients with large amount of CD4 T cell baseline and

history of homosexual activity but not drug use history, are more advisable to take ddI alone.
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To evaluate the performance of our proposed AD-learning, we randomly split the data into

five folds and use four folds to train the model. We evaluate our method on the remaining one

fold of data based on the empirical value function. We repeat this procedure for 1000 times.

From Table 2.6, we can see our AD-learning has the largest value.

Table 2.6: Results of empirical value functions on one fold of testing data. The best empirical value
function is in bold.

l1-PLS Pair-D DL ACWL-1 ACWL-2 VT AD low rank AD group

53.73 (0.33) 57.17 (0.40) 53.25 (0.47) 52.74 (0.45) 54.04 (0.45) 54.84 (0.45) 50.48 (0.38) 59.69(0.39)

The second outcome is patients’ time to event. Using this long term outcome, our second

goal is to find the long term optimal IDR for patients among four treatment groups. The AIDS

data consist of 2139 patient time to event responses with around 75% censor rate during the

four-year long trial study. We use our proposed Model (2.23) to estimate the optimal IDR. We

report the estimates of the coefficient wT
i B

T for each treatment of 12 covariates in Table 2.7.

We can see that all covariates, except the indicator of homosexual activity and symptomatic,

play an important role in the estimated optimal IDR. It may not be surprising because it is

a long term study and thus more complicated. Since we model via the hazard function, the

smaller the coefficient is, the longer the survival time is.

Compared with the previous finding based on the short term CD4 T cells amount, covariates

including age, CD4 baseline and history of drug use have the similar effect on the ZDV + ddI

and ddI alone treatments. In addition, we also find that ZDV + Zal treatment may not be good

to take for the female patients with hemophilia, but may be suitable for the male patients with

high Karnosky score and history of drug use. The estimated optimal IDR for other treatments

can be interpreted in the similar way. In general, ZDV alone is always the least preferable

among other treatments for patients and ZDV+ddI is always preferable for patients. Based on

time to event outcome, ZDV + Zal is relatively more preferable than ddI alone. In addition,

we evaluate our AD-learning with l1-CPH using the same scheme based on value functions.

Our AD-learning has an average value of 911.20, compared with the average value 905.02 for

l1-CPH.
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Table 2.7: Results of coefficient estimation for survival time of failure.

Variable Name (1-7) ZDV ZDV+ddI ZDV+Zal ddI

Age 0.04 −0.11 0.04 0.03

Weight 0.11 0.02 0.02 −0.14

Karnofsky Score 0.06 0.03 −0.09 0.01

CD4 baseline −0.04 0.04 −0.00 0.00

Days pre-anti-retroviral therapy 0.09 −0.07 -0.04 0.02

Hemophilia 0.05 −0.06 0.16 −0.15

Homosexual activity 0.00 0.00 0.00 0.00

History of drug use 0.04 −0.11 −0.12 0.18

Race 0.03 −0.04 0.01 0.01

Gender 0.31 −0.08 −0.16 −0.07

Antiretroviral history 0.17 −0.15 0.04 −0.06

Symptomatic Indicator 0.00 0.00 0.00 0.00

2.7 Conclusion

In this chapter, we propose an AD-learning method to estimate the optimal IDRs in mul-

tiple treatment settings for various types of outcomes. Our proposed method provides a clear

geometric interpretation about the relative effectiveness of treatments for patients, which is

quantified by angles in the Euclidean space. Our proposed AD-learning is robust to model

misspecification. By incorporating group or low rank sparsity, our AD-learning can further

improve the estimation of decision rules and interpretation, especially for high dimensional set-

tings. The competitive performance of our method has been demonstrated via the simulation

studies and data applications.

Several possible extensions can be explored for future study. Our proposed method for

the survival outcome is based on the non-informative censoring and Cox proportional hazard

assumption. It will be interesting to develop methods for more complex settings. In order to

use nonlinear functions to approximate f0(x), we can use different types of basis functions such

polynomials or wavelet functions. It will be also interesting to develop kernel methods for our

AD-learning, such as multiple kernel learning ((Bach et al., 2004)). Finally, the current AD-

learning focuses on a single decision point. It will be worthwhile to develop the corresponding

methods for multiple decision points (Zhao et al., 2015a; Liu et al., 2018).
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CHAPTER 3

Estimating Individualized Decision Rules with Tail Controls

3.1 Introduction

Decision making is a long standing research problem in many scientific areas, ranging from

engineering, management science to statistics. In the era of big data, the traditional “one fits

all” decision rules are no longer ideal in many applications due to data heterogeneity. A decision

rule that works for certain subjects may not necessarily work for others. Motivated by this, it is

desirable to make individualized decision rules (IDRs) that map from individual characteristics

into available decision assignments. Developing effective IDRs has a wide range of applications.

For example, a credit card company hopes to send a special offer for each targeted customer tai-

loring to his/her personal needs. An epidemiologist needs to decide whether to deliver a vaccine

plan to a specific region in order to prevent the spread of diseases. From the statistical perspec-

tive, the majority of literature is focused on estimating the optimal IDR that can maximize the

expected outcome or minimize the expected loss for each subject. However, some effort needs

to be made to ensure reasonable outcomes for subjects falling in the tail of the distributions.

Risk control needs to be taken into account to prevent adverse consequences. For example, only

sending a special offer to a high-risk customer with potentially the largest expected profit may

end up generating bad debt expenses for credit card company. The motivation of this paper

comes from the IDR problems in precision medicine, also known as personalized medicine. One

of the key goals in precision medicine is to develop better preventions and treatment methods

that are tailored to each individual patient.

Prior work in precision medicine is focused on estimating the optimal IDR that can max-

imize expected outcome for each individual. Due to the complicated medical procedure, only

targeting on the expected outcome of each patient may not be sufficient. Risk control is nec-

essary to prevent adverse events, i.e., the heavy tail distribution of outcome. We consider a
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simple and motivating example to illustrate the importance of risk control, in addition to max-

imize the expected outcome. Figure 3.1 plots the conditional density of a random outcome R

under two treatments 1 and -1, given the patient’s gender, i.e., male or female. Each curve

corresponds to a different Gaussian density curve. If we only consider the optimal IDR that

maximizes the expected outcome, treatment 1 is more suitable for female while treatment -1 is

better for male. However, the gain is quite little since the mean difference is only 0.1, and thus

it is hard to distinguish between these two treatments given the gender information. However,

if we consider the effect of variation caused by each treatment, in order to protect each person

from risky scenarios, then treatment 1 is more favorable than treatment -1 for male, and sim-

ilarly, treatment -1 is more preferable than treatment 1 for female. This treatment rule may

be more reasonable than the previous one because we do not want to give patients unstable,

and potentially high risk treatments. We will revisit this example in our numerical studies for

further illustrations.
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Figure 3.1: Plots of a motivating example. The dash and solid lines in the left plot show the probability
densities of N (-0.1, 0.5) and N (0, 1) respectively. The dash and solid lines in the right plot correspond to
the probability densities of N (0, 1) and N (-0.1, 0.5) respectively. In this example, male is more preferable
to treatment 1, while female is more preferable to treatment -1.
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Motivated by the conditional value at risk (CVaR) used extensively in finance and risk

management, we propose two new criteria that consider the expected outcome and CVaR of

outcome as a weighted combination to evaluate IDRs. The resulting IDR under our proposed

criteria can optimize the outcome of each individual and control the risk jointly.

The main contributions of this chapter can be summarized as follows:

(a) We develop two innovative approaches to directly estimate the optimal IDR that can

maximize the expected outcome while simultaneously control the average or individualized

lower tail of the outcome;

(b) Two novel non-convex optimization algorithms are proposed to efficiently compute the

solutions with convergence guarantee of the sharpest stationary points, based on some

recent developments in optimization;

(c) We develop several important theoretical properties of our proposed methods related to

statistical learning theory over two functional spaces such as two different reproducing

kernel Hilbert spaces.

The remainder of this Chapter is organized as follows. In Section 3.2, supplementing the previ-

ous expected-value function framework, we introduce two new criteria to estimate the optimal

IDR by using the concept of CVaR in risk management. We present several properties of our

proposed criteria. In Section 3.3, we discuss our statistical estimation procedures to compute

optimal IDRs under our proposed criteria. Two novel and efficient non-convex optimization al-

gorithms are presented by using some recent developments in majorization-minimization (MM)

and difference of convex algorithms (DCA). In Section 3.4, we establish several important theo-

retical properties of our methods by making use of statistical learning theory. We demonstrate

our methods via extensive simulation studies and a data application in Sections 3.5 and 3.6,

respectively. We conclude the paper and discuss some potential future work in Section 3.7.

Some technical results are provided in the Appendix B.
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3.2 Robust Criteria to Estimate Optimal IDRs

Consider a randomized clinical study in a binary-armed treatment setting. We observe each

patient’s covariate information: x = (x1, · · · ,xp)T ∈ X , where X ⊆ Rp. Then each patient

will receive a treatment A ∈ A = {1,−1} randomly. The outcome R ∈ R for each patient is

measured after treatment. For theoretical simplicity, we assume R ∈ R is bounded. Without

loss of generality, we assume that the larger R indicates the better condition a patient is in.

Define π(a|x) = P[A = a|x = x] to be the probability of a patient being assigned treatment a

given the covariates of this patient. This probability is assumed to be known under a randomized

clinical study or needs to be estimated in an observational study by various methods, such as

logistic regression. We further assume π(a|x) > 0 for x ∈ X almost surely and every a ∈ A.

Furthermore, let P be the probability distribution of a random triplet (x, A,R), under which the

likelihood of (x, A,R) is defined as f0(x)π(a|x)f1(r|x, a). In particular, f0(x) is the probability

density function of x and f1(r|x, a) is the conditional probability density function of R given

(A,x).

An IDR d is defined as a measurable function mapping from the covariate space X

into the treatment space A. For any IDR d, define P d to be the probability measure

where the action A follows d. Then the probability density function under P d is defined as

f0(x)I(a = d(x))f1(r|x, a), where I(•) is the indicator function. For notational purpose, we let

Lr(T ,F1, P
d) be the space of all measurable functions such that

∫
T∈T |f(T )|rdP d < ∞, where

F1 is the corresponding σ-field generated by T := X ×A×R.

3.2.1 Expected Value Function Framework

Before introducing our new criterion and methods, we first present the existing expected-

value function framework used by most existing methods, such as (Qian and Murphy, 2011)

and (Zhao et al., 2012). The value function was defined in (Qian and Murphy, 2011) as

V (d) := Ed[R] = E

[
RI(A = d(x))

π(A|x)

]
, (3.1)
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where the last equality is based on Radon-Nikodym theorem ((Qian and Murphy, 2011)). Note

that Ed[c(x)] = E[c(x)] for any measurable function c(x). Based on this value function, an

optimal IDR d0 is defined as

d0 ∈ argmaxdV (d). (3.2)

Note that

V (d) = E[E[R|x, A = 1]I(d(x) = 1) +E[R|x, A = −1]I(d(x) = −1)]

= E[(E[R|x, A = 1]−E[R|x, A = −1])I(d(x) = 1)] +E[E[R|x, A = −1]],

and then as a result,

d0(x) ∈ argmaxa∈AE[R|x, A = a], (3.3)

almost surely. It is observed that under the expected-value function framework, the optimal

IDR is to select the treatment with the largest expected outcome among all treatments for each

patient.

Despite the progress of developing optimal IDRs in precision medicine, only focusing on

obtaining the largest expected outcome for each individual may be too restrictive, especially

in precision medicine. For example, doctors may want to know whether a treatment does

the best to improve the worst scenario, in particular for a high risk patient. Without such risk

consideration, this may lead to potentially severe events, such as exacerbation or hospitalization

in practice. Similar concerns may happen in the credit card company, where the “best” policy

should not only improve the average profit for the company, but also reduce the chance of

incurring heavy loss. This motivates us to control risk exposure caused by decision rules, in

addition to maximizing the expected outcome of each individual.

3.2.2 Conditional Value at Risk

It is natural to consider some robust metrics such as quantiles of R given x and A to

measure the effect of a treatment. The corresponding optimal IDR d̃ under the quantile can be

defined as

d̃ ∈ argmaxdQγ(P
d), (3.4)
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where Qγ(P
d) = inf{α : P d[R < α] ≥ 1−γ} and γ ∈ (0, 1), i.e., γ-quantile of P d. However, the

quantile makes the optimization Problem (3.4) hard to solve. Note that Qγ(P
d) is also called

γ-Value at Risk (VaR), an important risk measure in finance ((Jorion, 2001)). In order to

address the shortcomings such as the discouragement for diversification, (Artzner et al., 1999)

studied an alternative risk measure called Conditional Value at Risk (CVaR), also known as

the expected shortfall, average value at risk or expected tail loss. Consider a random outcome

Y . The γ-CVaR of Y is given by

S(FY ) :=
1

γ
E[Y I(Y ≤ Qγ(FY ))], (3.5)

where FY is the corresponding probability distribution of Y . This CVaR can be interpreted as

a truncated mean lower than γ-quantile of Y . As a remark, we note that Y is often referred to

as a loss in the finance literature. However, here we call Y an outcome to be consistent with

the IDR literature. CVaR has several nice properties such as coherence property ((Artzner

et al., 1999)) and it is preferable to VaR ((Sarykalin et al., 2008b)). In addition, (Pflug, 2000)

showed that S(FY ) ≤ Qγ(FY ), a lower bound of γ-VaR. This implies that larger γ-CVaR of a

random outcome indicates larger γ-VaR. Note that the reverse inequality does not necessarily

hold. Interestingly, in addition to several nice properties related to risk measure, CVaR can be

viewed as an optimal value of concave maximization by the celebrated work of (Rockafellar and

Uryasev, 2000), which is defined as follows:

S(FY ) = sup
α∈R

{
α− 1

γ
E[(α− Y )+]

}
, (3.6)

where [t]+ = max(0, t). When used in an optimization context, the CVaR-criterion is compu-

tationally much easier than the VaR-criterion. The leftmost of the optimal solution set to (3.6)

is Qγ(FY ) (Rockafellar and Uryasev, 2000, Theorem 1). Such a reformulation motivates us to

propose a new criterion to study the IDR problem. For related theoretical discussions about

CVaR, we refer to (afellar and Uryasev, 2002) and the references therein.
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3.2.3 Robust Criteria for IDR Problems

In the following two subsections, we combine the existing value function framework with the

concept of CVaR in order to incorporate risk control into consideration to estimate an optimal

IDR.

3.2.3.1 Average Lower Tail

Motivated by the usage of CVaR, we first propose a robust criterion that combines the

value function defined in (4.1) and the lower tail of outcome R by a weighted factor τ ∈ [0, 1].

Specifically, this combined objective is:

M1(d) := (1− τ)V (d) + τ
1

γ
Ed[RI(R ≤ Qγ(P

d))], (3.7)

where 0 ≤ τ ≤ 1. Note that

P d(R < α) = Ed[I(R < α)]

= E

[
I(A = d(x))

π(A|x)
I(R < α)

]
= E[

∑
a∈A

I(d(x) = a)P (R < α|x, A = a)]

= E[P (R < α|x, A = d(x))].

(3.8)

Then Qγ(P
d) can be further expressed as

Qγ(P
d) = inf {α |E[P (R < α|x, A = d(x))] ≥ γ} , (3.9)

which can be interpreted as the average γ-quantile of R under the decision rule d. Correspond-

ingly Ed[RI(R ≤ Qγ(P
d))] can be understood as γ-average CVaR. Then M1(d) in (3.7) can be

regarded as a convex combination of the value function and the γ-average CVaR. Similar to

(3.6), we can rewrite (3.7) as

M1(d) = (1− τ)V (d) + τ sup
α∈R

{
α− 1

γ
Ed[(α−R)+]

}
. (3.10)

38



Proposition 3.2.1. The following two statements hold:

(a) M1(d) ≤ (1− τ)V (d) + τQγ(P
d);

(b) M1(d) ≤ V (d).

Proof. Statement (a) is based on the result that CVaR is a lower bound of VaR ((Pflug, 2000)).

For statement (b), note that M1(d) is increasing with respect to γ. Letting γ = 1 gives that

Qγ(P
d) = maxω∈T R(ω), where T is the corresponding event space related to R. This further

implies that Ed[RI(R ≤ Q1(P
d))] = V (d). Therefore, M1(d) ≤ (1−τ)V (d)+τV (d) = V (d).

According to Proposition 3.2.1, M1(d) can be regarded as a lower bound of V (d). Maximiz-

ing M1(d) can potentially maximize V (d). Then the optimal IDR under our proposed robust

criterion M1(d) is defined as

d1 ∈ argmaxd M1(d). (3.11)

The interpretation of the optimal IDR with respect to M1(d) is to select a treatment with the

largest convex combination of the value function and the γ-average CVaR. The representation

of (3.10) gives us a way to compute the optimal IDR d1 and α jointly via optimizing

(d1, α
∗) ∈ argmax

α∈R,d

{
(1− τ)V (d) + τ(α− 1

γ
Ed[(α−R)+])

}
. (3.12)

When τ = 0, the combined objective reduces to original value function V (d). When τ = 1, it

becomes γ-average CVaR of R with respect to P d. The choice of τ will be discussed later in

our numerical studies.

3.2.3.2 Individualized Lower Tails

One natural question is whether we can control the individualized γ-CVaR instead of average

γ-CVaR of the outcome for subjects. Next, we propose another criterion as an extension of

M1(d) in (3.10) from the average level to individualized level risk control:

M2(d) := (1− τ)V (d) + τ sup
α∈L1(X ,Ξ,Px)

{
E[α(x)]− 1

γ
Ed[(α(x)−R)+]

}
= (1− τ)V (d) + τ sup

α∈L1(X ,Ξ,Px)

{
Ed[α(x)− 1

γ
(α(x)−R)+]

}
,

(3.13)

39



where Ξ is the σ-field generated by X and PX is the corresponding probability measure. In order

to understand M2(d), we first characterize the optimal α∗ in (3.13). Define the individualized

γ-VaR as Qγ(R|x = x,A = a) := inf{α : P (R < α(x, A)|x = x,A = a) ≥ 1 − γ} and

individualized γ-CVaR as CVaRγ(R|x, a) := 1
γE[RI(R ≤ Qγ(R|x, a))|x, A = a] given x = x

and A = a. The following theorem gives an explicit expression of the optimal α∗ by using the

theory of variational analysis ((Rockafellar and Wets, 2009)).

Theorem 3.2.1. Given any decision rule d, α∗ is optimal to the optimization problem in M2(d)

if and only if

α∗(x) = Qγ(R|x, A = d(x)) almost surely. (3.14)

Thus

M2(d) = (1− τ)V (d) + τE[CVaRγ(R|x, A = d(x))]. (3.15)

Proof. The proof of the claims require the concept of normal integrand and decomposable space

from (Rockafellar, 1976) so that we can interchange between supreme operator and expecta-

tion in (3.13). Leaving the proof of this interchangeability in the supplementary material, we

complete the proof of the theorem as follows.

By definition of M2(d) in (3.13), we have

M2(d) = (1− τ)V (d) + τ sup
α∈L1(X ,Ξ,Px)

{
Ed[α(x)− 1

γ
(α(x)−R)+]

}
= (1− τ)V (d) + τ sup

α∈L1(X ,Ξ,Px)

{
E

[
I(A = d(x))

π(A|x)

(
α(x)− 1

γ
(α(x)−R)+

)]}
= (1− τ)V (d) + τ sup

α∈L1(X ,Ξ,Px)

{
E

[
E

[
α(x)− 1

γ
(α(x)−R)+

∣∣∣∣x, A = d(x)]

]}
= (1− τ)V (d) + τ

{
E

[
sup
s∈R

{
s− 1

γ
E [(s−R)+|x, A = d(x)]

}]}
= (1− τ)V (d) + τE [CVaRγ(R|x, A = d(x))] ,

with the optimal solution α∗ to be Qγ(R|x, A = d(x)) almost surely by the definition of CVaR.
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According to (3.14), the explicit form of α∗(x) in M2(d) can be interpreted as the individual

γ-quantile by the decision rule d and M2(d) in (3.15) takes each individualized CVaR into

consideration. We have the following proposition to further illustrate some properties of M2(d).

Proposition 3.2.2. The following two inequalities hold: M1(d) ≤ M2(d) ≤ V (d).

Proof. The first inequality follows the fact that any constant is an element of L1(X ,Ξ, Px). The

second inequality is similar to (b) in Proposition 3.2.1.

The first inequality in Proposition 3.2.2 indicates thatM2(d) improvesM1(d) by extending α

to incorporate the covariates information x. The second inequality in Proposition 3.2.2 justifies

the conservativeness of M2(d) as a lower bound of V (d). In addition, since CVaRγ(R|x, a) ≤

Qγ(R|x, a), one can have M2(d) ≤ (1 − τ)V (d) + τE[Qγ(R|x, d(x))]. The optimal IDR under

M2(d) is defined as

d2 ∈ argmaxdM2(d). (3.16)

Proposition 3.2.3. The optimal IDR under the criterion M2(d) is given by

d2(x) ∈ argmaxa∈A {(1− τ)E[R|x, A = a] + τCVaRγ(R|x, a)} almost surely.

Under M2(d), the optimal IDR d2 is equivalent to choosing a treatment that has the largest

convex combination of the expected outcome and the individualized γ-CVaR among all treat-

ments. Similar to (3.10), we can compute α∗(x) and d2 jointly via

(d2, α
∗) ∈ argmax

d, α∈L1(X ,Ξ,Px)

{
(1− τ)V (d) + τ(E[α(x)]− 1

γ
Ed[(α(x)−R)+])

}
. (3.17)

Although M1(d) can be viewed as a special case of M2(d) by letting α(x) to be a constant

independent of x, the interpretation is substantially different and each has its own significance

as a criterion in choosing an optimal decision rule.

3.2.4 Duality Representation

Note that both M1(d) and M2(d) involve concave maximization. Thus it would be useful to

investigate the dual representation of both M1(d) and M2(d) by making use of convex duality
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theory in (Rockafellar, 1974). To begin with, we first define the following two sets:

Wd
1 := {W ∈ L1(T ,F1, P

d) |Ed[W ] = 1, ε1 ≤ W (ω) ≤ ε2, for almost sure ω1 ∈ T }, (3.18)

and

Wd
2 := {W ∈ L1(T ,F1, P

d) | ϵ1 ≤ W (ω1) ≤ ε2 for almost sure ω1 ∈ T , E[W |x, A = d(x)] = 1},

(3.19)

where ε1 = 1 − τ and ε2 = 1 − τ + τ
γ . It is noted that 0 < ε1 < 1 and ε2 > 1. We have the

following theorem that gives the dual representation of M2(d).

Theorem 3.2.2. M1(d) = infW∈Wd
1
Ed[WR] and M2(d) = infW∈Wd

2
Ed[WR].

Duality representation of M2(d): According to the proof for duality representation of

M2(d), we can define a conditional probability measure PW
|x (B) =

∫
BWdP d

|x for any measurable

set B ∈ T , where W ∈ Wd
2 , and then W =

dPW
|x

dP d
|x
. Define

ζ(u) =


0 if ε1 ≤ u ≤ ε2

+∞ otherwise

,

Then we can further rewrite Ed[RW ] in M2(d) for W ∈ Wd
1 as

Ed[Rw] = Ed[R
dPw

|x

dP d
|x
] +E

[
ζ(

dPw
|x

dP d
|x
)

]

= Ex[EPw
|x
[R]] +Ex

[∫
ζ(

dPw
|x

dP d
|x
)dP d

|x

]

= EPw [R] +Ex

[
Iζ(

dPw
|x

dP d
|x
)

]
,

where Iζ(·) can be interpreted as the f -divergence distance between Pw
|x and P d

|x. Then M2(d) =

infPw
|x≪P d

|x
EPw [R] + Ex

[
Iζ(

dPw
|x

dP d
|x
)

]
, where u ≪ v means that the probability measure u is

absolutely continuous with respect to the probability measure v. Thus the optimal IDR can
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also be written as

d2 ∈ argmaxd

{
inf

Pw
|x≪P d

|x

EPw [R] +Ex

[
Iζ(

dPw
|x

dP d
|x
)

] }
,

which can be interpreted as choosing an optimal decision rule with the highest worst expected

outcome within the f -divergence distance from the original distribution P d.

According to our problem setting, the density under P d
|x is I(d(x) = a)f1(r|x, a). Since

Pw
|x ≪ P d

|x, then the density under Pw
|x should be I(d(x) = a)w(r|x, a) for some conditional

probability density w(r|x, a). Then we can have
dPw

|x
dP d

|x
= w(r|x,a=d(x))

f1(r|x,a=d(x)) by the chain rule. There-

fore, we can further rewrite M2(d) as

M2(d) = inf
Pw

{
EPw [R] |Pw

|x ≪ P d
|x, ε1 ≤

w(r|x, a = d(x))

f1(r|x, a = d(x))
≤ ε2, almost surely

}
. (3.20)

This gives us a natural link to distributionally robust statistical models that can evaluate a

decision rule under ambiguity. Maximizing M2(d) over the decision rule d is equivalent to

identifying an optimal IDR that is robust to the contamination of outcome R characterized by

a probability constraint set.

Duality representation of M1(d): Similarly, for V ∈ Wd
1 , if we define P

V (B) =
∫
B V dP d

for any measurable set B ∈ T , then V = dPV

dP d . Thus the optimal IDR can also be written as

d1 ∈ argmaxd

{
inf

PV ≪P d
EPV [R] + Iζ(

dP V

dP d
)

}
,

where Iζ(
dPV

dP d ) = Ed
[
ζ(dP

V

dP d )
]
. Moreover, the probability density V with respect to P d can be

written as v0(x)v1(r|x,a=d(x))
f0(x)f1(r|x,a=d(x)) by the chain rule, according to our problem setting. Therefore, we

can also express M1(d) as

M1(d) = inf
PV

{
EPV [R] |P V ≪ P d, ε1 ≤

v0(x)v1(r|x, a = d(x))

f0(x)f1(r|x, a = d(x))
≤ ε2, almost surely

}
. (3.21)

Maximizing M1(d) over the decision rule d is equivalent to identifying an optimal IDR that is

robust to the contamination of both outcome R and covariate information x characterized by

a probability constraint set.
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Comparisons between M1(d) and M2(d): From a duality representation perspective, we

can seeM1(d) andM2(d) have substantial differences with regard to their robustness. The “min-

imax” sense of M1(d) in (3.21) considers the scenario where both distributions of the covariates

x and outcome R are perturbed from true underlying distributions. For M2(d), Proposition

3.2.2 shows that M2(d) ≥ M1(d), which means considering individualized CVaR improves the

outcome of a given decision rule d. At the same time, however, it also indicates M2(d) is not

as conservative as M1(d). This can also be justified by the “minimax” representation of (3.20),

which considers the contamination of outcome R. In the end, both M1(d) and M2(d) are more

robust than the expected-value framework, i.e., V (d). Therefore M1(d) and M2(d) may have

the ability to improve generalization.

3.3 Statistical Estimation and Optimization

In this section, we discuss the estimation and optimization procedures for Problems (3.10)

and (3.17) respectively given observed data. Before that, we first introduce some definitions

related to the algorithm convergence of non-convex optimization problems.

Let Φ : Rn → R. The directional derivative of Φ at a point x ∈ Rn along the direction

v ∈ Rn is given by

Φ′(x, v) = lim
τ↓0

Φ(x+ τv)− Φ(x)

τ
. (3.22)

We say x0 is a directional-stationary (d-stationary) point of Φ on Rn if

Φ′(x0, x− x0) ≥ 0, ∀x ∈ Rn. (3.23)

For a directionally differentiable optimization problem, d-stationary points can be viewed as

the first order “sharpest” ones among different kinds of stationary points including Clarke

points ((Pang et al., 2016)), and the condition (3.23) is the least relaxed among other types

of stationarity conditions. In the following subsections, we develop two algorithms to compute

d-stationary points of Problems (3.10) and (3.17) respectively, which is the best we can achieve

for non-convex optimization problems in practice.
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3.3.1 Estimation of Optimal IDRs under M1(d)

The optimization in (3.10) can be further rewritten as

max
α∈R,d∈D

E[
((1− τ)R+ τ(α− (α−R)+

γ ))I(A = d(x))

π(A|x)
], (3.24)

where D is some classes of decision rules such as the linear ones.

Consider the binary treatment setting and let d(x) = sign(f(x)). Suppose we observe

independently and identically distributed data (xi, Ai, Ri); i = 1, · · · , n, then we can estimate

the optimal IDR via empirical approximation:

max
α∈R,d∈D

1

n

n∑
i=1

I(Ai = sign(f(xi)))

π(Ai|xi)
((1− τ)Ri + τ(α− (α−Ri)+

γ
)). (3.25)

It is well known that optimization over indicator functions is NP hard. Alternatively, we can

replace the 0-1 loss function by the following smooth truncated loss,

S(u) =



0 if u ≤ −δ

(1 + u/δ)2 if 0 > u ≥ −δ

2− (1− u/δ)2 if δ > u ≥ 0

2 if u > δ,

and then use a functional margin representation to express I(Ai = sign(f(xi)) as I(Aif(xi) > 0)

for each i. The corresponding function plot of S(u) is shown in Figure 3.2 with δ = 1. From

the plot, we can see that the smooth approximation S(u)
2 is very close to the 0-1 loss. The

parameter δ can control the closeness of this approximation. In practice, we can simply choose

δ = 1.
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Figure 3.2: Plot of smooth surrogate loss function with δ = 1

Let H be a Reproducing Kernel Hilbert Space (RKHS), then we can estimate the optimal IDR

under the mixed value function M1(d) via computing

min
α∈R,f∈H

1

n

n∑
i=1

S(Aif(xi))

π(Ai|xi)
(−(1− τ)Ri − τ(α− (α−Ri)+

γ
)) +

λ1

2
||f ||2H, (3.26)

where || • || is the semi-norm in H and it is used to prevent over-fitting. The estimated IDR is

given by d̂1(x) = sign(f̂(x)). Note that Problem (3.26) involves a non-convex and potentially

non-smooth optimization problem. Recent development in difference-of-convex (DC) optimiza-

tion ((Pang et al., 2016)) motivates us to use DC programming to efficiently solve it. Note that

S(u) can be expressed as a difference of convex differentiable functions: S1(u)− S2(u) where

S1(u) =


0 if u ≤ −δ

(1 + u/δ)2 if −δ < u ≤ 0

2 + 2u/δ − 1 if 0 < u

,

and

S2(u) =


0 if u ≤ 0

(u/δ)2 if 0 < u ≤ δ

2u/δ − 1 if u > δ

.
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Define

G(1)(f, α) :=
1

n

n∑
i=1

S(Aif(xi))

π(Ai|xi)
(−(1− τ)Ri − τ(α− (α−Ri)+

γ
)) +

λ1

2
||f ||2H, (3.27)

and

G
(1)
j (f) =

1

n

n∑
i=1

S(Aif(xi))

π(Ai|xi)
(−(1− τ)Ri − τ(Rj −

(Rj −Ri)+
γ

)). (3.28)

The following proposition gives us a way to express (3.26) as a DC function.

Proposition 3.3.1. The following two optimization problems have the same optimal value,

i.e.,

min
α∈R,f∈H

G(1)(f, α) = min
f∈H

{
G̃(1)(f)

}
, (3.29)

where G̃(1)(f) := min1≤j≤n{G(1)
j (f)}+ λ

2 ||f ||
2
H. More importantly, the optimal solution sets of

f to both problems are the same.

Proof. Note that for any given f , G(1)(f, α) is a convex piecewise affine function with respect

to α, thus the optimal solution set α∗ should contain one of the knots, i.e., R1, · · · , Rn. Then

it follows that

min
α∈R

G(1)(f, α) = min
j∈{1,··· ,n}

G
(1)
j (f) +

λ1

2
||f ||2H.

Thus

min
f∈H,α∈R

G(1)(f, α) = min
f∈H

{
min

1≤j≤n
{Gj(f)}+

λ

2
||f ||2H

}
,

and correspondingly

argminf∈HG1(f, α) = argminf∈H

{
min

1≤j≤n
{Gj(f)}+

λ

2
||f ||2H

}
.

Based on Proposition 3.3.1, instead of solving (3.26), we can equivalently solve the op-

timization problem in the right hand side of (3.29). Let cij =
−(1−τ)Ri−τ(Rj−

(Rj−Ri)+
γ

)

π(Ai|xi)
for

i = 1, · · · , n and j = 1, · · · , n, and note that cij is not necessarily nonnegative. Recall that
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S(u) = S1(u)− S2(u). Then we can further rewrite G
(1)
j (f) as

G
(1)
j (f) =

1

n

n∑
i=1

(max(cij , 0)S1(Aif(xi)) + max(−cij , 0)S2(Aif(xi)))

− 1

n

n∑
i=1

(max(cij , 0)S2(Aif(xi)) + max(−cij , 0)S1(Aif(xi)))

:= Fj(f)−Hj(f),

(3.30)

where both Fj(f) and Hj(f) are convex functions with respect to f for j = 1, · · · , n. Then we

can further decompose

G̃(1)(f) = min
1≤j≤n

{Fj(f)−Hj(f)}+
λ

2
||f ||2H

=
n∑
i=1

Fj(f)− max
1≤j≤n

{Hj(f) +
n∑
k ̸=j

Fk(f)}+
λ

2
||f ||2H

:=F (f)− max
1≤j≤n

hj(f) +
λ

2
||f ||2H,

(3.31)

as a DC function, where hj(f) := Hj(f) +
∑n

k ̸=j Fk(f). Note that G̃(1)(f) is a potentially

non-smooth function if there exits multiple k’s such that hk(f) = max1≤j≤n hj(f). As pointed

by (Pang et al., 2016), traditional DC programming cannot guarantee the convergence to a

d-stationary point of the optimization problem (3.31) and may potentially lead to nonsense

points. A failure example by traditional DC programming is given in (Pang et al., 2016). Let

Mϵ(f) := {j | hj(f) ≥ max1≤k≤n hk(f) − ϵ}, i.e., “ϵ-argmax” index set. Motivated by (Pang

et al., 2016), we propose the following enhanced probabilistic DCA summarized in Algorithm

1 below.

Algorithm 1 Algorithm for (3.26)

1: Given a fixed ϵ > 0, let f (v) be the solution at the v iteration.

2: Randomly select j ∈ Mϵ(f
(v)), and compute

f (v+1) ∈ argminf∈H{F (f)− ∂hj(f
(v))

∂f
(f − f (v)) +

λ

2
||f ||2H}. (3.32)

3: The algorithm stops when |G̃(1)(f (v)) − G̃(1)(f (v+1))| < κ, for some pre-specified positive

constant κ.
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The proof of convergence to d-stationary points by the above algorithm can be found in

(Pang et al., 2016). For the computation of the subproblem (3.32), efficient algorithms such as

quasi-newton methods can be used. If we consider that f belongs to a class of linear functions,

we can also compute the solution of (3.26) with the l1 penalty replacing the RKHS norm. Next,

we discuss how to estimate optimal IDRs under M2(d).

3.3.2 Estimation of Optimal IDRs under M2(d)

Similar to the previous one in Section 3.1, we can first rewrite the optimization Problem

(3.17) as

max
α∈L1(x,Ξ,Px)

d∈D

E

((1− τ)R+ τ(α(x)− (α(x)−R)+
γ ))I(A = d(x))

π(A|x)

 . (3.33)

For illustrative purposes, we consider α(x) to be a class of linear functions and use the l1 penalty

to impose sparsity on α(X). Nonlinear functions of α(X) or other types of penalties can also

be implemented similarly. Then we can compute the optimal IDR d empirically via minimizing

G(2)(f, β, b) :=
1

n

n∑
i=1

S(Aif(xi))

π(Ai|xi)
(−(1− τ)Ri − τ(xTi β + b− (xTi β + b−Ri)+

γ
))

+
λ1

2
||f ||2H +

λ2

2
||β||1 +

η

2
(||β||22 + b2)

(3.34)

over f ∈ H, β ∈ Rp, b ∈ R jointly. The regularization term η
2 (||β||

2
2 + b2) is to avoid numerical

instability, where η is a small positive number, such as 10−3. In what follows, we derive a

convex majorant surrogate function for G(2)(f, β, b) and propose to use majorize-minimization

(MM) algorithm to solve Problem (3.34). Note that G(2)(f, β, b) has two properties:

(i) G(2)(f, β, b) is strongly convex with respect to (β, b);

(ii) G(2)(f, β, b) is a DC function with respect to f , i.e., G(2)(f, β, b) := G
(2)
1 (f, β, b) −

G
(2)
2 (f, β, b) where

G
(2)
1 (f, β, b) :=

1

n

n∑
i=1

S1(Aif(xi))

π(Ai|xi)
(−(1− τ)Ri − τ(xTi β + b− (xTi β + b−Ri)+

γ
))

+
λ1

2
||f ||2H1

+
λ2

2
||β||1 +

η

2
(||β||22 + b2),
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and

G
(2)
2 (f, β, b) :=

1

n

n∑
i=1

S2(Aif(xi))

π(Ai|xi)
(−(1− τ)Ri − τ(xTi β + b− (xTi β + b−Ri)+

γ
));

(iii)
∂G

(2)
2 (f,β,b)
∂f is Lipschitz with respect to f , β and b.

Given f (v) at the v-th iteration, we can compute the unique solution

(β(v), b(v)) = argminα∈H2
G(2)(f (v), β, b).

We define

G̃(2)(f, β(v), b(v)) = G
(2)
1 (f, β(v), b(v))−∂G

(2)
2 (f, β(v), b(v))

∂f
(f−f (v))−G

(2)
2 (f (v), β(v), b(v)). (3.35)

Then we have the following proposition to justify the use of MM algorithm in order to solve

Problem (3.34).

Proposition 3.3.2. G̃(2)(f, β(v), b(v)) is a strongly convex majorant of minβ∈Rp,b∈RG(2)(f, β, b)

at f (v) and ∂G̃(2)(f,β(v),b(v))
∂f |f=f (v) =

∂minβ∈Rp,b∈RG
(2)(f,β,b)

∂f |f=f (v).

Proof. One can verify that G̃(2)(f, β(v), b(v)) is strongly convex with respect to f . By the

convexity of G
(2)
2 (f, β, b) with respect to f , we have

G̃(2)(f, β(v), b(v)) ≥ G
(2)
1 (f, β(v), b(v))−G

(2)
2 (f, β(v), b(v))

= G(2)(f, β(v), b(v))

≥ min
β∈Rp,b∈R

G(2)(f, β, b).

Moreover,

G̃(2)(f (v), β(v), b(v)) = G
(2)
1 (f (v), β(v), b(v))−G

(2)
2 (f (v), β(v), b(v))

= G(2)(f (v), β(v), b(v))

= min
β∈Rp,b∈R

G(2)(f (v), β, b).
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Given strong convexity of G(2)(f, β, b), by the Danskin’s theorem, we have equal derivative

results.

Based on Proposition 3.34, we summarize our MM algorithm in Algorithm 2 below.

Algorithm 2 Algorithm for (3.34)

1: For a given f (v) at the v iteration, compute

(β(v), b(v)) = argminβ∈Rp,b∈RG
(2)(f (v), β, b). (3.36)

2: Given (β(v), b(v)), compute

f (v+1) = argminf∈H1
G̃(2)(f, (β(v), b(v))). (3.37)

3: The algorithm stops till some stopping criteria of f (v) are satisfied.

Proposition 3.3.2 and three properties of G(2)(f, β) are the building blocks for the conver-

gence of our proposed MM-algorithm in Table 2 to a d-stationary point. The related proof

can be found in (Mairal, 2015, Example 2.3.4; Proposition 2.5). For recent development in

MM-algorithm, see (Cui et al., 2018).

3.4 Theoretical Results

In this section, we discuss the statistical theory related to M2(d), while the method of

controlling the average lower tail using M1(d) can be viewed as a special case. For simplicity,

we consider the case that τ = 1 in M2(d), but the result can be directly generalized for other τ

by combining the existing results under the expected-value function such as (Zhao et al., 2012)

or (Zhou et al., 2017). We define two corresponding value functions for τ = 1 as follows:

M0(d, α) = E[
I(A = d(x))

π(A|x)
(α(x)− 1

γ
(α(x)−R)+)], (3.38)

and

M0(d) = sup
α∈L1(x,Ξ,Px)

E[
I(A = d(x))

π(A|x)
(α(x)− 1

γ
(α(x)−R)+)]. (3.39)
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The corresponding optimal solutions of maximizing (3.38) is d∗ = sign(f∗) and α∗. Since we

use the surrogate loss function S(u), we further define

MT (f, α) = E[
S(Af(x))

π(A|x)
(α(x)− 1

γ
(α(x)−R)+)]

as the surrogate value function. Our theoretical results are based on statistical learning theory

with an extension to two functional classes, since we need to consider both f and α in our

problems.

3.4.1 Fisher Consistency

We first establish Fisher consistency of estimating optimal ITRs under MT (f, α) to justify

the use of the surrogate loss S(u), compared with M0(d, α). This is different from the classical

Fisher consistency, which only involves one functional class of interest.

Theorem 3.4.1. For any measurable function f and α, if (f∗
T , α

∗
T ) maximizes MT (f, α), then

(sign(f∗
T ), α

∗
T ) maximizes M0(d, α).

Based on Theorem 4.2.4, instead of M0(d, α), we can target on MT (d, α) alternatively.

3.4.2 Excess Value Bound

Based on Theorem 4.2.4, we can further justify the use of the surrogate function S(u) by

establishing the following excess value bound for the 0-1 loss in M0(d, α).

Theorem 3.4.2. For any measurable function f, α and any probability distribution over

(x, A,R),

M0(d
∗, α∗)−M0(sign(f), α) ≤ MT (f

∗
T , α

∗
T )−MT (f, α).

Theorem 3.4.2 gives us a way of bounding the difference between the optimal IDR and the

estimated IDR under M0(d, α) by using MT (d, α) instead.

3.4.3 Convergence Rate

In order to obtain the finite sample performance of our estimated optimal IDR under

M0(d, α), it is enough to focus on the difference of MT (d, α) between the estimated optimal
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IDR and the optimal ITR based on Theorem 3.4.2. Define

(f̂ , α̂) = argminf∈H1,α∈H2
On(f, α) +

λ1n

2
||f ||2H1

+
λ2n

2
||α||2H2

, (3.40)

where On(f, α) :=
1
n

∑n
i=1

S(Aif(xi))
π(Ai|xi)

( (α(xi)−Ri)+
γ − α(xi)). We consider different penalty func-

tions. In particular, || • ||Hi can be one of the following choices:

(1) l1 norm of coefficients if we consider Hi = {xTβ + b |β ∈ Rp};

(2) l2 norm of coefficients if we consider Hi = {xTβ + b |β ∈ Rp};

(3) RKHS norm if we consider Hi; i = 1, 2 to be RKHS with Gaussian radial basis functions.

Before presenting our results, we need following definitions.

Definition 3.1. Consider F to be a class of real value measurable functions f : Z → R. The

Rademacher complexity of F is defined as

Rn(F) := E[sup
f∈F

1

n

n∑
i=1

σif(Zi)], (3.41)

where Z1, · · · , Zn are drawn i.i.d from some probability distribution P and the Rademacher

random variables σ1, · · · , σn are drawn i.i.d from uniform distribution over {1,−1}.

If we interpret the Rademacher random variables as noise, the Rademacher complexity

is the maximal correlation between functions and the pure noise. Thus it can measure the

complexity of classes of functions. The corresponding empirical Rademacher complexity of F

is defined as

R̂n(F) := E[sup
f∈F

1

n

n∑
i=1

σif(Zi)|Z1, · · · , Zn], (3.42)

where we can see that E[R̂n(F)] = Rn(F). The following lemma characterizes the Rademacher

complexity of the Lipschitz composition operator. It is an extension of Corollary 3.17 in (Ledoux

and Talagrand, 2013).

Lemma 3.4.1. If a function ϕ : Rp → R is Lipschitz continuous with respect to the l1 norm,

i.e

|ϕ(t1, · · · , tp)− ϕ(s1, · · · , sp)| ≤ Lϕ

p∑
i=1

|ti − si|, (3.43)
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for any ti, si. Then we have

Rn(ϕ(F1, · · · ,Fp)) ≤ Lϕ

p∑
i=1

Rn(Fi), (3.44)

where Fi is a certain class of functions for i = 1, · · · , n.

DefineOT (f, α) = −MT (f, α) and let (fλ1n , αλ2n) = argminf∈H1,α∈H2
OT (f, α)+

λ1n
2 ||f ||2H1

+

λ2n
2 ||α||2H2

. Then A(λ1n, λ2n) := OT (fλ1n , αλ2n) +
λ1n
2 ||fλ1n ||2H1

+ λ2n
2 ||αλ2n ||2H2

− OT (f
∗
T , α

∗
T ) is

considered to be the approximation error. The following theorem gives us a finite sample upper

bound of our estimated optimal IDR and the optimal IDR based on M0(d, α) by the estimation

and approximation errors.

Theorem 3.4.3. For any distribution P over (x, A,R) such that |R| ≤ C0 and π(a|x) ≥ a0 a.s.

for any a, then with probability 1− ϵ, one can have

M0(d
∗, α∗)−M0(sign(f̂), α̂) ≤ 4M5(Rn(Π1) +Rn(Π2)) +

√
8 log(1ϵ )

n
+A(λ1n, λ2n),

where Π1 = {f | f ∈ H1,
λ1n
2 ||f ||2H1

≤ M3} and Π2 = {α| α ∈ H2,
λ2n
2 ||α||2H2

≤ M3} for some

constants M3 and M5.

In order to obtain the finite sample bound, we need to compute the empirical Rademacher

complexity of Π1 and Π2 and also bound the approximation error. The results will depend on

the specific choice of Hi for i = 1, 2. In the following, we give several corollaries in order to

establish the finite sample bound for our estimated optimal IDR under M0(d, α).

Corollary 3.4.1. Consider Hi to be classes of linear functions with the l2 penalty for i = 1, 2

and suppose E[||x||22] ≤ C2
1 . If f

∗
T ∈ H1 and α∗

T ∈ H2, that is f
∗
T = xTw∗+b∗1 and α∗

T = xT θ∗+b∗2

with ||w∗||22 + (b∗1)
2 ≤ D1 and ||θ∗||22 ≤ +(b∗2)

2 ≤ D2 for some constants C1, D1, D2, then under

the assumptions in Theorem 3.4.3, with probability 1− ϵ, one can have

M0(d
∗, α∗)−M0(sign(f̂), α̂) ≤ c1n

− 1
3 ,

for some constant c1.
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Corollary 3.4.2. Consider Hi to be classes of linear functions with the l1 penalty for i = 1, 2

and suppose ||x||∞ ≤ C2. If f∗
T ∈ H1 and α∗

T ∈ H2, that is f
∗
T = xTw∗+ b∗1 and α∗

T = xT θ∗+ b∗2

with ||w∗||1 + |b∗1| ≤ D3 and ||θ∗||1 + |b∗2| ≤ D4 for some constants C2, D3, D4, then under the

assumptions in Theorem 3.4.3, with probability 1− ϵ, one can have

M0(d
∗, α∗)−M0(sign(f̂), α̂) ≤ c2(

log(2p)

n
)
1
3 ,

for some constant c2.

Corollary 3.4.3. Consider Hi to be RKHS with Gaussian radial basis functions for i = 1, 2

and suppose assumptions in Theorem 3.4.3 hold. If A(λ1n, λ2n) ≤ C5λ
w1
1n + C6λ

w2
2n , where

w1, w2 ∈ (0, 1], then with probability at least 1− ϵ,

M0(d
∗, α∗)−M0(sign(f̂), α̂) ≤ max(c

(1)
3 , c

(2)
3 )max

(
n
− w1

2w1+1 , n
− w2

2w2+1

)
,

for some constant c
(1)
3 and c

(2)
3 .

The above corollary shows that the difference between our estimated IDRs and the optimal

IDR under M0(d, α) converges to 0 in probability under some conditions. The upper bound

assumption on the approximation error A(λ1n, λ2n) is analogous to those in the statistical

learning literature such as (Steinwart and Scovel, 2007) to derive the convergence rate.

3.5 Simulation Studies

In our numerical analysis, we set τ = 0.5 and γ = 0.5 to treat expected-value and CVaR

value functions equally in most examples, while we show different performances of different τ

and γ in our first simulation example below. For all simulation settings, we consider binary-

armed randomized trials with equal probabilities of patients being assigned to each treatment

group.

We use l1-DC-CVaR, l2-DC-CVaR and GK-DC-CVaR to represent the methods of estimat-

ing optimal IDRs underM1(d) with three different penalties on f in Problem (3.26) respectively.

Here “l1” and “l2” refer to the l1 and l2 penalties. “GK” represents using Gaussian radial basis

55



functions with bandwidth ς to learn the optimal IDR. Similarly, we use l1-MM-CVaR, l2-MM-

CVaR and GK-MM-CVaR to represent the methods of estimating optimal IDRs under M2(d)

with three different penalties on f in Problem (3.34) respectively.

All tuning parameters are selected based on the 10-fold-cross-validation procedure. We

select the tuning parameter that maximizes the empirical average of mixed value functions

M1(d) and M2(d) on the validation data set defined as

M̂1(d) =
En[

((1−τ)R+τ(α̂− (α̂−R)+
γ

))I(A=d(x))
π(A|x) ]

En[
I(A=d(x))
π(A|x) ]

, (3.45)

and

M̂2(d) =
En[

((1−τ)R+τ(α̂(x)− (α̂(x)−R)+
γ

))I(A=d(x))
π(A|x) ]

En[
I(A=d(x))
π(A|x) ]

, (3.46)

respectively, where En denotes the empirical average over the validation data.

We compare our methods with the following four methods:

(1) D-learning by (Qi and Liu, 2018);

(2) l1-PLS by (Qian and Murphy, 2011) with basis function (1,x, A,xA);

(3) RWL by (Zhou et al., 2017) with linear kernel;

(4) RWL by (Zhou et al., 2017) with Gaussian kernel.

3.5.1 A Motivating Example Revisit

Recall the motivating example in Figure 3.1 that shows the importance of risk controls in

estimating optimal IDRs. In this subsection, we conduct some numerical analysis to further

demonstrate this finding. In particular, the covariate of gender is generated by uniform distri-

bution over {1,−1}, where 1 and −1 denotes male and female respectively. The corresponding

outcome R is generated by the following model:

R = I(XA = 1)ϵ1 + I(XA = −1)ϵ2,

56



where ϵ1 ∼ N (−0.1, 1) and ϵ2 ∼ N (0, 0.5). We consider training data with the sample size

n = 200 and independently generated test data of size 10000. We first set τ = γ = 0.5. Based on

test data, in Figure 3.3, we plot box plots of three different outcome distributions if treatments

follow estimated IDRs by l1-PLS, linear RWL, l2-DC-CVaR and l2-MM-CVaR correspondingly.

Based on these box plots, we can observe that since there is not much difference between these

two treatments based on the expected outcome, the empirical mean of value functions resulted

from these four methods are indistinguishable. However, besides maximizing the expected

outcome for each individual, our methods also control the risk of each individual. Thus the

resulting outcome distributions by our methods are more stable, has less variability than those

of l1-PLS and linear RWL.

In addition, we also plot medians and standard deviations of value functions of one repli-

cation under different combinations of τ and γ by l2-DC-CVaR in Figure 3.4. We can see

that as τ gets close to 1 and γ gets close to 0, the standard deviations of corresponding value

functions are small, which means the resulting optimal IDRs are more stable since we put more

weights on lower tails. However, the corresponding medians of value functions are not large. In

contrast, if we choose relatively balanced τ and γ, the medians of value functions are larger by

sacrificing some stability. In practice, users can decide his or her own preferences based on the

specific problem.

l-1 PLS rwl l2-DC-CVaR l2-MM-CVaR

O
u
tc

o
m

e
 R

-5

-4

-3

-2

-1

0

1

2

3

4 l2-MM-CVaR

l2-DC-CVaR

rwl

l-1 PLS

Figure 3.3: Box plots of value functions computed by three methods. The left box plot corresponds to
the result of l1-PLS under the expected-value function framework. The middle and the right box plots
correspond to the result of our proposed methods under M1(d) and M2(d) respectively.
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Figure 3.4: Medians and standard deviations of value functions under different combinations of τ and γ
by l2-DC-CVaR. The left plot corresponds to the medians and the right plot corresponds to the standard
deviations of value functions respectively.

3.5.2 Distributional Shift Examples

In this section, we demonstrate the superior performance of our methods under distribution

shift of covariates x and outcome R based on the duality representations of M1(d) and M2(d) in

(3.21) and (3.20) respectively. We consider the sample size n = 200 and the dimension p = 20.

The outcome R is generated by the model: R = 1+x1 +x2 +A(x1 −x2 +x3)+ ϵ. We consider

the following two distribution shift scenarios:

(1) Each covariate follows a two component Gaussian mixture distribution of N (0, 1) and

N (5, 1) with probability of mixture to be 0.8 and 0.2 respectively and ϵ follows standard

Gaussian distribution;

58



(2) Covariates X are generated by the uniform distribution between −1 and 1 and ϵ follows a

two component mixture distribution of N (0, 1) and log-normal distribution lognorm(0, 2)

with probability of mixture to be 0.7 and 0.3 respectively.

The first scenario considers the covariate distribution shift and the second scenario considers

the outcome distribution shift. For simplicity, we only report misclassification error rates given

by l1-PLS, linear RWL, l2-DC-CVaR and l2-MM-CVaR in Table 3.1. For Scenario (1), since

l1-PLS assumes a linear model, it’s performance is not affected by covariate distribution shift.

In contrast, rwl, which is based on maximizing the value function, depends heavily on correct

approximation to value function empirically. Thus the performance of rwl is worse than l1-PLS

under this scenario. For the estimated optimal IDR under M1(d), the performance is superior

to rwl because M1(d) considers the perturbation of the covariate distribution shift, while M2(d)

does not and its corresponding performance is relatively worse. For Scenario (2), since both

estimated optimal IDRs under M1(d) and M2(d) are minimax estimator under the outcome

distribution shift, the performances are much better than two other methods under the value

function framework.

Table 3.1: Comparisons of misclassification error rates (standard error) for simulated examples with
n = 200 and p = 20.

Scenario (1) Scenario (2)

l1-PLS 0.04(0.004) 0.38(0.011)

rwl 0.15(0.008) 0.37(0.01)

l2-DC-CVaR 0.12(0.006) 0.15(0.006)

l2-MM-CVaR 0.23(0.009) 0.31(0.01)

3.5.3 Simulation Scenarios

In this subsection, we further study the performance of our proposed methods via eight

simulation examples. We consider the sample size n = 200 and the dimension p = 20. The

covariates x are generated by the uniform distribution between −1 and 1. The outcome R is

generated by the model: R = 1+x1+x2+Aδ(x)+ ϵ. We consider the following eight different

combinations of δ(x) and ϵ:

(1) δ(x) = x1 − x2 + x3, and ϵ follows Gaussian normal N (0, 1);
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(2) δ(x) = x1 − x2 + x3, and log(ϵ) follows Gaussian normal N (0, 2|1 + x1 + x2|);

(3) δ(x) = x1 − x2 + x3, and log(ϵ) follows Gaussian normal N (0, 2);

(4) δ(x) = x1 − x2 + x3, and ϵ follows a Weibull distribution with shape parameter 0.3 and

scale parameter 0.5;

(5) δ(x) = 3.8(0.8− x21 − x22), and ϵ follows Gaussian normal N (0, 1);

(6) δ(x) = 3.8(0.8− x21 − x22), and log(ϵ) follows Gaussian normal N (0, 2|1 + x1 + x2|);

(7) δ(x) = 3.8(0.8− x21 − x22), and log(ϵ) follows Gaussian normal N (0, 2);

(8) δ(x) = 3.8(0.8− x21 − x22), and ϵ follows a Weibull distribution with shape parameter 0.3

and scale parameter 0.5.

We consider different shapes of error distributions to test the robustness of our methods, com-

pared with other methods. The first four scenarios are of linear decision boundaries while the

remaining four consider nonlinear decision boundaries. In order to evaluate different methods,

we generate test data and use sign(δ(x)) as the true optimal decision rule, since treatment A

only appears in the interaction term δ(x). We evaluate different methods based on the misclas-

sification error rates in Table 3.2, mean of expected-value functions in Table 3.3, mean of 50%

and 25% quantiles of value functions in Tables 3.4 and 3.5. Overall, our methods show com-

petitive performances among all methods. In particular, for Scenarios (1) and (5), which are

standard simulation settings in IDRs literature, our proposed methods performs well in finding

optimal IDRs. For Scenarios (2) and (6), the error distributions depend on the covariate infor-

mation. Although the average of empirical value functions of our proposed methods are smaller

than those of RWL, the 50% and 25% quantiles of empirical value functions by our methods are

much better. One possible reason is that methods under the expected-value function framework

ignore subjects with potentially high risk while only focusing on maximizing the expected-value

function. Thus the resulting IDRs by these methods may assign wrong treatments to patients

and make them become even worse by delivering the corresponding IDR. Similar observations

can be drawn from other simulation scenarios.
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Table 3.2: Comparisons of misclassification error rates (standard deviation) for simulated examples
with n = 200 and p = 20. From left to right, each column represents Scenarios (1)-(8) respectively. Each
row represents one specific method. The last six rows correspond to our proposed methods.

1 2 3 4 5 6 7 8

Dlearn 0.31(0.1) 0.5(0.01) 0.49(0.04) 0.49(0.05) 0.4(0.04) 0.53(0.12) 0.48(0.13) 0.46(0.12)

l1-PLS 0.28(0.06) 0.5(0.06) 0.44(0.09) 0.45(0.08) 0.44(0.05) 0.52(0.04) 0.5(0.03) 0.49(0.04)

rwl 0.34(0.07) 0.5(0.07) 0.44(0.07) 0.44(0.07) 0.41(0.06) 0.51(0.05) 0.47(0.07) 0.46(0.08)

rwl-GK 0.5(0.01) 0.5(0.01) 0.5(0.01) 0.5(0.01) 0.38(0.05) 0.52(0.12) 0.46(0.12) 0.43(0.11)

l2-DC-CVaR 0.32(0.06) 0.17(0.07) 0.22(0.07) 0.13(0.08) 0.43(0.04) 0.5(0.02) 0.48(0.03) 0.46(0.04)

l1-DC-CVaR 0.32(0.06) 0.16(0.06) 0.19(0.06) 0.1(0.05) 0.44(0.04) 0.5(0.01) 0.49(0.02) 0.49(0.01)

GK-DC-CVaR 0.49(0.02) 0.5(0.01) 0.5(0.01) 0.5(0.01) 0.38(0.03) 0.51(0.12) 0.41(0.09) 0.38(0.05)

l2-MM-CVaR 0.35(0.07) 0.44(0.08) 0.38(0.08) 0.36(0.07) 0.43(0.05) 0.45(0.04) 0.45(0.05) 0.44(0.05)

l1-MM-CVaR 0.33(0.08) 0.47(0.07) 0.39(0.09) 0.38(0.1) 0.41(0.06) 0.47(0.06) 0.44(0.07) 0.43(0.07)

GK-MM-CVaR 0.49(0.02) 0.5(0.01) 0.5(0.01) 0.5(0.02) 0.38(0.04) 0.44(0.11) 0.39(0.07) 0.4(0.08)

Table 3.3: Comparisons of average value functions (standard deviation) for simulated examples with
n = 200 and p = 20. From left to right, each column represents scenarios (1)-(8) respectively. Each row
represents one specific method. The last six rows correspond to our proposed methods.

1 2 3 4 5 6 7 8

Dlearn 1.44(0.23) 205244.32(2085980.92) 8.4(0.76) 5.56(0.33) 1.42(0.17) 4759.22(16549.4) 8.51(0.9) 5.84(0.57)

l1-PLS 1.51(0.12) 205839.37(2090994.07) 8.55(0.84) 5.67(0.35) 1.25(0.22) 32480.58(287116.51) 8.42(0.77) 5.68(0.35)

rwl 1.39(0.17) 47681.35(412574.85) 8.58(0.8) 5.7(0.34) 1.37(0.23) 4248.93(13197.34) 8.46(0.87) 5.83(0.47)

rwl-GK 1.01(0.07) 241196.97(2122609.28) 8.41(0.71) 5.55(0.33) 1.47(0.21) 30912.36(279385.21) 8.53(0.94) 5.96(0.54)

l2-DC-CVaR 1.44(0.13) 240599.77(2128310.24) 8.96(0.68) 6.27(0.34) 1.26(0.18) 32777.67(284170.74) 8.53(1.05) 5.78(0.39)

l1-DC-CVaR 1.44(0.13) 240226.39(2128134.97) 8.94(0.61) 6.32(0.33) 1.27(0.18) 32917.95(284157.15) 8.51(1.05) 5.68(0.35)

GK-DC-CVaR 1.02(0.07) 13046.46(72486.56) 8.4(0.76) 5.54(0.35) 1.49(0.15) 34718.08(282511.23) 8.75(0.86) 6.11(0.41)

l2-MM-CVaR 1.37(0.16) 4121.03(10115.71) 8.6(0.69) 5.87(0.33) 1.26(0.2) 34297.67(281664.15) 8.54(0.76) 5.91(0.4)

l1-MM-CVaR 1.4(0.18) 4804.45(11856.94) 8.63(0.7) 5.82(0.4) 1.36(0.23) 30566.94(279921.05) 8.62(0.82) 5.92(0.47)

GK-MM-CVaR 1.02(0.08) 7063.71(24485.57) 8.41(0.77) 5.55(0.33) 1.49(0.17) 4728.1(14282.42) 8.79(0.83) 6.05(0.46)
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Table 3.4: Comparisons of 50% quantiles (standard deviation) of value functions for simulated examples
with n = 200 and p = 20. From left to right, each column represents scenarios (1)-(8) respectively. Each
row represents one specific method. The last six rows correspond to our proposed methods.

1 2 3 4 5 6 7 8

Dlearn 1.45(0.24) 2.22(0.04) 2.6(0.1) 1.84(0.13) 1.44(0.19) 2.19(0.67) 2.89(0.61) 2.14(0.65)

pls 1.52(0.13) 2.21(0.16) 2.71(0.2) 1.93(0.19) 1.28(0.24) 2.35(0.22) 2.86(0.18) 2.03(0.2)

rwl 1.4(0.17) 2.22(0.19) 2.71(0.16) 1.96(0.16) 1.39(0.25) 2.36(0.27) 2.96(0.36) 2.2(0.44)

rwl-GK 1.01(0.07) 2.22(0.05) 2.59(0.05) 1.81(0.04) 1.5(0.23) 2.25(0.65) 3.01(0.58) 2.32(0.58)

l2-DC-CVaR 1.45(0.14) 2.8(0.08) 3.11(0.09) 2.46(0.08) 1.28(0.19) 2.42(0.14) 2.97(0.16) 2.17(0.22)

l1-DC-CVaR 1.45(0.14) 2.82(0.06) 3.13(0.08) 2.48(0.05) 1.28(0.19) 2.43(0.06) 2.91(0.11) 2.04(0.09)

Gaussian-DC-CVaR 1.01(0.08) 2.22(0.04) 2.59(0.05) 1.81(0.04) 1.53(0.16) 2.33(0.67) 3.24(0.42) 2.56(0.29)

l2-MM-CVaR 1.38(0.17) 2.37(0.19) 2.84(0.17) 2.15(0.14) 1.28(0.22) 2.68(0.22) 3.08(0.2) 2.3(0.25)

l1-MM-CVaR 1.41(0.19) 2.3(0.16) 2.82(0.19) 2.09(0.21) 1.38(0.25) 2.57(0.35) 3.1(0.33) 2.31(0.37)

Gaussian-MM-CVaR 1.02(0.09) 2.22(0.04) 2.59(0.04) 1.81(0.05) 1.52(0.18) 2.7(0.61) 3.31(0.34) 2.45(0.46)

Table 3.5: Comparisons of 25% quantiles (standard deviation) of value functions for simulated examples
with n = 200 and p = 20. From left to right, each column represents scenarios (1)-(8) respectively. Each
row represents one specific method. The last six rows correspond to our proposed methods.

1 2 3 4 5 6 7 8

Dlearn -1.38(0.25) 1.02(0.03) 1.14(0.12) 0.57(0.16) -1.54(0.2) 0.67(0.59) 1.08(0.67) 0.53(0.63)

l1-PLS -1.3(0.14) 1.02(0.16) 1.28(0.26) 0.69(0.23) -1.71(0.25) 0.68(0.18) 0.89(0.18) 0.25(0.19)

rwl -1.43(0.19) 1.04(0.19) 1.29(0.21) 0.72(0.2) -1.59(0.27) 0.71(0.22) 1.05(0.41) 0.51(0.45)

rwl-GK -1.82(0.08) 1.02(0.04) 1.12(0.05) 0.53(0.04) -1.47(0.23) 0.72(0.57) 1.2(0.63) 0.71(0.57)

l2-DC-CVaR -1.38(0.15) 1.82(0.12) 1.86(0.14) 1.46(0.13) -1.71(0.2) 0.75(0.11) 1.01(0.2) 0.41(0.25)

l1-DC-CVaR -1.37(0.15) 1.84(0.1) 1.9(0.12) 1.5(0.07) -1.7(0.2) 0.75(0.05) 0.93(0.13) 0.25(0.09)

GK-DC-CVaR -1.82(0.08) 1.03(0.03) 1.12(0.05) 0.53(0.04) -1.45(0.17) 0.79(0.6) 1.46(0.46) 0.95(0.28)

l2-MM-CVaR -1.46(0.17) 1.19(0.21) 1.45(0.22) 0.96(0.2) -1.7(0.22) 0.99(0.21) 1.15(0.28) 0.56(0.31)

l1-MM-CVaR -1.42(0.19) 1.12(0.17) 1.43(0.26) 0.89(0.29) -1.61(0.26) 0.91(0.31) 1.22(0.4) 0.62(0.4)

GK-MM-CVaR -1.81(0.09) 1.03(0.04) 1.12(0.04) 0.54(0.06) -1.45(0.19) 1.13(0.55) 1.53(0.37) 0.85(0.44)

3.6 Real Data Applications

In this section, we perform a real data analysis to further evaluate our proposed robust

criteria for estimating optimal IDRs. The clinical trial dataset we used comes from “AIDS

Clinical Trials Group (ACTG) 175” in (Hammer et al., 1996) to study whether there exists

some subpopulations that are suitable for different combinations of treatments for AIDS. In

this study, a total number of 2139 patients with HIV infection were randomly assigned into

four treatment groups: zidovudine (ZDV) monotherapy, ZDV combined with didanosine (ddI),
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ZDV combined with zalcitabine (ZAL), and ddI monotherapy with equal probability. In this

data application, we focus on finding optimal IDRs between two treatments: ZDV with ddI and

ZDV with ZAL as our interest. The total number of patients receiving these two treatments

are 1046.

Similar to the previous studies by (Lu et al., 2013) and (Fan et al., 2017), we select 12

baseline covariates into our model: age (year), weight(kg), CD4+T cells amount at baseline,

Karnofsky score (scale at 0-100), CD8 amount at baseline,gender (1 = male, 0 = female), homo-

sexual activity (1 = yes, 0 = no), race (1 = non white, 0 = white), history of intravenous drug

use (1 = yes, 0 = no), symptomatic status (1=symptomatic, 0=asymptomatic), antiretroviral

history (1=experienced, 0=naive) and hemophilia (1=yes, 0=no). The first five covariates are

continuous and have been scaled before estimation. The remaining seven covariates are binary

categorical variables. We consider the outcome as the difference between the early stage (around

25 weeks) CD4+ T (cells/mm3) cell amount and the baseline CD4+ T cells before the trial.

Using this outcome, we can estimate the optimal IDR under our proposed robust criteria. To

evaluate the performance of our proposed methods under robust criteria, we randomly divide

the dataset into five folds and use four of them to estimate optimal IDRs by different methods.

The remaining one fold of data is used to evaluate the performances of different methods. We

repeat this procedure 220 times. For each method, we report the mean, 50% and 25% quantiles

of empirical value functions. From Table 3.6, we can see that our proposed methods perform

competitively among all methods. In particular, the “GK-DC-CVaR” method performs the best

compared with other methods, which indicates the optimal IDR of this problem may be poten-

tially nonlinear. Another observation is that our proposed methods are not consistently better

than other methods since robust methods are not necessarily the best for a specific application.

However, robustness can be more insensitive to some deviations from model assumptions, which

implies that our methods have the potential to be applied for a wide range of problems.
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Table 3.6: Results of Value function comparison. First column represents the means of empirical value
functions. Second and third columns represent means of 50% and 25% quantiles of empirical value
functions, respectively.

Vn(d) 50% quantiles 25% quantiles

Dlearn 55.2(11.7) 45.89(15.5) −24.74(12.69)

l1-pls 53.02(12.55) 43.69(16.06) −26.13(13.6)

rwl 53.74(12.2) 44.23(15.37) -26.25(13.46)

rwl-GK 53.29(12.17) 43.59(12.93) −25.59(12.93)

l2-DC-CVaR 54.65(13.26) 43.69(15.57) -26.24(13.85)

l1-DC-CVaR 50.69(11.82) 38.22(13.74) −29.96(12.55)

GK-DC-CVaR 55.33(11.85) 45.91(15.86) −23.02(12.7)

l2-MM-CVaR 52.89(13.18) 41.68(15.8) -27.78(13.83)

l1-MM-CVaR 53.83(12.45) 44.09(15.72) −26.7(13.32)

GK-MM-CVaR 53.68(12.81) 44.63(15.77) −25.92(13.35)

3.7 Conclusion

In this paper, we propose two robust criteria to estimate optimal IDRs by considering indi-

vidualized risk using the concept of CVaR. The resulting optimal IDRs can not only maximize

the individualized expected outcome, but also prevent adverse consequences by controlling the

lower tails of the outcome distributions.

Several possible extensions can be explored for future study. In particular, if we observe

some additional risk outcome, such as side effect, for each subject, it would be interesting to

develop methods to control this risk outcome under a pre-specified level by using our proposed

criteria. This model was studied under the expected-value function framework given by (Wang

et al., 2018b). Furthermore, (Wang et al., 2018a) recently used quantiles of outcome as criteria

to identify optimal IDRs. They proposed a doubly robust estimation method to find the optimal

IDR under their proposed criteria. It would be worthwhile to compare the performance of their

methods with our proposed methods. Finally, from our numerical analysis, in some scenarios,

estimated IDRs under M1(d) are better than those under M2(d). One possible reason is the
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potential model misspecification of α∗(X) given in (3.14), which we specify to be linear in the

numerical study. Thus it would be desirable to explore broader structure of α(x) or develop

some robust estimation methods to overcome potential model misspecification of α(x).
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CHAPTER 4

Estimation of Individualized Decision Rules Based on An Optimized Covariate-
dependent Equivalent of Random Outcomes

4.1 Introduction

Most medical treatments are designed for “average patients”. Due to the patients’ hetero-

geneity, “one size fits all” medical treatment strategies can be very effective for some patients

but not for others. For example, a study of colon cancer (Tan and Du, 2012) found that patients

with a surface protein called KRAS are more likely to respond to certain antibody treatments

than those without the protein. Thus exploration of precision medicine has recently gained a

significant attention in scientific research. Precision medicine is a medical model that provides

tailored health care for each specific patient, which has already demonstrated its success in

saving lives (Bissonnette and Bergeron, 2012; Kummar et al., 2015). One of the main goals in

precision medicine, from the data analytic perspective, is to estimate the optimal individualized

decision rules (IDRs) that can improve the outcome of each individual.

4.1.1 Estimating optimal IDRs: the expected-outcome approach

An IDR is a decision rule that recommends treatments/actions to patients based on the

information of their covariates. Consider the data collected from a single-stage randomized

clinical trial involving different treatments. Before the trial, a patient’s information X, such as

blood pressure and past medicine history, is recorded. The enrolled patient will be randomly

assigned to take a treatment denoted by A. After the patient receiving the treatment/action,

the outcome Z of the patient can be observed. Without loss of generality, we may assume that

the larger Z indicates the better condition a patient is in.

Let IP be the probability distribution of the triplet Y of random variables (X,A,Z) and

let IE be the associated expectation operator, where X is a random vector defined on the
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covariates space X ⊆ Rp, A is a random variable defined on the finite treatment set A and

Z is a scalar random variable representing outcome. The likelihood of (X,A,Z) under IP is

defined as f0(x)π(a |x) f1(z |x, a), where f0(x) is the probability density of X, π(a |x) is the

probability of patients being assigned treatment a given X = x and f1(z |x, a) is the conditional

probability density of Z given covariates X = x and treatment A = a. For the clinical trial

study, the value of π(a |x) is known; for the observational study, this value can be estimated

via various methods such as multinomial logistic regression.

An IDR d is defined as a mapping from the covariate space X into the action space A. We

let D be the class of all measurable functions mapping from X into A; that is, D is the class of

all measurable IDRs. For any IDR d ∈ D, define IP d to be the probability distribution under

which treatment A is decided by d. Then the corresponding likelihood function under IP d is

f0(x) II(a = d(x)) f1(z |x, a), where the indicator function II(a = d(x)) equals to 1 if a = d(x)

and 0 otherwise. Note that this is a discontinuous step function. The expected-value function

(Qian and Murphy, 2011) based on IP d is given as IE d [Z ], which can be interpreted as the

expected outcome under IDR d. It is known that if π(a |X) ≥ a0 > 0 almost surely (a.s.) for

any a ∈ A and some constant a0, then IP d is absolutely continuous with respect to IP (Qian

and Murphy, 2011). Thus by the Radon-Nikodym theorem,

IE d [Z ] = IE

[
Z dIP d

dIP

]
= IE

[
Z II(A = d(X))

π(A|X)

]
. (4.1)

In particular, IE d [ c(X) ] = IE[ c(X) ] for any integrable function c of the covariate X (Qian and

Murphy, 2011). Given the triplet (X,A,Z), an optimal IDR under the expected-value function

framework is defined as

d0 ∈ argmax
d∈D

IE d [Z ].

This is the expected-value function maximization approach to the problem of estimating an

optimal IDR to date. However, only maximizing the average of outcome under IDR d may be

restrictive in precision medicine. For example, when evaluating several treatments’ effects on

patients, doctors may want to know which treatment does the best to improve the outcome

of a higher-risk patient. More importantly, due to the complex decision-making procedure in

67



precision medicine, an “optimal” IDR that only maximizes the expected outcome of patients

may lead to potentially adverse consequences for some patients. Therefore, considering indi-

vidualized risk exposure is essential in precision medicine. This motivates us to examine the

problem of determining optimal IDRs under a broader concept to control the individualized

risk of each patient.

4.1.2 Optimized certainty equivalent

Estimating optimal IDRs can be regarded as an individualized decision-making problem.

Utility functions have played an important role in such problems since they characterize the pref-

erence order over random variables, based on which decisions can be made. Guarding against

the hazard of adverse decisions, risk measures are needed to balance the sole maximization of

such utilities. This bi-objective consideration is well appreciated in portfolio management, lead-

ing to many risk measures since the early days of the mean-variance approach in (Markowitz,

1952). We refer the readers to (Rockafellar and Uryasev, 2013) and references therein for a

contemporary perspective of diverse risk measures. Among such measures used in investment

and economics, one of the most popular is the conditional-value-at-risk (CVaR) that has been

extensively discussed in (Rockafellar and Uryasev, 2000; afellar and Uryasev, 2002); see the

recent survey in (Sarykalin et al., 2008a). In general, for an essentially bounded random vari-

able Z with the property that there exists a large enough scalar B > 0 such that the set

{ω ∈ Ω | | Z(ω) | > B} has measure zero, where Ω is the sample space on which the random

variable Z is defined, the γ-CVaR of Z is by definition:

CVaR γ (Z) ≜ sup
η∈R

[
η − 1

γ
IE (η −Z)+

]
,

with γ ∈ (0, 1) and t+ ≜ max(t, 0) for a scalar (or vector) t. The smallest maximizer of

CVaRγ(Z) is the γ-quantile of Z, which is also known as the value-at-risk (VaR). It turns out

that the CVaR is a special case of an Optimized Certainty Equivalent (OCE) proposed

in (Ben-Tal and Teboulle, 1986, 1987, 2007) that provides a link between utility and risk mea-

sures. In fact, the introduction of the OCE predates the popularity of the CVaR in portfolio

management.
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Let U denote the family of utility functions u : R → [−∞, ∞ ) that are upper semi-

continuous, concave, and non-decreasing with a nonempty effective domain

dom(u) ≜ { t ∈ R | u(t) > −∞} ̸= ∅

such that u(0) = 0 and 1 ∈ ∂u(0), where ∂u denotes the subdifferential map of u. Thus in

particular,

[u(t) ≥ 0, ∀ t ≥ 0 ] and [u(t) ≤ t, ∀ t ∈ R ] .

The OCE of an essentially bounded random variable Z is by definition:

Ou(Z) ≜ sup
η∈R

[ η + IEu(Z − η) ] .

According to the above cited references, the scalar η is interpreted as the present consumption

among the uncertain future income Z. Then the sum η+IEu(Z−η) is the utility-based present

value of Z. Thus the goal of the OCE is to maximize the latter value by choosing an optimal

allocation of Z between present and future consumption. A particular interest of the OCE

is the case where u(t) = ξ1 max(0, t) − ξ2 max(0,−t) for some constants ξ1 and ξ2 satisfying

0 ≤ ξ1 ≤ 1 ≤ ξ2. In this case, a maximizer of Ou(Z) corresponds to a quantile of the random

variable Z. For ξ1 = 0, Ou(Z) reduces to the CVaR. With a proper truncation, a concave

quadratic utility function can also satisfy the non-decreasing property, resulting in a mean-

variance combination; see (Ben-Tal and Teboulle, 2007, Example 2.2). One special property of

OCE is that −Ou(Z) gives a convex risk measure (Ben-Tal and Teboulle, 2007, Section 2.2).

One of the limitations of the OCE, when applied to our problem of estimating optimal IDRs,

is that it does not take into account covariates for the choice of an optimal allocation between

present and future consumption when data on the covariates are available.

In this chapter, motivated by applications in the field of precision medicine, we Individ-

ualize the known concept of the OCE to a Decision-Rule based Optimized Covariate-

Dependent Equivalent (IDR-CDE) that also incorporates domain covariates. The new equiv-

alent not only broadens the traditional expectation–only based criterion in the estimation of

the optimal IDRs in precision medicine, but also enriches the combined concept of utility and
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risk measures and bring them to individual-based decision making. The proposed IDR-CDE

is very flexible so that different utility functions will produce different optimal IDRs for vari-

ous purposes. It turns out that estimating optimal IDRs under the IDR-CDE is a challenging

optimization problem since it involves the discontinuous function II(A = d(X)). A major contri-

bution of our work is that we overcome this technical difficulty by reformulating the estimation

problem as a difference-of-convex (dc) constrained dc program under a mild assumption at

the population level of the model. This reformulation allows us to employ a dc algorithm for

solving the resulting dc program. Numerical results under the settings of binary actions and

linear decision rules are presented to demonstrate the performance of our proposed model and

algorithm.

4.1.3 Contributions and organization

The contributions of this chapter are in two directions: modeling and optimization. In the

area of modeling, we extend the expected-value maximization approach in precision medicine to

a more general framework by incorporating risk; see Section 4.2. This is accomplished through

the extension of the OCE to the IDR-CDE in which we incorporate domain covariates and

individualized decision rules. Properties of the IDR-CDE are derived in Subsection 4.2.1. The

optimal IDR problem under the IDR-CDE criterion is formally defined in Subsection 4.2.2.

Two cases of this problem are considered: the decomposable case (Subsection 4.2.3) and the

general case via empirical maximization. Examples of the IDR-CDE given in Subsection 4.2.4

conclude the modeling part of the paper. Beginning in Section 4.3, the solution of the empirical

IDR-CDE maximization is the other major topic of our work. The challenge of this problem is

the presence of the discontinuous indicator function in the objective function. The cornerstone

of our treatment of this problem is its epigraphical formulation which is valid under a mild

assumption at the model’s population level. We next introduce a piecewise affine description

of the epigraphical constraints from which we obtain a difference-of-convex constrained opti-

mization problem to be solved; see Sections 4.3 and 4.4. Although restricted to the empirical

IDR-CDE maximization problem, we believe that our novel dc constrained programming treat-

ment of the discontinuous optimization problem on hand can potentially be generalized to the

composite optimization of univariate step functions with affine functions. In Section 4.5, we
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demonstrate the effectiveness of our proposed IDR-CDE optimization over the expected-value

maximization via numerical results.

4.2 The IDR-based CDE

In this section, we extend the OCE along two directions. The first extension is to take

the expectation IE d with respect to decision-rule based probability distribution IP d in order

to evaluate the outcome under the IDR d. The second extension is to allow the deterministic

scalar η over which the supremum in the OCE is taken to be a family of measurable functions

F defined on the covariate space X . This family F allows the incorporation of available data

representing covariate information for prediction and risk reduction; see the inequality (4.2)

below. For notational purpose, we let L r(X ,Ξ, IPX) be the class of all measurable functions f

such that
∫
| f(X) |r d IPX < ∞ with r ∈ [1,∞]. Here (X ,Ξ, IPX) is the measure space with

Ξ being the σ-algebra generated by X , and IPX being the corresponding marginal probability

measure of X.

4.2.1 Definition and properties

For an essentially bounded random variable Z, the individualized decision-rule based opti-

mized covariate-dependent equivalent (IDR-CDE) of Z under decision rule d with respect to a

utility function u ∈ U and a linear space F ⊆ L 1(X ,Ξ, IPX) is

O d
(u,F)(Z) ≜ sup

α∈F

[
IEα(X) + IE d u(Z − α(X))

]
= sup

α∈F

[
IEα(X) + IE

(
u(Z − α(X))

II(A = d(X))

π(A|X)

)]

= sup
α∈F

IE

[
[α(X) + u(Z − α(X)) ]

II(A = d(X))

π(A|X)

]
,

where the last equality holds because of IE[α(X)] = IEd[α(X)] and the change of measure. The

space F is taken to contain all constant functions and such that the expectations in O d
(u,F)(Z)

are taken over integrable functions. One example of such a space is a family of all bounded

measurable functions. We will specify F for different utility functions in later discussion.
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The following proposition gives two preliminary properties of the IDR-CDE. In particular, the

inequality (4.2) bounds the IDR-CDE O d
(u,F)(Z) of the random variable Z in terms of the OCE

of Z in two ways: one is an upper bound in terms of the expected OCE of Z conditional on X

and A = d(X), and the other one is a lower bound in terms of the decision-rule based OCE of

Z. A notable mention of both bounds is that they are independent of the family F ; see (4.2).

Proposition 4.2.1. The following two statements hold.

(a) For any u ∈ U , one has O d
(u,F)(0) = 0.

(b) For any linear space F containing all constant functions and for which O d
(u,F)(Z) is finite,

IE [Ou(Z|X,A = d(X)) ] ≥ O d
(u,F)(Z) ≥ sup

η∈R
IE d [ η + u(Z − η) ] . (4.2)

Proof. (a) Since u ∈ U , one has u(t) ≤ t and then

O d
(u,F)(0) ≤ sup

α∈F

{
IE [α(X) ] + IE d [ 0− α(X) ]

}
= 0,

where the last equality holds since IE d (α(X)) = IE [α(X)]. Meanwhile, u(0) = 0 leads to

O d
(u,F)(0) ≥ IE [ 0 ] + IE d [ 0− 0 ] = 0,

since 0 ∈ F . Combining the two inequalities gives the statement that O d
(u,F)(0) = 0.

(b) We can write

Od
(u,F)(Z) = sup

α∈F

{
IE

[ ∑
a∈A

II(d(X) = a) IE [α(X) + u(Z − α(X)) | X,A = a ]

]}

= sup
α∈F

{ IE [ IE [α(X) + u(Z − α(X)) | X,A = d(X) ] ] }

= sup
α∈F

{ IE [α(X) + IE [u(Z − α(X)) | X,A = d(X) ] ] }

≤ IE

[
sup
s∈R

{ s+ IE [u(Z − s) | X,A = d(X) ] }
]

= IE [Ou(Z |X,A = d(X)) ],
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where the inequality holds because for any α(X), we have α(X) + IE [u(Z − α(X)) | X,A =

d(X) ] ≤ sup
s∈R

{ s+ IE [u(Z − s) | X,A = d(X) ] }. The right-hand inequality in (4.2) holds be-

cause F contains all constant functions.

Our proposed IDR-CDE measures the outcome Z via the decision-rule based optimal allo-

cation between the covariate-dependent present value α(X) and the future gain Z−α(X) under

the utility function u. Unlike the original OCE, the allocation α(X) depends on the available

covariate information X such as environmental factors that can help to decide the optimal al-

location. Take linear regression as an example; if the response Z can be predicted by the linear

combination of covariates X, then covariates X can explain some variability behind Z; this

could result in the reduction in the variance of Z given the information of X. Thus considering

the broader covariate-based allocation α(X) could improve the allocation and further reduce

the risk. This is also demonstrated via Proposition 4.2.1, by recalling that the negative of the

standard OCE is a risk measure; indeed inequality (4.2) confirms that incorporating covariate

information may lead to a reduced risk measure. Proposition 4.2.3 provides sufficient conditions

for equality to hold between the IDR-CDE and the conditional OCE.

Note that Ou(Z |X,A = d(X)) is a random variable; it is the original OCE corresponding to

the random variable with distribution being the conditional distribution of the random variable

Z given X and A = d(X). Thus we may think of it as a conditional OCE. The IDR-CDE

preserves many properties of the standard OCE which can be found in (Ben-Tal and Teboulle,

2007). The following are several of these properties.

Proposition 4.2.2. Given the two triplets (X,A,Z) and (d, u,F), the following properties

hold:

(a) Shift Additivity: for any essentially bounded random variable Z and any measurable

function c ∈ F such that c(X) is essentially bounded, O d
(u,F)(Z + c (X)) = O d

u (Z) +

IE [ c (X) ]; in particular, O d
(u,F)(c (X)) = IE [ c (X) ];

(b) Consistency: for any measurable function ĉ defined over X × A such that ĉ (X,A) is

essentially bounded, O d
(u,F)(ĉ (X,A)) = IE [ ĉ (X, d(X)) ];
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(c). Monotonicity: for any two essentially bounded random variables Z1 and Z2 such that

Z1(ω) ≤ Z2(ω) for almost all ω ∈ Ω, O d
(u,F)(Z1) ≤ O d

(u,F)(Z2);

(d). Concavity: for any two essentially bounded random variables Z1 and Z2 and any λ ∈

(0, 1),

O d
(u,F) (λZ1 + (1− λ)Z2) ≥ λO d

(u,F)(Z1) + (1− λ)O d
u (Z2).

Proof. (a) We have

O d
(u,F)(Z + c (X))

= sup
α∈F

{
IE [α(X) ] + IE d [u(Z + c (X)− α(X)) ]

}
= IE [ c (X) ] + sup

α∈F

{
IE[α(X)− c (X) ] + IE d [u(Z + c (X)− α(X)) ]

}
= IE [ c (X) ] + sup

(α−c)∈F

{
IE [ (α− c)(X) ] + IE d [u(Z − (α− c)(X)) ]

}
= IE [ c (X) ] +O d

(u,F)(Z),

where the third equality holds since F is a linear space.

(b) Since u(t) ≤ t, we have

O d
(u,F)(Z) ≤ sup

α∈F

{
IE [α(X) ] + IE d [Z − α(X) ]

}
= IE d [Z ],

where the equality holds because IE d [α(X) ] = IE [α(X) ] by the definition of IP d. Therefore,

if Z = ĉ(X,A) is essentially bounded, then

O d
(u,F)(Z) ≤ IE d [ ĉ (X,A) ]

= IE

[
ĉ (X,A) II(d(X) = A)

π(A|X)

]

= IE

[
ĉ (X, d(X)) II(d(X) = A)

π(A|X)

]
= IE [ ĉ (X, d(X)) ] .
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Since u(0) = 0, by the definition of the supreme in O d
(u,F), we derive

O d
(u,F)(ĉ (X,A)) ≥ IE [ ĉ (X, d(X)) ] + IE d [u(ĉ(X,A)− ĉ (X, d(X)) ]

= IE [ ĉ (X, d(X)) ] + IE d [u(ĉ (X, d(X))− ĉ (X, d(X))) ]

= IE [ ĉ (X, d(X)) ].

Thus, O d
(u,F)(ĉ (X,A)) = IE [ ĉ (X, d(X)) ].

(c) If Z1 ≤ Z2, then Z1 − α(X) ≤ Z2 − α(X) for α ∈ F . Since u ∈ U0 is a non-decreasing

utility function, it follows that

O d
(u,F)(Z1) = sup

α∈F

{
IE [α(X) ] + IE d [u(Z1 − α(X)) ]

}
≤ sup

α∈F

{
IE [α(X) ] + IE d [u(Z2 − α(X)) ]

}
= O d

(u,F)(Z2).

(d) For any λ ∈ (0, 1), denote a random variable Zλ ≜ λZ1 + (1 − λ)Z2 and a measurable

function αλ(X) ≜ λα1(X)+(1−λ)α2(X). Clearly Zλ is essentially bounded and αλ(X) ∈ F .

Then by the concavity of u, we have

IE [αλ(X) ] + IE d [u(Zλ − αλ(X)) ] ≥ λ
(
IE [α1(X) ] + IE d [u(Z1 − α1(X)) ]

)
+

(1− λ)
(
IE [α2(X) ] + IE d [u(Z2 − α2(X)) ]

)
.

Taking supremum over α1 and α2 on both sides, we may derive the stated result.

Properties (a) and (b) extend corresponding results of the original OCE (Ben-Tal and

Teboulle, 2007, Theorem 2.1) from a constant η to a measurable function that depends on

X and A; properties (c) and (d) are essentially the same as those in (Ben-Tal and Teboulle,

2007, Theorem 2.1). These properties justify the use of the IDR-CDE in decision making.

Shift Additivity means if the outcome is shifted by some function over covariates, the IDR-

CDE measure is shifted by the average of this function. Thus the IDR d is invariant under

such a shift. Consistency means that to evaluate the IDR-CDR of a measurable function over
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X × A is equivalent to evaluating the expectation of this random function when the action

follows the decision rule d. Monotonicity and concavity have the same respective meanings as

the OCE: the former guarantees a larger CDE for a (stochastically) larger outcome; the latter

ensures that the IDR-CDE of a convex combination of two outcomes given a decision rule d is

always better than only considering each single outcome separately; this property encourages

the simultaneous combination of multiple outcomes for better results.

4.2.2 The IDR optimization problem

We employ the IDR-CDE to evaluate the decision rule d of the outcome Z via its optimized

covariate equivalent, with the goal of estimating an optimal IDR that maximizes the IDR-CDE

given the pair (u,F) in the following sense.

Definition 4.1. Given the triplet (X,A,Z), the pair (u,F), and the family D of decision rules,

an optimal IDR is a rule d∗ such that

d∗(X) ∈ argmax
d∈D

O d
(u,F)(Z),

if such a maximizer exists. □

Thus we can compute d∗(X) and the optimal allocation α∗(X) jointly by solving

sup
d∈D,α∈F

IE [α(X) ] + IE d [u(Z − α(X)) ]. (4.3)

The rest of the paper is devoted to the solution of this optimization problem. The discussion

is divided into two cases depending on whether we can exchange the supremum over α and

the expectation IE d in O d
(u,F)(Z). The exchangeable case requires the theory of decomposable

space from variational analysis; this leads to an “explicit” determination of the optimal IDR via

the evaluation of the conditional OCE given the covariate X and the finite actions a ∈ A; see

Proposition 4.2.4. The general case requires the numerical solution of an empirical optimization

problem obtained from sampling of the covariates among available data.
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4.2.3 Decomposable space and normal integrand

In order to exchange the supreme over α(X) and expectation with respect to IE d, we need

to first introduce the concept of a decomposable space and the normal integrand.

Definition 4.2. (Rockafellar and Wets, 2009, Definitions 14.59 and 14.27). A space M of B0-

measurable functions is decomposable relative to an underlying measure space (Ω0,B0, µ) if for

every function x0 ∈ M, every set G ∈ B0 with µ(G) < ∞ and any bounded, measurable function

x1, the function x2(t) = x0(t)II(t ̸∈ G) + x1(t)II(t ∈ G) belongs to M. An extended-value

function f : Ω0×R → (−∞,∞] is a normal integrand if its epigraphical mapping ω → epi f(ω, ·)

is closed-valued and measurable. □

The space L r(X ,Ξ, IPX ) is decomposable for r ∈ [1,∞] but the family of constant functions

is not decomposable. These facts will be used in the examples to be discussed in the next

subsection.

We will employ the following simplified version of (Rockafellar and Wets, 2009, Theo-

rem 14.60) that provides the required conditions for the exchange of the supremum and expec-

tation in our context.

Theorem 4.2.1. Let (Ω0, B0, µ) be a probability measure space, and M be a decomposable

space of B0-measurable functions. Let f : Ω0 × R → (−∞,∞] be a normal integrand; let the

integral functional If (x) =
∫
Ω0

f(x(ω), ω)dµ(ω) be defined on M. The following two statements

hold:

(a) inf
x∈M

∫
Ω0

f(x(ω), ω)dµ(ω) =

∫
Ω0

inf
s∈R

f(s, ω)dµ(ω) as long as If (x) is finite; and

(b) x0 ∈ argmin
x∈M

If (x) ⇐⇒ x0(ω) ∈ argmin
s∈R

f(s, ω) almost surely. □

The following proposition shows that if F is decomposable, then equality holds between the

IDR-CDE and the conditional OCE.

Proposition 4.2.3. If F is a decomposable space relative to (X ,Ξ, IPX), then

O d
(u,F)(Z) = IE [Ou(Z |X,A = d(X)) ].

Proof. Note that IE [α(X)+ u(Z −α(X)) | X,A = d(X) ] is measurable with respect to X and

upper semi-continuous with respect to α(X) for any X, thus is a normal integrand (Rockafellar

77



and Wets, 2009, Example 14.31). Hence we have

Od
(u,F)(Z) = sup

α∈F
{ IE [ IE [α(X) + u(Z − α(X)) | X,A = d(X) ] ] }

= IE

[
sup
s∈R

{ s+ IE [u(Z − s) | X,A = d(X) ] }
]

= IE [Ou(Z |X,A = d(X)) ],

where the second equality is by Theorem 4.2.1 because F is decomposable and Z is bounded.

Remark 2. Since the conditional OCE is independent of the space F , it follows that so is

Od
(u,F)(Z) provided that F is decomposable relative to (X ,Ξ, IPX). Thus, in the following, if

we specify F to be decomposable, then we omit F and write the IDR-CDE of the random

variable Z as Od
u(Z). □

As a result of Proposition 4.2.3, we can characterize the optimal IDR explicitly if F is a

decomposable space. We recall that A is a finite set.

Proposition 4.2.4. For a given decomposable space F and utility function u ∈ U , an optimal

IDR is given by

d ∗(X) ∈ argmax
a∈A

Ou(Z |X,A = a). (4.4)

Proof. By the definition of O d
u (Z), we have for any d ∈ D,

IE [Ou(Z |X,A = d(X)) ] = IE

[∑
a∈A

II(d(X) = a)Ou(Z |X,A = a)

]

≤ IE

[∑
a∈A

II(d(X) = a)max
a′∈A

Ou(Z |X,A = a′)

]

= IE

[(
max
a′∈A

Ou(Z |X,A = a′)

) ∑
a∈A

II(d(X) = a)

]

= IE

[
max
a′∈A

Ou(Z |X,A = a′)

]
.

Therefore if (4.4) holds, then d ∗ is maximizing. Such a d ∗ is a measurable function because

being an optimal IDR, d ∗(X) = a if and only if Ou(Z |X,A = a) ≥ max
a ′ ̸=a

Ou(Z |X,A = a ′) and

Ou(Z |X,A = a) ≥ max
a ′ ̸=a

Ou(Z |X,A = a ′) is a measurable set with respect to X.
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Remark 3. The explicit expression of an optimal IDR is valid only when the space F is

decomposable. If the conditional distribution of Z given X and A = a is known, then it

is possible to compute the individualized OCE Ou(Z |X,A = a) directly. For example, if

we make certain parametric assumptions on this conditional distribution, we may be able to

estimate these parameters based on the collected data and obtain optimal IDRs based on

Proposition 4.2.4. This is similar to the model-based methods in the literature of the expected-

value function maximization approach. However, the empirical performance could be affected

by the possible model misspecification. Therefore the individualized OCE Ou(Z |X,A = a) is

primarily a conceptual notion and the expression (4.4) is mainly for interpretation. □

According to Proposition 4.2.4, an optimal IDR under our proposed CDE can be obtained

by choosing the decision rule with the largest individualized OCE. In the next subsection, we

will characterize the IDR-OCE via several illustrative examples for both decomposable and

non-decomposable families of covariate functions.

4.2.4 Illustrative examples

We present several common utility functions to further explain the IDR-CDE for individu-

alized decision making. We will focus on two families: L r(X ,Ξ, IPX) for some r ∈ [1,∞] and

a family of constant function which we denote Fc. The former family is a decomposable linear

space and the latter family is not decomposable.

Example 4.1. (Identity utility function) Let u(t) = t, then by the definition, we can obtain

O d
u (Z) = IE d [Z ] for both families L1(X ,Ξ, IPX) and Fc. This recovers the expected-value

maximization framework in the existing literature of precision medicine. By Proposition 4.2.4,

for the family L r(X ,Ξ, IPX), an optimal IDR under the identity utility function is given by:

d ∗(X) ∈ argmax
a∈A

IE [Z |X,A = a ] ,

which is equivalent to the action with the largest expected outcome Z among all the actions

given covariates X. ♢
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Example 4.2. (Piecewise Linear Utility Function) Let

u(t) = ξ1max(0, t)− ξ2max(0,−t), where 0 ≤ ξ1 < 1 < ξ2.

It can be verified that u ∈ U0.

(a) Decomposable space: F = L 1(X ,Ξ, IPX). The corresponding IDR-CDE is

O d
u (Z) = sup

α∈F


IE [α(X) ]+

IE d [ ξ1max ( 0 , Z − α(X) )− ξ2max ( 0 , α(X)−Z ) ]

 . (4.5)

Based on Proposition 4.2.3 we can write it as: with γ ≜ 1− ξ1
ξ2 − ξ1

. Then the O d
u (Z) is equal to

IE
[
sups∈R

{
s+ IE [ ξ1 max ( 0,Z − s )− ξ2 max ( 0 , s−Z ) | X,A = d(X) ]

} ]
= ξ1IE

d [Z ] + (1− ξ1) IE
[
sups∈R

{
s− 1

γ IE [max ( 0 , s−Z ) | X,A = d(X) ]
}]

= ξ1 IE
d [Z ] + (1− ξ1) IE [CVaR γ (Z | X,A = d(X)) ],

where given X, the corresponding supremum is attained at the γ-quantile of conditional dis-

tribution of Z on X and A = d(X) almost surely. Therefore, under the piecewise affine utility

function, O d
u (Z) can be interpreted as a convex combination of the expected value of Z and

its expected CVaR given IDR d. Thus this O d
u (Z) considers both IE d [Z ] and CVaR of the

outcome simultaneously. In particular, when ξ1 = ξ2 = 1, this recovers Example 4.1.

By Proposition 4.2.4, a corresponding optimal IDR is

d ∗(X) ∈ argmax
a∈A

{
ξ1 IE [Z |X,A = a ] + (1− ξ1)CVaR γ(Z |X,A = a)

}
. (4.6)

Therefore, under this piecewise affine utility function, an optimal IDE is to choose the action

with the largest convex combination of expected outcome and CVaR of outcome Z among all

the actions given covariates X. □
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(b) Family of constant functions: F = Fc. The IDE-CDE reduces to (Ben-Tal and

Teboulle, 2007, Example 2.3) with IDR d involved:

O d
(u,Fc)

(Z) = sup
c∈R

{
c+ IE d [ ξ1 max ( 0 , c−Z )− ξ2 max ( 0 , c−Z ) ]

}
= ξ1 IE

d [Z ] + (1− ξ1) sup
c∈R

{
c− ξ2 − ξ1

1− ξ1
IE d [max ( 0 , c−Z ) ]

}
.

The supremum in the right-hand side is any c∗ satisfying IP d (Z ≤ c∗) ≥ γ and IP d (Z ≥ c∗) ≤

1− γ, which is the γ-quantile of Z under the probability distribution IP d, denoted by Qd
γ(Z).

The corresponding maximum value is ξ1 IE
d [Z ]+(1−ξ1)CVaR

d
γ(Z). By definition, an optimal

IDR under Fc is given by

d∗ ∈ argmax
d

{
ξ1IE

d [Z ] + (1− ξ1)CVaR
d
γ (Z)

}
.

While this expression is insightful, the above optimal IDR d∗ does not have an explicit form as

(4.6) since Proposition 4.2.4 no longer holds by the fact that Fc is not a decomposable space.

♢

Example 4.3. Quadratic Utility Let

u(t) =


t− 1

2τ
t2 if t ≤ τ

τ/2 otherwise,

 , where τ = sup
ω∈Ω

Z(ω)− inf
ω∈Ω

Z(ω),

be a quadratic function truncated to be an admissible utility function in the family U and to

adopt to the range of the random outcome Z. Note that u is continuously differentiable with

derivative u ′(t) =

(
1− t

τ

)
II(t ≤ τ).

(a) Decomposable space: F = L 2(X ,Ξ, IPX). By Proposition 4.2.3, we have,

O d
u (Z) = IE

[
sup
s∈R

{ s+ IE [u(Z − s) | X,A = d(X) ] }
]

= IE d [Z ]− IE

[
1

2τ
IE

[
(Z − IE [Z |X,A = d(X) ] )2 |X,A = d(X)

] ]

= IE d [Z ]− 1

2τ
IE [ var(Z |X,A = d(X)) ] ,
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where the supreme α∗(X) = IE [Z |X,A = d(X) ] almost surely and var(•) is the variance

of a random variable. The second equality is based on (Ben-Tal and Teboulle, 2007, Remark

2.1) by noting that 1 + IE [u ′(Z − α∗(X))] = 0. The interchange between expectation and

derivative is justified by the dominated convergence theorem under the restriction that s ∈[
inf
ω∈Ω

Z(ω), sup
ω∈Ω

Z(ω)

]
. Thus O d

u (Z) can be interpreted as the (individualized) mean-variance

risk measure under the decision rule d, generalizing the mean-variance criterion in the absence

of A and X, which is frequently used in portfolio selection. An optimal IDR is given by

d ∗(X) ∈ argmax
a∈A

{
IE [Z |X,A = a ]− 1

2τ
var [Z |X,A = a ]

}
,

which suggests the optimal action to maximize the expected outcome balanced with the variance

given covariates X.

(b) Family of constant functions: F = Fc. Similar to part (a) above, direct computation

yields O d
u (Z) = IE d [Z ]− 1

2τ
var d(Z) with c∗ = IE d[Z], where var d(Z) denotes the variance of

a random variable Z under IP d. An optimal IDR under Fc is

argmax
d

{
IE d [Z ]− 1

2τ
var d (Z)

}
,

which requires further evaluation by a numerical procedure. ♢

From Example 4.2 and Example 4.3, we see that one of the differences between a covariate-

dependent α(X) and a constant α(X) ∈ Fc lies in that for the former, the IDR-CDE considers

expected individualized OCE given the decision rule d, but for a constant α, in contrast, the

IDR-CDE considers only the OCE of the random variable Z under IP d. To further understand

this difference, consider a toy example with Z = X1A+ ε, where both X1 and ε independently

follow the standard normal distribution. Suppose we use the utility function in Example 4.2(b)

with ξ1 = 0 and ξ2 = 2 to evaluate an IDR d(X1) = 1. By calculation, c∗ = 0 and thus we

are focused on the median of Z under the probability distribution IP d. The corresponding

O d
(u,Fc)

(Z) = IE[IE[ZII(Z ≤ 0)|X,A = 1]]. If we have one patient with covariate X1 = −2,

then IP(Z ≤ 0|X1 = −2, A = 1) ≈ 84%. For this patient, O d
(u,Fc)

(Z) evaluates the outcome

lower than about 84%-quantile, which is not satisfactory. As a result, we may conclude that
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the optimal IDR cannot be quantified by comparing each action separately of each other when

considering α(X) being constant functions only. Consequently such an IDR cannot control the

individualized OCE.

So far we only consider single-stage individualized decision making problems. It is also

meaningful to extend our proposed IDR-CDE to multi-stage decision-making scenarios in order

to deliver time-varying optimal IDRs with risk exposure control. Since it will require advanced

modeling and treatment, we leave such an extension for future research.

4.3 The Empirical IDR Optimization Problem

In this section, we discuss how to numerically solve the optimization problem (4.3) at

the empirical level without assuming any data generating mechanisms. In the following, we

focus on estimating the optimal IDR with A = {−1, 1}, i.e., a binary action space. Further, for

computational purposes, we restrict the decision rule to be given by: d(X) = sign(f(X; θ)) for a

parametric linear estimation function: f(X; θ) = β TX+β0 = θ T X̂, where θ ≜

 β

β0

 ∈ Rp+1

contains the unknown coefficients to be estimated and X̂ ≜

 X

1

. Extensions to multi-

action space and nonlinear decision rules are possible but will necessitate advanced modeling

and treatment. This will be left for future research. Using functional margin representation in

standard classification, we then have II (A = d(X)) = II (Af(X; θ) > 0) for any nonzero f(X; θ).

Therefore, the IDR-CDE optimiation problem can be equivalently written as:

sup
θ≜(β,β0)∈Rp+1, α∈F


IE

[
Z II(Af(X; θ) > 0)

π(A|X)

]
+

IE

[
[α(X)−Z + u(Z − α(X)) ]

II(Af(X; θ) > 0)

π(A|X)

]
 . (4.7)

Before proceeding, we describe two characteristics of this problem that are important in the

algorithmic development and provide our proposal to address them.

(a) The discontinuity of the indicator function. The function II(Af(X; θ) > 0) is a

lower semicontinuous, albeit discontinuous function. This seems to prohibit us from employing
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continuous optimization algorithms to solve problem (4.7). A natural way to resolve this issue is

to approximate the indicator function by a continuous function, such as the piecewise truncated

hinge loss as in (Wu and Liu, 2007):

Tδ(x) ≜ 1

2 δ
[max (x+ δ, 0 )−max (x− δ, 0 ) ]︸ ︷︷ ︸

nonnegative

for some δ > 0,

so that

II (Af(X; θ) > 0) ≈ Tδ(Af(X; θ))

=
1

2 δ
max (Af(X; θ) + δ, 0 )︸ ︷︷ ︸
denoted T+

δ (θ;X,A)

− 1

2 δ
max (Af(X; θ)− δ, 0 )︸ ︷︷ ︸
denoted T−

δ (θ;X,A)

,

where both functions T±
δ (•;X,A) are nonnegative, convex, and piecewise affine; thus the ap-

proximating function is non-convex and non-differentiable, making the resulting optimization

problem:

sup
θ≜(β,β0)∈Rp+1,

α∈F


IE

[
Z

T+
δ (θ;X,A)− T−

δ (θ;X,A)

π(A|X)

]
+

IE

[
[α(X)−Z + u(Z − α(X)) ]

T+
δ (θ;X,A)− T−

δ (θ;X,A)

π(A|X)

]
 (4.8)

difficult to solve. Since we are interested in designing an algorithm that is provably convergent

to a properly defined stationary solution, care is needed to handle the combined features of non-

convexity and non-differentiability in the approximated problem (4.8) and the discontinuity in

(4.7). These features are particularly relevant when we consider the convergence of the former

to the latter as δ ↓ 0. To illustrate the difficulty with some algorithms for solving (4.8), we

mention that a majorization-minimization type algorithm (Lange, 2016) may be too complex

to implement as a majorizing function may be quite complicated; block coordinate descent type

methods may not converge to a stationary point of this problem because the needed regularity

assumptions (Tseng, 2001) cannot be expected to be satisfied. Therefore, an alternative way to

tackle the discontinuity of the indicator function is needed, which is the focus of Subsection ??.
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(b) The positive scale-invariance of the indicator function. The function II(Af(X; θ) >

0) is positively scale-invariant as any positive scaling of f(X; θ) will not change the objective

value of the problem (4.7). This could cause computational instability, and more seriously,

incorrect definition of the indicator function due to round-off errors; these numerical issues

become more pronounced when f(X; θ) is close to 0 in practical implementation of an algorithm.

One way to guard against such undesirable characteristics of the indicator function is to solve

two optimization problems with the bias term β0 set equal to ±1, respectively, and accept as the

solution the one with a smaller objective value. This approach works if the true β0 is not equal

to 0. In the development below, this safe guard is adopted as can be seen in the formulation

(4.10).

In this subsection, we propose a method to transform the discontinuous optimization prob-

lem (4.7) that involves the indicator function to a continuous optimization problem by means

of a mild assumption. Our approach is to reformulate the discontinuous problem (4.7) via its

epigraphical representation. Since II( • > 0) is a lower semicontinuous function, its epigraph

epi II( • > 0) ≜ { (t, s) ∈ R× R | t ≥ II(s > 0) }

is a closed set (Rockafellar, 1970, Theorem 7.1). However, the random variable Z may attain

positive values, which makes it also essential to consider the hypograph of II(• > 0), i.e., the set

hypo II( • > 0) ≜ { (t, s) ∈ R× R | t ≤ II(s > 0) } .

Since the indicator function is not upper semicontinuous, the above set is not closed. We thus

consider an approximation of II(• > 0) by an upper semicontinuous function II(• ≥ 0) that has

a closed hypograph

hypo II( • ≥ 0) ≜ { (t, s) ∈ R× R | t ≤ II(s ≥ 0) } .

Interestingly, the sets epi II( • > 0) and hypo II( • ≥ 0) are each a finite union of polyhedra that

admits an extremely simple dc representation given in the next lemma. See also Figures 4.1

and 4.2 for illustration. No proof is required for the lemma.
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Lemma 4.3.1. For any t, s ∈ R, the following two statements hold:

(i) (t, s) ∈ epi II(• > 0) if and only if max(−t, s)−max(t+ s− 1, 0) ≤ 0 ;

(ii) (t, s) ∈ hypo II(• ≥ 0) if and only if max(t+ s− 1, 0)−max(−t, s) ≤ 0. □

s

t

-2 -1 1 2

-2

-1

0

1

2

Figure 4.1: the region (shaded) for
epi II(• > 0)

s

t

-2 -1 1 2

-2

-1

0

1

2

Figure 4.2: the region (shaded) for
hypo II(• ≥ 0)

Denoting Z− ≜ max(−Z, 0) and Z+ ≜ max(Z, 0), we assume that

IE

[
Z+ II(Af(X; θ) = 0)

π(A|X)

]
= 0.

Under this assumption, problem (4.7) is equivalent to

minimize
β∈Rp,α∈F



IE

[
Z− II(Af(X; θ) > 0)

π(A|X)

]
− IE

[
Z+ II(Af(X; θ) ≥ 0)

π(A|X)

]

+ IE


Z − α(X)− u(Z − α(X))︸ ︷︷ ︸

nonnegative

 II(Af(X; θ) > 0)

π(A|X)




. (4.9)

For further consideration, we take α(X) to be a parameterized family of affine functions

{bTX + β0 = w T X̂} where w ≜

 b

b0

 is the parameter is be estimated. The use of affine

functions to approximate α∗(X) is based on both modeling and computational perspectives.

The affine functions are easy for interpretation, but may suffer from model misspecification.

The linear assumption can be relaxed by using kernel trick in machine learning. The corre-

sponding computation will be more involved. We approximate the expectation in (4.9) by the

sample average that is based on the available data {(X i, Ai,Z i)}Ni=1. In order to compute

a sparse solution that can avoid model overfitting, we add sparsity surrogate functions (Ahn
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et al., 2017) Pb and Pθ on the parameters w and β in the covariate function α(X) and the

function f(X; θ), respectively, each weighted by the positive scalars λNb and λNβ . The empirical

problem is then given by

minimize
β∈Rp

w≜(b,b0)∈S



λN
a Pb(b) + λN

β Pβ(β) +
1

N

N∑
i=1

Z−
i

II(A i (β
TX i ± 1) > 0)

π(A i |X i)
−

1

|N+|
∑
i∈N+

Z+
i

II(A i (β
TX i ± 1) ≥ 0)

π(A i |X i)
+

1

N

N∑
i=1

[
Zi − w T X̂ i − u(Zi − w T X̂ i)

] II(A i (β
TX i ± 1) > 0)

π(A i |X i)


, (4.10)

where N+ ≜ { 1 ≤ j ≤ N | Zj > 0 } and S is a closed convex set. [In principle, we may add

constraints to the parameter β also but refrain from doing this as it does not add value to the

methodology.] Based on Lemma 4.3.1, the above problem can be further written as

minimize over z ≜ (w, β, σ±); β ∈ Rp, and w ≜ (b, b0) ∈ S

φ(z) ≜



λN
a Pb(b) + λN

β Pβ(β) +
1

N

N∑
i=1

Z−
i σ−

i

π(A i |X i)
− 1

|N+|
∑
j∈N+

Z+
j σ+

j

π(A j |X j)

1

N

N∑
i=1

[
Zi − w T X̂ i − u(Zi − w T X̂ i)

] σ−
i

π(A i |X i)︸ ︷︷ ︸
nonconvex


subject to

max(−σ−
i , A i (β

TX i ± 1))−max(σ−
i + A i(β

TX i ± 1)− 1, 0) ≤ 0, 1 ≤ i ≤ N

max(σ+
j +A j (β

TXj ± 1)− 1)−max(−σ+
j , A j (β

TXj ± 1)) ≤ 0, j ∈ N+,

(4.11)

where the constraints are of the difference-of-convex, piecewise affine type. Denote t i ≜

Zi − w T X̂ i for any i = 1, · · · , N . The last term in the objective function φ can be further

written as

[ t i − u(t i) ]
σ−
i

π(A i |X i)

=
1

2π(A i |X i)

{ [
t i − u(t i) + σ−

i

]2 − (σ−
i )

2 − [ t i − u(t i) ]
2
}
.

Since t i − u(t i) ≥ 0 and σ−
i ≥ 0, the terms

[
t i − u(t i) + σ−

i

]2
and [ t i − u(t i) ]

2 are convex.

Hence each product [ t i − u(t i) ]
σ−
i

π(A i |X i)
is the difference of convex functions.
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Suppose that the utility function and sparsity surrogate functions are as follows:

u(t) = ξ1 max(0, t)− ξ2 max(0,−t), where 0 ≤ ξ1 < 1 < ξ2 ;

Pb(b) =

p∑
i=1

[
ϕbi | b i | − ρbi(bi)

]
, ϕbi > 0, i = 1, · · · , p ;

Pβ(β) =

p∑
i=1

[
ϕβi |β i | − ρβi (βi)

]
, ϕβi > 0, i = 1, · · · , p,

(4.12)

where ϕbi and ϕβi are given constants and ρbi and ρβi are convex differentiable functions (Ahn

et al., 2017). We then have

[ t i − u(t i) ] σ
−
i =

1

2

{
(1− ξ1)

[
max(0, ti) + σ−

i

]2
+ (1 + ξ2)

[
max(0,−ti) + σ−

i

]2︸ ︷︷ ︸
convex

−
[
(2− ξ1 + ξ2)(σ

−
i )

2 − (1− ξ1) [max(0, ti) ]
2 − (1 + ξ2) [max(0,−ti) ]

2
]

︸ ︷︷ ︸
convex and continuously differentiable

}
.

Therefore, under the above setting, the objective function φ is the difference of two convex

functions, φ1 −φ2, with φ2 being continuously differentiable. In the next section, we present a

dc algorithm for solving such a problem.

4.4 Solving a Piecewise Affine Constrained DC Program

We consider problem (4.11) cast in the following general form:

minimize
x∈X

f(x) − g(x)

subject to

max
1≤ j≤ J1i

((a ij)Tx+ α ij) − max
1≤ j≤ J2i

((b ij)Tx+ β ij) ≤ 0, i = 1, . . . ,m,

(4.13)

where f : Rn → R is a convex function, g : Rn → R is a continuously differentiable convex

function with Lipschitz continuous gradient, each a ij and b ij are n-dimensional vectors, each

α ij and β ij are scalars, each J1i and J2i are positive integers, and X is a polyhedral set. Notice

88



that for any i = 1, . . . ,m, it holds that

max
1≤ j≤ J1i

((a ij)Tx+ α ij) − max
1≤ j≤ J2i

((b ij)Tx+ β ij) ≤ 0

⇐⇒ (a ij1)Tx+ α ij1 − max
1≤j≤J2i

((b ij)Tx+ β ij) ≤ 0, ∀ 1 ≤ j1 ≤ J1i

⇐⇒ max
1≤j2≤J2i

(
(b ij2 − a ij1)Tx+ (β ij2 − α ij1)

)
≥ 0, ∀ 1 ≤ j1 ≤ J1i.

The above equivalences indicate that by properly redefining (b ij , β ij) and the value of m, one

can write any piecewise linear constrained dc program (4.13) as the following reverse convex

constrained (Hillestad and Jacobsen, 1980) dc program:

minimize
x∈X

h(x) ≜ f(x) − g(x)

subject to max
1≤ j≤ J i

( ( b ij )Tx+ β ij ) ≥ 0, i = 1, . . . ,m.

(4.14)

Denote the feasible set of the problem (4.14) as

F ≜
{
x ∈ X | max

1≤ j≤ J i

( ( b ij )Tx+ β ij ) ≥ 0, i = 1, . . . ,m

}
.

For any x ∈ Rn, we also denote

I(x) ≜
{
1 ≤ i ≤ m | max

1≤j≤J i

( ( b ij )Tx+ β ij ) = 0

}

and

A i(x) ≜ argmax
1≤ j≤ J i

{
( b ij )Tx+ β ij

}
, i = 1, . . . ,m.

We say that x̄ ∈ X is a B(ouligand)-stationary point (Pang, 2007) of the problem (4.14) if

h′(x̄; d) ≜ lim
τ↓0

h(x̄+ τd)− h(x̄)

τ
= f ′(x̄; d)− g′(x̄; d) ≥ 0, ∀ d ∈ TB (x̄;F ),
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where TB (x̄;F ) is the Bouligand tangent cone of F at x̄ ∈ F , i.e., (see, e.g., (Pang et al., 2016,

Proposition 3)),

TB (x̄;F ) ≜
{
d ∈ Rn | d = lim

ν→∞

(x ν − x̄)

τν
, where F ∋ x ν → x̄ and τν ↓ 0

}

=

{
d ∈ TB (x̄;X) | max

j∈A i(x̄)
(b ij)Td ≥ 0, ∀ i ∈ I(x̄)

}

=
∩

i∈I(x̄)

∪
j∈Ai(x̄)

{
d ∈ TB (x̄;X) | (b ij)Td ≥ 0

}
.

[Since X is assumed to be polyhedral, TB (x̄;X) is a polyhedral cone.] A weaker concept than

B-stationarity is that of weak B-stationarity, which pertains to a feasible solution x̄ ∈ F such

that h′(x̄; d) ≥ 0 for any d ∈ Rn satisfying

d ∈ T weak
B (x̄;F ) ≜

{
d ∈ TB (x̄;X) | min

j∈A i(x̄)
(b ij)Td ≥ 0, ∀ i ∈ I(x̄)

}

=
∩

i∈I(x̄)

∩
j∈Ai(x̄)

{
d ∈ TB (x̄;X) | (b ij)Td ≥ 0

}
.

Unlike TB (x̄;F ), which is not necessarily convex, T weak
B (x̄;F ) is a polyhedral cone. It is known

from (Clarke, 1998, Chapter 2, Proposition 1.1(c) & Exercise 9.10) that

TC(x̄;F ) ⊆ T weak
B (x̄;F ) ⊆ TB(x̄;F ),

where TC (x̄;F ) denotes the Clarke tangent cone of F ⊆ Rn at x̄, i.e., d ∈ TC (x̄;F ) if for every

sequence {x i} ⊆ S converging to x̄ and positive scalar sequence {t i} decreasing to 0, there

exists a sequence {d i} ⊆ Rn converging to d such that x i + t i d
i ∈ F for all i (Clarke, 1998,

Chapter 2, Proposition 5.2).

In order to better understand the above two stationarity concepts in the context of the

piecewise polyhedral structure of the feasible set F and to motivate the algorithm to be pre-

sented afterward for solving the problem (4.14), we first introduce a further stationarity concept,

which we call A-stationarity (A for Algorithm). Specifically, we note that F is the union of
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finitely many polyhedra:

F =
∪

(j1,··· ,jm)

{
x ∈ X | ( b iji )Tx+ βiji ≥ 0, i = 1, . . . ,m

}
,

where the union ranges over all tuples {ji}mi=1 with each ji ∈ {1, · · · , Ji} for all i. Given a

vector x̄ ∈ F , let J (x̄) be the family of such tuples such that ji ∈ Ai(x̄) for all i = 1, · · · ,m.

We say that x̄ ∈ F is A-stationary if there exists a tuple j̄(x̄) = { j̄i }mi=1 ∈ J (x̄) such that

h ′(x̄; d) ≥ 0, ∀ d ∈ T j̄(x̄)
A (x̄;F ) ≜

{
d ∈ TB (x̄;X) | ( bij̄i )Td ≥ 0, ∀ i ∈ I(x̄)

}
.

Lemma 4.4.1. Let x̄ ∈ F be given. Consider the following statements all pertaining to the

problem (4.14):

(a) x̄ is B-stationary;

(b) x̄ is A-stationary;

(c) there exists a tuple j̄(x̄) = { j̄i }mi=1 ∈ J (x̄) such that

x̄ ∈ argmin
x∈X

{
f(x)− [ g(x̄) +∇g(x̄)T (x− x̄) ] | (b i j̄ i)Tx+ β i j̄ i ≥ 0, i ∈ I(x̄)

}
; (4.15)

(d) there exists a tuple j̄(x̄) = { j̄i }mi=1 ∈ J (x̄) such that

x̄ ∈ argmin
x∈X

{
f(x)− [ g(x̄) +∇g(x̄)T (x− x̄) ] | (b i j̄ i)Tx+ β i j̄ i ≥ 0, i = 1, · · · ,m

}
;

(e) x̄ is weak B-stationary.

It holds that (a) ⇒ (b) ⇔ (c) ⇔ (d) ⇒ (e).

Proof. (a) ⇒ (b). This is because T j̄(x̄)
A (x̄;F ) ⊆ TB(x̄;F ).

(b) ⇒ (e). This is because T weak
B (x̄;F ) ⊆ T j̄(x̄)

A (x̄;F ).

(b) ⇔ (c). This is clear because the condition h ′(x̄; d) ≥ 0 for all d ∈ T j̄(x̄)
A (x̄;F ) is exactly

the first-order optimality condition of the convex program in (4.15).
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(c) ⇒ (d). This is clear because there are more constraints in the feasible region of the

optimization problem in (d) than those in (c).

(d) ⇒ (c). Let x ∈ X satisfy (b i j̄ i)Tx+β i j̄ i ≥ 0 for all i ∈ I(x̄). Since (b i j̄ i)Tx+β i j̄ i > 0

for all i ̸∈ I(x̄), it follows that for all τ > 0 sufficiently small, the vector xτ ≜ x + τ(x̄ − x)

satisfies (b i j̄ i)Txτ + β i j̄ i ≥ 0 for all i = 1, · · · ,m. Hence,

f(x̄)− g(x̄) ≤ f(xτ )−
[
g(x̄) +∇g(x̄)T (xτ − x̄)

]
by (d)

≤ τ [ f(x̄)− g(x̄) ] + ( 1− τ )
[
f(x)−

[
g(x̄) +∇g(x̄)T (x− x̄ )

] ]
,

which yields

f(x̄)− g(x̄) ≤ f(x)−
[
g(x̄) +∇g(x̄)T (x− x̄ )

]
,

establishing (c).

In the following, we propose a dc algorithm to compute an A-stationary point of (4.14).

The algorithm takes advantage of the reverse convex constraints of the problem in that once

initiated at a feasible vector x0 ∈ F , the algorithm generates a feasible sequence {xν} ⊂ F ; see

Step 1 below.

A dc algorithm for solving the reverse convex constrained dc program (4.14).

Initialization. Given are a scalar c > 0, an initial point x 0 ∈ F .

Step 1. For each i = 1, · · · ,m, choose an index j νi ∈ A i (x
ν). Let x ν+1 be the unique

optimal solution of the convex program:

minimize
x∈X

ĥ c (x;x
ν) ≜ f(x)− [ g(x ν) + (∇g(x ν))T (x− x ν) ]

+
c

2
∥x− x ν∥2︸ ︷︷ ︸

proximal regularization

subject to (b i j
ν
i )Tx+ β i j ν

i
≥ 0, i = 1, . . . ,m.

(4.16)
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Step 2. If x ν+1 satisfies a prescribed stopping rule, terminate; otherwise, return to Step 1

with ν replaced by ν + 1. □

An enhanced version of the above algorithm that requires solving multiple subproblems for

all indices j νi in a so-called “ε-argmax set” has been suggested in (Pang et al., 2016). For this

enhanced algorithm, it can be shown that every accumulation point, if exists, of the generated

sequence is a B-stationary point. Although there are theoretical benefits of such an algorithm,

it may not be efficient when applied to the empirical CDE problem (4.11), because the number

of reverse convex inequalities in the constraint set is proportional to the number of samples,

making the “ε-argmax set” potentially very large, thus potentially many subprograms need to

be solved at every iteration. There is also a probabilistic variant of the enhanced algorithm that

also solves only one convex subprogram of the same type as (4.16). The only difference from the

presented deterministic algorithm is that the tuple { j̄νi }mi=1 is chosen from the ε-argmax sets

randomly with positive probabilities. Almost sure convergence of the probabilistic algorithm to

a B-stationary point can be established. Since the above (deterministic) algorithm has not been

formally introduced in the literature, we provide below a (subsequential) convergence result to

an A-stationary solution of the problem (4.14).

It is worth mentioning that each xν+1 is feasible to the subprogram (4.16) at iteration ν+1

because

(b i j
ν+1
i )Txν+1 + β i j ν+1

i
= max

1≤j≤Ji
( ( b ij )Txν+1 + β ij ) ≥ (b i j

ν
i )Txν+1 + β i j ν

i
≥ 0.

This inequality also shows that xν+1 ∈ F for all ν. The following theorem asserts the subse-

quential convergence of the sequence generated by the above dc algorithm to an A-stationary

point of problem (4.14).

Theorem 4.4.1. Suppose that h is bounded below on the polyhedral set X. Then any accumula-

tion point x∞ of the sequence {x ν} generated by the dc algorithm, if it exists, is an A-stationary

point of (4.14).
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Proof. The sequence of function values {h(x ν)} decreases since

h(x ν+1) +
c

2
∥x ν+1 − x ν∥2

≤ ĥ c (x
ν+1;x ν) (by the convexity of g)

≤ h(x ν) (by the optimality of x ν+1 and the feasibility of x ν to (4.16)).

Since h is bounded below on X, we may derive that lim
ν→∞

∥x ν+1 − x ν∥ = 0. By the definition

of the point x ν+1, we obtain that for all x ∈ X satisfying (b i j
ν
i )Tx+ β i j ν

i
≥ 0, i = 1, . . . ,m,

f(x ν+1)−
[
g(x ν) +∇g(x ν)T (x ν+1 − x ν)

]
+

c

2
∥x ν+1 − x ν∥2

≤ f(x)−
[
g(x ν) +∇g(x ν)T (x− x ν)

]
+

c

2
∥x− x ν∥2.

(4.17)

Let {x ν+1}ν∈κ be a subsequence of {x ν} that converges to x∞. Then x∞ ∈ F . Since each

A i (x
ν) is finite, we may assume without loss of generality that the selected j νi ∈ A i (x

ν) are

independent of ν for any i = 1, . . . ,m on this subsequence, i.e., there exists j̄ i such that j̄ i = j νi

for all i = 1, . . . ,m and all ν ∈ κ. For all x ∈ X satisfying (b i j̄i)Tx + β i j̄i ≥ 0, the inequality

(4.17) holds. Taking limit of ν(∈ κ) → +∞, we obtain that j̄ i ∈ A i (x
∞) for i = 1, . . . ,m, and

for all x ∈ X satisfying (b i j̄i)Tx+ β i j̄i ≥ 0,

f(x∞)− g(x∞) ≤ f(x)− [ g(x∞) +∇g(x∞)T (x− x∞) ],

which, by Lemma 4.4.1, yields that x∞ is an A-stationary point of the problem (4.14).

Given z̄ ≜ (w̄, β̄, σ̄±) and a positive constant c > 0, the strongly convex objective of the

subproblem of the dc algorithm in Step 1 for solving the problem (4.11) with u, Pa and Pb given
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in (4.12) can be essentially written as

λN
a

p∑
i=1

[
ϕa
i | a i | −

dρai (āi)

dai
( ai − āi )

]
+ λN

β

p∑
i=1

[
ϕβ
i |β i | −

dρβi (β̄i)

dβi
(βi − β̄i )

]
+

1

N

N∑
i=1

Z−
i σ−

i

π(A i |X i)
− 1

|N+|
∑
i∈N+

Z+
i σ+

i

π(A i |X i)
+

c

2
||z − z̄||2+

1

2π(A i |X i)

{
(1− ξ1)

[
max(0, ti) + σ−

i

]2
+ (1 + ξ2)

[
max(0,−ti) + σ−

i

]2 −
2(2− ξ1 + ξ2)σ̄

−
i (σ

−
i − σ̄−

i )− 2 [ (1− ξ1)max(0, t̄i)− (1 + ξ2)max(0,−t̄i) ] (ti − t̄i)

}
,

where z ≜ (w, β, σ±) with β ∈ Rp, w ≜ (a, b) ∈ S, σ− ∈ RN and σ+ ∈ R|N+|. The above

objective function involves the convex, non-differentiable terms |ai|, |βi|,
[
max(0, ti) + σ−

i

]2
,

and
[
max(0,−ti) + σ−

i

]2
; the latter two squared terms also make the objective non-separable

in the w and σ− variables. All these features make the linear inequality constrained subproblem

seemingly complicated. One way to solve this subproblem is via the dual semismooth Newton

approach, as discussed in a recent paper (Cui et al., 2018). In fact, by introducing auxiliary

variables 

t+i = max(ti, 0), t−i = max(−ti, 0),

a+i = max(ai, 0), a−i = max(−ai, 0),

b+i = max(bi, 0), b−i = max(−bi, 0),

we may write

Zi − w T X̂ i = ti = t+i − t−i , |ai| = a+i + a−i , |βi| = β+
i + β−

i .

Therefore, an alternative approach for solving (4.11) is to transform it into a standard quadratic

programming problem with the additional variables (t+i , t
−
i , a

+
i , a

−
i , b

+
i , b

−
i ) such that it can be

solved by many efficient quadratic programming solvers.

In terms of statistical consistency, as long as the tuning parameters λNa and λNβ go to 0

when N goes to infinite, the minimizer of the empirical objective function (4.10) might converge

to the minimizer of the corresponding population problem under some regularity conditions

((Van der Vaart, 2000)). If we allow rates of tunning parameters going to 0 faster than 1√
n
,

then the convergence rate of empirical minimizers may be 1√
n
under some regularity conditions.
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Similar ideas could be borrowed from (Knight et al., 2000), although their considered settings

are different from ours. The convergence results in our settings are more complicated than

those standard cases since the empirical loss function here is non-convex and non-smooth.

4.5 Numerical Experiments

In this section, we demonstrate the effectiveness of the proposed IDR-CDE in finding opti-

mal IDRs via three synthetic examples. The subproblem of the dc algorithm, being equivalent

to a quadratic programming problem, is solved by the commercial solver Gurobi with an aca-

demic license. All the numerical results are run in Matlab on Mac OS X with 2.5 GHz Intel Core

i7 and 16 GB RAM. We use piecewise linear affine function given by (4.5) with ξ1 = 0, ξ2 = 0.5

in all the experiments, which is equivalent to estimating the optimal IDR that maximizes

CVaR0.5(Z). In practice, users can decide their own utility functions and values ξ1, ξ2 based

on the specific problem settings. If one believes there may have high risks for inappropriate

decisions and wants to control the risk of higher-risk individuals, it would be better to use ro-

bust utility functions such as the piecewise affine utility function. We consider a binary-action

space in a randomized study with π(A i = ±1 |Xi) = 0.5. All the tuning parameters such as

λNb and λNβ are selected via 10-fold-cross-validation that maximizes the following average of the

empirical O d
(u,F)(Z), which is defined as

Ô d̂
(u,F)(Z) ≜

∑
i∈N

[ α̂(Xi) + u(Zi − α̂(Xi)) ]
II(Ai = d̂(Xi))

π(Ai|Xi)∑
i∈N

II(Ai = d̂(Xi))

π(Ai|Xi)

.

Specifically, we divide the training data into 10 groups. For each fold, we estimate the optimal

IDR d̂(X) using 9 groups of the data (the training set) for a pre-specified series of tuning

parameters λNb and λNβ and then compute Ô d
(u,F)(Z) on the remaining group of data (the test

set). The best tuning parameters are the ones that lead to the largest values of Ô d̂
(u,F)(Z). The

so-obtained parameters are then employed to re-compute the optimal IDR using the entire set

of data.
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We compare our approach with three existing methods under the expected-value function

framework IE d[Z]. The first one is a model-based method called l1-PLS (Qian and Murphy,

2011) that first fits a penalized least-square regression with covariate function (1, X,A,X ◦A)

on Z to estimate IE[Z|X,A = a], and then select the action with the largest IE [Z |X,A = a ],

where X ◦A denotes the element-wise product. The second one is a classification-based method

called residual weighted learning (RWL) (Zhou et al., 2017) that consists of two steps: (1) fitting

a least-square regression on Zi with covariates X̂i to compute the residual ri for each data point

in order to remove the main effect; (2) applying the support vector machine with truncated

loss to compute the optimal IDR with each data point weighted by ri. The third one is the

direct learning (DLearn) method (Qi and Liu, 2018) that lies between the model-based and

the classification-based method, where the optimal IDR is directly found by weighted penalized

least square regression on ZA with covariates X̂, based on the fact that

IE [Z |X,A = 1 ]− IE [Z |X,A = −1 ] = IE

[
Z A

π(A|X)
|X

]
.

The simulation data are generated by the model

Z = m(X) + h(X)A+ ε,

where m(X) is the main effect, h(X) is the interaction effect with treatment A, and ε is the

random error. We consider the same main effect and interaction effect functions: m(X) =

1 + X1 + X2 and h(X) = 0.5 + X1 − X2 + X3 respectively, but various types of asymmetric

error distributions under three simulation scenarios:

(1) log(ε) follows a normal distribution with mean 0 and standard deviation 2;

(2) the random error ε follows a Weibull distribution with scale parameter 0.5 and shape

parameter 0.3;

(3) log(ε) follows a normal distribution with mean 0 and standard deviation 2|1 +X1 +X2|.

The above scenarios address heavy right tail distributions to test the robustness of different

methods. In particular, the log-normal distribution is frequently used in the finance area,

the Weibull distribution is commonly considered in survival analysis of clinical trials, and the
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third scenario considers a heterogeneous error distribution depending on covariates. In all our

simulation studies, the error distributions are asymmetric.

The training sample size is set to be 100 and 200, and the number of covariates p is fixed

to be 10. Each covariate is generated by uniform distribution on [−1, 1]. In Table 4.1, we

list the average computational time and the iteration numbers of the dc algorithm for solving

the problem (4.11) with λNa = 0.1 and λNβ = 0.1 over 100 simulations. One can see that the

proposed algorithm is very efficient and robust for solving the empirical IDR problem.

n = 100 n = 200

time iteration numbers time iteration numbers

Scenario 1 0.70 18 2.10 20

Scenario 2 0.79 18 2.08 20

Scenario 3 0.68 16 1.88 18

Table 4.1: The average computational times (in seconds) and dc iteration numbers for p = 10.

The comparisons of the four methods for finding optimal IDRs over 100 replications are

based on the following four criteria:

(1) the misclassification error rate on the test data (this is possible since the optimal IDR under

our simulation settings is known, which is sign(0.5 +X1 −X2 +X3));

(2) the empirical average of outcome under the decision rule over test data, which is defined as

ÎE
d
[Z ] =

∑
i∈N1

Zi II(Ai = d̂(Xi))

π(Ai|Xi)∑
i∈N1

II(Ai = d̂(Xi))

π(Ai|Xi)

,

where N1 is the index of test data set. This value evaluates the expected outcome of Z if the

action assignment follows the estimated decision rules d̂(X);

(3) the empirical 50% quantile of ZiII(Ai = d̂(Xi)) on the test data;

(4) the empirical 25% quantiles of ZiII(Ai = d̂(Xi)) on the test data.

The test data in each scenario are independently generated with size 10,000.

Several observations can be drawn from these simulation examples in Tables 4.2 and 4.3.

First of all, our method under the IDR-CDE has the smallest classification error in choosing
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n = 100 n = 200

Misclass. Value Misclass. Value

Scenario 1

DLearn 0.48(0.02) 8.36(0.09) 0.47(0.02) 8.5(0.07)
l1-PLS 0.45(0.01) 8.46(0.06) 0.45(0.01) 8.58(0.09)
RWL 0.42(0.01) 8.53(0.07) 0.42(0.01) 8.59(0.07)
IDR-CDE 0.25(0.01) 8.98(0.07) 0.17(0.01) 9.15(0.08)

Scenario 2

DLearn 0.44(0.02) 5.82(0.06) 0.44(0.02) 5.74(0.06)
l1-PLS 0.42(0.01) 5.89(0.05) 0.4(0.01) 5.86(0.05)
RWL 0.39(0.01) 5.95(0.04) 0.37(0.01) 5.96(0.04)
IDR-CDE 0.21(0.01) 6.36(0.04) 0.15(0.01) 6.41(0.04)

Scenario 3

DLearn 0.5(0.02) 3948.04(659.88) 0.51(0.02) 26588.55(13692.58)
l1-PLS 0.48(0.01) 4758.49(801.06) 0.5(0.01) 26209.19(13702.62)
RWL 0.48(0.01) 4256.27(774.97) 0.47(0.01) 24463.43(13592.7)
IDR-CDE 0.24(0.01) 4113.85(934.74) 0.2(0.01) 25712.22(13473.72)

Table 4.2: Average misclassification rates (standard errors) and average means (standard errors) of
empirical value functions for three simulation scenarios over 100 runs. The best expected value functions
and the minimum misclassification rates are in bold.

correct decisions compared with those under the criterion of expected outcome. Under the

piecewise utility function, we emphasize more on improving subjects with relative low outcome,

in contrast to focusing on average, which may ignore the subjects with higher-risk. As a result,

in addition to misclassification rate, the 50% and 25% quantiles of expected-value functions

are also the largest among all the methods. Secondly, the advantages of our method become

more obvious if comparing the 25% quantiles of the empirical value functions on the test data

with 50% quantiles. For example, in the second scenario, the 25% quantiles of empirical value

functions of our method are almost twice as large as those by DLearn. Another interesting

finding is that in the last scenario, although the average empirical value functions of l1-PLS

and RWL are larger than those of our method, our method is indeed much better based on the

misclassification error and the quantiles. One possible reason is that these methods under the

expected value function framework only correctly identify the decisions for subjects in lower

risk while ignoring subjects with potentially higher risk. The estimated optimal IDRs by those

methods may lead to serious problems, especially in precision medicine when assigning treat-

ments to patients. Although, on average, patients may gain benefits of following those decision

rules, some patients may come across high risk, causing adverse events such as exacerbation in

practice by using the recommended treatment using the standard criterion of expected outcome.
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n = 100 n = 200

50% quantile 25% quantile 50% quantile 25% quantile

Scenario 1

DLearn 2.64(0.04) 1.17(0.04) 2.67(0.04) 1.21(0.05)
l1-PLS 2.73(0.03) 1.26(0.03) 2.74(0.03) 1.25(0.03)
RWL 2.81(0.03) 1.35(0.03) 2.83(0.03) 1.35(0.04)
IDR-CDE 3.17(0.01) 1.81(0.02) 3.26(0.01) 1.99(0.01)

Scenario 2

DLearn 1.96(0.04) 0.69(0.04) 1.97(0.04) 0.7(0.05)
l1-PLS 2.01(0.03) 0.77(0.03) 2.08(0.03) 0.82(0.03)
RWL 2.1(0.03) 0.85(0.03) 2.16(0.03) 0.92(0.03)
IDR-CDE 2.47(0.01) 1.36(0.02) 2.53(0.01) 1.47(0.01)

Scenario 3

DLearn 2.22(0.05) 1.02(0.05) 2.2(0.05) 1.01(0.05)
l1-PLS 2.3(0.03) 1.04(0.03) 2.24(0.03) 0.99(0.03)
RWL 2.29(0.03) 1.07(0.03) 2.31(0.03) 1.09(0.03)
IDR-CDE 2.81(0.01) 1.73(0.01) 2.86(0.01) 1.8(0.02)

Table 4.3: Results of average 25% (standard errors) and 50% (standard errors) quantiles of empirical
value functions for three simulation scenarios over 100 runs. The largest 25% and 50% quantiles are in
bold.

In terms of real data applications, there are several possibilities. For example, we can use

the piecewise linear utility function to control the lower tails of outcomes for individual patient

in AIDS or cancer studies. Another potential application is to use the quadratic utility function

to take variance of each decision rules into consideration. The performance of the results by

our method depends on the choice of the covariate-dependent α(X) and the utility function u.

We leave these as the future work.
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APPENDIX A

SUPPLEMENTARY MATERIAL TO CHAPTER 2

Proof of Lemma 2.2.1 Let g(f) = E[ 1
π(A,x)(KRw − f(x))TΣ(KRw − f(x))]. Taking the

derivative over f and setting it to zero, we get

∂g(f)

∂f
= 2ΣEx{E[(

KRW

π(A,x)
− f(x)

π(A,x)
)|x]}

= 2ΣEx{KE[
RW

π(A,x)
|x]− f(x)|x]} = 0.

Proof of Lemma 2.3.1

Let g(f) = E[ 1
π(A,x)(

K
K−1R − wT f(x))T ( K

K−1R − wT f(x))]. Taking the derivative over f

and setting it to zero, we get

∂g(f)

∂f
= Ex{E[W (

KR

(K − 1)π(A,x)
− W T f(x)

π(A,x)
)|x]}

= Ex{
K

K − 1
E[

RW

π(A,x)
|x]− K

K − 1
f(x)|x]} = 0,

where the second equality holds because E[WWT

π(A,x) |x] =
K
K−1IK−1 by definition. Thus f0(x) is

an optimal solution.

Proof of Lemma 2.3.2

Let g(f) = E[−RwT f
π(A,x) +

log(1+exp(wT f))
π(A,x) ]. Taking the derivative over f and setting it to zero,

we get
∂g(f)

∂f
= 2Ex{E[(

RW

π(A,x)
− W exp(wT f)

1 + exp(wT f))π(A,x)
)|x]}

= 2Ex{
K∑
i=1

wiP[R = 1|x, A = i]−
K∑
i=1

wi
exp(wT

i f)

1 + exp(wT
i f)

}

= 0.

If P[R = 1|x, A = i] =
exp(wT

i f
∗)

1+exp(wT
i f

∗)
, then f∗ is an optimal solution to (2.18).

Proof of Lemma 2.3.3
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Let g(f) = E[
∫ τ
0

logE[ef
TwI(Y≥u)]

π(A,x) − fTw
π(A,x)dN(u)]. Taking the derivative over f and setting

it to zero, we get

∂g(f)

∂f
= Ex{

∫ τ

0

K∑
i=1

wiE[I(Y ≥ u)λi(u,x)|x, A = i]− wi exp(w
T
i f)I(Y (i) ≥ u)E[I(Y ≥ u)λ(u,x)|x]
E[exp(WT f)I(Y ≥ u)]

du}

= Ex{
∫ τ

0

K∑
i=1

wi(E[I(Y ≥ u)λi(u,x)|x, A = i]− exp(wT
i f)Λ

∗(Y (i)))du}

= 0,

where λi(u,x) is the hazard function for the i-th treatment and Λ∗(Y ) is the cumulative hazard

function. Then we get a sufficient condition that if exp(wT
i f)Λ

∗(Y (i)) = P[δ = 1|x, A = i],

then f∗ is an optimal solution. If the censoring time in each treatment group is the same, then

we get (2.25).

Proof of Theorem 2.4.1
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For any ITR d, we have

V (d) = E[

K∑
k=1

E[R|x, A = k]I(d(x) = k)]

= E[
1

1− C(K)
{

K∑
k=1

(1− C(K))E[R|x, A = k]I(d(x) = k)

+

K∑
j=1

C(K)E[R|x, A = j]} − C(K)

1− C(K)

K∑
j=1

E[R|x, A = j]]

= E[
1

1− C(K)
{

K∑
k=1

E[R|x, A = k]I(d(x) = k)

+

K∑
j=1

C(K)E[R|x, A = j]

K∑
i̸=j

I(d(x) = i)}]−∆

= E[
1

1− C(K)
{

K∑
k=1

E[R|x, A = k]I(d(x) = k)

+

K∑
i=1

K∑
j ̸=i

C(K)E[R|x, A = j]I(d(x) = i)}]−∆

= E[
1

1− C(K)
{

K∑
k=1

(E[R|x, A = k]

+

K∑
j ̸=k

C(K)E[R|x, A = k])I(d(x) = k)}]−∆

= E[
1

1− C(K)
{

K∑
k=1

wT
k E[

RW

π(A,x)
|x]I(d(x) = k)}]−∆

= E[
1

1− C(K)
{

K∑
k=1

wT
k f0(x)I(d(x) = k)}]−∆,

(A.1)

where ∆ = E[C(K)
∑K

j=1E[R|x, A = j]] that does not depend on the ITR d. Then we can

obtain the value reduction bound between the optimal ITR d0 and our estimated ITR d̂ by
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using (A.1):

V (d0)− V (d̂)

≤ 1

1− C(K)
E[{

K∑
k=1

wT
k f0(x)(I(d(x) = k)− I(d̂(x) = k)}]

≤ 1

1− C(K)
E[{

∑
i ̸=j

|wT
i f0(x)− wTj f0(x)|I(d(x) = i, d̂(x) = j)}]

≤ 1

1− C(K)
E[{

∑
i ̸=j

|wT
i f0(x)− wTj f0(x)|I(wT

i f0(x)− wTj f0(x))(w
T
i f̂(x)− wTj f̂(x) < 0)}]

≤ 1

1− C(K)
E[{

∑
i ̸=j

|wT
i (f0(x)− f̂(x))− wTj (f0(x)− f̂(x))|

I(wT
i (f0(x)− f̂(x))wTj (f0(x)− f̂(x)) < 0)}]

≤ 1

1− C(K)

∑
i ̸=j

(E||f0(x)− f̂(x)||2 +E||f0(x)− f̂(x)||2)

≤2K(K − 1)

1− C(K)
(E||f0(x)− f̂(x)||22)

1
2 ,

(A.2)

where the second to last inequaltiy holds by using the Hölder and Minkowski inquality together

with ||wi|| = 1 for i = 1, · · · ,K. Furthermore, if we assume Assumption 1 holds, then we can

further bound the value reduction by

V (d0)− V (d̂)

≤ 1

1− C(K)
E[{

∑
i ̸=j

|wT
i f0(x)− wTj f0(x)|I(wT

i f0(x)− wTj f0(x)(w
T
i f̂(x)− wTj f̂(x) < 0)}]

≤ 1

1− C(K)
E[{

∑
i ̸=j

ϵI(|(wi − wj)
T f0(x)| < ϵ)I((wi − wj)

T f0(x))((wi − wj)
T f̂(x)) < 0)}]

+
1

1− C(K)ϵ
E[{

∑
i ̸=j

(wT
i f0(x)− wTj f0(x))

2I((wi − wj)
T f0(x))((wi − wj)

T f̂(x)) < 0)}]

≤ 1

1− C(K)

∑
i ̸=j

ϵP[|(wi − wj)
T f0(x)| < ϵ] +

2

ϵ
(E||f0(x)− f̂(x)||22 +E||f0(x)− f̂(x)||22)

≤ 1

1− C(K)

∑
i ̸=j

Cϵα+1 +
4

ϵ
E||f0(x)− f̂(x)||22),

(A.3)
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for any ϵ > 0. We can then minimize right hand side above over ϵ and get the desired bound

V (d0)− V (d̂n) ≤ C1(K,α)(E||f0 − f̂n||22)
1+α
2+α .

Proof of Theorem 2.4.2

Define βj = (βkj , k = 1, · · · , (K − 1))T , and let λ = σ
√

(log p)1+δ

n(K−1) . With probability at least

1− (2e log p−e)c
(log p)1+δ , we have the following inequality

1

n(K − 1)
||Z(β̂ − β0)||2 + λ||β̂ − β||2,1 ≤

≤ 1

n(K − 1)
||Z(β − β0)||2 + 4λ

∑
j∈S(β)

||β̂j − βj ||,
(A.4)

for any β. This was previously shown in Theorem 5.2 by (Lounici et al., 2009). Let β = β0.

Then with probability at least 1− (2e log p−e)c
(log p)1+δ , we have

1

n(K − 1)
||Z(β̂ − β0)||2 ≤ 4λ

∑
j∈S(β)

||β̂j − βj ||

≤ 4λ
√
s||(β̂ − β)S ||

and

||β̂ − β||2,1 ≤ 4||(β̂ − β)S ||,

which implies ||β̂ − β||Sc ≤ 3||(β̂ − β)S ||. Then by the RE(s) assumption, with probability at

least 1− (2e log p−e)c
(log p)1+δ , we have

1

n(K − 1)
||Z(β̂ − β0)||2 ≤ 4λ

√
s||(β̂ − β)S ||

≤ 4λ
√
s
||Z(β̂ − β0)||

ρ(s)
√
n

,

such that we can bound the empirical error by

1

n
||Z(β̂ − β0)||2 ≤

16(K − 1)

ρ(s)
σ2s

(log p)1+δ

n
.

105



With the RE(2s) assumption, we can further show that with the same probability

1√
K − 1

||β̂ − β0|| ≤
4
√
10

ρ2(2s)
σ

√
s(log p)1+δ

n
.

Combining with Theorem 2.4.1, we get the value reduction bound

V (d0)− V (d̂n) ≤
√
K − 1K(K − 1)

1− C(K)

4
√
10c

ρ2(2s)
σ

√
s(log p)1+δ

n
.

Together with our margin condition, we can directly get the corresponding improved bound

(2.31). Additional Simulation Studies In this section, we include additional simulation

results to further demonstrate the performance of our methods. Continuous Outcome

Studies When the clinical outcome R is continuous, we report the simulation results with

n = 400, 800, p = 20 and n = 200, p = 20, 40 for the three continuous simulation scenarios in

the main paper.
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Table A.1: Results of average means (standard deviations) of empirical value functions and misclas-
sification rates for four continuous-outcome simulations scenarios with 20 covariates. The best value
functions and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

Pair-D 2.79(0.04) 0.45(0.02) 3.04(0.02) 0.29(0.02)

l1-PLS 3.12(0.01) 0.21(0.01) 3.16(0.01) 0.14(0.01)

DL 2.67(0.03) 0.51(0.01) 2.78(0.02) 0.47(0.01)

ACWL-1 2.77(0.03) 0.43(0.01) 2.91(0.02) 0.37(0.01)

ACWL-2 2.91(0.02) 0.37(0.01) 3.04(0.01) 0.3(0.01)

VT 2.75(0.02) 0.48(0.01) 2.85(0.01) 0.43(0.01)

Group-AD 3.11(0.03) 0.21(0.02) 3.14(0.03) 0.16(0.02)

Scenario 2

Pair-D 2.82(0.11) 0.33(0.03) 2.92(0.1) 0.3(0.03)

l1-PLS 2.93(0.11) 0.36(0.04) 2.99(0.1) 0.32(0.03)

DL 2.88(0.11) 0.34(0.04) 2.98(0.12) 0.28(0.04)

ACWL-1 2.78(0.11) 0.38(0.02) 2.96(0.1) 0.31(0.02)

ACWL-2 2.86(0.10) 0.37(0.02) 3.04(0.1) 0.28(0.03)

VT 3.04(0.09) 0.30(0.02) 3.09(0.1) 0.28(0.03)

Group-AD 2.91(0.1) 0.32(0.03) 2.9(0.11) 0.31(0.03)

Scenario 3

Pair-D 1.2(0.04) 0.75(0.03) 1.21(0.04) 0.75(0.03)

l1-PLS 1.51(0.19) 0.54(0.15) 1.64(0.2) 0.41(0.18)

DL 1.43(0.1) 0.61(0.06) 1.52(0.07) 0.55(0.06)

ACWL-1 1.43(0.07) 0.61(0.05) 1.49(0.07) 0.56(0.05)

ACWL-2 1.47(0.07) 0.58(0.05) 1.63(0.06) 0.45(0.05)

VT 1.42(0.05) 0.62(0.03) 1.48(0.04) 0.57(0.03)

Group-D 1.65(0.11) 0.43(0.09) 1.77(0.04) 0.29(0.05)
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Table A.2: Results of average means (std) of empirical value functions and misclassification rates for
four continuous-outcome simulation scenarios with n = 200. The best value functions and misclassifica-
tion rates are in bold.

p = 20 p = 40

Value Misclassification Value Misclassification

Scenario 1

Pair-D 2.54(0.06) 0.56(0.02) 2.36(0.05) 0.63(0.02)

l1-PLS 3.04(0.02) 0.29(0.01) 2.94(0.03) 0.36(0.02)

DL 2.51(0.04) 0.58(0.02) 2.46(0.04) 0.6(0.01)

ACWL-1 2.64(0.04) 0.5(0.02) 2.28(0.05) 0.65(0.02)

ACWL-2 2.7(0.03) 0.48(0.01) 2.3(0.05) 0.64(0.02)

VT 2.64(0.03) 0.53(0.01) 2.57(0.03) 0.55(0.01)

Group-AD 3.05(0.03) 0.28(0.02) 3.02(0.03) 0.31(0.02)

Scenario 2

Pair-D 2.71(0.13) 0.37(0.04) 2.73(0.14) 0.36(0.05)

l1-PLS 2.81(0.12) 0.41(0.04) 2.83(0.12) 0.41(0.05)

DL 2.72(0.12) 0.39(0.04) 2.71(0.13) 0.4(0.04)

ACWL-1 2.57(0.12) 0.43(0.03) 2.05(0.13) 0.57(0.03)

ACWL-2 2.63(0.12) 0.43(0.03) 2.1(0.13) 0.57(0.03)

VT 2.97(0.1) 0.33(0.02) 3.01(0.09) 0.33(0.02)

Group-AD 2.86(0.11) 0.34(0.03) 2.9(0.11) 0.34(0.02)

Scenario 3

Pair-D 1.2(0.03) 0.75(0.03) 1.2(0.03) 0.75(0.03)

l1-PLS 1.37(0.15) 0.65(0.1) 1.31(0.11) 0.69(0.08)

DL 1.34(0.09) 0.67(0.06) 1.29(0.09) 0.7(0.05)

ACWL-1 1.27(0.08) 0.71(0.05) 1.2(0.04) 0.74(0.02)

ACWL-2 1.27(0.08) 0.71(0.05) 1.2(0.05) 0.75(0.03)

VT 1.35(0.07) 0.66(0.04) 1.33(0.06) 0.68(0.04)

Group-D 1.38(0.16) 0.64(0.11) 1.31(0.13) 0.68(0.09)

Binary Outcome Studies For the binary outcome R, we report the simulation results with

n = 400, 800, p = 20 and n = 200, p = 20, 40 in addition to the results in the main paper.
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Table A.3: Results of average means (standard deviations) of empirical value functions and misclassi-
fication rates for two binary-outcome simulation scenarios with 20 covariates. The best value functions
and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

l1-PLR 0.89(0.01) 0.53(0.03) 0.92(0) 0.4(0.02)

DL 0.86(0.01) 0.64(0.02) 0.88(0.01) 0.58(0.02)

VT 0.85(0.01) 0.66(0.02) 0.85(0) 0.67(0.02)

Binary-AD 0.91(0.01) 0.41(0.03) 0.92(0) 0.31(0.03)

Scenario 2

l1-PLR 0.84(0.01) 0.63(0.02) 0.87(0) 0.56(0.03)

DL 0.82(0.01) 0.53(0.04) 0.85(0.01) 0.45(0.04)

VT 0.84(0.01) 0.42(0.05) 0.83(0.01) 0.5(0.05)

Binary-AD 0.86(0.01) 0.44(0.03) 0.87(0.01) 0.42(0.02)

Table A.4: Results of average means (standard deviation) of empirical value functions and misclassi-
fication rates for two binary-outcome simulation scenarios with n = 200. The best value functions and
misclassification rates are in bold.

p = 20 p = 40

Value Misclassification Value Misclassification

Scenario 1

l1-PLR 0.86(0.01) 0.62(0.02) 0.85(0.01) 0.66(0.02)

DL 0.85(0.01) 0.68(0.01) 0.84(0.01) 0.7(0.01)

VT 0.84(0.01) 0.66(0.01) 0.83(0.01) 0.68(0.01)

Binary-AD 0.88(0.01) 0.54(0.02) 0.87(0.01) 0.57(0.02)

Scenario 2

l1-PLR 0.81(0.01) 0.68(0.05) 0.79(0.01) 0.7(0.05)

DL 0.78(0.01) 0.59(0.01) 0.76(0.01) 0.61(0.01)

VT 0.84(0.01) 0.38(0.01) 0.83(0.01) 0.36(0.01)

Binary-AD 0.83(0.01) 0.49(0.04) 0.82(0.01) 0.52(0.04)
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Survival Outcome Studies For the survival outcome R, we report the simulation results

with n = 400, 800, p = 20 and n = 200, p = 20, 40 in addition to the results in the main paper.

Table A.5: Results of average means (standard deviations) of empirical value functions and misclassi-
fication rates for two survival-outcome simulation scenarios with 20 covariates. The best value functions
and misclassification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

l1-CPH 43.18(2.02) 0.26(0.04) 45.70(1.02) 0.17(0.01)

Surv-AD 44.32(1.27) 0.23(0.02) 45.81(1.06) 0.17(0.01)

Scenario 2

l1-CPH 22.48(0.69) 0.53(0.04) 23.52(0.57) 0.47(0.04)

Surv-AD 22.28(0.61) 0.45(0.02) 22.77(0.49) 0.43(0.02)

Table A.6: Results of average means (standard deviation) of empirical value functions and misclassifi-
cation rates for two survival-outcome simulation scenarios with n = 200. The best value functions and
misclassification rates are in bold.

p = 20 p = 40

Value Misclassification Value Misclassification

Scenario 1

l1-CPH 36.27(3.25) 0.44(0.06) 32.19(3.47) 0.52(0.06)

Surv-AD 40.41(1.85) 0.35(0.03) 39.46(2.03) 0.38(0.03)

Scenario 2

l1-CPH 20.98(0.92) 0.6(0.03) 19.82(1.08) 0.63(0.03)

Surv-AD 21.14(0.95) 0.49(0.04) 20.63(0.95) 0.51(0.04)

Low Rank Simulation Studies When the clinical outcome R is continuous, we generate our

data from the following model with

Ri = µ(xi) +

K∑
k=1

(xTi βk)I(A = k) + ϵi,

110



where i = 1, · · · , n, each covariate is generated by the uniform distribution from −1 to 1, and

ϵi follows from the standard normal distribution. Let the coefficient matrix Γ = (β1, · · · , βk).

We consider the following two simulation scenarios:

1. µ(x) = 1+X1+X2 and the coefficient matrix Γ = UVT , where U ∈ Rp×2 and V ∈ Rp×2.

Each element of U and V is generated by the uniform distribution from −1 to 1;

2. µ(x) = 1 +X2
1 +X2

2 and the coefficient matrix Γ is the same as Scenario 1.

The difference in these two scenarios lies in the linear and nonlinear main effect functions. For

each simulation scenario, we compare the following methods:

(1) l1-PLS proposed by (Qian and Murphy, 2011) with basis (1,x,xA);

(2) Pairwise D-learning;

(3) AD-learning with the group sparsity penalty;

(4) AD-learning with the nuclear norm penalty.

All the tuning parameters are selected via 10-fold cross-validation. We report the value functions

and misclassification errors for both p = 20 and p = 40 on 10000 independently generated test

data in the following tables. We can see that our AD-learning has some advantages over l1-PLS

and pairwise D-learning.
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Table A.7: Results of average means (std) of empirical value functions and misclassification rates
for four continuous-outcome simulation scenarios with 20 covariates. The best value functions and
misclassification rates are in bold.

n = 800 n = 1600

Value Misclassification Value Misclassification

Scenario 1

l1-PLS 1.64(0.41) 0.52(0.29) 1.7(0.38) 0.47(0.27)

Pair-D 2(0.05) 0.32(0.06) 2.06(0.04) 0.25(0.05)

Group-AD 1.97(0.06) 0.35(0.07) 2.05(0.04) 0.26(0.05)

Low rank-AD 2.05(0.04) 0.22(0.05) 2.09(0.04) 0.17(0.03)

Scenario 2

l1-PLS 2.37(0.36) 0.47(0.24) 2.52(0.35) 0.35(0.23)

Pair-D 2.6(0.1) 0.38(0.1) 2.69(0.06) 0.29(0.08)

Group-AD 2.6(0.07) 0.38(0.07) 2.68(0.05) 0.3(0.06)

Low rank-AD 2.7(0.06) 0.24(0.06) 2.75(0.04) 0.19(0.03)
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Table A.8: Results of average means (std) of empirical value functions and misclassification rates
for four continuous-outcome simulation scenarios with 40 covariates. The best value functions and
misclassification rates are in bold.

n = 800 n = 1600

Value Misclassification Value Misclassification

Scenario 1

l1-PLS 1.64(0.41) 0.52(0.29) 1.7(0.38) 0.47(0.27)

Pair-D 2(0.05) 0.32(0.06) 2.06(0.04) 0.25(0.05)

Group-AD 1.97(0.06) 0.35(0.07) 2.05(0.04) 0.26(0.05)

Low rank-AD 2.05(0.04) 0.22(0.05) 2.09(0.04) 0.17(0.03)

Scenario 2

l1-PLS 2.37(0.36) 0.47(0.24) 2.52(0.35) 0.35(0.23)

Pair-D 2.6(0.1) 0.38(0.1) 2.69(0.06) 0.29(0.08)

Group-AD 2.6(0.07) 0.38(0.07) 2.68(0.05) 0.3(0.06)

Low rank-AD 2.7(0.06) 0.24(0.06) 2.75(0.04) 0.19(0.03)

Further Comparison with l1-PLS In this section, we compare our proposed AD-learning

with l1-PLS when the main effect functions µ(x) = 1+X2
1+X2

2 in the first scenario of continuous

outcome settings with the non-zero coefficients are generated by uniform distribution from −1

to 1. Table A.9 demonstrates the advantage of our proposed method over l1-PLS by avoiding

modeling main effect functions.

Table A.9: Results of average means (std) of empirical value functions and misclassification rates for
two simulation scenarios with 20 covariates. The best value functions and misclassification rates are in
bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

l1-PLS 1.64(0.41) 0.52(0.29) 1.7(0.38) 0.47(0.27)

Group-AD 1.97(0.06) 0.35(0.07) 2.05(0.04) 0.26(0.05)
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Comparison between Group l1-PLS and l1-PLS

In this section, we compare the performance of group l1-PLS and l1-PLS using the first

simulation scenario of the continuous outcome study. Table A.10 demonstrates the performance

of l1-PLS in our simulation scenarios is similar to group l1-PLS.

Table A.10: Results of average means (std) of empirical value functions and misclassification rates for
one continuous-outcome simulation scenarios with 20 covariates. The best value functions and misclas-
sification rates are in bold.

n = 400 n = 800

Value Misclassification Value Misclassification

Scenario 1

Group l1-PLS 3.12(0.07) 0.21(0.05) 3.16(0.04) 0.14(0.03)

l1-PLS 3.12(0.06) 0.2(0.05) 3.17 (0.04) 0.14(0.03)
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APPENDIX B

SUPPLEMENTARY MATERIAL TO CHAPTER 3

Additional Proof This supplementary material collects the required concepts for the proof

of Theorem 3.2.1 and 3.2.2 in Section 3.2, and all the technical proof in Sections 3.3 and 3.4 of

Chapter 3.

Decomposable Space and Normal Integrand Related to Theorem 3.2.1

In order to exchange the supreme operator over α(X) and the expectation with

respect to E d, we need to first introduce the concept of a decomposable space and the

normal integrand.

Definition B.1. (Rockafellar and Wets, 2009, Definitions 14.59). A space L of Borel B-

measurable functions is decomposable relative to an underlying measure space (Ω,B, µ) if

for every function y0 ∈ L, every set A ∈ B with µ(A) <∞ and any bounded, measurable

function y1, the function y2(t) = y0(t)I(t ̸∈ G) + y1(t)I(t ∈ G) belongs to L.

Definition B.2. (Rockafellar and Wets, 2009, Definitions 14.27). An extended-value

function f : Ω0 × R → (−∞,∞] is a normal integrand if its epigraphical mapping

ω → epi f(ω, ·) is closed-valued and measurable. □

We will employ the following simplified version of (Rockafellar and Wets, 2009, The-

orem 14.60) that provides the required conditions for the exchange of the supremum and

expectation in our context.

Theorem B.0.1. Let (Ω, B, µ) be a probability measure space, and L be a decomposable

space of B-measurable functions. Let f : Ω × R → (−∞,∞] be a normal integrand; let

the integral functional If (x) =
∫
Ω
f(x(ω), ω)dµ(ω) be defined on L. The following two

statements hold:

(a) inf
x∈L

∫
Ω

f(x(ω), ω)dµ(ω) =

∫
Ω

inf
s∈R

f(s, ω)dµ(ω) as long as If (x) is finite; and

(b) x0 ∈ argmin
x∈M

If (x) ⇐⇒ x0(ω) ∈ argmin
s∈R

f(s, ω) almost surely. □

Proof of Theorem 3.2.1
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Note that L1(X ,Ξ, Px) is a decomposable space by checking the definition. It is

enough to justify −E
[
α(x)− 1

γ
(α(x)−R)+

∣∣∣x, A = d(x)] is a normal integrand. Since

this term is measurable with respect to x and continuous in α(X), it is a normal integrand

((Rockafellar and Wets, 2009, Example 14.29)).

Proof of Proposition 3.2.3

We first show the duality representation of M1(d). Rewrite M1(d) in the definition

of (3.7) as

M1(d) = Ed[((1− τ)R +
τ

γ
RI(R ≤ Qγ(P

d)))]

:= ρd(R)

to connect with the bounded random variable R ∈ L∞(T ,F1, P
d). Then ρd(R) has the

following important properties:

(A1) Monotonicity. If R1(ω) ≥ R2(ω) for ω ∈ T , where R1, R2 ∈ L∞(T ,F1, P
d), then

ρd(R1) ≥ ρd(R2);

(A2) Concavity. For λ ∈ [0, 1] and R1, R2 ∈ L∞(T ,F1, P
d), one can have

λρd(R1) + (1− λ)ρd(R2) ≤ ρd(λR1 + (1− λ)R2);

(A3) Translation invariance. For any constant c ∈ R and R ∈ L∞(T ,F1, P
d), one can

have ρd(R + c) = ρd(R) + c;

(A4) Positive homogeneity. For any constant c′ > 0 and R ∈ L∞(T ,F1, P
d), one can

have ρd(c′R) = c′ρd(R),

which one can check directly. For any R ∈ L∞(T ,F1, P
d), ρd(R) is bounded. Combining

with properties (A1) and (A2), one can show ρd(•) is continuous in the interior domain

of the corresponding L∞(T ,F1, P
d) with the essential norm (Ruszczyński and Shapiro,

2006b, Proposition 3.1). This ensures Fenchel-Moreau Theorem to hold ((Rockafellar,

1974)). Since (A1)-(A4) hold, Theorem 2.2 in (Ruszczyński and Shapiro, 2006b) gives
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that

ρd(R) = inf
µ∈Pd

Eµ[R], (B.1)

where Pd is a subset of all probability measures on the measurable space (T ,F1) such

that any probability measure µ ∈ Pd is absolutely continuous with respect to P d and

dµ
dP d ∈ L1(T ,F1, P

d), and that

Pd = {µ |Eµ[R] ≤ ρd(R), ∀R ∈ L∞(T ,F1, P
d)}. (B.2)

Next we simplify Pd. For any F ∈ F1 such that P d(F ) = 0, denote R = IF (•), i.e., 0-1

indicator of a set F , then ρd(R) = 0, which implies Eµ[R] = 0, i.e., µ(F ) = 0 for µ ∈ Pd.

This also indicates that µ is absolutely continuous with respect with P d for µ ∈ Pd.

Consider the Radon-Nikodym derivative W = dµ
dP d with W ∈ L1(T ,F1, P

d). Note that

Eµ[R] = Ed[RW ] and we can have

Eµ[R] ≤ ρd(R)

⇒ Ed[R(W − (1− τ))] ≤ τ

γ
Ed[RI(R ≤ Qγ(P

d))]

⇒ Ed[(R−Qγ(P
d))(W − (1− τ))] ≤ τ

γ
Ed[(R−Qγ(P

d))I(R ≤ Qγ(P
d))]

⇒
∫
T
(R(ω)−Qγ(P

d))(W (ω)− (1− τ))P d(dω)

≤ τ

γ

∫
T
(R(ω)−Qγ(P

d))I(R(ω) ≤ Qγ(P
d))P d(dω),

for all R ∈ L∞(T ,F1, P
d). Split R(ω) into three sets: I(R(ω) < Qγ(P

d)), I(R(ω) =

Qγ(P
d)) and I(R(ω) > Qγ(P

d)). In order to make the last inequality hold for all R ∈

L∞(T ,F1, P
d), if R(ω) < Qγ(P

d), then W (ω)− (1− τ) ≤ τ
γ
, i.e., W (ω) ≥ ε2. Similarly,

when R(ω) > Qγ(P
d), the right hand-side of the last inequality is 0 and thus W (ω) −

(1 − τ) ≥ 0, i.e., W (ω) ≤ ε1. For R(ω) = Qγ(P
d), W (ω) must lie between ε1 and ε2 to
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make Ed[W ] = 1. Thus, define

Wd
1 := {W ∈ L1(T ,F1, P

d) |Ed[W ] = 1, ε1 ≤ W (ω) ≤ ε2, for almost sure ω1 ∈ T },

(B.3)

and

ρd(R) = inf
W∈W d

1

E[WR]. (B.4)

Next, we discuss the derivation of the duality representation of M2(d), which is an ex-

tension of M1(d). Based on Theorem 3.2.1, we first rewrite M2(d) as

M2(d) = (1− τ)E[E[R|x, A = d(x)]] + τE[E[RI(R ≤ Qγ(R|x, A = d(x)))|x, A = d(x)]]

= E[E[(1− τ)R + τRI(R ≤ Qγ(R|x, A = d(x)))|x, A = d(x)]]

= E[ρd(R|x, A = d(x))],

where ρd(R|x, A = d(x)) := E[(1 − τ)R + τRI(R ≤ Qγ(R|x, A = d(x)))|x, A = d(x)].

Consider the space L∞(T ,F2, P
d), where F2 is induced by x. Clearly F2 ⊆ F1 and

L∞(T ,F2, P
d) ⊆ L∞(T ,F1, P

d). The mapping ρd(•|x, A = d(x)) is defined from

L∞(T ,F1, P
d) into L∞(T ,F2, P

d). Such a mapping ρd(•|x, A = d(x)) has properties

(A1), (A2) and A(4). Property (A3) can be further strengthened to

(A3′) Translation invariance. If R1 ∈ L∞(T ,F1, P
d) and R2 ∈ L∞(T ,F2, P

d), then

ρd(R1 +R2|x, A = d(x)) = ρd(R1|x, A = d(x)) +R2.

It can be checked that ρdω(•|x, A = d(x)) satisfies Properties (A1), (A2), (A3′) and

(A4). For any ω ∈ T , define a real valued function ρd(•|x, A = d(x))(ω) as ρdω(•|x, A =

d(x)), which maps from L∞(T ,F1, P
d) into R. As a function of ω, ρdω(•|x, A = d(x))

is measurable with respect to F2. Similar to the proof related to M1(d), define Pd
ω be a

family of conditional probability measures with respect to elements in P such that any

conditional probability measure µω ∈ Pd
ω is absolutely continuous with respect to P d

ω ,

where µω(•) = [P (•|F2)](ω), P
d
ω is conditional probability measure with respect to P d.

Denote the conditional densityWω = dµω
dP d

ω
∈ L1(T ,F1, P

d). Proposition 3.1 and Theorem
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4.1 in (Ruszczyński and Shapiro, 2006a) give that

ρdω(R|x, A = d(x)) = inf
µdω∈Pd

ω

Eµdω
[R]. (B.5)

By the similar argument in the proof of M1(d), this term can be further expressed as,

ρdω(R|x, A = d(x)) = inf
W∈Wd

2

E[RW |x, A = d(x)](ω), (B.6)

where

Wd
2 = {W ∈ L1(T ,F1, P

d) | ε1 ≤ W (ω1) ≤ ε2

for almost sure ω1 ∈ T , E[W |x, A = d(x)] = 1}.
(B.7)

See Example 6.2 in (Ruszczyński and Shapiro, 2006a). Therefore we can have

ρd(R) = E

[
inf

W∈Wd
2

E[RW |x, A = d(x)]

]
. (B.8)

Furthermore, Proposition 5.1 in (Ruszczyński and Shapiro, 2006a) shows that interchange

between infimum and expectation holds. This gives us that

ρd(R) = inf
W∈Wd

2

Ed[WR]. (B.9)

Proof of Theorem 3.4.1

For any measurable function α, by noting that T (u) + T (−u) = 2, ∀u, then we can

write MT (f, α) as

MT (f, α) = Ex[T (f(x))E[α(x)− 1

γ
(α(x)−R)+|x, A = 1]

+ T (−f(x))E[α(x)− 1

γ
(α(x)−R)+|x, A = −1]]

= Ex[T (f(x))(E[α(x)− 1

γ
(α(x)−R)+|x, A = 1]−E[α(x)− 1

γ
(α(x)−R)+|x, A = −1])]

+ 2Ex[E[α(x)− 1

γ
(α(x)−R)+|x, A = −1]].
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Define

∆ = E[α(x)− 1

γ
(α(x)−R)+|x, A = 1]− E[α(x)− 1

γ
(α(x)−R)+|x, A = −1]

If ∆ > 0 for a given α, in order to maximize MT (f, α), we need T (f(x)) = 2, that is

f(x) ≥ δ. Similarly, if ∆ < 0, we need f(x) ≤ −δ to maximize MT (f, α). Hence, we can

get |f ∗
T (x)| ≥ δ for any x ∈ X , or equivalently,

max
α∈L1(x,Ξ,Px),

||f ||∞≥δ

MT (f, α) = max
f, α∈L1(x,Ξ,Px)

MT (f, α).

By the concavity of − 1
γ
(α(x)−R)+, let α1, α2 satisfy

1 ∈ E[∂
1

γ
(α1(x)−R)+|x, A = 1],

and

1 ∈ E[∂
1

γ
(α2(x)−R)+|x, A = −1],

respectively. Then we can have

∆∗ = ∆1 −∆2

:= E[α1(x)− (α1(x)−R)+|x, A = 1]− E[α2(x)− (α(x)2 −R)+|x, A = −1]

= CVaRγ(R|X,A = 1)− CVaRγ(R|X,A = −1).

Furthermore, we have the following inequality

max
α∈F,||f ||∞≥δ

MT (f, α) ≤ 2Ex[max
α∈F

{E[α(x)− 1

γ
(α(x)−R)+|x, A = 1],

E[α(x)− 1

γ
(α(x)−R)+|x, A = −1]}]

≤ 2Ex[max {CVaRγ(R|X,A = 1),CVaRγ(R|X,A = −1)}]

= 2Ex[I(∆∗ > 0)∆1 + I(∆∗ < 0)∆2]

= MT (sign(∆
∗), I(∆∗ > 0)α1(x) + I(∆∗ < 0)α2(x))
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Thus, sign(f ∗
T ) = sign(∆∗) and α∗

T = I(∆∗ > 0)α1(x) + I(∆∗ < 0)α2(x). According to

Theorem 2.1 and Proposition 2.3 in the main text, we have

d∗(x) = sign(∆∗), (B.10)

and

α∗(x) = I(∆∗ > 0)α1(x) + I(∆∗ < 0)α2(x). (B.11)

This yields the desired result.

Proof of Theorem 3.4.2

Given x ∈ X , we first define

A1 := E[α(x)− 1

γ
(α(x)−R)+|x, A = 1],

and

A2 := E[α(x)− 1

γ
(α(x)−R)+|x, A = −1].

Then for any measurable functions f, α, we have

E[
S(Af∗

T (x))

π(A|x)
(α∗

T (x)−
1

γ
(α∗

T (x)−R)+)|x]−E[
S(Af(x))

π(A|x)
(α(x)− 1

γ
(α(x)−R)+)|x]

=S(f∗
T (x))CVaRγ(R|X,A = 1) + S(−f∗

T (x))CVaRγ(R|X,A = −1)

−(S(f(x))E[α(x)− 1

γ
(α(x)−R)+|x, A = 1]

+S(−f(x))E[α(x)− 1

γ
(α(x)−R)+|x, A = −1])

=S(f∗
T (x))∆1 + S(−f∗

T (x))∆2 − S(f(x))A1 − S(−f(x))A2.

Similarly,

E[
I(d∗(x) = A)

π(A|x)
(α∗(x)− 1

γ
(α∗(x)−R)+)|x]−E[

I(sign(f(x)) = A)

π(A|x)
(α(x)− 1

γ
(α(x)−R)+)|x]

=I(d∗(x) = 1)CVaRγ(R|X,A = 1) + I(d∗(x) = −1)CVaRγ(R|X,A = −1)

−(I(sign(f(x)) = 1)E[α(x)− 1

γ
(α(x)−R)+|x, A = 1]

+I(sign(f(x)) = −1)E[α(x)− 1

γ
(α(x)−R)+|x, A = −1])

=I(d∗(x) = 1)∆1 + I(d∗(x) = −1)∆2 − I(sign(f(x)) = 1)A1 − I(sign(f(x)) = −1)A2
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When ∆1 ≥ ∆2, we have f ∗
T ≥ δ and d∗(x) = 1, then we have

S(f ∗
T (x))∆1 + S(−f ∗

T (x))∆2 − S(f(x))A1 − S(−f(x))A2

=2∆1 − S(f(x))A1 − S(−f(x))A2

=2(∆1 − A1) + S(−f(x))(A1 − A2),

and

I(d∗(x) = 1)∆1 + I(d∗(x) = −1)∆2 − I(sign(f(x)) = 1)A1 − I(sign(f(x)) = −1)A2

=∆1 − I(sign(f(x)) = 1)A1 − I(sign(f(x)) = −1)A2

=(∆1 − A1) + I(sign(f(x)) = −1)(A1 − A2).

Note that, for any measurable function f , 0 ≤ T (−f(x)) − I(sign(f(x)) = −1) ≤ 1.

Thus, we have

2(∆1 − A1) + S(−f(x))(A1 − A2)− {(∆1 − A1) + I(sign(f(x)) = −1)(A1 − A2)}

=(∆1 − A1) + (S(−f(x))− I(sign(f(x)) = −1))(A1 − A2)

≥min{∆1 − A1 + 0,∆1 − A1 + A1 − A2} ≥ min{∆1 − A1,∆1 − A2}

≥0,

where the last inequality holds because ∆1 ≥ A1 and ∆1 ≥ ∆2 ≥ A2.

When ∆1 < ∆2, we have f ∗
T ≤ −δ and d∗(x) = −1, then we have

S(f ∗
T (x))∆1 + S(−f ∗

T (x))∆2 − S(f(x))A1 − S(−f(x))A2

=2∆2 − S(f(x))A1 − S(−f(x))A2

=2(∆2 − A2) + S(f(x))(A2 − A1),
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and

I(d∗(x) = 1)∆1 + I(d∗(x) = −1)∆2 − I(sign(f(x)) = 1)A1 − I(sign(f(x)) = −1)A2

=∆2 − I(sign(f(x)) = 1)A1 − I(sign(f(x)) = −1)A2

=(∆2 − A2) + I(sign(f(x)) = 1)(A2 − A2).

Note that, for any measurable function f , 0 ≤ S(f(x)) − I(sign(f(x)) = 1) ≤ 1. Thus,

we have

2(∆2 − A2) + S(f(x))(A2 − A1)− (∆2 − A2) + I(sign(f(x)) = 1)(A2 − A2)

=(∆2 − A2) + (S(f(x))− I(sign(f(x)) = 1))(A2 − A1)

≥min{∆2 − A2 + 0,∆2 − A2 + A2 − A1} ≥ min{∆2 − A2,∆2 − A1}

≥0,

where the last inequality holds because ∆2 ≥ A2 and ∆2 ≥ ∆1 ≥ A1.

Therefore, for both cases, we have

E[
S(Af ∗

T (x))

π(A|x)
(α∗

T (x)−
1

γ
(α∗

T (x)−R)+)|x]− E[
S(Af(x))

π(A|x)
(α(x)− 1

γ
(α(x)−R)+|x]

≤E[
I(d∗(x) = A)

π(A|x)
(α1(x)−

1

γ
(α∗(x)−R)+|x]

−E[
I(sign(f(x)) = A)

π(A|x)
(α(x)− 1

γ
(α(x)−R)+|x]

The desired result holds by taking expectations over x on both sides.

Proof of Lemma 3.4.1

When p = 1, it holds automatically by Corollary 3.17 in (Ledoux and Talagrand,

2013). Without loss of generality, it is enough to show the case when p = 2 and Lϕ = 1.

Consider a class of vector value functions

Ψ = {ψ = (ψ1, · · · , ψn),where ψi is ϕi or φ}, (B.12)

123



where φ is defined as φ(t, s) = t+ s. Then by monotonicity of Rn, we have

Rn(ϕ(F1,F2)) ≤ sup
ψ∈Ψ

Rn(ψ(F1,F2)). (B.13)

Suppose there exists at least one ϕi in Ψ, with loss of generality, say ψ1 = ϕ1 and define

ψ = (ϕ1, ψ2, · · · , ψn)

ψ′ = (φ, ψ2, · · · , ψn).
(B.14)

Then we have

Rn(ψ(F1,F2))

=E[ sup
fi∈F1,gi∈F2

1

n

n∑
i=1

σiψ(fi, gi)]

=
1

2n
E[ sup

fi∈F1,gi∈F2

(ϕ(f1, g1) +
n∑
i=2

ψ(fi, gi)) + sup
fi∈F1,gi∈F2

(−ϕ(f1, g1) +
n∑
i=2

ψ(fi, gi))]

≤ 1

2n
E[ sup

fi,f ′i∈F1,gi,g′i∈F2

(ϕ(f1, g1)− ϕ(f ′
1, g

′
1) +

n∑
i=2

ψ(fi, gi) +
n∑
i=2

ψ(f ′
i , g

′
i))]

≤ 1

2n
E[ sup

fi,f ′i∈F1,gi,g′i∈F2

(|f1 − f ′
1|+ |g1 − g′1|+

n∑
i=2

ψ(fi, gi) +
n∑
i=2

ψ(f ′
i , g

′
i))]

=
1

2n
E[ sup

fi,f ′i∈F1,gi,g′i∈F2

(f1 − f ′
1 + g1 − g′1 +

n∑
i=2

ψ(fi, gi) +
n∑
i=2

ψ(f ′
i , g

′
i))]

=
1

2n
E[ sup

fi∈F1,gi∈F2

(f1 + g1 +
n∑
i=2

ψ(fi, gi)) + sup
fi∈F1,gi∈F2

(−(f1 + g1) +
n∑
i=2

ψ(fi, gi))]

=E[ sup
fi∈F1,gi∈F2

1

n

n∑
i=1

σiψ
′(fi, gi)]

=Rn(ψ
′(F1,F2)).

(B.15)
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Thus supψ∈ΨRn(ϕ(F1,F2)) = Rn(φ(F1,F2)). A quick observation shows that

Rn(φ(F1,F2)) = E[ sup
fi∈F1,gi∈F2

1

n

n∑
i=1

σi(fi + gi)]

= E[ sup
fi∈F1

1

n

n∑
i=1

σifi + sup
gi∈F2

1

n

n∑
i=1

σigi]

= Rn(F1) +Rn(F2).

(B.16)

Proof of Theorem 3.4.3

According to Theorem 3.4.2, we can have

M0(d
∗, α∗)−M0(sign(f̂), α̂)

≤MT (f
∗
T , α

∗
T )−MT (f̂ , α̂)

=OT (f̂ , α̂)−OT (f
∗
T , α

∗
T )

≤OT (f̂ , α̂)−On(f̂ , α̂) +On(f̂ , α̂) +
λ1n
2

||f̂ ||2H1
+
λ2n
2

||α̂||2H2

−(On(fλ1n , αλ2n) +
λ1n
2

||fλ1n||2H1
+
λ2n
2

||αλ2n||2H2
)

+On(fλ1n , αλ2n)−OT (fλ1n , αλ2n) +A(λ1n, λ2n)

≤[OT (f̂ , α̂)−On(f̂ , α̂)] + [On(fλ1n , αλ2n)−OT (fλ1n , αλ2n)] +A(λ1n, λ2n)

=(I) + (II) +A(λ1n, λ2n),

where the first two terms (I) and (II) are estimation errors. The last inequality is due

to the definition of (f̂ , α̂) as the minimizer of On(f, α).

In order to bound the estimation error, we first obtain the bounds for ||f̂ ||H1 , ||fλ1n||H1

and ||α̂||H2 , ||αλ2n||H2 correspondingly. By the definition of (f̂ , α̂), we have

On(f̂ , α̂) +
λ1n
2

||f̂ ||2H1
+
λ2n
2

||α̂||2H2
≤ On(0, 0),
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where On(0, 0) =
1
n

∑n
i=1(

1
γ
(−Ri)+) ≤ M1, because R is bounded by C0 by assumption.

Moreover, since α−R ≤ 1
γ
(α−R)+, we have

M1 ≥ On(0, 0) ≥ On(f̂ , α̂) ≥
1

n

n∑
i=1

S(Aif(xi))

π(Ai|xi)
(−Ri) ≥M2, (B.17)

where the last inequality holds by the bounded assumption of R. Thus λ1n
2
||f̂ ||2H1

+

λ2n
2
||α̂||2H2

≤ M1 −M2 := M3, where M3 ≥ 0, and |On(f̂ , α̂)| ≤ max{M1, |M2|} := M4 or

equivalently LS(f̂ , α̂) :=
S(Af̂(x))
π(A|x) ( 1

γ
(α̂(x)−R)+ − α̂(x)) is bounded by M4. By a similar

argument, we can also obtain λ1n
2
||fλ1n||2H1

+λ2n
2
||αλ2n||2H2

≤M3 and |LS(fλ1n , αλ2n)| ≤M4.

Define the following functional class

Ξ := {LS(f, α) | f ∈ H1, α ∈ H2,
λ1n
2

||f ||2H1
+
λ2n
2

||α||2H2
≤M3, |LS(fλ1n , αλ2n)| ≤M4}.

Let {Zi}ni=1 = {xi, Ai, Ri}ni=1 and Pn be the corresponding empirical measure on Zn. We

first derive the bound for the estimation error (I) and (II). For the term (I), note that

(I) ≤ supΞ PLS(f, α) − PnLS(f, α), where P is probability measure of (x, A,R). When

any (xi, Ai, Ri) changes, by the definition of Ξ, supΞ PLS(f, α)− PnLS(f, α) is changed

no more than M4

n
. Then by the McDiarmid’s inequality, with probability at least 1− ϵ

2
,

we can get

sup
Ξ
PLS(f, α)− PnLS(f, α) ≤ E[sup

Ξ
PLS(f, α)− PnLS(f, α)] +

√
2 log(1

ϵ
)

n
. (B.18)
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Using the idea of symmetrization by introducing a duplicated data {Z ′
i}ni=1 and

Rademacher variables {σi}ni=1, we can obtain

E[sup
Ξ
PLS(f, α)− PnLS(f, α)] ≤ E[sup

Ξ
E[P ′

nLS(f, α)− PnLS(f, α)]]

≤ E[sup
Ξ
P ′
nLS(f, α)− PnLS(f, α)]

= E[sup
Ξ
Pnσ(LS(f, α)− L′

S(f, α)]

≤ E[sup
Ξ
PnσLS(f, α)] + E[sup

Ξ
−PnσLS(f, α)]

= 2E[sup
Ξ
PnσLS(f, α)]

= 2Rn(Ξ).

For the term (II), by the similar argument, we can show, with probability at least

1− ϵ
2
,

(II) ≤ sup
Ξ
PnLS(f, α)− PLS(f, α)

≤ E[sup
Ξ
PnLS(f, α)− PLS(f, α)] +

√
2 log(1

ϵ
)

n

≤ 2Rn(Ξ) +

√
2 log(1

ϵ
)

n
.

(B.19)

Then combining bounds of (I) and (II) together gives that, with probability at least

1− ϵ, we can have

(I) + (II) ≤ 4Rn(Ξ) +

√
8 log(1

ϵ
)

n
. (B.20)

Define a class of functions as

Π := {(f, α) | f ∈ H1, α ∈ H2,
λ1n
2

||f ||2H1
≤M3,

λ2n
2

||α||2H2
≤M3}.
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In order to apply Lemma 3.4.1, we need to show LS(t, s) is Lipschitz continuous. For

any constant t1, t2, s1, s2, we have

|LS(t1, s1)− LS(t2, s2)| ≤ |LS(t1, s1)− LS(t2, s1)|+ |LS(t2, s2)− LS(t2, s1)|

≤ C0

a0
|t1 − t2|+

2(1− γ)

a0γ
|s1 − s2|

≤M5(|t1 − t2|+ |s1 − s2|),

(B.21)

where M5 = max{2(1−γ)
a0γ

, C0

a0
}. Then by Lemma 4.1, we have

Rn(Ξ) ≤ Rn(LS(Π)) ≤M5(Rn(Π1) +Rn(Π2)), (B.22)

where Π1 = {f | f ∈ H1,
λ1n
2
||f ||2H1

≤M3} and Π2 = {α| α ∈ H2,
λ2n
2
||α||2H2

≤M3}.

Thus, combining together, with probability 1− ϵ,

M0(d
∗, α∗)−M0(sign(f̂), α̂)

≤4M5(Rn(Π1) +Rn(Π2)) +

√
8 log(1

ϵ
)

n
+A(λ1n, λ2n).

Proof of Corollary 3.4.1

Based on the definition of Π1 and Π2, by Lemma B.0.1, we have

Rn(Π1) ≤ C1

√
2M3

nλ1n
,

Rn(Π2) ≤ C1

√
2M3

nλ2n
.

Since f ∗
T = xTw∗ + b∗1 and α∗

T = xT θ∗ + b∗2, we can obtain

A(λ1n, λ2n) ≤ OT (f
∗
T , α

∗
T ) +

λ1n
2

||w∗||22 +
λ2n
2

||θ∗||22 −OT (f
∗
T , α

∗
T )

≤ D1λ1n
2

+
D2λ2n

2
.

(B.23)
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According to Theorem 3.4.3, with probability 1− ϵ,

M0(d
∗, α∗)−M0(sign(f̂), α̂)

≤4M5(Rn(Π1) +Rn(Π2)) +

√
8 log(1

ϵ
)

n
+A(λ1n, λ2n)

≤4M5(C1

√
2M3

nλ1n
+ C1

√
2M3

nλ2n
) +

D1λ1n
2

+
D2λ2n

2
.

Then optimizing the right hand side with respect to λ1n and λ2n, we can let λin = O(n− 1
3 )

for i = 1, 2 and obtain the final result that with probability 1− ϵ,

M0(d
∗, α∗)−M0(sign(f̂), α̂) ≤ c1n

− 1
3 ,

for some constant c1.

Proof of Corollary 3.4.2

Based on the definition of Π1 and Π2, by Lemma B.0.1, we have

Rn(Π1) ≤ C2

√
4M3 log(2p)

nλ1n

Rn(Π2) ≤ C2

√
4M3 log(2p)

nλ2n
.

Since f ∗
T = xTw∗ + b∗1 and α∗

T = xT θ∗ + b∗2, we can obtain

A(λ1n, λ2n) ≤ OT (f
∗
T , α

∗
T ) +

λ1n
2

||w∗||1 +
λ2n
2

||θ||1 −OT (f
∗
T , α

∗
T )

≤ D3λ1n
2

+
D4λ2n

2
.

(B.24)
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According to Theorem 4.3, with probability 1− ϵ,

M0(d
∗, α∗)−M0(sign(f̂), α̂)

≤4M5(Rn(Π1) +Rn(Π2)) +

√
8 log(1

ϵ
)

n
+A(λ1n, λ2n)

≤4M5(C2

√
4M3 log(2p)

nλ1n
+ C2

√
4M3 log(2p)

nλ2n
) +

D3λ1n
2

+
D4λ2n

2
.

Then optimizing right hand side with respect to λ1n and λ2n, we can let λin = O(( log(2p)
n

)
1
3 )

for i = 1, 2 and obtain the final result that with probability 1− ϵ,

M0(d
∗, α∗)−M0(sign(f̂), α̂) ≤ c2(

log(2p)

n
)
1
3 ,

for some constant c1.

Proof of Corollary 3.4.3 Based on the assumptions and the definition of Π1 and Π2,

by Lemma 22 in (Bartlett and Mendelson, 2002), we have

Rn(Π1) ≤
√

2M0

nλ1n

Rn(Π2) ≤
√

2M0

nλ2n

According to Theorem 4.3 and assumptions on approximation error, with probability

1− ϵ,

M0(d
∗, α∗)−M0(sign(f̂), α̂)

≤4M5(Rn(Π1) +Rn(Π2)) +

√
8 log(1

ϵ
)

n
+A(λ1n, λ2n)

≤4M5(

√
2M0

nλ1n
+

√
2M0

nλ2n
) + C5λ

w1
1n + C6λ

w2
2n .
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Then optimizing right hand side with respect to λ1n and λ2n, we can let λin = O((n
− 1

2wi+1 )

for i = 1, 2 and obtain the final result that with probability at least 1− ϵ,

M0(d
∗, α∗)−M0(sign(f̂), α̂) ≤ c

(1)
3 n

− w1
2w1+1 + c

(2)
3 n

− w2
2w2+1

≤ max(c
(1)
3 , c

(2)
3 )max

(
n
− w1

2w1+1 , n
− w2

2w2+1

)
for some constant c

(1)
3 and c

(2)
3 .

The following two lemmas are the standard results of empirical process. Thus we

state them without proofs.

Lemma B.0.1. Let F = {xT θ | ||θ||2 ≤ W1} be the class of linear functions and suppose

E[||x||22] ≤ C2
1 , then

Rn(F) ≤ W1C1√
n

Lemma B.0.2. Let F = {xT θ | θ ∈ Rp, ||θ||1 ≤ W2} be the class of linear functions and

suppose ||x||∞ ≤ C2, a.s., then

Rn(F) ≤
W2C2

√
2 log(2p)√
n
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