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ABSTRACT 

 
Christof C. Smith: Role of the adaptive immune system in the tumor immune 

microenvironment 
(Under the direction of Jonathan S. Serody) 

 

The adaptive immune system is essential for production of anti-tumor immune 

responses, with the majority of current immunotherapeutics designed to modulate the 

interaction between adaptive immunity and tumor cells within the tumor-immune 

microenvironment.  This dissertation addresses three translational goals regarding our 

understanding and modulation of anti-tumor adaptive immunity: 1) Improvement of 

understanding for existing immunotherapies such as checkpoint inhibitor therapy 

(Chapter 2.1); 2) Improvement of efficacy for novel immunotherapeutics currently in 

development including tumor neoantigen vaccines (Chapter 4); and 3) Development of 

next-generation immunotherapies through identification of novel anti-tumor vaccine 

targets (Chapter 3), as well as development of diagnostic tools including biomarkers of 

immunotherapy response (Chapter 3) and immune-imaging modalities (Chapter 2.1).   
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CHAPTER 1: General introduction to tumor immunology 

1.1 Introduction to the immune system 

The immune system is the body’s host defense composed of barrier structures 

(e.g. skin, mucosal barrier), cells (leukocytes), and soluble factors (e.g. cytokines, 

chemokines, complement proteins, immunoglobulins) which work in a concerted effort 

to recognize and respond to foreign entities.  Classically, immunity is divided into the 

innate and adaptive arms of the immune system.  The former is an evolutionarily older 

defense system whose major functions include recruitment of immune cells through 

release of cytokines and chemokines, activation of the compliment cascade, removal of 

foreign targets or debris through phagocytosis, and activation of the adaptive immune 

system through antigen presentation.  While an innate immune response can react 

rapidly against a broad set of targets, there is low target specificity with little evidence 

currently of immunological memory.  In contrast, the adaptive immune system is 

composed of T and B lymphocytes (including B-cell generated antibodies) that develop 

in response to specific immunological antigens.  Development of a primary adaptive 

immune response takes 7-10 days in humans and mice, with formation of 

immunological memory allowing for a faster and more robust secondary response 

against the same antigen (i.e. immunological memory).  Adaptive immunity targets 

include antigens derived from pathogens (e.g. viruses and bacteria) and tumor-derived 

antigens.  The last of these listed targets underscores the capacity for adaptive 



  

2 
 

immunity to promote anti-cancer immunological responses, which has laid the 

foundation for development of cancer immunotherapies within the past century. 

1.2 The tumor immune microenvironment 

The interaction between cancer and the immune system is dictated by the ability 

of the immune system to recognize non-self-antigens that arise during tumorigenesis.  

Recognition of tumor antigens and inflammatory signals can promote infiltration of 

immune cells, including sentinel antigen presenting cells (APC; e.g. dendritic cells [DC], 

macrophages/monocytes), neutrophils, natural killer [NK] cells, and T/B lymphocytes).  

In addition to infiltration, anti-tumor immune responses also necessitate an inflamed 

state, allowing for lymphocytes to carry out effector function.  This combination of 

infiltration and inflammation has led to classification of tumors into several states: 1) 

Infiltrated-excluded “cold” tumors (characterized by exclusion of lymphocytes from the 

tumor core), 2) Infiltrated-inflamed “hot” tumors (characterized by infiltration of the tumor 

core by lymphocytes, with high expression of programmed cell death protein 1 [PD-1] 

and its corresponding ligands [PD-L1/PD-L2]), and 3) infiltrated tumors with inclusion of 

tertiary lymphoid structures (characterized by formation of lymphoid structures within the 

tumor secondary to enhanced inflammation, often associated with positive prognosis)1. 

T cells are widely recognized as the most important immune cell population for 

performing anti-tumor immunity, including direct anti-tumor cytotoxicity in the case of 

CD8+ T cells and generation of pro-inflammatory cytokines and chemokines in the case 

of CD4+ T cells.  The T-cell receptor (TCR) is typically comprised of variable alpha and 

beta chains (with gamma and delta chains expressed on a minority of alternative T 

cells).  Each beta chain undergoes somatic V(D)J recombination in the thymus to form a 
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unique variable region (comprised of a recombinant V [variable], D [diversity], and J 

[joining] region), while alpha chains undergo VJ recombination without an intervening D 

region.  Pairing of recombined alpha and beta chains allows for specificity of binding to 

a particular antigen bound to a major histocompatibility complex (MHC) complex.  

Subsequently to formation of the TCR, thymic deletion occurs to TCRs incapable of 

binding to any antigen/MHC (positive selection) as well as those which bind too strongly 

to self-antigens (negative selection).  T cell recognition of tumor antigens occurs 

through TCR engagement with tumor-specific antigenic peptides presented on MHC, 

either on the surface of antigen presenting cells during T cell activation or directly on the 

tumor cell during T cell effector function.  CD8+ T cells bind to class I MHC, while CD4+ 

bind to class II MHC, with CD8 and CD4 acting as TCR co-receptors that enhance 

binding affinity of the TCR to the MHC.   

Activation of T cells requires three distinct signals.  Signal 1 is the binding of the 

TCR to an antigen/MHC complex, which begins intracellular signaling cascades to 

promote T cell activation through key transcriptional pathways (MAPK, NK-kB, NFAT).  

However, proper activation of these pathways additionally requires Signal 2, which is 

signaling through a T cell co-stimulatory molecule.  The best characterized of these co-

stimulatory molecules is CD28, which interacts with CD80 and CD86 on the surface of 

antigen presenting cells, resulting in completion of the intracellular signals necessary for 

proliferation, differentiation, and survival of the T cell.  Activation of the TCR without 

concurrent co-stimulation may result in T cell anergy, deletion, or immune tolerance.  

Lastly, Signal 3 occurs through T cell recognition of pro-inflammatory cytokines (e.g. 
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type I interferon [IFN], IL-12 for activation of CD8+ T cells), which are necessary for 

continued survival, proliferation, and memory-formation of Signal 1/2 activated T cells. 

Subsequently to activation, T cells upregulate checkpoint molecules which can 

act as a “break” to downregulate effector function.  The expression of the checkpoint 

molecules on tumor infiltrating T lymphocytes is a major indicator for inflammatory 

status.  Perhaps the best characterized and biologically important of these markers is 

PD-1, a surface receptor expressed on multiple immune populations whose function is 

most clearly elucidated in T cells, where upregulation occurs secondary to T-cell 

receptor (TCR) signaling.  Subsequent binding of PD-1 to its ligands PD-L1 and PD-L2 

results in downregulation of T cell effector function.  This occurs through the PD-1 

intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM), which recruits 

binding of SHP-2 to suppress TCR signaling through the ZAP-70 domain.  Within the 

tumor microenvironment, where PD-L1/L2 are frequently expressed by both tumor and 

immune cells, PD-1 expression on T lymphocytes is associated with an exhausted 

immune phenotype, whereby memory and effector T cells which have recognized tumor 

antigens have decreased functions characterized by decreased proliferation, decreased 

inflammatory cytokine and IL-2 production, increased apoptosis, and upregulation of 

other exhaustion markers such as LAG-3, CD244, and CD1602.  As such, therapeutic 

antibodies that act to prevent PD-1/PD-L1 interactions have become an essential 

aspect of cancer immunotherapy. 

1.3 Development of immunotherapies for cancer treatment 

In addition to PD-1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is 

another key checkpoint protein of T cell function.  Unlike PD-1, CTLA-4 is an early 
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“break” for T cell function, competing against the binding of T cell protein CD28 (a co-

stimulatory receptor for T cell activation) to its ligands CD80/86 (expressed on activated 

APCs).  As such, CTLA-4 is not frequently used as a marker for T cell exhaustion but 

can be similarly targeted as PD-1 to prevent immune checkpoint regulation.  PD-1 and 

CTLA-4 were first characterized in the early 1990’s, primarily by Drs. James Allison and 

Tasuku Honjo, respectively.  Since initial studies demonstrating the effects of these two 

checkpoint molecules, therapeutics aimed to block their pathways (known as checkpoint 

inhibitor therapies) have been developed for cancer immunotherapies.  Currently, anti-

PD-1 (aPD-1) and/or anti-PD-L1 therapies are standard of care for a wide variety of 

cancer types, including melanoma, urothelial cancer, non-small cell lung cancer, renal 

cell carcinoma, Hodgkin lymphoma, gastric cancer, colorectal cancer, hepatocellular 

carcinoma, Merkel cell carcinoma, and all cancers with high microsatellite instability 

(MSI)3.  aPD-1 therapy has revolutionized our ability to treat these cancers, providing 

cure with long lasting immunological memory against tumor in a subset of patients that 

would have otherwise had incurable disease with conventional therapies.  Despite these 

advances, responders to aPD-1 therapy comprise a minority of all treated patients in 

most tumor types.  As such, a key goal in the field of immuno-oncology has been to 

elucidate factors which associate with checkpoint inhibitor response. 

Among the set of features currently known to associate with response to 

immunotherapies includes tumor molecular subtyping, which (unlike conventional 

histological subtyping) is defined by genomic characteristics of the tumor.  The first 

description of tumor molecular subtyping was in human breast cancers, grouped into 

five distinct subtypes: luminal A, luminal B, HER2 enriched, basal-like, and claudin-low4.  
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Subsequently, other cancers have been shown to contain similar molecular subtypes, 

including bladder cancer, which contains basal and luminal subtypes as the two major 

classifications5–7.  However unlike breast cancer, a limited repertoire of in vivo tumor 

models exist in bladder cancer, with no molecular subtype specific models described 

until recently.  Lack of animal models has encumbered capacity to study the differential 

effects of immunotherapies in subtype specific bladder cancers, making the 

development of biologically faithful murine models of bladder cancer a vital goal.  In 

Chapter 2, we will discuss our efforts in the design of molecular subtype-specific models 

of basal and luminal bladder cancer, with elucidation of tumor response/nonresponse in 

a basal-like bladder cancer model that demonstrates a mixed response phenotype to 

aPD-1 therapy (Chapter 2.1).  We additionally describe the use of these subtype-

specific models in the design of novel immuno-based PET/CT imaging modalities to 

study in vivo T cell infiltration (Chapter 2.2). 

1.4 Molecular characterization of the tumor 

In an attempt to identify the mechanism behind patient 

responsiveness/nonresponsiveness to aPD-1 therapy, many investigators have applied 

next generation sequencing immunogenomic techniques (e.g. DNA/RNA-sequencing) to 

elucidate the molecular profiles associated with various patient outcomes.  Below is a 

summary of several landmark papers which have applied immunogenomic techniques 

to examine biomarkers for aPD-1 response: 

 Hugo et al. 20168: Identification of an innately resistant tumor signature to PD-1 

(termed IPRES) in melanoma, comprised of genes involved in the regulation of 
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mesenchymal transition, cell adhesion, extracellular matrix remodeling, 

angiogenesis, and wound healing. 

 Riaz et al. 20179: Study of whole exome, whole transcriptome, and TCR repertoire 

sequencing in aPD-1 +/- anti-CTLA-4 treated melanoma patients.  In responders to 

therapy, neoantigen load was reduced relative to pre-treatment baseline, with 

evidence of clonal T cell expansion post-treatment.  Responders also demonstrated 

higher gene levels corresponding to CD8+ T cells and NK cells, with significant 

decreases in macrophage signatures. 

 Auslander et al. 201810: Study of melanoma and neuroblastoma patient sample 

derived RNA-seq data to build an immuno-predictive score (IMPRES) based upon 

pairwise ratios of immune checkpoint related genes.  This study outperformed 

several previous papers, including the Hugo et al. IPRES signature. 

 Smith et al. 201811 and Panda et al. 201812: We have identified that the expression 

of several specific human endogenous retroviruses in pre-treatment nephrectomy 

samples from clear cell renal cell carcinoma patients is associated with subsequent 

responsiveness to aPD-1 therapy.  These studies are covered in Chapter 3 and 

Appendix IV, respectively.  

From these above studies, it is clear that the use of immunogenomic techniques 

to probe the tumor immune microenvironment can provide molecular signatures 

predictive for patient responsiveness to aPD-1 therapy.  Summary of methods for RNA-

sequencing characterization of the tumor microenvironment is covered in Appendix I.  

Common themes among these above studies show that responsiveness to aPD1 

therapy necessitates 1) infiltration of effector and pro-inflammatory immune cells 
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(memory T cells, B cells, M1 polarized macrophages, activated DCs), 2) exclusion of 

immunosuppressive populations (regulatory T cells [Tregs], myeloid derived suppresser 

cells [MDSC], M2 polarized macrophages), 3) evidence of TCR clonal expansion, and 

4) presence and presentation of targetable tumor antigens.  This set of features 

underscores the importance of generating T cell responses against tumor-specific 

antigens (TSA) in order for patients to generate robust tumor immunity.  With evidence 

that responsiveness to aPD-1 therapy is largely dependent upon T cell activation 

against TSAs, it has become widely hypothesized that vaccine therapies against TSAs 

could be an effective strategy to generate or boost existing anti-tumor immunity.  

1.5 Classical and non-classical tumor-specific antigens 

The role of tumor specific antigens (TSA) as targets of anti-cancer immunity has 

been well recognized throughout the past century, with studies of TSA-based vaccines 

becoming more prevalent this past decade13–15.  Neoantigens are variant peptides 

derived from proteins encoded by genetic variations present in the tumor but not normal 

DNA, presented by MHC molecules, and recognized by T cells. The most commonly 

studied class of neoantigens are those derived from single nucleotide variations (SNV), 

which cause non-synonymous changes in a protein that subsequently may trigger 

antigen-specific T-cell responses against the tumor. These conventional neoantigens 

have the distinct advantage over other classes of tumor antigens (e.g. tumor associated 

self-antigens and cancer/testis antigens) in having no expression in normal tissues.  As 

a result, T cells with specificity for these neoantigens can escape thymic negative 

selection, leading to generation of a TSA-specific T-cell repertoire.   
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Despite advantages of SNV-neoantigens, their applicability as vaccine targets 

may be limited to cancers with high mutational burden.  While metastatic melanoma 

(which contains the highest SNV burden of any cancer) has been the primary focus of 

current neoantigen clinical studies, other cancers with lower mutation rates may contain 

a limited repertoire of potential targets.  As such, SNV-neoantigen vaccine development 

may be hindered in these cancers. 

In response, many investigators including our group have begun to evaluate non-

classical TSAs – here defined as high-specificity tumor antigens arising from non-SNV 

genomic sources.  Genomic analysis of tumor-antigen burden has demonstrated 

expression of various classes of TSAs are not always co-correlated, suggesting non-

classical TSAs may be targetable in certain cancers despite low SNV-neoantigen 

burden.  This is exemplified by clear cell renal cell carcinoma (ccRCC), a checkpoint 

inhibitor sensitive cancer which contains a low SNV burden but high expression of 

frameshift-neoantigens16 and tumor-specific endogenous retroviral antigens11.  

Additionally, leukemia and sarcoma (which contain among the lowest SNV burden of 

any cancers) express shared gene fusion mutations and splice variant transcripts, both 

of which can produce neoantigens.  Among non-classical TSAs include those generated 

from 1) mutational frameshifts, 2) splice variants, 3) gene fusions, 4) viral antigens, 5) 

endogenous retroviral antigens, and other less well characterized classes such as HLA-

somatic mutation derived antigens, minor histocompatibility mismatch antigens, and 

retrotransposons (Figure 1.1, Table 1.1).   
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Figure 1.1: Summary of tumor-specific antigen production in the tumor cell. 
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Table 1.1: Advantages and disadvantages of targeting tumor specific antigen classes, 
and relevant cancers. 
 

 

Antigen 
class 

Advantages Disadvantages Relevant Cancers 

SNV 
neoantigens 

• Well studied 
• Simple prediction 
• Relatively high 

burden 

• Similar to self-antigen 
• Rarely shared between 

patients 

• Melanoma 
• Lung (adeno and 

squamous) 
• Bladder cancer 

INDEL 
frameshift 
neoantigens 

• Many targets per 
mutation 

• More dissimilar from 
self-antigen 

• Relatively low burden 

• Microsatellite instability-
high tumors 

• Clear cell, papillary, and 
chromophobe renal cell 
carcinomas 

Splice 
variant 
neoantigens 

• High number of 
predicted targets 

• More dissimilar from 
self-antigen 

• Fewer tools available 
• Not well validated in 

vivo 
• Current tools do not 

account for nonsense 
mediated decay 

• Acute myelogenous 
Leukemia 

• Chronic myelomonocytic 
leukemia 

• Chronic lymphocytic 
leukemia 

• Myelodysplastic 
syndrome 

Fusion 
protein 
neoantigens 

• More dissimilar from 
self-antigen 

• Shared targets 
between tumors 

• More potential 
targets per mutation 

• Relatively low burden 

• Acute myelogenous 
leukemia 

• Acute lymphoblastic 
leukemia 

• Chronic Myelogenous 
Leukemia 

• Sarcomas 

Viral 
antigens 

• Large number of 
targets per virus 

• Higher 
immunogenicity 

• Shared between 
patients 

• Can be 100% tumor 
specific 

• Limited repertoire of 
cancers with specific 
expression 

• Cervical cancers 
• Head and neck 

squamous cell carcinoma 
• Hepatocellular carcinoma 
• Gastric adenocarcinoma 

Endogenous 
retroviral 
antigens 

• Large number of 
targets per ERV 

• Higher 
immunogenicity 

• Shared between 
patients 

• Less well studied 
• Potential for off-target 

effects 
• Difficult to validate 

protein translation 

• Clear cell renal cell 
carcinoma 

• Low grade glioma 
• Testicular cancer 
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1.6 Human endogenous retroviral derived cancer antigens 

Among the classes of non-classical TSAs listed above, a major focus of the work 

presented here addresses the role of human endogenous retroviruses (hERVs) in 

modulation of the tumor immune microenvironment (Chapter 3).  hERVs are remnants 

of exogenous retroviruses which incorporated into the genome throughout evolution17.  

hERVs impact pathogenesis and progression of cancers, including melanomas, 

lymphoma, leukemia, ovarian, prostate, urothelial, and renal carcinomas18–27.  

Expression of tumor-specific/enriched hERVS partly arise through epigenetic 

dysregulation of the cancer genome, resulting in expression of hERV-containing 

genomic regions otherwise not observed under physiological conditions28,29.  These 

tumor-specific/enriched hERVs can impact both the innate and adaptive immune 

system through distinct mechanisms.  In the innate immune system, hERVs signal 

through innate sensors, most commonly the RIG-I-like pathway recognition of viral 

double stranded RNAs28,29.  This results in downstream NF-κb-mediated inflammation, 

with release of type I IFN which causes immune activation and increased tumor class I 

MHC expression.  Additionally, hERV-derived protein antigens can induce B- and T-cell 

activation30–32.  As such, it is speculated that tumor-specific hERV antigens could be 

applied for anti-tumor adoptive cellular therapies and therapeutic vaccines. 

hERV-derived therapies are particularly relevant for several cancer types.  In 

addition to INDEL-derived neoantigens, hERVs have been proposed as key driver of 

anti-tumor immunity in ccRCC11,12.  In ccRCC, hERV expression is strongly prognostic 

and predictive for checkpoint inhibitor therapy response.  As such, hERV-derived 

antigens may be a viable non-classical TSA target in ccRCC.  Additionally, recent 
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evidence suggests a potential role for hERVs in the modulation of low grade glioma 

(LGG) where SNV burden is among the lowest of any cancer11 and testicular cancer 

(particularly those with KIT mutations) where global DNA hypomethylation is associated 

with high hERV expression33.  

Several computational methods for hERV quantification currently exist, with the 

majority providing quantification of hERV-like or retrotransposon-like elements (partial or 

full-length) rather than full-length, intact hERVs at specific genomic coordinates.  The 

most well-known tool is RepeatMasker, designed to identify interspersed repeats and 

low complexity sequences of any class, including simple and tandem repeats, 

segmental duplications, and interspersed repeats (including hERV-like elements, long 

and short interspersed nuclear elements [LINE/SINE], long terminal repeats [LTR], and 

other classes)34.  RepeatMasker used in its default state is not optimal for detection of 

hERVs.  However, nearly all hERV-specific databases (e.g. HERVd35, HESAS36, 

EnHERV37) have been subsequently generated using RepeatMasker.  A more recently 

quantifier designed by our group aimed specifically for analysis of hERVs from RNA-seq 

data is hervQuant11, which quantifies full-length, intact hERV proviral sequences.  The 

hervQuant reference is derived from Vargiu et al. which compiled genomic coordinates 

for 3,173 full-length hERV proviruses38.  As these above methods are quantifiers of 

hERV/hERV-like element expression, they must be paired with downstream epitope 

prediction software (e.g. NetMHCpan39) for hERV-antigen prediction. 

Until recently, the majority of hERV-related studies have examined particular 

hERVs (e.g. hERV-K HML-2, CT-RCC HERV-E) in the pathology of a particular disease 

state (e.g. melanoma and ccRCC).  A 2015 study from Rooney et al. provided an initial 
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genomic look into the interaction between hERVs and the tumor-immune 

microenvironment, demonstrating three of 66 hERVs (ERVH-5, ERVH48-1, ERVE-4) 

identified in a previous study from Mayer et al.40 to have tumor specific expression and 

to correlate with expression of a cytotoxicity signature (GZMA and PRF1) in several 

cancers41.  Based on this study, as well as several other translational studies showing 

the presence of a hERV-specific T-cell response in ccRCC31,42, we (Smith et al.11) and 

Panda et al.12 performed comprehensive analyses into the role of hERVs in ccRCC.  

hervQuant analysis of TCGA pan-cancer dataset provided broad correlative 

descriptions for the role of hERVs upon patient outcome and immune features, 

demonstrating hERV expression to most strongly associate with patient clinical 

outcomes in ccRCC and LGG11.  Both studies demonstrated the association between 

hERV expression in pre-treatment ccRCC nephrectomy samples with subsequent 

response to anti-PD-1 checkpoint blockade therapy, providing evidence for hERVs as a 

biomarker for immunotherapy response and potentially as a direct immunological tumor-

specific target. 

With substantial evidence in favor of a hERV-directed tumor-specific immune 

response, several studies have described the translational application of tumor-specific 

hERV targets.  A 2016 study from Cherkasova et al. identified a CD8+ T cell (CTL) clone 

from a patient with regressing ccRCC and found the clone to have tumor-specific 

cytotoxicity against tumor cells in vitro31.  The CTL recognized an antigen from a 

specific hERV CT-RCC HERV-E – which coincidentally was the same as one of the 

tumor-specific hERVs (ERVE-4) described by Rooney et al. and was also identified 

during our screen of differentially expressed hERVs in ccRCC (hERV 2256).  This 
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particular CTL clone is being studied in clinical trials for adoptive T-cell therapy in 

metastatic ccRCC (NCT03354390).  Our analysis additionally identified a second hERV 

(hERV 4700) with preferential expression in ccRCC compared to normal tissues, 

evidence of translation, and presence of tumor infiltrating CTLs specific for gag and pol 

derived antigens of the virus11.  Notably, this provided the first description of a broad 

genomic screening method for tumor-specific hERV antigens. 

1.7 Computational prediction of tumor-specific antigens 

Recent advancements in DNA and RNA sequencing have allowed for 

development of genomic and computational methods of TSA prediction (Table 1.2).  

Methods for generating TSA therapies generally rely on a conserved set of steps: 1) 

Variant calling, 2) HLA-typing, 3) peptide enumeration, 4) HLA binding prediction, and 5) 

therapy generation (Figure 1.2). Variant calling is the identification of genomic regions 

with high tumor specificity.  In the case of SNV, INDEL, and gene fusions neoantigens, 

variants are derived from mutations within the tumor exome.  Alternatively, viral and 

endogenous retroviral (ERV) antigens are derived from RNA expression data, selected 

for viruses/ERVs with higher expression in the tumor compared to matched normal 

tissues.  Splice variant neoantigens can be identified through a variety of techniques, 

discussed later in detail.  Subsequently, tumor HLA type is derived using an HLA caller 

(e.g. POLYSOLVER43, OptiType44, PHLAT45, HLAScan46, HLAProfiler47), which relies 

on DNA and/or RNA sequencing data, depending upon the software.  Peptide 

enumeration is then performed, whereby variant genomic regions are translated into 

peptide sequences, with translation-incompatible sequences removed (e.g. nonsense 

mutations, low RNA coverage).  HLA binding prediction is next performed using 
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prediction software (e.g. NetMHCpan39), with binding typically accepted in the literature 

as ≤ 500 nM15,48,49.  Lastly, predicted TSAs are used to generate a therapeutic product, 

either as a vaccine (i.e. DNA/RNA, peptide, or dendritic cell vaccine) or a cellular 

therapy product (i.e. adoptive T cell therapy).  Below, we will discuss the relevant 

biology for each non-classical TSA class, with detailed descriptions of available tools. 

 

 SNV INDEL 
Splice 
variant 

Fusion Viral hERV 

INTEGRATE-neo    
Only calls  

MHC I 
  

pVACtools 
pVAC-Seq: 
missense 

SNV 
pVAC-Seq  

pVACfuse: 
Works 

downstream of 
INTEGRATE-

neo calls 

  

Neopepsee 
Missense; 
MHC I only 

MHC I 
only 

    

MuPeXI Missense Yes     

TSNAD 
Missense/ 
nonsense 

Yes     

NeoantigenR   MHC I only    

NeoepitopePred 
Missense; 
MHC I only 

  MHC I only   

Epidisco 
Missense/ 
nonsense; 
MHC I only 

Yes; 
MHC I 
only 

Yes; 
Only RNA-
seq based; 
MHC I only 

   

Antigen.garnish Missense Yes     

Neoepiscope 
Missense/ 
nonsense 

Yes     

Virdetect     
Quantifier 

only 
 

PathSeq     
Quantifier 

only 
 

BioBloom Tools     
Quantifier 

only 
 

RepeatMasker      

Quantifier 
only; not 

hERV 
specific 

hervQuant      
Quantifier 

only 

 

Table 1.2: Tools for prediction of non-classical tumor-specific antigens. 
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Figure 1.2: Summary of tumor-specific antigens 
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1.8 Clinical translation of non-classical tumor-specific antigens 

Recent studies (including several from our group) have provided estimates for 

antigenic burden of each TSA class among TCGA pan-cancer data, which we have 

compiled here (Figure 1.3, 1.4)11,50–53.   

In addition to the clinical applicability of hERVs in ccRCC and LGG, testicular 

cancer (TGCT) contained substantially greater burden of hERV-derived TSAs than any 

other cancer type.  This is in agreement with previous findings that TGCT was among 

the cancer types with the greatest hERV expression due to widespread 

hypomethylation11,33.   

Viral antigen burden was highest in cervical (CESC; HPV) and hepatocellular 

(LIHC; HBV) cancers, but also observed in subsets of head/neck squamous cell (HNSC; 

HPV) and stomach adenocarcinoma (STAD; EBV) tumors.  Associated with these 

findings, therapeutic cancer vaccines are currently in development for HPV-driven 

cervical cancer (VGX-310054), as well as EBV-driven nasopharyngeal cancers and 

NK/T-cell lymphomas (MVA-EL55 and CMD-00356).  Currently, no HBV therapeutic 

vaccines have demonstrated convincing therapeutic efficacy.   

INDEL- and SNV-neoantigen counts derived from a recent TCGA pan-cancer 

analysis demonstrated significant co-correlation among all cancer types (coefficient: 

0.81, p < 0.0001)50.  In agreement with Turajilic et al., notable outliers were clear cell 

and papillary RCC, where the INDEL-to-SNV ratio was significantly higher than other 

cancer types (KIRC: 0.85 and KIRP: 0.90; all others: 0.43 – 0.72).  In addition, colon 

adenocarcinoma (COAD) demonstrated a distinct population of INDEL-high tumors, 

corresponding to those cancers with high microsatellite instability (MSI-H).  MSI-H is 
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characterized by impaired DNA mismatch repair pathways, contain significantly greater 

INDEL burden compared to non-MSI-H tumors57,58.  These data suggest that in RCC, 

MSI-H tumors, and cancer types known to have high SNV-burden, INDEL-derived 

neoantigens should also be considered for vaccine selection.   

Mean burden of fusion-derived neoantigens per sample was highest in sarcomas 

(SARC: 1.1, UCS: 0.78), with carcinoma fusion burden highest in breast and prostate 

cancer (BRCA: 0.70, PRAD: 0.58).  SARC, BRCA, and PRAD all fall within the lower 

half of SNV-neoantigen number among all cancer types, making fusion-derived 

neoantigens another potential avenue for vaccine development.  While gene fusion data 

was not available for acute myeloid leukemia (LAML), gene fusion neoantigens have 

been a focus of study in leukemia (particularly AML, acute lymphocytic leukemia [ALL], 

and chronic myelogenous leukemia [CML]59).   

Splice variant neoantigens demonstrated similar burden to INDEL-neoantigens, 

with significant co-correlation with INDEL- and SNV-neoantigen burden.  A notably 

outlier is thyroid cancer (THCA), where average number of splice variant neoantigens 

per sample is higher than SNV-neoantigens.  Mutations in spliceosome proteins (e.g. 

SF3B1, SRSF2, U2AF1/2) are common in myelodysplastic syndrome, acute 

myelogenous leukemia (AML), chronic myelomonocytic leukemia (CMML), and chronic 

lymphocytic leukemia (CLL)60–64, resulting in the hypothesis that spliceosome mutations 

may cause expression of splice variant mRNA, leading to translation of neoantigens65–

67.  As splice variant neoantigens have greater potential for dissimilarity from reference 

compared to SNV-neoantigens, this TSA class should be pursued for vaccine 

development. 
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Conventional SNV-neoantigens remain the most well studied class of TSA, with 

distinct advantages of ease of prediction, prevalence in a wide cohort of patients, and 

promising pre-clinical therapeutic evidence.  While SNV-neoantigens will continue to be 

a driving force for therapeutic vaccine development in the coming years, many groups 

have broadened the search for other non-classical TSAs derived from self and non-self-

antigens.  While certain non-classical TSAs have been studied for decades (e.g. fusion 

proteins), the advent of powerful computational methods for patient-specific prediction 

of TSAs has expanded the breadth of targets available for clinical application.  Unlike 

SNV-neoantigens, which are largely patient specific in expression, many non-classical 

TSAs are shared among the population (e.g. viral, hERV, gene fusions), making them 

ideal for off-the-shelf therapies.  Additionally, many of these peptide sequences are 

entirely dissimilar from germline (e.g. frameshifts, viral, hERV), allowing for potentially 

greater immunogenicity than SNV-neoantigens.  Thus, non-classical TSAs should play 

a major role in the future of cancer immunotherapy. 
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Figure 1.3: Average tumor specific antigen counts by cancer type. Plots represent 
number of unique identified epitopes by TCGA cancer type.  SNV and INDEL epitopes 
are derived from Thorsson et al. (Immunity, 2018).  Fusion epitopes are derived from 
Gao et al. (Cell Reports, 2018).  Splice variant epitopes are derived from Jayasinghe et 
al. (Cell Reports, 2018). Viral epitopes are derived from Selitsky et al. (mSystems, 
2018).  hERV epitopes are derived from Smith et al. (JCI, 2018).  All TSA classes 
represent the average number of predicted class I HLA binders (8-11mers, <500 nM) 
predicted from NetMHCPan.  STAD INDEL and SNV calls were absent from Thorsson 
et al.  ESCA, LAML, and OV were omitted from all reports. 
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Figure 1.4: Number of unique tumor specific antigens by cancer type.  Plots represent 
number of unique identified epitopes by TCGA cancer type.  SNV and INDEL epitopes 
are derived from Thorsson et al. (Immunity, 2018).  Fusion epitopes are derived from 
Gao et al. (Cell Reports, 2018).  Splice variant epitopes are derived from Jayasinghe et 
al. (Cell Reports, 2018). Viral epitopes are derived from Selitsky et al. (mSystems, 
2018).  hERV epitopes are derived from Smith et al. (JCI, 2018).  All TSA classes 
represent number of predicted class I HLA binders (8-11mers, <500 nM) predicted from 
NetMHCPan. STAD INDEL and SNV calls were absent from Thorsson et al.  ESCA, 
LAML, and OV were omitted from all reports. 
 

1.9 Therapeutic platforms for tumor antigen vaccination 

The efficacy of a therapeutic vaccine is greatly affected by the delivery vehicle.  

The most common vaccine strategy is combination of free-peptide with an immune 

adjuvant, delivered as a subcutaneous/intradermal injection.  However, free-peptide 

vaccines with adjuvant have limited efficacy, due to inadequate immune stimulation and 

rapid degradation of the peptide by peptidases in the body68.  To address these 



  

23 
 

concerns, nanoparticle-based vaccine platforms have been proposed as an alternative 

vehicle strategy for tumor antigen vaccines. 

Nanotherapeutics encompasses a class of delivery vehicles, including 

nanoparticles, liposomes, dendrimers, and nano-discs.  While nanotherapeutic delivery 

vehicles have been widely studied for vaccine platforms throughout the last several 

decades, neoantigen-based nano-vaccine platforms have arisen within the last several 

years68,69.  The first description of a nanotherapeutic neoantigen vaccination platform 

was from Kreiter et al., where mRNAs encoding for neoantigen epitope sequences were 

encompassed within a liposomal delivery system to generate tumor-specific T cell 

responses in several murine tumor models70.  Built off of a previous report from Castle 

et al.71, the research group led by Ugur Sahin and Ozlem Tureci demonstrated the 

efficacy of these neoantigen epitope encoding mRNAs to be derived from simultaneous 

activation of intra-cytoplasmic TLR7 (providing a DC activation and maturation signal) 

and mRNA translation within sentinel dendritic cells (DCs), which subsequently present 

these neoantigen epitopes alongside co-stimulatory receptor signaling ligands to 

activation neoantigen-specific T cells (primarily CD4 T cells) that induced anti-tumor 

response14,72.  

Since this initial description, several other groups have provided peptide-based 

nanotherapeutic approaches for tumor therapeutic vaccination.  Relying upon previously 

published neoantigen sequences, Kuai et al. designed a high density lipoprotein based 

nanodisc platform loaded with neoantigen peptides, importantly capable of cross-

presentation to induce a CD8 T cell response to a higher degree than demonstrated by 

Kreiter et al.73,74.   Additionally, a paper from Min et al. demonstrated the ability to 
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generate poly(lactic-co-glycolic acid (PLGA)-based antigen-capturing nanoparticles to 

improve the abscopal effect after B16F10 tumor irradiation75.  Among the antigens 

captured by the particles included several that were derived from proteins which 

contained neoantigenic epitopes, suggesting neoantigenic priming may be a potential 

mechanism behind the efficacy of this platform.  Following these approaches, our work 

presented in Chapter 4.2 focuses on the design of a PLGA-based neoantigen peptide 

delivery platform.   

1.10 Concluding remarks and contributions of this work 

The studies presented in this document provide a multidisciplinary approach to 

address key understudied aspects of immuno-oncology, including aims to better 

understand the mechanism of currently immunotherapies, and to discover and develop 

the next generation of immunotherapeutics to further advance our ability to cure 

cancers.  The work presented here was made possible through many collaborative 

efforts.  Additionally, Dr. Benjamin Vincent provided co-mentorship for all projects 

described in this dissertation.  Chapter 2.1 was performed in collaboration with the lab 

of William Kim.  Chapter 2.2 was performed in collaboration with the lab of Matthew 

Parrott.  Chapter 3 was performed in collaboration with the lab of W. Kymrin Rathmell 

and Sara Selitsky of the Lineberger Bioinformatics Group.  Chapter 4.2 was performed 

in collaboration with the lab of Andrew Wang. 
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Appendices to this dissertation include a summary of RNA-seq methods 

(Appendix I), molecular characterization of human ccRCC (Appendix II) and gastric 

(Appendix III) cancers, complimentary analyses of hERVs in ccRCC (Appendix IV), 

design of nanoparticle strategies for immunotherapy delivery (Appendix V), and study of 

CD30-directed chimeric antigen receptor (CAR) cellular therapies (Appendix VI).  My 

role all projects presented in this dissertation are provided in the Endnotes chapter.  
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CHAPTER 2: Design and study of subtype-specific murine tumor models 

2.1 Development of subtype specific mouse models of bladder cancer. 

 2.1.1 Introduction 

In the United States, bladder cancer is the fifth most common malignancy with 

approximately 79,000 new cases and nearly 17,000 deaths expected in 201776. Bladder 

cancer is comprised of both low-grade and high-grade tumors. Although low-grade 

tumors are almost uniformly noninvasive (Ta), high-grade tumors can become muscle-

invasive and metastatic. 

Multiple studies have now identified distinct RNA expression subtypes within both 

low- and high-grade bladder cancer5–7,77–82. Building upon the work of Hoglund and 

colleagues77, we along with others have recently described distinct subtypes of high-

grade muscle-invasive urothelial carcinoma, which we have termed luminal-like and 

basal-like, that have gene expression patterns that appear to be consistent with 

differentiation states of normal urothelium and reflect gene expression patterns and 

biology between breast and bladder cancer5–7,83. 

Cisplatin-based chemotherapy has been the only FDA-approved therapy to treat 

advanced bladder cancer for over two decades until the recent approval of immune 

checkpoint antibodies targeting the PD-1/PD-L1 axis. PD-1 axis blockade induces a 

response in approximately 20% to 30% of patients with advanced urothelial carcinoma, 

with the premise that activation of immune checkpoint pathways result in active 
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immunosuppression84–89. Response to PD-1 axis inhibition in urothelial bladder cancer 

has been associated with a number of intrinsic tumor features such as tumor mutational 

burden and tumor molecular subtype, as well as tumor microenvironment features such 

as the presence of PD-L1–expressing tumor-infiltrating immune cells, CD8+ cytotoxic T 

cells in the tumor, and expression of effector T-cell genes by gene expression 

profiling85. 

Multiple immunocompetent mouse models of bladder cancer currently exist 

including the carcinogen-induced models: MB49 (DMBA-derived cell line) and BBN [N-

butyl-N-(4-hydroxybutyl)nitrosamine]90,91 as well as numerous autochthonous, 

genetically engineered murine (GEM) models92, some of which progress to muscle-

invasive bladder cancer and metastasis93–96. 

We report here the generation of a novel GEM model of high-grade, muscle-

invasive bladder cancer that faithfully recapitulates the luminal molecular subtype of 

bladder cancer: Upk3a-CreERT2; Trp53L/L; PtenL/L; Rosa26LSL-Luc (UPPL) mice. 

This model is characterized by papillary histology and decreased levels of immune 

infiltration relative to basal tumors derived from BBN-treated animals, a pattern that is 

similar to human disease7,77,83. We have generated cell line adoptive transfer models for 

luminal-like UPPL tumors as well as for basal tumors derived from BBN-treated animals. 

Cell line–derived tumors from the UPPL model maintain luminal-like characteristics, 

such as high expression of Pparg and Gata3 gene signatures. Moreover, gene 

expression profiles from BBN and UPPL models more closely map to human bladder 

cancer and to normal murine urothelial cells than the commonly used MB49 model, 

which appears to more closely resemble fibroblasts. As models of bladder cancer 
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biology in immunocompetent mice, these models can be used to interrogate subtype-

specific responses to immune checkpoint inhibition and other immunotherapy strategies 

in vivo. 

 2.1.2 Materials and Methods 

Mouse models and establishment of mouse bladder cancer cell lines 

All animal studies were reviewed and approved by The University of North 

Carolina at Chapel Hill Institutional Animal Care and Use Committee. For the BBN 

carcinogen-induced mouse bladder cancer model, C57BL/6 mice (Charles River 

Laboratories) were continuously exposed to 0.05% N-butyl-N-(4-hydroxybutyl) 

nitrosamine (BBN) in drinking water. Trp53 and Pten conditional knockout mice were 

obtained from The Jackson Laboratory (STOCK: 008462) and Terry Van Dyke (National 

Cancer Institute, Bethesda, MD; ref. 25)97, respectively, and crossed with Upk3a-

CreERT2 allele (The Jackson Laboratory STOCK: 015855) and the Rosa26LSL-

Luciferase allele (The Jackson Laboratory, STOCK: 005125; UPPL model) or crossed 

with Krt5-CreERT2 allele (a gift from Brigid Hogan, Duke University, Durham, NC) and 

Rosa26LSL-tdTomato (The Jackson Laboratory, STOCK: 007914; KPPT model). In 

order to induce Cre recombination in the bladder of UPPL or KPPT mice, 5 mg of 

tamoxifen was given orally by gavage in both the UPPL and KPPT model. In the KPPT 

model, transurethral injection of 4-hydroxy-tamoxifen was also performed. Tumor 

development was regularly monitored by bladder ultrasonography. 

Mice were sacrificed for the humane endpoints as follows. For the autochthonous 

mouse models, mice were sacrificed for weight loss more than 10% of the initial weight 
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or tumor size diameter of >7 mm as evaluated by bladder ultrasound. In our studies, all 

mice were sacrificed because of tumor size. The endpoint for allograft models was 

tumor volume >500 mm3, skin ulcer formation, or weight loss greater than 20% body 

weight. 

Generation of UPPL1541 and BBN963 cell lines 

Once the bladder tumors became >7 mm in diameter, they were harvested for 

pathologic evaluation, in vitro analysis, and for establishing cell lines. Tumors were 

dissociated and digested with collagenase and dispase (Roche). The dissociated tumor 

cells were resuspended in growth media and plated to a plastic plate as described 

previously98. Cell lines were passaged more than 10 times before use. Mycoplasma 

testing was performed monthly while cells were in culture. 

MB49 cell lines were obtained from Molly Ingersol (Institut Pasteur, Paris, 

France). Mycoplasma testing was performed monthly while cells were in culture. 

RNA/DNA extraction, library prep, and RNA sequencing or whole-exome sequencing 

RNA was extracted from the primary tumors and the established cell lines using 

an RNeasy Kit (QIAGEN), and DNA was extracted from primary tumors, established cell 

lines, and tail clippings using a DNeasy Kit (Qiagen). Whole-exome and transcriptome 

library preparation was performed using Agilent SureSelect XT All Exon and Illumina 

TruSeq Stranded mRNA Library Preparation Kits, respectively. Libraries were 

sequenced via 2 × 100 runs on an Illumina HiSeq 2500 at the UNC High Throughput 

Sequencing Facility. 
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RNA sequencing analysis 

Sequence reads were aligned to the murine genome (mm9), and gene 

expression was generated as reads per kilobase of exon model per million mapped 

reads per gene by using MapSplice and upper quartile normalized via RSEM (University 

of Kentucky Bioinformatics Labs, Lexington, KY; ref. 27)99. 

RNA sequencing (RNA-seq) data were normalized for variations in read counts, 

log2 transformed, and median centered before analysis. When combining datasets, we 

adjusted for batch effects using the surrogate variable analysis R package (version 

3.12.0; R Foundation). Subtype calls were made using the BASE47 classification 

algorithm based on the median-centered expression of Mus musculus homologs of 

genes found in the classifier7. Clustering was done using average linkage clustering 

with a centered correlation similarity metric. Immune gene signature scores were 

derived as described previously83. 

Gene data were grouped into immune gene signatures, which were murine 

orthologs of signatures previously identified through unsupervised clustering and gene 

expression profiling of sorted immune cells83,100,101. Gene data were matched to 

predefined immune gene signature clusters via Entrez IDs. Each gene signature was 

calculated as the average value of all genes included in the signature. Differential 

expression for each gene signature was analyzed between tumor models and treatment 

groups via ANOVA (one-way ANOVA), adjusted for multiple testing using an FDR of 

0.05. To determine the prognostic value of each immune gene signature, linear 

univariate correlation modeling was used with signature/clinical variable as a continuous 
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variable compared with tumor size. Heat map of the log10 transformed P value of gene 

signature correlations was displayed with color gradient calculated via: 

−(𝑙𝑜𝑔10(𝑝 − 𝑣𝑎𝑙𝑢𝑒) − 𝑙𝑜𝑔10(0.05))  ∙ 𝑠𝑖𝑔𝑛 𝑜𝑓 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

Gata3 and Pparg gene signatures 

The PPARy gene signature was derived by determining the genes that are 

significantly upregulated (samr package FDR < 0.05) in UMUC9 cells treated with 

rosiglitazone, a PPARy agonist in the GSE47993 dataset83. The GATA3 gene signature 

was pulled from the BIOCARTA curated gene signature set in MSigDB. Gene 

expression data have been deposited GSE112973. 

PvClust 

The significance of clustering nodes was determined using the pvclust R 

package (version 2.0-0, R Foundation; ref. 30)102. Significance of all nodes was 

calculated with a correlation distance metric and average linkage clustering. 

qPCR normalization for TCR/BCR repertoire profiling 

Tumor RNA concentrations were determined using a Qubit RNA BR Assay Kit, 

1:200 in dilution buffer. Using a Qiagen Quantitect Reverse Transcription Kit, cDNA was 

synthesized from 50 ng to 1 μg starting total RNA. RNA derived from column-purified 

T/B cells was included as a positive control, and DI H2O was included as a negative 

control. The reaction was carried out according to the manufacturer's instructions, using 

a Veriti thermocycler (Applied Biosystems). 
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Quantitative PCR was performed in triplicate with 0.5 μmol/L of each forward and 

reverse primers, 0.1 μmol/L TaqMan probe [T-cell receptor (TCR): FAM reporter with 

TAMRA quencher; B-cell receptor (BCR): VIC reporter with TAMRA quencher], cDNA 

(2.5 μL), and Bio-Rad SsoAdvanced Universal Probe Supermix (2×) and DI H2O for a 

final volume of 10 μL per well. Cycling conditions for TCR and BCR were both set for 45 

cycles of recommended TaqMan conditions for the QuantStudio 6 Flex system. 

Purified T/B-cell cDNA was used for positive control and calibration curve, and 

the template-free cDNA synthesis reaction was used for negative control. The 

calibration curve was determined using Ct values from purified T/B-cell cDNA, 10-fold 

serially diluted in nuclease-free water ranging from 1:0 (cDNA: H2O, v/v) to 1:1 × 1012. 

For both T- and B-cell calibration curves, Ct values were detectable as dilute as 1:1 × 

105, with a coefficient of determination of >0.99 for the linear fit of log10(dilution) versus 

Ct. Each sample's Ct value was read out as the ratio of T- or B-cell cDNA to total cDNA. 

5′ RACE amplification of TCR/BCR sequences 

Based on qPCR results, all tumor samples were normalized by T- or B-cell RNA 

starting template. Using a Clontech SMARTer RACE 5′/3′ Kit, cDNA was generated 

using the manufacturer's protocol. cDNA was diluted with tricene/EDTA buffer, and 5′ 

RACE was carried out using the manufacturer's protocol with 0.5 μmol/L custom 

barcoded gene-specific reverse primer, using a Veriti thermocycler (Applied Biosystems 

Veriti 96-well) with the following cycling conditions: 

30 cycles: 

 94°C, 30 seconds 
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 68°C, 30 seconds 

 72°C, 3 minutes 

5′ RACE products were pooled, and clean-up/concentration were performed 

using a Zymogen Genomic DNA Clean & Concentrator. Pools of samples were eluted in 

32 μL of nuclease-free water heated to 70°C. DNA concentration was measured using a 

Qubit DNA HS Assay Kit. Purity (A260/280nm and A260/230nm ratios) was determined 

using a ND-1000 spectrophotometer. Pooled DNA (1–5 μL) was visualized in a 1.5% 

agarose gel to confirm the presence of proper band sizes (TCR and BCR: 400–500 bp). 

TCR/BCR repertoire profiling 

For TCR/BCR repertoire studies, pooled TCR or BCR amplicons were size 

selected using a Sage Science Pippin Prep 1.5% agarose cassette (HTC1510). Bands 

were size selected at 450 to 650 bp. After size selection, samples were analyzed using 

either Agilent 2100 Bioanalyzer or Tapestation to ensure purity. Illumina MiSeq library 

preparation was performed using a KAPA Biosystems DNA Preparation Kit. Libraries 

were run at 6 pmol/L on an Illumina MiSeq using a 600-cycle kit (2 × 300 paired-end), 

with 15% PhiX spike-in. 

Mouse allograft model and treatment by anti–PD-1 antibody 

BBN963 and UPPL1541 cell lines were injected subcutaneously in C57BL/6J 

mice at 1 × 107 and 1 × 106 cells, respectively. Once tumors reached 200 mm3 in tumor 

volume, treatment either by anti–PD-1 antibody (clone RMP1-14, Millipore) or isotype 

control IgG (Sigma) by intraperitoneal injection was started. The treatment was 
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administered once a week at a dose of 10 mg/kg. The tumor size was measured by 

caliper weekly or twice weekly. 

Flow cytometry 

For tissue dissociation, tissues were homogenized in cold media using the 

GentleMACs Dissociator, and the samples were passed through a 70 μm cell strainer 

using a 5-mL syringe plunger. The samples were centrifuged for 7 minutes at 290 RCF, 

4°C, decanting the supernatant. The remaining pellet was resuspended into 1 mL of 

ACK lysis buffer (150 mmol/L NH4Cl, 10 mmol/L, KHCO3, 0.1 nmol/L Na2EDTA in 

DPBS, pH 7.3) for 2 minutes at room temperature before quenching with 10 mL of cold 

media. The samples were centrifuged for 7 minutes at 290 RCF, 4°C, resuspended in 

10 mL of cold media, and passed through a 40 μm cell strainer. Cell counting was 

performed by running a diluted aliquot of sample on a MACSQuant flow cytometer, 

counting lymphocytes as gated by forward scatter area versus side scatter area. 

Samples were washed and resuspended in cold DPBS, normalized by count, and 

transferred onto a 96-well V-bottom plate at 2.5 × 106 lymphocytes per well. Cells were 

resuspended in FVS700 viability stain (BD, 1:1,000 dilution in 100 μL DPBS) for 40 

minutes on ice. Wells not receiving viability staining were resuspended in DPBS. Cells 

were washed twice in staining buffer (0.02% NaN3, 2% BSA in DPBS), resuspended in 

50 μL Fc block (1:50 dilution in staining buffer), and incubated on ice for 15 minutes. 

Antibody master mix was added to samples at 50 μL per sample with final antibody 

concentrations as indicated in Supplementary Table S1 (all mAbs from BD 

Biosciences). Please see Supplementary Table S1 for list of antibodies. 
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Cells were incubated on ice in the dark for 45 minutes and washed twice with 

staining buffer. Cells were fixed in 2% paraformaldehyde overnight. The following 

morning, a minimum of 100,000 events were collected for each sample on a BD 

LSRFortessa flow cytometer. FlowJo flow software Version 10 (Treestar) was used for 

analyses. Fluorescence Minus One controls were used to guide gating strategies. 

Analysis and statistics 

All flow cytometry, TCR/BCR sharing, and Shannon entropy statistics were 

calculated with Mann–Whitney U test. 

For TCR/BCR amplicon sequencing analyses, raw .fastq files were demultiplexed 

by barcode sequences of the gene-specific primers. Sorted R1 and R2 files were 

respectively merged. Sequencing quality was confirmed through the FastQC quality 

control tool. TCR and BCR amplicon data were analyzed via IMGT/HighV-QUEST. Data 

were converted into standard in-lab format, and downstream analysis was performed 

with custom scripts as well as the tcR R package. 

Neoantigen prediction 

C57BL/6 mice were given a single subcutaneous flank injection of BBN963, 

UPPL1541, or MB49 cells. Tumor growth was monitored until tumors reached 100 

mm3, at which point mice were humanely sacrificed with CO2 asphyxiation followed by 

cervical dislocation. Tumors were dissected for downstream DNA/RNA extraction as 

described above. Matched normal DNA was extracted from tail-clippings or liver from 

the mouse in which the cell lines were respectively derived. Library prep and 

sequencing were performed as described above. Bioinformatics prediction of 
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neoantigens was performed as described previously83. Predicted neoantigens were 

filtered on expression in all replicates with >5× read support. 

Vaccine/ELISPOT assay for neoantigen immunogenicity 

Predicted neoantigen peptides were synthesized by New England Peptide, using 

custom peptide array technology. C57BL/6 mice were vaccinated with predicted 

neoantigen peptides, given as a subcutaneous injection of a pool of 8 equimolar 

peptides (5 nmol total peptide) and 50 μg poly(I:C) in PBS. A second identical injection 

was repeated 6 to 7 days after primary injection. Mice were humanely sacrificed with 

CO2 asphyxiation followed by cervical dislocation 5 to 6 days after second injection. 

Spleens were harvested and prepared into a red blood cell lysed, single-cell 

suspension. Splenocytes were plated in triplicate at 5 × 105 cells per 100 μL media onto 

an IFN-γ capture antibody-coated ELISPOT plate (BD Biosciences) for 48 hours, along 

with 1 nmol of a single peptide against which the respective mouse was vaccinated. 

IFN-γ expression was compared with splenocytes incubated with vehicle control. 

Neoantigen-enriched T-cell coculture 

C57BL/6 mice were vaccinated with either a pool of the top 8 predicted BBN963 

neoantigens or irrelevant peptide (SIINFEKL) control, with a second identical booster 

given 7 days after primary vaccine. One week after secondary vaccination, spleens 

were harvested and prepared into a red blood cell lysed, single-cell suspension. T cells 

were isolated using Miltenyi murine Pan T Cell Isolation Kit II. Using previously 

described methods103, T cells were expanded in the presence of bone marrow–derived 

dendritic cells pulsed with a single peptide against which the derivative mouse was 
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vaccinated against. Seven days following ex vivo expansion, 1 × 105 T cells were 

cocultured 10:1 with BBN963 cells onto an IFN-γ capture ELISPOT plate for 72 hours. 

Controls included T cell only, BBN963 only, and media only negative controls, as well 

as antigen-enriched T cells cocultured with respective peptide-pulsed UPPL1541 cells 

as positive control. Signal intensity was read out using an ELISPOT plate reader. T-

cell/BBN963 coculture spot counts were subtracted from their respective T-cell only 

control, and then taken as a percentage of the counts from their respective peptide-

pulsed target positive controls. 

Supplemental material 

All supplemental figures and tables cited in Chapter 2.1 are listed according to 

the original published manuscript, which can be found at 

http://cancerres.aacrjournals.org/content/78/14/3954.figures-only. 

 2.1.3 Results 

Inactivation of Pten and Trp53 in Uroplakin3a-expressing cells results in muscle-

invasive, high-grade urothelial carcinoma 

Our previously published studies describing luminal-like and basal-like molecular 

subtypes of bladder cancer demonstrated that these subtypes reflect the gene 

expression patterns of the differentiation states of the normal urothelium7. Basal-like 

bladder tumors harbor gene expression patterns most similar to basal and intermediate 

cell layers of the bladder, whereas luminal tumors harbor gene expression patterns 

most similar to umbrella cells5,7. To determine whether different cells of origin account 

for the differential gene expression patterns between basal-like and luminal-like high-
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grade, muscle-invasive bladder cancer, we conditionally inactivated Pten and Trp53 in 

Keratin5 (K5) or Uroplakin3a (Upk3a)-expressing basal/intermediate and 

umbrella/intermediate cell layers, respectively, using previously reported K5-

CreERT2104 and Upk3a-CreERT2 (The Jackson Laboratory) transgenic mice. Dual 

inactivation of Pten and Trp53 by surgical injection of adenoviral cre into the bladder 

has been previously shown to induce bladder cancer in mice96. Using standard animal 

husbandry, we generated cohorts of Upk3a-CreERT2; Trp53L/L; Pte/L/L; Rosa26LSL-

Luc mice (hereafter termed “UPPL”) as well as K5-CreERT2; Trp53L/L; PtenL/L; 

Rosa26LSL-tdTomato mice (hereafter called “KPPT”) that were backcrossed 10 times 

to a C57BL/6 background. Both UPPL and KPPT mice were gavaged with tamoxifen 

every other day for 3 doses starting at 6 to 8 weeks of age to induce CreERT2 activity. 

Serial in vivo luminescence (for UPPL mice) and ultrasound of the bladder were used to 

monitor for tumor development and growth. UPPL mice demonstrated gradually 

increasing luminescence signal over time in the region of the bladder (Figure 2.1A,B). 

In addition, by ultrasound, papillary-appearing tumors began to be apparent at a median 

of 58 weeks (Figure 2.1 C,D).  
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Figure 2.1: Inactivation of Pten and Trp53 in Upk3a-expressing cells results in high-grade 
muscle-invasive bladder tumors. (A) Bioluminescent images of UPPL mice at indicated 
time points. (B) Quantification of luminescence over the region of the bladder. (C) 
Ultrasound images of bladder tumor formation. (D) Tumor-free survival as detected by 
ultrasound. (E) Gross images of the kidneys and bladder from a tumor-bearing UPPL 
mouse. (F) Tumor stage assessed histologically based on human TNM staging. 

 

In contrast, KPPT mice administered tamoxifen by gavage died rapidly of 

epithelial hyperplasia of the snout, paws, and papillary skin lesions (Supplementary Fig. 

S1A–S1C). This likely represents the inactivation of Pten and Trp53 (and pursuant 

epithelial overgrowth) in K5-expressing basal cells in multiple organs including the 

epidermis, trachea, and gastrointestinal tract. In an attempt to activate K5-CreERT2 

solely in the K5-expressing basal cells of the bladder, we administered 4-

hydroxytamoxifen (4-OHT) intravesically at various concentrations (2,000 and 200 

nmol/L). Mice injected with intravesical 4-OHT at 2,000 nmol/L exhibited a similar but 
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attenuated phenotype to KPPT mice that had been gavaged with tamoxifen 

(Supplementary Fig. S1B and S1C) and had a shortened survival. In contrast, KPPT 

mice injected with intravesical 4-OHT at 200 nmol/L had an extended survival but did 

not develop bladder tumors despite Cre-mediated recombination as evidenced by 

increased tdTomato signal over the region of the bladder by IVIS imaging 

(Supplementary Fig. S1D). Moreover, histologic examination of the bladders of mice 

injected with intravesical 4-OHT at 2,000 or 200 nmol/L showed no significant histologic 

changes of the urothelium (Supplementary Fig. S1E). 

Approximately 95% of UPPL mice developed tumors within 77 weeks (Figure 

2.1D). Grossly, bladder tumors in UPPL mice appeared to be papillary in nature (Figure 

2.1E), which is a feature documented to be enriched in the luminal-like molecular 

subtype5,6. Histologically, the UPPL tumors were characterized as high grade by an 

expert genitourinary pathologist (S.E. Wobker) and were found to be of varying tumor 

stage (Figure 2.1F) as well as rarely metastatic (Figure 2.2A). UPPL tumors also had 

microscopic papillary features (Figure 2.2B-D) and some had prominent squamous 

differentiation (Figure 2.2D,E). In addition, UPPL tumors were noted to have different 

depths of invasion into the bladder wall including both lamina propria invasion (Figure 

2.1F, 2.2F) and muscularis propria invasion (Figure 2.2G). In keeping with the known 

field defect of urothelial tumors in human disease, tumors were also noted to form in the 

renal pelvis and ureters of about a third of mice (Figure 2.1E, 2.2A,H,I). Finally, rare 

macroscopic metastases were seen (Figure 2.2A,J,K). 
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Figure 2.2: Representative histology of UPPL tumors. (A) Bar graph indicating the 
percentage of UPPL mice that developed bladder tumors, upper tract tumors, and distant 
metastases at the time of sacrifice. (B) Low-power view of papillary-appearing UPPL 
tumor. (C) High-power view of papillary UPPL tumor. (D) Low-power view of papillary 
tumor with squamous histology. (E) High-power view of squamous histology. (F) UPPL 
tumor showing lamina propria invasion. (G) UPPL tumor with muscularis propria invasion. 
(H) Upper tract tumor demonstrating invasion into the renal parenchyma. (I) High-power 
view of urothelial tumor invading renal parenchyma. (J) Cervical lymph node metastases. 
(K) High-power view of cervical lymph node metastases. 
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BBN and UPPL models are basal- and luminal-like models, respectively, of human 

bladder cancer 

Bladder tumors induced by the carcinogen N-Butyl-N-(4-hydroxybutyl) (BBN) 

have been previously documented to harbor a number of histologic features (e.g., 

squamous differentiation, Supplementary Fig. S2A–S2D) and gene expression patterns 

known to be found in basal-like bladder tumors79. We therefore established 11 

independent BBN-induced bladder tumors by continuously administering 0.05% BBN in 

drinking water as described previously91. Given the papillary nature of UPPL tumors, we 

hypothesized that they correspond to a luminal-like molecular subtype. We therefore 

performed global transcriptome profiling of 9 UPPL and 11 BBN mouse tumors using 

RNA-seq. We first performed molecular subtype classification using our previously 

published BASE47 (bladder cancer analysis of subtypes by gene expression; ref. 3)7 

subtype classifier and found that 8 of the 9 UPPL tumors had high correlation to the 

luminal centroid of gene expression (Figure 2.3A). To further validate our observation, 

we coclustered the UPPL and BBN murine tumors with human tumors from the The 

Cancer Genome Atlas (TCGA; n = 408) using genes with corresponding homologs 

across the species and found that the majority of UPPL and BBN tumors coclustered 

with human luminal-like tumors and basal-like tumors, respectively (Figure 2.3B). 
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Figure 2.3: BBN and UPPL tumors recapitulate the human basal and luminal molecular 
subtypes of bladder cancer. (A) Waterfall plot of the correlation to the basal centroid for 
BBN and UPPL primary tumors, with an accompanying confusion matrix indicating the 
subtype calls. (B) Unsupervised clustering heatmap of BBN and UPPL primary tumor 
samples with the TCGA BLCA dataset across genes in the BASE47 classifier. (C) 
Representative flowchart of the workflow to transition a primary tumor extracted from a 
mouse model to a cell line and a cell line–derived tumor. (D) Unsupervised clustering 
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heatmap of MB49, BBN963, UPPL1541, and normal urothelium (KT) cell lines across 
the top 10% most differentially expressed genes across the samples. (E) Unsupervised 
clustering heatmap of MB49, BBN963, and UPPL1541 cell line–derived tumors across 
the top 10% most differentially expressed genes across the samples. (F) Box plots of 
Pparg and Gata3 gene signature scores from RNA-seq data of BBN963 and UPPL1541 
cell line–derived tumors. (G) IPA analysis plots showing activated pathways in MB49 
cell line–derived tumors relative to BBN963 and UPPL1541 cell line–derived tumors. (H) 
Flow cytometry plot for EpCAM expression in 3T3, MB49, UPPL1541, and BBN963 cell 
lines. (I) Western blot of whole-cell lysates from 3T3, MB49, MBT2, and BBN963 cell 
lines blotted for the indicated antibodies. 

Currently, very few cell lines exist for modeling bladder cancer in 

immunocompetent mice; therefore, we set out to generate additional cell lines that could 

be utilized in future studies. In particular, MB49 cells have long been the workhorse of 

syngeneic bladder cancer cell lines90 for studies requiring an immunocompetent host. 

Given the long latency of tumor formation in the UPPL model, we established tumor cell 

lines from both UPPL and BBN tumors using the conditional reprogramming of cells 

(CRC) method described previously98. Specifically, transplantable cell lines were 

established from BBN (BBN963) and UPPL (UPPL1541) tumors (Figure 2.3C) and 

have been confirmed to grow in C57BL/6 mice. In parallel, using the CRC method, we 

generated three primary cell lines derived from normal mouse urothelium of tamoxifen-

treated K5-CreERT2; Rosa26LSL-tdTomato mice, hereafter called KT mice (KT1044, 

KT1975, and KT1970) as a normal reference for comparison. Interestingly, the vast 

majority of epithelial cells that grew in vitro from CRC culture of KT mouse bladders 

expressed tdTomato, suggesting they at some point had expressed K5 (Supplementary 

Fig. S3). 

To assess the similarities between our newly generated models and MB49 cells, 

we performed whole-transcriptome profiling on the BBN963 and UPPL1541 cell lines, 

MB49 cells, 3T3 cells, and three primary mouse urothelial cell lines (KT1044, KT1975, 
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and KT1970). Unsupervised hierarchical clustering of the cell lines on differentially 

regulated genes across samples (Supplementary Table S2) demonstrated that MB49 

cells had transcriptome profiles that differed significantly from the other cell lines 

(Figure 2.3D) when tested by multiscale bootstrap resampling (P = 0.0, Supplementary 

Fig. S4A), whereas BBN963 and UPPL1541 cells had transcriptome profiles that more 

closely resembled normal urothelial (KT) cells. To ensure that we had not tainted our 

MB49 cells, we obtained MB49 cells from an independent source (Phil Abbosh, Fox 

Chase Cancer Center, Philadelphia, PA) and performed transcriptome profiling. We 

found that the transcript level (across all genes) is highly correlated when comparing 

“UNC MB49” with “FCCC MB49” (R = 0.94 respectively, Supplementary Fig. S4B), 

suggesting our MB49 cells were genuine. Intriguingly, hierarchical clustering of MB49 

cells with 3T3 cells, our three primary mouse urothelial cell lines, BBN963 cells, and 

UPPL1541 cells demonstrated that the MB49 cells coclustered with 3T3 cells 

(Supplementary Fig. S4C) significantly by PVClust (Supplementary Fig. S4D). To 

examine the RNA expression profiles of these cell lines in the context of the tumor 

microenvironment, we generated RNA expression data on cell line–derived tumors from 

MB49, BBN963, and UPPL1541 cells. Clustering of these cell line–derived tumors using 

differentially regulated genes (Supplementary Table S3) again demonstrated that MB49 

tumors have significantly divergent transcriptome profiles when tested by multiscale 

bootstrap resampling (P = 0.0, Supplementary Fig. S5A) and demonstrate that this 

finding is not merely an artifact of cell culture (Figure 2.3E). Finally, reassuringly, Pparg 

and Gata3 gene signatures were upregulated in UPPPL1541 tumors relative to BBN963 
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tumors (Figure 2.3F), demonstrating that cell line–derived UPPL1541 tumors maintain 

molecular features of a luminal-like molecular subtype. 

We next performed Ingenuity Pathway Analysis comparing MB49, UPPL1541, 

and BBN963 cell line–derived tumors. General pathways related to cancer were 

enriched in BBN963 tumors relative to UPPL1541 tumors (Supplementary Fig. S5B). In 

contrast, pathways related to fibrosis and epithelial-to-mesenchymal transition (EMT) 

appeared to be highly upregulated in MB49 cell line–derived tumors compared with 

either the BBN963 or UPPL1541 tumors (Figure 2.3G). Based on these observations, 

we examined the expression of a set of epithelial markers in the mouse bladder cell 

lines. Assessment of EpCAM by flow cytometry demonstrated that a significant 

proportion of BBN963 and UPPL1541 cells expressed cell surface EpCAM while MB49 

cells had little to no EpCAM expression, similar to the mouse fibroblast line 3T3 (Figure 

2.3H). In keeping with this finding, we also noted that MB49 cells did not express K5 or 

K14 in immunoblots of whole-cell lysates (Figure 2.3I), implying that MB49 cells have 

lost characteristic urothelial cytokeratin expression patterns potentially from undergoing 

EMT. Furthermore, we noted that MB49 cell line–derived tumors had relatively high and 

low expression of vimentin and Cdh1 (E-cadherin), respectively, consistent with MB49 

cells being more mesenchymal than BBN963 and UPPL1541 cell line–derived tumors 

(Figure 2.3I; Supplementary Fig. S6). In aggregate, these findings suggest that MB49 

cells and tumors more closely resemble fibroblasts than urothelial cells and highlight the 

potential benefit of our models. 

BBN963 tumors demonstrate evidence of an antigen-driven T-cell response 
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Human basal-like and luminal-like bladder cancers demonstrate different patterns 

of immune infiltration and are also correlated with differential response to checkpoint 

inhibitor therapy83,85, suggesting subtype-specific differences in the tumor-immune 

microenvironment. Immune gene signature expression derived from previously 

published studies were compared among 11 BBN and 9 UPPL models83,100,101,105. 

Consistent with immune gene signature patterns observed in human tumors, BBN 

(basal-like) tumors demonstrated greater overall expression of immune gene signatures 

(Figure 2.4A; Supplementary Fig. S7A) than did UPPL (luminal-like) tumors, including 

those for T cells, B cells, dendritic cells, other innate immune cells, and 

immunosuppression83. 
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Figure 2.4: Immune characterization of UPPL1541 and BBN963 subtype-specific bladder 
models. (A) Immune gene signature expression across 9 UPPL and 11 BBN primary 
tumors. (B) Flow cytometric characterization of tumor-infiltrating T cells (CD3+) in cell 
line–derived (allograft) BBN963 and UPPL1541 tumors. Each datapoint represents an 
independent mouse. (C) Frequency of CD8+ to CD4+ T cells in cell line–derived BBN963 
and UPPL1541 tumors. (D) Flow cytometric characterization of tumor-infiltrating B cells 
(B220+) in cell line–derived BBN963 and UPPL1541 tumors. (E) T-cell phenotypic 
subpopulations in cell line–derived BBN963 and UPPL1541 tumors, with significantly 
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increased phenotypes highlighted with respective colors (Mann–Whitney U test, *, P < 
0.05; **, P < 0.001). (F and G), Heatmap (F) and respective quantification (G) of T-cell 
receptor clonotype sharing within cell line–derived BBN963 and UPPL1541 tumors, 
derived from whole-tumor RNA-based T-cell receptor amplicon sequencing. H) Predicted 
neoantigen burden (class I and II, >500 nmol/L predicted binding affinity) in MB49, 
BBN963, and UPPL1541 cell line–derived tumors. 

To further explain the observed immunologic differences between BBN and 

UPPL tumors, we performed flow cytometric analysis in cell line–derived BBN963 and 

UPPL1541 tumors. Comparing the frequency of tumor infiltrating lymphocytes (TIL) by 

flow cytometry from BBN963 and UPPL1541 tumors, we observed significantly greater 

frequencies of CD3+ T cells (Figure 2.4B), as well as increased ratio of CD8+ cytotoxic 

T cells to CD4+ helper T cells (Figure 2.4C) in BBN963. Somewhat surprisingly, the 

proportion of B cells was higher in UPPL tumors; however, the overall proportion of B 

cells in the lymphocytic infiltrate was low (Figure 2.4D). To further characterize the 

phenotype of the tumor-infiltrating T cells, expressions of CD44 and CD62L were used 

to identify naïve (CD44−, CD62L+), central memory (CM; CD44+, CD62L+), and 

effector memory (EM; CD44+, CD62L−) populations. Among CD4+ T cells, UPPL1541 

tumors were enriched for naïve T cells, whereas the frequency of the total memory pool 

(CD44+) was significantly greater in BBN963 tumors (Figure 2.4E). Moreover, EM and 

CM frequencies both trended higher in BBN963. Among CD8+ T cells, the CM 

frequency was significantly greater in BBN963. In addition, CD4+ FoxP3+ regulatory T 

cells trended toward higher frequency in BBN963. Thus, memory subpopulations of 

both CD8+ and CD4+ T cells had increased frequencies in the BBN tumors, suggesting 

the presence of an antigen driven T-cell response in BBN963. 

Analyzing BBN963 and UPPL1541 cell line–derived tumors by TCR repertoire 

profiling, BBN963 tumors demonstrated a higher degree of clonotype sharing between 
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animals (Figure 2.4F,G), suggesting that there may be greater convergent repertoire 

selection in BBN tumor-infiltrating T cells in the context of an antigen-driven response. 

To examine whether the increased immune infiltration and TCR repertoire sharing seen 

in BBN tumors were associated with the number of targetable tumor antigens, we 

performed neoantigen prediction on BBN963 and UPPL1541 cells and not unexpectedly 

observed significantly higher neoantigen burden in BBN963 compared with UPPL1541 

(Figure 2.4H; Supplementary Tables S4 and S5). This, in combination with the 

increased TCR repertoire sharing, further supports the hypothesis that the immune 

infiltration seen in BBN tumors is driven by an antigen-specific immune response. 

To investigate the functional significance of immune infiltrating T-cell 

subpopulations, we performed univariable linear regression with frequency of T-cell 

phenotypic subpopulations as a continuous predictor variable and tumor mass as the 

response variable in untreated mice. In BBN963, the frequency of total and naïve CD8+ 

T cells was positively associated with tumor mass, and the frequency of CD4+ memory, 

CD4+ CM, total CD8+ memory, and CD8+ EM T cells were all inversely correlated with 

tumor mass (Supplementary Fig. S7B). In UPPL1541, no features were positively 

associated with tumor mass, whereas CD8+ total memory and specifically CD8+ CM T 

cells were both weakly inversely correlated with tumor mass. These associations are 

suggestive of tumor-infiltrating memory T cells being functional and capable of antitumor 

activity in both BBN and UPPL, with greater functional significance in BBN963. 

BBN963 tumors stratify by response to PD-1 axis inhibition 
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The relative overexpression of immune gene signatures and evidence of an 

antigen driven T-cell response in BBN963 cell line–derived tumors are suggestive of 

possible greater responsiveness to immune checkpoint inhibitor therapy in BBN963. 

Accordingly, we observed dramatic decreases in mean tumor volume in BBN963 

following anti–PD-1 therapy, while UPPL1541 tumors demonstrated only modest control 

of tumor growth (Figure 2.5A,B). Despite the mean tumor size being substantially 

controlled in BBN963 following anti–PD-1 therapy, the growth pattern of individual 

tumors demonstrated a mixed-response pattern (Figure 2.5C). There was 

heterogeneity of anti–PD-1 response in UPPL1541 tumors as well (Figure 2.5D). The 

difference in responsiveness between BBN963 and UPPL1541 tumors did not appear to 

be secondary to differential expression of PD-L1 as both BBN963 and UPPL1541 cell 

lines upregulated PD-L1 expression when exposed to IFN-γ (Figure 2.5E). 
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Figure 2.5: Anti–PD-1 treatment of BBN963 and UPPL1541 cell line–derived tumors. (A) 
Mean tumor volume of C57BL/6 mice bearing BBN963 tumors treated with either control 
IgG or anti–PD-1 antibody. Anti–PD-1 treatment was begun when tumors reached 200 
mm3. (B) Mean tumor volume of C57BL/6 mice bearing UPPL1541 tumors treated with 
either control IgG or anti–PD-1 antibody. Anti–PD-1 treatment was begun when tumors 
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reached 200 mm3. (C) Tumor volume of individual mice from A. (D) Tumor volume of 
individual mice from B. (E) BBN963 and UPPL1541 cells were treated with IFN-γ, and 
flow cytometry was used to detect cell surface PD-L1 expression. 

In order to elucidate the immune correlates of these two phenotypes in response 

to anti–PD-1 therapy, we repeated anti–PD-1 antibody treatments (Figure 2.6A) and 

analyzed the TIL populations among anti–PD-1 responder and nonresponder BBN963 

tumors once response class could be determined on day +14 following tumor 

inoculation. Surprisingly, no significant changes were observed in the overall T- and B-

cell infiltration frequencies by flow cytometry in responders versus nonresponders 

(Figure 2.6B). In addition, phenotyping of tumor-infiltrating T cells demonstrated only 

significantly greater frequencies of total CD4+ among nonresponders, with subtle, 

nonsignificant variations among other T-cell phenotypic subpopulations (Figure 2.6C). 

Despite these minimal differences, comparison of subpopulation ratios demonstrated an 

overall significant increase in the frequency of total memory-to-regulatory T cells as well 

as significantly higher ratios of CD8+ to CD4+ T cells in responders (Figure 2.6D). To 

further examine the role of TILs among responder and nonresponder tumors, we 

calculated immune gene signatures derived from total tumor RNA-seq and 

independently correlated these signatures to tumor mass. Although nonresponders only 

demonstrated modest inverse correlation between a single CD8+ T-cell immune 

signature and tumor mass, responder tumor mass was inversely correlated with multiple 

immune cell signatures, most significantly with cytotoxic T-cell and CD8+ T-cell 

signatures (Figure 2.6E). These data in aggregate demonstrate the potential 

importance of the balance of effector to suppressor T-cell subpopulations, rather than 

just absolute numbers, in mediating an antitumor response in responding BBN963 

tumors. 
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Figure 2.6: Description and immune characterization of BBN963 mixed-response 
phenotype. (A) Tumor growth curves of anti–PD-1 treated, cell line–derived BBN963 
tumors, showing responders (black) and nonresponders (red) to therapy. (B) Flow 
characterization of tumor-infiltrating T cells (CD3+) and B cells (B220+) in untreated 
(black), responder (red), and nonresponder (blue) BBN963 tumors. (C) T-cell phenotypic 
subpopulations in cell line–derived BBN963 and UPPL1541 tumors, with significantly 
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increased phenotypes highlighted with respective colors (Mann–Whitney U test, *, P < 
0.05). (D) Frequency of memory to regulatory T cells (CD3+CD44+: CD3+CD4+FoxP3+) 
and CD8+ to CD4+ T cells in responder versus nonresponder BBN963 tumors. (E) 
Univariable correlation of tumor size to immune gene signature expression in responder 
(left) and nonresponder (right) BBN963 tumors. Shannon entropy index (F) and receptor 
clonotype sharing (G) of tumor-infiltrating B-cell receptor heavy chain expression in 
responder and nonresponder BBN963 tumors. 

To address the role of clonality of the tumor-infiltrating lymphocytes in controlling 

tumor growth in anti–PD-1 responsive BBN963 tumors, we performed TCR and BCR 

repertoire profiling of responder and nonresponder whole tumor RNA. We observed a 

modest, nonsignificant increase in TCR clonotype sharing (Supplementary Fig. S8A and 

S8B) and no differences in Shannon entropy (Supplementary Fig. S8C) between 

responder and nonresponder tumors. In contrast, BCR profiling demonstrated 

significantly lower Shannon entropy indices (Figure 2.6F) and significantly greater 

clonotype sharing among responders (Figure 2.6G), suggesting a potentially important 

role for B-cell clonal shift in mediating response in the BBN963 model. 

BBN963 and UPPL1541 models express targetable, immunogenic neoantigens 

With the recent interest in neoantigens as biomarkers of immunotherapy 

response and therapeutic targets for personalized immunotherapy, we sought to identify 

and validate neoantigen targets in our subtype-specific bladder models. Using 

previously described methods83, neoantigens were predicted in BBN963, MB49, and 

UPPL1541 cell line–derived tumors (Figure 2.7A), selecting for predicted class I and II 

binders by NetMHCpan and NetMHCIIpan (affinity < 500 nmol/L). Using 5x RNA-seq 

coverage and expression in all replicates as cutoffs, we observed BBN963 to have the 

greatest number of class I (48) and class II (18) predicted neoantigens, followed by 

MB49 (I: 29; II: 8), and lastly by UPPL1541 (I: 2; II: 5). To validate the immunogenic 
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potential of these predicted neoantigens, we synthesized 96 of 110 predicted 

neoantigens and performed vaccination/ELISPOT analyses to identify the ability of each 

peptide to induce an IFN-γ response in T cells stimulated by neoantigen peptide-pulsed 

dendritic cells. Mice were vaccinated with a pool of eight random, equimolar peptides, 

and splenocytes derived from vaccinated mice were subsequently pulsed with one of 

the eight peptides on an IFN-γ capture ELISPOT plate (Figure 2.7B,C). Based on the 

number of spots induced by each peptide, we observed MB49 to contain the most 

highly immunogenic class I and II peptides, holding eight of the top 10 neoantigens by 

IFN-γ response. This is followed by BBN963, and lastly by UPPL1541, which contained 

only one peptide within the top 15. Class I and II neoantigens were equally represented 

among the top binders, with four and six of 10 top neoantigens predicted as class II and 

class I, respectively. Finally, to test the potential for these peptides to generate 

neoantigen-enriched T-cell populations, we performed two rounds of vaccination in wild-

type C57BL/6 mice using the top eight BBN963 neoantigens, followed by ex vivo 

stimulation using one of the respective peptides. Coculture of these neoantigen-

enriched T cells with BBN963 tumor cells demonstrated an IFN-γ response over that of 

irrelevant peptide control in five of eight peptides, emphasizing the potential of these 

peptides for use in neoantigen-based BBN963 treatment models (Figure 2.7D). 
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Figure 2.7: Neoantigen prediction and validation in BBN963, UPPL1541, and MB49. (A) 
Schema for neoantigen prediction workflow, using tumor DNA, tumor RNA, and matched 
normal DNA to call mutations via UNSeqr, epitope prediction to identify predicted class I 
and II binders, and vaccine/ELISPOT validation. (B) Summary of vaccine/ELISPOT 
results in MB49, BBN963, and UPPL1541, with background subtracted counts ranked by 
number of spots and representative figures of highly immunogenic wells (G1, C4, G9), 
weakly immunogenic wells (F4, H7, C5), and controls. (C) Summary of top eight predicted 
neoantigens in MB49 (red), BBN963 (blue), and top four predicted neoantigens in 
UPPL1541 (green), including sequence, predicted MHC class, and rank among all 
screened peptides within all three models. (D) IFN-γ ELISPOT results of BBN963 
neoantigen-enriched T cells cocultured with BBN963 tumors, as a percentage peptide-
pulsed target positive control. Blue dashed line marks IFN-γ intensity of irrelevant peptide 
(SIINFEKL) enriched T cells cocultured with BBN963. 
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 2.1.4 Discussion 

We describe here the first molecular subtype-specific murine model of luminal-

like bladder cancer. The BBN model was derived from carcinogen-treated mice that 

develop spontaneous bladder tumors and exhibit a basal phenotype as previously 

described by others79. We extend these findings by demonstrating that the BBN model 

also has an immune infiltration pattern that is consistent with that of human basal 

tumors83. The UPPL model was derived from mice with directed knockout of Trp53 and 

Pten in the urothelial umbrella cells under the control of the Uroplakin-3a promoter. 

UPPL tumors have papillary histology, decreased immune infiltration, and decreased 

response to PD-1 inhibition relative to BBN tumors. Characterized by gene expression 

profiling, these models reflect human bladder cancer and normal urothelium more 

closely than does the commonly used MB49 model, which appears to more closely 

resemble fibroblasts. These results imply the BBN and UPPL models will prove to be 

valuable resources in studying bladder cancer in immunocompetent animals, and they 

will be a unique resource with which to study molecular subtype-specific biology and 

treatment effects. 

Although dual inactivation of Trp53 and Pten in Upk3a-expressing cells led to 

robust bladder tumor formation, inactivation of these same genes in K5-expressing cells 

did not result in any apparent neoplasia or preneoplastic changes. Although we had set 

out with the goal of answering whether inactivation of Trp53 and Pten in K5-expressing 

basal and intermediate urothelial cells was permissive for tumorigenesis, we are 

hesitant to conclude too much from our negative findings given the significant technical 

differences between how Trp53 and Pten were inactivated in Upk3a-expressing cells 
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(systemic tamoxifen by gavage) and K5-expressing cells (local 4-OHT administration 

into the bladder). Nonetheless, at face value, our results suggest that dual inactivation 

of Trp53 and Pten are sufficient to initiate bladder tumors in Upk3a-expressing but not 

K5-expressing urothelium. 

The immune microenvironments of the mouse models also reflect patterns seen 

in human disease, with increased overall immune infiltration seen in the BBN basal-like 

model83. In parallel with the active immune response, BBN tumors showed increased 

expression of genes associated with immunosuppression, which is presumably an 

adaptive response to suppress and/or evade antitumor immunity. In the BBN (basal-

like) model, we noted increased memory polarization, which is complimented by 

significantly higher expression of EM T-cell immune gene signatures in human basal 

versus luminal tumors among TCGA BLCA samples (Supplementary Fig. S9). These 

patterns mirror those observed in our prior study of human bladder cancer83 and imply 

that tumor immunobiology and mechanisms of resistance to immunotherapy may differ 

by tumor molecular subtype. Importantly, there were a number of aspects noted in the 

described mouse models that have not been as yet examined in human tumors. In the 

BBN (basal-like) model, we noted increased T-cell clonotype sharing, suggesting the 

presence of an active antigen-driven response in these tumors. In contrast, UPPL 

(luminal-like) tumors showed decreased overall immune infiltration along with an 

increased frequency of naïve T cells, consistent with immune exclusion and lack of 

antigen experience, respectively. 

Our study also highlights several limitations of the widely used MB49 murine 

bladder cancer model. We demonstrate that MB49 tumors show lack of characteristic 
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urothelial cytokeratins, lack of EpCAM expression, and a profound skewing toward 

having undergone epithelial-to-mesechymal cell transition. Compared with BBN and 

UPPL tumors, MB49 had a wide transcriptomic distance from both normal murine 

urothelial cells and more closely resemble immortalized fibroblasts. These results 

suggest that although MB49 may be adequate (or in some cases preferred) for studying 

some aspects of bladder cancer biology (e.g., the post-EMT state), the models reported 

in our study should gain wide use in the translational bladder cancer research 

community, both for their subtype specificity and increased fidelity to human bladder 

cancer gene expression profiles. 

Although recent work highlights the mutational faithfulness of the BBN model to 

human bladder cancer106 one limitation of the UPPL1541 and BBN963 models is the 

lack of driver mutations that are also known drivers in human basal-like and luminal-like 

bladder tumors. Major bladder cancer driver mutations such as MLL, FGFR3, and 

ARID1A are not mutated in either model, and suspected driver mutations in our BBN963 

line such as TCF4, FGFR2, and ITK are not seen at high frequencies in human disease 

(Supplementary Fig. S10). This limitation is not unique to our models, as it is also a 

feature of MB49. As RNA transcription is downstream of genetic events such as 

mutations and gene fusions and upstream of protein translation, we feel the 

transcriptomic fidelity of our models to human bladder cancer is evidence that these 

models can be used to faithfully study bladder cancer biology in general and subtype-

specific biology in particular. As both BBN and UPPL tumors exist as transplantable cell 

lines syngeneic with the C57BL/6 background and are able to grow both 

subcutaneously and orthotopically in the bladder, genetic manipulation strategies such 
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as CRISPR/Cas9 may be used to manipulate these tumors should researchers desire to 

study effects of specific mutations in the context of subtype-specific tumors. A second 

limitation of the UPPL model, especially for tumor immunology studies, is accounting for 

the potential effect of PTEN inactivation on the immune microenvironment. PTEN has 

been found to promote nuclear import of the transcription factor Interferon Regulatory 

Factor 3 (IRF3), thereby positively regulating type I IFN induction107. PTEN loss has 

also been associated with impaired T-cell tumor ingress and T-cell mediated cytotoxicity 

in a preclinical model of melanoma where human tumor cell lines engineered with PTEN 

silenced and to express the murine MHC class I molecule H-2Db were injected into 

immunocompromised mice followed by transfer of murine antigen-specific T cells and 

antigen-presenting cells 7 days later108. Thus, it is possible that the UPPL model may be 

skewed toward an immune evaded or suppressed phenotype due to PTEN loss. 

In the ImVigor 210 study, Rosenberg and colleagues showed that a subset of 

luminal tumors were more likely to respond to PD-1 axis inhibition using an anti–PD-L1 

antibody85. We report here that response to monotherapy using an mAb against PD-1 

was effective in the BBN but not the UPPL model. This represents a potential 

discrepancy between our murine models and their homonymous human subtypes; 

however, that conclusion is tempered by two considerations: (i) Our group's luminal 

versus basal predictor is different from that used by the ImVigor investigators, and 

unfortunately despite publication the ImVigor RNA-seq data have yet to be made public, 

and (ii) the subset of luminal tumors more likely to respond was also more heavily 

immune infiltrated and skewed toward effector T-cell expression, which may have 
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marked them as basal by our classifier and/or represent a subset of luminal tumors not 

modeled by UPPL. 

The BBN model exhibited a mixed response to anti–PD-1 therapy, which allowed 

us to evaluate differences in the tumor immune microenvironment between responders 

and nonresponders. Responsive tumors showed higher degrees of CD8+-to-CD4+ T-

cell infiltration and memory-to-regulatory polarization of the tumor-infiltrating T cells. The 

former finding is consistent with prior results in human bladder cancer85, whereas the 

latter is to our knowledge the first report of memory T-cell polarization associating with 

response to immune checkpoint inhibition in bladder cancer. This is consistent with the 

hypothesis that tumor clearance is augmented by generation of T-cell memory. 

Although multiple T-cell immune gene signatures were strongly correlated with tumor 

mass in responders, we observed an overall lack of TCR clonotype sharing increase in 

tumor-infiltrating T cells in responders compared with nonresponders. In addition, 

significant changes to the B-cell clonotype sharing and diversity were observed, 

suggesting B cells may play an important role in the response to checkpoint inhibitor 

therapy. Presumably, this pattern of TCR and BCR expression could be explained by 

several hypotheses: (i) that effector T-cell clones capable of promoting antitumor 

immunity are only present in responders but their frequencies are too low to result in 

discriminating differences in global T-cell diversity changes, or (ii) that effector T-cell 

clones capable of promoting antitumor immunity are present in both responders and 

nonresponders, but the presence of specific B-cell clones is necessary to mediate their 

function. Ongoing studies are evaluating pretreatment tumor features and on-treatment 

features measurable from the peripheral blood that associate with eventual response to 
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therapy, as well as to test novel combinations of immunotherapy agents. Thus, this 

model provides a novel mixed-response platform to study efficacy and mechanisms of 

immunotherapy in bladder cancer. 

2.2 Immuno-PET imaging of tumor-infiltrating lymphocytes using Zirconium-89 

radiolabeled anti-CD3 antibody in immune-competent mice bearing syngeneic 

tumors. 

 2.2.1 Introduction 

Successful clinical trials using blocking antibodies to the T-cell co-inhibitory 

receptors CTLA-4 and PD-1 have driven the recent emergence of interest in cancer 

immunotherapy, leading to accelerated approval timelines for several 

immunotherapeutic agents across multiple tumor indications85,109–114. However, the 

magnitude of interaction between the immune system and tumors varies greatly both 

within and across tumor types, resulting in differences in the response to checkpoint 

immunotherapy. Many of these alterations depend on the presence of impaired tumor 

antigen-specific effector T cells, which have been positively associated with treatment 

efficacy115,116. Thus, one hypothesis has been that the presence of T cells within the 

tumor microenvironment is critical to the success of checkpoint immunotherapy. 

The ability to monitor T cells within the tumor microenvironment and the immune 

response over the course of therapy may allow for early determination of the treatment 

efficacy117,118. Flow cytometry, quantitative polymerase chain reaction, Vβ 

spectratyping, high-throughput sequencing, and immunohistochemistry are among the 

techniques that have provided useful information about antitumor T-cell immunity. 

These procedures require biopsies to evaluate the tumor immune microenvironment, 



  

64 
 

greatly limiting the ability to monitor intratumoral T-cell accumulation in vivo or in real 

time. With the expanding implementation of immunotherapies, tools to monitor immune 

cell activity become increasingly crucial for guiding clinical decision-making and 

elucidating treatment options. Additionally, immune cell monitoring can be applied to 

chimeric antigen receptor (CAR) T cell based therapies, which have demonstrated 

clinical efficacy in human B cell cancers, providing a measure of both patient and donor 

T cell location and activity118. Non-invasive imaging of T cells and tumor-infiltrating 

lymphocytes will be an attractive means of detecting T cell infiltration and tracking the 

response to therapy119. Non-invasive monitoring could therefore change how therapies 

are applied and assessed, to the benefit of patients119. 

Positron emission tomography (PET) and single-photon emission computed 

tomography (SPECT) have been successfully used to obtain clinical images of immune 

cell populations117,120. Other techniques such as ex vivo cell labeling and radiolabeled 

metabolic probes have also been used to non-invasively image lymphocytes. However, 

these approaches are not specific for T cells, have toxic effects, or simply fail to detect 

lymphocytes infiltrating within the tumor121. Immuno-PET is an emerging technique that 

combines the specificity of monoclonal antibodies (mAb) with the high sensitivity and 

quantitative potential of PET to non-invasively identify disease, stage, and response to 

therapy. Immuno-PET targeting of lymphocytes can provide spatial and temporal 

information that is currently unavailable using the standard techniques121. Antibodies 

with high affinity and specificity can be conjugated to radionuclides, and PET imaging 

can be used to non-invasively monitor and quantify mAb distribution in real time122. 

Zirconium-89 (89Zr) is a positron emitting radionuclide that has been recently approved 
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for immuno-PET clinical studies due to its physical and biological characteristics123. In 

addition, 89Zr is a residualizing isotope, which prevents the isotope from leaving the 

target after internalization of labeled antibody124. Thus, 89Zr-immuno-PET is a powerful 

tool to study antigen-antibody interactions. 

Recent reports have demonstrated that antibody fragments radiolabeled with 

64Cu can non-invasively detect CD8+ cytotoxic T lymphocytes in mice using immuno-

PET125. In a similar fashion, zirconium-89 radiolabeled cys-diabodies were successfully 

used to non-invasively detect CD4+ T-cell repopulation in wild-type mice and a model of 

immune reconstitution following hematopoietic stem cell transplantation121. Furthermore, 

89Zr radiolabeled cys-diabody detected increased CD8+ tumor-infiltrating lymphocytes 

in an animal model of colon carcinoma126. This work demonstrated that immuno-PET 

targeting of CD4 and CD8 has the potential to non-invasively detect helper/regulatory 

and cytotoxic T-cell populations in vivo. 

One limitation of the use of antibodies specific for CD4 and/or CD8 for imaging is 

the limited information obtained regarding the breadth of the T cell response. A more 

inclusive cell surface protein expressed by T cells is the pan T-cell marker CD3, which 

is found at all stages of T-cell development. The specificity of the CD3 antigen for T-cell 

lineage cells and its presence at all stages of T-cell development make CD3 a rational 

candidate for detecting pan-T-cell populations in vivo. 

Antibodies specific for CD3 can have substantial effects on the function of CD4+ 

and CD8+ T cells in vivo, including induced T cell activation and expansion127–129. 

Furthermore, administration of high dose anti-CD3 mAb can preferentially deplete T 
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cells in vivo116,129. Therefore, while anti-CD3 mAb can be used to tag T cells, its effects 

in vivo are variable and depend on dosage, isotype, surface antigen density on target T 

cells, and antigen internalization/modulation of the target cell population127–132. 

Previously, zirconium-89 labeled anti-CD3 indicated a strong correlation between anti-

CTLA-4–treated mice and tumor volume133. However, the immunological effects of 

radiolabeled anti-CD3 mAb at the doses used for PET imaging are still unknown. It is 

therefore important to elucidate the immunomodulatory effects of this novel compound 

to determine if it has the potential to polarize T cells toward an activated and potentially 

anti-tumor phenotype when used as a component of immuno-PET imaging. 

We hypothesized that 89Zr radiolabeled anti-CD3 mAb has potential for immuno-

PET detection of tumor-infiltrating T lymphocytes in mice bearing syngeneic tumors 

without changing overall lymphocyte numbers or viability. 

 2.2.2 Results 

89Zr-DFO-anti-CD3 reagent generation and evaluation 

Full details of DFO-conjugation, radiolabeling and subsequent chemical analysis 

can be found in the supplementary information (S1 File). Briefly, the conjugation 

reaction between murine anti-CD3 mAb and DFO yielded 1.1 chelating group per 

protein molecule based on MALDI-TOF mass spectrometry ([m/z (DFO-anti-CD3)–m/z 

(anti-CD3)]/ M.W (DFO) = 148438–147606/752 = 1.1). The DFO-anti-CD3 was isolated 

and purified with chemical purity higher than 98%. Non-reduced SDS-PAGE for both 

DFO-anti-CD3 conjugate and unmodified anti-CD3 showed similar bands with apparent 

molecular weights of ~150kDa. Furthermore, reduced SDS-PAGE showed a modest 
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change in apparent molecular weight between the heavy chains of the DFO-anti-CD3 

conjugate and unmodified anti-CD3. This further confirmed the low degree of DFO 

conjugation to anti-CD3 determined by MALDI-TOF-MS. The 89Zr-DFO-mAb 

conjugates were isolated using size exclusion chromatography (SEC) with radiolabeling 

yields > 85% and specific activities >185 MBq/mg (>5 mCi/mg). Following SEC 

purification, the radiochemical purity of 89Zr-DFO-anti-CD3 was higher than 97%. SE-

HPLC chromatograms, MALDI-TOF MS spectrums and SDS-PGE can be seen in 

supplementary info (S1, S2 and S3 Figs). To ensure the stability of our antibody 

conjugate in mouse serum, we performed an in vitro 72h serum stability assay. The 

radiochemical purity of 89Zr-DFO-CD3 remained higher than 98% at 72h post-

incubation in C57BL/6 mouse serum. This corresponds with the lower uptake of 89Zr-

DFO-CD3 in bone seen in the μPET/CT and ex-vivo biodistribution studies (S4 Fig). To 

demonstrate that labeling of antiCD3 did not alter the biological activity of the protein, a 

saturation binding assay was performed, resulting in a binding affinity of 89Zr-DFO-

antiCD3 of 14.17 ± 3.75 nM and saturation plateau, indicating fully preserved 

immunoreactivity (S5 Fig). 

Biodistribution of 89Zr-DFO-anti-CD3, 89Zr-DFO-IgG2b, and 89Zr-DFO-IgG in healthy 

C57BL/6J mice 

In order to evaluate in vivo targeting of 89Zr-DFO-anti-CD3, a biodistribution 

study was performed on 6 healthy C57BL/6J mice. Mice were intravenously injected via 

tail vein with 825.1 ± 14.8 kBq (22.3 ± 0.4 μCi, ~4 μg, 100 μL) of 89Zr-DFO-anti-CD3, or 

89Zr-DFO-IgG2b or 89Zr-DFO-IgG as isotype and non-isotype specific matched heavy-

chain controls, respectively. IgG2b (BE0090), an isotype control for the anti-CD3 
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(BE0002), was also radiolabeled with 89Zr and evaluated in vivo to ensure that the Fc 

region was not responsible for uptake in target organs. The biodistribution of generic 

89Zr-IgG in C57BL/6J was likewise performed in order to determine nonspecific binding 

from organs involved with antibody clearance and elimination. T cells reside in the 

spleen, lymph nodes, thymus, and bone marrow; therefore those organs were 

harvested and measured for radioactivity134. The liver and blood were additionally 

harvested to monitor antibody clearance through the hepatobiliary pathway. Finally, the 

contrast ratio of tissue to blood was evaluated to determine in vivo imaging potential. 

Biodistribution results are shown in Figure 2.8 and Table 2.1. 89Zr-DFO-anti-CD3 

showed the highest uptake in the spleen followed by the axillary lymph nodes (ALN) at 

72h post-injection. Very low concentrations of 89Zr-DFO-anti-CD3 were measured in 

the blood and bone marrow at 72h post-injection. 

 

Figure 2.8. Scatter dot plots from the ex-vivo biodistribution study of 89Zr-DFO-anti-CD3, 
89Zr-DFO-IgG2b, and 89Zr-DFO-IgG in untreated C57BL/6J mice. Each dot represents 
a unique mouse. Six mice (n = 6) were analyzed in each of the 3 groups for a total of 18 
mice. Horizontal lines represent mean ± standard deviation. All tissue uptake data were 
normalized by the weight of the tissue being measured. All measurements were taken at 
72 hours after injection of antibody. P-values were calculated in Table 2.1 using 
randomization permutation tests. 
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Table 2.1. Results from the ex-vivo biodistribution of 89Zr-DFO-anti-CD3, 89Zr-DFO-

IgG2b, and 89Zr-DFO-IgG in C57BL/6J mice (n = 6 per group). 

 

To evaluate whether the uptake in target organs may be due to the interaction 

between 89Zr-DFO-anti-CD3 and T-cells, the biodistributions of both isotype control 

(89Zr-DFO-IgG2b) and IgG control (89Zr-DFO-IgG) were also tested in healthy 

C57BL/6J mice (n = 6 per group). At 72h post injection, the blood concentration of 89Zr-

DFO-anti-CD3 was minimal (0.9% ID/g) when compared to 89Zr-DFO-IgG2b (10.61%) 

and 89Zr-DFO-IgG (20.31%) controls. Indicating rapid clearance and/or uptake of 89Zr-

DFO-anti-CD3 (Figure 2.8, Table 2.1). Moreover, localization of 89Zr-DFO-anti-CD3 to 

T cell rich organ like spleen, and lymph nodes showed significantly higher accumulation 

than the controls. Finally, liver uptake for 89Zr-DFO-anti-CD3 was significantly lower 

than 89Zr-DFO-IgG2b and 89Zr-DFO-IgG. Whole counts of the thymus did not show 

large statistical differences, however, when the thymus to blood ratio was considered; 

the 89Zr-DFO-anti-CD3 was statically higher than either of the two controls. High 

axillary lymph node (ALN) to blood, spleen to blood and thymus to blood ratios 
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observed for 89Zr-DFO-anti-CD3 confirmed high accumulation in tissue known to have 

high T cell counts. 

PET/CT studies of 89Zr-DFO-anti-CD3 in healthy C57BL/6J mice 

Following the promising results from the biodistribution study, a microPET/CT 

study was performed on six healthy C57BL/6J mice (n = 6) to evaluate immuno-PET 

imaging potential of T cells with 89Zr-DFO-anti-CD3. Healthy C57BL/6J mice were 

intravenously injected via tail vein with 5.6 ± 0.2 MBq (153.4 ± 4.1 μCi, ~25μg, 100 μL) 

of 89Zr-DFO-anti-CD3. High-contrast images were obtained at 72h post-injection 

(Figure 2.9A), where spleen, lymph nodes, and thymus were clearly visualized with low 

background. 

 

Figure 2.9. Micro-PET/CT images of 89Zr-DFO-anti-CD3 in C57BL/6J mice 72h post-
injection (coronal view). (A) Maximum intensity projection of 89Zr-DFO-anti-CD3 
injected into a healthy, immune-competent mouse. The radiolabeled antibody 
accumulated in the following lymphoid organs: cervical lymph nodes (CLN), thymus (T), 
axillary lymph nodes (ALN), inguinal lymph nodes (ILN) and spleen (S). (B) Micro-
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PET/CT (coronal slice) of 89Zr-DFO-anti-CD3 in C57BL/6J mice bearing BBN975 
tumors and (C) a coronal slice of isotype control 89Zr-DFO-IgG2b in C57BL/6J mice 
bearing BBN975 tumors. Six mice (n = 6) in each of the 3 groups were imaged using 
PET/CT. SUV color bar on the left-hand side of the figure corresponds with subfigure A; 
SUV color bar on the right-hand side of the figure corresponds to subfigures B and C. 
Additional scans can be seen in the supplementary information. 

PET/CT and ex-vivo biodistribution studies of 89Zr-DFO-anti-CD3 and 89Zr-DFO-IgG2b 

in C57BL/6J mice bearing syngeneic tumors 

Next, we tested the ability of 89Zr-DFO-anti-CD3 to image tumor infiltrating T 

cells found in C57BL/6J mice bearing BBN975 syngeneic tumors. We compared 89Zr-

DFO-anti-CD3 versus the isotype control 89Zr-DFO-IgG2b using 6 mice for each group 

(2 groups, n = 6). Each group of C57BL/6J mice bearing BBN975 tumors were 

intravenously injected with 6.0 ± 0.1 MBq (162.5 ± 1.8 μCi, ~25μg, 100 μL) of 89Zr-

DFO-anti-CD3 or 89Zr-DFO-IgG2b. Immuno-PET scans of 89Zr-DFO-anti-CD3 showed 

high uptake in spleen, lymph nodes, and tumor (Figure 2.9B). Conversely, the isotype 

control (89Zr-DFO-IgG2b) did not show tumor uptake in microPET/CT scans (Figure 

2.9C). The isotype control also showed higher background than that for 89Zr-DFO-anti-

CD3 due to large amount of antibody-conjugate that remained in circulation. 

To further validate the microPET/CT scans, an ex-vivo biodistribution study of 

89Zr-DFO-anti-CD3 and 89Zr-DFO-IgG2b in C57BL/6J mice bearing BBN975 

syngeneic tumors were performed immediately following each PET scan (Figure 2.10). 

The results are summarized in Figure 2.10 and Table 2.2. Similar to the healthy-mouse 

study, the 89Zr-DFO-anti-CD3 had a significantly lower concentration in blood than the 

isotype control (89Zr-DFO-IgG2b). Also, 89Zr-DFO-anti-CD3 showed higher uptake in 

spleen, ALN, and thymus when compared against the uptake for 89Zr-DFO-IgG2b. 
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Liver uptake was significantly higher for 89Zr-DFO-IgG2b than for 89Zr-DFO-anti-CD3. 

Although there was a not statistical difference in tumor uptake between 89Zr-DFO-

IgG2b and 89Zr-DFO-anti-CD3, the tumor-to-blood ratio of 89Zr-DFO-anti-CD3 was 

11.5-fold higher than that for 89Zr-DFO-IgG2b. 

 

Figure 2.10: Scatter plots from the ex-vivo biodistribution study of 89Zr-DFO-anti-CD3 in 
C57BL/6J mice bearing BBN975 tumors.  Each dot represents a unique mouse. Six mice 
(n = 6) were analyzed in each of the 2 groups for a total of 12 mice. Horizontal lines 
represent mean ± standard deviation. All tissue uptake data were normalized by the 
weight of the tissue being measured. All measurements were taken at 72 hours after 
injection of antibody. P-values were calculated in Table 2.2 using randomization 
permutation tests. 
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Table 2.2. Results from the ex-vivo biodistribution studies of 89Zr-DFO-anti-CD3 and 

89Zr-DFO-IgG2b in C57BL/6J mice bearing BBN975 tumors (n = 6 per group). 

 

Immunological effects of DFO-anti-CD3 in C57BL/6J mice 

To assess the immunological effects of antibodies used in the context of T-cell 

imaging, flow cytometric analysis of splenocytes from mice dosed with 25 μg of DFO-

anti-CD3, 25 μg of native anti-CD3, or PBS control was performed. Administration of 

antibody showed no significant differences in lymphocyte count or viability compared to 

PBS control (Figure 2.11). These metrics demonstrate that this dose of DFO-anti-CD3 

does not result in net-depletion of the splenic pan-lymphocyte population, of which T 

cells are a major component. To ensure free DFO did not significantly influence the T 

cell population within our studies, we performed a control experiment comparing T cell 

phenotypic subpopulation frequencies in free DFO versus PBS control treated animals. 

Free DFO was administered in equimolar amounts relative to DFO-anti-CD3 treated 
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animals (0.4265 nmol), with no significant changes observed in any T cell population 

relative to PBS control (S7 Fig). 

 

Figure 2.11: Effects of DFO-anti-CD3 and unconjugated anti-CD3 treatment on total 
lymphocyte numbers and viability in the spleen of C57BL/6J mice. Y-axis corresponds to 
absolute event counts for each respective subfigure. 

DFO-anti-CD3 decreases the naïve CD8+ population and increases central/effector 

memory CD8+ populations 

Since changes in the frequency and enumeration of peripheral lymphocytes were 

not observed following DFO-anti-CD3 injection, we therefore determined if the DFO-

anti-CD3 altered the distribution of CD8+ and CD4+ T-cell sub-populations135. 

Specifically, naïve, total memory, central memory, and effector memory sub-populations 

were analyzed within the total CD8+ or CD4+ T-cell pools. The effect of DFO-anti-CD3 

resulted in a modest increase in the total CD8+ T cell population compared to the PBS 

control (16.22% vs 13.07%, p < 0.05, Table 2.3, S1 Table). There was a small but 

significant increase in the percentage of CD8+ T cells in the DFO-anti-CD3 treated 
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group compared to unmodified anti-CD3 treated animals (16.22% vs 12.45%, p < 0.05, 

Figure 2.12, Table 2.3, S1 Table). 

 

Figure 2.12: Representative gating (left) and immunological effects (right) of DFO-anti-
CD3 on CD8+ T-cell phenotype distribution. Effects of DFO-anti-CD3 and unconjugated 
anti-CD3 treatment on frequency of total, naïve, memory, central memory, and effector 
memory CD8+ T-cells in the spleen of C57BL/6J mice are shown. Total CD8+ 
percentages and counts are with respect to all live singlets within the lymphocyte gate. 
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Naïve, memory, central memory, and effector memory CD8+ percentages are with 
respect to total CD8+ populations. For all samples, statistical significance was determined 
via Kruskal-Wallis with a significance cutoff of * (P ≤ 0.05), ** (P ≤ 0.01), *** (P ≤ 0.001), 
or **** (P ≤ 0.0001), with n = 6 in all groups. Error bars represent standard deviation from 
the mean. 

 

Table 2.3. Effects of DFO-anti-CD3 and unconjugated anti-CD3 treatment on frequency 

of total, naïve, memory, central memory, and effector memory CD8+ T-cells in the 

spleen of C57BL/6J mice are shown. 

 

When comparing population changes between the DFO-anti-CD3 treated group 

versus the PBS control (S1 Table), we observed a significant decrease in naïve CD8+ T 

cells both in percentage (32.68% vs 70.48%) and total count (2.32x106 vs 3.68x106). A 

corresponding increase in memory CD8+ T cells by percentage (48.77% vs 22.75%) 

and count (3.41x106 vs 1.21x106) was also observed. A deeper look into the central 

memory and the effector memory populations identified significant changes when 

comparing DFO-anti-CD3 treated mice against PBS treated mice. Specifically, there 

was a significant increase in the central memory population (43.72% vs 17.50%, p < 

0.001) and a significant increase in the effector memory population (15.66% vs 7.23%, 

p < 0.001). All corresponding cell populations from unconjugated anti-CD3 treated 
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animals trended similarly to the respective cell populations in DFO-anti-CD3 treated 

animals. 

DFO-anti-CD3 decreases total CD4+ T cells and may decrease naïve, central memory, 

and effector memory populations 

Following interrogation of the CD8+ T-cell populations, we next looked at the 

effects of DFO-anti-CD3 on splenic CD4+ T cells. In contrast to the increases observed 

in the CD8+ T-cell population, total CD4+ T cells significantly decreased in the DFO-

anti-CD3 group when compared against a PBS control (9.02% vs 21.43%, p < 0.001, 

Table 2.4, S1 Table). There were no significant differences in the percentages of naïve, 

total memory, central memory, or effector memory CD4+ T-cell sub-populations 

between the DFO-anti-CD3 and PBS groups (Fig 2.13, Table 2.4, S1 Table). However, 

all of these populations trended toward a decrease in absolute count for the DFO-anti-

CD3 group likely due to the lower initial total CD4+ count. Changes in all CD4+ 

populations trended similarly between DFO-anti-CD3 and unconjugated anti-CD3 

treated groups, without significant differences in frequency or count. 
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Figure 2.13: Representative gating (left) and immunological effects (right) of DFO-anti-
CD3 on CD4+ T-cell phenotype distribution. Effects of DFO-anti-CD3 and unconjugated 
anti-CD3 treatment on frequency of total, naïve, memory, central memory, and effector 
memory CD4+ T-cells in the spleen of C57BL/6J mice. Total CD4+ percentages and 
counts are with respect to all live singlets within the lymphocyte gate. Naïve, memory, 
central memory, and effector memory CD4+ percentages are with respect to total CD4+ 
populations. For all samples, statistical significance was determined via Kruskal-Wallis 
with a significance cutoff of * (P ≤ 0.05), ** (P ≤ 0.01), *** (P ≤ 0.001), or **** (P ≤ 0.0001), 
with n = 6 in all groups. Error bars represent standard deviation from the mean. 
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Table 2.4. Effects of DFO-anti-CD3 and unconjugated anti-CD3 treatment on frequency 

of total, naïve, memory, central memory, and effector memory CD4+ T-cells in the 

spleen of C57BL/6J mice. 

 

 2.2.3 Discussion 

We report a non-invasive immuno-PET imaging study in which 89Zr radiolabeled 

anti-CD3 antibody was used to detect T-cell distributions in healthy mice and tumor-

infiltrating T lymphocytes in an immune-competent animal model bearing syngeneic 

tumors. Our method for targeting CD3 in vivo provides a sensitive and specific imaging 

technique for detecting peripheral and tumor infiltrating T lymphocytes. To the best of 

our knowledge, we are the first to elucidate the immunological effects of an anti-CD3 

ImmunoPET-agent on systemic T cell populations. Our results demonstrate that the 

CD3 antigen is a rational target to non-invasively study T cell populations in vivo. 

Further development of 89Zr-DFO-anti-CD3 mAb may be used to evaluate tumor-

infiltrating T cells cancer patients and predict their response to therapy. 

The design of an 89Zr-anti-CD3 immunoPET-agent required the conjugation of a 

bifunctional chelator to the CD3 antibody136. DFO was chosen as the bifunctional 
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chelator because its complex with Zr4+ has high chemical and biological stability137. In 

addition, the radiolabeling of 89Zr with DFO-conjugates takes place at room 

temperature, which is convenient for protein-based conjugates138. The chemical and 

radiochemical properties of our conjugate were consistent with other 89Zr-DFO-mAb 

radioimmunoconjugates previously reported138–140. 

The 89Zr-DFO-anti-CD3 conjugate demonstrated a remarkable ability to target 

and detect tumor-infiltrating and peripheral T cells in an immune-competent syngeneic-

tumor model. Absolute tumor signal was similar between 89Zr-DFO-anti-CD3 and the 

isotype control, but the 89Zr-DFO-anti-CD3 showed rapid clearance from the blood and 

yielded a tumor to blood ratio that was 11.5 times higher than the control. The 

combination of swift clearance and rapid protein recognition between 89Zr-DFO-anti-

CD3 and CD3+ T cells resulted in the clear visualization of tumor-infiltrating and 

peripheral T cells by microPET/CT. 

Investigation of the immunological effects of anti-CD3 and DFO-anti-CD3 on total 

lymphocyte frequency, number, and viability showed modest and non-significant 

differences compared to the PBS control. A deeper look at the immunological effects of 

DFO-anti-CD3 on CD4+ and CD8+ T-cell populations noted a more dramatic difference. 

For CD4+ T cells, DFO-anti-CD3 decreased the total count and percentage of the total 

CD4+ pool. This decrease was observed across all CD4+ sub-populations. The 

implication of this could be a decrease in a CD4+ T-cell mediated anti-tumor response, 

with a potentially diminished cellular (Th1/Th17) or humoral (Th2) immune function. 

There could also be a potential decrease in the CD4+ regulatory T cell population, in 

turn dampening the regulation of anti-tumor effector T-cell function. Further studies are 
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needed to identify how DFO-anti-CD3 affects each of these subpopulations, and to 

determine whether the overall skew is in favor of an anti-tumor immune response. 

Conversely, the immunological effects of DFO-anti-CD3 on CD8+ T-cells showed 

a significant increase in the total CD8+ pool. Our experiments suggest that DFO-anti-

CD3 caused phenotypic skewing of CD8+ T cells from naïve into central memory (CM) 

and effector memory (EM) populations. Both CM and EM cells are able to recognize 

and target tumors for cytolysis and to yield progeny effector cells that drive a robust 

cytotoxic response115. The potential benefit of this increase in memory T cell 

populations is underscored by the association between tumor infiltration of memory T 

cells and better patient prognosis in several cancers. It is therefore possible that the 

systemic effects of DFO-anti-CD3 may increase activation of antigen-specific T cells, 

thereby increasing the number of tumor infiltrating T cell. This increase would further 

improve imaging capabilities and could provide secondary therapeutic effects. Further 

studies are needed to confirm this effect, most notably within the tumor 

microenvironment. Additionally, survival studies are needed to provide direct evidence 

that DFO-anti-CD3 treatment could have dual roles as both an imaging and therapeutic 

agent. 

Overall, DFO-anti-CD3 demonstrated no significant change in total T cell count, 

but a depletion of CD4+ T cells and subsequent increase of CD8+ memory T cells. 

Coincidentally, a higher CD8+ to CD4+ T cell ratio has been associated with better 

patient prognosis in several cancers141–143. 
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An anti-CD3 antibody was successfully radiolabeled with 89Zr via DFO chelating 

agent. 89Zr-DFO-anti-CD3 was found to specifically bind to T-cells populations in 

healthy mice and was able to detect tumor-infiltrating T lymphocytes in C57BL/6J mice 

bearing syngeneic tumors. DFO-anti-CD3 showed no change in overall T lymphocyte 

numbers or viability, but had diminished CD4+ T-cell counts and polarization of the 

CD8+ T-cell pool towards a memory phenotype. These studies showed that DFO-anti-

CD3 could have beneficial immunomodulatory properties favoring a more anti-tumor 

phenotype. Translation of this CD3-based immunoPET-agent to the clinic could provide 

actionable information about the tumor immune microenvironment in cancer patients, all 

while avoiding unwanted and invasive medical procedures. 

 2.2.4 Materials and methods 

Synthesis and characterization of 89Zr-DFO-anti-CD3 

An anti-CD3 antibody was modified with p–isothiocyanatobenzyl desferrioxamine 

(DFO) and radiolabeled with Zr-89 following a previously described method138. A 

detailed description of the synthesis, radiolabeling and characterization of 89Zr-DFO-

anti-CD3 can be found in the supplementary information (S1 File). 

89Zr-DFO-antiCD3 in vitro binding affinity assay 

Immunoreactivity of 89Zr-DFO-antiCD3 was tested by binding saturation assay. 

C57BL/6J murine splenocytes (1.5x106) in microtubes were incubated with increasing 

concentrations of 89Zr-DFO-antiCD3 (0.4–112 nM). Triplicate microtubes were used for 

each measuring point. After incubation, the suspension was centrifuged at 2000 x g for 

5 min and the supernatant remove. This process was repeat 2 more times. The pellets 
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were measured for radioactivity using an automatic γ-counter. Binding affinity (Kd) was 

calculated GraphPad Prism software (GraphPad Software, Inc., California, USA). 

Animal model 

All animal studies were reviewed and approved by the University of North 

Carolina Animal Care and Use Committee (IUCAC). C57BL/6J mice (male, 4–6 weeks 

old, Charles River Laboratories) were used in all of the experiments. Syngeneic bladder 

tumors in C57BL/6J mice were induced using continuous exposure of 0.05% N-Butyl-N-

(4-hydroxybutyl) nitrosamine (BBN) in drinking water144,145. Tumor progression and size 

were monitored in the bladder by ultrasonography. Once the bladder tumors reached 5–

10 mm in diameter, they were harvested and dissociated. Portions of the tumor were 

resuspended in growth media and plated to a 60mm plastic plate. By repeating 

passage, syngeneic bladder cancer cell lines, including BBN975, were successfully 

established and the expression of EpCAM was confirmed by flow cytometry. For 

immuno-PET and biodistribution assays, each C57BL/6J mouse was injected with 10 

million BBN975 cells subcutaneously in the right flank. When tumors reached 50–100 

mm3, typically 20–30 days post tumor injection, immuno-PET and biodistribution assays 

were performed. All animals were humanely sacrificed under CO2 asphyxiation followed 

by cervical dislocation, accordingly with UNC Institutional Animal Care and Use 

Committee (IACUC) protocol. 

Biodistribution of 89Zr-DFO-anti-CD3, 89Zr-DFO-IgG2b, and 89Zr-DFO-IgG in healthy 

C57BL/6J mice 
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Three groups of healthy C57BL/6J mice (n = 6) were intravenously injected via 

tail vein with 825.1 ± 14.8 kBq (22.3 ± 0.4 μCi, ~4 μg, 100 μL) of 89Zr-DFO-anti-CD3, 

89Zr-DFO-IgG2b, or 89Zr-DFO-IgG. Anti-mouse CD3 mAb (BioXCell InVivoMab, clone 

17A2) was chosen because of its availability and extensive references. Rat IgG 2b 

(clone BE0090) was purchased from BioXCell and Rat IgG (clone 02902) was 

purchased from Life technologies. Three days post-injection, we harvested blood, liver, 

spleen, axillary lymph node, thymus, and bone. The tissues were weighed and 

measured for radioactivity using a Capintec CRC-55tW dose calibrator and well counter. 

Whole tails were also measured for radioactivity to eliminate the variability of injections. 

Radioactivity measurements from tissues were decay-corrected back to the time of 

injection. The percent of injected dose per gram of tissue (%ID/g) were calculated using 

these decay-corrected radioactive counts. 

microPET/CT studies of 89Zr-DFO-anti-CD3 in healthy C57BL/6J mice 

Healthy C57BL/6J mice were intravenously injected via tail vein with 5.6 ± 0.2 

MBq (153.4 ± 4.1 μCi, ~25μg, 100 μL) of 89Zr-DFO-anti-CD3. At 72 hours post injection 

the mice were anesthetized with 2% Isoflurane/Oxygen and statically scanned by CT 

and PET for 30 min. CT imaging was performed at 40kV, 140uA, 360 projections per 

bed. MicroPET energy window 250–700 keV was used for the experiment. The CT and 

PET scans were co-registered using AMIDE imaging software. 

microPET/CT and ex vivo biodistribution studies of 89Zr-DFO-anti-CD3 and 89Zr-DFO-

IgG2 in C57BL/6J mice bearing BBN975 tumors 
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Two groups of C57BL/6J mice bearing BBN975 tumors (n = 6) were 

intravenously injected with 6.0 ± 0.1 MBq (162.5 ± 1.8 μCi, ~25μg, 100 μL) of 89Zr-

DFO-anti-CD3 or 89Zr-DFO-IgG2b. At 72h post injection, the mice were anesthetized 

with 2% Isoflurane/Oxygen and statically scanned by CT and PET for 30 min. After 

PET/CT scanning, we collected blood, liver, spleen, axillary lymph node, thymus, bone, 

and tumor from the treated mice. All tissues were weighed, and measured for 

radioactivity. The percent of injected dose per gram of tissue (%ID/g) and tumor-to-non 

tumor tissue (T/nT) ratios were calculated. The CT and PET scans were co-registered 

using AMIDE imaging software. 

Tissue dissociation 

Spleens were homogenized using the GentleMACs Dissociator and the samples 

were passed through a 70 µM cell strainer, followed by homogenization with a 5 mL 

syringe plunger. The samples were centrifuged for 7 minutes at 1200 RPM, 4°C, 

decanting the supernatant. The remaining pellet was resuspended into 1 mL of ACK 

lysis buffer (150 mM NH4Cl, 10 mM, KHCO3, 0.1 nM Na2EDTA in DPBS, pH 7.3) for 2 

minutes at room temperature before quenching with 10 mL of cold media. The samples 

were centrifuged for 7 minutes at 1200 RPM, 4°C, resuspended in 10 mL of cold media, 

and passed through a 40 μM cell strainer. Cell counting was performed by running a 

diluted aliquot of sample on a MACSQuant flow cytometer, counting lymphocytes as 

gated by forward scatter area versus side scatter area. 

Flow cytometry 
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Samples were washed and resuspended in cold DPBS, normalized by count, and 

transferred onto a 96 well V-bottom plate at 1 million lymphocytes per well. Cells were 

resuspended in FVS510 viability stain (1:1000 dilution in 100 μL DPBS) for 40 minutes 

on ice. Wells not receiving viability staining were resuspended in DPBS. Cells were 

washed twice in staining buffer (0.02% NaN3, 2% BSA in DPBS), resuspended in 50 μL 

Fc block (1:50 dilution in staining buffer), and incubated on ice for 15 minutes. Antibody 

master mix was added to samples at 50 μL per sample with final antibody 

concentrations of: CD3e PE (1:100; 145-2C11), CD8a APC-H7 (1:100; 53–6.7), CD4 

FITC (1:200; RM4-5), CD44 PerCP-Cy5.5 (1:200; IM7), CD62L BV421 (1:200; MEL-14), 

NK1.1 APC (1:100; PK136), CD14 APC (1:100; rmC5-3), CD19 APC (1:100; 1D3). (All 

mAbs from BD Biosciences). Cells were incubated on ice for 45 minutes and washed 

twice with staining buffer. Cells were fixed in 2% paraformaldehyde overnight. The 

following morning, a minimum of 100,000 events were collected for each sample on a 

BD LSRFortessa flow cytometer. 

Flow cytometry analysis 

FlowJo flow cytometry software Version 10 was used for analyses of all flow 

cytometric data (S8A Fig). Lymphocytes were identified on the 2-dimensional scatterplot 

of forward scatter (FSC)-area by side scatter (SSC)-area, followed by discrimination of 

singlet cells through FSC-area by FSC-height. Live cells were next identified by 

negative signal from viability staining. From this population of lymphocytes, T cells were 

identified as events which were CD19, CD14, and NK1.1 negative and either CD4 or 

CD8 positive. This strategy for T cell identification was used in place of CD3 staining 

due to significant decreases in CD3 median fluorescence intensity of anti-CD3 and 
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DFO-antiCD3 treated animals (S8C and S8D Fig), presumably due to competitive 

binding of treatment and staining antibodies. Within CD4+ and CD8+ T cell populations, 

cells were identified as naïve (CD44-, CD62L+), central memory (CD44+, CD62L+), or 

effector memory (CD44+, CD62L-) (S9 Fig). 

Statistical analysis 

Data are shown as mean ± standard deviation. Differences between multiple 

groups were tested for significance using Kruskal-Wallis test followed by a Bonferroni 

corrected Mann-Whitney U-test or Dunn’s multiple comparison post-test to compare 

differences between two groups (GraphPad, Prism 5). Non-parametric statistical 

analysis between two groups was performed using Mann-Whitney U-test (GraphPad, 

Prism 5). P values ≤ 0.05 were considered significant. 

Supplemental material 

All supplemental figures and tables cited in Chapter 2.2 are listed according to 

the original published manuscript, which can be found at 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193832#sec023. 
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CHAPTER 3: Role of human endogenous retroviruses in the tumor immune 

microenvironment 

3.1 Introduction 

Human endogenous retroviruses (hERVs) are remnants of exogenous 

retroviruses integrated into the primate genome over evolutionary time17. hERVs share 

genomic similarities to other retroviruses, including the presence of functional and 

remnant 5′ and 3′ long terminal repeats (LTRs), and gag, pro, pol, and env genes. 

Subsets of recently integrated hERVs still maintain limited translation under 

physiological and pathological conditions18,19,38,146,147, including evidence for modulation 

of melanoma, lymphomas, leukemias, and ovarian, breast, prostate, urothelial, and 

renal carcinomas18,20–25,27,148. Although studies have identified the role of specific 

hERVs in the pathogenesis and progression of these cancers, to date there have been 

a limited number of pan-cancer studies elucidating the landscape and impact of hERV 

expression. A recent study by Rooney et al. analyzed features associated with genes 

important for immune cytolytic activity, finding that one of these associated features was 

expression of a small subset of hERVs41. While this study provided evidence that hERV 

expression associated with an immune phenotype, the exploration of hERVs was limited 

by a small reference set, no reported mechanism of association or prognostic impact of 

hERV expression, and no confirmation of a hERV-specific immune population within 

any tumor type. Thus, the role of hERVs in modulating the tumor immune 

microenvironment remains largely unexplored, predominately due to a lack of tools for 
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identification of full-length, intact hERVs from sequencing data. To fully understand the 

role of hERVs in antitumor immunity, a more comprehensive database containing 

greater numbers of individual full-length hERVs is required. Understanding patterns of 

hERV expression will allow for greater knowledge of the impact of hERVs on tumor-

immune interactions, the design of new prognostic models based on hERV signatures, 

and further identification of tumor-specific hERV epitopes for targeted tumor 

vaccinations. 

Currently, a limited repertoire of tools are available for hERV quantification. 

There exist several databases of hERV elements, including HERVd, which contains 

hERV-like elements, and their genomic locations that have been used for analysis of 

RNA-Seq data35,149,150. Additionally, there are several tools for identification of intra- and 

intergenic hERV-like elements37, related transposable elements151, and interspersed 

repeats (RepeatMasker) among human transcripts34. While these resources provide 

methods to quantify expression of hERV-like elements among transcripts, they do not 

provide quantification based on an intact, full-length hERV proviral reference. This 

capability to distinguish and quantify individual hERVs provides a useful tool to classify 

hERVs into distinct groups based on biological associations in various cancers. 

Recently, Vargiu et al. compiled a database of 3,173 intact, full-length hERV 

sequences and developed a comprehensive method for classifying these sequences 

into 11 superfamilies (Supplemental Table 1)38. Using this database as a reference, we 

designed a computational workflow for identifying the expression of specific hERVs from 

RNA sequencing (RNA-Seq), hervQuant, and quantified hERV expression within the 

Cancer Genome Atlas (TCGA) pan-cancer dataset. We assessed interactions of 
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specific hERVs with immune and clinical features. Among all cancer types 

encompassed within the pan-cancer dataset, clear cell renal cell carcinoma (ccRCC, 

designated by TCGA as KIRC) contained the greatest number of prognostic hERVs. 

Thus, we explored two mechanisms by which hERV expression may influence the 

tumor immune microenvironment in ccRCC: (i) activation of RIG-I–like pathway 

signaling and (ii) hERV epitope-triggered T and B cell activation. Using biological 

classes of hERV signatures derived from these two mechanisms, we further 

demonstrated the ability of hERV expression to predict patient survival in a multivariate 

regression model, independent of traditional clinical staging and molecular subtyping. 

Last, we used a publicly available ccRCC ribosome profiling (Ribo-Seq) dataset152 to 

screen for translation of tumor-specific hERV epitopes, validated their capacity to bind 

HLA in vitro, and demonstrated the presence of tetramer-positive epitope-specific T 

cells within ccRCC tumors. We found tumor-specific hERV expression to be associated 

with clinical response to PD-1 axis inhibition in ccRCC patients, suggesting that hERV 

expression may provide a biomarker for immunotherapy responsiveness and hERV viral 

proteins may provide targetable, tumor-specific epitopes. The information gained from 

hERV expression profiling gives new insight into the role of hERVs within tumor-immune 

microenvironment interactions and provides evidence for hERV expression–based 

molecular models for patient prognosis and responsiveness to immunotherapy. 

3.2 Results 

Expression and association of hERVs in TCGA pan-cancer.  

TCGA pan-cancer hERV expression was determined using hervQuant, described 

in detail in the Supplemental Notes (Figure 3.1A and Supplemental Figures 1 and 2). 
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For consistency, only samples sequenced by Illumina NextSeq at 2 × 50 bp were 

analyzed, resulting in complete removal of ESCA, GBM, OV, and STAD and partial 

removal of COAD, UCEC, and READ subtypes (see Supplemental Table 2 for tumor 

abbreviations). All 3,173 reference hERVs were expressed in at least one sample, 

encompassing all 11 superfamilies and 3 lineages (Supplemental Table 1). Relative 

hERV expression patterns were strikingly homogenous across all cancer types (Figure 

3.1B and Supplemental Figure 3). Among all cancer types, TGCT demonstrated the 

greatest mean and median hERV expression, while LIHC, ACC, and UVM ranked last 

(Supplemental Figure 4). To identify similar hERV expression patterns across models, 

we calculated the Euclidean distance of mean hERV expression between each cancer 

type (Figure 3.1B and Supplemental Figure 5). Tumor types with lowest overall hERV 

expression (LIHC, ACC, UVM) were closely related by unsupervised clustering and 

shared very low similarity with all other tumor types. Two large clusters comprised 10 

(PCPG, SKCM, CHOL, SARC, THYM, DLBC, PRAD, THCA, KICH, and LGG) and 8 

(LUAD, PAAD, BLCA, CESC, MESO, UCEC, UCS, and BRCA) cancer types. While 

several cancer types demonstrated similar hERV expression patterns based on tissue 

location (UCEC and UCS, HNSC and LUSC, KIRC and KIRP, and READ and COAD), 

the clustering observed between various tumor types suggests that hERV expression 

may be conserved among cancers across a variety of tissues. Notably, two tumor types 

with immune-privileged tissues of origin (TGCT and UVM) demonstrated lower 

similarities to all other cancers. Lack of immune interactions within these native tissues 

may potentially result in unique hERV expression profiles in these tumors, suggesting 

that shared hERV expression profiles within other tumor types may be shaped by the 
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presence of related tumor immune responses. 

 

Figure 3.1: Human endogenous retrovirus expression and association in TCGA pan-
cancer dataset. (A) Schematic of the hervQuant workflow. (B) hERV expression displayed 
by heatmaps in the outermost layer, ranked by mean expression across the pan-cancer 
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dataset. Tumor groups shown in the middle ring, with colors representing clusters 
determined from a cut-tree (height = 140) of hierarchical clustering of Euclidean distance 
of mean hERV expression between each cancer type. Innermost lines represent hERV 
expression pairwise Euclidean distance ≤40 between tumor types. Opacity and width of 
inner lines increase with greater similarity. (C) Volcano plot of association (GLM) between 
read-normalized hERV expression and the mean of the methylation β coefficient, with 
GLM coefficient along the x axis and –log10 FDR-corrected P value along the y axis. (D 
and E) Association (GLM) between read-normalized hERV expression and (D) IGS 
expression and (E) survival among TCGA pan-cancer dataset. FDR- (D) or Bonferroni-
corrected (E) P represented by intensity of color and direction of coefficient represented 
by color (red, positive; blue, negative). Color bar displays hERV superfamily and 
canonical clade classifications. (D) Rows and columns are ordered by number of 
significantly positive associations. (E) Survival analysis filtered by hERVs and tumor types 
with at least 1 significant comparison. See Supplemental Table 2 for number of samples 
per TCGA cancer cohort. 

Overexpression of specific hERVs within tumors has been attributed to 

epigenetic demethylation of genes associated with provirus expression, which can be 

triggered through the use of epigenetic modulatory agents27,28,153–156. hERV expression 

was highly associated with Illumina Methylation450K-derived methylation patterns, with 

the majority of hERVs significantly associated with demethylation (2,639 hERVs with 

generalized linear model [GLM] FDR-corrected P ≤ 0.05; 2,205 with coefficient <0; 434 

with coefficient >0; Figure 3.1C). 

We next examined the association between hERV expression and immune 

features, age, and survival among tumor types. We first performed multivariable linear 

regression of hERV expression by cancer type with 46 immune gene signatures (IGS) 

previously described in the literature83,100,101,157–159 (Figure 3.1D and Supplemental 

Figure 6). A small population of hERVs demonstrated near ubiquitous positive or 

negative association with all IGS, with the majority of hERVs showing a split association 

pattern. Included among IGS that demonstrated positive association with the majority of 

significant hERVs (GLM FDR-corrected P < 0.05) were those associated with immune 
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cells known to have antitumor effector function, including effector and central memory T 

cells and NK cells. Additionally, a signature of anti–PD-1 (aPD1) responsiveness 

(IPRES_aPD1_responder) was positively associated with hERV expression in 79.2% 

(1,472 of 1,858) of significantly associated hERVs, while a signature for nonresponder 

tumor biopsies (IPRES_aPD1_nonresponder) was negatively associated with all hERV 

expression in 83.0% (1,679 of 2,024) of significantly associated hERVs8. We next 

examined the association between hERV expression and age, controlling for tumor 

type, and observed that the majority of significantly associated hERVs demonstrated 

negative association between expression and patient age (GLM FDR-corrected P < 

0.05; 150 with coefficient <0; 13 with coefficient >0; Supplemental Figure 7). To 

elucidate whether hERV expression associated with clinical outcome, we performed 

Cox’s proportional hazard regression (CoxPH) for hERV expression across all cancer 

types. Association of survival with mean hERV expression identified 3 tumor types with 

prognostic mean hERV expression (KICH, COAD, and KIRC). In all 3 tumor types, 

mean hERV expression was negatively prognostic (Supplemental Figure 8). 

Additionally, we examined Kaplan-Meier survival curves for each TCGA cancer type 

split by upper versus lower 50th percentile mean hERV expression, and observed 5 

cancer types with significant separation of survival curves (Supplemental Figure 9; 

BLCA, COAD, KICH, KIRC, and PCPG; log-ranked P < 0.05). Among these 5 cancer 

types, KIRC was the most associated with survival. All cancer types except BLCA 

demonstrated shorter survival in patients with greater mean hERV expression. To 

perform a more detailed analysis, we associated survival with expression of each 

individual hERV (Figure 3.1E and Supplemental Figure 10). TCGA KIRC (ccRCC), a 
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tumor type in which several hERVs have been shown to be actively translated27,31,32,42, 

constituted 25.1% of all significantly prognostic hERVs, with over 1.5× more significant 

hERVs than the next highest cancer, LGG (KIRC: 362; LGG: 230; Figure 3.1E). To 

elucidate the immune mechanisms behind this enrichment of prognostic hERVs in 

ccRCC, we focused on this cancer type for the remainder of our analyses. 

hERV expression in ccRCC demonstrates evidence of immune stimulation through RIG-

I–like signaling. 

Several groups have demonstrated that activation of select endogenous retroviral 

elements can trigger signaling through innate immune sensors, including double-

stranded RNAs (dsRNA) that subsequently signal through cytosolic RIG-I–like 

receptors28,156. To elucidate a more comprehensive role for hERVs in the RIG-I–like 

pathway in ccRCC, we studied the association between hERV expression and genes in 

the RIG-I–like receptor signature (Molecular Signatures Database)160, observing marked 

separation of genes into 2 groups by hierarchical clustering (Figure 3.2A). We defined 2 

hERV groups (1 and 2; Supplemental Table 3) based on the ratio between each hERV’s 

mean linear regression coefficients within each gene cluster (>1 or < 1) and validated 

their definitions using principal component analysis (Figure 3.2B). While both groups 

demonstrated significant positive association between hERV expression and genes that 

activate the RIG-I-like pathway, group 2 hERVs demonstrated a significant positive 

association with several key antagonist genes downstream of NF-κB signaling (most 

notably NFKBIB), along with a significant negative association to key agonistic genes in 

NF-κB signaling (e.g. TBK1, TANK, and AZI2). CoxPH of hERV expression within 

TCGA KIRC provided further evidence that these groups are biologically distinct, with 
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the majority of group 1 and 2 hERVs providing association with longer and shorter 

overall survival, respectively (Figure 3.2C). In addition, group 2 and non-prognostic 

group 1 hERVs (CoxPH Bonferroni-corrected P > 0.05) demonstrated a significant 

positive association with the majority of IGS (93%, 57%, and 60%, respectively), while 

prognostic group 1 hERVs (Bonferroni-corrected P ≤ 0.05; majority associated with 

longer overall survival) largely demonstrated a negative association with IGS (33%), 

including those for T cells, B cells, dendritic cells, macrophages, and NK cells (Figure 

3.2D and Supplemental Figure 11). Despite these negative association patterns with 

IGS observed in prognostic group 1 hERVs, TCGA KIRC samples with greater 

expression of these hERVs had decreased ratios of Treg to CD8+ IGS (Treg IGS 

divided by the mean of 3 CD8+ IGS) compared with any other hERV group, suggesting 

the immune infiltrate associated with prognostic group 1 hERVs was less 

immunosuppressive than that of non-prognostic group 1 and group 2 hERVs 

(Supplemental Figure 12). Additionally, prognostic group 1 hERVs demonstrated 

positive association with signatures for Th17 T cells, which have been associated with a 

more favorable prognosis in ccRCC161. Overall, this analysis provided the first evidence 

to our knowledge for biologically distinct hERV groups that differentially interact with 

innate immune sensing, with differential downstream prognostic and immunological 

effects and prognostic associations. 
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Figure 3.2: Mechanism of hERV-mediated RIG-I–like pathway signaling in ccRCC. (A) 
Heatmap of association (GLM) between hERV expression and RIG-I–like pathway–
associated genes. FDR-corrected –log10(P value) represented by intensity of color, and 
direction of coefficient represented by color (red: positive, blue: negative). Group 1 (blue) 
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and 2 (orange) hERVs are represented by color along the left-side color bar. (B) PC1 
versus PC2 from PCA of association matrix in A between hERV expression and RIG-I–
like pathway–associated genes from for group 1 and 2 hERVs. Percentage of variance 
for principal component 1 (PC1) and PC2 is shown in parentheses along each axis. (C) 
Volcano plot of CoxPH analysis of UQN hERV expression as a predictor of survival, with 
Bonferroni-corrected –log10(P value) displayed as a function of hazard ratio for each 
hERV. Dashed horizontal line represents FDR-corrected P = 0.05. (B and C) Groups 1 
and 2, and other hERVs defined from A (group 1: blue; group 2: orange; neither: gray). 
(D) Heatmap of association (GLM) between expression of IGSs with group 1 and 2 hERV 
signatures (average expression), split by either significant or nonsignificant association 
with patient prognosis. FDR-corrected P values represented by intensity of color, and 
direction of coefficient represented by color (red, positive; blue, negative). 

hERV expression in ccRCC demonstrates evidence of B cell activation.  

In addition to innate immune sensor signaling, hERVs can trigger antitumor 

immunity through tumor-specific expression of viral epitopes. In cancer patients, high 

antibody titers have been known to develop against hERV proteins with specificity of 

expression within the tumor, with little else known regarding the role of this B cell 

response30. To determine whether hERVs show evidence of an adaptive immune 

response in ccRCC, we identified T/B cell clonotype repertoires in TCGA KIRC using 

MiXCR and filtered on T/B cell receptors (TCRs/BCRs; defined as shared CDR3 amino 

acid sequence) observed in ≥10% of patients162. These filtering criteria resulted in no 

shared TCR clonotypes, suggesting potentially low sensitivity of detection for MiXCR-

derived TCR data in RNA-Seq data. In contrast, 437 shared BCRs were identified, of 

which 397 were significantly associated with expression of ≥1 hERV (Figure 3.3A, left). 

Within this pool, 4 clones had significant positive association with the expression of 

1,207 hERVs, suggesting a potential hERV epitope–driven B cell response (Figure 

3.3A, right, and Supplemental Table 3). Differential superfamily distribution patterns 

were observed between BCR-associated and non-BCR-associated hERVs, suggesting 

certain superfamilies may have a greater propensity for triggering B cell activation 
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(HERVERI, HML, HSERVIII, and HERVW9; FDR-corrected χ2 test P ≤ 0.05; 

Supplemental Figure 13). Furthermore, multiple sequence alignment (Clustal Omega) of 

proviral sequences from these BCR-associated hERVs identified large regions of high 

sequence identity (Supplemental Figure 14). Filtering on sequence identity of ≥25% of 

all BCR-associated hERVs with a sequence length ≥21 base pairs (the approximate 

minimal length necessary for immunoglobulin CDR3 region specificity)163, we observed 

8 regions of conserved DNA similarity (Figure 3.3B). NIH Retrovirus Protein BLAST 

(https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/) of these sequences 

showed similarity to known hERV env genes in 8 of 8 sequences, with additional 

similarity to other retroviral genes in 2 of 8 sequences. While suggestive of potentially 

targetable antigens within the hERV env region, CoxPH demonstrated significantly 

higher hazard ratios among BCR-associated compared with non-BCR-associated 

hERVs (Welch’s t test P = 2.4 × 10–3; Figure 3.3C). Differential expression analysis 

(DESeq2) of BCR-associated hERVs demonstrated a balanced proportion of hERVs 

with both higher tumor–to–matched normal and matched normal–to–tumor expression 

(tumor: n = 542; matched: n = 72; Figure 3.3D), suggesting an overall lack of tumor 

specificity among BCR-associated hERVs. 
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Figure 3.3: hERVs associated with expression of BCR clonotypes are negatively 
prognostic in ccRCC. (A) Heatmap of association (GLM) between hERV expression and 
expression of B cell clonotypes, displaying all TCRs and BCRs that demonstrate 
association (left, FDR-corrected P ≤ 0.05) and a magnified view of the top 4 B cell clones 



  

101 
 

with highest numbers of significantly associated hERVs (right, underscored by black box 
to the bottom left). FDR-corrected P values represented by intensity of color and direction 
of coefficient represented by color (red: positive, blue: negative). (B) Multiple sequence 
alignment of areas of DNA identity in ≥25% of hERVs (all hERVs significantly associated 
with the top 4 B cell clones) and ≥24 base pairs in length (minimum BCR epitope length). 
Base pair sequences displayed by color (A: blue; T: red; C: green; G: yellow; gap: gray) 
and sequence below. y axis order is conserved in all plots. (A and B) Color bars at left 
show superfamily and canonical clade classification. (C) Hazard ratios among all hERVs 
significantly associated to the top 4 B cell clones (left) or non-BCR-associated hERVs 
(right) within TCGA KIRC, with Welch’s t test P value displayed. Data represent median 
(middle line), with boxes encompassing the 25th to 75th percentile, whiskers 
encompassing 1.5× the interquartile range from the box, and outliers shown by dots. (D) 
Waterfall plot displaying the log2 fold change in mean expression of hERVs associated 
with the top 4 B cell clones in the tumor compared with matched normal tissue. FDR-
adjusted P value significance (P ≤ 0.05) from DESeq2 analysis displayed in red (positive 
fold difference), blue (negative fold difference), and gray (nonsignificant). 

hERV signatures of innate and adaptive immune activation provides prognostic value in 

ccRCC.  

Currently, clinical stage is the most robust prognostic variable for ccRCC. While 

molecular features such as M1–M4 molecular subtyping have been shown to be 

potentially prognostic, no molecular markers have been widely adapted for clinical 

decision making in ccRCC, making identification of a robust molecular marker for 

prognosis an appealing goal164. Throughout this study, we identified pools of hERVs 

with evidence of both RIG-I–like–mediated innate immune activation and inhibition, as 

well as B cell–mediated adaptive immunity (Figure 3.4A,B). To provide evidence that 

these classes can be used to generate a model of clinical outcome in ccRCC, we 

derived signatures corresponding to the mean expression of prognostic hERVs (CoxPH 

Bonferroni-corrected P ≤ 0.05) within each class. According to log-rank test, Kaplan-

Meier overall survival curves for patients within the upper versus lower 50th percentiles 

for each of the 3 signatures were significantly different (RIG-I–like upregulated [up]: P = 

4.5 × 10–10; RIG-I–like downregulated [down]: P = 6.3 × 10–14; BCR-associated: P = 1.1 
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× 10–5; Figure 3.4C). Patients with both higher expression of RIG-I–like down and BCR-

associated signatures had significantly shorter overall survival, while those with higher 

expression of the RIG-I–like up signature had longer overall survival. Recent analyses 

also provided metrics for disease-specific survival (DSS) and progression-free interval 

(PFI) in TCGA KIRC, additionally with an underpowered reporting of disease-free 

interval (DFI)165. Of these metrics, DSS and PFI trended similarly to curves observed 

with overall survival, providing further evidence that these hERV signatures are 

specifically associated with disease burden (Supplemental Figure 15). We performed 

multivariable CoxPH modeling with clinical stage and with or without molecular subtype 

(M1–M4) and hERV signatures as predictors for patient outcome in TCGA KIRC. 

Comparing a full model against an all-but-one-feature model, all 3 signatures provided 

significant prognostic value in addition to stage and molecular subtype, with the RIG-I–

like down signature contributing nearly as much prognostic power as traditional staging 

and each of the 3 signatures providing greater prognostic power than molecular 

subtyping (Figure 3.4D and Supplemental Table 4). To establish whether these hERV 

signatures were prognostic in other tumors, we performed univariable CoxPH for each 

signature within all TCGA cancer types (Figure 3.4E). Among these 3 signatures, BCR-

associated hERVs were additionally prognostic in COAD and LGG, while RIG-I–like 

down hERVs were additionally prognostic in BLCA, COAD, KIRP, LGG, and LIHC, 

suggesting these additional cancer types may have hERV–immune microenvironment 

interactions similar to those in ccRCC. Included among these cancer types were KIRP 

and COAD, both of which were closely related to KIRC by hierarchical clustering of 
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hERV expression patterns (Supplemental Figure 5), and LGG, which contained the 

second greatest number of prognostic hERVs after KIRC (Figure 1E). 

 

Figure 3.4: Immune-related hERV signatures are prognostic for patient overall survival. 
(A) Schematic summary of hERV interactions with the immune system in the context of 
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an anti-tumor immune response. (B) Venn diagram showing the number hERVs 
significantly associated (GLM, FDR-corrected P < 0.05) with genes corresponding to the 
upregulation (blue) or downregulation (orange) of the RIG-I–like pathway or positively 
associated (GLM, FDR corrected P < 0.05) with expression of B cell clones (green). (C) 
Kaplan-Meier survival curves for TCGA KIRC patients split by the upper (blue) and lower 
(red) 50th percentile of expression for each of the 3 hERV group signatures represented 
in A. (D) Change in multivariable CoxPH log-likelihood ratios in TCGA KIRC using clinical 
stage and/or M1–M4 molecular subtyping and the 3 classes of hERV groups represented 
in B as predictors for survival. Stacked bars show the change in likelihood ratio for each 
feature when removed from the full model, as well as the χ2 test P value for each hERV 
group signature when removed from the full model (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). 
(E) Univariable CoxPH coefficients for hERV signatures as a predictor for overall survival 
among each cancer type. FDR-corrected P value represented by red asterisks (*P ≤ 0.05). 

hERVs demonstrate evidence of tumor-specific presentation of targetable viral epitopes.  

Previous studies have identified select tumor-specific hERV epitopes in ccRCC 

that trigger in vitro antitumor responses with limited in vivo efficacy31,32,42. Studies 

regarding neoantigens have suggested that a large number of potential epitopes are 

required for screening in order to identify a few clinically relevant peptides with 

significant in vivo antitumor efficacy15,70,166,167. We examined hERV expression patterns 

between tumors and matched normal tissue within TCGA KIRC and observed that 

normal samples clustered together (Supplemental Figure 16). The majority of hERVs 

were heavily upregulated in tumor compared with matched normal samples, leading us 

to hypothesize that there may be many more differentially expressed and targetable 

hERVs within tumor than previously described. In an attempt to expand the potentially 

targetable hERV epitope pool in ccRCC, we first ranked hERVs based on fold change in 

expression between tumor and matched normal samples (Supplemental Figure 17)168. 

Notably, CT-RCC hERV-E (HERVERI/gammaretrovirus-like, designated as hERV 2256 

in the reference database, also known as ERVE-4), one of the few hERVs 

demonstrated to be capable of eliciting a vaccine-inducible CD8+ T cell response, 

ranked second highest in tumor versus normal fold change in expression31,32,42. This 
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same hERV was previously described by Rooney et al. (ERVE-4) and was found to be 

significantly upregulated in ccRCC and associated with a signature of cytotoxicity41. To 

ensure that our analyses were consistent with these previously published findings, we 

performed linear regression between CT-RCC hERV-E and IGS expression including 

the Rooney signature for cytotoxicity (CYT), and observed a significant association 

between expression of this hERV and the majority of IGS in our set, including CYT 

(Supplemental Figure 18). 

Similar to the pattern observed in CT-RCC hERV-E, hERVs that were 

overexpressed within tumors were ubiquitously positively associated with IGS, while 

those that demonstrated overexpression within matched normal tissue demonstrated a 

mixed association pattern (FDR-corrected P ≤ 0.05; Figure 3.5A), suggesting that 

preferential hERV expression in the tumor may facilitate immune activation. 

Interestingly, none of the top 10 hERVs by tumor versus normal expression were 

significantly associated with TCR/BCR clonotype expression or with survival. Given that 

(i) these hERVs were significantly associated with immune activation and (ii) there is 

evidence of functional epitopes and public hERV-specific T cells in at least one of these 

hERVs (CT-RCC hERV-E), the inability to computationally detect TCRs/BCRs 

significantly associated with these hERVs suggests we lacked the sensitivity necessary 

to identify these hERV-specific TCR/BCR clones. This lack of detectable public adaptive 

immune response is also characteristic of neoantigens, which despite failing to show 

association with TCR/BCR expression and survival in the absence of immunotherapy in 

ccRCC, have been recently demonstrated to provide vaccine-induced efficacy in 

melanoma14,15. 
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Figure 3.5: hERVs demonstrate evidence of targetable epitope expression in ccRCC. (A) 
Association (GLM) of the 10 most positively (left) and negatively (right) differentially 
expressed hERVs (TCGA KIRC tumor relative to matched normal tissue) with IGS 
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expression. FDR-corrected P values represented by intensity of color and direction of 
coefficient represented by color (red: positive, blue: negative). (B) Read coverage from 
ccRCC Ribo-Seq data for hERV 4700, demonstrating read coverage of coding regions 
for gag (red), pol (blue), and env (green) genes. (C) Percent identity between all reading 
frames of translated amino acid sequences from the reference gag (red), pol (blue), and 
env (green) sequences for hERV 4700 with known hERV proteins in the NIH retroviral 
protein BLAST database. (D) Exchange efficiency for HLA-A*02:01 monomer UV 
exchange of predicted hERV 4700 epitopes. (E) Left: RT-qPCR (responders: n = 7; 
nonresponders: n = 6) log2 expression of hERV 4700 gag, pol, and, env sequences. 
Right: hervQuant-derived (responders: n = 10; nonresponders: n = 10) hERV 4700 
expression in Nivolumab-treated (aPD1-treated) ccRCC tumor biopsies. Statistical 
analysis performed using Mann-Whitney U test (*P ≤ 0.05, **P ≤ 0.01, NS: P > 0.05). Data 
presented as values (dots) and median (middle line), with boxes encompassing the 25th 
to 75th percentile and whiskers encompassing minimum to maximum values. 

Tumor-specific transcription is necessary for epitope generation but is not 

sufficient without downstream translation. Since the majority of hERVs are 

translationally inactive, we ran hervQuant on a publicly available Ribo-Seq dataset 

comprising several regions from 2 ccRCC and matched normal kidney nephrectomy 

samples (4 regions per tumor; 2 regions per matched normal)152. To filter for hERVs 

with the strongest evidence of differential expression by both Ribo-Seq and RNA-Seq, 

we ranked hERVs by the sum of RNA-Seq and Ribo-Seq fold change in expression in 

tumor versus normal samples (Supplemental Figure 19). Despite evidence of translation 

in the literature, CT-RCC hERV-E did not demonstrate coverage by Ribo-Seq in this 

ccRCC dataset, suggesting the relative insensitivity of Ribo-Seq– compared with RNA-

Seq–based hERV identification. However, analysis of the GWIPS database169 

containing aggregate data from >30 Ribo-Seq datasets provided evidence for 

translation of CT-RCC hERV-E in several human lymphoblastic cell lines but minimal 

translation in all other sets, including normal human tissues, suggesting that CT-RCC 

hERV-E had the capacity for translation within tumor-like tissues (Supplemental Figure 

20). hERV 4700 (HERVERI/gammaretrovirus-like), which demonstrated the highest 
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tumor versus normal expression by RNA-Seq, was identified as the most differentially 

expressed hERV with greatest evidence of translation. Additionally, hERV 4700 was 

expressed at low levels in matched normal tissues from all other tumor subtypes 

(Supplemental Figure 21) and demonstrated additional evidence of translation among 

GWIPS tumor cell line samples (Supplemental Figure 22). Although Ribo-Seq coverage 

of hERV 4700 within ccRCC samples was relatively low, coverage patterns were similar 

to those observed by RNA-Seq (Figure 3.5B). Areas of coverage within the hERV 4700 

proviral reference corresponded to viral gag (red), pol (blue), and env (green) genes. 

Protein-BLAST of these regions translated across each reading frame provided high 

sequence similarity with known reference hERV sequences across all 3 frames of pol 

and env, and frame 2 of gag (Figure 3.5C and Supplemental Figure 23). Using the 

longest sequence identified within each protein reading frame, we performed 

NetMHCPan4.0 epitope prediction, identifying 30 predicted HLA-A*02:01 binders 

(binding affinity ≤500 nM; Supplemental Table 5)39. To ensure these predicted epitopes 

were hERV specific, we searched for overlap between amino acid sequences of each 

peptide with known human proteins in the GENCODE hg19 protein-coding transcript 

translated sequences, observing no overlap between epitopes and non-hERV proteins. 

Using an HLA-A*02:01 monomer UV exchange assay and HLA ELISA readout170–175, 

we validated the binding of 30 of 30 predicted epitopes to HLA-A*02:01 with exchange 

efficiencies ranging from 16.1% to 73.1% (Figure 3.5D). 

hERV epitopes associate with aPD1 response with evidence of epitope-specific T cells 

in ccRCC.  
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To explore whether hERV 4700 expression is predictive for patient response to 

aPD1 therapy, we performed quantitative real-time PCR (RT-qPCR) quantification of 

hERV 4700 with 2 of each gag-, pol-, and env-specific primer/probe sets on ccRCC 

tumor biopsy RNA in aPD1-treated patients (responders: n = 7, nonresponders: n = 6; 

Figure 3.5E and Supplemental Tables 6–8). We observed greater mean RT-qPCR 

signal in aPD1 responders in all primer/probe sets (Mann-Whitney U test P < 0.05; 

Supplemental Table 9), as well as hervQuant-derived hERV 4700 expression from the 

same set with added samples (responders: n = 10, nonresponders: n = 10; Mann-

Whitney U test P = 0.0455), suggesting that transcription of hERV 4700 is associated 

with greater responsiveness to immunotherapy. Additionally, multivariable linear 

regression (GLM) provided perfect fit of primer/probe sets as a predictor for response. 

To demonstrate the presence of an anti–hERV 4700 T cell immune response in ccRCC, 

we performed tetramer staining of an HLA-A*02:01 ccRCC tumor sample using the 30 

MHC tetramers described above (Figure 3.6A,B). Using a stepwise approach, we first 

screened the tumor using 5 pools of 6 tetramers, which demonstrated that pool 4 had 

the largest tetramer-positive CD8+ T cell population (11.3% tetramer-positive). Running 

the 6 individual tetramers, we observed tetramers 2 and 3 to have the greatest staining, 

which corresponded to peptides derived from frame 2 of the gag (10.9% positive) and 

pol (13.5%) protein regions, respectively. We validated the presence of these T cell 

populations in 3 additional ccRCC tumors (gag: 10.9%–24.8%; pol: 13.5%–22.3%), as 

well as observing staining within the range of negative control tetramers in 4 healthy 

donor peripheral blood mononuclear cells (PBMC) samples (gag: 0.12%–1.51%, pol: 

0.13%–0.76%; Figure 3.6C and Supplemental Figure 24). Overall, these data validate 
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our epitope prediction method and provide evidence for the presence of hERV 4700–

specific T cells within ccRCC.

 

Figure 3.6: hERV 4700 epitope–derived HLA-A*02:01 tetramers identify the presence of 
gag- and pol-specific T cells in ccRCC. (A) Flow cytometric representative gating strategy 
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for identification of CD8+ epitope-specific T cells in ccRCC tumor. (B) Epitope gating for 
5 pools of 6 tetramers (top), as well as staining of individual tetramers from pool 4 (bottom) 
in ccRCC. (C) Percent tetramer-specific CD8+ T cells for epitopes identified in B (tetramer 
2: NSWQEMVPV; tetramer 3: MVGPWPRPV) in ccRCC tumors (n = 4) and healthy donor 
PBMC samples (n = 4). Dots represent values for each sample, with bars representing 
the mean across each group. Negative controls for gating definitions include tetramer 
fluorescence-minus-one (FMO) (A) and nonspecific HLA-A*02:01-negative tetramer (B 
and C). Data presented in Figure 6 represent results from 4 independent experiments. 

3.3 Discussion 

We report here a hierarchical analysis of hERV–immune microenvironment 

interactions within the TCGA pan-cancer dataset, integrated with Ribo-Seq data, RNA-

Seq data from immunotherapy-treated patients, and functional biological assays, to 

provide insight into hERV immunobiology in cancer. Our broad survey of hERV 

expression and association patterns provided multiple lines of evidence that hERVs 

shape the tumor immune microenvironment in several cancer types. Conditioning on 

cancer type, we observed that gene signatures of immune responsiveness (aPD1-

responsive signature, effector immune cells) were positively associated with hERV 

expression, suggesting that hERVs may either directly interact with antitumor immunity 

through immune activation or provide a biomarker for an active antitumor immune 

response. In agreement with this view, we observed that hERVs were significantly 

prognostic in multiple cancer types, with the greatest enrichment of prognostic hERVs 

observed in ccRCC. Interestingly, BLCA was the only cancer type in which greater 

average hERV expression resulted in significantly longer survival times. This finding 

suggests potentially different hERV-mediated tumor immunobiology in BLCA and should 

be further explored in future studies. For IGS and CoxPH analyses, hERV expression 

data were normalized either (i) to total RNA-Seq read count (reads per million; RPM) to 

determine the impact of absolute hERV expression or (ii) to upper quartile normalization 
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(UQN) of hERV reads within each sample to determine the impact of relative hERV 

proportions (Supplemental Tables 10 and 11). IGS patterns of association were strongly 

conserved between hERV expression by UQN and read normalization. We observed 

variability in hERV association patterns with 3 CD8+ T cell signatures derived from 

different publications (CD8_T_Cell, CD8_Cluster, CD8)100,101,159, with CD8_T_Cell 

showing an association pattern different from the other 2 signatures. The CD8_T_Cell 

signature contained a set of 8 genes that accounted for its variation from the other 2 

signatures — HAUS3 (cytokinesis and mitosis), SF1 (pre-mRNA splicing), SFRS7 (pre-

mRNA splicing), ZNF91 (protein coding), ZNF609 (protein coding), THUMPD1 (gene 

expression/rRNA processing), MYST3 (histone acetyltransferase), and CDKN2A (cell 

cycle regulator) — all of which are nonspecific to CD8+ T cells in function 

(Supplemental Figure 25). Nevertheless, we included the CD8_T_Cell signature within 

all analyses (including Treg-to-CD8+ ratio) because it remains a commonly used 

signature for CD8+ T cells within the literature. 

In contrast to IGS, CoxPH analysis with UQN hERV data contained a greater 

number of positively prognostic hERVs compared with read-normalized data, 

suggesting that the proportional expression of hERVs may also influence overall 

survival. We additionally observed that the majority of hERVs were associated with 

younger patient age. Since most tumor types show an association between older age 

and worse outcome, and the majority of significantly prognostic hERVs were associated 

with worse outcome, these results suggest that the association between hERVs and 

patient outcome was not simply due to an association with age. 
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Due to the diverse tumor-immune interactions observed among different cancer 

types, we narrowed down further the role of hERVs upon the tumor immune 

microenvironment to one cancer type. We focused on ccRCC to further study the role of 

hERVs in shaping the tumor immune microenvironment because (i) it contained the 

greatest number of prognostic hERVs and (ii) hERV proteins are known to be 

expressed and immunogenic in ccRCC27,31,32,42. 

Within ccRCC, we considered the potential for hERVs to impact both arms of the 

immune system. The role of hERVs in triggering an innate immune response is 

underscored by several recent reports noting that epigenetic-modifying agents that 

promote greater DNA demethylation — decitabine (methyltransferase inhibitor) and 

abemaciclib (CDK4/6 inhibitor)28,156 — increased expression of retroviral elements and 

triggered subsequent antitumor responses through innate sensor signaling, including 

induction of RIG-I–like pathway detection of viral dsRNAs. While these previous reports 

demonstrated only the proinflammatory nature of selected hERV elements, we were 

surprised to find two strikingly distinct patterns of association between hERV expression 

in ccRCC and expression of genes associated with the RIG-I–like family. The 

implication of this clustering pattern (along with the significantly different patterns of 

association between these hERV groups with survival and IGS expression) is that 

hERVs may play both agonistic and antagonistic roles in innate sensor immunity. 

Potentially, group 2 hERVs (RIG-I–like down) may interfere with RIG-I–like signaling 

through a currently unknown mechanism, ultimately skewing the tumor immune 

microenvironment in favor of an immunosuppressive phenotype with greater Treg–to–

CD8+ T cell ratios and negatively impacting patient prognosis. 
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Next, we studied the role of hERVs in triggering an adaptive immune response 

through hERV-mediated immune activation of retroviral epitope-driven T and B cell 

responses. MiXCR analysis of TCGA KIRC failed to identify TCR clones that were 

shared across at least 10% of samples, suggesting that while hERV epitopes have the 

capacity to trigger a T cell–driven antitumor response31,32,42, we lacked the sensitivity to 

computationally identify public hERV-specific TCR clones. In agreement with this, 

comparison of MiXCR-derived TCR expression with previously described TCRs derived 

from amplicon-based adaptive TCR repertoire profiling in 3 TCGA KIRC samples 

demonstrated low total TCR counts of MiXCR data with low frequencies of overlapping 

clones (Supplemental Figure 26). In contrast, we observed a large pool of shared 

BCRs. It is important to note that BCR repertoires are likely more completely sampled 

from RNA-Seq data than are TCR repertoires, as we observed increased BCR 

sequence reads, consistent with the greater transcription of immunoglobulin mRNA from 

cells of the B cell lineage compared with TCR mRNA transcription from activated T 

cells. Thus, our study had greater power to detect BCR than TCR repertoire 

associations. Multiple sequence alignment of BCR-associated hERVs demonstrated 

clustering of proviral sequences by superfamily, suggesting that a B cell response 

generated against shared hERV epitopes is likely to occur within one or several closely 

related superfamilies. The higher hazard ratios among BCR-associated hERVs may be 

related to the lack of tumor specificity for these hERVs. The majority of IGS in ccRCC, 

including those for B cells, have been shown to be associated with worse prognosis105. 

While the mechanism for this finding is currently undetermined, a potential contributor to 

this pattern may be a B cell response in which hERVs are generated in the tumor with 
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epitopes shared by hERVS upregulated within the surrounding normal tissues. Further 

investigation should be performed to study the importance of this potential anti-hERV B 

cell response in ccRCC. 

Evidence for hERV-mediated activation of the innate and adaptive immune 

responses suggests that expression of these proviruses within tumors may contribute to 

immune editing of tumor cell populations. Highly immunogenic hERVs with the capacity 

to be recognized by endogenous T and B cell responses are likely cleared by the 

immune system or otherwise expressed under a heavily immunosuppressed 

microenvironment. There may also exist additional hERV epitopes that generate 

immune responses too weak to promote antitumor immunity. These two groups can 

both be potentially targeted for immune activation through the use of nonspecific (e.g., 

checkpoint blockade therapy, innate immune agonists) or epitope-specific (vaccination, 

adoptive T cell therapy) immunotherapies. Further time-course immune profiling studies 

should be performed to study the mechanisms of hERV-mediated immune surveillance 

in a developing tumor. 

With evidence of hERV-mediated activation of both innate and adaptive immune 

responses, we sought to examine whether these responses could be used to develop a 

model for patient prognosis in ccRCC. Apart from molecular subtyping, no molecular 

markers have improved the prognostic capabilities of current clinical predictive systems 

in ccRCC, suggesting the potential for development of hERV-based signatures as a 

biomarker for survival. In attempt to identify such a prognostic biomarker, we created 

hERV signatures derived from our previous analysis of hERV interactions with the 

innate and adaptive immune response. Based on these signatures, we developed a 
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model that provided significantly greater prognostic power than M1–M4 molecular 

subtyping and levels of prognostic information similar to those of traditional clinical 

staging. Additionally, while these hERV signatures were derived and optimized for 

ccRCC, we showed 2 signatures to provide prognosis in several other tumor models 

related to ccRCC by hERV expression patterns, level of prognostic hERVs, and tissue 

of origin, implying that additional hERV signatures for patient prognosis can be 

independently developed for other cancer types. 

Last, we sought to develop a screening method for detection of hERVs actively 

undergoing translation. The implication of such a tool is the potential for development of 

immune response biomarkers and antitumor T cell vaccine therapies, similar to those 

developed in neoantigen-based vaccine studies. Our analysis of tumor-specific hERVs 

in ccRCC identified CT-RCC hERV-E as the second highest differentially expressed 

hERV by RNA-Seq expression. This particular hERV has been well described in the 

literature as a ccRCC tumor–specific provirus with evidence of hERV-specific T cell 

responses31,32,42. Within our Ribo-Seq analysis, we were underpowered to detect 

evidence of CT-RCC hERV-E translation among 2 ccRCC samples. However, our 

analysis of the GWIPS database provided evidence for the translation of CT-RCC 

hERV-E in human tumor cells but not in normal blood, fibroblasts, or muscle tissue. This 

conforms to the view that CT-RCC hERV-E has the capacity for translation under tumor-

specific conditions and suggests that deeper Ribo-Seq coverage in ccRCC may be 

needed to increase the sensitivity of our computational screening to broaden the set of 

potentially targetable hERV epitopes. Our analysis of CT-RCC hERV-E RNA-Seq 

expression in TCGA KIRC data supports the previous report by Rooney et al. identifying 
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this hERV as being upregulated in ccRCC and associated with a gene expression index 

of cytotoxicity41. We observed the same significant association with their cytotoxicity 

signature and additionally identified a large proportion of other IGS strongly associated 

with its expression. Among these, the most significantly associated was the Treg 

signature, suggesting that expression of CT-RCC hERV-E may be also associated with 

immunosuppression. This strong association with immunosuppressive signatures 

suggests CT-RCC hERV-E may be another potential marker of response for 

immunotherapies such as aPD1 checkpoint blockade therapy. 

RNA-Seq analysis of hERV 4700 demonstrated preferential expression within 

ccRCC, with modest expression in normal kidney and liver. This preferential expression 

underscores the potential for hERV 4700–targeted immunotherapies, with the caveat 

that a particularly robust anti–hERV 4700 immune response could potentially result in 

on-target/on-tissue and on-target/off-tissue toxicity. We provided additionally validation 

for the transcription of this hERV through RT-qPCR and hervQuant analysis of an 

aPD1-treated ccRCC dataset, and showed that expression of hERV 4700 is associated 

with responsiveness to immunotherapy. 

Ribo-Seq screening provided evidence for translation of hERV 4700, supporting 

translation of epitopes that we further validated to bind MHC. Additionally, tetramer 

staining of predicted hERV 4700 epitopes in 4 ccRCC tumors demonstrated the 

presence of infiltrating T cells with receptors specific for gag- and pol-derived epitopes, 

supporting the idea that (i) hERV 4700 may act as a direct target in ccRCC, whereby 

aPD1 could trigger an antitumor response against hERV 4700–derived epitopes, and (ii) 

hERV 4700 expression may be a new biomarker of aPD1 responsiveness in ccRCC. 
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These same T cell populations were scarce to absent in healthy donor PBMCs, 

confirming the specificity of these T cells in ccRCC tumors. Tetramer-specific T cell 

frequencies were particularly high among ccRCC tumors (NSWQEMPV, 10.9%–24.8%; 

MVFPWPRPV, 13.5%–22.3%), suggesting that as much as 40% of tumor-infiltrating 

CD8+ T cells may be specific for these 2 hERV 4700 epitopes. We recognize that these 

frequencies are particularly high for a tumor-infiltrating population, and several caveats 

exist for our analyses. First is the potential for T cell cross-reactivity against these 

tetramers, as well as peptide impurities that recognize other infiltrating T cell 

populations. Additionally, tetramer-positive populations contained a large range of 

fluorescence intensities, suggesting these T cells do not necessarily comprise a single 

clone but likely several different clones with different TCR affinities. Future studies to 

characterize the TCR sequences and phenotypic characteristics of these tetramer-

positive populations should be performed to further elucidate the role of these 

populations and determine the basis for these and other potential caveats. 

In addition to hERV 4700, we observed 172 other hERVs that were differentially 

expressed between aPD1 responders and nonresponders by hervQuant profiling 

(Wilcoxon’s test, P < 0.05), suggesting that a more comprehensive set of hERV 

expression signatures may exist for the development of an aPD1 response biomarker in 

ccRCC (Supplemental Figure 27). Of these hERVs, 6 demonstrated overlap with the 

RIG-I–like down signature, one with the BCR-associated signature and 34 with all 

prognostic hERVs, suggesting relatively low overlap between the set of predictive and 

prognostic hERVs. Overall, hervQuant is the first described method to our knowledge 

for comprehensive identification of potentially targetable hERV epitopes. Further 
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validation should be performed to confirm the capacity of these potential hERV epitopes 

as therapeutic vaccine targets and to develop a robust hERV-based biomarker for 

immunotherapy response in ccRCC. 

In summary, we describe a computational workflow, hervQuant, for robust 

quantification of individual hERVs using RNA-Seq data. The data gained through 

hervQuant provide insights into the pan-cancer landscape of hERV expression and 

immune modulation. Within ccRCC, we found a distinct group of hERVs that were 

inversely associated with RIG-I–like signaling genes, prognosis, and IGS expression. 

Additionally, we examined the interaction between hERV expression in ccRCC and 

activation of B cell clonotypes, and demonstrated the capacity of the above-mentioned 

hERV classes to provide a multivariable model of patient prognosis that significantly 

outperforms traditional clinical staging and molecular subtype prognosis models in 

ccRCC. We provide evidence for a new method of hERV epitope prediction based on 

differential hERV expression in the tumor, Ribo-Seq screening for translation, 

computational epitope prediction, in vitro validation for HLA binding, and in vivo 

detection of epitope-specific T cells in a ccRCC tumor. Importantly, we observed that 

hERV sequences identified through this approach were significantly associated with 

aPD1 responsiveness in ccRCC tumors, supporting continued research into hERVs as 

biomarkers and therapeutic targets for immunotherapy. With the recent increasing 

interest in the role of hERVs in modulating the tumor immune microenvironment, we 

believe the work presented here substantially expands our understanding of hERV 

biology and opens the way for future development of technologies to exploit hERV 

biology for new therapeutic tools. 
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3.4 Methods 

Alignment and quantification of hERV expression from RNA-Seq data.  

hERV genomic coordinates were derived from a previously a published study by 

Vargiu et al.38. Full-length hERV sequences were masked for low complexity reads (9 or 

more repeating single nt; 7 or more repeating double nt; 4 or more repeating nt patterns 

of 3; 3 or more repeating nt patterns of 4; 2 or more repeating patterns of 5; 2 or more 

repeating nt patterns of 5) and compiled alongside human hg19 transcriptome reads 

into a reference file for downstream alignment. RNA-Seq FASTQ files were aligned to 

the hERV reference using STAR v2.5.3 (multimaps ≤10, mismatch ≤7)176. BAM output 

files were filtered for reads that mapped to hERV reference using SAMtools (v1.4)177, 

then quantified using Salmon v0.8.2 (Quant mode, –1 ISF)178. Raw expression matrices 

were either normalized to hERV counts per million total FASTQ reads and log2 

transformed, or normalized to the upper quartile hERV expression value among non-

zero values within each sample and log2 transformed (Supplemental Tables 12–14). 

Only TCGA pan-cancer samples sequenced with Illumina HiSeq 2 × 50 bp were 

analyzed. See the supplemental material for optimization details and input parameters. 

RNA-Seq expression, IGS analysis, and survival analysis.  

MapSplice-aligned, RSEM-quantified RNA-Seq expression matrices and survival 

data were downloaded from FireBrowse (http://firebrowse.org/). Expression matrices 

were merged between all cancer types, upper quartile normalized within each sample, 

and log2 transformed. IGS were derived from previously described 

signatures83,100,101,157–159, with expression calculated as the mean expression of each 
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gene within the signature. TCGA LAML samples were omitted from analysis in order to 

prevent skewing of IGS patterns. 

TCR/BCR alignment.  

MiXCR (v2.1.1) was used for identification of TCR and BCR sequences with 

TCGA KIRC162. Following suggested run methods provided by MiXCR’s documentation 

for RNA-Seq data (https://mixcr.readthedocs.io/en/latest/rnaseq.html), paired-end 

FASTQ files were run through alignment in RNA-Seq mode, 2 rounds of contig 

assembly, extension of incomplete CDR3s, assembly, and export. Data were 

subsequently converted into an expression matrix, dropping all clones (defined as 

conserved amino acid CDR3 sequence) with expression in fewer than 10% of all TCGA 

KIRC samples, and scaled to counts per billion total FASTQ reads. 

HLA-A*02:01 monomer UV exchange and β2-microglobulin ELISA.  

Epitope prediction was performed with the NetMHCpan 4.0 Server interface, 

defining predicted HLA binders as those with binding affinity ≤500 nM39. Predicted 

hERV epitopes were synthesized through New England Peptide array technology. 

Monomer exchange reaction was carried out using the BioLegend Flex-T HLA-A*02:01 

monomer UV exchange protocol174. Peptide exchange efficiency was performed using 

the BioLegend HLA class I ELISA protocol175. 

RT-qPCR validation of hERV 4700. 

Expression levels of hERV 4700 were assessed by RT-qPCR in a collection of 

ccRCC formalin-fixed, paraffin-embedded (FFPE) archival tissue from responders (n = 7 
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patients; 9 samples) and nonresponders (n = 6 patients; 6 samples). RT-qPCR was 

performed on all available samples, with no further selection process. Total RNA 

isolation was performed using the RNAeasy FFPE Kit (QIAGEN). DNAse treatment was 

performed during RNA isolation using RNase-free DNase I (QIAGEN). RNA quality and 

concentration were assessed using a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies). 

First-strand cDNA synthesis was performed using 250 ng total RNA, random 

hexamers, and the SuperScript IV Reverse Transcriptase Kit (Life Technologies). RT-

qPCR was performed on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) 

using TaqMan Universal PCR Master Mix (Applied Biosystems). RT-qPCR primer and 

probe sequences are shown in Supplemental Table 7. All analyses were performed in 

triplicate, and relative RNA levels were determined using hypoxanthine 

phosphoribosyltransferase 1 (HPRT1) as an endogenous internal control (Applied 

Biosystems, catalog 4333768). A HeLa control RNA sample was included for inter-plate 

calibration. hERV 4700 expression levels were calculated using the ΔΔCt method. 

Expression levels for 2 sample pairs derived from the same patients were averaged for 

statistical analyses in Figure 3.5E. 

Flow cytometric analysis.  

Tetramer and cell surface staining was performed as described previously179. 

Briefly, viably frozen, histologically subtyped ccRCC tumor samples were thawed and 

stained for HLA-A2 (BD Biosciences; clone BB7.2, allophycocyanin [APC]). Separately, 

samples positive for HLA-A2 were treated with 50 nM dasatinib for 30 minutes at 37°C, 
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then stained using approximately 10 μg/ml tetramer (phycoerythrin [PE]) or Beckman 

Coulter iTAg MHC class I human–negative tetramer control on ice for 30 minutes. Cells 

were then washed and incubated on ice with 5 μg/ml biotin-conjugated anti-PE antibody 

(BioLegend; PE001) for 20 minutes, followed by 2 washes, then further incubation with 

5 μg/ml streptavidin, R-PE conjugate (SAPE) for 10 minutes on ice. Cells were then 

washed and stained for viability using BD fixable viability dye FVS700 according to the 

manufacturer’s directions. Last, cells were Fc blocked using mouse immunoglobulin 

(MilliporeSigma, catalog I5381) for 10 minutes, followed by surface staining for 20 

minutes on ice with the following markers: anti-CD45 (BD Biosciences; clone HI30, 

BV510), anti-CD3 (BD Biosciences; clone UCHT1, FITC), anti-CD8 (Beckman Coulter; 

SFCI21THy2D3 [T8], APC), anti-CD4 (BD Biosciences; clone RPA-T4, BV421), anti-

CD14 (BD Biosciences; clone MϕP9, PerCP Cy 5.5), anti-CD19 (BD Biosciences; clone 

HIB19, PerCP Cy5.5), and anti-CD56 (BD Biosciences; clone BI59, PerCP Cy5.5). 

A minimum of 1,000,000 events were collected for each sample on a BD 

LSRFortessa flow cytometer. FlowJo flow cytometry software version 10 was used for 

analyses of all flow cytometric data. Tumors were derived from viably frozen 

nephrectomy samples from UNC Chapel Hill and Vanderbilt University hospital patients 

with clear cell histology. Healthy donor PBMCs were screened by and purchased from 

Gulf Coast Regional Blood Center, Houston, Texas, USA. 

Data availability.  

TCGA analyses were performed on data collected and generated by the TCGA 

Research Network — expression matrices can be accessed at http://firebrowse.org/; 
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TCGA raw data can be accessed in the database of Genotypes and Phenotypes 

(dbGaP, accession phs000178). Ribo-Seq analysis was performed on data collected by 

Loayza-Puch et al. and can be accessed in the NCBI’s Gene Expression Omnibus 

database (GEO GSE59821)152. hervQuant expression matrices for TCGA pan-cancer 

(UQN and RPM) and aPD1-treated ccRCC (raw reads) RNA-Seq datasets are available 

in Supplemental Tables 12–14. The GWIPS ribosomal profiling database is available at 

https://gwips.ucc.ie/. The hervQuant workflow reference and instructions are available 

for download at https://unclineberger.org/vincent/resources 

Statistics.  

GLM using the R “glm” package was used for all univariable regression, unless 

otherwise stated. Univariable and multivariable CoxPH was performed with the R 

“survival” package. Multiple sequence alignment was performed with Clustal Omega 

through the R “msa” package180. Differential hERV expression was calculated using the 

DESeq2 R package168. For all CoxPH analyses, P value correction was performed 

using Bonferroni’s correction to maintain a conservative cutoff of significance. For all 

other analyses, 5% FDR multiple testing correction for P values was performed unless 

otherwise stated. Welch’s t test was performed for statistical calculation in Figure 3.3C. 

Log rank test was performed for statistical calculation in Figure 3.4C, with no multiple 

testing correction. Multivariable CoxPH and χ2 test were performed for statistical 

calculation in Figure 3.4D, with no multiple testing correction. Mann-Whitney U test was 

performed for statistical calculation in Figure 3.5E, with no multiple testing correction. P 

< 0.05 was considered significant for all statistical tests performed. 
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Study approval and sample acquisition.  

The present studies in humans were reviewed and approved by the Vanderbilt 

University Human Research Protections Program, and the University of North Carolina 

at Chapel Hill IRB and the Office of Human Research Ethics (CB 7097). Subjects 

provided written informed consent prior to their participation in the study. Biopsy 

samples were collected according to a protocol approved by the Vanderbilt University 

IRB (no. 160979), and the UNC IRB approved the biorepository protocol (LCCC 1212). 

Patients were identified through an IRB-approved protocol and identified using a 

pharmacy-based list. Line of treatment for each patient varied. The response was first 

determined by chart review of clinicians’ notes and then confirmed by the authors of this 

article based on RECISTS 1.1 imaging criteria. 

Supplemental material 

All supplemental figures and tables cited in Chapter 2.2 are listed according to 

the original published manuscript, which can be found at 

https://www.jci.org/articles/view/121476#sd. 
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CHAPTER 4: Design and delivering of neoantigen-based therapeutic vaccines 

4.1 Machine learning model for prediction of neoantigen immunogenicity 

 4.1.1 Introduction 

T cells are a key driver of anti-tumor immune response through recognition of 

antigenic tumor peptides presented on cell surface major histocompatibility complex 

(MHC) proteins. These peptides include tumor neoantigens, which are derived from 

mutation-containing proteins that generate novel immunogenic epitopes, as well as minor 

histocompatibility antigens (mHA), which are variants within the same MHC allele arising 

from single nucleotide polymorphisms, most commonly in the setting of hematopoietic 

stem cell transplants.  Despite the ability of these antigen-based therapeutic tumor 

vaccines to promote tumor-specific T-cell responses in a number of pre-clinical models70–

72, clinical efficacy remains to be demonstrated14,15.  

Among significant challenges impeding clinical translation of neoantigen/mHA 

therapies includes the ability to select the subset of immunogenic antigens from all 

possible computationally-predicted neoantigens.  Unlike murine pre-clinical models 

where in vivo/ex vivo methods to screen for immunogenicity exist, no such benchtop 

prediction method for immunogenicity is currently available in humans.  As such, the 

development of an algorithm for predicting the immunogenicity of computationally-

predicted antigens could advance clinical translation of neoantigen therapies. 
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While there are robust methods to predict for the binding affinity of potential peptide 

epitopes across multiple species39,181, these methods are insufficient to determine 

whether an immune response will be generated against said epitope in vivo.  In the case 

of neoantigens and mHA, where most predictions are based on SNV/SNP mutations, 

predicted binders share high sequence identity to native protein sequences.  This high 

sequence identity results in greater potential for central tolerance compared to epitopes 

derived from non-self-proteins (such as viral antigens).   

While a subset of predicted neoantigens/mHA are capable of promoting an 

effector T cell response, it isn’t currently clear whether specific features of the predicted 

antigen sequence predicts for immunogenicity.  Here, we correlate peptide-intrinsic 

features of predicted murine neoantigens and mHA with immune response in the 

vaccine setting.  Using a gradient boosting method with cross-validation, we design a 

novel model to predict for neoantigen/mHA peptide immunogenicity based on peptide-

intrinsic characteristics.  We predicted for the immunogenicity of predicted neoantigens 

in the BBN963 basal-like bladder model and mHA in the P815 (BALB/c host, DBA/2 

recipient) mastocytoma transplant model and demonstrated the capacity of epitopes 

with high predicted immunogenicity to control tumor growth better than those with low 

predicted immunogenicity and untreated control.  Lastly, using our model on predicted 

class I neoantigens among the TCGA pan-cancer dataset, we observed high 

association between highly immunogenic neoantigens and MSI-high driven immune 

features in colon adenocarcinoma (COAD) and a strong negative association between 

MYC amplification and highly immunogenic neoantigen numbers in lung 

adenocarcinoma (LUAD) cancer types.   
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 4.1.2 Results and Discussion 

 

Identification, screening, and computational processing of murine neoantigens 

Neoantigens and mHA were predicted in six murine tumor models (B16F10, 

BBN963, MB49, UPPL1541, P815, and T11) spanning the murine b and d haplotypes 

(Figure 4.1A).  Neoantigen prediction was performed as previously described182.  

Briefly (Figure 4.1B), whole exome sequencing was performed on tumor and matched-

normal tail or liver DNA, along with whole transcriptome sequencing of tumor RNA.  

Tumor mutations were called using UNCeqR183, filtering for SNV mutations with at least 

5x coverage by RNA-seq.  Translated 8-11mer (class I)  or 15mer (class II) peptides 

were derived across three open reading frames, and then predicted for MHC binding 

affinity using NetMHCPan3.0184.  Minor mismatch antigens were predicted similarly in 

the P815 model (derived from DBA/2 background) against the BALB/c histocompatible 

host.  Predicted binders were filtered by binding affinity < 500nM, with top binding 

epitopes synthesized using New England Peptide array technology.  To screen for 

immunogenicity, animals were vaccinated on days zero and seven with pools of eight 

peptides.  Splenocytes from vaccinated animals were collected on day 14 and plated in 

triplicate onto an IFN-γ capture ELISpot alongside one antigenic peptide contained 

within the vaccine.  Immunogenicity was defined as the average number of spots 

identified using an ELISpot plate reader, with no-peptide background subtracted from 

each epitope. 
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Figure 4.1: Summary of tumor antigen prediction and identification of peptide-intrinsic 
features.  (A) Number of MHC class I and II neoantigens/mHA per tumor model contained 
within the study. (B) Schematic of neoantigen/mHA prediction and ELISpot validation 
workflow. (C) Summary of major classes of peptide-intrinsic features identified for each 
antigen, including amino acid sequence and characteristics at I) each absolute position, 
II) each relative site, III) the mutation position, and IV) the start, middle, and end of each 
peptide. 
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With the goal of identifying peptide-intrinsic features that associate with 

immunogenicity, we derived a set of features for each peptide, including the amino acid 

sequence and characteristic (via R package aaComp: Tiny, Small, Aliphatic, Aromatic, 

Nonpolar, Polar, Charged, Basic, and Acid) at each absolute position (Figure 4.1C: I), 

relative site (Figure 4.1C: II), at the site of mutation (Figure 4.1C: III), and at the first 

three, middle, or last three sequences of each peptide (Figure 4.1C: IV).  We began our 

analysis by performing univariable and multivariable generalized linear model (GLM) 

regression between these sets of peptide-intrinsic features with immunogenicity, 

independently for class I and class II peptides. 

Associations of immunogenicity in class I MHC epitopes 

Univariable regression between intrinsic peptide features and immunogenicity in 

class I antigens demonstrated 38 significant features (FDR-correlated p-value < 0.05; 

Figure 4.2A).  Among these features, the most strongly positively associated with 

immunogenicity were changes at the mutation position into a small amino acid 

(“Mutated_position_change_of_Small_feature”), valine at relative site 2 

(“Relative_site_2_V”), and basic amino acids at the mutated position of the reference 

epitope (“Reference_AA_at_mutated_position_Basic”), while the most strongly 

negatively correlated were small amino acids at the mutated position of the reference 

epitope (“Reference_AA_at_mutated_position_Small”), changes in the mutated position 

into a basic amino acid (“Mutated_position_change_of_Basic_feature”), and polar 

amino acids at position 6 (“Absolute_position_6_Polar”). 
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Figure 4.2: Linear regression analysis between peptide-intrinsic features and tumor 
antigen immunogenicity.  (A and C) Volcano plot representing GLM coefficient (x-axis) 
and –log10(FDR p-value) (y-axis) for each peptide-intrinsic feature as a predictor for 
immunogenicity in (A) class I and (C) class II neoantigens/mHA.  Dashed line 
represents FDR p-value = 0.05. Spot color represents –log10(p-value) magnitude and 
size represents magnitude of the coefficient. (B and D) Heatmap representing 
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Spearman correlation between each significantly correlated feature from (A and C) for 
(B) class I and (D) class II neoantigens/mHA, respectively.  Significantly correlated 
features are shown in color, with coefficient direction and magnitude represented by 
color. (E) ELISpot-derived immunogenicity scores for class I neoantigens/mHA 
classified as predicted high (>100) or low (<100) immunogenic by multivariable GLM 
regression, with significant features from (A) as independent variables.  

We additionally looked for co-correlation among the 38 significant features, 

observing relatively low numbers of significantly co-correlated features (Figure 4.2B).  

Significant features which demonstrated strong co-correlation were expectedly related, 

such as 1) charged or basic amino acid residues at the mutated position of the 

reference peptide, 2) valine or small amino acids at absolute position 11, and 3) valine 

or small amino acid at the last position, and valine at relative site 8.  Thus, these 

significant peptide-intrinsic features largely provided predictive power independently of 

one-another, suggesting a multivariable model may outperform univariable regression.  

To increase confidence of our multivariable model, we performed univariable GLM with 

1000-fold bootstrapping with 2/3rd resampling and kept features which were significant 

in >50% of iterations.  Nine significant features from bootstrapping were inputted into a 

multivariable GLM regression model, observing significant linear fit between the actual 

immunogenicity and the predicted immunogenicity generated from the complete model 

(coefficient 0.48, p < 0.0001).  Within the multivariable model, five significant features 

(“Relative_site_2_V” p < 0.0001; “Relative_site_5_K” p = 0.0035; “Last_position_V” p = 

0.0050; “Absolute_position_3_Y” p = 0.0045; 

“Mutated_position_change_of_Small_feature” p = 0.0087) primarily drove the fit, with 

antigens classified by this model as predicted high (>100) or low (<100) immunogenicity 

demonstrating significant differences in actual immunogenicity scores (Wilcoxon p < 

0.0001; Figure 4.2E).  To ensure this model was accurately representing both Hb and 
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Hd haplotypes, we observed the immunogenicity for each of these five significant 

features split categorically by haplotype, which generally demonstrated the same 

pattern between both haplotypes.   

Correlates of immunogenicity in class II MHC epitopes 

Among class II epitopes, 15 peptide-intrinsic features were significantly 

correlated with immunogenicity (Figure 4.2C).  Among the most positively associated 

features included changes in the mutation position into a non-polar amino acid 

(“Mutated_position_change_of_NonPolar_feature”), valine at position 1, tyrosine at 

position 6, and basic amino acid at position 2.  Interestingly, the strongest negatively 

associated feature was changes in the mutation position into a small amino acid 

(“Mutated_position_change_of_Small_feature”), which was positively associated in 

class I epitopes.  Additionally negatively associated features included changes in the 

mutation position into a polar amino acid 

(“Mutated_position_change_of_Polar_feature”), and small/tiny amino acids at the 

mutated site.  Among significant features, four features corresponding to small or tiny 

amino acids at the mutational site were strongly co-correlated, with all other features 

demonstrating moderate to low co-correlation (Figure 4.2D).  Multivariable GLM 

regression using these 15 features demonstrated significant linear fit between actual 

and predicted immunogenicity (coefficient 0.73, p < 0.0001), with two significant 

features “Absolute_position_1_V” and “Mutated_position_change_of_Small_feature” 

primarily driving the fit (p = 0.0044 and 0.0036, respectively). 

Multivariate models for immunogenicity prediction in class I MHC epitopes 
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To design a predictive model for neoantigen and mHA immunogenicity, we split 

our class I epitope database into an exploration (75% of epitopes, n = 157) and 

validation (25% of epitopes, n = 53) sets (Figure 4.3A).  Class II modeling was not 

attempted, due to the low number of epitopes available within our database (n = 68).  

This lower class II epitope count is a result of i) fewer sequences with predicted binding 

affinity < 500 nM among class II epitopes, but additionally ii) lack of class II prediction in 

the P815 model.  The consistently lower number of predicted class II epitopes suggests 

either that there are indeed fewer biologically relevant class II neoantigen/mHA 

compared to class I antigens, or that the binding affinity threshold should be changed 

for class II predictions to include those with higher predicted nM scores than the 500 nM 

cutoff currently implemented.  Currently, no studies have examined optimal predicted 

binding affinity cutoffs for class I and II neoantigens, with 500 nM widely used as the 

cutoff for both classes. 

In order to reduce noise within our model, we collapsed immunogenicity counts 

with absolute values less than or equal to the absolute value of the most negative count 

to zero. Within the exploration set, we used a 10,000-fold bootstrapping (2/3rd 

resampling) approach, comparing multivariable GLM, elastic net, random forest, 

gradient boosting, and linear and radial support vector machine methods.  Input 

variables for each model included either all peptide-intrinsic features or a subset of 

features that demonstrated significant univariable correlation in >50% of 1000-fold 

bootstrapping iterations (2/3rd resampling) within the exploration set.  Performance for 

each model and each set of input variables was determined by r-squared values, 

demonstrating that a univariable pre-filter outperformed a no-filter approach for all 
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tested models.  Among the pre-filtered models, gradient boosting outperformed all other 

methods and was selected for our final model.  The class I validation set was run 

through the final model, demonstrating significant correlation between the actual 

immunogenicity by ELISpot and the predicted immunogenicity by modeling (p = 0.013, 

coefficient = 0.30, Figure 4.3B).  Among peptides with predicted immunogenicity above 

the 75th percentile, 5 of 17 epitopes (29.4%) were identified as true-positives (actual 

immunogenicity above background) while 2 of 13 epitopes (15.4%) within the bottom 

25th percentile were false-positives.  This high true-negative rate is particularly important 

in the setting of filtering for a large pool of predicted tumor antigens, as it allows for 

narrowing of the potential set of immunogenic peptides to pursue for vaccine studies. 
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Figure 4.3: Performance and validation of gradient boosting model approach for 
predicting neoantigen/mHA immunogenicity.  (A) Schema of cross-validation approach 
used for GBM model building. (B) Performance of final GBM model in validation set, 
showing actual (x-axis) versus predicted (y-axis) immunogenicity scores.  Size of each 
point represents number of antigens at each coordinate.  Red line represents line of 
best fit, with p-value of fit shown above the graph.  (C and E) Schema for in vivo 
validation experiments, with tumor vaccine studies performed in (C) BBN963 basal-like 
bladder cancer and (E) P815 mastocytoma syngeneic transplant models.  (D and E) 
Kaplan-Meier survival curves for (C and E) respectively, for animals treated with 
predicted high (red) or low (blue) immunogenicity antigens, no-peptide control (black), 
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or bone marrow only control (grey).  Statistics performed with log-ranked testing (**: p < 
0.01; ***: p < 0.001) 

In vivo validation of class I immunogenicity prediction model 

To demonstrate our final model could be used to increase the likelihood of 

identifying a clinically relevant, immunogenic epitope for anti-tumor vaccine response, 

we performed vaccine studies using two models within our validation set: BBN963 

basal-like bladder model (solid tumor) and P815 mastocytoma (liquid tumor, syngeneic 

transplant model).  BBN963 epitopes were predicted neoantigens in the C57BL/6 

background, while P815 epitopes were selected for mHA in the BALB/c background 

against a DBA/2 host. 

In BBN963, three predicted high and two predicted low immunogenicity 

neoantigens were identified.  Animals were vaccinated with 30 µg of one of these 

peptides (or no-peptide control) alongside 50 µg poly(I:C) as adjuvant, challenged with 

tumor at 12 days after vaccination, and given a 30 µg peptide booster on day 21 after 

initial vaccination (Figure 4.3C).  We observed significantly better survival among 

animals vaccinated with a predicted high immunogenicity peptide than predicted low 

immunogenicity peptide (log-rank p < 0.001) or no-peptide control (log-rank p < 0.01; 

Figure 4.3D), while predicted low immunogenicity peptide and no-peptide control 

groups did not demonstrate significant difference in survival.   

In P815, there were a total of two predicted high and three predicted low 

immunogenicity graft-vs-tumor mHA.  BALB/c donor animals were vaccinated with a 

pool of predicted high or low immunogenicity peptides (100 µg each peptide) or no-

peptide control, alongside 50 µg poly(I:C) as adjuvant on days 0 and 7.  DBA/2 recipient 

animals were irradiated (800 cGy) on day 13; transplanted with 3x106 BALB/c T cells, 
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3x106 BALC/c bone marrow cells, and 3x105 P815 tumor cells on day 14; and given a 3rd 

booster vaccine on day 21 (Figure 4.3E).  Animals given predicted high immunogenicity 

T cells survived for longer than those given predicted low immunogenicity T cells, both 

of which survived for longer than no-peptide control T cells (Figure 4.3F).  Additionally, 

we observed significantly lower tumor burden in high immunogenicity versus low 

immunogenicity animals by luciferase imaging by day 26 (Wilcoxon test of total 

luminescence p < 0.05; Figure 4.4), without significant differences in weight loss or 

clinical score.  In summary, these experiments demonstrate the clinical relevance of our 

immunogenicity prediction model, with significant differences observe between 

predicted high and low immunogenicity epitopes.  These experiments used 

neoantigen/mHA in both the prophylactic and therapeutic setting, rather than strictly 

treating animals after tumor injection.  This method was selected due to the intrinsic low 

efficacy of free-peptide vaccines, whereby differences in therapeutic efficacy may not be 

observed between predicted high and low immunogenicity antigens.  As such, while 

these experiments provide evidence for the clinical relevance of our computational 

model, development of more robust therapeutic vaccine platforms are necessary for 

improving response rates to peptide-based tumor-specific antigen vaccines. 
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Figure 4.4: Luciferase imaging of luc-P815 tumor burden in DBA/2 recipients. 

 

Correlates of predicted immunogenicity in human class I epitopes 

While this immunogenicity prediction model was designed and validated in 

mouse, we hypothesized that similar rules of immunogenicity may exist among human 

neoantigens.  To test this hypothesis, we ran predicted class I neoantigens from the 

Cancer Genome Atlas (TCGA) database through our final model, generating 

immunogenicity scores for each epitope.  As expected, we observed strong correlation 

between the number of highly immunogenic neoantigens (HIN) identified by our model 

(>95th percentile) with number of total neoantigens (Pearson correlation p < 0.0001).  

From our validation experiments in BBN963 and P815 models, we observed that 

predicted high immunogenicity peptides had greater clinical benefit in the therapeutic 
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vaccine setting than predicted low immunogenicity peptides.  As such, we reasoned that 

while HIN count and total neoantigen burden were highly co-correlated, the most highly 

immunogenic neoantigens were the key drivers of immunity.  Thus, we performed 

regression studies between HIN count and immune features without controlling for total 

neoantigen burden.   

We observed significant association between HIN count and immune gene 

signatures of IFN-γ, cytotoxicity, CD8 and total T cells, and B cells among the TCGA 

pan-cancer dataset (Figure 4.5A).  When analyzed by tumor type, the majority of these 

significant associations were encompassed by the colon (COAD) and lung (LUAD) 

adenocarcinoma cancer types (Figure 4.5B).  Within COAD, there was strong positive 

association between HIN count and T-cell and cytotoxicity signatures.  To identify 

potential drivers of this pattern, we looked for co-expression of HIN count and MSI 

status, observing MSI-high COAD tumors having significantly higher HIN counts (Figure 

4.5C), suggesting MSI may drive generation of highly immunogenic SNV neoantigens.   
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Figure 4.5: Correlative analysis of predicted neoantigen immunogenicity in TCGA human 
dataset.  (A) Volcano plot representing GLM coefficient (x-axis) and –log10(FDR p-value) 
(y-axis) between numbers of highly immunogenic neoantigens and immune gene 
signatures in TCGA pan-cancer dataset. (B) Heatmap representing GLM regression 
between numbers of highly immunogenic neoantigens and immune gene signatures for 
each TCGA cancer subset.  Color represents direction of coefficient (red: positive; blue: 
negative), and shade represents –log10(FDR p-value) magnitude.  (C) Number of highly 
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immunogenic neoantigens (x-axis) versus MSI score (y-axis) for TCGA COAD dataset. 
(D) Volcano plot representing GLM coefficient (x-axis) and –log10(FDR p-value) (y-axis) 
between numbers of highly immunogenic neoantigens and cancer driver mutations in 
TCGA LUAD dataset.  (A and D) Dashed line represents FDR p-value = 0.05. 

In contrast, LUAD largely demonstrated negative association with immune gene 

signatures of PD-1 responsiveness, T and B cells, and several innate immune cell 

signatures.  We examined the association between whole-exome sequencing derived 

oncogene/tumor suppressor copy numbers with HIN count, which demonstrated 

significant negative association with the MYC gene (FDR p-value < 0.01; Figure 4.5D).  

Among MYC amplified tumors, there was significantly greater expression of genes 

corresponding to cell cycle gene patterns, as well as enrichment of downstream genes 

to the MYC pathway (gene set enrichment analysis and DAVID gene ontology analysis), 

suggesting MYC amplification provides a strong pro-tumorigenesis signal.  Additionally, 

there was a decrease in sharing of MiXCR-derived T-cell receptor sequences in MYC 

amplified tumors, providing evidence that decreased neoantigen burden may negatively 

impact the anti-tumor immune response in LUAD.  A potential explanation for this 

pattern between MYC amplification and lower HIN count is a result of decreased 

selective pressures for accumulation of mutations in MYC-driven LUAD cancers, where 

further mutations in oncogene/tumor-suppressors are not necessary for oncogenesis.  

 In summary, we demonstrate that peptide-intrinsic features are associated with 

neoantigen and mHA immunogenicity.  We provide here a description of a machine 

learning algorithm for predicting neoantigen immunogenicity, validated with therapeutic 

vaccine experiments.  Analysis of human cancer data reveals that the number of 

predicted high immunogenicity neoantigens is associated with immunological and 

oncogenic features of colon and lung adenocarcinomas.  This model provides a proof-
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of-concept for computational prediction of SNV/SNP-derived neoantigen/mHA 

immunogenicity, demonstrating the potential of applying such a method on human data 

to improve clinical selection of tumor antigen targets for therapeutic vaccine 

development. 

 4.1.3 Materials and methods 

Neoantigen and mHA prediction and ELISpot immunogenicity studies 

 Neoantigen and mHA predictions were performed using protocol previously 

described in section 2.1.2: Neoantigen prediction.  ELISpot immunogenicity studies 

were performed according to protocol previously described in section 2.1.2: 

Vaccine/ELISPOT assay for neoantigen immunogenicity 

Linear regression and computational modelling 

 Intrinsic peptide features were derived from custom scripts, as well as from the R 

package Peptides.  Univariable and multivariable linear regression was performed with 

a general linear method (GLM) using the R package glm.  Multivariable models, 

including the final gradient boosting model, were built from the R package caret, with 

custom scripts to perform cross-validation.   

Peptide treatment studies 

 Biological validation treatment studies were performed as summarized in Figure 

4.3C,D.  Briefly, BBN963 treatment studies began with pre-tumor vaccination with 30 µg 

of a single peptide (or no-peptide control) and 50 µg poly(I:C) adjuvant, injected in 100 

µL PBS intradermally in the flank of 8-10 week old female C57BL/6 mice (Charles 

River).  Twelve days after vaccination, 1x107 BBN963 cells were injected in 100 µL PBS 

subcutaneously in the flank.  On day 21, animals were given a vaccine booster with 30 
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µg of the initial respective peptide with no poly(I:C) adjuvant.  This booster was 

delivered in 100 µL PBS intradermally in the skin directly adjacent to the tumor.  

Animals were monitored for tumor growth and survival every 2-3 days for the remainder 

of the study, with UNC Institutional Animal Care and Use Committee (IACUC) defined 

endpoints of area >200 mm2 or ulceration >5 mm in the longest diameter.   

For P815 treatment studies, 8-12 week old male BALB/c donors (Jackson 

Laboratory) were vaccinated on days 0 and 7 with 100 µg total peptide (3-4 pooled 

equimolar peptides, or no-peptide control) and 50 µg poly(I:C) adjuvant in 100 µL PBS 

intradermally in the flank.  DBA/2 recipients were treated with 800 rad total body 

irradiation on day 13.  On day 14, splenic-derived T cells and bone marrow cells were 

isolated from donor BALB/c animals, and recipient DBA/2 animals were given tail-vein 

IV injections of 3x106 T cells, 3x106 bone marrow cells, and 3x105 P815-luciferase tumor 

cells (or bone-marrow only control).  DBA/2 recipients were given a booster vaccine on 

day 21 (100 µg total peptide, 50 µg poly(I:C)), with animals monitored every 2-3 days for 

survival, with UNC IACUC defined endpoints of bilateral hind-limb paralysis.  Luciferase 

imaging studies were performed on days 8, 13, 22, 26, and 35 after transplant, using an 

IVIS imaging system on animals given intraperitoneal luciferin. 

4.2 Neoantigen-delivering nanoparticles for therapeutic tumor vaccines 

 4.2.1 Introduction 

Tumor-specific vaccine targets are currently under development for patient-

specific tumor therapies.  Neoantigens are largely patient specific variant peptides that 

can be recognized by T cells to direct tumor killing185–187, and they are an appealing target 

for therapeutic vaccines because neoantigen-specific T cells can escape thymic selection 
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and can recognize the restricted expression of neoantigens by the tumor cell188–192.  

Despite the ability of neoantigen-based therapeutic tumor vaccines to promote tumor-

specific T-cell responses in a small number of pre-clinical models, clinical efficacy 

remains to be demonstrated14,49,70–72.  A key challenge arising in the field of tumor-vaccine 

therapy is the development of a vaccine platform to allow for optimal immune response 

against the vaccine target antigens.  Most neoantigen studies rely upon free-peptide 

vaccination, which are sub-optimally immunogenic compared to other delivery vehicles 

such as nanoparticle (NP)-based platforms due to factors such as exogenous proteases 

and poor uptake by antigen-presenting cells68. 

To address the challenges of neoantigen delivery, we have developed a NP 

vaccine platform for the delivery of neoantigen peptides.  NPs are an effective platform 

for a diverse range of cancer immunotherapies68, as exemplified by recent development 

of a tumor-lysate delivering NP system which significantly delayed tumor growth and 

increased survival in B16F10 melanoma model tumor-bearing mice75.  This NP platform 

was hypothesized to derive therapeutic efficacy from capture of neoantigen-containing 

proteins that promote anti-tumor immunity, as evident by the most efficacious NP 

formulation contained the highest number of captured neoantigen-containing proteins.  In 

addition, we recently demonstrated the efficacy of a dual checkpoint inhibitor/T-cell 

stimulatory antibody (αPD-1/αOX-40) delivering NP platform, which caused tumor 

regression and long term survival in >30% of B16F10 melanoma tumor-bearing mice 

when used in combination with radiation therapy, outperforming dual free-antibody 

(Appendix V)193.  This study demonstrated the effectiveness of immunotherapy co-

localization – a principle which can be applied in a NP vaccine platform through co-
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delivery of the antigen and an immune adjuvant.  Based on these preliminary studies, we 

believe vaccination with a similar neoantigen-delivering NP (ndNP) platform will generate 

robust anti-tumor immune responses over conventional free-peptide based vaccines.  In 

this study, we describe an ndNP platform with improved efficacy and immune activation 

over conventional free-peptide vaccination. 

 4.2.2 Results and Discussion 

Neoantigen prediction and NP design 

Neoantigen prediction and validation was performed in the B16F10 melanoma 

model, as described previously (Chapter 2.1, Materials and methods).  From the total 

pool of ELISpot-validated neoantigen peptides, we selected the top two MHC class I 

and class II epitopes for treatment experiments.  In additional, we also tested four 

neoantigens previously identified and validated by Min et al. using a tumor antigen 

capture NP approach75.  This pool of neoantigens was compared to a previously 

described neoantigen sequence with therapeutic efficacy in B16F10 (B16-M30: 

PSKPSFQEFVDWENVSPELNSTDQPFL) in a publication from Kreiter et al70.  To look 

for evidence of neoantigen presentation on the B16F10 tumor cell, T cells were isolated 

from respective neoantigen vaccinated C57BL/6 mice and expanded ex vivo in a 

neoantigen-pulsed dendritic cell co-culture.  These enriched neoantigen-experienced T 

cells were co-cultured against B16F10 cells, with anti-tumor response measured via 

IFN-γ capture ELISpot (Figure 4.6).  Compared to a non-specific (SIINFEKL) T cell 

control, we observed IFN-γ signal above backround in 7 of 9 tested neoantigen 

peptides, providing evidence of endogenous neoantigen presentation on the B16F10 

tumor. 
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Figure 4.6: IFN-γ ELISpot in a co-culture assay of neoantigen-experiences T cells and 

B16F10 tumor cell.   

 

For the delivery platform, PLGA-PEG-NH2 was selected for the NP matrix, with a 

redox-sensitive succinimidyl 3-(2-pyridyldithio)propionate (SPDP) linker conjugated to 

the polymer amine group.  Subsequently, c-terminus modified neoantigens containing a 

cysteamide functional group was attached to the SPDP moiety of the polymer, resulting 

in an oxidation-sensitive neoantigen peptide release mechanism.  This ndNP chemistry 

was designed such that neoantigen epitopes would be released upon cellular uptake in 

the endosome of an antigen-presenting cell.   
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Therapeutic vaccine treatment studies 

We next conducted a treatment study to demonstrate the feasibility of our 

proposed neoantigen-delivery nanoparticle (ndNP) platform (Figure 4.7). Treatments in 

B16F10-bearing mice began on day 4 after tumor injections (7.5x104 cells, s.c.), when 

tumors were just palpable, with vaccination and anti-PD-1 therapy given according to 

Figure 4.8 timeline.  ndNPs were loaded with the STING agonist DMXAA as adjuvant.  

Mice were given either ndNP containing our eight validated neoantigens (NP-mix 

peptide; n = 10), ndNPs containing the previously published B16-M30 reference 

neoantigen peptide70 (NP-ref peptide; n = 5), free DMXAA with either free neoantigen 

peptides (Free mix peptide; n = 10) or free reference neoantigen peptide (Free ref 

peptide; n = 10), DMXAA-only NP control (DMXAA-NP; n = 5), free DMXAA only control 

(n = 5), blank NP with no-peptide/no-DMXAA control (NP void, n = 5), anti-PD-1 only 

control (PD1 only; n = 5), or PBS only control (PBS; n = 5).  Peptide and DMXAA 

adjuvant loading concentrations, as well as size, polydispersion index (PDI), and zeta 

potential characteristics of each NP group is shown in Table 4.1.   

 

Table 4.1: Characterization of neoantigen-delivering nanoparticle formulations and 

controls.   
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Tumor growth was significantly delayed in ndNP treated animals, with ndNP 

containing our predicted neoantigens outperforming all other treatment groups and 

controls (Welch’s t-test tumor volume p < 0.05 by day 20).  Based upon Luminex studies 

taken from peripheral bleeds on day 10, we observed increases in pro-inflammatory 

cytokines in ndNP-mix peptide treated animals, which were significantly differentially 

clustered from all other groups by hierarchical clustering (Figure 4.9). 

 

Figure 4.7: Tumor growth curves for B16F10 bearing mice treated with neoantigen 
delivering nanoparticles or free neoantigenic peptide.  X-axis represents days post tumor 
injection, and y-axis represents tumor volume (mm3). 
 
 
 

 

Figure 4.8: Experimental timeline for ndNP treatment study. 
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Figure 4.9: Heatmap of Luminex cytokine z-scores measured in day 10 plasma levels 
from animals in Fig. 2 treatment study.  Samples (columns) are ordered by hierarchical 
clustering by z-score of cytokine levels (rows), with boxes around the dendrogram 
representing significance via the R package pvclust. 
 

Overall, these studies provide proof-of-principle for the superiority of a NP-based 

neoantigen vaccine platform over current standard free-peptide vaccines, suggesting 

the ndNP platform may allow for the use of a greater range of neoantigens that 

otherwise may not be substantially immunogenic as free-peptides.  This improved 

clinical efficacy is associated with increases in peripheral levels of pro-inflammatory 

cytokines and chemokines, suggesting the combination of multiple neoantigens, 

DMXAA adjuvant, and a NP delivery platform is capable of greater immune stimulation 
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than free-peptide/DMXAA vaccine.  Currently, the mechanism behind the enhanced 

immunogenicity and efficacy of this ndNP platform remains unknown.  Potential 

hypotheses include 1) enhanced DC uptake due to particle size and charge 

characteristics, 2) decreased peptide degradation, and 3) co-localization of peptide and 

DMXAA adjuvant.  Future studies will be performed to elucidate the mechanism of 

enhanced efficacy, including experiments to analyze the necessary cell populations 

(e.g. cell depletion studies, in vitro/ex vivo phenotyping of cell populations, 

transcriptomics analysis of tumor and lymph node infiltrating populations) and NP 

characteristics (e.g. separation of peptide- and DMXAA-delivering NP, alteration of NP 

chemistry to modulate loading, size, and charge characteristics).  Compared to 

published peptide (200µg per peptide194) and DMXAA (500µg195) treatment doses, 

current peptide and adjuvant dosing is relatively low in NP groups (Table 4.1), 

suggesting optimization of NP chemistry to improve loading efficiency and capacity may 

further increase the efficacy of ndNP treatment.  In future studies, we will study methods 

to improve ndNP loading and comprehensively elucidate the immunological mechanism 

for improved ndNP efficacy. 

 4.2.3 Materials and methods 

Neoantigen and mHA prediction and ELISpot immunogenicity studies 

 Neoantigen and mHA predictions were performed using protocol previously 

described in section 2.1.2: Neoantigen prediction.  ELISpot immunogenicity studies 

were performed according to protocols previously described in Chapter 2.1.2: 

Vaccine/ELISPOT assay for neoantigen immunogenicity and Neoantigen-enriched T-

cell Coculture. 
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Luminex analysis 

 Peripheral blood was collected from cheek bleeds of tumor bearing animals on 

day 10 after tumor injection, allowing blood to clot.  After clotting (>15 minutes), samples 

were spun at 13,000RPM for 15 minutes on a desktop centrifuge, collecting remaining 

serum.  Serum samples were flash frozen on dry ice and stored at -80°C until use.  

Luminex studies were performed using the Bio-Plex Pro Mouse Cytokine 23-plex assay 

(Bio-rad, #m60009rdpd), according to manufacturer protocol.  Subsequent analyses 

were performed using custom scripts, showing hierarchical clustered, z-score 

normalized cytokine concentration values for each serum sample. 

ndNP synthesis and treatment studies 

 PLGA-PEG-NH2 (m.w. 17kDa), succinimidyl 6-[3(2-

pyridyldithio)propionamido]hexanoate (LC-SPDP), and N,N-Diisopropylethylamine 

(DIPEA) were combined at a 1:4:10 molar ratio, respectively, in DMF solvent.  Reaction 

was left overnight at room temperature under normal atmosphere.  Product was 

subsequently precipitated with a cold mixture of methanol and diethyl ether (1:1 volume) 

and dried under vacuum.  The dried precipitant was mixed with c-terminus cysteamide 

modified neoantigen peptide at a 1:2 molar ratio, respectively, in DMF solvent.  

Reaction was left at room temperature for 48 hours under N2 atmosphere.  Conjugated 

polymer product was precipitated in a mixture of cold methanol and diethyl ether (0.5 – 

0.8:1 by volume) and dried under vacuum.  Peptide conjugation efficiency was 

confirmed using the Pierce Quantitative Fluorometric Peptide Assay, according to 

manufacturer protocol.  Peptide conjugation chemistry was confirmed with H-NMR. 
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 Nanoparticle formation was performed using nanoprecipitation.  DMXAA was 

dissolved in acetone at 1 mg/mL, and peptide-polymer conjugate dissolved in DMF at 

10 mg/mL.  DMXAA and peptide-polymer solutions were combined at 1:100 by mass.  

This mixture was added dropwise into water (1:3 organic to water by volume) and 

stirred aggressively by magnetic stir plate.  This solution was left for 4 hours at room 

temperature under ventilation to allow for evaporation of organic solvent.  Subsequent 

formed particles are washed three-times in DI H2O in an Amicon Ultra Centrifugal Filters 

(50 mL, 100,000 NMWL).  Particle size and charge were confirmed using dynamic light 

scattering and zeta potentiometry, respectively.  DMXAA loading was quantified using 

UV-Vis spectroscopy absorption at 345 nM.  Washed NP was added to DPBS at 100 µL 

per dose before final injection. 

 For treatment studies, peptide dosage was normalized to 100 µg across all 

treatment groups (except peptide-free controls), and DMXAA dose was 130 µg in Ref 

NP group and 70 µg in all other treatment groups (except DMXAA-free controls).  Total 

polymer mass ranged 7-13 mg per treatment.  All vaccine treatments were given as 

intradermal injections in the skin directly adjacent to the tumor.  Anti-PD-1 co-therapy 

was given as 200 µg intraperitoneal injections in 100 µL total volume PBS.  
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CHAPTER 5: Future Directions and Conclusion 

The works presented here represent a multidisciplinary approach to study the 

role of the adaptive immune system in modulation of the tumor immune 

microenvironment.  The focus of these studies is to 1) develop biologically relevant 

models and tools to elucidate the microenvironment of various cancer subtypes, 2) 

elucidate the mechanism of action for existing immunotherapies (i.e. anti-PD-1 therapy), 

3) improve upon the efficacy of current anti-tumor vaccine targets (i.e. neoantigens and 

mHA), and 4) identify novel tumor specific antigen targets for biomarker and therapeutic 

vaccine development (i.e. hERV antigens).  In addition to these studies, we are 

performing ongoing projects to follow up on the findings presented above.  

To develop a deeper understanding of the biological features associated with the 

anti-PD-1 mixed response phenotype in BBN963, we are performing single cell 

transcriptomics and CyToF proteomics analyses on tumor infiltrating lymphocytes.  For 

single cell RNA-seq (scRNA-seq) analysis of BBN963 tumors, tumor bearing animals 

were treated with anti-PD-1 therapy and monitored for response.  Primary responders (n 

= 3) and non-responders (n = 3) to therapy were selected, with tumor infiltrating 

lymphocytes enriched from the tumor using gradient centrifugation.  These cells were 

then run through a 10x Chromium Controller, with downstream library preparation 

performed according to the 10x 3’ gene expression profiling kit.  These samples are 

currently under analysis, with the aim of elucidating transcriptional differences 

associated with primary resistance to anti-PD-1 therapy.  From preliminary studies using 
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bulk RNA-seq and Luminex studies on pre-treatment peripheral blood samples in 

BBN963 tumor bearing animals, we observed increases in gene signatures associated 

with five different toll-like receptor (TLR) pathways as well as increases in pro-

inflammatory cytokines/chemokines (IL-1a, IL-1b, IL-2, MIP-1a, RANTES) and 

decreases in IL-5 in samples that subsequently respond to anti-PD-1 therapy.  

Altogether, this suggests response to anti-PD-1 therapy may be dictated by the 

presence or absence of pre-treatment systemic inflammation levels.  Analysis of 

scRNA-seq data from post-treatment tumor samples will allow us to observe the 

subsequent immune differences in these tumors, painting a clearer picture of the 

connection between pre-treatment and post-treatment patterns of response to 

checkpoint inhibitor therapy. 

In addition, we have been developing a murine CyToF mass cytometry panel in 

collaboration with the UNC Flow Cytometry core facility.  This 35-40 marker panel will 

be used to identify and phenotype the various tumor infiltrating leukocytes in anti-PD-1 

responsive and non-responsive tumors.  From initial studies using a flow cytometric 

panel, we have observed that the time to which a tumor develops resistance to anti-PD-

1 therapy is correlated with a decrease in total CD45+ immune infiltration, but an 

increase in the relative frequencies of exhaustion-associated cell phenotypes (Tregs, 

terminally differentiated CD4 and CD8 T cells, PD-1 expressing T cells, myelocytic and 

granulocytic MDSCs, dendritic cells, and macrophages) to stem-like cell phenotypes 

(naïve and central memory CD4 and CD8 T cells, B cells, and total CD4 and CD8 T cell 

frequencies).  Altogether, this suggests that longitudinal development of resistance to 

anti-PD-1 therapy is potentially triggered through immune exclusion in the tumor, with 
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remaining infiltrating immune cells displaying a more exhausted phenotype.  Future 

CyToF studies will allow us to comprehensively study this pattern, including analysis of 

various other checkpoint inhibitor (CTLA-4, LAG-3, TIM-3), costimulatory (OX-40, 

CD80/86), and innate M1/M2 (Arg-1, Ym-1) markers.   

Our analysis on the role of hERVs in modulation of the tumor immune 

microenvironment primarily focused on ccRCC; however, several other tumor types 

displayed similar patterns of significant association between hERV expression versus 

patient outcomes and immune signatures.  Apart from ccRCC (TCGA KIRC), low grade 

glioma (LGG) demonstrated the second greatest number of significantly prognostic 

hERVs.  As such, we have begun correlative analyses in LGG to study the impact of 

hERV expression on the cancer disease process.  Initial findings show differential hERV 

expression patterns among IDH1/2 mutant and wild-type LGG tumors – a key driver of 

oncogenesis in LGG – with IDH1/2 mutant tumors showing significantly lower overall 

hERV expression than IDH1/2 wild-type tumors.    

Lastly, our analysis on the design and delivery of neoantigen-based cancer 

vaccines has demonstrated our capacity to use computational methods to improve 

neoantigen prediction, as well as using a nanoparticle delivery platform to improve 

vaccine immunogenicity and outcomes.  Our computational analysis provided an initial 

in silico approach for selectively filtering out high-immunogenicity murine neoantigen 

epitopes, providing a promising strategy for application in human neoantigen selection.  

Future directions for this work include increasing the sample size available for model 

design, which would allow for further increases in predictive power.  Furthermore, 

validation in a human neoantigen vaccine study is necessary, testing if this 
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computational approach can predict for clinical outcome similarly to what was observed 

in our pre-clinical validation experiments. 

Our initial studies on a nanoparticle neoantigen vaccine approach demonstrated 

significantly better survival and tumor growth control than free-peptide controls.  Paired 

with this efficacy, peripheral inflammatory cytokine and chemokine levels were 

preferentially upregulated in our ndNP treated group, suggesting a strong immune 

component to the ndNP’s mechanism of action.  In future studies, we plan to 1) improve 

the peptide and adjuvant loading efficiencies of the ndNP platform and 2) 

comprehensively elucidate the mechanism of action for ndNP’s increased efficacy over 

free-peptide vaccines.  The first of these goals is being actively pursued by members of 

the lab of Andrew Wang, looking at potentially novel synthesis techniques to both 

increase synthesis efficiency and absolute peptide/adjuvant loading capacity of ndNPs.  

Considering the current vaccination dose of our ndNPs is relatively low for both peptide 

(~100ug) and DMXAA adjuvant (~70ug) but still shows significant survival benefit, we 

expect an optimized strategy will further bolster our ability to cure tumor bearing 

animals.  In order to elucidate the mechanism of action for ndNPs, we will rely upon flow 

cytometric and RNA-seq approaches to compare the immune infiltrate between free-

peptide and ndNP treated animals.  These well validated approaches will provide a 

jumping-off point for more detailed studies to confirm the role of various immune 

populations in response to ndNP therapy.  We hypothesize to observe the importance of 

both innate and adaptive immune arms, with APC populations such as DCs being 

necessary for neoantigen uptake and presentation, pro-inflammatory innate populations 

such as M1 macrophages and activated DCs to be important to drive adaptive 
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immunity, and presence of antigen-specific T cells necessary to carry out anti-tumor 

effector function.  Previous studies have suggested that the majority of anti-tumor T 

cells in neoantigen treated animals are derived against class II MHC epitopes, despite 

the fact that CD8+ CTLs have been historically thought to be the most important 

component in the anti-tumor immune response.  It remains to be seen if ndNP therapy 

differentially modulates the CD4 and CD8 arms of the T cell response in a manner 

unique from free-peptide vaccination. 

The ultimate goal for all of these studies is to apply the knowledge and 

techniques described here for treatment of human cancers.  With the advent of 

universal immunotherapy treatment strategies such as checkpoint blockade therapy, 

immuno-oncology has become an integral portion of our management of various 

cancers.  Our work in chapter 2 highlights the immune correlates of responsiveness to 

anti-PD-1 therapy in basal-like bladder cancer, and development of these biologically 

faithful cancer models provides an avenue to further understand the effects of 

checkpoint blockade inhibitors and tumor-antigen vaccine therapies.  Current clinical 

studies in melanoma suggest that similar to checkpoint blockade therapy, not all 

patients respond to neoantigen vaccine therapy, with no clear explanation for resistance 

to therapy.  Future directions for the field will include expanding tumor-specific antigen 

vaccine therapy to other cancer types.  As such, elucidation of neoantigens in our BBN 

and UPPL models provides us with the capacity to better understand how to most 

effectively deliver these vaccines in bladder cancer, as well as how to overcome 

resistance that may develop subsequent to therapy in these models. 
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The future of immuno-oncology is largely focused on the use of tumor-specific 

antigen targets to drive anti-tumor adaptive immune responses.  With conventional SNV 

neoantigens showing promise in pre-clinical and clinical trials, we are now striving to 

expand the targetable epitope landscape of cancers, increase the power of current 

targets, and understand how these adaptive immune therapies synergize with existing 

universal immunotherapies.  Our work in chapter 3 provides a method for genomic 

identification of tumor-specific hERV antigenic targets, which may allow for a novel 

class of TSA targets for therapeutic leverage in ccRCC and other cancer types.  

Currently, our results suggest that a large proportion of ccRCC TILs may already be 

hERV-specific, suggesting that these tumor-specific T cells may be terminally 

exhausted and not able to carry out effector function.  Future studies will include 1) 

understanding the mechanism of immune suppression for hERV-specific T cells within 

ccRCC tumors, and how we may reverse this exhaustion to re-awaken their effector 

function, and 2) leveraging tumor-specific hERV antigens for therapeutic purposes, 

including development of a robust hERV-related biomarker for immunotherapy 

responsiveness and application of hERV antigens for vaccine and cellular therapies.  

With evidence of enhanced vaccine efficacy through the use of a NP delivery platform 

presented in chapter 4, hERV and other TSA targets may additionally benefit from the 

use of a nano-delivery system alongside neoantigens.  In summary, the studies 

presented in this dissertation were pursued with the goal to understand and improve 

anti-tumor immunotherapeutics, with the hope that they may one day improve our 

capacity to impact survival and quality-of-life for all cancer patients. 
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APPENDIX 1: RNA-seq Analysis of the Tumor Microenvironment 

1. Introduction  

Over the last several decades, we have observed a marked increase in the use 

of next-generation sequencing methods, including whole exome/genome sequencing 

and whole transcriptome profiling, allowing for characterization of a wide variety of 

sample types throughout a broad set of scientific disciplines.  The field of 

immunogenomics grew from a convergence of genomics and data science approaches 

applied to immunological questions, largely driven by cancer biologists and 

immunologists seeking to understand the tumor immune microenvironment from large 

next generation sequencing datasets such as those of The Cancer Genome Atlas 

(TCGA).  Immunogenomics is largely focused on the immune response in the context of 

malignancy, within which the complex tumor-immune microenvironment can be 

dissected with the use of transcriptomic analysis of tumor and tumor-infiltrating 

lymphocytes.   

The initial evaluation of the tumor microenvironment was performed using cDNA 

microarray technology.  However, microarray technology is limited by 1) transcript-

specific probes that do not allow novel transcripts to be queried, 2) limited range for the 

detection of low abundant transcripts, and 3) inability to alter the process to improve this 

detection.  The use of microarray technologies has largely been replaced by whole 

transcriptome RNA-seq methods, which circumvent the issues associated with 

microarray analysis.  Using RNA-seq, investigators are able to identify tens of 

thousands of genes within a single tumor-derived sample.  The use of RNA-seq to 

characterize tumors has allowed investigators to reconstruct the cellular heterogeneity 
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of the tumor microenvironment from archival tissues196,197.  Additionally, RNA-seq can 

be used in combination with or lieu of pathological approaches to subtype cancers198.  

Among immunogenomic advancements aided through the use of RNA-seq include 

correlative analyses of responders versus non-responders to immunotherapy182, design 

of biomarkers for predicting patient prognosis and response to therapies199,200, and 

characterization of the antigen spectrum of a tumor and subsequent targeting of these 

antigens (neoantigens71,201, cancer testes antigens190, tumor associated antigens202, 

etc.).  These analyses have allowed for a greater understanding of the tumor-immune 

microenvironment, with recent advancement in of single-cell sequencing technologies 

providing even further granularity in deconstructing the complicated cellular immune 

microenvironment. 

Evaluation of the tumor-immune microenvironment with RNA-seq can frequently 

provide data orders of magnitude larger than conventional immunological techniques 

such as flow cytometry (which require fresh sample processing) or other assays that are 

not accessible from FFPE material.  As a result, consistency and automation of the 

RNA-seq workflow is necessary.  In this chapter, we will provide a summary of our 

RNA-seq workflow, which is broken down into the following steps: 1) tissue collection 

and isolation of RNA, 2) library preparation and sequencing, 3) data processing and 

quality control, 4) alignment and quantitation, and 5) analysis of data.  Lastly, it should 

be noted that the field of RNA-seq analysis is rapidly progressing, with more accurate 

methods constantly in development.  While we have provided examples and 

recommendations for analysis software in the chapter, the fluid nature of this field may 

mean that some of these methods may be replaced in the near future by newer 
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technologies.  As such, the reader should examine recent developments in the field and 

make adaptations as these newer technologies are made available.  

2. Materials 

2.1. Tissue collection, RNA isolation, and QC 

 PCR Workstation 

 Life Technologies RNaseZap RNase Decontamination Wipes 

 Sigma-Aldrich RNaseZap spray 

 Absolute Ethanol, molecular biology grade 

 Roche High Pure RNA Paraffin Kit 

 Qiagen QIAshredder 

 Qiagen RNEasy Mini Kit 

 Qiagen RNEasy Micro Kit 

 2-Mercaptoethanol 

 Qiagen TissueRuptor II  

 Qiagen TissueRuptor Disposable Probes 

 15mL polypropylene (PP) centrifuge tubes 

 Qiagen DNase RNase-Free DNase Set 

 Molecular Biology Grade Water 

 DNA low-bind tubes 

 Qubit BR RNA assay kit 

 Qubit HS RNA assay kit 

 ThermoFisher Qubit 4.0 Fluorometer 

 Agilent 2200 TapeStation Instrument 
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 Agilent RNA ScreenTape 

 Agilent RNA ScreenTape Sample Buffer 

 Agilent RNA ScreenTape Ladder 

 ThermoFisher NanoDrop OneC  Microvolume UV-Vis Spectrophotometer 

2.2. Library preparation and sequencing 

2.2.1. Library preparation kits: 

 mRNA: 

 KAPA Stranded mRNA-Seq Kit 

 Illumina Truseq Stranded mRNA 

 Nugen Universal Plus mRNA-seq 

 Takara Smart-Seq v4 Ultra Low Input RNA Kit for Sequencing  

 Total RNA: 

 Illumina Truseq Stranded Total RNA 

 KAPA Stranded RNA-Seq Kit with RiboErase 

 Nugen Ovation Universal RNA-Seq with Any Deplete 

 Nugen Ovation Solo RNA-Seq System with Any Deplete 

 Takara SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input 

Mammalian 

 FFPE: 

 Illumina Truseq Stranded Total RNA 

 Kapa Stranded RNAseq with RiboErase 

 Nugen Ovation RNA-Seq FFPE System with AnyDeplete 

 Takara SMARTer Universal Low Input RNA Kit 
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 Illumina Truseq RNA Exome 

2.2.2. Quantification 

 KAPA library quantification kit 

2.2.3. Nucleotide Concentration 

 Qiagen RNeasy MinElute Cleanup Kit 

 KAPA Pure Beads  

 Beckman Coulter Agencourt RNAClean XP 

2.2.4. Depletion Kit 

 Nugen AnyDeplete 

2.3. Data processing and quality control, alignment and quantification, and 

analysis of data 

2.3.1. Computer: Our analyses are performed on a computing cluster 

comprised of many interconnected, individual machines.  If your analyses 

are limited to a small number of samples (tens), a high-powered computer 

running a Unix-based operating system (>8 cores, >32 Gb RAM) may be 

able to run most analyses mentioned below.  However, if greater 

computational power is required and a computing cluster is not available, we 

recommend the use of Google Compute Engine (which we have historically 

used for certain high-requirement jobs). 

2.3.2. Workspace: If running analyses on multiple computing clusters or outside 

computing engines, we recommend consultation with a data scientist and 

use of a containerization method such as Docker (https://www.docker.com) 

for convenience and stability.  Putting analysis pipelines into Docker allows 
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for greater ease, as all parametrization and dependences are packaged 

together within the Docker environment. 

2.3.3. Software: The following programs are recommended for analyses 

mentioned within this chapter (See Table A1.1 for a software summary 

table): 

 BCL2fastq 

 FastQC 

 BBMap 

 STAR aligner 

 Picard tools 

 Salmon quantifier 

 Samtools 

 Differential gene expression software (DESeq2, limma+voom, NOISeq, 

edgeR) 

 Gene set analysis software (GSEA, ssGSEA, GSVA) 

 TCR/BCR inference tool (MiXCR, V’DJer) 

 MHC inference tool (PHLAT, HLAProfiler) 

 MHC binding affinity predictor (NetMHCPan4.0, NetMHCIIPan) 

 Viral/ERV quantification software (Virdetect, hervQuant) 

3. Methods 

3.1. Isolation of total RNA and QC 

3.1.1. General considerations 
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RNA isolation is critical to the success of RNA-sequencing and as a result 

maximizing yield and purity of RNA is crucial.  The time needed for tissue collection 

needs to be minimized to prevent RNA degradation.  The collection of tissue in this 

protocol is optimized for a specific amount of RNA; the addition of a greater amount of 

tissue may paradoxically reduce the yield of RNA.  Please remember to perform all 

isolations with an extraction agent in a fume hood with gloves and eye protection.    

RNA may be extracted from fresh or flash frozen samples or FFPE material.  A number 

of extraction methods exist and an isolation strategy should be chosen based on the 

starting material and RNA subpopulation of choice203,204.  Beta-mercaptoethanol (2-ME) 

is commonly added to quanidium-based lysis buffers to improve RNA isolation from 

whole tissues samples abundant in RNases205, and should be added in the 

manufacturer’s recommended amount when using commercially available kits (e.g. 

Qiagen RNEasy micro/mini).  When freezing RNA or material for subsequent RNA 

extraction, nuclease free, tight-closure tubes such as Eppendorf DNA LoBind tubes are 

recommended to prevent contamination from RNases.  The volume of lysis buffer 

needed per sample should be determined empirically based on cell type and number or 

tissue type and mass, using the manufacturer’s recommendations as a general 

guideline.  For total RNA isolation, we routinely use the Qiagen Rneasy Mini kit when 

processing tissue or when starting with larger cell numbers and the Rneasy Micro Kit 

when starting with fewer than 500,000 cells.   

Given that RNA is easily degradable and potentially prone to contamination, 

certain workspace precautions should be taken206: 
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 Optimally, an RNA-only workspace with a molecular biology hood (to prevent 

contamination from debris in the air) should be used during extraction and 

reverse transcription, with a separate workspace for DNA-related molecular 

biology.  Additionally, having a separate space for different species may prevent 

cross-contamination between different experiments. 

 To further prevent cross-contamination, reagents used for handling RNA should 

remain in the RNA-only workspace and used exclusively for handling RNA.  

Ensure all reagents are RNAse free and/or molecular biology grade. 

 Use disposable, sterile RNase-free plasticware that does not require pre-

treatment and barrier pipette tips. 

 The workspace should be cleaned with an RNAse removing material, such as 

Sigma RNaseZap Rnase decontamination solution.  

 RNAse-free gloves and gowns should be work to prevent contamination from 

skin cells during handling of RNA. 

 As a general rule, RNA and DNA should be kept on ice while handling (unless 

otherwise stated by a protocol), working as quickly as possible.  Keep UV-light 

sources away from nucleic acids to prevent degradation. 

For FFPE slides, it is recommended to have a pathologist score the slides to 

ensure the material taken for RNA extraction is the tissue of choice (ex. tumor), and to 

control for estimated cellular heterogeneity when comparing experimental groups207.  

Numerous commercially available FFPE extraction kits have been compared208–210 or 

modified211 and should be chosen based on downstream applications.  We routinely use 
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the Roche High Pure RNA Paraffin Kit for manual RNA extraction or the Maxwell 16 

LEV RNA FFPE Purification Kit for automated extraction. 

See note 1 

3.1.2. Collection/Suspension/Lysis using Qiagen reagents  

i. When starting with fresh tissue, the material should be sectioned into small 

pieces (<20 mg).  If starting with a single cell suspension, the cells should first 

be washed in PBS, pelleted, and the supernatant removed.  

ii.  RLT lysis buffer (component of Qiagen RNEasy kits) supplemented with 1% 

(v/v) beta-mercaptoethanol is then added to each cell pellet or 20 mg piece of 

tissue and vortexed.  The sample resuspended in RLT can then be flash 

frozen with either liquid nitrogen or an ice bath using dry ice and 70-100% 

ethanol.  If no lysis buffer is available, the tissue or cell pellet can be frozen 

dry and lysis buffer added upon thawing.   

iii. Fresh tissue in RLT or thawed tissue in RLT can be homogenized with the 

tissue disrupter (e.g. Qiagen TissueRuptor II) according to the manufacturer’s 

instructions.  We typically homogenize tissue in a nuclease free 50 mL conical 

using the Qiagen TissueRuptor II at full speed for 30 seconds.   

iv. Homogenized tissue should then be transferred to a QIAshredder before 

proceeding to the Rneasy Mini Kit.  If the starting material is a single cell 

suspension, the cells in RLT can be transferred directly to a Qiashredder for 

homogenization prior to using the RNeasy Mini Kit for large cell numbers or 

Rneasy Micro Kit for smaller cell numbers.  When starting with fewer than 

100,000 cells, we vortex the cells in lysis buffer at full speed for 1 minute to 
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homogenize in place of using a Qiashredder in order to minimize nucleic acid 

loss.   

v. The Qiagen Rneasy kits can be used as directed and variations are available 

that include an extra step utilizing a genomic DNA eliminator column (Rneasy 

Plus kits) or on-column DNA digestion with Dnase (Qiagen Rnase-Free 

Dnase Set).  

vi. Molecular biology grade water should be used for eluting RNA and should be 

pipetted directly onto the column filter.  During this step, care should be taken 

not to touch the filter or the sides of the column with the pipette tip.  The 

elution volume should be chosen carefully based on the amount of input 

material.  If the eluent is too dilute, the RNA may need to be concentrated in 

order to perform QC.   

RNA should be stored at -80° C and should always be aliquoted to avoid 

unnecessary freeze-thaw cycles. 

3.1.3. QC 

Three methods of quality control should be used for the most comprehensive 

measure of RNA quality:  

i. Qubit or similar method for high sensitivity fluorometric quantification 

ii. Spectrophotometer (Nanodrop or similar) for purity assessment 

iii. Fragment analyzer (Tapestation, LapChip, etc.) measuring electrophoretic 

mobility to determine RNA integrity 

Ideally, 2 µL of sample should each be used for Qubit quantification and 

Nanodrop to improve accuracy of the readings.  Also ensure the sample concentration 
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is within the working range of the instrument since many of the corresponding 

instrument kits have minimum and maximum cutoffs beyond which the reading is 

unreliable.  Follow the temperature requirements of the reagents required to operate the 

QC instruments, as the readings are often temperature sensitive. 

Some RNAseq library preparation methods will be more sensitive to 

contamination than others.  Nanodrop measures contaminants and reports the ratio of 

absorbance of a sample at 260 and 280 nm and the ratio at 260 and 230 nm.  A 

260/280 ratio of 2.0 ± 0.02 is generally accepted as pure RNA while expected 260/230 

values are typically in the range of 2.0-2.2206,212.  Many library prep methods 

recommend a 260/280 and 260/230 ratio of at least 1.7.  A low 260/280 ratio indicates 

contamination, often with protein or extraction solutions such as phenol, while low 

260/230 rations indicate presence of compounds that absorb light at 230 nM such as 

EDTA, carbohydrates, and/or phenol.  RNA integrity number (RIN; electropherogram-

based quality metric), devised by Agilent213,214, and the DV200 metric (the number of 

nucleic acid fragments greater than 200 nucleotides long), developed and 

recommended by Illumina215, are two measures commonly reported by fragment 

analyzers to assess RNA degradation.  Fully intact RNA has a RIN score of 10, while 

partially degraded RNA and strongly degraded RNA will have a RIN of 5 and 3, 

respectively. 

3.2. Library preparation 

Two factors largely determine which RNA-seq library preparation kit one should 

use: quality and quantity of the starting material. Some recommendations for kits can be 

seen below in Figure A1.1. Though there are many more library preparation kits than 
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those listed below, these are recommendations based on standard operating procedure 

at the University of North Carolina at Chapel Hill’s High Throughput Sequencing Facility. 

See notes 2-6. 

3.3. Sequencing 

We use an Illumina sequencing platform for the vast majority of our RNA-seq 

analyses, given the exceptional amount and quality of data provided.  Below is a 

summary of current Illumina platforms (see Table A1.2) and when we would select each 

for sequencing: 

 HiSeq 4000: Used for the majority of our whole transcriptome RNA-seq runs.  

Good cost/performance ratio, but relatively slow run-times compared to NextSeq 

and NovaSeq 6000 instruments.  However, is known to have an increase in 

duplicates compared to the earlier HiSeq2500 due to the patterned flow cell. 

 HiSeq 2500: A less optimal option, as it provides fewer reads without 

considerable decreases in cost.  Typically, the HiSeq 4000 is favored in place of 

the HiSeq 2500, unless library preparation methods are only compatible with the 

HiSeq 2500. 

 Nextseq: Occasionally used when sequencing a small sample set (<8 samples 

per run).  Fast run-times and low instrument costs make this an ideal option for 

groups with relatively lower throughput sequencing experiments.   

 MiSeq: Not used for whole transcriptome RNA-seq due to limited sequencing 

depth, but can be used for TCR/BCR amplicon studies.   

 Novaseq 6000: Likely to replace the HiSeq 4000 as our primary whole 

transcriptome platform within the coming years.  Relatively higher instrument 
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costs but substantially higher reads per run makes this an ideal option for groups 

with very high run throughputs. 

For the majority of human and murine RNA-seq analyses, paired-end 2x50bp 

sequencing chemistry will provide adequate length for accurate alignment of reads to a 

reference genome.  The exceptions to this are 1) if the focus of one’s sequencing run is 

to identify novel splice variants or resolve genomic regions with many long repeated 

elements, or 2) the reference genome/transcriptome for the derivative organism is not 

well characterized, for which longer reads may be optimal.  The length of sequencing 

can also be influenced by the type of RNA.  It is easier to have longer reads on higher 

quality fresh frozen samples than in FFPE which are inherently fragmented to sizes 

around 130-150 bp. 

3.4. Data processing and quality control 

3.4.1. Read quality metrics 

Before raw sequencing data is converted to downstream formats, several 

sequencing metrics should be considered: 

 Cluster density: Metric for DNA density on sequencing flow cell.  Lower cluster 

density maintains quality but sacrifices data output, while overloading can result 

in poor image resolution and base quality.  Recommended cluster densities vary 

for each Illumina machine and optimal loading concentrations should be 

consulted prior to sequencing.  Improper library quantification can result in 

inaccurate loading concentrations – we typically rely on Nanodrop and fragment 

analyzers to determine library quality but Qubit for concentration calculations.  

We additionally use the KAPA library quantification kit (KK4824) to quantify 



  

173 
 

libraries with suspected low qualities or contaminations, as it can accurately 

quantify the concentration of libraries specifically, without quantification of non-

library DNA content. 

 Quality score: The quality score per sequencing cycle as well as a histogram of 

quality distribution are provided for each run.  This Q30 (Phred) quality score 

represents the likelihood of error for each particular base call.  Optimally, scores 

should reach 30 (99.9% accuracy) or greater across all cycles and base pair 

positions. 

3.4.2. BCL to FASTQ conversion, demultiplexing 

Conversion from Illumina sequencing instrument generated basecall files (BCL) 

to downstream FASTQ format is performed using the bcl2tofastq software, which 

simultaneously demultiplexes samples based upon sequence index.  To properly 

demulitplex samples, a sample sheet must be provided to the software, containing a 

row for each sample included within the run and the following columns (description 

given after colon): 

 FCID: Flow cell ID 

 Lane: Lane number as an integer 1-8 

 SampleID: ID of the sample 

 SampleRef: Reference used for alignment of the sample 

 Index: Index used for generation of a particular library.  If two indices were used, 

they should be separated by a hyphen (e.g. ACCAGTAA-GGACATGA). See note 

7. 

 Description: Description of the sample 
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 Control: “Y” indicates sample is a control; “N” indicates sample is not a control 

 Recipe: What library preparation method was used for this sample 

 Operator: Name/ID of the operator of this sample 

 SampleProject: Name of project under which this sample belongs 

For details of how to install and run bcl2fastq, please refer to the Illumina 

bcl2fastq conversion software support page 

(https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-

software.html). 

See note 8 

3.5. Pre-alignment QC 

After conversion into FASTQ format, quality control is performed to identify 

potential issues arising from the sample preparation and sequencing process.  

Typically, we perform this using the FastQC software, which provides a simple and fast 

method to identify per base sequence quality, GC content, per base N content, 

sequence length distribution, sequence duplication levels, overrepresented sequences, 

and adapter content.  Commonly used filters for excluding samples from downstream 

analysis in transcriptome profiling experiments include: 1) less than 30 million mapped 

reads in the sample, and 2) mean PHRED base quality <= 35. Other filters are 

additionally applied after sample alignment, as described below. 

See note 9 

3.6. Alignment and quantification 

3.6.1. Alignment methods 
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Many computational methods exist to map RNA-seq data to the reference 

genome, allowing for splice aware alignment of both mRNA and other RNA types 

(rRNA, intronic, and intergenic RNAs)216.  In recent years, our group has transitioned 

from exclusively using Mapsplice to STAR for RNA-seq alignment, which is primarily 

rooted in their equivalent ability to accurately align reads while dramatically improving 

alignment times99,176,217.  Apart from STAR, many other aligners have been compared in 

terms of speed and performance216, demonstrating that the most reliable general-

purpose aligners include STAR, CLC, Novoalign, and GSNAP.  While accuracy of these 

other popular aligners are similar to STAR, runtimes for human-derived data are 

significantly faster by STAR than the other three aligners.   

More recently, tools such as Sailfish, Salmon, and Kallisto allow for extremely 

fast but approximate quantification of genes directly from the FASTQ file, without 

alignment to a reference genome178,218,219.  Sailfish and Salmon make use of a quasi-

mapping approach while Kallisto uses pseudo-alignment for estimated quantification of 

genes.  Both of these methods mathematically similar, k-mer based algorithms, with the 

key difference that quasi-mapping uses suffix arrays while pseudo-alignment 

implements de Brujin graphs.  While these methods can provide very fast and fairly 

accurate estimates of gene expression, they do not perform as well from FFPE derived 

data, do not have the accuracy of genome aligners, and do not generate read-level data 

(BAM/SAM file).  As such, we typically still rely on STAR for alignment of FASTQ files. 

STAR requires a single-ended or pair-end FASTQ file(s) for alignment to the 

reference genome.  Additionally, a reference genome must be supplied and further 

“built” by STAR for alignment, currently mm10 for murine and hg38 for human data.  If a 
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STAR generated genome has not been previously built, reference genome sequences 

(in the form of FASTA files) and optionally an annotation file (in the form of a GTF file) 

need to be input into STAR for generating genome indexes.  While the annotation file is 

not necessary to build the reference genome, it should be included to improve mapping 

accuracy.  Limited STAR genomes are available from the creators of STAR 

(http://labshare.cshl.edu/shares/gingeraslab/www-data/dobin/STAR/STARgenomes/), 

but users are encouraged to generate their own genome indexes using the most up to 

date assemblies and annotations.  The NCI’s Genome Data Commons (GDC) also 

provides references genomes that they use for their harmonization pipelines 

(https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-

files). 

3.6.2. Post-alignment QC 

After alignment, several quality control metrics are collected to ensure results can 

be interpreted without significant bias from technical outliers.  Given that each sample 

set can vary dramatically, there are no strict cutoffs for any of these metrics.  We try to 

determine the presence of technical outliers within the set and remove samples or are 

just aware of the sample quality when interpreting downstream analyses.  The following 

metrics are commonly analyzed: 

 Proportion aligned vs unaligned: Performed to ensure there are not an over-

abundance of unaligned reads among all data. 

 Percent of alignment by region: Comparison of percentage of total bases aligned 

to mRNA versus intergenic, intronic, or ribosomal RNA to ensure the 

transcriptome coverage is conserved between samples.  These metrics are 
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measured using output from Picard Tools220.  Typically, we want at least 10% of 

reads to map to mRNA, but the other metrics will vary by library and RNA type 

(See note 10).  

 Number of non-zero genes: Performed to determine coverage among all genes 

and identify low diversity samples. 

 Relative log expression: Analysis of total aligned reads per sample to ensure 

read distributions are similar across samples.  This gives an intuitive view of the 

global variation in relative expression221. 

 Upper quartile comparison: Calculated as 
𝑀𝑒𝑑𝑖𝑎𝑛(𝑎𝑙𝑙 𝑈𝑄 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑐𝑜ℎ𝑜𝑟𝑡)

𝑈𝑄 𝑓𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑠𝑎𝑚𝑝𝑙𝑒
, where 

UQ denotes the upper quartile (75th percentile) value among all read counts per 

sample.  This metric provides a scaling factor for each sample representing the 

relative multiplier necessary for UQ read-normalization of that sample relative to 

all other samples in the set.  Alternatively to the above method, DESeq2’s 

sizeFactor function can also be utilized to calculate a scaling factor.  Samples 

with particularly high scaling values generally have lower mRNA mapping and 

normalization of these samples will result in amplification of noise.    

 Principle component analysis: Performed to identify potential technical outliers. 

3.6.3. Quantification methods 

Gene expression profiling experiments require generation of quantified gene 

expression values for all genes represented in the sequencing data.  In recent years, 

the use of RSEM and Cufflinks as quantifiers have widely been replaced by newer, 

faster quantifiers such as Sailfish and Salmon178,218,222,223.  All of these tools are orders 
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of magnitude faster in run time compared to older quantifiers while maintaining similar 

or better accuracies224.   

As mentioned earlier, Sailfish and Salmon can directly quantify FASTQ files 

without genome alignment; however, they can additionally be used downstream of an 

aligner strictly as a transcript quantifier.  We typically pair Salmon quantifier (quant 

mode) downstream of STAR alignment.  Salmon requires an unsorted BAM file as input, 

and we use the transcriptome-space BAM file as input, with an hg38 or mm10 reference 

transcriptome FASTA file as reference. 

3.7. Select methods of analysis 

 Prior to analysis, gene expression matrices are derived through combining the 

raw count data for each sample into a matrix.   

 From this raw matrix, some threshold can be applied to drop lowly expressed 

genes, such as filtering by a minimum read count threshold or dropping all genes 

with zero expression for all samples (i.e. tissue specific genes).  For tumor 

experiments, we typically have relied on dropping all genes which are not 

expressed in >70% of all samples, which provides a conservative cutoff to filter 

out lowly expressed genes but may in some instances introduce bias away from 

these rare genes.   

 Next, this raw, filtered expression matrix is normalized.  Common methods 

include upper quartile normalization (UQN), median normalization, normalizing 

RPKM (Reads Per Kilobase Million), FPKM (Fragments Per Kilobase Million), 

TPM (Transcripts Per Kilobase Million), or relying on a software package such as 

DESeq2 (varianceStabilizingTransformation; VST) or edgeR (Trimmed Mean of 
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M; TMM)168,225.  These software package normalization methods lead to a more 

stable normalization than the other methods226.  

 If not using DESeq2 VST or edgeR TMM for normalization, the normalized matrix 

is log2(x+1) transformed for a final expression matrix.  

See note 11 

3.7.1. Differential gene expression analysis 

A wide variety of differential gene expression analysis tools exist, with popular 

tools including edgeR, DESeq2, limma and voom, NOISeq, SAMSeq (samr), EBSeq, 

bayseq, sleuth, among others.  Direct comparison of these popular methods suggests 

NOISeq, DESeq2, and limma+voom have the best sensitivity/specificity performance 

metrics, with further suggestions that integration of multiple methods may further 

improve overall performance227.  Another common tool for differential gene expression 

analysis is edgeR, which has been shown to have similar performance compared to 

DESeq2225,228.   

We perform differential gene expression analysis using DESeq2, using a gene 

expression matrix of raw count as input168. This matrix is automatically normalized by 

DESeq2 prior to differential expression analysis.  In the case of Salmon derived 

expression data, counts need to be converted to an integer DESeq2. 

3.7.2. Immune gene signature analysis 

Immune gene signatures are composed of a set of genes, typically specific to an 

immune cell or pathway of interest combined with a method to transform expression 

levels of signature genes into a single score for each sample.  We calculate immune 

gene signatures using a normalized matrix and perform screening such that signatures 
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where >30% of respective genes demonstrate zero expression in a particular sample 

are not considered for downstream analyses.  The IGS score is calculated as the mean 

of the expression of all genes within a particular signature229.   

Alternatively, genes within each signature can instead be scaled across the cohort, 

taking the median value as the IGS score.  This extra normalization step can help 

reduce biases incurred by highly or lowly expressed genes, but may also reduce 

sensitivity if those genes have a high degree of biological significance.  The following list 

of citations contains gene signatures we regularly use in our analyses: 

 Palmer C et al. BMC Genomics 2006; PMID:16704732159 

 Schmidt M et al Cancer Res 2008; PMID:18593943230 

 Beck et al Clin Cancer Research 2009; PMID:19188147231 

 Rody A et al. Breast Cancer Res 2009; PMID:19272155232 

 Chan et al PNAS 2009; PMID:19666525157 

 Prat A et al Breast Cancer Res 2010; PMID:20813035158 

 Fan C et al. BMC Med Genomics 2011; PMID:21214954233 

 Rody A et al. Breast Cancer Res 2011; PMID:21978456234 

 Bindea G et al. Immunity 2013; PMID:24138885100 

 Iglesia MD et al. Clinical Cancer Research 2014; PMID:24916698101 

 Kardos J and Chai S et al. JCI insights 2016; PMID:2769925683 

 Charoentong P et al. Cell Reports 2017; PMID 28052254235 

 Vesteinn et al Immunity 2018; PMID: 2962829050 

 MSigDB gene sets160 

 Gene Ontology terms 0050853 – GO:0050853; PMID:NA 
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 Gene Ontology terms 0050852 – GO:0050852; PMID:NA 

3.7.3. Gene pathway analysis 

Gene pathway analyses provide a measure for pathways which have genes 

expressed at levels higher than by chance.  Among immunogenomic-related pathways, 

we typically use MSigDB gene sets for the bulk of our analysis160. Of particular 

relevance includes the C7 immunologic gene sets, C2 curated gene sets, C5 gene 

ontology gene sets, and the hallmark gene sets.  There are several methods for 

performing gene pathway analysis, among which include 1) standard GSEA analysis, 2) 

weighted analysis, and 3) network-based approaches.  Below, we will provide a 

summary and examples for each approach. 

Commonly use pathway analysis tools for standard GSEA analysis include 

GSEA, single sample GSEA (ssGSEA), and GSVA for gene pathway analysis236–238.  

Standard GSEA analysis takes in a discrete and predefined gene set that typically 

represents a biological state, comparing whether RNA-seq or microarray expression 

data between two biological groups show phenotypic differences based upon those 

gene sets.  Additionally, ssGSEA and GSVA are able to generate gene signature 

expression values for each individual sample, which GSEA is not.  Thus, GSEA is only 

able to compare signature expression among pre-defined groups.  While GSEA, 

ssGSEA, and GSVA are among the most popular gene set analysis tools, other gene 

pathway analysis software such as PLAGE, GLOBALTEST, and PADOG have 

demonstrated greater sensitivity and under certain conditions239–242.  As such, the 

accuracy of each analysis method may be dependent upon the biology of the sample 
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set, and thus the chosen method may require optimization and validation for the 

optimization of results.  

Alternatively to standard GSEA, weighted approaches such as GSEAPrerank 

take into account a predefined list of rank-ordered genes to calculate the enrichment 

score243.  The gene’s ranks thus define the weight of its contribution to the enrichment 

score.  This can be particularly useful when the ranking metrics provided by standard 

GSEA are not appropriate for the data, or if the expression data is derived from a non-

standard approach (targeted methods, ChIP-seq, GWAS studies). 

Another method for gene pathway calculation is a network-based approach, as 

exemplified by DawnRank, which ranks potential driver genes based on their impact on 

differential expression of downstream genes in a molecular interaction network244.  

DawnRank performs these analyses on a per-patient basis, allowing for identification of 

personalized driver genes without biases from the rest of the cohort.  It should be noted 

that to call driver mutations, DawRank additionally requires variant call files, which 

typically is derived using DNA data. 

3.7.4. Deconvolution 

The incredibly complex cellular composition of a tumor microenvironment 

underscores the difficult question of how to deconvolute the proportional signals from 

each cell type.  Among cellular deconvolution tools currently available, CIBERSORT 

and TIMER are the most popular for characterization of the tumor 

microenvironment196,197.  CIBERSORT is designed to infer the relative proportion of 

individual immune populations among total leukocytes, while TIMER instead aims to 

infer immune population abundance amount the total tumor microenvironment.  The 
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limitation of both tools is their reference is derived from peripherally collected leukocytes 

from healthy donors, with the assumption that these transcriptional patterns do not 

substantially differ from their tumor infiltrating counterparts.  At this time, it is not clear 

which of these two methods provides more accurate estimates of tumor infiltrating 

immune populations from bulk RNA-seq data. 

3.7.5. TCR/BCR inference tools 

We have directly compared the performance of several TCR/BCR inference 

tools, including MiXCR, MiTCR, TRUST, and V’DJer162,245–247.  Based on these 

comparisons, our preferred inference method is MiXCR for TCR calling and 

MiXCR/V’DJer for BCR calling.   

MiXCR-based TCR inference is performed according to recommended settings 

from the Mi lab for short-read RNA-seq data 

(https://mixcr.readthedocs.io/en/master/rnaseq.html; subheading “Typical analysis 

workflow”), which typically yields 100 to 102 total clones, depending upon sequencing 

depth and RNA quality.  From the MiXCR export file output, we perform diversity and 

clonotypes sharing calculations through standard diversity calculation formulas (species 

evenness, and diversity indices such as Gini-Simpson or Shannon entropy).  We have 

found that analyses from samples with very few identified clones (101-102) results in 

inaccurate diversity calculations, and thus a minimum clone cutoff should be optimized 

and implemented.  We avoid the use of TRUST because of its identification of a large 

frequency of “non-canonical” CDR3-regions, which can be as short as a single amino-

acid residue and are unlikely to be truly derived from TCR sequences. 
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BCR inference is performed using both MiXCR and V’DJer.  Unlike MiXCR, 

V’DJer uses an assembly-based inference method for calling full length BCR calls from 

fresh-frozen derived RNA.  As a result, V’DJer is able to provide full length BCR 

sequences into the constant region for isoform calling, which allows for single base 

resolution of the BCR.  In a comparison of these two tools, MiXCR was demonstrated to 

have greater sensitivity and less computational intensity compared to V’DJer248, and 

therefore may be more relevant in situations where population-levels statistics are of 

primary interest rather than identification of full length BCR-sequences.  

See note 12 

3.7.6. HLA inference 

HLA typing has historically been performed through the use of PCR, Sanger 

sequencing, or flow cytometric approaches, with next generation sequencing recently 

emerging as a potentially higher throughput and more cost effective approach249.  The 

majority of these approaches rely upon the use of HLA region targeted DNA 

sequencing, preventing the identification of biologically meaningful data outside of HLA 

typing.  Additionally, targeted sequencing requires the use of capture probes, which 

may result in loss of capture for polymorphisms within the MHC genes.  Whole 

exome/genome approaches suffer from their requirement of very high read depth, with 

nearly half a billion sequencing reads necessary for accurate calling250,251. 

As a result of these limitation, RNA-seq derived MHC calling methods have been 

recently developed, which allows for accurate calling of alleles without limiting data for 

uses beyond this purpose.  One example of such a tool is PHLAT, which can use both 

DNA and RNA as input for HLA calling45.  Another recent tools is HLAProfiling, which 
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takes a k-mer approach to allow for identification of both common and rare alleles from 

RNA-seq data47. 

3.7.7. Neoantigen prediction 

Several published neoantigen prediction pipelines exist, although they almost all 

require additional tumor-derived whole-exome sequencing data in order to accurately 

call mutations.  As such, we will discuss several neoantigen prediction tools currently 

available, without enumerating on the exact DNA inputs necessary for running the 

software.  A more recent approach comes from Neopepsee, which attempts to increase 

calling accuracy through incorporation of amino acid level immunogenicity information 

derived via a machine learning algorithm trained on a dataset of reported class I MHC 

epitopes known to exhibit a positive T-cell effect252.  Another tool is pVACtools, which 

also integrates DNA and RNA data to call class I and II neoantigens, importantly with 

the inclusion of point mutations, indels, gene fusions, and frameshift mutations derived 

epitopes253.  Lastly, another tool is INTEGRATE-neo, which is a neoantigen prediction 

pipeline with a focus on gene fusion derived epitopes254. 

Most neoantigen calling pipelines work through a similar process, which we have 

simplified below: 

i. Variant calling: Mutations are identified using a variant calling program, with 

DNA-seq and RNA-seq inputs.  DNA sequences corresponding to peptides 

are retrieved and translated in silico into protein sequences. 

ii. Analysis of variant expression: RNA-seq data is used to quantify read 

coverage of all called mutations.  The expression levels of each peptide 

generated are determined by the lowest mutation RNA-sequencing read 
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coverage.  Peptides which do not meet a minimum read coverage are filtered 

out. 

iii. HLA typing: For human samples with unknown HLA type, HLA typing 

software is applied as described in the above section. 

iv. Enumeration of possible variant peptides:  Generally, 8-11mers are 

considered for class I epitopes while 15mers are considered for class II 

epitopes.  Several groups rely upon the use of long peptides (closer to 30 

amino acid residues in length), with the idea that these longer peptides will 

allow for better antigen-presenting cell processing and presentation. 

v. MHC binding prediction: Binding affinity to MHC molecules expressed by 

the tumor for all possible peptides generated from mutations is predicted.  

Perhaps the most widely used MHC binding affinity prediction software is 

NetMHCpan (version 4.0) and NetMHCIIpan (version 3.2) for class I and II 

epitopes, respectively 39,181.  Peptides are filtered by their binding affinities 

(IC50 nM) to each allele in the tumor sample’s HLA type.  Peptides with an 

IC50 value of less than 500 nM for at least one allele are typically considered 

predicted neoantigens. 

3.7.8. Viral quantification 

Expression of viral and human endogenous retroviral (hERV) RNA can drive 

immunological phenotypes in cancer52,200.  We have developed tools for quantification 

of vertebrate viral and human endogenous retroviral (hERV) transcripts from RNA-seq 

data.  The first of these tools is VirDetect, which specifically detects viruses from RNA-

sequencing52.  Reads are aligned to the human genome and reads that don’t align to 
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the human genome are then aligned to the masked viral genomes. The novelty of 

VirDetect is the masking of the viral genome for areas of human homology and areas of 

low complexity. The masking allows for higher specificity and limits the need for manual 

curation.  

The commands can be found here: 

https://github.com/dmarron/virdetect/blob/master/VirdetectManual.pdf 

The second tool is hervQuant, which allows for quantification of nearly 4,000 full-length, 

intact hERVs from short read RNA-seq data200.  hervQuant has currently been 

optimized and validated for 2x50bp fresh-frozen RNA-seq data, making it relevant for 

the majority of TCGA RNA-seq samples.  Information for running hervQuant can be 

found at: 

 https://unclineberger.org/vincent/resources. 

4. Notes 

4.1.    For RNA extraction from FFPE, we prefer the use of blocks rather than slides, 

as the greater surface area exposure to the outside environment on slides is 

associated with more degradation.  We have greatest success from using freshly 

cut blocks, discarding the first scroll and collecting toward the center of the 

block.  Typically, we take 4-6 slides of 10 µm for RNA extraction. 

4.2.     We and others have contributed to the NCI’s Biorepositories and Biospecimen 

Research Branch best practices for assessing nucleic acid quality from FFPE 

tissues255.  In many degraded RNA samples, the average fragment size of the 

RNA is around 130-150 bp. However, we have still been able to generate 

successful total RNA-seq libraries even with low DV200s.  For mRNA based 
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library strategies, it is best to start with RINs >7 for best quality, though RINs 5-6 

are occasionally successful but not as consistent.  RIN cutoffs of 7 have been 

used in projects like TCGA. For more degraded RNAs, it is better to use total 

RNA or capture based protocols that do not have a strong requirement on intact 

RNA and can be used with samples of low RIN or DV200.  We typically are 

successful with 80-90% of FFPE libraries, particularly with doubling the max 

starting amount of RNA (ex 200ng for RNA exome, or 500-1000ng for Total 

RNA). When a protocol calls for fragmentation, this is based on the suspected 

quality of the RNA and the desired length of sequencing.  In general, we typically 

do not fragments samples with RINs less than 5. 

4.3.    For kits that require the starting RNA to be concentrated into a small volume, 

there are a number of concentration methods including column methods, like 

Qiagen’s Rneasy MinElute Cleanup kit, bead purifications, like KAPA’s Pure 

Beads or Beckman Coulter’s RNAClean XP, or ethanol precipitation. 

4.4.    Some samples, including RNA from blood, might produce more desirable 

results following the depletion of unwanted transcripts, such as ribosomal RNA 

or Globin RNA. Using a depletion kit, like one from Nugen’s AnyDeplete line, will 

selectively deplete unwanted transcripts, enriching for sequencing reads of 

choice. Total RNA input may need to be increased if using a depletion kit. 

4.5.     If multiple kits from Figure A1.1 would work for a given quality and quantity of 

starting RNA, other factors such as price, kit availability, and laboratory 

familiarity should be considered in selecting the right kit as well as desired RNA 
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analysis – coding vs noncoding transcriptome, alternative transcripts, or 

structural alterations. 

4.6.    It is not recommended to compare sequencing analysis across different library 

preparation kits for the same project, as each kit will have its own biases.  

Comparing data across multiple library preparation methods may result in 

preferential up-/down-regulation of certain genes between different kits. 

4.7.    The use of dual indexes is preferred, as it reduces the prevalence of index 

hopping/library switching. 

4.8.    FASTQ format is a text-based format for storing read data, and is comprised of 

four lines per sequenced read: 

 Sequence identifier, preceded by a “@” character.  Often lists the coordinates 

on the sequencing chip. (E.g.: @UNC20:291:000000000-

AKVVA:1:1101:16893:1549 2:N:0:AGGCANACTCTCTA) 

 Nucleotide sequence letters (E.g.: AGCGTTGGG) 

 A “+” character, followed optionally by the same sequence identifier in line 1.  

Often left blank.  (E.g.: +) 

 Quality scores for each base value from line 2.  For current Illumina derived 

FASTQ files, a PHRED score between 0 and 40 are given, which provides the 

error probability for each respective base. (E.g. >>3>>ADFB) 

4.9.    Of QC metrics provided by FastQC, we focus most closely on the per-base 

sequencing quality (typically given as a PHRED score), overrepresented 

sequences, and adapter content.  Sequencing quality should ideally remain high 

across the full length of the read; however, we have noticed that amplicon 
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sequencing methods frequently demonstrate a dramatic drop in quality in the 

last 25-50% of the read length, without significant issues with downstream 

processing.  Particularly in peripheral blood, ribosomal RNA and globin-related 

genes can often appear as overrepresented genes.  Overrepresented 

sequences can be input into NCBI nucleotide BLAST to identify the source, 

correcting for future preparations if necessary.  Lastly, high adapter content can 

result from non-ideal PCR conditions or RNA fragments shorter than the 

sequencing length.  If high adapter content is present, a trimming software to 

remove adaptor contamination should be considered (we most frequently use 

bbduk from the BBMap suite256). 

4.10. Depending on the library and the quality of the RNA, different amounts of 

reads will map to mRNA257.  In mRNA or exon capture based methods, typically 

60-80% of reads will map to mRNA.  However, in total RNA–seq, this number is 

much lower and varies by RNA quality.  Total RNA-seq can range from ~10-30% 

of reads mapping to mRNA in FFPE and ~30-50% in fresh frozen, with 

corresponding increases in intron and intergenic regions compared to mRNA-

seq.  At minimum, to reach an equivalent amount RNA expression data as in 

microarrays, it is important to aim for at least 15-30 million reads mapping to 

mRNA and to aim even higher for all the additional benefits one gets from a 

sequencing vs array based approach.                

4.11. It is important to note that certain analysis packages (such as DESeq2) 

require an unfiltered, untransformed input matrix for analysis, so it is imperative 

that the input format is identified prior to analysis.                
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4.12. V’DJer can be run in normal and sensitive modes.  We typically rely on 

normal mode unless greater sensitivity in necessary – in limited testing, sensitive 

mode had a 50-1200% increase in runtimes and 0-1000% increase in 

RAM.                
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Figures and Tables 

 

Analysis 
type 

Software 
name 

Source 
Manuscript 

citation 

BCL to 
FASTQ 
conversion 

bcl2fastq https://support.illumina.com/sequencing/s
equencing_software/bcl2fastq-
conversion-software.html 

258 

Pre-
alignment 
QC 

Fastqc https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/ 

259 

Read 
trimming 

BBMap: 
bbduk 

https://sourceforge.net/projects/bbmap/ 256 

Aligner STAR https://github.com/alexdobin/STAR 176  
CLC https://www.qiagenbioinformatics.com/pr

oducts/clc-main-workbench/ 

260 

 
Novoalign http://www.novocraft.com/products/novoa

lign/ 

261 

 
GSNAP https://github.com/juliangehring/GMAP-

GSNAP 

262 

Quantifier Salmon https://combine-lab.github.io/salmon/ 178  
Sailfish http://www.cs.cmu.edu/~ckingsf/software/

sailfish/ 

218 

 
Kallisto https://pachterlab.github.io/kallisto/ 219 

General 
utilities 

Samtools http://samtools.sourceforge.net/ 177 

 
Picard tools https://broadinstitute.github.io/picard/ 220 

Differential 
gene 
expression 

DESeq2 https://bioconductor.org/packages/releas
e/bioc/html/DESeq2.html 

168 

 
limma/voom https://bioconductor.org/packages/releas

e/bioc/html/limma.html 

263,264 

 
NOISeq https://bioconductor.org/packages/releas

e/bioc/html/NOISeq.html 

265 

 
edgeR https://bioconductor.org/packages/releas

e/bioc/html/edgeR.html 

225 

Gene set 
analysis 
software 

GSEA http://software.broadinstitute.org/gsea/ind
ex.jsp 

236,243 

 
ssGSEA 

 
237  

GSVA https://bioconductor.org/packages/releas
e/bioc/html/GSVA.html 

238 

 
GSEAPreran
ked 

http://software.broadinstitute.org/cancer/s
oftware/genepattern/modules/docs/GSEA
Preranked/1 

243 

 
Dawnrank https://github.com/MartinFXP/DawnRank 244 
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TCR/BCR 
inference 

MiXCR https://github.com/milaboratory/mixcr 162 

 
V'DJer https://github.com/mozack/vdjer 247 

MHC 
inference 

PHLAT https://sites.google.com/site/phlatfortype/ 45 

 
HLAProfiler https://github.com/ExpressionAnalysis/HL

AProfiler 

47 

MHC 
binding 
affinity 

NetMHCPan4
.0 

http://www.cbs.dtu.dk/services/NetMHCp
an/ 

39 

 
NetMHCIIPan
3.2 

http://www.cbs.dtu.dk/services/NetMHCII
pan/ 

181 

Neoantigen 
calling 

Neopepsee https://sourceforge.net/p/neopepsee/wiki/
Home/ 

252 

 
pVACtools https://github.com/griffithlab/pVACtools 253  
INTEGRATE-
neo 

https://github.com/ChrisMaherLab/INTEG
RATE-Neo 

254 

Viral/ERV 
quantificati
on 

Virdetect https://github.com/dmarron/virdetect/blob/
master/VirdetectManual.pdf 

52 

 
hervQuant https://unclineberger.org/vincent/resource

s 

200 

Table A1.1: Summary of recommended software. 
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Figure A1.1. RNA-seq Library Preparation Kit Decision Tree. All 
quantities listed are the total RNA inputs, as recommended by 
manufacturer protocols. Several kits also have an mRNA input option 
(◊) or a whole cell input option (*). 
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 NextSeq HiSeq 4000 NovaSeq 
6000 

Output range 20–120 Gb 125–1500 Gb 134–6000 Gb 

Run time 11–29 hr < 1–3.5 days 13–44 hr 

Reads per run 130–400 
million 

2.5–5 billion Up to 20 billion 

Maximum read length 2 × 150 bp 2 × 150 bp 2 × 150 bp 

Samples per run 2–8 50–100 26–400 

Relative price per 
sample 

Higher Cost Mid cost Lower cost 

Relative instrument 
price 

Lower Cost Mid cost Higher cost 

 
Table A1.2: Illumina sequencing platforms recommended for whole 
transcriptome sequencing by the manufacturer.  Specs and table adapted from 
https://www.illumina.com/systems/sequencing-platforms/comparison-tool.html. 
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APPENDIX 2: The Cancer Genome Atlas comprehensive molecular 

characterization of renal cell carcinoma 

Please refer to https://doi.org/10.1016/j.celrep.2018.03.075 for full text  
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APPENDIX 3: Molecular and clinical characterization of a claudin-low subtype of 

gastric cancer. 

Please refer to DOI: 10.1200/PO.17.00047 for full text.  



  

198 
 

APPENDIX 4: Endogenous retrovirus expression is associated with response to 

immune checkpoint blockade in clear cell renal cell carcinoma. 

Please refer to DOI: 10.1172/jci.insight.121522 for full text.  
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APPENDIX 5: Dual immunotherapy nanoparticle improves T-cell activation and 

cancer immunotherapy. 

Please refer to DOI: 10.1002/adma.201706098 for full text.  
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APPENDIX 6: CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30+ 

and CD30- Embryonal Carcinoma via Antigen-dependent and Fas/FasL 

Interactions. 

Please refer to DOI: 10.1172/jci.insight.121522 for full text. 
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