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ABSTRACT 

Nathaniel Schramm: Pharmacological and immunological control of Zika virus replication in mice deficient 
in adaptive immune responses.  

(Under the direction of J. Victor Garcia-Martinez)  

 

 Zika virus (ZIKV) has recently demonstrated epidemic potential with prolonged infection, sexual 

and mother to fetus transmission, severe clinical manifestation of fetal microcephaly and congenital 

malformations and Guillain-Barré syndrome in adults.  Existing small animal models for ZIKV infection 

based on interferon (IFN)-deficient mice are not well suited for long-term assessment of therapeutics. 

Here, we show that in contrast to immunocompetent mice that control ZIKV infection and IFN-deficient 

mice that rapidly succumb to infection, immunodeficient mouse strains lacking T, B, and NK cells support 

systemic ZIKV replication for long periods of time. Using these immunodeficient mice, we evaluated the 

efficacy of 7-Deaza-7-fluoro-2’-C-methyl-adenoside (DFMA), a small molecular inhibitor and a neutralizing 

antibody (C10) to suppress systemic ZIKV replication in vivo.  DFMA treatment resulted in efficient and 

sustained viral suppression. Treatment with C10 also resulted in viral suppression in highly clinically 

relevant tissues like the brain, eyes, gastrointestinal tract, and male and female reproductive organs.   
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CHAPTER 1: INVESTIGATING THE SUSCEPTIBILITY OF IMMUNE COMPETENT MOUSE MODELS 

TO ZIKA VIRUS INFECTION  

Introduction 

The flavivirus ZIKV envelope is highly dynamic and sensitive to pH changes, providing variable 

interaction sites with cellular receptors based on the degree of maturation of the virion (1, 2). This results 

in a large number of cell types being susceptible to ZIKV infection and wide tissue tropism (1, 3).   

One of the most critical factors in replication of the ZIKV and production of mature virus particles 

is the pH changes from one intracellular compartment to the next. The structure of the ZIKV envelope 

protein, E, is particularly sensitive to changes in pH. After an endosome forms around the virus during cell 

entry, the low pH of 6.0 in the endosome causes structural rearrangements in the E glycoprotein, leading 

to the disassembly of the viral shell and fusion of the viral capsid (composed of C proteins) with the 

endosome (4). This fusion leads to the cytoplasmic release of the viral RNA (5).  

The subgenomic ZIKV-RNA is then translated as a single polyprotein by cellular mechanisms. 

This polyprotein is cleaved into 3 structural (C, prM, and E) and 7 nonstructural proteins (NS1, NS2A, 

NS2B, NS3, NS4A, NS4B, and NS5) (6). The first of these cleavages is performed by NS3, which 

functions as a serine protease to auto-cleave the ZIKV polyprotein while associated with cofactor NS2B 

(7).   

Genome replication, mRNA production, and initial assembly of the immature virion is initiated at 

the ER membrane (8). After cleavage, ZIKV NS1 localizes to the ER membrane, where it recruits 

additional non-structural proteins to assemble the replication factories typical of flaviviruses (9). At the ER 

membrane, NS4B induces formation of ER-derived membrane vesicles, where the NS5 RNA-dependent 

RNA-synthetase produces a dsRNA genome using the (+) sense ssRNA viral genome as a template (10). 

This dsRNA genome is then unwound by NS3 helicase (with cofactor NS4A) so that the genome can be 

transcribed into additional polyproteins by cellular machinery and replicated into (+) sense ssRNA 

genomes by NS5 (10). Another critical factor in the replication complex is NS2A (11).  
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Newly replicated (+) sense ssRNA genomes generated at the replication factories associated with 

the ER membrane will associate with capsid C protein and become enveloped by glycoproteins prM and 

E, along with cellular lipids from the ER membrane. ZIKV NS2A also plays a critical role here facilitating 

the incorporation of ER-derived membrane lipids into budding virions (11). 

This culminates in budding of the immature virion into the ER. From there, the virion is 

transported to the cis-golgi along the secretory pathway. There, cellular furin cleaves prM into the pr 

peptide and the membrane protein M (12). Critically, this results in further structural rearrangement of the 

E protein as the virion approaches full maturation. Normally, the low pH (6.7 at cis-golgi – 6.0 at trans-

golgi) in the golgi compartments would induce changes in the E protein leading to virion disassembly as 

happens in the endosome of a newly infected cell, but the pr peptide remains associated with the E 

protein at this low pH to prevent premature fusion (12). The secretory pathway continues and culminates 

in the release of the virion outside of the cell. Once outside of a golgi-derived vesicle, the higher pH 

outside of the cell allows for the dissociation of the pr peptide from the virion shell and the final maturation 

of the glycoprotein shell into a mature ZIKV protected by self-dimerized E proteins (12).  

The flavivirus envelope maturation states have been well characterized in DENV, and a recent, 

comprehensive review proposes that based on sequence similarity and characterization, the ZIKV 

envelope shares these traits (1). Typically, the flavivirus particle is surrounded by M and E protein 

homodimers which are responsible for interacting with cell receptors for entry (13). However, prM 

cleavage is inefficient, resulting in a heterogeneic viral envelope (14). These viruses are still infection-

competent, even when the shell is not in the fully matured state (1). In those cases, alternating 

conformations of the E proteins, the pr peptide, and the M protein can each be exposed for interacting 

with cell receptors (1). For example, a neutral pH ER during replication can cause final presentation of 

trimeric pr-M projections (2).   

The resulting heterogeneic viral envelope causes highly variable tissue tropism. Some of the 

relevant cell receptors identified so far include C-type lectin receptors, which can be highly expressed in 

dendritic cells, monocytes, macrophages, and myeloid cells (15). ZIKV has also been demonstrated to be 

able to perform apoptotic mimicry to enter the cell (16). It has also been determined that binding affinity 

with the ZIKV E protein is low, so associations with multiple receptors is usually required before clatherin-
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mediated endocytosis begins (16, 17). Of course, ZIKV has also been strongly linked to congenital 

malformation and Guillain-Barré syndrome as a result of its ability to directly infect neural progenitor cells 

and impair their proliferation (18). So, depending on which cell types are infected, different disease 

outcomes will be produced.  

One chronic ZIKV-associated condition is microcephaly. ZIKV-associated microcephaly occurs 

with the highest incidence when mothers are infected with ZIKV during the first trimester of pregnancy 

(19). ZIKV is unique among flaviviruses in that it infects placental tissue and new virions are secreted 

from there directly into fetal capillaries, allowing access to the immune privileged fetal tissue (19). This 

trimester is when critical neural development would normally occur but can be impaired by ZIKV infection 

(20). One possible cause of the neurodevelopmental impairment is the ability of ZIKV NS2A to disrupt 

cortical neurogenesis via degradation of the adherens junction complex (18). A case study compiled 

using Brazilian patient data proposes that pregnant women infected with ZIKV are 8.6 times more likely to 

have a child who developed microcephaly compared to non-infected women (21).  

In adults, ZIKV infection can sometimes lead to Guillain-Barré syndrome. Guillain-Barré is an 

autoimmune disorder which occurs infrequently in adults following infection or vaccination. However, 

South American case studies have reported higher incidence of Guillain-Barré syndrome during ZIKV 

epidemics, with increased severity and morbidity compared to patients who did not present with ZIKV 

infection, though the retroactive nature of the studies has made specific statistical estimates imprecise 

(22, 23). Although the precise mechanism of ZIKV-associated Guillain-Barré remains unidentified, it is 

likely related to the potential for ZIKV to broadly target C-type lectin receptors which are highly expressed 

in immune cells (15). Additionally, patients previously infected with DENV are at risk for an antibody 

dependent enhancement of ZIKV, which can greatly increase the risk of severe disease complications 

(24, 25). 

Small animal models are critical to the study of disease pathology and the efficacy of novel 

therapies. I will expand on the nature and limitations of existing mouse models of Zika virus infection in 

the introduction to Chapter 2. Briefly, existing animal models of Zika virus infection have high mortality 

shortly after exposure, making them poor tools for studying chronic infection and long-term therapies (26, 
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27). We sought to characterize a mouse model with a Zika virus pathology that better mimics the 

nonlethal, persistent nature of human infection.  

We began this study with immune competent BALB/c mice so that we could establish a baseline 

of ZIKV control in mice before working with immune deficient mouse strains. We found that although 

immune competent BALB/c mice very effectively control ZIKV infection in the periphery following 

intravenous exposure, viral-RNA was detected infrequently after exposure to the virus. Critically, low 

levels of ZIKV-RNA was detectable in multiple tissues analyzed from immune competent BALB/c mice 

harvested up to 329 days post exposure. Although immune competent BALB/c mice effectively clear 

ZIKV-RNA from the periphery shortly after exposure, we have found that the mice can maintain persistent 

infections which can result in peripheral ZIKV-RNA being detected in low quantities.  
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Results 

 Immune competent BALB/c mice maintain detectable levels of Zika virus RNA in multiple 

tissues up to six months post exposure. Due to the capacity for mouse IFN to effectively restrict ZIKV, 

the virus is rapidly cleared in the periphery of immune competent mice. We exposed a group of male 

BALB/c mice (n=18) intravenously to H/PF/2013 (5.0 x 105 FFU).  

At one, three, and six months post exposure, tissues were harvested from six mice. The tissues 

we assessed for localized ZIKV-RNA from each mouse were lung, liver, spleen, bone marrow, brain, 

intraepithelial layer of the gastrointestinal tract (IEL), lamina propria layer of the gastrointestinal tract 

(LPL), eye, prostate, epididymis, seminal vesicles, prostate, penis, and testes (Table 1.1) At one month 

post exposure, low levels of ZIKV-RNA were detected in 4/6 mice. Virus was found in 3/6 spleens, 2/6 

testes (analyzed in pairs), and 1/12 eyes (two from each mouse, analyzed individually). The highest viral 

RNA levels recorded at this time was in the spleen of one of the mice, which had 36 copies of ZIKV-RNA 

per 105 cells. Three months post exposure, we did not detect ZIKV-RNA in any of the tissues tested. Of 

the six animals randomly selected for necropsy at this time point, only one had detectable ZIKV-RNA in 

the periphery after 2 days post exposure, so the relative reduction in tissue resident ZIKV-RNA is not 

totally unexpected (Figure 1.1, Table 1.1). We were able to detect peripheral ZIKV-RNA more frequently 

between three and six months post exposure (Figure 1.1). This resulted in a greatly increased frequency 

of detectable ZIKV-RNA in all tissues tested at six months post exposure (Table 1.1). ZIKV-RNA was 

detectable in at least one tissue of all six mice analyzed and was most consistently detected in testes and 

liver (6/6 mice). It was also detected in the seminal vesicles of one mouse. The most viral RNA we 

detected at this time point was 1.3 x 103 copies ZIKV-RNA/105 cells in the testes of one mouse.  

In the periphery, the viral load was 8.1 x 104 ± 1.2 x 104 s.e.m. ZIKV-RNA copies/mL plasma two 

days post exposure (Figure 1.1). By five days post exposure, ZIKV-RNA was undetectable in the 

periphery of all 18 animals (Figure 1.1). At 56 days post exposure, 2/12 remaining animals had detectable 

ZIKV-RNA (586 and 764 copies/mL plasma). After 100 days post exposure, low-quantity ZIKV-RNA 

became more frequent in the plasma of the six remaining mice (Figure 1.1). Of the 18 mice, none 

developed observable physical or neurological symptoms of ZIKV infection during the period of 
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experimentation. Despite rapid peripheral control of ZIKV infection in immune competent BALB/c mice, 

persistent infection was maintained in some of the animals up to six months post exposure.  

 BALB/c mice do not completely clear ZIKV-RNA from the periphery when CD4+ and CD8+ 

T cells are depleted. Given the presence of neurological symptoms suggestive of encephalitis in the 

intranasally exposed mice and the presence of detectable viremia long after exposure in intravenously 

exposed mice, we were very interested in the role that adaptive immune cells play in fighting ZIKV 

infection in BALB/c animals. To investigate the role of the adaptive immune system in BALB/c mice, we 

depleted CD4+ and CD8+ T cells prior to intravenous exposure (5.0 x 105 FFU) with ZIKV H/PF/2013 

(n=6). This depletion was maintained through the course of the experiment and regularly confirmed via 

flow cytometry of peripheral blood. Two days post exposure, the peripheral viral load in the six animals 

tested was 5.9 x 103 ± 5.3 x 102 s.e.m. ZIKV-RNA copies/mL plasma compared to 8.1 x 104 ± 1.2 x 104 

s.e.m. ZIKV-RNA copies/mL plasma in undepleted controls (p=0.0034 Mann-Whitney test) (Figure 1.1, 

Figure 1.2). Importantly, all six of the animals tested had detectable ZIKV-RNA in the periphery during the 

course of the experiment (91 days total) which presented as transient, low-quantity detectable viremia 

(Figure 1.2). This is in direct contrast to the undepleted controls (0-1 month: n=18, 1-3 months: n=12, 3-6 

months: n=6), which presented only two instances of detectable viremia through 106 days post exposure 

(Figure 1.1).  

One possible cause for this reduction in viral load with an increased frequency of detectable 

viremia in an immune compromised mouse is the demonstrated capacity for ZIKV to infect lymphocytes. 

By depleting CD4+ and CD8+ T cells, ZIKV was able to establish a somewhat more productive infection 

but fewer targets of peripheral infection were provided during the initial exposure, resulting in less 

peripheral virus at two days post exposure compared to undepleted controls but more frequent instances 

of detectable viremia as the experiment progressed (Figure 1.1, Figure 1.2).    

Analysis of replication and long-term persistence of ZIKV in immune competent mice. 

Long-term persistence of ZIKV after peripheral clearance has not been adequately described. After 

considering the frequently detectable virus in our six month post exposure harvests (Table 1.1) and the 

impact of CD4+ and CD8+ T cell depletion on peripheral virus (Figure 1.2), we designed an experiment 

that would examine the capacity of ZIKV to rebound in immune competent mice long after initial 
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peripheral clearance and depletion of CD4+ and CD8+ T cells. To evaluate ZIKV persistence in immune 

competent mice, a group of BALB/c mice (n=10) were intravenously exposed to 5.0 x 105 FFU ZIKV 

H/PF/2013 (Figure 1.3A). Two days after exposure, ZIKV-RNA was detected in all animals (mean viral 

load of 4.9 x 103 ± 3.2 x 103 s.e.m. ZIKV-RNA copies/mL plasma) (Figure 1.3B). By ten days post 

exposure, ZIKV-RNA was undetectable in the plasma of all animals.  Plasma was monitored weekly for 

the first month after infection, and no viral rebound was detected. The mice were analyzed again at 201 

and 283 days post exposure to confirm long-term suppression of viremia. Two male mice were found 

dead in their cage 130 and 268 days post exposure.  Neither animal had evidence of ZIKV in plasma at 

the last timepoints analyzed and tissues could not be examined. To investigate the possible role of 

adaptive immune cell-mediated control of viral replication, starting 287 days post exposure, CD4+ and 

CD8+ T cells were depleted from these animals for 42 days (Figure 1.3A). CD4+ and CD8+ T cell depletion 

was confirmed in peripheral blood by flow cytometry (Figure 1.3C, left). Despite effective depletion of both 

CD4+ and CD8+ T cells, no viral rebound was detected in the periphery.  Finally, at 329 days post ZIKV 

exposure (42 days after CD4+ and CD8+ T cell depletion), necropsy was performed and flow cytometric 

analysis of splenocytes was used to demonstrate efficient tissue CD4+ and CD8+ T cell depletion (Figure 

1.3C bottom right).  In addition, tissues where high ZIKV replication levels are observed in macaques or in 

humans were collected from the mice for real-time PCR analysis of localized viral persistence (brain, 

epididymis, testes or female reproductive tract [FRT] and eyes). No ZIKV-RNA was detected in any of the 

samples analyzed from spleen, brain, epididymis, testes or the FRT (Figure 1.3D).  However, several 

hundred copies of ZIKV-RNA were detected in eyes from two mice. Our results demonstrate that despite 

efficient control and clearance in the periphery, in some animals ZIKV-RNA can persist in the eyes for 

almost a year post exposure.  

Immune competent BALB/c mice lose coordination and balance following intranasal ZIKV 

exposure. We performed intranasal exposures (1.0 x 106 FFU ZIKV H/PF/2013) of immune competent 

BALB/c mice (n=4 with n=4 vehicle controls). The method of intranasal exposure we performed was 

chosen because it preferentially infects the brain in mice through the palate and sinuses. Two days after 

exposure, ZIKV-RNA was detectable in 3/4 BALB/c mice (666 ± 217 s.e.m. copies/mL plasma)(Figure 

1.4A). By five days post exposure, ZIKV-RNA was detectable in 4/4 BALB/c mice (1.1 x 103 ± 4.2 x 102 
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s.e.m. copies/mL plasma). At the last time point evaluated, only 2/4 BALB/c mice had detectable ZIKV-

RNA (2.5 x 104 ± 1.6 x 104 s.e.m. copies/mL plasma), though it did increase ten-fold in the mice where it 

remained detectable.  

Mice were scored for neurological symptoms each day for a period of nine days after exposure: 1 

– loss of balance/ataxia; 2 – hind-limb paralysis with forelimb clutching; 3 – hind-limb paralysis with 

forelimb weakness; 4 – limb paralysis and difficulty eating and drinking. Critically, loss of balance and 

coordination was detected in the ZIKV-exposed BALB/c animals starting three days post exposure 

(Figure 1.4B). Three- and four-days post exposure, loss of balance was recorded in 3/4 BALB/c mice and 

in 4/4 BALB/c mice from five days post exposure until the end of the experiment. The presence of 

neurological symptoms in the immune competent mice point to the possibility of encephalitis induced 

neurological symptoms following ZIKV infection.  
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Discussion 

 The existence of infected reservoirs was reported in flavivirus infection before the recent ZIKV 

epidemic. Specifically, it has been reported in brain and nervous tissue up to 10 years after Siberian Tick 

Borne Encephalitis virus infection, in cerebrospinal fluid three weeks after infection and in PBMCs 8 

months after infection with Japanese Encephalitis virus, and in donated tissue 40 days after infection and 

in urine six-and-a-half years after infection with West Nile virus (28-30). However, persistent ZIKV 

infection has a larger impact on public health because of the capacity for ZIKV to be sexually transmitted 

long after recovery from disease symptoms (31). ZIKV reservoirs have been confirmed in human eyes, 

testes, placenta, nervous tissue, and kidneys, with persistent shedding identified in vaginal secretions, 

urine, and semen (28, 31-37). These findings reinforce the need for a ZIKV animal model that can 

recapitulate human infection on an appropriate time scale.  

In immune competent mice, the inability of NS5 to inhibit murine STAT2 results in a strong type I 

IFN response, suppression of virus replication and control of ZIKV infection (38, 39). This is consistent 

with our results in BALB/c mice intravenously exposed to ZIKV H/PF/2013. We determined that ZIKV can 

establish a persistent infection in immune competent BALB/c mice up to one-year post exposure despite 

initial clearance from the periphery after five days post exposure and no signs of illness at any point after 

infection. Critically, virus was detectable in critical tissues such as the brain, eyes, and male genital tract 

six months post exposure. Given the growing concern that persistent infection could magnify the risk of 

horizontal transmission in humans, long after the virus was believed to be cleared, a mouse model 

recapitulating this is of great importance (28). These findings highlight the lack of a ZIKV model for 

persistent infection on this time scale (28). 

Depletion of mouse T cells 287-329 days after exposure did not result in peripheral rebound of 

viremia supporting the importance of the innate immune response to ZIKV control in mice. However, 2/8 

mice were positive for ZIKV-RNA almost a year post-exposure. Other research groups have found that 

ZIKV infects cornea, iris, optic nerve, ganglion and bipolar cells in the retina and that it can persist in the 

eye through the convalescent stage possibly resulting in retinitis, focal retinal degeneration, and ganglion 

cell loss (40, 41).  
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ZIKV-associated fetal microcephaly is a direct result of ZIKV infecting the brain and central 

nervous system (18, 19, 21). The capacity for ZIKV to establish infection in immune privileged tissues 

such as the testis, brain, and placenta, is well established, but infection of adult human nervous tissue is 

not thoroughly characterized (28). Commonly used mouse models of ZIKV infection demonstrate 

neurological symptoms such as limb paralysis and dragging (26). In our experiments, the intranasally 

exposed BALB/c mice developed ataxia, a symptom of encephalitis, just a few short days after exposure. 

All of the immune competent mice we tested showed loss of coordination and balance through the 

experiment, even when virus was not detectable in the plasma. Future experiments in this study have the 

potential to demonstrate large scale lymphocyte migration to the brain.  

 Chapter 2, an adapted manuscript draft, will expand greatly on this work by more completely 

characterizing the unique pathology of the Zika virus in NSG mice and by taking advantage of its long 

survival to test novel therapeutics.  
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Figure 1.1. ZIKV-RNA in plasma from BALB/c mice. Analysis of ZIKV-RNA in plasma of infected 

BALB/c mice (n=18 mice). Mice were intravenously exposed to ZIKV H/PF/2013 (5.0 x 105 FFU). Six mice 

were harvested at one and three months post exposure to perform in depth tissue analysis. Values were 

calculated from a standard curve.  
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Table 1.1. Analysis of ZIKV-RNA in tissues from immune competent BALB/c mice up to one year 

post exposure.  

          

  1 Month 3 Month  6 Month 1 Year 

Lung 0/6 0/6 4/6 NA 

Liver 0/6 0/6 6/6 NA 

Spleen 3/6 0/6 5/6 0/8 

Bone Marrow 0/6 0/6 4/6 NA 

Brain 0/6 0/6 4/6 0/8 

IEL  0/6 0/6 4/6 NA 

LPL 0/6 0/6 4/6 NA 

Eye 1/12 0/12 7/12 2/8 

Prostate 0/6 0/6 4/6 NA 

Epididymis 0/6 0/6 5/6 0/3 

Seminal Vesicles 0/6 0/6 1/6 NA 

Penis 0/6 0/6 5/6 NA 

Testes 2/6 0/6 6/6 0/3 

FRT NA NA NA 0/5 

 

NA – Not assessed  
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Figure 1.2. ZIKV-RNA in periphery of CD4 and CD8 T cell depleted BALB/c mice. Analysis of ZIKV-

RNA in plasma from infected BALB/c mice (n=6 mice). Mice were intravenously exposed to ZIKV 

H/PF/2013 (5.0 x 105 FFU). Mice were depleted of CD4+ and CD8+ T cells before exposure and through 

the course of the experiment using anti-mCD4 (GK1.5) and anti-mCD8 (2.43) antibody treatment. CD4+ 

and CD8+ T cell depletion was confirmed regularly by flow cytometry analysis of peripheral blood. Values 

were calculated using a standard curve. 
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Figure 1.3. Control of ZIKV replication and persistence in BALB/c mice. (A) Experimental design. 

BALB/c mice (5 males and 5 females) intravenously exposed to ZIKV H/PF/2013 (5.0 x 105 FFU) were 

monitored over time for the presence of ZIKV-RNA in peripheral blood (PB, small red arrows).  Mice were 

depleted of CD4+ and CD8+ T cells at 286 days post-exposure using anti-mCD4+ (GK1.5) and anti-mCD8+ 

(2.43) antibody treatment. Cell-associated ZIKV-RNA levels in multiple tissues were analyzed after 42 

days of T-cell depletion.  (B) Analysis of ZIKV-RNA in plasma of infected BALB/c mice (n=10 mice).  



15 
 

Shaded area represents the period of antibody treatment. (C) Flow cytometric analysis of peripheral blood 

confirming CD4+ and CD8+ T cell depletion in ZIKV-infected BALB/c mice after treatment with anti-T cell 

depleting antibodies. Flow cytometric analysis showing the presence of T cells in untreated mice (top 

right) and demonstrating efficient depletion of splenocytes at the time of harvest (bottom right) are 

included. Samples for flow cytometry analysis were gated as follows: singlets → live cells → mCD45+. (D) 

ZIKV-RNA levels in tissues of BALB/c mice harvested 329 days post-exposure and 42 days after CD4+ 

and CD8+ T cell depletion (spleen, brain, eye, n = 8. Epididymis, testes, n = 3. Female reproductive tract n 

= 5). Samples without detectable ZIKV-RNA are placed on the dashed line. Horizontal line showing the 

mean MNC = mononuclear cells. 
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Figure 1.4. Intranasal exposure to ZIKV induces neurological symptoms in immune competent 

BALB/c mice but not immune deficient NSG mice. (A) Analysis of ZIKV-RNA in plasma of ZIKV 

exposed and vehicle control inoculated BALB/c (n=4 for each group). Mice were intranasally exposed to 

ZIKV H/PF/2013 (1.0 x 106 FFU). Values were calculated using a standard curve.  

(B) The mice were scored for neurological symptoms each day following intranasal exposure. Scoring: 1 – 

loss of balance/ataxia; 2 – hind-limb paralysis with forelimb clutching; 3 – hind-limb paralysis with forelimb 

weakness; 4 – limb paralysis and difficulty eating and drinking.   
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Methods 

Mice 

BALB/c and immunodeficient NOD/SCID/γc-/- (NSG) mice were used for experiments at 12-20 

weeks of age. Mice were maintained by the Division of Comparative Medicine at UNC-Chapel Hill 

according to protocol approved by the Institutional Animal Care and Use Committee. 

Virus challenges  

Stocks of ZIKV H/PF/2013 were prepared as previously described (50).  Viral challenges were 

performed by diluting viral stocks in RPMI (Gibco, Gaithersburg, MD).  Virus (300 FFU – 2.5 x 105 FFU) 

was administered intravenously via tail vein injection (200 µL volume). Virus (1.0 x 106 FFU) for intranasal 

challenge was delivered via micropipette directly into the nostrils (20 µL volume) while the mouse was 

held upside down.  

Collection and processing of mouse bodily fluids  

Mouse peripheral blood was collected longitudinally for ZIKV-RNA quantification. Peripheral blood 

was collected into tubes containing anti-coagulant (EDTA solution, Sigma-Aldrich, St. Louis, MD). Plasma 

was separated by centrifugation.  

CD4+ and CD8+ T cell depletion and flow cytometry 

Mouse CD4+ and CD8+ T cells were depleted by twice weekly intraperitoneal injections of 200 µg 

anti-mouse CD4 (GK1.5) (Bio X Cell, West Lebanon, NJ) and 200µg anti-mouse CD8 (2.43) (Bio X Cell, 

West Lebanon, NJ) diluted in sterile PBS.   

The antibodies used to analyze cells isolated from peripheral blood and spleens included 

antibodies directed against mCD45 (APC-Cy 7, BD Pharmingen, Franklin Lakes, NJ, Cat. 559864), mCD3 

(PE, BD Pharmingen, Franklin Lakes, NJ, Cat. 555275), mCD4 (APC, BD Pharmingen, Franklin Lakes, 

NJ, Cat. 560181), mCD8a (FITC, BD Pharmingen, Franklin Lakes, NJ, Cat. 553030), mCD19 (PE-Cy7, 

BD Pharmingen, Franklin Lakes, NJ, Cat. 552854) and mCD11b (PerCP, BD Pharmingen, Franklin 

Lakes, NJ, Cat. 550993). Live cells were distinguished by forward and side scatter profiles. Data was 

acquired with a BD FACSCanto flow cytometer and analyzed with BD FACS Diva software (v. 6.1.3).  

Collection and processing of tissues 
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Mouse tissues were collected essentially as previously described (42-45). Tissues collected for 

analysis (depending on mouse gender) included the spleen, bone marrow, lungs, liver, gastrointestinal 

tract, brain, eyes, FRT, epididymis, testes, prostate, penis, and seminal vesicles. For ZIKV-RNA analysis, 

tissues were processed into single cell suspensions as previously described (36-39). In brief, cells were 

isolated by forcing tissues through a 70 µm cell strainer (Falcon, Corning, NY) followed by red blood cell 

lysis if necessary. The liver, lung, female reproductive tract, and penis were digested in an enzyme digest 

cocktail prior to filtration. Liver, lung, and brain cells were purified with percoll gradients (GE Healthcare, 

Little Chalfont, UK). The mouse gastrointestinal tract was flushed with PBS and incubated with a 

dithiothreitol (Fisher Scientific, Hampton, NC) and EDTA solution to isolate cells from the intraepithelial 

layer and incubated with elastase (Worthington Biochemical, Lakewood, NJ) and hyaluronidase 

(Worthington Biochemical, NJ) to isolate the cells from the lamina propria layer (45). 

ZIKV-RNA analysis 

RNA was extracted from plasma (40 µL) using the QIAmp Viral RNA kit (Qiagen).  Tissue RNA 

was extracted using RNeasy mini columns (Qiagen) according to the manufacture’s protocol including an 

optional treatment with RNase-free DNase.  ZIKV-RNA levels in the peripheral blood plasma from 

infected mice were measured using a one-step quantitative real-time PCR (TaqMan® RNA to-CT 1-step 

kit, Applied Biosystems, Foster City, CA). The sequences of the forward and reverse primers and the 

TaqMan® probe for PCR amplification and detection of ZIKV RNA were: 5′-CCGCTGCCCAACACAAG -

3′, 5′-CCACTAACGTTCTTTTGCAGACAT -3′, and 5′-FAM-

AGCCTACCT/ZEN/TGACAAGCAGTCAGACACACTCAA-Q-3′, respectively (46). ZIKV-RNA was 

transcribed using a custom synthesized plasmid (Biomatik) to create a standard curve. Sample RNA was 

quantified by using a standard curve. All samples were run and analyzed on an ABI 7500 Fast Real Time 

PCR System (Applied Biosystems, Foster City, CA). 

Statistical Analysis  

If not otherwise specified, sample means are reported along with the corresponding standard 

error (s.e.m.) which conveys information about the level of imprecision. The estimators and statistical test 

procedures used in this study are described in the figure legends and in the narrative text in the results 

section.   
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To ensure appropriate blinding, the investigators involved in analyzing tissue samples for viral 

loads were given numbered samples and were thus unable to know treatment group identity (treated, 

controls).  No other blinding procedures were used in the study. No statistical methods were used to pre-

determined sample size. No randomization was used to allocate animals/samples to experimental groups. 

All statistical computations were performed using GraphPad Prism (version 6.0 for Mac, 

GraphPad Software, La Jolla, California). 
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CHAPTER 2: PHARMACOLOGICAL AND IMMUNOLOGICAL CONTROL OF ZIKA VIRUS 

REPLICATION IN MICE DEFICIENT IN ADAPTIVE IMMUNE RESPONSES – REFORMATTED 

MANUSCRIPT DRAFT 
Introduction 

Zika virus (ZIKV) is a mosquito-transmitted small-enveloped positive-stranded RNA virus from the 

Flavivirus genus in the Flaviviridae family that has emerged as a human pathogen with epidemic potential 

(1). Until 2007, only sporadic outbreaks of ZIKV infection involving no more than a few persons had 

occurred, usually resulting in a mild infection causing a self-limiting fever, headache, myalgia, rash, and 

conjunctivitis (1). However, recent outbreaks in Micronesia in 2007 (2, 3),  French Polynesia in 2013-2014 

(4, 5), and the Americas in 2015-2016 (6-8) revealed that ZIKV infections, can be prolonged and cause 

more severe clinical consequences including Guillain-Barré syndrome in adults and microcephaly and 

congenital malformations in fetuses and newborn infants (9). Unlike other flaviviruses, ZIKV has the 

potential for significant horizontal transmission due to shedding in bodily fluids long after symptom onset 

(10-14). Given the severe clinical consequences and potential for ZIKV spread, vaccine development is 

important. However, development of clinical strategies needed for treatment during epidemics when 

prevention of infection is no longer an option is paramount. Animal models capable of recapitulating 

chronic and persistent ZIKV infection will be critical to understand pathogenic mechanisms of ZIKV 

infection and to evaluate novel treatment strategies. 

Inoculation of immune competent, wild type mice (C57BL/6, BALB/c or CD-1 mice) with ZIKV 

strains from Africa, French Polynesia, Brazil, or Puerto Rico does not result in disease and little to no 

infectious virus or viral RNA is detected in tissues (15-17). The resistance of immune competent mouse 

strains to ZIKV infection is due to the inability of ZIKV to antagonize the mouse type I interferon (IFN) 

response (18, 19).  As a result, most mouse models of ZIKV infection have genetic deficiencies in the IFN 

signaling pathway.  
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Mice lacking the interferon alpha/beta receptor 1 (Ifnar1), like A129 mice, Ifnar1-/- C57BL/6 mice, 

mice deficient in Irf3, Irf5, and Irf7 or STAT2 deficient mice support ZIKV infection (16, 17, 20).  When 

inoculated with African (MR 766 or Dakar 1984), Asian (H/PF/2013), or American (Brazil Paraiba_2015) 

ZIKV strains (16, 17, 20-22) these mice develop disease symptoms including hind limb weakness, 

paralysis, and death. Mice deficient in both type I and type II IFN receptors (AG129) show greater 

susceptibility and more severe disease following ZIKV infection (17, 23-26). Although severity of disease 

and lethality is age-dependent in these models, most mice die within 1 month of ZIKV infection (16, 17, 

27). 

In an alternative approach, type I IFN signaling in wild type (WT) C57BL/6 mice is suppressed 

with anti-IFNAR1 monoclonal antibody (mAb) prior to and after virus inoculation. Suppression, rather than 

complete abrogation, of the type I IFN response in this manner may more accurately reflect ZIKV infection 

and transmission in humans. This also allows the analysis of other components of the immune response 

during ZIKV transmission (26). Anti-IFNAR1 mAb treated mice inoculated with ZIKV Dakar strains 

exhibited high levels of ZIKV-RNA in serum, weight loss and mortality compared to control mice (28). 

However, a less severe phenotype without weight loss or death after infection was observed when anti-

IFNAR1 mAb treated mice were inoculated with an Asian ZIKV strain (H/PF/2013) (16). Similarly, WT 

mice treated with the anti-inflammatory steroid dexamethasone prior to and after intraperitoneal 

inoculation with a Puerto Rican ZIKV strain (PRVABC59) experienced weight loss, viremia, and a 

disseminated infection. Dexamethasone withdrawal after infection led to rapid deterioration of the mice 

that was associated with inflammation and injury in the brain, kidneys, and testes (29). An additional 

mouse model of ZIKV infection is the highly immune deficient anti-IFNAR1 mAb treated Rag1−/− (AIR) 

mouse. Rag1−/− mice lack adaptive immune responses but are not susceptible to ZIKV infection. The 

AIR variant requires anti-IFNAR1 antibody administration every 2-4 days and is permissive to ZIKV 

infection, with virus in the testes, spleen, and brain (30). Disease progression is slower in AIR mice 

compared to other mouse models permissive to ZIKV infection, severe weight loss is not observed until 

14-17 dpi (22, 30). While the AIR model might be somewhat more relevant to the study of acute infection 

than the other models described above, none of those mouse strains seem to model chronic and 

persistent infection.  
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Here, we describe three different immune deficient mouse strains (NOD/SCID, NSG and NOG) 

that support high and sustained levels of chronic virus replication with delayed onset of disease. These 

strains are immune deficient by virtue of a lack of B cells, T cells, and NK cells but have a full complement 

of interferon and interferon-receptor genes. Inoculation of these mice with ZIKV results in high viremia, 

systemic dissemination to all tissues tested, delayed signs of illness and a half-life of up to 56 days post 

infection. The fact that these mice do not need anti-interferon treatment before or during ZIKV infection 1) 

greatly simplifies their use, 2) increases reproducibility and 3) lowers costs. We used these three immune 

deficient mouse strains for the evaluation of novel interventions for the treatment of ZIKV infection 

through the administration of a pharmacological intervention and a neutralizing antibody, both of which 

significantly reduced peripheral viral-RNA during and after administration. The neutralizing antibody was 

also demonstrated to prevent shedding in the saliva and reduce viral-RNA found in critical tissues such as 

the male genital tract and female reproductive tract.  
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Results 

Immune deficient mice lacking T cells, B cells, and NK cells maintain high levels of ZIKV-

RNA in the periphery. W intravenously exposed immune deficient NSG mice that lack T cells, B cells, 

and NK cells using decreasing inoculum doses; 2.5 x 104 FFU, 5.0 x 103 FFU, 1.0 x 103 FFU, and 0.3 x 

103 FFU ZIKV H/PF/2013. As NSG mice maintained a robust peripheral infection even at low inoculum 

doses. At 0.3 x 103 FFU, 2/3 mice had detectable ZIKV-RNA. One mouse had only a low quantity of 

detectable virus two days post exposure which did not become detectable again. ZIKV-RNA was 

undetectable in the second mouse at that inoculum dose until 42 days post exposure, at which point it 

established a robust infection which was maintained through the course of the experiment (Figure 2.1). At 

1.0 x 103 FFU, 0/3 mice had detectable virus through 120 days post exposure. At 5.0 x 103 FFU, 2/3 mice 

had detectable virus by 35 days post exposure that replicated efficiently reaching as high as 108 ZIKV-

RNA copies/mL plasma. The 2.5 x 104 FFU group was the only one to have a 100% rate of infection by 

two days post exposure. This was maintained for the course of the experiment and the mice achieved a 

similar peak viral load to the infected mice in the 5.0 x 103 FFU group. Most striking, however, was the 

protracted survival of the NSG mice despite highly productive infections compared to other commonly 

used mouse models of ZIKV infection.  

The minimum inoculum dose that had 100% rate of infection in our samples sizes of n=3 was 2.5 

x 104 FFU ZIKV H/PF/2013. To ensure consistency of infection and pathology, we used a minimum of 

10X that amount, 2.5 x 105 FFU ZIKV H/PF/2013 in future experiments. 

Sustained high-level systemic replication of ZIKV in immune deficient mice.  To further 

evaluate the importance of the adaptive immune system in ZIKV infection, we intravenously infected one 

mouse strain that is deficient in T cells and B cells (NOD/SCID) and two mouse strains that are deficient 

in T cells, B cells, and NK cells (NOG and NSG) with 0.5-1.0 x 106 FFU of ZIKV H/PF/2013 (n = 4, 4, and 

3, mice respectively, all females).  Approximately 1000-fold higher levels of ZIKV-RNA in plasma 

compared to BALB/c mice were detected as early as two days post exposure in all animals regardless of 

strain.  Also, in sharp contrast to BALB/c mice, longitudinal analysis of infection demonstrated high and 

sustained levels of ZIKV-RNA in all three strains of mice (Figure 2.2, panels A-C).  Infection of NSG 

males also led to sustained high levels of ZIKV-RNA in plasma (Figure 2.2D).  Under our experimental 
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conditions, we observed similar mean levels of plasma ZIKV-RNA and survival in male and female mice. 

The logrank test for a sex effect was not statistically significant (p > 0.05) (Supplementary Figure 2.1A). 

The replication competence of the ZIKV found in plasma from infected NSG mice was verified both in vitro 

and in vivo. For in vitro analysis, serum from infected NSG mice (3uL) was added to Vero cells, and ZIKV-

RNA was quantified in culture medium 24h, 48h, and 96h later. Levels of ZIKV-RNA in culture medium 

increased exponentially over time (Supplementary Figure 2.2A), indicating efficient replication of ZIKV 

from infected mice in VERO cell culture. For in vivo testing, serum was collected from 3 ZIKV infected 

NSG mice on days 21 and 28 post-inoculation. Serum was pooled, and 60 µl used for inoculation of two 

naïve NSG mice (Supplementary Figure 2.2B). Levels of ZIKV-RNA in plasma of serum-exposed mice 

increased rapidly and were maintained throughout the experiment (56 and 65 days, respectively) 

(Supplementary Figure 2.2C) providing further evidence that ZIKV in infected NSG mice was replication 

competent.   

In humans, an important characteristic of ZIKV infection is the presence of virus in bodily 

secretions (saliva, vaginal secretions, breast milk, urine, and semen)(31-34). We evaluated the presence 

of virus in the saliva of infected mice.  High levels of ZIKV-RNA were found in saliva (Figure 2E). 

Similarly, ZIKV-RNA was consistently present in the urine and cervicovaginal secretions of infected mice 

(Supplementary Table 2.1).   

In contrast to BALB/c mice that survived for almost a year post infection, over time, immune 

deficient mice succumbed to infection (Figure 2.2F).  All NOG mice died within the first 47 days post-

infection (half-life 26 days post-exposure). The half-life of NOD/SCID and NSG mice was four weeks 

longer (54 and 56 days, respectively). ZIKV-infected male and female mice were similar in survival 

(Supplementary Figure 2.1B).  The logrank test for a sex difference was not statistically significant 

(p = 0.83).   

To establish the ability of different strains of ZIKV to replicate in immune deficient mice, we inoculated 

NSG mice with three additional strains of ZIKV from recent outbreaks in the western hemisphere including 

one strain from Puerto Rico (PRVABC59) and two strains representing distinct ZIKV clades from Brazil 

(SPH2015 and BEH 819015).  As early as two days post-inoculation, all three strains showed robust 

levels of virus replication in plasma that were sustained throughout the experiment (Figure 2.2G-I).  
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Together, these results demonstrate the susceptibility of immune deficient mouse strains to ZIKV infection 

without the need for preconditioning or any other type of intervention like anti-interferon treatment, 

characterized by robust and sustained replication with a protracted half-life.       

Systemic replication of ZIKV in tissues from immune deficient mice.  To establish the 

systemic replication of ZIKV during acute and chronic infection, cell-associated ZIKV-RNA in infected 

NSG mice (n = 11 acute, n = 12 chronic) was evaluated using quantitative real-time PCR analysis from 

bone marrow, spleen, liver, lung, brain, gut epithelium, gut lamina propria, and the eye (Figure 2.3A).  

During acute infection (two days post exposure), high levels of ZIKV-RNA were detected in the plasma of 

all animals.  However, levels of cell-associated ZIKV-RNA were variable in the different tissues analyzed.  

For example, whereas ZIKV-RNA was readily detected in the spleen, liver, lung, gut lamina propria and 

eyes from the majority of mice, ZIKV-RNA was only detected in the bone marrow and brain of 

approximately half of the animals.  In contrast, during chronic ZIKV infection (27-73 days post exposure) 

statistically significantly higher levels of virus were found in all tissues analyzed.   Of these tissues, the 

brain (2.50 x 108 ± 1.05 x 108 s.e.m. ZIKV-RNA copies per 105 cells) and the eye (1.14 x 108 ± 0.84 x 108  

s.e.m. ZIKV-RNA copies per eye) had the highest levels of ZIKV-RNA.  These results demonstrate that 

ZIKV rapidly establishes a systemic infection in immune deficient mice that is maintained at very high 

levels in all tissues analyzed.  

ZIKV replication in the male and female reproductive tracts.  Given the importance of sexual 

transmission of ZIKV, we also determined the presence of ZIKV in the male genital tract (testes, 

epididymis, prostate, penis, and seminal vesicles) and FRT of immune deficient mice (female: acute n = 

4, chronic n = 5; male: acute n = 5 chronic n = 5).  Remarkably, two days post-infection, all male animals 

had readily detectable levels of ZIKV-RNA in the testes and all female animals in their reproductive tract 

(Figure 2.3B).  In some male animals, ZIKV-RNA was also noted in the epididymis, prostate and seminal 

vesicles (Figure 2.3B).  We did not detect ZIKV-RNA in the penis during acute infection.  During chronic 

infection, ZIKV-RNA was consistently detected at statistically significantly higher levels in all tissues of the 

male reproductive tract, including the penis (testes p=0.0079, epididymis p=0.0079, penis p=0.0286, 

prostate p=0.0159, seminal vesicles p=0.0159, Mann-Whitney test).  The highest viral burden was 

observed in the epididymis and the testes followed by the prostate, seminal vesicles and penis.  Similarly, 
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the levels of ZIKV-RNA in the FRT were statistically significantly higher during chronic infection 

(p=0.0159, Mann Whitney test).  These results demonstrate that ZIKV is consistently present in the male 

and female reproductive tracts during acute ZIKV-infection and that ZIKV replication in sustained at high 

levels in these compartments during chronic infection. 

7-Deaza-7-fluoro-2’-C-methyl-adenoside (DFMA) reduces viral burden and improves 

survival after ZIKV infection.  Currently there are no approved treatments for ZIKV infection.  Recently, 

the nucleoside DFMA (Supplementary Figure 2.3) was reported to have anti-ZIKV activity (35). The ability 

of ZIKV to replicate efficiently and for prolong periods of time in immune deficient mice allows for the in 

vivo evaluation of novel viral inhibitors like DFMA. Beginning two days prior to infection with ZIKV 

H/PF/2013 (2.5 x 105 FFU) (Figure 2.4), NSG mice were administered DFMA (n = 6, 10 mg/kg per day, 

i.p.) or vehicle (n = 4) daily for 21 days (until 19 days post-exposure with ZIKV).  Plasma ZIKV-RNA levels 

were monitored over time. At two days post exposure, the levels of viremia in DFMA treated and control 

groups were similar.  However, as early as four days post-infection, ZIKV-RNA levels in the plasma of 

DFMA treated mice (9.41 x 105 ± 1.40 x 105 s.e.m. ZIKV-RNA) were statistically significantly lower 

compared to control animals (2.00 x 106 ± 2.90 x 105 s.e.m. ZIKV-RNA) (Figure 2.4, panels A and B). 

Statistically significantly lower levels of ZIKV-RNA were consistently observed in the plasma of DFMA 

treated mice compared to controls during the duration of treatment. Surprisingly, although DFMA 

treatment was discontinued after 21 days, statistically significantly lower levels of viremia were observed 

in DFMA treated mice up to three weeks post-treatment discontinuation (Figure 2.4, A and B). All 4 

animals in the control group succumbed to infection by 57 days post-exposure (Figure 2.4, C and D). 

Only 2/6 DFMA treated animals succumbed to infection (p < 0.05) (Figure 2.4, C and D).  These results 

demonstrate that DFMA treatment reduces viremia and reduces mortality of ZIKV infected mice. 

Pretreatment with C10, a neutralizing anti-ZIKV antibody, markedly reduces virus 

replication, shedding and overall plasma viral burden.  C10 is a dengue virus serotype cross-

neutralizing monoclonal antibody isolated from a dengue patient. It was previously shown to neutralize 

ZIKV in cell culture and reduce ZIKV-induced morbidity and mortality in a type I/II interferon receptor-

knockout murine model (36). To investigate the effect of C10 pre-exposure prophylaxis on the 

establishment of ZIKV infection, replication and pathogenesis, mice received one systemic administration 
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of C10 intraperitoneally (62.5 µg, n = 10) or control antibody (62.5 µg IgG, n = 9). Mice were exposed to 

ZIKV H/PF/2013 intravenously (2.5 x 10 5 FFU) 18 h after treatment and ZIKV infection was monitored in 

peripheral blood for six weeks.  

All mice treated with control antibody became infected.  High levels of ZIKV-RNA were detected 

in the plasma of all control animals by two days post-exposure (1.15 x 106 ± 5.23 x 104 s.e.m. ZIKV-RNA 

copies/mL) and viremia was maintained for six weeks (last time point analyzed) (Figure 2.5, panels A and 

B). In stark contrast, there was no evidence of peripheral blood infection in 7/10 C10-treated mice. Low 

levels of ZIKV-RNA were only transiently observed immediately after infection in three animals. 

Specifically, ZIKV-RNA was not detected in the plasma from 7/10 C10-treated mice two days post-

exposure and low levels (1,722 ± 307 copies/mL) were detected in three ZIKV-positive mice (Figure 

2.5B). Seven days post exposure, plasma ZIKV-RNA levels were undetectable in all treated mice (Figure 

2.5B). ZIKV-RNA was undetectable through 35 days post exposure in most of the animals, with only three 

transient instances of detectable viral-RNA in 2/10 animals. By six weeks post exposure, only 4/10 mice 

had low but detectable levels of ZIKV-RNA in plasma (5,125 ± 2,023 copies per mL).  

C10 pre-exposure prophylaxis also efficiently inhibited ZIKV-RNA shedding. ZIKV-RNA levels 

were undetectable in saliva collected from all (10/10) C10-treated mice 30 days post ZIKV exposure.  In 

contrast, high levels of ZIKV-RNA were present in the saliva of control mice (1.64 x 105 ± 5.62 x 104 s.e.m 

copies/mL) (Figure 2.5C). During the course of the experiment (42 days), no C10-treated mice 

succumbed to infection or showed any signs of illness. However, 2/9 control mice succumbed to infection 

by 26 days post-exposure (Figure 2.5D). These data demonstrate that a single dose of C10 administered 

prior to ZIKV exposure effectively inhibits ZIKV replication in vivo over an extended period of time and 

markedly reduces (>2,000-fold) ZIKV-RNA levels in plasma and saliva (p < 0.0001). 

A single dose of C10 greatly reduces ZIKV replication in tissues.  Successful ZIKV therapy 

depends on the ability of the treatment to penetrate to affected tissues. To investigate the effect of C10 on 

the levels of ZIKV-RNA in tissues, we harvested C10-treated and control mice six weeks post ZIKV 

exposure and analyzed cell-associated virus RNA levels in the bone marrow, spleen, liver, lung, gut 

(intraepithelial and lamina propria layers), brain and eyes (Figure 2.6A).  In control mice, ZIKV-RNA was 

readily found in all tissues from all animals analyzed.  The highest levels of viral RNA were observed in 
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the gut lamina propria, brain, and eyes. In sharp contrast, almost all tissues analyzed from the C10-

treated mice had low levels of viral RNA or levels that were below the LOD. In most tissues of C10-

treated mice, cell-associated ZIKV-RNA levels were 2-5 logs lower compared to control animals (Figure 

2.6A).  These results show that C10 effectively reduces the systemic levels of cell-associated ZIKV-RNA 

(Figure 2.6A). 

C10 efficiently suppresses ZIKV replication in the male and female reproductive tracts.  

Because of their relevance to sexual ZIKV transmission, we evaluated the effect of C10 pre-treatment on 

the levels of virus in the different organs of the male genital tract (testes, epididymis, prostate, penis, and 

seminal vesicles) and FRT.  ZIKV-RNA was readily detected in the epididymis, penis, prostate, seminal 

vesicles and testes of all control male animals (Figure 2.6B).  In contrast, ZIKV-RNA levels were 

statistically significantly lower in all of the male genital tract tissues from C10-treated animals, and in most 

samples below our assays ability to detect (Figure 2.6B).  ZIKV-RNA was also consistently detected in 

FRT of all female animals administered the control antibody. However, statistically significantly lower 

levels of ZIKV-RNA were observed in the FRT from C10-treated animals (Figure 2.6B).   Collectively, 

these results demonstrate that a single administration of C10 efficiently inhibits ZIKV replication in the 

male and female reproductive tracts for at least 6 weeks.  
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Discussion 

During human ZIKV infection, the ZIKV NS5 protein inhibits STAT2, thereby suppressing the type 

I IFN response to ZIKV allowing for viral replication and dissemination. As a result, replication-competent 

infection has been verified in the female reproductive tract, the placenta and fetal tissue, in neural 

progenitor and adult neural cells, and in immune privileged tissues such as the testes and the eyes. ZIKV 

shedding has also been observed in humans in breast milk, saliva, urine, semen, and cervical mucus, 

which may contribute to vectorless transmission (37). In newborns, ZIKV infection results in severe eye 

disease characterized by optic neuritis, chorioretinal atrophy and blindness (9, 38). In adults, ZIKV 

infection can result in conjunctivitis and uveitis (39, 40).  

Growing evidence suggests that the immune response to ZIKV in mice is more complex than just 

type I interferon and that other components of the immune system may be able to control ZIKV infection. 

For example, WT C57BL/6 mice treated with anti-IFNAR antibodies have a suppressed, but not 

completely deficient IFN response, and develop viremia when inoculated with Asian ZIKV strains. 

However, they do not lose weight or develop neurologic disease (16).  Mice deficient in MAVS, an 

adaptor of cytosolic RIG-I–like receptors signaling, develop an acute infection after ZIKV exposure, but 

only experience significant weight loss when their CD4+ and CD8+ T cells are depleted (22). ZIKV-infected 

AIR mice, Rag1-/- mice deficient in functional T and B cells and IFN responses suppressed with anti-

IFNAR Abs, have high levels of viral RNA in the spleen, lymph nodes, and brain and exhibit significant 

weight loss. Thus, both adaptive and innate immune responses appear to be required to control ZIKV 

replication, its spread and the severity of disease symptoms.  

As deficiency in the type I interferon pathway in mice results in severe ZIKV disease and death, 

mouse models with a deficient adaptive immune response and impaired innate immune response could 

prove valuable for the study of ZIKV infection with a delayed onset of disease. NSG mice have a scid 

mutation on the NOD/ShiLtJ genetic background and a complete null allele of the IL2 receptor common 

gamma chain (IL2rgnull). This renders NSG mice B and T cell deficient, prevents cytokine signaling 

through multiple receptors, leads to a deficiency in NK cells, and reduces innate immune responses. As 

reported here, these immune deficient mice are fully permissive for ZIKV infection.  Immune deficient 

mice intravenously inoculated with ZIKV H/PF/2013 had robust plasma viremia detected as early as two 
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days post-infection that was sustained for up to 91 days (last time point analyzed).  ZIKV-RNA was 

detected in multiple tissues as early as 2 days post-infection, suggesting rapid systemic dissemination.  

Although the majority of ZIKV-infected NSG mice (75%) eventually succumbed to infection, the half-life of 

ZIKV-infected NSG mice was 56 days, much longer than other murine models, where the majority of the 

animals died within 30 days post ZIKV infection (16, 17, 27). Immune deficient NOG mice are 

phenotypically similar to NSG mice but they express a truncated form of the protein instead of a deletion 

of the common gamma chain receptor.  NOG mice intravenously inoculated with ZIKV H/PF/2013 

developed very similar viremia compared to NSG mice, except that all of the animals succumbed to 

infection by 26 days post-infection. NOD/SCID mice are the parental strain of both NSG and NOG mice 

and have an intact common gamma chain.  When infected with ZIKV, NOD/SCID mice also developed 

sustained plasma viremia but had a lower initial plasma viral load compared to NSG mice.  However, 

during chronic infection, their plasma viral load, half-life and survival rate was similar to NSG mice. These 

results suggest a minimal role for the common gamma chain in the progression of ZIKV infection in NSG 

or NOG mice.  

ZIKV infection of immune deficient mice lacking T cells, B cells and NK cells is therefore 

characterized by: 1) a rapid increase in plasma viremia and subsequent maintenance of a high viral load 

that allows for the evaluation of therapeutic strategies targeting ZIKV infection during acute and chronic 

stage of infection; 2) early compartmentalization resulting in very high ZIKV loads in the brain, eye, testes, 

epididymis, and FRT during chronic stage of infection which is useful for the evaluation of tissue 

penetration and efficacy of ZIKV therapeutics; 3) ZIKV shedding in saliva, cervicovaginal secretions, and 

urine, which allows assessment of the role of therapeutics in prevention of sexual and non-sexual ZIKV 

transmission as well as persistence; and 4) Immune deficient mice do not need anti-interferon treatment 

before or during ZIKV infection, greatly simplifying the use of this model and lowering its cost. 

To further illustrate the utility of immune deficient mice as a model for ZIKV infection, we used a 

pharmacological approach and an immunological approach to control ZIKV infection.   Consistent with the 

results obtained in IFN knockout mice (AG129), treatment with DFMA demonstrated significant reductions 

in plasma viral load that extended beyond the period of treatment and resulted in improved survival of 

infected animals (35).  Mice treated with a single injection of C10, a dengue virus envelope dimer epitope 
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monoclonal antibody (36, 42), prior to ZIKV H/PF/2013 infection had dramatically reduced levels of 

plasma viremia immediately after exposure. ZIKV-RNA levels in plasma were below or near the LOD for 

five weeks after infection. Importantly, C10 treatment also prevented ZIKV-RNA shedding in saliva and 

was very effective in reducing ZIKV-RNA levels in immune privileged tissues including the brain, eye and 

genital tract. Immune privileged organs are critical to the study of ZIKV drug effectiveness because they 

have been noted for having some of the highest levels of ZIKV during infection. These results show that 

C10 treatment could be used as an approach to control life-threatening ZIKV infection (43). It also points 

to the possibility of repurposing existing treatment for ZIKV (44, 45). This is supported by recent studies 

showing that sofosbuvir, an FDA-approved nucleotide analog inhibitor of the hepatitis C RNA-dependent 

RNA polymerase has protective effect against ZIKV in vitro and in vivo (46-49).  

In conclusion, immune deficient mice provide a robust platform for the long-term evaluation of 

ZIKV replication and the in vivo evaluation of pharmacological and therapeutic approaches to control virus 

replication and spread within the infected individual and to prevent vertical and horizontal transmission.  

In addition, the fact that immune deficient mice can be reconstituted with an intact functional immune 

system or some of its components (T cells, B cells, etc.) provides an opportunity to elucidate how 

infection is controlled in immune competent subjects. 
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Figure 2.1. Immune deficient NSG mice are permissive to ZIKV infection. Analysis of ZIKV-RNA in 

plasma NSG mice exposed to ZIKV H/PF/2013 (n=3 mice in each group). Mice were intravenously 

exposed to ZIKV H/PF/2013 using 2.5 x 104 FFU (Purple diamonds), 5.0 x 103 FFU (Blue inverted 

triangles), 1.0 x 103 FFU (Orange squares), and 0.3 x 103 FFU (Green triangles). The dashed line 

represents the lowest quantified standard in the PCR assay and is equivalent to 833 copies per mL 

plasma.  
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Figure 2.2. Sustained plasma viremia and viral shedding in the saliva of ZIKV-infected immune 

deficient mice. ZIKV-RNA levels in the plasma of (A) NOD/SCID (n = 4 females), (B) NOG (n = 4 

females) and (C-D) NSG (n = 3 females in panel C and n = 3 males in panel D) immune deficient mice 

intravenously exposed to ZIKV H/PF/2013 (0.5 – 1.0 x 106 FFU). (E) ZIKV-RNA levels in saliva of 

NOD/SCID (n = 4 females, green triangles), NOG (n = 4 females, blue squares) and NSG (n = 3 females, 

purple open circles and n = 3 males, purple closed circles) mice. (F) Kaplan-Meier plot comparing survival 

of ZIKV-infected BALB/c (n = 10 mice, black line) and immune deficient NOD/SCID (n = 4 mice, green 

line) NOG (n = 4 mice, blue line) and NSG (n = 6 mice, purple line) mice. ZIKV-RNA concentration in 

plasma from NSG mice intravenously exposed to ZIKV strain (G) PRVABC59 (n = 4 mice), (H) SPH2015 

(n = 4 mice), and (I) BeH 819015 (n = 4 mice) (5.0 x 105 FFU). ZIKV-RNA was quantified by RT-PCR and 

the limit of detection (LOD, 833 copies per mL) is noted with a dashed line. 
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Figure 2.3. Analysis of systemic infection in immune deficient mice exposed to ZIKV.  NSG mice 

were intravenously exposed to ZIKV H/PF/2013 (0.25 – 1 x 106 FFU) and tissues collected during acute 

or chronic infection (2 and 27-73 days post infection, respectively).  RT-PCR was used to quantify ZIKV-
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RNA from single cell suspensions obtained from the indicated tissues. (A) Tissues not specific to mouse 

gender harvested during acute (bone marrow, spleen, liver, lung, brain, n = 11; gut epithelium, gut lamina 

propria, n = 9, eye n = 6) or chronic (brain, lung, n = 11, eye, spleen, n = 10, bone marrow and liver, n = 

9, gut epithelium, n = 7, gut lamina propria, n = 8) infection. (B) Male genital tract tissues and the female 

reproductive tract. Plasma and eye ZIKV-RNA levels were calculated per mL and per one whole eye, 

respectively. Tissues with ZIKV-RNA below the limit of detection (36 copies per 100,000 cells) are placed 

on the dashed line. Horizontal lines showing the mean * p=0.05, ** p = 0.01, *** p = 0.001, **** p < 

0.0001, Mann-Whitney test. MNC = mononuclear cells. 
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Figure 2.4. Treatment of ZIKV infected mice with DFMA reduces viremia and improves survival. (A-

D) NSG mice infected with ZIKV H/PF/2013 (2.5 x 105 FFU) received daily DFMA (10 mg/kg, n=6 mice) or 

vehicle (control, n=4 mice) starting two days prior to exposure.  Drug administration was continued for a 

total of 21 days (in grey). Plasma ZIKV-RNA levels  of DFMA (black circles) and vehicle (white squares) 

treated mice in (A) aggregate (mean  95% confidence interval) or (B) individually are shown. ZIKV-RNA 

was quantified by RT-PCR and the limit of detection (833 copies per mL) is noted with a dashed line. 

ZIKV-RNA levels between DFMA-treated and control mice were compared up to 35 days post exposure 

using two-way repeated measures ANOVA (Treatment effect: p = 0.0001). (C) Weight of DFMA (black 

circles) and vehicle (white squares) treated mice following ZIKV exposure represented as percent of 

starting weight. (D) Kaplan-Meier plot illustrating the post-exposure survival of DFMA-treated (solid line) 

and control (dashed line) mice. * p = 0.05, Mantel-Cox log rank.  
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Figure 2.5. C10 neutralizing antibody administration dramatically reduces ZIKV replication and 

prevents viral shedding. (A) ZIKV-RNA concentration in plasma of NSG mice administered C10 

neutralizing antibody intraperitoneally (62.5µg) 18 h prior to intravenous exposure to ZIKV H/PF/2013 (2.5 

x 105 FFU) (n = 10 C10 treated mice, dark circles; n = 9 control mice, white boxes, mean  95% 

confidence interval)  (B) Mice as in panel A represented individually and grouped by gender and 

treatment (n = 5 C10 males, purple circles, n = 5 C10 females, orange circles, n = 4 control males, blue 

boxes, and n = 5 control females, mice green boxes). (C) ZIKV-RNA levels in saliva collected from C10-

treated (n = 10) and control mice (n = 7) 30 days post ZIKV exposure. (D) Kaplan-Meier plot illustrating 

the survival of C10-treated and control mice. In A-C, ZIKV-RNA was quantified by RT-PCR and the limit of 

detection (833 copies per mL) is shown with a dotted line. ZIKV-RNA levels between C10-treated and 
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control mice in panels A and B were compared using two-way repeated measures ANOVA (Treatment 

effect: p<0.0001) after exclusion of 2 mice from control group that died prematurely. Samples with ZIKV-

RNA below the level of detection were assigned half the limit of detection (417 copies per mL) for 

statistical analysis and arbitrary values to assist with visualization in panel B. In C, a Mann-Whitney test 

(**** p = 0.0001) was used. In D, a Mantel-Cox log-rank test was used to compare survival between C10-

treated and control mice.  
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Figure 2.6. C10 antibody administration effectively reduces ZIKV replication in tissues. NSG mice 

were administered C10 neutralizing antibody intraperitoneally (n = 10 mice) or IgG control antibody (n = 7 

mice) (62.5 µg) 18 hr prior to intravenous exposure to ZIKV H/PF/2013 (2.5 x 105 FFU). C10-treated male 

mice (n = 5) are shown in purple circles and female mice (n = 5) are shown in orange circles. Control 
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male mice (n = 3) are shown in green squares and control female mice (n = 4) are shown in blue squares. 

RT-PCR was used to quantify ZIKV-RNA levels in mononuclear cell suspensions of tissues collected 42-

44 days post exposure. ZIKV-RNA concentration in (A) tissues not specific to mouse gender and (B) 

tissues from the male genital tract and female reproductive tract. RNA measurements below the limit of 

detection are shown on the dotted line. Horizontal lines showing the mean, * p = 0.05, ** p = 0.01, *** p = 

0.001, **** p < 0.0001, Mann-Whitney test. MNC = mononuclear cells.  
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Supplemental information 

 

Supplementary Figure 2.1.    Male and female mice were similar in mean levels of peripheral  ZIKV-

RNA and survival.   NSG mice (10 male, 10 female) were intravenously exposed to FFU ZIKV 

H/PF/2013 (0.25 – 1 x 106).   (A)  Longitudinal monitoring of plasma viral load quantified by RT-PCR.  

Legend: the lower limit of detection (dotted line, 833 copies/mL of plasma), males (black dots) and 

females (white dots).  (B)  Kaplan-Meier curves for post-exposure survival of the males and females were 

similar. The logrank test of the null hypothesis “the gender effect is exactly zero” was inconclusive 

(p = 0.8317) and the proportional hazards assumption was not met. 
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Supplementary Figure 2.2. ZIKV isolated from infected mice efficiently replicates both in vitro and 

in vivo. (A) Serum (3µL) from infected mice was used to inoculate VERO cells. ZIKV-RNA was then 

quantified in culture media by RT-PCR at the indicated time points. (B) Experimental design. Three mice 

were exposed intravenously to ZIKV H/PF/2013. After 21 days, 20 µL serum from each mouse was 

pooled before intravenous inoculation into a female naïve mouse. This process was repeated in a male 

naïve mouse with serum collected from infected mice 28 days after exposure. Plasma from exposed mice 

was then monitored for the presence of ZIKV-RNA at the indicated time points (C). The limit of detection 

(833 copies/mL plasma) is indicated by a dotted line.  
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Supplementary Figure 2.3. Chemical structure of DFMA.  
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Supplementary Table 2.1. ZIKV-RNA is shed into the urine and CVL of infected mice.  

Weeks# CVL* Proportion Lowera Upperb  Urine Proportion Lowera Upperb 

2 -- -- -- --  0/1 0.00 0.00 0.79 

3 2/3 0.67 0.21 0.94  2/2 1.00 0.34 1.00 

5 3/3 1.00 0.44 1.00  1/1 1.00 0.21 1.00 

6 3/3 1.00 0.44 1.00  1/2 0.50 0.09 0.91 

8 1/1 1.00 0.21 1.00  1/1 1.00 0.21 1.00 

9 -- -- -- --  0/3 0.00 0.00 0.56 

 

#Bodily secretions were sampled from infected mice at the indicated weeks post infection and ZIKV-RNA 

was analyzed by RT-PCR.  

Results are represented as positive samples from total mice sampled.  

--  indicates samples not analyzed.   

*CVL, cervicovaginal secretions. 

a.   Lower 95% confidence limit 

b.   Upper 95% confidence limit 

  



50 
 

Methods 

Mice 

Immunodeficient NOD/SCID/γc-/- (NSG) mice, NOD/SCID (The Jackson Laboratory, Bar Harbor, 

ME), and NOG (Taconic Biosciences, Rensselaer, NY) male and female mice were used for experiments 

at 12-20 weeks of age. Mice were maintained by the Division of Comparative Medicine at UNC-Chapel 

Hill according to protocol approved by the Institutional Animal Care and Use Committee. 

Virus challenges and administration of DFMA and C10 antibody  

Stocks of ZIKV H/PF/2013, SPH2015, PRVABC59, and BeH819015 were prepared as previously 

described (50).  Viral challenges were performed by diluting viral stocks in RPMI (Gibco, Gaithersburg, 

MD).  Virus (0.25-1.0 x 106 FFU) was administered intravenously via tail vein injection (200 µL volume). 

C10 antibody (62.5 µg) was diluted in saline (Hospira, Lake Forest, IL) and administered systemically via 

intraperitoneal injection (200 µL volume) 18 hr prior to viral challenge. Monoclonal antibody C10 was 

prepared using transfected human 293T cells from cloned plasmids as previously described (50).  DFMA 

was prepared by direct chemical synthesis and its structure confirmed by mass spectrometry and proton 

NMR (synthesis to be published elsewhere). DFMA was dissolved in DMSO (Fisher Scientific, Hampton, 

NC) and diluted in PBS (Sigma-Aldrich, St. Louis, MO) before filtration with a 70 µm syringe filter 

(Corning, NY) and systemic administered via intraperitoneal injection. 

Collection and processing of mouse bodily fluids  

Mouse peripheral blood and bodily secretions were collected longitudinally for ZIKV-RNA 

quantification. Peripheral blood was collected into tubes containing anti-coagulant (EDTA solution, Sigma-

Aldrich, St. Louis, MD). Plasma was separated by centrifugation. To stimulate salivation, ZIKV-infected 

mice were administered pilocarpine HCl (Sigma-Aldrich, St. Louis, MD) in sterile PBS (100 µg/100 µL) by 

intraperitoneal injection essentially as previously described (51). Saliva was collected directly from the 

mouth with a micropipette. Cervicovaginal secretions were obtained by cervicovaginal lavage with 3 

successive washes of 20 µL sterile PBS using sterile filter micropipette tips inserted less than 3 mm into 

the vaginal canal. Urine was collected by holding mice above a sterile petri dish and lightly palpating 

above the bladder to induce urination. The urine was then collected from the petri dish. Cells and debris 

from bodily fluids were removed by centrifugation.  
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Collection and processing of tissues 

Mouse tissues were collected essentially as previously described (52-55). Tissues collected for 

analysis (depending on mouse gender) included the spleen, bone marrow, lungs, liver, gastrointestinal 

tract, brain, eyes, FRT, epididymis, testes, prostate, penis, and seminal vesicles. For ZIKV-RNA analysis, 

tissues were processed into single cell suspensions as previously described (52-55). In brief, cells were 

isolated by forcing tissues through a 70 µm cell strainer (Falcon, Corning, NY) followed by red blood cell 

lysis if necessary. The liver, lung, female reproductive tract, and penis were digested in an enzyme digest 

cocktail prior to filtration. Liver, lung, and brain cells were purified with percoll gradients (GE Healthcare, 

Little Chalfont, UK). The mouse gastrointestinal tract was flushed with PBS and incubated with a 

dithiothreitol (Fisher Scientific, Hampton, NC) and EDTA solution to isolate cells from the intraepithelial 

layer and incubated with elastase (Worthington Biochemical, Lakewood, NJ) and hyaluronidase 

(Worthington Biochemical, NJ) to isolate the cells from the lamina propria layer (55). 

ZIKV-RNA analysis 

RNA was extracted from plasma (40 µL) using the QIAmp Viral RNA kit (Qiagen).  Tissue RNA 

was extracted using RNeasy mini columns (Qiagen) according to the manufacture’s protocol including an 

optional treatment with RNase-free DNase.  ZIKV-RNA levels in the peripheral blood plasma from 

infected mice were measured using a one-step quantitative real-time PCR (TaqMan® RNA to-CT 1-step 

kit, Applied Biosystems, Foster City, CA). The sequences of the forward and reverse primers and the 

TaqMan® probe for PCR amplification and detection of ZIKV RNA were: 5′-CCGCTGCCCAACACAAG -

3′, 5′-CCACTAACGTTCTTTTGCAGACAT -3′, and 5′-FAM-

AGCCTACCT/ZEN/TGACAAGCAGTCAGACACACTCAA-Q-3′, respectively (3). ZIKV-RNA was 

transcribed using a custom synthesized plasmid (Biomatik) to create a standard curve. Sample RNA was 

quantified by interpolation from the standard curve. All samples were run and analyzed on an ABI 7500 

Fast Real Time PCR System (Applied Biosystems, Foster City, CA). 

Statistical Analysis  

If not otherwise specified, sample means are reported along with the corresponding standard 

error (s.e.m.) which conveys information about the level of imprecision. 
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The estimators and statistical test procedures used in this study are described  in the figure 

legends and in the narrative text in the results section.  For example, the DFMA treatment and the control 

treatment were compared in terms of longitudinal measures of ZIKV-RNA copies/mL. The analysis relied 

on a two-way repeated measures ANOVA model in which the fixed effects represented time and 

treatment regimen.  The model did not include time-by-treatment interaction terms. The null hypothesis 

“the DFMA treatment effect is exactly zero” was tested using an F-test procedure.  The same approach 

was used in the analysis of the relative efficacy of C10. 

To ensure appropriate blinding, the investigators involved in analyzing tissue samples for viral 

loads were given numbered samples, and were thus unable to know treatment group identity (treated, 

controls).  No other blinding procedures were used in the study. No statistical methods were used to pre-

determined sample size. No randomization was not used to allocate animals/samples to experimental 

groups or to the various stages of the study. 

All statistical computations were performed using GraphPad Prism (version 6.0 for Mac, 

GraphPad Software, La Jolla, California). 
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