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ABSTRACT 
 

Jessime Kirk: Functional classification of long non-coding RNAs 
(Under the direction of J. Mauro Calabrese and Peter J. Mucha) 

Long non-coding RNAs (lncRNA) play important roles in mammalian development and 

health. The relationships between lncRNAs’ sequences and their functions, however, are poorly 

understood. Unlike proteins, which often contain recognizable functional domain and are 

evolutionarily conserved, lncRNAs lack significant linear sequence homology. To address this 

issue and enable the prediction of a lncRNA’s biological properties from its sequence, we 

developed a non-linear sequence similarity algorithm called SEEKR. SEEKR allows for the 

comparison of sequences based on the non-linear abundance of short motifs. These short 

motifs, or k-mers, may represent potential protein binding sites within the lncRNA.  

We used SEEKR to form communities of similar lncRNAs from both human and mouse 

transcriptomes. We were then able to demonstrate that these communities predicted the 

biological properties of the lncRNAs within a given community, including cellular localization and 

protein binding. We also show we can predict RNAs’ repressive activity in vivo using SEEKR.  

Additionally, SEEKR provided evidence of similarity between certain pre-mRNA 

transcripts and known repressive lncRNAs. We hypothesized that some of these pre-mRNAs 

may have localized repressive capabilities. We demonstrated that pre-mRNAs are detectable at 

physiologically relevant levels in human cells and that some pre-mRNAs with repressive-like 

sequences may also interact with transcription regulating proteins in cis.  

Finally, we have packaged SEEKR into a user-friendly command line tool, which is free 

and open source. Here, we provide an extensive tutorial describing both how we have used 

SEEKR and how to perform common analysis tasks.  
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CHAPTER 1 

Introduction 

1.1 Importance of bioinformatics models to genomic studies 

One of the key goals of bioinformatics as applied to genomics is to enable the prediction 

of the biological properties of a nucleotide sequence based solely on the contents of that 

sequence. Specific sequence content determines secondary and tertiary structures of 

molecules. It regulates interaction partners with all other types of biomolecules. Ultimately, 

sequence determines the biological role of nucleic acids in both healthy and disease cells.  

The inherent combinatorial complexity of genomic sequences makes the task of 

accurately predicting biological properties from sequence alone extremely challenging. The 

number of possible sequences for even very short nucleic acids—let alone the length of the 

human genome—is effectively infinite. Therefore, it is impossible to create a complete mapping 

of nucleic acid sequences to biological roles. Instead, an effective approach to understanding a 

given molecule’s cellular role is to build computational models which leverage knowledge of 

underlying biological principles to make predictions about the molecule.  

Several subfields of bioinformatics and genomics have made great progress with this 

approach. Although the work is currently still unpublished, DeepMind recently made headlines 

for winning the yearly CASP competition1. The goal of the competition is to accurately predict 

the three-dimensional structure of a given protein based only on its sequence. Despite their 

newcomer status, DeepMind used their deep learning system AlphaFold to demonstrate that 

there’s still much to discover in the sequence prediction field. Similarly, tools like nhmmer have 

successfully been used to measure the evolutionary relationship between known functional               
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domains and newly discovered sequences of interest, information which can be used to predict 

the function of the new sequence.  

Despite the success in some sub-fields, other nucleic acid sequences of interest have 

proved more difficult to study.  

1.2 Long non-coding RNAs 

Long non-coding RNAs, or lncRNAs, are defined as RNA transcripts longer than 200 

base pairs that do not code for a protein. This class of RNAs is found in all eukaryotic genomes, 

and tens of thousands of transcripts have been annotated in humans2. A large majority of these 

have never been studied in any meaningful way, yet several have been shown to play important 

roles in normal development while others have been implicated in various diseases3.  

Even within the few lncRNAs with known functions, detailed mechanisms of action are 

generally unknown. Determining mechanisms is complicated by the significantly lower levels of 

evolutionary conservation of lncRNAs relative to mRNA4. It’s currently not possible to use a tool 

such as nhmmer to discover conserved functional domains within a given lncRNA. Besides 

conservation levels, this failure is also attributable to the fact that tools like nhmmer were 

designed to study and take into account the biological roles of mRNA but do not do the same for 

other transcripts like lncRNAs. 

An additional complication in studying mechanisms of lncRNA action is the lack of 

catalytic activity of lncRNAs. Instead, they likely function primarily through the set of RNA 

binding proteins with which they interact. lncRNAs acting as “scaffolds” or “guides” for proteins 

has been proposed as a reoccurring mechanism5. A lncRNA “scaffold” acts as a method for 

coordinating multiple protein binding events—of either the same or different proteins—

simultaneously. As an example, binding multiple different proteins may help streamline multi-

stage enzymatic reactions necessary for some biological phenomenon. lncRNAs that bind many 

copies of the same protein may enable competitive inhibition, where proteins which would 

otherwise be performing a function elsewhere in the cell are instead tethered to a lncRNA.  
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Similarly, lncRNA “guides” may act by recruiting a protein at a specific time and place in 

the cell. An important recently discovered role for lncRNAs is transcriptional regulation. A given 

lncRNA, through a variety of mechanisms, may influence the expression levels of other 

transcripts in the genome. A lncRNA, either while actively being transcribed or by interacting 

with proximal DNA shortly after transcription, could be localized to a specific genomic locus. 

This lncRNA could then influence the transcription levels of nearby loci by the recruitment of 

transcription factors that activate or repress transcription. By providing multiple protein binding 

sites throughout the sequence and localizing to a specific chromatic location, the lncRNA acts 

as a “guide” for some subset of RNA binding proteins. 

1.3 XIST as a model lncRNA 

The transcriptional repressor XIST is the most well characterized lncRNA due to its role 

in X-inactivation and is found in all placental mammals6. X-inactivation is the process by which 

mammalian females shut down one of their two X-chromosomes for gene dosage 

compensation7. Proper XIST expression and function is necessary for X-inactivation, and XIST 

is required for silencing virtually all genes on the inactive-X. While X-inactivation is complex, 

involving many additional factors beyond XIST, and mechanistic details are still an area of 

active research, XIST provides a well-studied example of lncRNA activity.  

Throughout this study, we used XIST as an approximate ground truth by which to 

compare other less studied lncRNAs of interest. Much of the work presented here is 

generalizable to the lncRNA field at large, but, due to the convenience of XIST as a model for 

lncRNAs, we continually use XIST as a reference example.   

1.4 Inspiration from natural language processing 

In order to create a tool capable of providing insights into lncRNA biology based solely 

on the transcript, we build a sequence similarity algorithm which takes into account lncRNA 

biology, particularly the likelihood of lncRNAs providing function through protein binding. The 

technical details of this model are described fully in the following chapter, but a less formal 
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introduction is described here, drawing off the similarity between our approach towards 

sequence analysis and a popular NLP technique known as a bag-of-words model8.  

 Understanding the meanings or sentiments of a set of documents and their words is a 

common task in NLP. Examples include creating a summary of a document, classifying the tone 

of a tweet as “positive” or “negative”, or deciding if a given email should be sorted into spam. 

This last task (deciding if an email is spam) is analogous to deciding if an individual lncRNA 

should be classified as a potential repressor or not. Using a bag-of-words model, an email can 

be classified as spam by counting the word frequencies in the email. After counting all the words 

in the email, each word frequency can be normalized by the prevalence of its usage in the 

English language. The words “the” and “a” are likely two of the most common words in the 

email, but it is unlikely that their frequencies significantly deviate from standard usage. High 

frequencies of other words, such as “new”, “free”, “hurry”, “limited”, regardless of their exact 

position in the email or their grammatical context, are likely to indicate spam. This can be 

measured by comparing the normalized frequency of these words to a set of emails known to be 

spam. On the other hand, an email which has high normalized word frequencies of “aunt”, 

“family”, “dog”, “baby”, again regardless of context, is more likely to be personal in nature. 

Analogously, counting and normalizing sub-sequences in a transcript of interest is a viable 

approach for providing biological insight into a lncRNA.  

In both spam detection and lncRNA function prediction, more sophisticated approaches 

exist. There are numerous benefits to these simplified methods, however, including speed and 

interpretability, which will be further explored in the following chapters.  
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 CHAPTER 2 

Functional classification of long non-coding RNAs by kmer content 

2.1 Introduction 

The human genome expresses thousands of lncRNAs, several of which regulate 

fundamental cellular processes. Still, the overwhelming majority of lncRNAs lack characterized 

function and it is likely that physiologically important lncRNAs remain to be identified. Moreover, 

the mechanisms through which most lncRNAs act are not clear, limiting our understanding of 

the biology that they govern in cells 1-12.  

A significant roadblock to progress remains the inability to detect recurrent relationships 

between lncRNA sequence and function. An understanding of analogous relationships in 

proteins has enabled the classification of protein families, functional domains, and mechanisms 

that, in turn, have led to discoveries that have improved the diagnosis and treatment of disease 

13,14. However, with rare exceptions, the functions of lncRNAs are unrecognizable from 

computational analyses and must be determined empirically 10-12,15-20. As a result, classification of 

function in one lncRNA often provides no information about function in others. For example, the 

Xist and Kcnq1ot1 lncRNAs both repress gene expression in cis (meaning on the same 

chromosome from which they were transcribed), and both require the Polycomb Repressive 

Complex to do so 7. Yet, despite similarities in mechanism, the two lncRNAs share almost no 

sequence similarity by standard metrics. Using two common sequence alignment algorithms, 

nhmmer 21 and Stretcher 22, Xist and Kcnq1ot1 appear just as similar to each other as they do to 

randomly generated sequences (Supplementary Fig. 1). Thus, comparing the sequence of 

Kcnq1ot1 to a known cis-repressive lncRNA (Xist) provides no indication that Kcnq1ot1 is also a 
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cis-repressive lncRNA. This problem extends to the thousands of lncRNAs that lack 

characterized functions. 

 

2.2 Results 

2.2.1 Kmer-based quantitation as a means to compare lncRNA sequence content  

We hypothesized that lncRNAs with shared functions should harbor sequence similarities 

that confer the shared functions, even if conventional alignment algorithms do not detect the 

similarity. Our rationale follows. First, most lncRNAs likely have no catalytic activity, suggesting 

that the proteins they bind in cells define their function. Second, proteins often bind RNA 

through short motifs, or kmers, that are between 3 to 8 bases in length, where “k” specifies the 

length of the motif 23,24. Third, the mere presence of a set of protein binding motifs may be more 

important than their relative positioning within a lncRNA, meaning that functionally related 

lncRNAs could harbor related motif contents and still lack linear sequence similarity.  

To test our hypothesis, we developed a method of sequence comparison, called SEEKR 

(SEquence Evaluation from Kmer Representation). In SEEKR, all kmers of a specified length “k” 

(i.e. k= 4, 5, or 6) are counted in one-nucleotide increments across each lncRNA in a user-

defined group, such as the GENCODE annotation set 12. Kmer counts for each lncRNA are then 

normalized by lncRNA length and standardized across the group to derive a matrix of kmer 

profiles, which consist of z-scores for each kmer in each lncRNA. The relative similarity of kmer 

profiles between any pair of lncRNAs can then be determined via Pearson’s correlation (Fig. 1A, 

B; Methods).  

SEEKR offers advantages relative to existing alignment algorithms. Foremost, SEEKR does 

not consider positional information in similarity calculations, allowing it to quantify nonlinear 

sequence relationships. For reasons described above, this functionality might suit lncRNAs better 
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than traditional alignment algorithms developed to detect linear sequence homology between 

evolutionarily related entities 21,22,25,26. Second, whereas traditional alignment algorithms can only 

quantify similarity, SEEKR can quantify similarities and differences using Pearson’s correlation. 

Third, SEEKR can quantify relationships in groups of lncRNAs despite differences in overall 

length, whereas length differences can confound traditional alignment algorithms. For example, 

conventional alignment of a 20kb and 4kb RNA is barely informative (80% of the 20kb RNA would 

not align), but their kmer contents can be compared via SEEKR. Lastly, SEEKR is algorithmically 

efficient; all pairwise comparisons between human GENCODE lncRNAs can be computed in 

under a minute. 

Initially, we assessed whether SEEKR could detect previously identified sequence similarities 

in lncRNAs. We compared kmer profiles via SEEKR for all pairwise combinations in a set of 161 

lncRNAs recently described to be conserved between human and mouse 27. We also aligned the 

lncRNAs to each other using two existing alignment algorithms, the hidden Markov model based 

nhmmer 21, and Stretcher, an implementation of the global alignment algorithm Needleman-

Wunsch 22. In this test, SEEKR detected known lncRNA homologues nearly as well as or better 

than both algorithms (Fig. 1C). We defined signal to background in this assay as the ratio between 

the median similarity of homologous and non-homologous lncRNAs. By this metric, nhmmer 

detected homologues the most clearly, as expected (signal-to-background ratio of 0.606 : 0.000), 

followed by SEEKR (signal-to-background of 0.152 : -0.003 at kmer length k=6), and Stretcher 

(signal-to-background of 0.525 : 0.307; Fig. 1D). We conclude that kmer-based classification can 

detect sequence similarity between evolutionarily related lncRNAs.  

We next examined if SEEKR could detect novel forms of similarity between lncRNAs with no 

known sequence homology. We created kmer profiles for all lncRNAs in the human and mouse 

GENCODE databases 12, as well as for select lncRNAs that were not included in GENCODE. 

Next, we compared kmer profiles between all lncRNAs in each organism using Pearson’s 
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correlation and hierarchically clustered the resulting matrices to examine the patterns that 

emerged. Consistent with our hypothesis, clustering lncRNAs by SEEKR grouped many by known 

function in human and mouse (Fig. 2). Several known cis-repressive lncRNAs, including XIST, 

TSIX, KCNQ1OT1, UBE3A-ATS, ANRIL/CDKN2B-AS1, and Airn clustered together due to high 

abundance of AU-rich kmers, whereas several cis-activating lncRNAs, including PCAT6, HOTTIP, 

LINC00570, DBE-T, and HOTAIRM1, clustered separately due to high abundance of GC-rich 

kmers (Figs. 2A and D). These patterns were robust over differing kmer lengths (Supplementary 

Fig. 2). To determine if this level of clustering was significant, we curated lists of human and 

mouse cis-activating and cis-repressive lncRNAs from the literature (Supplementary Table 1), 

and compared average pairwise kmer similarities between lncRNAs in each list to pairwise 

similarities of 10,000 size-matched lists of randomly selected lncRNAs from the respective 

organism. Human and mouse cis-repressors, and human cis-activators (but not mouse cis-

activators), were significantly more similar to each other than expected by random chance 

(Supplementary Table 2). Concordantly, SEEKR detected significant similarity between the cis-

repressive Kcnq1ot1 and Xist lncRNAs where none was found by conventional alignment 

algorithms (Supplementary Fig. 1). We conclude that lncRNAs of related function can have related 

kmer profiles even if they lack linear sequence similarity.  

Unexpected relationships also emerged in the hierarchical clusters of Fig 2. Most notably, the 

lncRNAs NEAT1 and MALAT1 showed greater than average similarity to XIST in both human and 

mouse. Among all human lncRNA pairwise comparisons, their Pearson’s r values fell in the 99.99th 

and 99.60th percentile, respectively. Likewise, in mouse, the similarities were in the 97.15th and 

95.32nd percentiles. The meaning of the similarity between the three lncRNAs is unclear, but we 

note that all three lncRNAs seed the formation of sub-nuclear compartments and engage with 

actively transcribed regions of the genome 28-33. We speculate that their kmer similarity is related 

to these shared actions. 
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2.2.2 LncRNAs can be partitioned into communities of related kmer content 

We next used a network-based approach to partition lncRNAs into communities of related 

kmer profiles, reasoning that such communities would provide a framework to understand the 

predictive value of lncRNA kmer content. We created networks of relationships between all 

human and mouse lncRNAs in which weighted edges connected lncRNAs in an organism if the 

Pearson’s correlation between their standardized kmer profiles met a threshold for similarity 

(Methods). We then used the Louvain method to assign lncRNAs within the largest connected 

component of the network representations to communities of related kmer profiles 34. 

Approximately half of all GENCODE lncRNAs grouped into five major communities in both 

human and mouse. LncRNAs not assigned to the five most populated communities were 

assigned to a “null” community. Our network-based approach and hierarchical clustering 

grouped lncRNAs in similar ways (p < 1e-324, Chi-squared; Supplementary Tables 3 and 4), 

signaling community robustness. LncRNA community assignments and associated summary 

statistics are provided in Supplementary Tables 5-12 and Supplementary Fig. 3. Differences in 

human and mouse community structures may be due in part to differences in completeness of 

lncRNA annotation. In the versions of GENCODE used for this work, there were about twice as 

many lncRNAs annotated in human (v22, n=15953) as there were annotated in mouse (vM5, 

n=8245 12). 

 

2.2.3 Kmer content correlates with localization and protein binding  

We next examined whether lncRNAs with related kmer profiles shared biological properties. 

For this analysis, we focused on human lncRNAs, where data from the ENCODE project 

allowed us to examine lncRNA subcellular localization and protein associations, transcriptome-
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wide. To determine whether kmer content provides information about lncRNA localization, we 

examined ENCODE subcellular fractionation RNA-Seq experiments performed in HepG2 and 

K562 cells 35. For each lncRNA expressed in each cell type, we computed its nuclear ratio and 

determined whether the distributions of nuclear ratios differed between communities. The 

majority of communities showed slight but significant differences in their distribution of nuclear 

ratios, with the largest differences found between communities #1 and #3 (Fig. 3A and 

Supplementary Tables 13-16). Concordantly, lncRNAs that associate with polysomes in K562 

cells 36 were also non-uniformly distributed between communities (p = 3.5e-5, Chi-squared), and 

were the most over- and under-represented in the most cytoplasmic and nuclear lncRNA 

communities, respectively (communities #3 and #1 being the most cytoplasmic and nuclear, 

respectively; Supplementary Table 17). Lastly, we used ENCODE data to identify the most 

cytoplasmic and nuclear lncRNAs in HepG2 and K562 cells and determine which kmers were 

asymmetrically distributed between lncRNAs in the two compartments. 360 and 27 kmers were 

significantly enriched in cytoplasmic and nuclear lncRNAs, respectively (p-adjusted <0.05; 

Kolmogorov–Smirnov test; Supplementary Table 18). Consistent with our RNA-Seq and 

polysome analyses, 58 and 93% of the cytoplasmic- and nuclear-biased kmers were the most 

enriched in the most cytoplasmic and nuclear lncRNA communities, respectively (communities 

#3 and #1; Supplementary Table 18, last column). We conclude that kmer content provides 

information about the subcellular localization of a lncRNA. 

To determine if kmer content provides information about protein binding in lncRNAs, we 

examined ENCODE data for 156 eCLIP experiments performed for 109 proteins in HepG2 and 

K562 cells 37. We created binary vectors for each experiment that recorded whether the 

lncRNAs bound or did not bind a given protein, then built separate logistic regression models for 

each protein to determine if kmer community assignments could improve prediction of 

lncRNA/protein associations over a null model that only included lncRNA length and expression 
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as covariates. LncRNA community assignments significantly increased the log-likelihood of 

detecting lncRNA/protein associations for the majority of proteins examined (p-adjusted 

<0.05;146/156, ~94%; Fig. 3B and Supplementary Table 19). Increases in precision and recall 

in community-informed models were generally modest but significant (Fig. 3B and 

Supplementary Table 20). In total, ~17% (25/146) of our models had an increase in precision 

and/or recall of 5% or more. Notably, in all cases in which recall increased, precision also 

increased, indicating that kmer community information increased the ability to predict true 

lncRNA-protein associations and simultaneously increased the fidelity of those predictions. 

When we used individual 6mers instead of lncRNA communities as predictive features, results 

were no better than the null model that used only lncRNA length and expression as predictive 

features. Models with more features than samples are prone to learning noise in their training 

set, and often lose predictive power, due to overfitting 38. Using individual 6mers brought the 

number of features being evaluated to 4099, more than the number of lncRNAs expressed in 

HepG2 and K562 cells (3745). We conclude that kmer content provides information about the 

protein-binding potential of a lncRNA, but that no single kmer provides an overwhelming portion 

of that information, and, that kmer communities provide a way to collapse high-dimensional 

kmer matrices down to representative variables for predictive purposes.  

Protein binding to RNA is difficult to assess from motif content alone due to the degeneracy 

of most motifs and the challenge of predicting the effects of RNA structure 24,39-41). Supporting 

this notion, we found that the abundance of motif-matching kmers was consistently, but not 

always, higher in the communities enriched for binding of specific proteins than in the cognate 

communities not enriched for binding, indicating that factors in addition to motif abundance 

control protein/lncRNA associations (Fig. 3C). We therefore sought to determine if kmer content 

could distinguish between motif matches in lncRNAs that coincide with protein binding events 

and those that do not. We searched the lncRNAs expressed in HepG2 and K562 cells for 
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matches to binding motifs of the 17 proteins in Fig. 3C, whose position weight matrices were 

determined from biochemical assays in 23. We annotated motif matches that fell inside and 

outside of CLIP peaks as true and false positive matches, respectively. As expected, the 

majority of motif matches fell outside of CLIP peaks (i.e., they were false positive matches; 

Supplementary Table 21). We then used SEEKR to compare regional kmer content in 300 

nucleotide windows surrounding true and false positive motif matches. Remarkably, for 13 of 17 

proteins examined, kmer profiles of true positive binding regions were more similar to each 

other than kmer profiles of randomly selected, size-matched sets of false positive regions (p-

value < 0.005; Supplementary Fig. 4). These data support the notion that binding modules for 

the same protein in different RNAs often have sequence similarity that extends beyond the 

protein binding motif, and that this similarity can be quantified, in part, by local kmer content.  

Moreover, SEEKR provides a simple way to visualize the density of specific kmers within 

CLIP enriched regions. We compared the most overrepresented kmers in true positive binding 

regions to protein binding motifs measured in vitro 23, and found that their relationships differed 

substantially from protein to protein (Fig 3D and Supplementary Fig. 5). For certain proteins, 

such as HNRNPC, KHDRBS1, and QKI, the most enriched kmers in true positive regions 

matched the PWM for the protein that was determined in vitro 23. We interpret this observation 

to mean that for these proteins, motif density plays a dominant role in determining RNA binding 

in vivo, because our kmer data show that motif-matching kmers are more abundant in true 

positive regions than they are in false positive regions. For other proteins, such as FXR1, 

IGFBP1, and TIA1, the most enriched kmers in true positive regions did not match the PWM 

determined in vitro 23. For these proteins, sequence beyond the binding motif may play a 

dominant role in dictating association with RNA, possibly due to effects from RNA structure. 

When PWMs were extracted from eCLIP peaks, similar relationships between kmers and in vitro 

defined motifs were observed (Supplementary Fig. 5). These results show how SEEKR can be 
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used to augment traditional motif-based analyses and provide insights into mechanisms of 

RNA-protein interaction. SEEKR provides a way to quantify sequence similarities between any 

number of protein binding regions, which in turn, can provide predictive power and identify 

shared characteristics that are not apparent from PWM-based motif analyses.  

 

2.2.4 Similarities in lncRNA communities between organisms     

 Given (i) that kmer content provides some indication of protein binding potential in a 

lncRNA, (ii) that sequence specificities of many RNA binding proteins are conserved 23,24, and 

(iii) that protein binding likely dictates lncRNA function, we hypothesized that kmer contents 

between communities of functionally related lncRNAs could be conserved even if the lncRNAs 

themselves lack known evolutionary relationships.  In support of this idea, we identified 

extensive similarity between certain human and mouse lncRNA communities via SEEKR 

(Methods; Supplementary Fig. 6). Most notably, lncRNAs in human community #1 (the “XIST” 

community) had kmer profiles that were, as a group, nearly indistinguishable from lncRNAs in 

mouse community #1 (the “Xist” community) and were also similar to lncRNAs in mouse 

community #4 (p<0.0001 for both comparisons). Human community #2 and community #3 (the 

“HOTTIP” community) were both similar to mouse community #2 (the “Hottip” community; 

p<0.0001). No other major similarities between mouse and human were apparent. Extending 

this analysis across greater evolutionary distance, we found HOTTIP-like lncRNA communities 

in ten of ten vertebrates examined as well as in the sea urchin S. purpuratus, and XIST-like 

lncRNA communities in seven of ten vertebrates examined (Supplementary Figs. 7-9; 10). These 

analyses demonstrate that, at the level of kmers, subsets of human lncRNAs are more similar to 

lncRNAs in other genomes than they are similar to lncRNAs in their own genome, supporting 

the idea that groups of lncRNAs have similar function in different organisms despite lacking 

obvious linear sequence similarity. 
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2.2.5 SEEKR can predict Xist-like regulatory potential in lncRNAs  

We next directly tested whether kmer profiles could be used to predict lncRNA regulatory 

potential. We focused on the ability of certain lncRNAs to repress transcription in cis. Cis-

repression was one of the earliest characterized functions of lncRNAs, and is essential for 

normal human health and development. In the most striking example, the XIST lncRNA silences 

nearly all genes across an entire chromosome during X-chromosome Inactivation 7. Cis-

repression is also one of most straightforward lncRNA functions to study because, by definition, 

cis acting lncRNAs act near their site of transcription.  

We developed a reductionist assay to study lncRNA cis-repressive activity in a normalized 

genomic context, called TETRIS (transposable element to test RNA’s effect on transcription in 

cis). TETRIS enables the sequence of a lncRNA and an adjacent reporter gene to be 

manipulated in a plasmid, but then rapidly inserted into chromosomes via the piggyBac 

transposase 42,43, so that effects of the lncRNA on the reporter can be studied in genomic 

chromatin (Fig. 4A and Methods). Under our assay conditions, piggyBac catalyzes 4-7 

insertions of each cargo per stably selected cell, and cell density estimates suggest between 

100,000 to 500,000 cells receive insertions and survive selection (Fig. 4B and not shown). Thus, 

each TETRIS assay likely surveys 400,000 to 3.5 million insertion events. Insertion-site 

dependent variation in lncRNA-induced effects are averaged out in the population, bypassing 

the need to isolate clones of modified cells, and providing the means to quantify lncRNA 

regulatory potential without influence from genomic position. 

We validated TETRIS by comparing effects that expression of different lncRNAs had on 

luciferase activity. A cell line created from a vector that lacked a lncRNA insert (TETRIS-Empty) 

showed a ~2-fold increase in luciferase activity upon addition of doxycycline, representing our 
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baseline for the assay (Fig. 4C). We attribute this mild activation to the close proximity of the 

dox-inducible and luciferase promoters, and to the fact that both promoters are contained within 

the same insulated domain 44. By contrast, expression of the first 2kb of Xist repressed 

luciferase 5-fold relative to uninduced control (Fig. 4C). The 2-fold activation and 5-fold 

repression were stable across nine and 16 independent derivations of TETRIS-Empty and 

TETRIS-Xist-2kb cell lines, respectively (mean ± standard deviation of 2.03 ± .50 and 0.23 ± 

.08), demonstrating that TETRIS assays result in reproducible effects on luciferase activity. For 

its repressive effect, Xist requires “Repeat A,” a 425-nucleotide long element contained within its 

first 2kb 45. In the context of TETRIS, deletion of Repeat A resulted in a significant, but not 

complete, de-repression of luciferase, whereas expression of Repeat A alone resulted in 

repression relative to control, but at reduced levels compared to Xist-2kb (“∆repA” and “repA 

only”; Fig. 4C). Similarly, expression of the first 5.5kb of Xist caused a 5-fold repression of 

luciferase, whereas deletion of the first 2kb from the 5.5kb construct caused complete loss of 

repressive activity (“Xist-5.5kb” and “Xist-2-5.5”; Fig. 4C). Expression of either the final 3.3kb of 

Xist or the Hottip lncRNA had no repressive effect (Fig. 4C). These experiments demonstrate (i) 

that TETRIS is a suitable assay to measure repression by cis-acting lncRNAs in a normalized 

genomic context, and (ii) in the assay, sequence elements in addition to Repeat A cooperate to 

encode repressive function in the 5´ end of Xist. 

We next used TETRIS and SEEKR to test our hypothesis that kmer content can predict 

lncRNA regulatory potential. We reasoned that we could design entirely synthetic lncRNAs that 

lacked linear sequence similarity to any known lncRNA but nonetheless had robust Xist-like 

repressive activity. We generated six synthetic lncRNA sequences in silico with varying levels of 

kmer similarity to the first 2kb of Xist, and cloned them into TETRIS to measure their effects on 

luciferase activity. As measured by SEEKR, the lncRNAs had Pearson’s similarities to Xist that 

ranged from average (a Pearson’s r of ~0) to three standard deviations above the mean 



17 
 

similarity for all mouse lncRNAs (a Pearson’s r of 0.19, more similar to Xist-2kb than all other 

lncRNAs the mouse genome; Fig. 4D). Using nhmmer or Stretcher to align the synthetic 

lncRNAs to the first 2kb of Xist produced either no alignments (nhmmer) or alignments that 

differed by only three percent across all six synthetic lncRNAs (Stretcher; Fig. 4E, grid below 

graph). Via BLAST, the lncRNAs had no significant similarity to the mouse genome or to each 

other (not shown). The lack of informative alignments was expected because the synthetic 

lncRNAs have no evolutionary relationship with Xist, any region in the genome, or each other. 

Nevertheless, as envisioned, the synthetic fragments that SEEKR classified to be most similar 

to Xist had the highest repressive activity (Fig. 4E). These data directly demonstrate that 

evolutionarily unrelated lncRNAs can encode similar function through different spatial 

arrangements of related sequence motifs. Thus, kmer content can be used to predict lncRNA 

regulatory potential. 

We next examined whether SEEKR could predict Xist-like repressive activity in endogenous 

lncRNAs. We cloned into TETRIS thirty-three lncRNAs or lncRNA fragments that had a range of 

kmer similarities to the first 2kb of Xist. Included in our final set of fragments were several 

conserved lncRNAs and/or shorter fragments contained within them (Airn, Hottip, Kcnq1ot1, 

Malat1, Neat1, and Pvt1), as well as many lncRNAs with uncharacterized functions 

(Supplementary Table 22). Again, the more Xist-like a lncRNA fragment was at the level of 

kmers, the more likely it was to repress in TETRIS; the Pearson’s r value between Xist-likeness 

at a kmer length of 6 and luciferase activity upon dox addition was -0.41 (p=0.02). Including the 

six synthetic lncRNAs in the correlation brought the Pearson’s r value to -0.52 (p=0.0007; Fig. 

4F). Nhmmer and Stretcher had no ability to predict repressive activity, demonstrating that these 

algorithms cannot detect sequence signatures correlated with repressive activity in this setting 

(p=0.32 and 0.91, respectively; Fig. 4G and H). LncRNA fragment length also had no ability to 

predict repressive activity (r=0.03, p-value=0.84). 
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Lastly, we examined whether kmer profiles associated with sequence elements required for 

repression by Xist-2kb might increase our ability to predict repressive activity in other lncRNAs. 

To determine the elements in Xist-2kb required for repression, we made a series of 26 deletions 

(Fig. 5). Surprisingly, 15 of the deletions, including ones that removed predicted stable 

structures, pseudoknots, and ~40% of Repeat A (“∆SS1”, “∆SS2”, “∆PK2”, “∆SS3”, “∆SS4”; 

bottom panel in Fig. 5; 41), had no significant effect on repression.  However, removal of all eight 

GC-rich portions of Repeat A, but not its U-rich linkers, caused a ~3-fold reduction in repression 

(“∆GC repeat in rA” vs “∆U spacer in rA”), as did removal of three predicted stable structures 

and their intervening sequences in the 742 nucleotides immediately downstream of Repeat A 

(“∆SS2/3/4 broad”; 41). Co-deletion of Repeat A and the stable structures had an additive effect, 

causing a near complete loss of repression (the “∆rA∆SS234 br.” mutant), whereas expression 

of Repeat A or the stable structures alone had half the repressive potency of Xist-2kb (“Only rA” 

and “Only SS234”). Expression of both regions together had the same repressive potency as 

Xist-2kb (“Minimal”). Thus, in TETRIS, the major elements required for repression are contained 

between nucleotides 308 and 1,476 of Xist. Based on prior structural models 41,46, we infer that 

the elements are comprised of protein binding sites, spacer sequences, and stable structures.  

 Having mapped the elements responsible for repression in Xist-2kb, we attempted to extract 

subsets of 6mers from them that increased our ability to predict Xist-like repression. We also 

examined if kmer variance across lncRNA communities or kmer nucleotide composition could 

be used to extract subsets of outperforming 6mers, and if different kmer lengths had better 

predictive power than k=6. No rationally designed subset of 6mers could predict repression 

better than the full 6mer profile of Xist-2kb, nor could any other kmer length (Supplementary Fig. 

10). These results support the ideas that different lncRNAs can encode similar function through 

related, but not necessarily identical, sequence solutions, and that the full complement of 6mers 
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may be a broadly effective search tool to identify such similarities (not too relaxed, not too 

stringent).  

 

2.3 Discussion 

Collectively, our data support the notion that many lncRNAs function through recruitment of 

proteins that harbor degenerate RNA binding motifs, and that spatial relationships between 

protein binding motifs in these lncRNAs are often of secondary importance to the concentration 

and effectiveness of the motifs themselves. By this logic, a lncRNA may merely need to present 

the appropriate motifs embedded within the appropriate structural contexts to achieve a specific 

function. Thus, different lncRNAs likely encode similar function through vastly different 

sequence solutions, and nonlinear sequence comparisons can be used to discover similarities 

between them. By extension, because the RNA binding motifs of many proteins are conserved 

23,24, it is likely that groups of lncRNAs rely on similar motifs to encode related function in 

different organisms even though they lack direct evolutionary relationships. This concept is 

supported by our observation that lncRNA communities with related kmer contents exist in 

human, mouse, and other organisms. We propose that nonlinear sequence homology – in which 

the relative abundance of a set of protein binding motifs is conserved, but the sequential 

relationships between them are not – is prevalent in lncRNAs. To quantify nonlinear homology, 

we introduce SEEKR, a method to compare sequence content between any group of lncRNAs, 

regardless of the size of the group, the evolutionary relationships between the lncRNAs being 

analyzed, or the differences in their lengths. Each lncRNA (and each functional domain within 

each lncRNA) has its own kmer signature, which can encode information about protein binding 

and RNA structure. SEEKR provides a simple way to tie this information to a biological property. 
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2.4 Methods 

2.4.1 Kcnq1ot1 versus Xist comparison  

Kcnq1ot1 was aligned to Xist using nhmmer and Stretcher with default parameters. To 

assess significance of the alignments, we generated 1,000 pseudo-Kcnq1ot1s that were the 

same length of real Kcnq1ot1 but composed of nucleotides randomly selected from a 

distribution of the mononucleotide content of Kcnq1ot1 (0.335 A: 0.205 G: 0.202 C: 0.258 T). 

We then aligned the pseudo-lncRNAs to Xist with nhmmer and Stretcher as well as compared 

their kmer contents relative to all other mouse lncRNAs at kmer length k=6 via SEEKR. 

 

2.4.2 SEEKR 

In SEEKR, a matrix of kmer counts for a user-defined set of lncRNAs is created by counting 

all occurrences of each kmer in each lncRNA in one-nucleotide increments, and then dividing 

those counts by the length of the corresponding lncRNA. Z-scores are then derived for each 

kmer in each lncRNA by subtracting the mean length-normalized abundance of each kmer in 

the group of lncRNAs being analyzed from the length-normalized abundance of the kmer in the 

lncRNA in question, and then dividing that difference by the standard deviation in abundance of 

that kmer in the group of lncRNAs being analyzed. We refer to the array of z-scores for each 

kmer in a given lncRNA as its kmer profile. Similarity between any two lncRNAs can be 

calculated by comparing their kmer profiles with Pearson’s correlation.  

Our rationale for length normalization in SEEKR follows. Without length normalization, kmer 

profiles become difficult to interpret for lncRNAs of different lengths. For example, an RNA that 

is 10x longer than another RNA will have 10x the number of kmers. Without normalization, 

these lncRNAs would be considered dissimilar by SEEKR, regardless of the similarity in their 

relative concentrations of kmers. By length normalizing, SEEKR creates a list of relative kmer 

concentrations in a given lncRNA that is robust to differences in length. The idea that length 
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normalization is important is supported by studies of known cis-repressive lncRNAs. At 18kb, 

the Xist lncRNA is the most potent cis-repressive lncRNA known. At least three other known cis-

repressive lncRNAs are longer than Xist, but less potent: Airn, Kcnq1ot1, and Ube3a-ATS, are 

90kb, 85kb, and 1.1Mb, respectively 7. Of these, the longest lncRNA, Ube3a-ATS, is the least 

potent, arguing that length alone does not account for lncRNA potency. In certain biological 

contexts, lncRNA length may not be relevant, or it may have varying influence on lncRNA 

function. However, what these contexts might be and to what extent length does or does not 

affect lncRNA function in them are not known and difficult to predict. We also note that 

Pearson’s correlation inherently normalizes for length. Thus, comparisons of kmer content that 

use Pearson’s correlation will eliminate length as a variable. 

 

2.4.3 GENCODE lncRNA annotations 

All GENCODE annotations used in this work were from human build v22 and mouse build 

vM5 12. For each lncRNA, only the major splice annotation was considered (the -001 isoform). In 

total, there were 15953 human and 8245 mouse transcripts. The heat maps in Fig. 2 were 

generated with GENCODE annotations plus the additional lncRNA sequences downloaded from 

the UCSC genome browser 47: SAMMSON, XACT, UBE3A-ATS, MORRBID, and NESPAS, 

(Human), and unspliced Airn, Anril, Bvht, Haunt, Morrbid, unspliced Tsix, Ube3a-ATS, XistAR, 

and Upperhand (Mouse). 

 

2.4.4 Conservation analysis 

Ninety-three pairs of human and mouse GENCODE lncRNAs were recently identified as 

putative homologues due to their high conservation at the DNA level 27. These 93 lncRNAs, plus 

an additional 68 lncRNA pairs that had equivalent names in mouse and human GENCODE 

annotations, formed the final set of 161 homologues that were used for the conservation 

analysis of Fig. 1C. For the Fig 1C. experiment, “signal” values were computed as the mean of 
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the 161 homologue-to-homologue measurements in each of the three algorithms; likewise, 

background values were computed as the mean of the remaining 12880 non-homologous 

comparisons. Homologous pairs were defined as being “detected” if the signal value/average 

similarity (as determined via SEEKR, nhmmer, or Stretcher) was higher for homologue-to-

homologue measurements than it was for all other lncRNA-to-non-homologue comparisons. For 

this analysis, nhmmer was downloaded as part of the HMMER package (URLs) and was run 

with --nonull2, --nobias, --noali, and -o flags set. Stretcher was used as part of Biopython 

(URLs) and was run with --gapopen=16, and –gapextend=4.  

 

2.4.5 Hierarchical clustering and labeling  

Hierarchical clustering was performed with the R package “amap” using Pearson’s as a 

distance metric and average linkage 48, and was visualized with Java Treeview 49. We used 

kmer length k=6 for our main analyses because it performed well in evolutionary comparisons 

(Fig. 1C), and it provided a feature number (4^6 = 4096 features) that is only marginally larger 

than the average length of a GENCODE lncRNA (1152 and 1471 nucleotides for human and 

mouse lncRNAs, respectively).  

 

2.4.6 Clustering of known cis-activating and cis-repressive lncRNAs  

We performed a literature review to curate lists of experimentally verified cis-repressive and 

cis-activating lncRNAs in mouse and human (Supplementary Table 1). We calculated the mean 

pairwise similarity between all lncRNAs in each of these groups, and compared those means 

the distribution of mean similarities calculated from pairwise comparisons of 10,000 randomly 

selected, size-matched groups of lncRNAs in their respective organism to generate p-values 

that describe the likelihood that the similarity observed between the functionally related cis-

acting lncRNAs was greater than would have been expected from random chance 

(Supplementary Table 2).  
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2.4.7 Network analysis and lncRNA community definition 

Networks of lncRNAs were formed from a weighted adjacency matrix in which edges 

between any two lncRNAs were kept only if their Pearson’s r-value was at least 0.13. We 

selected the lncRNAs within the largest connected component of this network representation 

and used the Louvain algorithm 34 at default resolution parameter to assign lncRNAs to 

communities of related kmer profiles (using the Python package "louvain-igraph"). This decision 

was supported through use of the recently developed CHAMP algorithm 50 (URLs), which found 

a wide domain of optimality around the default resolution parameter. We retained assignments 

for the lncRNAs present in the top five most populated communities, and assigned the 

remaining lncRNAs, including those not found in the largest connected component of the 

network representation, to the “null” community, which served as an important outgroup for our 

comparisons of kmer content and biological properties in Fig. 3. Multiple Pearson’s r value 

thresholds between 0.12 and 0.21 were tested for human lncRNAs and we found little to no 

difference in community definition, correlation with lncRNA localization, or ability to predict 

protein-binding patterns (not shown). Gephi was used for network visualization (URLs). 

Community colors were automatically assigned by Gephi according to the size of each 

community.   

We also compared communities generated with 5mers and 7mers to those generated with 

6mers. We created contingency tables that compared the distribution of lncRNAs in each of the 

five major 6mer communities plus the null to the distribution of lncRNAs in each of the five major 

5mer and 7mer communities plus their respective nulls.  P-values comparing communities 

between the kmer lengths were all < 1E-324 (chi-squared), indicating that community definitions 

are largely stable when 5mers, 6mers, or 7mers are used (Supplementary Table 9 and 10). This 

stability, the quality of our TETRIS predictions when using 6mers (Supplementary Fig. 10), and 
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the computational inefficiency of performing operations on matrices of 7mers or greater 

provided additional support for our decision to use 6mers for the bulk of our analyses.  

We applied the same r-value threshold and community assignment logic that we used for 

human lncRNAs to define lncRNA communities using kmer length k = 6 in all other organisms.  

 

2.4.8 Comparing lncRNA groups in hierarchical clusters to lncRNA communities found 

by Louvain 

Clusters of lncRNAs with similar kmer content in human and mouse (from Fig 2.) were 

created by manually making cuts in the dendrogram of the hierarchical clusters that maximized 

the visual similarity of kmer profiles between lncRNAs in each cluster. Five cuts were made in 

the hierarchical cluster from each organism to approximate the five major communities found by 

the Louvain algorithm. We measured the similarity of the manually made clusters to the five 

major Louvain-defined communities by a creating contingency table that compared lncRNA 

distributions between the two methods. We then tested if the distribution of lncRNAs across the 

two sets of communities were significantly similar via a chi-squared test. In both human and 

mouse, the p-value was < 1E-324 (Supplementary Table 3 and 4). 

 

2.4.9 LncRNA localization analysis 

Localization data were downloaded from ENCODE (URLs) as fastq files and aligned to 

GRCh38 with STAR using default parameters 47,51. FeatureCounts was used to tabulate the 

number of reads aligning to our set of lncRNAs 52. We then filtered out all lncRNAs with <0.1 

RPKM from each community, and calculated the number of reads in the nuclear fraction over 

the total number of reads from both the nuclear and cytosolic fractions for each lncRNA.  

To determine if specific kmers were enriched in cytosolic or nuclear lncRNAs, we selected 

cytosolic- and nuclear-enriched subgroups of lncRNAs that were expressed in HepG2 or K562 

cells. Because the subcellular distribution values for HepG2 or K562 expressed lncRNAs were 
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not normally distributed (Fig. 3A), we needed to employ different thresholds to define cytosolic 

and nuclear so that the two groups would include similar numbers of lncRNAs. “Cytosolic” 

lncRNAs were defined as any lncRNA that was more than 50% cytosolic, which resulted in 2801 

transcripts, and “nuclear” lncRNAs were defined as any lncRNA that was more than 95% 

nuclear, which resulted in 4576 transcripts. To determine the average difference in kmer 

abundance between lncRNAs in the two compartments, we calculated the mean value of the z-

scores for each kmer in each group, and then used the difference between the means as the 

metric to calculate the nuclear-enrichment score (Supplemental Table 18). To test for significant 

differences between the distributions of z-scores between lncRNAs in the two compartments, 

we used a KS-test and calculated an adjusted p-value using a Bonferroni correction. This 

analysis yielded 387 kmers whose distributions differed significantly between cytosolic and 

nuclear lncRNAs (p-value < 0.05; Supplemental Table 18). 

Using only the lncRNAs from community 3, we repeated the process of applying the Louvain 

algorithm to define communities and measure cellular localization in order to rule out the 

possibility that potential sub-communities were responsible for the cytosolic nature of 

community 3. The Louvain algorithm found four main sub-communities and all smaller sub-

communities were grouped into a fifth community. The results of ANOVA tests indicated there 

was no significant differences between any of the communities for either the polyA-selected or 

ribosome-depleted RNA RNA-Seq data. We performed this analysis again for community 1, but 

no sub-communities were found to be significantly different (Supplementary Fig 11). This 

uniformity of cellular localization among possible sub-communities provides biological support 

for our original community definitions.  

 

2.4.10 lncRNA polysome association 

A recent study found 229 lncRNAs in GENCODE v22 that were polysome associated in 

K562 cells 36. A chi-squared test showed these 229 lncRNAs were non-randomly distributed 
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between the communities (p-value = 3.5E-5; Supplementary Table 17). The expected values for 

the chi-squared test were calculated by filtering all communities for lncRNAs expressed in K562 

cells, dividing the number lncRNAs in each community by the total number of expressed 

lncRNAs (3277), and multiplying by the number of polysomal lncRNAs (229). 

 

2.4.11 LncRNA protein association data 

eCLIP data were downloaded from ENCODE 35,37. For each of the 156 eCLIP experiments 

"bed narrowPeak" data (representing sites of protein binding that passed a ENCODE-defined 

threshold for enrichment over background; 35,37) were pooled from available biological 

duplicates. Genomic coordinates were overlapped with lncRNA exon coordinates annotated by 

GENCODE. Any lncRNA which overlapped with one or more eCLIP peak was considered as 

having a true binding interaction with the given protein. LncRNA expression data were collected 

from ENCODE RNA-Seq experiments in the same cell type as that of the eCLIP experiment 

(HepG2 or K562).  

For each protein, a vector was built for each lncRNA that encoded whether the protein-

lncRNA pair did or did not interact. Next, two feature matrices (null and full) were constructed. 

The null matrix included the log normalized values for length and expression of each of the 

lncRNAs. The full matrix included log normalized length and expression, as well as an additional 

five columns that corresponded to each of the five lncRNA communities. Each lncRNA was 

assigned a value of "1" in the column representing its community. 

 

2.4.12 Models of protein associations 

To address if lncRNA communities contained information about lncRNA/protein 

associations, we used a machine learning model 53. We tested if providing the model with the 

community data allowed it to predict interactions better than a corresponding null model that 

was not given the community data but still included lncRNA length and expression values as 
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covariates.  Logistic regression models were implemented with scikit-learn, using default 

parameters 53. The significance of the additional community information was measured with a 

likelihood ratio test (LRT), where the LRT statistic, D, equaled:  

𝐷𝐷 = 2 ∗ [log(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓 𝑓𝑓𝑙𝑙𝑙𝑙𝑚𝑚𝑓𝑓𝑙𝑙ℎ𝑚𝑚𝑚𝑚𝑚𝑚) −  log(𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓 𝑓𝑓𝑙𝑙𝑙𝑙𝑚𝑚𝑓𝑓𝑙𝑙ℎ𝑚𝑚𝑚𝑚𝑚𝑚)] 

A chi-squared distribution was used to determine the corresponding p-value for the LRT 

statistic. P-values were adjusted with a Bonferroni correction for the 156 comparisons.  

To quantify the extent of the effect that community inclusion had on prediction of 

lncRNA/protein interactions, we used a Leave-One-Out-Cross-Validation approach to measure 

precision and recall metrics 53, defined as:  

𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑚𝑚𝑛𝑛 =  
𝑇𝑇𝑃𝑃𝑓𝑓𝑚𝑚 𝑃𝑃𝑚𝑚𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑚𝑚𝑃𝑃

𝑇𝑇𝑃𝑃𝑓𝑓𝑚𝑚 𝑃𝑃𝑚𝑚𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑚𝑚𝑃𝑃 + 𝐹𝐹𝐹𝐹𝑓𝑓𝑃𝑃𝑚𝑚 𝑃𝑃𝑚𝑚𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑚𝑚𝑃𝑃
 

𝑅𝑅𝑚𝑚𝑃𝑃𝐹𝐹𝑓𝑓𝑓𝑓 =  
𝑇𝑇𝑃𝑃𝑓𝑓𝑚𝑚 𝑃𝑃𝑚𝑚𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑚𝑚𝑃𝑃

𝑇𝑇𝑃𝑃𝑓𝑓𝑚𝑚 𝑃𝑃𝑚𝑚𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑃𝑃𝑚𝑚𝑃𝑃 + 𝐹𝐹𝐹𝐹𝑓𝑓𝑃𝑃𝑚𝑚 𝑁𝑁𝑚𝑚𝑁𝑁𝐹𝐹𝑃𝑃𝑙𝑙𝑃𝑃𝑚𝑚𝑃𝑃
 

In our model, precision is the number of lncRNAs correctly predicted to bind a protein, 

divided by the total number of lncRNAs the model predicted to bind a protein. Recall is the 

number of lncRNAs the model correctly predicted to bind a protein, divided by the total number 

of lncRNAs found to bind a protein according to the eCLIP data. For each lncRNA, the logistic 

regression models were allowed to train on all other lncRNAs except the single "left out" 

lncRNA. After training, both models were asked to predict if the "left out" lncRNA did or did not 

bind the protein. This procedure was repeated for all lncRNAs in each eCLIP dataset to 

calculate precision and recall.  

The methodology for training and testing the raw kmer models was exactly the same as 

described above except that the five community features were replaced by the 4096 relative 

kmer abundance features. 

 

2.4.13 Calculating the abundance of motif-matching kmers in lncRNA communities 
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The data for the bar graph in Fig. 3C were generated by the following approach. Of the 109 

proteins on which eCLIP was performed in 37, 79 showed significant association with at least 

one kmer community over the null (Supplementary Table 19). Of these 79 proteins, binding 

motifs for 17 were determined via an in vitro binding assay in 23. The PWMs for each of these 17 

proteins contained relative weights for each motif matching 6mer, representing the likelihood 

that the kmer in question would bind the protein in question. We multiplied the weight of each 

motif-matching 6mer by its average standardized abundance in each of the six communities, 

including the null, to obtain kmer abundances that were scaled by the likelihood that the kmer in 

question matched the binding motif in question. For each of the 17 proteins, sums of the 

weighted abundance for all motif-matching kmers were created for the communities in which 

protein binding was enriched and not enriched over the null, respectively, then divided by the 

number of communities in each group to obtain the average weighted abundance of motif-

matching kmers in the binding-enriched and binding-not-enriched groups. These abundances 

are plotted in Fig. 3C. For proteins that had more than one PWM reported in 23, the average 

abundance shown in Fig. 3C is comprised of the weighted abundance averaged over all 

reported PWMs. To calculate significance, we shuffled the communities in the binding-enriched 

and binding-not-enriched groups 10,000 times and determined how often the difference in kmer 

abundance between the randomly shuffled binding-enriched and binding-not-enriched groups 

was greater than the difference between the real binding-enriched and binding-not-enriched 

groups. 

 

2.4.14 Measuring kmer similarity surrounding motif matches in lncRNAs 

The lncRNAs expressed in HepG2 and K562 cells were examined for motif matches to the 

17 proteins for which eCLIP data was reported in 37 and whose PWMs were determined via a 

high-throughput in vitro assay in 23 by using FIMO at a threshold of p<0.01 (from the MEME 

suite, URLs; 54; Supplementary Table 21). Each motif match was then labeled as a true positive 
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if it overlapped an eCLIP peak, or a false positive if it did not.  For each protein, the sequences 

surrounding the center of each true and false positive motif match (up to 150bp on either side of 

the center, or up to the end of the gene, whichever came first) were collected and their kmer 

contents were analyzed with SEEKR. Significance of the similarity between true positive regions 

was measured by a permutation test against randomly selected sets of false positive regions 

controlling for both the size of the set and the number of overlapping regions in the set 

(Supplementary Fig. 4). 

 

2.4.15 Identifying motifs from eCLIP peaks 

To find motifs in eCLIP peaks for the 17 proteins listed in Fig. 3C, we extracted the subset of 

sequences from eCLIP peaks whose CLIPper-defined p-value was <0.001 (peaks with the 

highest read densities relative to control; 37). We searched these sequences for motifs using 

DREME at default parameter as a part of the MEME-ChIP package 55.  

 

2.4.16 Human-to-mouse and human-to-other community similarity calculations 

To evaluate the similarity between human and mouse lncRNA communities, we calculated 

the distribution of similarities between all pairwise combinations of lncRNAs within each human 

kmer community (“human-to-self”), and compared this distribution to: (1) a distribution of 

pairwise comparisons made between all other human lncRNAs excepting lncRNAs from the 

community in question (“human-to-other-human”), (2) distributions of all pairwise comparisons 

made between all lncRNAs in each of the five mouse lncRNA communities (“human-to-mouse”), 

and (3) distributions of all pairwise comparisons made between all human and mouse lncRNAs 

that did not fall into one of the five major communities (“human-to-null”). We then performed a 

permutation test to determine whether a given human community was similar enough to a 

mouse community to overcome its intrinsic similarity to other lncRNAs in the human genome. 

The expectation was that, for related communities, the human-to-mouse distribution would be 
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more similar to the human-to-self distribution than it would be to the human-to-other-human and 

human-to-null distributions. Bonferroni-adjusted p-values were calculated by permutation tests 

where we iteratively subsampled 0.1-1% of each distribution, re-measured the mean pairwise 

similarities, counted number trials in which the "human-to-mouse" mean subsample was closer 

to the "human-to-other-human" mean than it was to the "human-to-self" mean, and finally, 

divided by the total number of trials performed (36,000). This bootstrapping procedure provided 

a statistical framework to determine if the similarities uncovered between human and mouse 

communities were greater than what would have been expected from random chance. For 

example, in each of 36,000 tests, the distribution of similarities between a randomly selected 

subset of lncRNAs from human community #1 and size-matched subsets of lncRNAs from 

mouse community #1 was always more similar to the distribution of similarities between all 

pairwise comparisons of the human community #1 subset than it was similar to the distribution 

of similarities between the human community #1 subset and size-matched subsets of non-

community #1 human lncRNAs (see upper left panel in Supplementary Fig 6; “H-1 vs M-1” plot; 

the H-1-vs-H-1 distribution in red is nearly indistinguishable from the H-1-vs-M-1 distribution in 

purple).  

To generate the plots in Supplementary Figs. 8 and 9, identical analyses were performed 

that compared human lncRNA communities to lncRNA communities from Rabbit, Dog, 

Opossum, Chicken, Lizard, Coelacanth, Zebrafish, Stickleback, Nile Tilapia, Elephant Shark, 

and Sea Urchin 10. In these latter cases, the human XIST and HOTTIP lncRNAs were doped 

into the lncRNA annotation set from the organism in question to find the homologous 

communities that were the most XIST- and HOTTIP-like (Supplementary Fig. 7).  

 

2.4.17 Generation of plasmids for TETRIS assays 

The pTETRIS-Cargo vector was created from components of a cumate-inducible piggyBAC 

transposon vector (System Biosciences), pGl4.10-Luciferase (Promega), and pTRE-Tight 
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(Clontech). Briefly, a 567bp fragment containing a minimal mouse PGK promoter was cloned 

into a SacI site in pGl4.10-Luciferase to generate pGI4-PGK-Luc-pA. The reverse complement 

of PGK-Luc-pA was cloned into a vector containing the bovine growth hormone polyA site. The 

entire bGHpa-[reversePGK-Luc-pA] was cloned into NotI and SalI sites of the piggyBAC vector 

(System Biosciences). The cumate-inducible promoter in the piggyBAC vector was then 

replaced with the Tetracycline Responsive Element (TRE) from pTRE-Tight (Clontech) via 

Gibson assembly to generate pTETRIS-Cargo in Fig. 4A, in which the lncRNA, the luciferase 

gene, and a gene encoding puromycin resistance are all flanked by chicken HS4 insulator 

elements, and inverted terminal repeats (ITRs) recognized by the piggyBAC transposase. The 

rtTA-cargo vector from Fig. 4A was generated by cloning the hUbiC-rtTA3-IRES-Neo cassette 

from pSLIK-Neo (Addgene Plasmid #25735) into SfiI and SalI sites in a piggyBAC transposon 

vector (System Biosciences). The piggyBAC transposase from System Biosciences was cloned 

into SmaI and HindIII sites into pUC19 (NEB) to allow propagation of the transposase on 

ampicillin plates. 

 

2.4.18 Generation of TETRIS-lncRNA Cargo vectors 

LncRNA fragments were PCR-amplified from genomic DNA or bacterial artificial 

chromosomes using Phusion DNA Polymerase (NEB), or commercially synthesized (Genewiz; 

IDT), and cloned via Gibson assembly into the SwaI site of pTETRIS-Cargo. Insert size was 

verified by restriction digestion, and the 5´ and 3´ end of each insert was verified by Sanger 

sequencing. To generate mutant Xist-2kb constructs, the 2kb fragment of Xist was subcloned 

into pGEM-T-Easy, and the regions in question were deleted using site-directed mutagenesis, 

or by synthesis of a mutated fragment and re-cloning back into compatible sites in pGEM-Xist-

2kb (Genewiz). Deletions were verified by Sanger sequencing and then assembled into the 

SwaI site of pTETRIS-Cargo. The sequence of all inserted fragments, including Xist-2kb 

mutations, are listed in Supplementary Table 22.  
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2.4.19 Estimation of TETRIS copy number per cell 

Genomic DNA was prepared from biological triplicate derivations of TETRIS-GFP and 

TETRIS-Xist-2kb cell lines. qPCR signal (SsoFast, Biorad) from the genomic DNA was 

compared to signal from a molar standard amplified from increasing amounts of the 

corresponding TETRIS plasmid (Supplementary Table 23).   

 

2.4.20 TETRIS assays 

To generate stable TETRIS-lncRNA cell lines, 8x10^5 E14 embryonic stem cells were 

seeded in a single well of a 6-well plate, and the next day transfected with 0.5µg TETRIS cargo, 

0.5µg rtTA-cargo, and 1µg of pUC19-piggyBAC transposase. Cells were subsequently selected 

on puromycin [2µg/ml] and G418 [200µg/ml] for 6 to 12 days. Due to the efficiency of piggyBAC 

cargo integration and the rapidity of puromycin selection, all observable death from drug 

selection occurred within ~3 days after addition of puromycin and G418 (i.e. cells with 

puromycin resistance were invariably resistant to G418). For luciferase assays, 1x10^5 cells per 

well of 24 well plate were seeded in triplicate from each biological replicate preparation of a 

stable TETRIS-lncRNA cell line. 24 hours post-seeding, media was changed to include 

doxycycline at a final concentration of 1µg/ml. After two days of growth in dox-containing media, 

cells were lysed with 100 ul of passive lysis buffer (Promega), and luciferase activity was 

measured using Bright-Glo™ Luciferase Assay reagents (Promega) on a PHERAstar FS plate 

reader (BMG Labtech). Luciferase activity was normalized to protein concentration in the lysates 

via Bradford assay (Biorad). Each lncRNA fragment was assayed in at least in triplicate from at 

least two independent biological replicate preparations of stable TETRIS-lncRNA cell lines. 

 

2.4.21 Synthetic lncRNA design 
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Synthetic lncRNAs were designed by generating 10 million, 1650 nucleotide long lncRNAs 

in silico that were composed of nucleotides randomly selected based on a given input ratio. To 

generate synthetic lncRNAs #2 through #6, the input ratio was the mononucleotide content of 

the 2,016-nucleotide long fragment of Xist inserted into TETRIS (0.203 A: 0.262 G: 0.204 C: 

0.331 T). To generate synthetic lncRNA #1, the input ratio was an equal proportion of 

mononucleotides (0.250 A: 0.250 G: 0.250 C: 0.250 T). Synthetic lncRNAs with the specified 

kmer similarity to the 2kb fragment of Xist were then selected and synthesized as geneBlocks 

(Integrated DNA Technologies) and Gibson assembled into the SwaI site in TETRIS. Similarities 

in kmer content to the 2kb fragment of Xist are relative to all other mouse GENCODE lncRNAs. 

 

2.4.22 Visualization of Xist structural models 

Minimum Free Energy and probability-arc structural models of Xist-2kb were generated 

using SHAPE-MaP data from 41, the visualization package VARNA 56, and a modified version of 

the IGV browser 57. Predicted pseudoknots and regions of low SHAPE reactivity and low 

Shannon Entropy in Xist-2kb are from 41. 

 

2.4.23 TETRIS predictions for kmer sizes and subsets 

We measured SEEKR's ability to capture the relationship between a lncRNA's Xist-likeness 

and its repressive ability in the TETRIS assay using kmers from size one to eight. In each case, 

the correlation is measured using the means of all biological and technical replicates of each 

real and synthetic lncRNA, by normalizing kmer counts of Xist-2kb and the lncRNA in question 

in context with all mouse GENCODE lncRNAs. This process was repeated for select subsets of 

kmers which had the potential to increase our ability to predict repressive activity in TETRIS. 

Individual subsets were created by counting and normalizing kmers as normal with SEEKR then 

removing columns of the resulting count matrix that were not included in a given subset. 

Additionally, we randomly generated 100,000 kmer subsets each containing between 2 and 
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4095 kmers, and measured each of the subsets Pearson’s r values relative to our TETRIS data 

(Supplementary Fig. 10). 

 

2.4.24 Statistical analyses 

All statistics were performed in Python or R. Details of statistical analyses are described in 

the corresponding sections. All multiple comparison tests were adjusted using a Bonferroni 

correction. p-values are reported as exact values except in cases where the p-value was 

calculated using a permutation test, and no random samples were found to be more extreme 

than the observed value. In these cases, p-values are reported as (p <= 1/n), where n is the 

number of permutations performed.  
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Supp. Table 2.1. (Corresponds to Supplementary Table 2) Relationship between lncRNAs with 

known transcriptional regulatory function as measured by SEEKR. “Species”, GENCODE set of 

lncRNAs. “Function”, the literature reported regulatory role of the lncRNAs. “Count”, the number 

of lncRNAs curated from the literature with a given function for a given species (full lists in 

Supplemental Table 1). “Mean”, the average Pearson’s correlation of all pairwise comparisons 

of lncRNAs in the set. “p-value”, the results of a permutation test of 10,000 random, sized 

matched sets of lncRNAs. SEEKR predicts that the lncRNAs in each of these classes are 

significantly more similar to each other than would be expected, with the exception of the mouse 

cis-activators. 

 

Species Function Count Mean p-value 
human cis-repression 9 0.079 <0.0001 
human cis-activation 6 0.060 0.0014 
mouse cis-repression 8 0.072 0.0011 
mouse cis-activation 5 0.011 0.1592 
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Supp. Table 2.2. (Corresponds to Supplementary Table 3) Contingency table of Louvain 

communities and hierarchical clusters definitions in human. Each cell represents the number of 

lncRNAs that are found in both the corresponding row and column labels when groups of 

lncRNAs are defined using either the Louvain or hierarchical method. The large values along 

the diagonal indicate that the group definitions are stable with respect to the particular algorithm 

used for detection (p < 1E-324; Chi-squared). 

 
Human Clusters   

1 2 3 4 5 Null 
Human 

Communities 
1 2784 5 0 56 22 153 
2 8 1278 361 23 32 310 
3 8 94 1202 7 12 197 
4 84 37 30 796 17 133 
5 83 14 11 28 536 105 

Null 2164 295 243 121 133 4571 
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Supp. Table 2.3. (Corresponds to Supplementary Table 4) Contingency table of Louvain 

communities and hierarchical clusters definitions in mouse. Each cell represents the number of 

lncRNAs that are found in both the corresponding row and column labels when groups of 

lncRNAs are defined using either the Louvain or hierarchical method. The large values along 

the diagonal indicate that the group definitions are stable with respect to the particular algorithm 

used for detection (p < 1E-324; Chi-squared). 

    
Mouse Clusters 

  

  
1 2 3 4 5 Null 

Mouse 
Communities 

1 1555 6 41 0 4 203 
2 5 751 17 0 7 499 
3 88 4 156 0 3 209 
4 0 0 1 326 0 0 
5 0 1 2 0 42 31 

Null 204 191 630 0 167 3102 
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Supp. Table 2.4. (Corresponds to Supplementary Table 5) Summary statistics of human 

lncRNA communities. “Comm.”, community assignment; number of lncRNAs in each community 

is in parentheses. “N”, lncRNAs not assigned to a community at the specified threshold of 

similarity. “Length”, average length and (standard deviation). “GC”, average GC content and 

(standard deviation). “CpG”, proportion of lncRNAs that overlap CpG islands. “Proteins”, 

proportion of lncRNAs that overlap protein-coding genes. “Exons”, average number of exons in 

the lncRNA and (standard deviation).  

Comm. Length GC CpG Proteins Exons 
1 (3023) 1715 (3207) 0.37 (0.04) 0.08  0.41 2.28 (1.88) 
2 (2021) 1629 (2245) 0.56 (0.04) 0.27  0.52  2.64 (2.67) 
3 (1529) 1068 (879) 0.58 (0.06) 0.87  0.61 2.35 (1.76) 
4 (1109) 1469 (8177) 0.47 (0.05) 0.18 0.48 2.70 (1.65) 
5 (789) 1316 (1670) 0.48 (0.05) 0.20  0.55 2.13 (1.19) 
N (7545) 755 (710) 0.46 (0.04) 0.15 0.41 2.79 (2.50) 
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Supp. Table 2.5. (Corresponds to Supplementary Table 6) Summary statistics of mouse 

lncRNA communities. “Comm.”, community assignment; number of lncRNAs in each community 

is in parentheses. “N”, lncRNAs not assigned to a community at the specified threshold of 

similarity. “Length”, average length and (standard deviation). “GC”, average GC content and 

(standard deviation). “CpG”, proportion of lncRNAs that overlap CpG islands. “Proteins”, 

proportion of lncRNAs that overlap protein-coding genes. “Exons”, average number of exons in 

the lncRNA and (standard deviation). 

Comm. Length GC CpG Proteins Exons 
1 (1824) 2430 (3160) 0.39 (0.03) 0.07 0.57 1.88 (1.64) 
2 (1288) 1610 (1282) 0.55 (0.05) 0.62 0.67 2.72 (3.34) 
3 (463) 1475 (1080) 0.46 (0.04) 0.16 0.51 2.51 (1.50) 
4 (327) 1192 (422) 0.41 (0.01) 0.00 0.01 3.91 (0.33) 
5 (76) 1276 (1070) 0.49 (0.04) 0.03 0.18 2.43 (1.76) 
N (4297) 1048 (833) 0.47 (0.04) 0.14 0.42 2.75 (1.68) 
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Supp. Table 2.6. (Corresponds to Supplementary Table 9) Contingency table comparing 5mer 

based human communities to 6mer based communities. Each cell represents the number of 

lncRNAs that are found in both the corresponding row and column labels when community 

detection is run using either 5mers or 6mers as a similarity measure. The large values along the 

diagonal indicate that the community definitions are similar to one another (p < 1E-324; Chi-

squared).  

  5mer Human Communities 
 

 
1 2 3 4 5 Null 

6mers 
Human 

Communities 

1 2835 1 0 2 3 179 
2 1 1785 28 8 8 182 
3 1 52 1343 1 0 123 
4 107 81 23 491 3 392 
5 57 67 24 371 8 250 

Null 226 133 34 13 84 7037 
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Supp. Table 2.7. (Corresponds to Supplementary Table 10) Contingency table comparing 7mer 

based human communities to 6mer based communities. Each cell represents the number of 

lncRNAs that are found in both the corresponding row and column labels when community 

detection is run using either 7mers or 6mers as a similarity measure. The large values along the 

diagonal indicate that the community definitions are similar to one another (p < 1E-324; Chi-

squared).  

  7mer Human Communities 
  1 2 3 4 5 Null 

6mers 
Human 

Communities 

1 1629 50 5 70 68 1198 
2 3 53 988 53 47 868 
3 0 11 1026 32 27 424 
4 5 0 11 888 38 155 
5 1 2 0 5 671 98 

Null 84 255 76 80 74 6958 
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Supp. Table 2.8. (Corresponds to Supplementary Table 13) Results of HSD tests between 

lncRNA localization of communities using polyA-selection in HepG2 cells. “Comm1” and 

"Comm2", community assignment for first and second set of lncRNAs compared, respectively. 

“n1” and “n2”, number of lncRNAs in Comm1 and Comm2, respectively. "meandiff", the mean 

difference in localization values between the two communities. "lower", the lower bound of the 

95% confidence interval (CI) of the "meandiff" value. "upper", the upper bound of the 95% CI. "p 

< 0.05", result of HSD test indicating whether or not the means of "Comm1" and "Comm2" are 

significantly different. The test is significant if '0' is not contained within the CI. 

Comm1 Comm2 n1 n2 meandiff lower  upper  p < 0.05 
1 2 1719 1397 0.0128 -0.0153 0.041  
1 3 1719 1180 -0.11 -0.1395 -0.0804 Yes 

1 4 1719 775 -0.0214 -0.0552 0.0123  
1 5 1719 561 -0.0252 -0.0632 0.0127  
1 null 1719 685 -0.0476 -0.0829 -0.0124 Yes 

2 3 1397 1180 -0.1228 -0.1537 -0.0919 Yes 

2 4 1397 775 -0.0343 -0.0693 0.0007  
2 5 1397 561 -0.0381 -0.0771 0.0009  
2 null 1397 685 -0.0605 -0.0969 -0.0241 Yes 

3 4 1180 775 0.0885 0.0524 0.1246 Yes 

3 5 1180 561 0.0847 0.0447 0.1247 Yes 

3 null 1180 685 0.0623 0.0248 0.0998 Yes 

4 5 775 561 -0.0038 -0.0471 0.0395  
4 null 775 685 -0.0262 -0.0671 0.0147  
5 null 561 685 -0.0224 -0.0668 0.0221  
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Supp. Table 2.9. (Corresponds to Supplementary Table 14) Results of HSD tests between 

lncRNA localization of communities using ribosome-depletion in HepG2 cells. “Comm1” and 

"Comm2", community assignment for first and second set of lncRNAs compared, respectively. 

“n1” and “n2”, number of lncRNAs in Comm1 and Comm2, respectively. "meandiff", the mean 

difference in localization values between the two communities. "lower", the lower bound of the 

95% confidence interval (CI) of the "meandiff" value. "upper", the upper bound of the 95% CI. "p 

< 0.05", result of HSD test indicating whether or not the means of "Comm1" and "Comm2" are 

significantly different. The test is significant if '0' is not contained within the CI. 

Comm1 Comm2 n1 n2 meandiff lower  upper  p < 0.05 
1 2 1864 1285 -0.0904 -0.1111 -0.0698 Yes 
1 3 1864 1152 -0.1464 -0.1678 -0.125 Yes 
1 4 1864 786 -0.0553 -0.0796 -0.031 Yes 
1 5 1864 565 -0.0449 -0.0722 -0.0175 Yes 
1 null 1864 740 -0.0156 -0.0404 0.0091  
2 3 1285 1152 -0.0559 -0.0791 -0.0328 Yes 
2 4 1285 786 0.0351 0.0093 0.061 Yes 
2 5 1285 565 0.0456 0.0168 0.0744 Yes 
2 null 1285 740 0.0748 0.0485 0.1011 Yes 
3 4 1152 786 0.0911 0.0647 0.1175 Yes 
3 5 1152 565 0.1015 0.0722 0.1308 Yes 
3 null 1152 740 0.1307 0.1039 0.1576 Yes 
4 5 786 565 0.0104 -0.021 0.0419  
4 null 786 740 0.0397 0.0105 0.0689 Yes 
5 null 565 740 0.0292 -0.0026 0.0611  
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Supp. Table 2.10. (Corresponds to Supplementary Table 15) Results of HSD tests between 

lncRNA localization of communities using polyA-selection in K562cells. “Comm1” and "Comm2", 

community assignment for first and second set of lncRNAs compared, respectively. “n1” and 

“n2”, number of lncRNAs in Comm1 and Comm2, respectively. "meandiff", the mean difference 

in localization values between the two communities. "lower", the lower bound of the 95% 

confidence interval (CI) of the "meandiff" value. "upper", the upper bound of the 95% CI. "p < 

0.05", result of HSD test indicating whether or not the means of "Comm1" and "Comm2" are 

significantly different. The test is significant if '0' is not contained within the CI. 

Comm1 Comm2 n1 n2 meandiff lower  upper  p < 0.05 
1 2 1651 1289 -0.0344 -0.0625 -0.0062 Yes 
1 3 1651 1125 -0.1571 -0.1864 -0.1278 Yes 
1 4 1651 758 -0.051 -0.0842 -0.0178 Yes 
1 5 1651 537 -0.0466 -0.0842 -0.0089 Yes 
1 null 1651 659 -0.0423 -0.0772 -0.0074 Yes 
2 3 1289 1125 -0.1227 -0.1536 -0.0918 Yes 
2 4 1289 758 -0.0166 -0.0513 0.018  
2 5 1289 537 -0.0122 -0.0511 0.0267  
2 null 1289 659 -0.0079 -0.0442 0.0284  
3 4 1125 758 0.1061 0.0705 0.1417 Yes 
3 5 1125 537 0.1105 0.0708 0.1502 Yes 
3 null 1125 659 0.1148 0.0777 0.152 Yes 
4 5 758 537 0.0044 -0.0383 0.0472  
4 null 758 659 0.0087 -0.0316 0.0491  
5 null 537 659 0.0043 -0.0397 0.0483  

 

  



45 
 

Supp. Table 2.11. (Corresponds to Supplementary Table 16) Results of HSD tests between 

lncRNA localization of communities using ribosome-depletion in K562 cells. “Comm1” and 

"Comm2", community assignment for first and second set of lncRNAs compared, respectively. 

“n1” and “n2”, number of lncRNAs in Comm1 and Comm2, respectively. "meandiff", the mean 

difference in localization values between the two communities. "lower", the lower bound of the 

95% confidence interval (CI) of the "meandiff" value. "upper", the upper bound of the 95% CI. "p 

< 0.05", result of HSD test indicating whether or not the means of "Comm1" and "Comm2" are 

significantly different. The test is significant if '0' is not contained within the CI. 

Comm1 Comm2 n1 n2 meandiff lower  upper  p < 0.05 
1 2 1636 1170 -0.1335 -0.1607 -0.1063 Yes 
1 3 1636 1086 -0.1345 -0.1623 -0.1067 Yes 
1 4 1636 703 -0.0929 -0.1249 -0.0608 Yes 
1 5 1636 510 -0.0962 -0.1323 -0.0602 Yes 
1 null 1636 621 -0.0297 -0.0632 0.0038  
2 3 1170 1086 -0.001 -0.031 0.0289  
2 4 1170 703 0.0406 0.0067 0.0745 Yes 
2 5 1170 510 0.0373 -0.0004 0.075  
2 null 1170 621 0.1038 0.0685 0.1391 Yes 
3 4 1086 703 0.0416 0.0072 0.076 Yes 
3 5 1086 510 0.0383 0.0001 0.0764 Yes 
3 null 1086 621 0.1048 0.069 0.1406 Yes 
4 5 703 510 -0.0033 -0.0447 0.038  
4 null 703 621 0.0632 0.024 0.1023 Yes 
5 null 510 621 0.0665 0.024 0.109 Yes 
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Supp. Table 2.12. (Corresponds to Supplementary Table 17) Distributions of polysome 

associated lncRNAs between communities. “Community”, the name of the community. 

“Observed”, the number of literature reported lncRNAs associated with polysomes, in a given 

community. “Expected”, the number of lncRNAs that would be associated with polysomes if the 

lncRNAs were randomly distributed between the communities. “Ratio” Observed divided by 

Expected. Polysomal lncRNAs are not uniformly distributed across communities (p = 3.5e-5, 

Chi-squared); they are most enriched in community 3 and most depleted in community 1, 

providing additional support for the hypothesis that kmer content provides information about 

lncRNA cellular localization. 

 

Community Observed Expected Ratio 
1 24 51 0.47 
2 32 36 0.89 
3 52 39 1.33 
4 25 21 1.19 
5 11 17 0.65 
Null 85 65 1.31 
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Supp. Table 2.13. (Corresponds to Supplementary Table 21) Protein binding motif counts 

across lncRNAs expressed in HepG2 or K562 cells. “Protein”, the name of the RNA binding 

protein. “True Positives”, motifs identified by FIMO that were experimentally validated by eCLIP 

data. “Total”, all motifs identified by FIMO. "TP%", the True Positive Rate is the number of True 

Positive regions divided by the Total number of regions. "(0.01)" indicates that FIMO was run at 

a threshold of 0.01. "(0.0001)" indicates that FIMO was run at a threshold of 0.0001. "% Diff." is 

the percent difference between "TP% (0.01)" and TP% (0.0001)". The True Positive percentage 

is low for both the 0.01 and 0.0001 threshold, and there is little to no difference between the 

percentages at each threshold. The 0.01 threshold was chosen for our analysis performed as 

part of Fig. 3D since the number of True Positive samples were multiple orders of magnitude 

more numerous at that threshold.  

 

Proteins True 
Positive 
(0.01) 

Total 
(0.01) 

TP% 
(0.01) 

True 
Positive 
(0.0001) 

Total 
(0.0001) 

TP% 
(0.0001) 

% Diff. 

FXR1 399 23669 1.7 7 323 2.2 -0.5 
FXR2 278 20539 1.4 12 484 2.5 -1.1 
HNRNPA
1 

5486 64872 8.5 52 424 12.3 -3.8 

HNRNPC 3474 38076 9.1 211 2611 8.1 1.0 
hnRNPK 1204 22075 5.5 92 1355 6.8 -1.3 
IGF2BP1 1311 35404 3.7 25 504 5.0 -1.3 
IGF2BP2 340 22963 1.5 9 906 1.0 0.5 
IGF2BP3 525 23434 2.2 20 906 2.2 0.0 
KHDRBS1 1125 19565 5.8 54 895 6.0 -0.3 
NONO 1046 26786 3.9 27 1065 2.5 1.4 
PCBP2 1017 20455 5.0 188 3008 6.3 -1.3 
PTBP1 2339 66007 3.5 102 2262 4.5 -1.0 
QKI 1780 44428 4.0 63 498 12.7 -8.6 
SFPQ 1119 40233 2.8 2 233 0.9 1.9 
SRSF1 19781 238759 8.3 1072 12118 8.8 -0.6 
SRSF9 3005 76606 3.9 131 2934 4.5 -0.5 
TIA1 4008 77512 5.2 211 3877 5.4 -0.3 
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Figure 2.1. Overview and initial test of kmer-based sequence comparison. (A) LncRNAs of 
related function (names in black) may harbor similar sequence similarity in the form of motif 
content (colored bars) even if they lack linear homology. (B) In SEEKR, the abundance of all 
kmers of length k are counted by tiling across each lncRNA in a user-defined group in one 
nucleotide increments. Kmer counts are normalized for lncRNA length, and standardized across 
the group to derive z-scores. Similarity is evaluated by comparing lncRNA kmer profiles (lists of 
z-scores for each kmer in the lncRNAs) with Pearson’s correlation. (C) Number of homologous 
pairs detected by SEEKR vs. kmer length in a test set of conserved lncRNAs. Green and 
orange lines mark the homologue number detected by Stretcher and nhmmer, respectively. (D) 
Signal to background ratios for homologue detection via the three methods. Tukey boxplots 
show the lower, median, and upper quartile of values, and ±1.5x the IQR (n=161 r values for 
signal, n=12880 r values for background); outliers are not shown. 



49 
 

 

Figure 2.2. LncRNAs of related function often have related kmer contents. (A) Hierarchical 
cluster of all human GENCODE lncRNAs at kmer length 6, with lncRNAs and kmers on the x- 
and y-axes, respectively. Kmer z-scores (relative kmer abundance) range from blue (lowest) to 
yellow (highest). GC content of kmers is shown above the x-axis. Locations of select lncRNAs 
are marked. Left of lncRNA names, black circles indicate cis activators and squares indicate cis 
repressors. (B) Locations of lncRNAs assigned to communities 1 through 5 via the 
Louvain/network-based approach. (C)Network graph of Louvain-assigned lncRNA communities. 
LncRNA names in (A) are colored by their Louvain community assignment; lncRNAs in gray 
were assigned to the null. (C, D, E) Same as (A, B, C) but for mouse GENCODE lncRNAs. 
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Figure 2.3. LncRNA localization and protein binding correlate with kmer content. (A) 
Violin plots of lncRNA localization by kmer community in K562 (blue) and HepG2 (green) cells, 
as determined from RNA-Seq of polyA-selected and ribosome-depleted RNA. “N”, the “null” 
community. Lines show the lower, median, and upper quartile of values (see Supplemental Figs. 
13-16 for samples sizes). (B) From left to right; Log10 significance of increase in likelihood (i), % 
increase in precision (ii), and % increase in recall (iii) obtained when lncRNA community 
information is included in a logistic regression to predict protein association. Black line in (i) 
corresponds to a log10(adjusted p-value) of 0.05 (n=3747 lncRNAs for HepG2, n=3278 
lncRNAs for K562). (C) 11 of the 17 proteins with experimentally determined PWMs from 23 
show significantly increased abundance of motif-matching kmers (n=4096) in lncRNA 
communities that are enriched for binding to the protein in question (p<0.01; permutation test; 
marked by *’s). (D) The most enriched kmers in 300 nucleotide windows surrounding motif 
matches in CLIP peaks do not always match the motif. PWMs from 23 are shown above average 
z-scores for the top 5 most enriched kmers in true positive relative to false positive binding 
regions for the protein in question. PWMs and top kmers are shown for all 17 proteins in 
Supplementary Fig. 5. 
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Figure 2.4. Kmer content correlates with lncRNA repressive activity. (A) Overview of 
vectors and concept of the TETRIS assay. (B) Number of TETRIS-lncRNA-cargo insertions per 
cell (“c.p.c.”) after 10-day drug selection for two separate cargos, Xist-2kb and GFP. Each row 
represents copy number data from independent replicates. (C) Luciferase values for different 
TETRIS-lncRNA constructs relative to No Dox. Tukey boxplots as in Fig. 1D. Data are from at 
least six independent luciferase assays from at least two biological replicate derivations of 
TETRIS cell lines. Exact numbers of assays and replicates performed for each TETRIS lncRNA 
cargo are found in Supplementary Table 22. (D) Pearson’s r similarity of kmer profiles for the six 
synthetic lncRNAs relative to the first 2kb of Xist. Histogram of similarity of Xist-2kb to all other 
GENCODE M5 lncRNAs is shown in gray. (E) Effect of synthetic lncRNA expression on 
luciferase activity. Tukey boxplots as in Fig. 1D. SEEKR, Stretcher, and nhmmer similarity for 
each synthetic lncRNA relative to the first 2kb of Xist is shown below the graph. (F, G, H) 
Pearson’s correlation between repressive activity and similarities to Xist-2kb as defined by 
SEEKR, nhmmer, and Stretcher for thirty-three endogenous lncRNAs/lncRNA fragments (dots) 
and six synthetic lncRNAs (stars) (mean ± standard deviation). See Supplementary Table 22 for 
sample sizes in panels C, E, F, G, H. 
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Figure 2.5. Mapping of elements required for repression by Xist-2kb in TETRIS. (A) 
Minimum Free Energy (MFE) and (B) arc-based structural models of the first 2kb of Xist from 41; 
green and blue bars in (i) mark starts and stops of indicated regions; locations of Xist repeats 7 
and predicted stable structures (low S/S, regions of low SHAPE reactivity and Shannon entropy 
from 41) are also shown in (ii). (C) Deleted regions. (D) Effects on luciferase after dox addition. *, 
Bonferroni corrected p<0.001 relative to Wild-type/Xist-2kb via Student’s t-test. Tukey boxplots 
show the lower, median, and upper quartile of values, and ±1.5x the IQR (see Supplementary 
Table 22 for sample sizes and exact p-values). 
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Supplementary Fig. 2.1. Comparison of Xist to Kcnq1ot1 via nhmmer, Stretcher, and SEEKR, 
relative to 1,000 randomly generated lncRNAs of length/mononucleotide content 
identical/similar to Kcnq1ot1. Only SEEKR is able to detect a significant level of similarity 
between Xist and Kcnq1ot1. 
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Supplementary Fig. 2.2. Hierarchical clusters of human and mouse GENCODE lncRNAs, and 
sequences randomly generated using the nucleotide composition of the human set, at varying 
kmer lengths. Axes and label colors are the same as in Fig. 2. Locations of cis-repressing and 
cis-activating lncRNAs are marked in red and blue, respectively.  
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Supplementary Fig. 2.3. Relationships between lncRNAs in human and mouse communities. 
(A) Violin plots of the distribution of Pearson’s r values for the similarities between lncRNAs in 
each community. Lines show the lower, median, and upper quartile of values (see “Count” 
column of tables for the sample size). (B) Summary statistics of Pearson’s r values between 
human lncRNAs in each community. “Comm.”, community assignment. “Count”, number of 
edges (i.e. comparisons between pairs of lncRNAs) in community. “Mean”, average Pearson’s r 
value of edges. "Std", standard deviations. "Min", smallest Pearson’s r value. "25%", Pearson’s r 
value of the 25th percentile. "50%", Pearson’s r value of the 50th percentile. "75%", Pearson’s r 
value of the 75th percentile. "Max", largest Pearson’s r value. (C) Summary statistics of 
Pearson’s r values between mouse lncRNAs in each community. Column labels are the same 
as in (B). 
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Supplementary Fig. 2.4. The distributions of average pairwise similarities of kmer profiles from 
random and size matched sets of false positive binding regions compared to the average 
pairwise similarity of the experimentally confirmed true positive regions for each protein (n=2000 
regions, p-value determined by unadjusted permutation test). Because the average pairwise 
similarities of true positive regions are consistently an order of magnitude or more above those 
for the false positive regions, the x-axes are plotted on a log scale. For 13 of 17 proteins, the 
true positive regions are more similar to each other than any randomly generated set of false 
positive regions.   
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Supplementary Fig. 2.5. Biochemically measured PWMs (from (1); “in vitro motifs”) for the 17 
proteins with CLIP data in HepG2 and K562 cells (from (2)) are shown above the five kmers that 
were the most enriched in true positive regions (motif matches falling inside of CLIP peaks) 
relative to false positive regions (motif matches falling outside of CLIP peaks) for each protein in 
question. The z-scores associated with kmer enrichment in the true positive regions are also 
shown. Adjacent to that information are the top 5 motifs identified from eCLIP peaks using 
DREME (3). Only 3 and 2 motifs were identified by DREME from FXR1 and HNRNPA1 eCLIP 
data, respectively. For HNRNPC, the first motif listed ranked outside of the top 5 (ranked 11th by 
E-value), but it is shown because it is the eCLIP-derived motif that best matched the in vitro-
derived motif. For all other proteins, the eCLIP-derived motif that in our evaluation best matched 
the in vitro-derived motif fell in the top 5. By our evaluation, in vitro-derived motifs, top eCLIP-
derived motifs, and top enriched 6mers from SEEKR showed some level of concordance for 11 
of 17 proteins (FXR2, HNRNPA1, HNRNPC, HNRNPK, KHDRBS1, NONO, PCBP2, PTBP1, 
QKI, SFPQ, and SRSF9), and the in vitro-derived motifs and top eCLIP-derived motif showed 
concordance for an additional protein (TIA1). For the remaining five proteins, the in vitro-derived 
motifs, top eCLIP-derived motifs, and top enriched 6mers from SEEKR showed substantial 
differences. 
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Supplementary Fig. 2.6. Similarity between human and mouse lncRNA communities. . “H-#” 
refers to human lncRNAs and their corresponding community number (1, 2, etc.). “H-!#” refers 
all human lncRNAs excepting the community number shown. “M-#” and “M-!#”, same as for 
human but with mouse lncRNAs. Significant similarity was observed between communities H-1 
and M-1, H-1 and M-4, H-2 and M-2, and H-3 and M-2 (note the clear overlap of red and purple 
histograms). 
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Supplementary Fig. 2.7. Louvain defined communities in other organisms. Human XIST and 
HOTTIP have been added to each set of lncRNAs.
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Supplementary Fig. 2.8. Similarity between the human HOTTIP community (community #3 in 
Fig. 2A) and cognate lncRNA communities in other organisms. A HOTTIP-like community was 
found all organisms examined (red and purple histograms show significant overlap). 
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Supplementary Fig. 2.9. Similarity between the human XIST community (community #1 in Fig. 
2A) and cognate lncRNA communities in other organisms. An XIST-like community was found in 
seven of the ten vertebrate species examined (names in black; red and purple histograms show 
significant overlap). 
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Supplementary Fig. 2.10. Additional correlations with TETRIS data show that the full set of 
4096 6mers is the kmer set that is most likely to provide the greatest predictive value in SEEKR. 
(A) The correlation between Xist-likeness and repressive ability in the TETRIS assay is reported 
(y-axis) for kmer sizes 1 through 8 when running SEEKR (x-axis). 6mers provide the best 
correlation (-0.52). (B) Subsets of 6mers were selected in an attempt to improve the correlation 
between Xist-likeness and repressive ability. “Xist-2kb” contains the full set of 4096 6mers, 
which represents the Pearson’s r value (-0.52) on which other 6mer sets could improve. 
“minimal” also uses the full set of 6mers, but measures each lncRNA inserted into TETRIS for 
its similarity to the minimal repressive fragment found in Fig. 5. Similarly, “repA” uses the full set 
of 6mers, but measures lncRNAs for their similarity to the repeat A region of Xist (Fig. 5). All 
6mer sets to the right of the “repA” bar are subsets of 6mers that used the Xist-2kb transcript to 
calculate correlations between lncRNAs and TETRIS data. “xist 10%” is the set of 410 6mers 
are the most overabundant in Xist-2kb relative to all other mouse lncRNAs. Likewise, “xist 50%” 
is the set of 2048 6mers that have the largest z-score in Xist-2kb. “xist 5%-5%” contains the 210 
6mers with the largest z-scores, plus the 210 6mers with the lowest z-scores. These low 
abundance z-scores were added to ensure that not all 6mers in the subset were correlated with 
each other. “xist 25%-25%” contains the 1024 6mers with the largest z-scores, plus another 
1024 6mers with the lowest z-scores. “mini 10%”, “mini 50%”, “mini 5%-5%”, and “mini 25%-
25%”, are the same 6mer subsets as their “xist” counterparts, except that the 6mers are the 
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most over- and under-represented in the minimal fragment of Xist, instead of the Xist-2kb 
fragment. “high var.” 6mers are the 800 6mers with the highest standard deviations across the 
six communities defined in Fig. 3. “GC rich” and “AT rich” are 6mer subsets that contain at least 
four “GC” nucleotides or “AT” nucleotides, respectively. Each set contains 1408 kmers. “CpG” 
contains the 1185 6mers that contain a “CG” dinucleotide in their sequence. No rationally 
designed subsets of 6mers were significantly more predictive of lncRNA repressive activity than 
the baseline “Xist-2kb” fragment. (C) 100,000 subsets of randomly generated kmers, across the 
full range of subset sizes, are plotted relative to their Pearson’s r values for our TETRIS data 
(grey circles). The average Pearson’s r value at each subset size was calculated (orange line). 
The kmers with the largest standard deviation across lncRNA communities are also plotted for 
each kmer subset size (blue line). At no kmer subset size were either the average random sets 
or the most highly variable kmers significantly more predictive of TETRIS data than the full set 
of 6mers (pink line). 
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Supplementary Fig. 2.11. Lack of significant differences in subcellular localization in sub-
communities of human community 1 and 3 lncRNAs. To determine if sub-communities of 
lncRNAs harbor significantly different biological properties within the five major lncRNA 
communities in human, lncRNAs from community #1 and #3 were extracted from the set of 
human GENCODE lncRNAs, and the Louvain algorithm run at default resolution parameter was 
used to identify the five most likely sub-communities within each. Because communities #1 and 
#3 were the most nuclear and cytoplasmic communities respectively, we examined if their 
respective sub-communities harbored significant differences in subcellular localization.  (A) 
Violin plots of the distributions of cellular localization ratios for lncRNAs in communities 1 and 3. 
Lines show the lower, median, and upper quartile of values. The sample size of each 
distribution is indicated below the distribution, indicating the number of lncRNAs in the 
distribution for HepG2 and K562, respectively. (B) Results of ANOVA tests examining if the 
nuclear distributions amongst sub-communities was different. “Community”, the original 
community from which sub communities were created. “Method”, the RNA-seq method used to 
generate the ENCODE dataset. “Count”, number of lncRNAs in each data set and the sample 
size used to calculate the p-value. “ANOVA p-value”, results of the ANOVA test, where p-values 
< .05 indicate a significant difference between distributions. Unlike that observed for the major 
lncRNA communities in Fig. 3A, no significant differences in subcellular localization between 
sub-communities were detected. 
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CHAPTER 3 

SEEKR: a tool for classifying RNAs by kmer content 

3.1 Introduction 

 Upwards of 80% of the human genome can be transcribed into RNA. Of the total number of 

transcribed nucleotides, approximately one half comprise pre-messenger RNAs (pre-mRNAs) 

that will ultimately become spliced and encode for proteins in the cytoplasm. The other half 

comprise long noncoding RNAs (lncRNAs), defined as RNA species that are greater than 200 

nucleotides in length and have little or no potential to encode for proteins. Compared to transcripts 

produced from protein-coding genes, lncRNAs are, on average, less conserved, transcribed at 

lower levels, spliced less efficiently, and more likely to remain in the nucleus (1-6).  

 Nevertheless, a growing number of lncRNAs have been studied experimentally, and are now 

known to play important roles in health and development. Some of the most notable of these 

include the lncRNA XIST, which orchestrates transcriptional silencing during X-chromosome 

Inactivation (7), the lncRNAs NEAT1 and MALAT1, which play roles in nuclear organization and 

have context-dependent functions in development and in cancer (8-14), and the lncRNA NORAD, 

which helps to maintain genome stability by promoting DNA repair (15,16). LncRNAs have also been 

found to play important roles in developmental transitions (17-23), in the immune system (24-26), in 

the brain (27-33) , and in the heart (34-37). These identified roles, coupled with the large number of 

lncRNAs that have yet to be studied experimentally, suggest that lncRNAs with important 

physiological functions remain to be discovered.  
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Still, identifying function in lncRNAs remains a major challenge. Many lncRNAs are thought to 

function as hubs that concentrate proteins, DNA, and possibly other biomolecules in particular 

regions of the cell, yet the sequence characteristics that give rise to these functions and the 

mechanisms through which they occur are poorly defined, even for the best studied lncRNAs (38-

42). Moreover, relative to protein-coding genes, lncRNAs are poorly conserved, evolve rapidly, and 

are prone to changes in gene architecture, limiting the extent to which traditional phylogenetic 

analyses can be employed to identify the sequence features that are important for specifying their 

function (43). As an example, placental mammals express the XIST lncRNA to orchestrate gene 

silencing during X-Chromosome Inactivation (7), while marsupial mammals independently evolved 

their own lncRNA to orchestrate X-Chromosome Inactivation, termed Rsx. Remarkably, XIST and 

Rsx share no significant similarity by standard methods of sequence alignment (44,45). Thus, even 

though Rsx and XIST presumably function through analogous mechanisms, standard tools of 

sequence comparison are unable to detect the analogy. This problem extends to all lncRNAs. 

The sequence patterns that specify recurring functions in lncRNAs are largely unknown and 

difficult to detect computationally. Thus, to date, lncRNA functions must be determined 

empirically, on a case-by-case basis.  

Recently, we developed a method of sequence comparison based on the notion that different 

lncRNAs likely encode similar functions through different spatial arrangements of related 

sequence motifs, and that such similarities might not be detectable by traditional methods of linear 

sequence alignment (46). In our method, which we termed SEEKR (sequence evaluation through 

k-mer representation), the sequences of any number of lncRNAs are evaluated by comparing the 

standardized abundance of nucleotide substrings termed “k-mers” in each lncRNA, where k 

specifies the length of the substring being counted, and is typically set to values of k = 4, 5, or 6. 

SEEKR counts k-mers independent of their position in sequences of interest, much like the “bag 

of words model” used by many language processing algorithms, in which sentences are classified 
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by word abundance without regards to grammar or syntax (47). Using SEEKR, we demonstrated 

that k-mer content correlates with lncRNA subcellular localization, protein-binding, and repressive 

function, and that evolutionarily unrelated lncRNAs with analogous functions shared significant 

levels of non-linear sequence similarity even when BLAST-like alignment algorithms could detect 

none (46). 

Below, we walk users through five related applications of SEEKR that we have found to be 

useful. For each application, we enumerate step-by-step instructions. Where relevant, we include 

code to execute specific functions in python. We have deposited standalone python code to run 

the major applications of SEEKR in Github (https://github.com/CalabreseLab/seekr). For the 

simplest implementation of SEEKR, we refer users to a web portal (http://seekr.org). K-mer based 

classification schemes have been used in many biological contexts ((48-56) and others). Therefore, 

beyond lncRNAs, the methods that we describe should prove useful in the study of other nucleic 

acid sequences, such as 5' and 3' untranslated regions of mRNAs and DNA regulatory elements. 

 

3.2 Materials 

3.2.1 Hardware Requirements 

Personal computer, preferably with a multi-core processor and at least 8GB of RAM. 

3.2.2 Software Requirements 

1. Python >=3.6. The easiest way to get started with Python is by downloading the Anaconda 

distribution: https://www.anaconda.com/download. 

2. The python packages: numpy, pandas, networkx, python-igraph, louvain. All of these can be 

installed by running $ pip install [name]. 

3. R, which can be installed from https://www.r-project.org/. 

https://www.anaconda.com/download
https://www.r-project.org/
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4. The R packages amap and ctc. amap is hosted at https://cran.r-

project.org/web/packages/amap/index.html, and ctc at 

https://bioconductor.org/packages/release/bioc/html/ctc.html. Both can be installed by running: 

and can be installed by running: 

source("http://bioconductor.org/biocLite.R") 

biocLite("amap") 

biocLite("ctc") 

5. Java 1.8. See this page for help installing java: 

https://www.java.com/en/download/help/download_options.xml 

6. Java Treeview. http://jtreeview.sourceforge.net/ 

7. Gephi, which can be installed from https://gephi.org/users/download/.  

8. SEEKR (optional). SEEKR is hosted at pypi: https://pypi.org/project/seekr/, and can be 

installed by running $ pip install seekr. SEEKR works on Mac and Linux. As of the time 

of publication, there is a bug installing several dependencies of SEEKR if using Anaconda 

Python on MacOS. As a workaround in macOS 10.14.x, run $ 

MACOSX_DEPLOYMENT_TARGET=10.14 pip install seekr. To print the documentation 

associated with each SEEKR command line tool, simply type the name of the tool in the UNIX 

terminal (e.g. $ seekr_download_gencode). 

 

3.3 Methods  

3.3.1 Comparing k-mer contents between a group of lncRNAs 

1. Download lncRNA sequences 

https://cran.r-project.org/web/packages/amap/index.html
https://cran.r-project.org/web/packages/amap/index.html
https://bioconductor.org/packages/release/bioc/html/ctc.html
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LncRNA sequences can be downloaded from https://www.gencodegenes.org/. For this analysis, 

we'll use human v22: 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/gencode.v22.lncRNA_tr

anscripts.fa.gz 

and mouse v5: 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M5/gencode.vM5.lncRNA_t

ranscripts.fa.gz. Unzip these files to produce gencode.v22.lncRNA_transcripts.fa and 

gencode.vM5.lncRNA_transcripts.fa.gz. The following pipeline will be demonstrated using just 

the gencode.v22.lncRNA_transcripts.fa file. Mouse, or any other fasta file, can be substituted 

instead. 

 

Downloading and unzipping can be done manually. Alternatively, if SEEKR is installed locally, 

you can also download the files from the command line. Use “lncRNA” to specify the biotype of 

transcripts file, and the “--release" flag to indicate you want a particular version of the fasta file: 

$ seekr_download_gencode lncRNA -r 22 

 

2. Select 01 isoform 

To avoid bias that may be introduced by counting k-mers across multiple isoforms of the same 

transcript, we typically only select transcripts ending in 01, which in prior versions of GENCODE, 

represented the canonical isoform of a gene product. Using this filter, each genomic locus is only 

represented once. 

fasta_path = 'v22_lncRNA.fa' #Note 1 

with open(fasta_path) as infasta: 

https://www.gencodegenes.org/
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/gencode.v22.lncRNA_transcripts.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/gencode.v22.lncRNA_transcripts.fa.gz
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    data = [l.strip() for l in infasta] 

    headers = data[::2] 

    seqs = data[1::2] 

     

fasta01_path = 'v22-01.fa' 

with open(fasta01_path, 'w') as outfasta: 

    for header, seq in zip(headers, seqs): 

        common_name = header.split('|')[4] 

        if common_name.endswith('01'): #Note 2 

            outfasta.write(header+'\n') 

            outfasta.write(seq+'\n') 

 

To accomplish the same using the command line tool, pass seekr_canonical_gencode the 

name of the GENCODE fasta file and a path to the newly filtered fasta file: 

$ seekr_canonical_gencode v22_lncRNA.fa v22-01.fa 

 

3. Count k-mers  

Next, we define a 2D matrix where each row represents one transcript, each column represents 

a k-mer, and each element is a normalized and standardized count of how many times a k-mer is 

found in a transcript. A single row of the matrix, then, defines a “k-mer profile” for a given lncRNA. 

import pickle 
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import numpy as np 

import pandas as pd 

 

from collections import defaultdict 

from itertools import product 

 

# Read fasta file 

fasta_path = 'v22-01.fa' 

with open(fasta_path) as infasta: 

    data = [l.strip() for l in infasta] 

    headers = data[::2] 

    seqs = data[1::2] 

 

# Initialize data 

k=6 

kmers = [''.join(i) for i in product('AGTC', repeat=k)] 

k_map = dict(zip(kmers, range(4**k))) 

counts = np.zeros([len(seqs), 4**k], dtype=np.float32) 

 

# Do counting 
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for i, seq in enumerate(seqs): 

    row = counts[i] 

    count_dict = defaultdict(int) #Note 3 

    length = len(seq) 

    increment = 1000/length 

    for c in range(length-k+1): #Note 4 

        kmer = seq[c:c+k] 

        count_dict[kmer] += increment 

    for kmer, n in count_dict.items(): 

        if kmer in k_map: #Note 5 

            row[k_map[kmer]] = n 

             

# Normalize 

counts -= np.mean(counts, axis=0) 

counts /= np.std(counts, axis=0) 

counts += abs(counts.min()) + 1 #Note 6 

counts = np.log2(counts) 

 

# Save csv file 

out_path = 'v22-6mers.csv' 
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seen = set() #Note 7 

names = [] 

for h in headers: 

    name = h.split('|')[4] 

    if name in seen: 

        name += 'B' 

    seen.add(name) 

    names.append(name) 

pickle.dump(names, open('v22_names-B.pkl', 'wb')) 

df = pd.DataFrame(counts, names, kmers) 

df.to_csv(out_path, float_format='%.4f') 

 

Using the command line tool:  

$ seekr_kmer_counts v22-01.fa -o v22_6mers.csv 

 

3.3.2 Hierarchical clustering of lncRNAs by k-mer content 

1. Cluster with amap 

The visualization tool Java Treeview allows for interactive exploration of large hierarchical 

clusters. Treeview parses clusters defined by a set of three plaintext files, which describe the 

structure of row and column clusters: .gtr, .atr, and .cdt. These files can be conveniently produced 
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by the R packages `amap` and `ctc`, which parse a .csv file such as v22_6mers.csv. The R script 

`treeview_cluster.r` will create the Treeview files: 

 

make_treeview <- function(csv, out_gtr, out_atr, out_cdt){ 

  library(amap) 

  library(ctc) 

   

  kmers <- read.csv(csv, header=TRUE, row.names=1) 

  kmers <- round(scale(kmers, scale=FALSE), 6) 

   

  # Generate distance matrix using pearson distance 

  dist_mat <- Dist(kmers, method="correlation",  nbproc=4) 

  dist_mat_trans <- Dist(t(kmers), method="correlation",  nbproc=4) 

   

  # Clustering using average agglomeration method 

  clust_row <- hclust(dist_mat,method="average") 

  clust_col <- hclust(dist_mat_trans,method="average") 

   

  # Exporting the gtr, atr and cdt files 
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  r2gtr(clust_row,file=out_gtr, distance=clust_row$dist.method, 

dec='.', digits=5) 

  r2atr(clust_col,file=out_atr, distance=clust_col$dist.method, 

dec='.', digits=5) 

  r2cdt(clust_row, clust_col, kmers, labels=FALSE, description=FALSE, 

file=out_cdt, dec='.')     

} 

 

args <- commandArgs(trailingOnly = TRUE) 

do.call(make_treeview, as.list(args)) 

 

While this script is not part of the seekr module, it can be called from the command line using: 

$ Rscript treeview_cluster.r v22_6mers.csv v22_6mers.gtr v22_6mers.atr 

v22_6mers.cdt 

 

2. Visualize in java treeview 

Launch Treeview, and give Java access to plenty of memory. If insufficient memory is allocated, 

Treeview will not be able to open the .cdt file. Starting Treeview with 14GB of memory can be 

done by: 

$ java -Xmx14000m -jar ~/Downloads/Setups/TreeView-1.1.6r4-

bin/TreeView.jar 
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Substitute the correct path to your TreeView.jar file. Once started, open v22-6mers.cdt via "File" 

-> "Open". After the file is loaded, change the visualization settings by: "Settings" -> "Pixel 

Settings...". Find the "Global" section of the pop-up window. Click "Fill" for both "X" and "Y". In the 

"Contrast" section, set "Value" to 1. In the "Colors" section click "YellowBlue". Close the pop-up 

window. 

The image can be saved by "Export" -> "Save Thumbnail Image" -> "Save".  

An ordered list of all transcript names can be exported as well. To do so, you must first select all 

transcripts. The easiest way to do this is to click on the far left of the dendrogram, so that a portion 

of the transcripts are highlighted in red. Hold down the up-arrow until all transcripts are highlighted 

in red. Then click "Export" -> "Save List" -> "Save". 

 

3.3.3 Identifying communities of lncRNAs with related k-mer contents 

It takes several steps to convert k-mer profiles into the form needed for identifying communities. 

We first build an adjacency matrix, describing all pairwise relationships between all lncRNAs, then 

use the matrix to build a network of lncRNAs. Finally, we can use a network algorithm to assign 

a community label to each lncRNA. 

 

1. Build adjacency matrix 

First, we need to build an adjacency matrix. This matrix describes how similar each lncRNA is to 

all other lncRNAs, as measured by their Pearson’s r-values.  

import pandas as pd 

import numpy as np 
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counts = 'v22_6mers.csv' 

counts = pd.read_csv(counts, index_col=0) 

adjacency = np.corrcoef(counts.values) 

adjacency = pd.DataFrame(adjacency, counts.index, counts.index) 

adj_path = 'v22_adj.csv' 

adjacency.to_csv(adj_path, float_format='%.4f') 

 

To calculate our adjacency matrix, we want to compare our k-mer counts file against itself. The 

seekr command line tool is capable of comparing two separate counts files, so in this case, we 

need to pass our counts file twice: 

$ seekr_pearson v22_6mers.csv v22_6mers.csv -o v22_adj.csv #Note 8 

 

2. Sparsify the matrix 

To decrease the runtime of community calculation, we can reduce the number of edges in the 

network, by sparsifying the adjacency matrix by thresholding below a limit. That is, if the Pearson's 

r-value between two transcripts is less than the limit, we set that element of the matrix to 0, which 

removes that edge from our network. However, there is no single best threshold value; it depends 

heavily on the specific experiment and factors such as the k-mer size used. For example, smaller 

k-mer sizes will likely need higher thresholds. Therefore, it may be worthwhile to test multiple 

thresholds. One possible guideline is the mean and standard deviation of the r-values in the 

adjacency matrix. Two standard deviations above the mean (i.e. the 95th percentile in a normal 
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distribution) is one viable threshold, and easy to compute. In our original publication of SEEKR, 

we used 0.13 as a threshold, which is what we will use here, but we will also demonstrate how 

one would calculate a reasonable threshold de novo: 

import pandas as pd 

import numpy as np 

 

adj = 'v22_adj.csv' 

adjacency = pd.read_csv(adj, index_col=0) 

print(adjacency.values.mean() + 2*adjacency.values.std()) 

limit = .13 #Note 9  

np.fill_diagonal(adjacency.values, 0) #Note 10 

adjacency[adjacency < limit] = 0 

new_adj = 'v22_adj_p13.csv' 

adjacency.to_csv(new_adj, float_format='%.4f')  

 

In addition to calculating the mean and standard deviation, you can quickly visualize the 

adjacency matrix from the command line. This will create a pdf file that contains a graph of the 

distribution of all elements in the adjacency matrix and markings denoting the mean of the 

distribution as well as one and two standard deviations above the mean. Empirically, we have 

found that a Pearson’s r value of two standard deviations above the mean provides an intuitive 

threshold that can be used to sparsify any adjacency matrix: 
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$ seekr_visualize_distro v22_adj.csv v22_adj.pdf 

 

3. Convert adjacency matrix to network and find communities 

Once the sparse adjacency matrix has been made, communities can be called with the Louvain 

algorithm. To use the Louvain algorithm, the adjacency matrix needs to be converted to a network. 

In this data structure, each lncRNA is represented as a “node” and each non-zero element of the 

adjacency matrix represents an “edge” between two nodes, describing their similarity. The 

Louvain algorithm attempts to find communities of nodes having significantly more edges between 

the nodes within a given community than edges connecting nodes between different communities. 

Finally, we label each node with the name of the transcript and the community it's found in before 

saving the graph for visualization. In addition to saving the full graph, we will also produce a two-

column csv file where the first column is the name of the lncRNA and the second is the community 

to which the lncRNA belongs. 

import numpy as np 

import networkx 

import igraph 

import louvain 

 

adj = 'v22_adj_13.csv' 

adjacency = pd.read_csv(adj, index_col=0) 

graph = networkx. from_pandas_dataframe(adjacency) 

adjacency = None #Note 11 
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# Save subgraph 

subgraphs = list(networkx.connected_component_subgraphs(graph)) 

graph_sizes = [sub.size() for sub in subgraphs] 

main_sub = subgraphs[graph_sizes.index(max(graph_sizes))] 

gml_path = 'v22_sub.gml' 

networkx.write_gml(main_sub, gml_path) #Note 12 

 

# Find communities with Louvain 

gamma = 1 #Note 13 

ig_graph = igraph.Graph.Read_GML(gml_path) 

partition = louvain.find_partition( 

    ig_graph, louvain.RBConfigurationVertexPartition, 

    weights='weight', resolution_parameter=gamma) 

n_comms = 5 #Note 14 

zipped = zip(main_sub.nodes(), partition.membership) 

name2group = {k:v if v <= n_comms-1 else n_comms for k, v in zipped} 

networkx.set_node_attributes( 

    main_sub, name='Group', values=name2group) 

networkx.write_gml(main_sub, gml_path) 
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# Save lncRNA communities to csv 

with open('communities.csv') as out_file: 

    for lncRNA in graph.nodes(): 

        group = name2group.get(lncRNA, n_comms-1) 

        out_file.write(f'{lncRNA},{group}\n') 

 

Again, the thresholding value is experiment specific. For that reason, it is a required argument for 

the command line script. In the instance below, we also save the full gml file, with the “-g" flag, 

and the two-column csv file listing lncRNAs and communities, with the “-c" flag: 

$ seekr_graph v22_adj.csv 0.13 -g v22_sub.gml -c v22_comms.csv 

 

4. Visualize in Gephi 

Gephi is open-source software that is useful for visualizing lncRNA community graphs. On launch, 

Gephi will provide you with a "Welcome" pop-up window. In the "New Project" section, click "Open 

Graph File". Select `v22_sub.gml`. If loaded correctly, you will receive an "Import report" listing 

the number of nodes and edges as well as other graph details. Click "OK". In the center of the 

main application window, you should see a small black circle. This is the default layout and 

coloring of the graph. Next, we'll color and properly layout the nodes. In the top left of the window, 

there will be an "Appearance" section. Click "Nodes" -> "Partition" -> "Choose an attribute" -> 

"Group" -> "Apply". After a few seconds, the nodes of the graph should be colored by group. On 

the bottom left, there is a section called "Layout". Click "Choose a layout" -> "Yifan Hu" -> "Run". 
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Running the layout will take time. Progress can be tracked in the bottom right. Once finished, save 

the image by clicking: "File" -> "Export" -> "SVG/PDF/PNG file" -> "Options". Set "Width" and 

"Height" to 4096. Click "OK". Name your file and click "Okay" again. Saving the image will also 

some take time.  

 

3.3.4 SEEKR Python 

The command line tools are a convenient way to use SEEKR. However, to gain additional 

flexibility and performance, one can also consider using SEEKR as a Python module. The code 

below demonstrates the same pipeline as above (from downloading a fasta file from GENCODE 

to producing a csv file of lncRNA communities), but runs >10x faster than the command line tools: 

import numpy as np 

import pandas as pd 

from seekr import fasta, kmer_counts, graph 

 

downloader = fasta.Downloader() 

downloader.get_gencode(biotype='lncRNA', release='22') 

fasta_path = 'v22_lncRNA.fa' 

fasta01_path = 'v22-01.fa' 

maker = fasta.Maker(fasta_path, fasta01_path) 

maker.filter1() 

names = fasta.Maker(fasta01_path).names 
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counter = kmer_counts.BasicCounter(fasta01_path, log2=False) 

counter.get_counts() 

adj = pd.DataFrame(np.corrcoef(counter.counts), names, names) 

comms_path = 'comms.csv' 

gm = graph.Maker(adj, csv_path=comms_path, threshold=0.13, 

leiden=False) 

gm.make_gml_csv_files() 

 

3.3.5 Scaling k-mer profiles by protein-binding motifs (Positional Weight Matrices) 

One of the underlying assumptions of SEEKR is that lncRNAs derive function from the proteins 

that they bind. Therefore, a logical step is to utilize the k-mer profile of a given sequence to predict 

proteins that may bind that sequence. To do this, one can scale k-mer profiles by position weight 

matrix probabilities (PWMs). We outline this methodology below. 

Our code is written to input PWMs in the format provided by the CisBP-RNA database (57). To 

download, navigate to http://cisbp-rna.ccbr.utoronto.ca/bulk.php. In ‘By Species’, select 

Homo_sapiens, then click ‘Download Species Archive’ and in the new page click ‘Download’. 

However, any PWM can be used if formatted correctly. Individual PWMs must be tab separated 

and saved in a .txt file. Each PWM must contain a header row with entries [Pos, A,C,G,U]. The 

‘Pos’ column contains integers representing the position within the PWM. Each row must sum to 

1, excluding the index column, thereby representing the probability of finding each nucleotide at 

each position within the motif.  

This code iterates through the PWM files in pwm_directory and calculates the probability 

of observing all k-mers within each motif. The probability of observing a k-mer in a motif is 

http://cisbp-rna.ccbr.utoronto.ca/bulk.php
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calculated as the independent probability of observing each nucleotide of the k-mer at the 

corresponding position within the motif. The weight is then the sum of possible frames that a k-

mer could occur in, for example a 5-mer could fall in two different frames in a 6bp motif. Prior to 

running the code below, users need to derive k-mer counts in the lncRNAs of interest, as specified 

in Section 3.1. 

 

import pandas as pd 

import numpy as np 

from itertools import product 

from pathlib import Path 

 

# path to PWMs 

pwm_directory = 'cisbp_pwms/pwms_all_motifs/' 

 

pwm_directory = Path(pwm_directory) 

 

# k-mer counts are produced by seekr_kmer_counts (See section 3.1) 

counts_path = 'v22_6mers.csv'  

 

k = 5 #Note 15 

kmers = [''.join(p) for p in product('AGTC', repeat=k)] #Note 16 
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z_scores = pd.read_csv(counts_path, index_col=0) 

score_dict = {} 

for pwm_path in pwm_directory.glob('*.txt'): 

    try: 

        pwm = pd.read_csv(pwm_path, sep='\t') 

    except pd.errors.EmptyDataError: 

        print(f'The motif file {pwm_path} is empty. Skipping.') 

        continue 

    pwm.drop('Pos', axis=1, inplace=True) 

    pwm = pwm.rename(columns={'U': 'T'}).to_dict() 

    kmer2weight = dict(zip(kmers, np.zeros(4 ** k))) 

    motif_len = len(pwm['A']). 

    if motif_len < k: #Note 17 

        kmers_within_kmer = [([kmer[i:i+4] for i in range(k-4+1)], 

kmer) for kmer in kmers] 

        n_kmers = motif_len - 4 + 1 

        for sub_kmers, kmer in kmers_within_kmer: 

            for sub_kmer in sub_kmers: 

                for frame in range(n_kmers): 

                    weight = 1 
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                    for pos, nucleotide in enumerate(sub_kmer): 

                        weight *= pwm[nucleotide][pos + frame] 

                    kmer2weight[kmer] += weight 

    else: 

        for kmer in kmers: 

            n_kmers = motif_len - k + 1 

            for frame in range(n_kmers): 

                weight = 1 

                for pos, nucleotide in enumerate(kmer): 

                    weight *= pwm[nucleotide][pos+frame] 

                kmer2weight[kmer] += weight 

    sorted_weights = np.array([kmer2weight[k] for k in 

z_scores.columns]) 

    weighted_z_scores = z_scores.values.copy() * sorted_weights 

    scores_sums = weighted_z_scores.sum(axis=1) 

    score_dict[pwm_path.name] = scores_sums  

 

#save output 

out_df = pd.DataFrame.from_dict(score_dict, orient='index', 

columns=z_scores.index) 
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out_path = 'pwm_weighted_SEEKR.csv' 

out_df.to_csv(out_path) 

 

 

Using the command line tool (specify k-mer length if not using k = 5): 

$ seekr_pwm cisbp_pwms/pwms_all_motifs v22_6mers.csv -k 6 –o 

pwm_weighted_SEEKR.csv 

 

3.3.6 Scanning lncRNAs for domains of related k-mer contents 

This program is designed to scan a set of fasta sequences, or ‘targets’, for regions of high 

correlation to a set of sequences that we define as the ‘query’ sequences. Typical query 

sequences might represent functional domains in lncRNAs of interest. Targets are broken up into 

sliding windows with length and slide designated by the user. Correlations from each tile are then 

compared against a ‘reference’ set of sequences that are specified by the user. 

This program iterates through k-mer counting three times, which we show explicitly below for 

completeness. The first iteration calculates the k-mer profile of a query sequence, the second 

iteration calculates the k-mer profiles for each tile in the target sequence, and the final iteration 

calculates the k-mer profile for each transcript in the reference set of sequences and correlates 

them with the query k-mer profiles. This last calculation yields a distribution of Pearon’s correlation 

values from which we can derive the ranks of our targets relative to the queries. 

 

import pandas as pd 
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import numpy as np 

 

from itertools import product 

from collections import defaultdict 

from scipy.stats import pearsonr 

from scipy.stats import percentileofscore 

 

from seekr.kmer_counts import BasicCounter 

from seekr.fasta_reader import Reader 

 

# Path to a query of interest (in this example, the sequence of repeat 

# B in the lncRNA Xist) 

query_path = 'mm10_xist_repeatB.fa' 

 

# This performs standard SEEKR for the query 

query = Reader(query_path).get_seqs()[0] 

window = 1000 #Note 18 

slide = 100 

k = 5 

kmers = [''.join(p) for p in product('ATCG', repeat=k)] 
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k_map = dict(zip(kmers, range(4**k))) 

 

mean_path, std_path = 'mean.npy', 'std.npy' 

mean = np.load(mean_path) 

std = np.load(std_path) 

 

query_counter = BasicCounter(k=k, mean=mean, std=std) 

query_counter.seqs = [query] 

query_counter.get_counts() 

query_counts = query_counter.counts 

 

q_vs_t_rvals = [] 

target_path = 'mm10_kcnq1ot1.fa' 

target = Reader(target_path).get_seqs()[0] 

tiles = [] 

for i in range(0, len(target), slide): 

    end = i + window 

    tiles.append(target[i: end]) 

tiles[-1] += target[end:] 
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tile_counter = BasicCounter(k=k, mean=mean, std=std) 

tile_counter.seqs = tiles 

tile_counter.get_counts() 

 

q_vs_t_rvals = np.array([pearsonr(query_counts[0], 

tile_counter.counts[i])[0] for i in range(len(tiles))]) 

q_vs_ref_rvals = [] 

ref_path = 'v22-01.fa' 

ref = Reader(ref_path).get_seqs() 

ref_counter = BasicCounter(k=k, mean=mean, std=std) 

ref_counter.seqs = ref 

ref_counter.get_counts() 

ref_counts = ref_counter.counts 

 

q_vs_ref_rvals = np.array([pearsonr(query_counts[0], ref_counts[i])[0] 

for i in range(len(ref))]) 

ranks = [] 

for tile_corr in q_vs_t_rvals: 

 ranks.append(percentileofscore(q_vs_ref_rvals, tile_corr, 

kind='rank')) 
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query_target_df = pd.DataFrame(q_vs_t_rvals) 

query_target_df_out = 'query_target_pearson.csv' 

query_target_df.to_csv(query_target_df_out) 

ranks_df = pd.DataFrame(ranks) 

ranks_df_path = 'ranks.csv' 

ranks_df.to_csv(ranks_df_path) 

 

2. This tool requires several pieces of data. 1) A fasta file containing one or more query 

sequences, 2) A second fasta file containing one or more target sequences which will be tiled into 

domains, 3) The mean and standard deviation vectors for normalization (e.g. appropriate output 

from `seekr_norm_vectors`). You can then select the locations for one or both of the possible 

output files with the ‘-r’ and the ‘-p' flags. The ‘-r’ flag prints a matrix of Pearson’s r values 

describing the similarity between each query and each tile in each target, and the ‘-p’ flag prints 

a corresponding matrix of the percentile rankings of the Pearson’s r values relative to a reference 

set of sequences. If you use the ‘-p’ flag you must also use the ‘-rp’ flag, which specifies the 

reference set of sequences to be used in percentile calculations; for example, ‘v22-01.fa’. Also, 

ensure that the ‘-k' flags passed to `seekr_norm_vectors` and `seekr_domain_pearson` are the 

same: 

$ seekr_norm_vectors v22-01.fa –k 5 

$ seekr_domain_pearson mm10_xist_repeatB.fa mm10_kcnq1ot1.fa mean.npy 

std.npy -rp v22-01.fa –k 5 –r r_values.csv –p percentiles.csv 
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3.4 Notes 

1. If you manually download this file from GENCODE’s website, it will be called 

“gencode.v22.lncRNA_transcripts.fa”. 

2. In human, there are a few genomic regions where the canonical isoform is not -001, but -

*01 instead, usually -201. It is worth manually examining the GENCODE annotations to 

ensure that your lncRNA spliceform of interest is included in your analyses. 

3. While it is possible to directly increment the numpy array for each k-mer, randomly 

accessing the array is slow when done billions of times. Instead, a dictionary is used to 

collect the counts for a single transcript. That way, each element of the array can be 

accessed only once. 

4. Because we want to count overlapping k-mers we cannot use Python's built-in `count` 

method, and need to manually iterate over the strings ourselves.  

5. k-mers that contain non-ACGT nucleotides (eg. ATCGGN) are skipped. 

6. In our original publication describing SEEKR, log normalization was not used. In a limited 

number of tests, we have found that log normalizing k-mer counts prior to performing 

Pearson’s correlation mildly improves our ability to detect biological meaningful trends. In 

general, log normalization is an appropriate way to reduce skew in data, and k-mer counts, 

especially in repetitive regions of RNA, are often skewed. If log2 normalization is not 

desired, pass the `-nl` flag to `seekr_kmer_counts`. 

7. GENCODE transcript names are not necessarily unique. To be able to use names as the 

index of an R DataFrame, 'B' is appended to transcript names that have already occurred. 

8. This array is approximately 250 million elements (16,000 by 16,000 r-values). For a 

significant efficiency increase (~50x speed, 2x space), consider using the binary flags `--

binary_input` and/or `--binary_output` when running seekr_pearson. Also note that 
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usage of these flags may require additional adjustment to flags in other stages of the 

SEEKR pipeline.  

9. The 0.13 Pearson value as a threshold was chosen as a balance between computational 

efficiency and information retention. In GENCODE v22, the Pearson’s value of 0.13 is 

approximately two standard deviations above the mean similarity between all pairwise 

lncRNA comparisons. Overall, we found little to no difference in community definition, 

correlation with lncRNA localization, or ability to predict protein-binding patterns over a 

range of limit values. 

10. The diagonal of the matrix contains all ‘1’ values, since the k-mer profile of a transcript 

versus itself is a perfect correlation. These edges are not useful for defining communities, 

so we remove them. 

11. This is just done to clear some memory. 

12. Writing out to disk at this point is simply used as a way to convert between a networkx 

graph and an igraph graph. The igraph version is needed for running louvain. There are 

likely better ways of doing this. 

13. Gamma is the resolution parameter for the Louvain algorithm, and is used to tune how 

many communities are found. Gamma must be greater than 0, and the larger the value, 

the more communities will be created; consequentially, community sizes are smaller at 

larger gamma values. We chose to stay with the default resolution parameter, 1, which 

was supported by CHAMP (58).  CHAMP is an algorithm which can help provide context for 

which values of gamma might be most appropriate for a given graph. 

14. Choosing the number of communities can be difficult. We used an estimate based on the 

hierarchical heatmap, in combination with the size of the communities. In our original 

publication of SEEKR, community 6 was significantly smaller than community 5 (relative 

to the ratio between, community 5 and 4, or 4 and 3, etc.; (46)). n_communities is defined 
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here so we can cap the number of communities found by the Louvain algorithm before 

adding values to the main subgraph below. 

15. k = 5 is a reasonable default because it tends to strike a balance between decreasing 

sparsity in k-mer profiles while still retaining good discrimination between queries and 

targets. 

16. Nucleotide entries in this list must be in exactly the same order as used in Section 3.1, 

‘AGTC’. 

17. This loop is designed to find all 4-mers within the larger k-mer if the value of k is larger 

than the length of the motif. For example, the 5-mer ATCGT does not exist within a 4 base 

pair motif, but two 4-mers within the 5-mer, ATCG and TCGT can fit within a 4 base pair 

motif. This loop calculates the probabilities of observing the 4-mers separately and then 

sums the result. No motif in CisBP-RNA database is < 4 base pairs, hence the default of 

k = 4. 

18. The window and slide variables can be set to any positive integer. In our work, we have 

found that a window approximately the size of the query features, such as the tandem 

repeat domains of Xist, provides good results. In general, increasing the window size 

smoothens the resulting data whereas decreasing window size gives more detail but 

increases noise. The slide is best adjusted as a function of the size of your target dataset. 

If only a couple sequences are being considered, a slide of 1 may be appropriate, but if 

the study is over the entire transcriptome or otherwise genome-wide, then larger slides 

can reduce compute time and storage space exponentially.  
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 CHAPTER 4 

Finding XIST-like pre-mRNAs with repressive functions 

4.1 Introduction 

In our previously publish work, we introduced SEEKR, a tool for classifying lncRNAs and 

making predictions of their functional role, based on the transcripts k-mer content. We found 

that by creating k-mer profiles of lncRNAs, we could build communities of lncRNAs with similar 

sequence content. The lncRNA communities had similar biological properties, which allowed us 

to make general inferences about the functional roles of lncRNAs within a community. 

Furthermore, we were able to use a set of transcripts of unknown function to experimentally 

demonstrate a strong correlation between the transcript’s k-mer profile similarity to the lncRNA 

XIST and the transcript’s ability to repress transcription in-cis. The more similar a transcript was 

to XIST, the more likely it heavily repressed nearby transcription.  

In this work, we achieve two main goals. First, we address some of the underlying 

assumptions and weaknesses in our original work thereby strengthening our claims surrounding 

SEEKR’s utility. In particular, we explore our acceptance of established gene annotations and 

our use of a single RNA transcript per gene locus. Second, we expand SEEKR’s utility by 

demonstrating its applicability, beyond lncRNAs, to protein coding genes.  

Accurate gene annotations are critical for understanding the relationship between 

transcript sequence and function. If the function of an RNA is known but the sequence for the 

transcript truly performing that function in vivo is different than what has been annotated through 

organizations such as GENCODE1, it is impossible to state what sequences elements contribute 
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to the RNA’s function. In our previous work, we used GENCODE annotations for all lncRNA 

genes. For each gene, we selected the 01 isoform, assuming it would be the most prevalent 

isoform, and the most likely to be relevant. However, we hypothesize that GENCODE 

annotations may be biased towards spliced annotation and that unspliced RNA isoforms may be 

functionally relevant in vivo. 

This hypothesis that unspliced RNAs may have biological roles is not limited to lncRNAs. 

Indeed, we hypothesize that pre-mRNA transcripts may be able to repress transcription in-cis, in 

an XIST-like manner. If this hypothesis is true, then pre-mRNA transcripts would need to be 

expressed and retained at a high enough level to perform their function. In general, protein 

coding genes are expressed at a higher level than lncRNA genes2, however, mammalian 

splicing machinery is efficient and pre-mRNA is quickly spliced into mRNA3-5. The number of 

transcripts per cell necessary for a transcript to be physiologically relevant is unknown and 

certainly varies by transcript and role. Other work in our lab, however, has demonstrated 

measurable repressive effects of lncRNAs with low copy number. Specifically, we have shown 

that while Xist is expressed at approximately 200 copies in TSCs, Kcnq1ot1 and Airn, two other 

lncRNAs known to repress transcription in cis, can silence genes across 5Mb and 14Mb at only 

eight and nine copies per cell, respectively. Given the low expression levels of these lncRNAs, 

even if a vast majority of a protein-coding gene’s transcripts were spliced and exported 

immediately upon transcription, it is reasonable to hypothesis that the small minority of 

transcripts retained on chromatin may be enough to regulate local transcription. 

Theoretically, SEEKR’s sequence comparison methodology is equally applicable to 

protein-coding genes as it is to lncRNAs. mRNA k-mer profiles are distinctly different from 

lncRNAs, on the whole (data not shown), however, there is no biological reason not to use 

SEEKR for measuring transcript similarity of mRNAs and between lncRNAs and mRNA. Here, 
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we show we can use SEEKR to find a set of pre-mRNA molecules which are XIST-like, and may 

potentially regulate local transcription. 

 

4.2 Results 

 The genome browser tracks in Figure 1 illustrates a key example of a misannotation by 

GENCODE. The tracks show RNAseq read density for the nuclear fraction of TSCs over the 

Airn locus. Airn is a known repressive lncRNA which has been shown to repress multiple genes 

across several megabases up and downstream of the Airn locus. GENCODE annotates Airn, 

shown in green, as a primarily intron containing RNA, whose spliced product is approximately 

1Kb. The red and blue tracks labeled “d_nuc_F” and “d_nuc_R”, forward and reverse aligned 

RNAseq reads, however, demonstrates reads aligning across the entire Airn locus, with little to 

no bias towards the GENCODE annotated bias. Other studies in our lab have confirmed that the 

functional Airn product is approximately 90Kb (data not shown). This data suggests that other 

genes may also express unspliced isoforms at a physiologically relevant level. 

To test if we could find any pre-mRNA transcripts with XIST-like k-mer profiles, we first 

developed our own set of annotations, derived from GENCODE’s gene annotations (see 

Methods). First, as a baseline, we measured all lncRNA similarities relative to Xist-001, 

Kcnq1ot1-001, which is unspliced, and our own unspliced annotation of Airn (Figure 1A).  Here, 

the threshold for lncRNAs with SEEKR similarities relative to XIST three standard deviations 

above the mean was 0.157. Only 49 lncRNAs were more similar to XIST than this threshold. 

Furthermore, the single most similar transcript to Xist is Gm45159, which has a similarity of 

0.298. We also measured the unspliced lncRNA and mRNA classes of transcripts (Figure 1B-

C). Interestingly, in both cases, the distributions were wider than the spliced lncRNA distribution 
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we had used in our previous work. For unspliced lncRNA transcripts we found that 1953 

sequences passed the threshold of 0.157 (as opposed to 49). 

 Finally, we performed the same calculation for pre-mRNA transcripts. For all three lncRNAs, 

the distributions have visibly larger variance that the corresponding spliced lncRNA distributions. 

For XIST, there were 7351 unspliced protein coding transcripts that were more similar to XIST 

than the 0.157 threshold. Perhaps even more astonishingly, there were 1898 unspliced protein-

coding genes that were more similar to Xist than any lncRNA. It is worth nothing that while while 

spliced lncRNAs contains the smallest of annotations, population size is not the reason for the 

variability in these distribution of these populations. Sub-sampling unspliced pre-mRNA 

annotations to the size of the spliced lncRNA type produces an identical distribution to the 

original full sample (data not shown). From this data, we conclude that there are pre-mRNA 

sequences with XIST-like k-mer profiles.  

 Next, we tested if there was any evidence of cells transcribing and retaining pre-mRNA 

molecules at physiologically relevant levels. To investigate this idea, we measured the 

expression levels of all transcripts in our data set, using publicly available data ENCODE 

RNAseq for K562 and HepG2 cells (see our previous work for details regarding the data set). 

Previously when measuring expression levels, our simplified assumption that each lncRNA 

genomic locus expressed only single canonical isoform allowed us to also assume that all 

RNAseq reads within the exons of that canonical isoform should be assigned to that transcript.  

 Assigning an RNAseq read to a genomic region annotated as having multiple isoforms, as a 

majority of the loci in our data set do, is inherently probabilistic. Much work has gone into 

building complex probabilistic models capable of account for multiple biological factors when 

assigning reads to an isoform. These models have been packaged into several popular tools, 

including Salmon6, kallisto7, and TIGAR8. We initially attempted to use Salmon for isoform 

quantification. However, we found its output didn't match our needs. For example, despite the 
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number of reads aligning to the annotated “introns” of Airn, and without the support of any 

junction overlapping reads, Salmon estimated that the abundance of the spliced Airn annotation 

was significantly higher than the unspliced (data not shown). Instead, we quantified isoform 

abundance using our own more basic approach (see Methods for details). 

We plotted the distributions of all human transcript expression levels (Figure 3A-B), 

relative to XIST and KCNQ1OT1. We also repeated this experiment in mouse TSCs, 

additionally labeling unspliced Airn (Figure 3C). The qualitative relationships between the four 

types of transcripts are the same across all three cell types, though there is a larger separation 

in expression levels between lncRNAs and protein coding transcripts in the TSCs. To roughly 

estimate how many unspliced protein coding genes might be present at physiologically relevant 

levels, we counted the number of transcripts more highly expressed than Kcnq1ot1. There were 

187, 559, and 886 transcripts above this threshold for HepG2, K562 and TSCs, respectively. 

In order to robustly find XIST-like lncRNAs, we decided to use a network based 

approach to find transcripts in the same community as XIST. For this type of experiment, 

forming communities is beneficial in two ways. First, it may be possible that we are interested in 

finding transcripts that are not necessarily the most similar to XIST, but are instead similar to 

many of the same transcripts as XIST. Second, can provide a thresholding mechanism. There is 

no particular lower bound for a Pearson’s r-value that denotes an “XIST-like” transcript. 

Selecting only transcripts within the same community as XIST provides a way of limiting RNAs 

to consider for further examination. Because there were more than four times as many 

transcripts (or nodes) in the network than when we used only spliced lncRNAs, we began with 

approximately 20 times the amount of edges. Therefore, to create communities, we used a new 

method for retaining edges in the network, and we also integrated several other improvements 

that have been created/discovered since we created our communities last time. 
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To begin, we count k-mers and perform normalization as described in our previous work, 

with the addition of log2 normalizing each element. Next, we create an adjacency matrix from 

the counts. This adjacency matrix has over four billion edges. In order to efficiently explore the 

structure of the network and test multiple community definitions, it was important to remove a 

vast majority of these edges. In fact, we estimated that we wanted to keep less than 0.01% of 

edges. Simply removing all the edges below the 99.99th percentile completely disconnected a 

majority of the nodes in the network and was not informative (data not shown). Instead, we 

developed a two-pass filter that allowed us to keep almost all nodes connected to the largest 

connected subgraph. Next, we selected the approximate number of communities which should 

be included in the network partition. To some degree, this process is inherently subjective, as 

there is no single best value for the final number of detected communities. By default, the 

community detection algorithm labels dozens of communities, which is too large a number for 

our purposes. We used hierarchical clustering (Figure 4A) and CHAMP, run with the Leiden 

algorithm9, to select our specific community definition. Finally, we visualized the communities 

with Gephi (Figure 4C). The relationship between the hierarchical clustering and network 

partition methods is also visualized (Figure 4B). See Methods for a full description of the 

community formation algorithm. We determined that our data set contained 11 total 

communities; ten detected communities ranging in size from 8950 to 4164, and an additional 

“Null” community containing 746 transcripts (Table 4.1). To provide more context for the 

contents of each community, we performed a basic characterization of each community and the 

transcripts within the communities (Table 4.2). 

Our method does not produce communities that are solely a single class of transcript. 

Instead each community is a mixture of classes, though, each community is biased towards one 

or two classes. This supports our hypothesis that at the level of k-mers, there is some amount of 

similarity between certain subsets of lncRNAs and subsets of protein coding genes. As 
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expected, given the data shown in Figure 4.2, the XIST community (#4) is biased away from 

spliced lncRNAs, containing only 11.6% instead of the expected 18.4% (pvalue=1.2 * 10^-264). 

Community #4 is also the most AT rich community, with a mean GC content of only 37% per 

transcript (Table 4.2). 

Following the same logic presented in our previous work—specifically that cellular 

localization is an important factor in determining an RNA transcript’s function—we measured 

expression levels of all transcripts in nuclear and cytosolic cell fraction samples, and calculated 

each transcripts nuclear ratios. Distributions of nuclear ratios were plotted for each community 

using a boxenplot (Figure 4.5). These plots are similar to boxplots, but more suitable for larger 

data sets because they visualize more quantiles of the data, and provide the user with a better 

sense of the shape of the distribution within the tails of the data. As expected given the export 

efficiency of protein coding transcripts, these communities are on average more cytosolic than 

the purely spliced lncRNA communities we published previously. Encouragingly, the XIST 

community is the second most strongly nuclear community in both K562 and HepG2 cells. The 

results of post-hoc Tukey-HSD tests calculating all pairwise significant differences between 

communities shows that 41 of 55 and 40 of 55 comparisons were significant in HepG2 cells and 

K562 cells, respectively. From this data, we conclude that these communities provide a 

significant amount of information about the cellular localization of the RNAs.  

Because lncRNAs are not catalytic, their function is likely primarily determined by the set 

of RNA binding proteins with which they interact. The same logic also applies to pre-mRNA. 

Therefore, one of the most important criteria for a predicting a pre-mRNA transcript with XIST 

like repressive activity is a pre-mRNA transcript with an XIST like protein binding profile. To find 

pre-mRNA transcripts with similar protein binding profiles to XIST, we analyzed an updated 

version of the ENCODE eCLIP data described in our previously published work. That is, we 

collected the 156 eCLIP experiments used previously, as well as an additional 67 experiments 
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which had been newly uploaded, for a total of 223 eCLIP experiments. From these experiments, 

we created two protein binding profiles for each transcript, one for HepG2 cells and one for 

K562 cells (see Methods).  

 In order to visualize the structure of the data within the protein binding profile matrices, we 

first calculated the count of all non-zero elements in each row. This provides the number of 

proteins with which a given transcript interacts, regardless of the strength or coverage of the 

interaction. We then plotted these sums as a distribution (Figure 4.6A). Broadly, transcripts 

either interacted with (nearly) zero proteins, or many proteins. We note that while we used 

ENCODE data to filter lowly expressed transcripts before creating these distributions, the 

RNAseq data used for filtrations was from a different data set. Some portion of the transcripts 

that interact with no proteins may be lowly expressed, or otherwise undetectable via eCLIP. 

Regardless, this data indicates that protein-RNA interactions are pervasive across the 

transcriptome. We also mark XIST’s placement in K562’s distribution, which binds 119 of 120 

proteins. 

 XIST’s high number of protein interactions prompted us to ask to what extent interactions 

are found across XIST’s sequence. We reasoned that it may be possible that a majority of these 

interactions are fairly weak and only supported by small peaks at localized positions in the 

transcript. We plotted the distribution of values in XIST’s protein binding profile, along with the 

distributions of all other elements in the HepG2 and K562 matrices. Surprisingly, the mean 

coverage ratio for a protein binding XIST was significantly higher than the background 

distribution of all other transcripts (Figure 4.6B). This result was exciting because it indicates 

that in order to find pre-mRNAs with XIST-like protein binding profiles, we must find pre-mRNAs 

that were detected as interacting extensively with RNA binding proteins. The opposite case—

selecting pre-mRNAs with few interactions— greatly increases the likelihood of false positives. 
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 As a simple test of likelihood of pre-mRNAs having XIST-like protein binding profiles, we 

selected the 289 transcripts in the 99th percentile of Pearson’s r-value scores relative to XIST 

and asked how many of them were pre-mRNAs. Astonishingly, 253 of the 289 transcripts were 

pre-mRNAs. By chance, we would expect only 104 of them to be pre-mRNAs (chi squared test, 

p-value= 2.9e-74). Encouragingly, KCNQ1OT1, was 70th on the list of sorted XIST-like protein 

binding profiles, with an r-value of 0.71. Finally, a surprising number of pre-mRNAs for RNA 

binding proteins and other relevant proteins were present in the list. These RNAs included: 

SRSF4-un, HNRNPD-un, HNRNPH1-un, SRSF11-un, RBM39-un, HNRNPU-un, HNRNPA3-un, 

HNRNPH3-un, EZH2-un, HNRNPC-un, SFPQ-un, PCBP2-un, KHDRBS1-un, PRC1-un, 

HNRNPF-un, SAFB-un, HNRNPA2B1-un. The rational for why these pre-mRNAs are among the 

most XIST-like transcripts is unknown, but worth future exploration. 

 We then asked if there was a relationship between a transcript’s k-mer and protein binding 

profiles relative to XIST, (e.g. are the transcripts with high similarity to XIST at the protein-

binding level the same transcripts that are similar to XIST at the sequence level). As a baseline, 

we measured all the Pearson’s r-values relative to XIST of all transcripts expressed in K562 

cells, randomly paired the result with the r-value of one of the r-values from comparisons 

between XIST’s protein binding profile and other transcript’s protein binding profiles, and plotted 

the two-dimensional distribution (Figure 4.6C). We also plotted a line of best fit for the data. As 

expected, there is no correlation. Then, we repeated the experiment without shuffling. That is, 

each transcript’s k-mer r-value was paired with its own protein binding r-value. We again plot the 

distribution and line of best fit (Figure 4.6D). Excitingly, this data shows a strong correlation 

(r=0.46, p-value~=0). For interpretability, we removed all transcripts with a protein binding r-

value between 0.18 and 0.20, since these represent transcripts with no detected protein binding 

interactions. We also performed the analysis with these values included, which showed a 

negligible difference in results (data not shown). From this data, we conclude that a transcript’s 



113 
 

protein binding interactions are dependent on its k-mer content, and more specifically, that 

RNA’s with Xist-like k-mer profiles likely bind similar proteins to XIST in vivo. 

 Given this data, we expected that the 289 proteins in the 99th percentile of XIST-like protein 

binding profiles would have higher than average k-mer similarity scores to XIST. This is indeed 

the case. While the mean r-value for transcripts not in the 99th percentile is 0.03, the mean for 

the 289 transcripts is 0.20 (Mann-Whitney U test, p-value= 5.4e-51). In turn, we also expected 

that, given the transcript’s high Pearson’s r-values, many of them would be found in the same 

community as XIST. Surprisingly, this was not the case. Instead, 121 of the 289 transcripts were 

from community #6, which is significantly higher than expected by chance. (chi squared test, p-

value=3.6e-73). This observation may be explained by the overabundance of pre-mRNA 

transcripts in community #6. We recorded the observed and expected counts, along with the 

associated p-value for all communities in Table 4.3. This data shows that highly similar 

sequences also have highly similar protein binding profiles. 

 

4.3 Methods 

4.3.1 Creating transcript annotations 

 We downloaded GENCODE v26 

(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/gencode.v26.annotatio

n.gtf.gz) and vM14 

(ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M14/gencode.vM14.annot

ation.gtf.gz) GTF files for human and mouse, respectively. From these files, we extracted 

genes, along with their associated transcript and exon features, if they were labeled as either 

“protein coding” or “lncRNA”. Next, each gene feature was checked for an unspliced transcript. 

An unspliced transcript was defined as a transcript annotated with a single exon whose start 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/gencode.v26.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/gencode.v26.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M14/gencode.vM14.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M14/gencode.vM14.annotation.gtf.gz
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and stop positions were the same as the transcript’s start and stop positions. If there was no 

annotated unspliced transcript, one was inserted. Then, the gene was checked for additional 

transcript isoforms. If a spliced 01 isoform was present, it was kept; all other spliced isoforms 

were discarded. After processing, the new GTF files had all “protein coding” and “lncRNA” 

genes, each of which had an unspliced transcript annotation and, potentially, a single canonical 

spliced transcript annotation. 

4.3.2 Measuring expression levels between unspliced and spliced RNA isoforms 

 All RNAseq reads are aligned to GRCh38_p10 with STAR using default setting with the 

exception of the `--sjdbGTFfile`, used to pass a custom GTF file containing all isoforms 

annotated by GENCODE, plus the additional annotations of an unspliced isoform for each gene 

which did not previously have an unspliced annotation. Next, FeatureCounts is performed twice, 

using seperate flags and GTF files. The first run quantifies the unspliced isoforms. 

FeatureCounts is passed the same GTF file used for aligning reads with STAR. FeatureCounts 

is then run using `--fracOverlap 1` flag and `-g transcript_id` (which allows aggregation of exon 

counts per transcript instead of per gene). By default, FeatureCounts only assigns reads that 

uniquely overlap a single genomic region. Given that the GTF file described above has an exon 

feature spanning the entire gene locus for each gene, this configuration allows us to map all 

reads which fall within a gene but do not share any overlap with *any* spliced exonic region (to 

be conservative, we refuse to assign any read overlapping any exon, not just exons from the 

canonically spliced isoform, to the unspliced transcript). Each read falls entirely into an intronic 

regions. Thus, we can be confident that each read assigned during this run of FeatureCounts 

should belong to the unspliced isoform. Given the number of reads uniquely assigned to introns, 

and the intronic length, we calculate an RPKM value for unspliced expression by assuming the 

reads-per-base-pair (RPBP) across the whole unspliced transcript is uniform, both for the 

introns and potential exons. 
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 The second run quantifies the spliced isoforms of each gene. Here, FeatureCounts is 

passed a different GTF file containing only the unspliced and potentially the canonical spliced 

annotations, if it exists, for each gene. FeatureCounts is then run using the `-O` flag, which 

allows for each read to be assigned to more than one matched exon, and `-g transcript_id` 

again. For each read assigned to the splicing isoform, there is some probability that that read 

truly belongs to the unspliced isoform instead. To subtract out this background, we calculate the 

RPBP of the spliced trancript by dividing the FeatureCounts value by the length of the transcript. 

From this spliced RPBP value we subtract the unspliced RPBP calculated previously. If this 

result is less than 0, we set the spliced RPBP to 0 and make the assumption that the spliced 

isoform is not expressed. Next, we convert back to raw reads per region by multiplying by the 

length of the spliced transcript. Finally the data set is normalized to RPKM values across all 

transcripts. 

4.3.2 Building communities 

 Communities of transcripts were formed by counting all overlapping k-mers for each 

transcript of interest to create a matrix of k-mer counts. As in our previous work, the raw counts 

were then row normalized by the length of each transcript. Columns were normalized by 

subtracting column means and dividing the column standard deviation from each column 

element. Additionally, each element was log2 normalized by adding one plus the minimum 

element of the k-mer counts matrix to each element (so that the smallest element in any k-mer 

counts matrix is 1), then applying a log2 transform elementwise. 

 A completely connected adjacency matrix was then created by calculating all pairwise 

Pearson r-values between rows in the k-mer count matrix.  We then performed a two-pass 

filtering algorithm. In the first path, all edges below 0.1 were removed. This was a less stringent 

threshold than used in our previous method, but it allowed us to create a final network where 

fewer of the nodes are completely disconnected. For the second pass, the r-value of the 100th 
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strongest edge was calculated for each node in the network. If a node had fewer than 100 

edges, the r-value of the weakest edge was retained. This value was considered the “limit” for a 

given node. Then, for each edge, the edge was removed from the graph if the edge’s r-value 

was lower than the previously calculated “limit” for both of the nodes to which the edge is 

connected. Note that, because the edge must fail to be above both limits, many nodes can have 

many more than 100 edges. 

  Next, we selected an approximate number of communities the network should have. Our 

choice was informed by two things. First, we visualized the k-mer count profiles using 

hierarchical clustering and TreeView. TreeView crashed with a segfault while attempting to load 

the entire normalized count matrix. Therefore, we randomly sub-sampled 45,000 rows, and only 

visualized them. By eye, we manually counted the number of clusters visible in TreeView, and 

used that as an estimate of how many communities to expect in the network. Second, we ran 

CHAMP for 100 iterations over a range of zero to five for the resolution parameter. While 

running CHAMP, we used the newly developed Leiden algorithm to find partitions instead of the 

classical Louvain method.  

For each CHAMP approved partition, we calculated the size of each community. Then, 

for each community, we calculated the ratio of its size to the size of the next largest community. 

When gamma was small, there was a large variance in community sizes, with a few major 

communities and many minor communities. The largest of the minor communities was several 

times smaller than the smallest of the major communities. When gamma is large, the community 

sizes become more uniform with each community having approximately the same size as the 

next largest or smallest community. When selecting a CHAMP approved partition, we chose to 

use a partition where the number of major communities was approximately the same as the 

number of communities we estimated by eye using the TreeView heatmap. 
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All transcripts that were part of a minor communities were then aggregated into a “Null” 

community. In our previous work, between a third and a half of transcripts fell into the “Null” 

community, making it suitable for baseline comparisons against the other communities. Using 

this current algorithm, the “Null” community was a small portion of the total number of nodes, 

and may not be useful for comparisons.  

4.3.4 Visualizing communities in Gephi 

Our use of Gephi to visualize the network has also changed from our previous method. 

Instead of running Yufan Hu as a layout algorithm, we used OpenOrd. Yufan Hu provided a 

better visualization when many of nodes were completely disconnected, but OpenOrd provided 

an equally high-quality layout with the newer well-connected network. However, OpenOrd is 

significantly faster than Yufan Hu. After OpenOrd has finished running, filter edges below .5. 

Note that this much stricter threshold is for visualization purposes only, and should not be used 

to effect the definition of the network or the communities outside of Gephi. 

 An additional complication was Gephi’s random node coloring, which made it difficult to 

consistently label all communities in a visually distinct manner. This made it harder to manually 

make a decision about the quality of a community definition, since two separate communities 

looked like one, due to their colors similarity. The randomness also made it more difficult to 

keep track of communities between multiple runs of the Leiden algorithm and subsequent 

visualization. For more control over node colors, we downloaded Gephi’s “Scripting Plugin” in 

order to programmatically (using Python) set the color of each community using a color visually 

distinctive colors, Matplotlib’s Tab20 palatte10.  

4.3.5 Plotting nuclear ratios 

This analysis uses the same ENCODE cellular fractionation RNAseq data sets used in 

our previous work. We used the same method for calculating isoform abundance as we did for 
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the whole cell RNAseq. Once RPKM values were calculated for each transcript, nuclear ratios 

were found by dividing the nuclear RPKM value by the sum of nuclear and cytosolic RPKM 

values for each transcript. The distributions nuclear ratios were then plotted for each community 

using Seaborn’s “boxenplot” function. 

4.3.6 Calculating protein binding profiles 

For each of the 223 eCLIP experiment available on ENCODE, we used the experiment’s 

narrowPeaks files to calculate the ratio of each RNA covered by each RNA-binding protein via 

the bedtools coverage tool. This output provides the total number of base pairs covered by all 

peaks across all replicates for each transcript. We then divide the total base pairs covered by 

the length of the transcript. These coverage values were then normalized using the same 

methodology used for normalizing k-mer counts. That is, each column is mean centered and 

divided by its standard deviation. An elementwise log2 transform was also applied. We term the 

list of a transcript’s normalized coverage ratios across all eCLIP experiment in a single cell type 

its “protein profile”, for that cell type. 
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Table 4.1 Counts of the number of each type of RNA transcript present in each community for 

human transcripts. Totals are also provide in the final row and column.  
 

Transcript Type 
Community Spliced 

lncRNA 
Unspliced 

lncRNA 
Spliced 
mRNA 

Unspliced 
pre-mRNA 

Total 

0 1259 934 5622 1135 8950 
1 1443 1308 3076 2248 8075 
2 2697 1354 2881 349 7281 
3 1147 1767 585 3287 6786 
4 738 2256 1940 1441 6375 
5 1753 1537 1031 1845 6166 
6 490 1636 373 3653 6152 
7 1052 2497 816 1506 5871 
8 334 899 1118 2762 5113 
9 903 1311 394 1556 4164 

10 249 100 362 35 746 
Total 12065 15599 18198 19817 65679 

 

 

  



120 
 

Table 4.2 Basic characterization of RNA communities. Size) the number of transcripts in each 

community. lncRNA) the number of lncRNA transcripts. Spliced) the total number of spliced 

transcripts (summing lncRNAs and mRNAs). mRNA) the number of mRNA transcripts. 

Unspliced) the total number of unspliced transcripts. GC Content) the mean ratio of GC 

nucleotides to transcript length for RNAs in the community. Length) Mean sequence length of 

RNAs in the community. 

Community Size lncRNA Spliced mRNA Unspliced GC 
Content 

Length 

0 8950 2193 6881 6757 2069 0.567 1964 
1 8075 2751 4519 5324 3556 0.581 2681 
2 7281 4051 5578 3230 1703 0.424 1717 
3 6786 2914 1732 3872 5054 0.502 7890 
4 6375 2994 2678 3381 3697 0.372 5391 
5 6166 3290 2784 2876 3382 0.512 2442 
6 6152 2126 863 4026 5289 0.429 24610 
7 5871 3549 1868 2322 4003 0.407 7063 
8 5113 1233 1452 3880 3661 0.394 16520 
9 4164 2214 1297 1950 2867 0.457 4069 

10 746 349 611 397 135 0.455 2186 
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Table 4.3 Chi-squared tests of the number of observed transcripts in the set of 289 99th 

percentile protein binding profile similarities relative to XIST. Observed) the number of 

transcripts from a given community found in the set of 289 transcripts. Expected) the expected 

number of transcripts that should be included from a given community, based on the size of the 

community, and assuming a random uniform distribution of all communities within the set of 289 

transcripts. Outgroup observed) the number of transcripts from a given community not found in 

the set of 289 transcripts. Outgroup expected) the number of transcripts from a given 

community expected to not to be included in the set of 289 transcripts. p-value) the significance 

of the difference between the observed and expected columns, as evaluated by a chi-squared 

test. 

Community Observed Expected Outgroup 
observed 

Outgroup 
expected p-value 

0 0 39 8950 8911 3.88E-10 
1 1 35 8074 8040 8.43E-09 
2 3 32 7278 7249 2.78E-07 
3 35 29 6751 6757 0.26 
4 19 28 6356 6347 0.09 
5 7 27 6159 6139 0.0001 
6 121 27 6031 6125 1.84E-73 
7 12 25 5859 5846 0.009 
8 79 22 5034 5091 4.04E-34 
9 12 18 4152 4146 0.16 

10 0 3 746 743 0.08 
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Figure 4.1 Airn provides an example of a misannotated unspliced transcript. Genome 
browser track of the mouse Airn, approximately at 13Mb on chromosome 17. Multiple 
GENCODE annotations of Airn are provided in green. All of them report Airn as a primarily 
intron containing RNA, whose spliced product is approximately 1Kb. The red and blue tracks 
labeled “d_nuc_F” and “d_nuc_R” are the forward and reverse aligned RNAseq reads for the 
nuclear extract of TSCs, respectively. The “d_nuc_F” clearly demonstrates reads aligning 
across the entire Airn locus, with little to no bias towards the GENCODE annotated bias. The 
spliced RNA Igf2r, ohe left side of the corresponding “d_nuc_R” track, provides an example of 
an accurately annotated spliced transcript. 
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Figure 4.2 Repressive lncRNA SEEKR similarity to classes of RNA transcripts. (A) 
Distributions of Pearson’s r-values between all mouse spliced lncRNAs and either Xist, 
Kcnq1ot1, or unspliced Airn are shown as normalized histograms. (B-D) The same as (A), but 
comparing the repressive lncRNAs to all unspliced lncRNAs, spliced mRNAs, and unspliced 
pre-mRNAs, respectively.  
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Figure 4.3 Expression levels of classes of RNAs. (A) Log normalized RPKM values of whole 
cell ENCODE RNAseq data in HepG2. Separate classes of RNAs are color coded as different 
distributions. As expected, spliced mRNA are the most abundant class of transcripts. Kcnq1ot1 
and Xist RPKM values have been labeled. (B) The same as (A), but using RNAseq data in K562 
cells. (C) The same as (A, B), but using RNAseq data in mouse TSCs from experiments 
performed by our lab. Additionally, unspliced Airn is labeled. 
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Figure 4.4 Communities and clusters of RNAs. (A) Hierarchical clustering of a random sub-
sample of 45,000 transcripts. Positions of functional lncRNAs of interest have been labeled by 
their community color (see panel C). XIST is found in the AT-rich community #4. (B) 
Distributions of transcripts within each network defined community (panel C), relative to its y-
axis position in the hierarchical cluster (panel A). (C) Network graph of Leiden defined 
communities. While all edges above the thresholds set by two-pass filter algorithm are used to 
calculate the layout, only edges above 0.5 are visualized. 

 

  



126 
 

 

Figure 4.5 Cellular localization of RNAs. (A) Distributions of nuclear ratios for all transcripts 
within a given community for HepG2 cells. Distributions are visualized using Seaborn’s 
“boxenplot” function. Any portion of the distribution below a y-axis “% nuclear” value indicates a 
transcript that is primarily cytosolic. (B) the same as (A), but using RNAseq data from K562 
cells. 
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Figure 4.6 Protein binding profiles. (A) The number of proteins bound by each RNA in HepG2 
and K562 cells. Most RNAs either bind many proteins, or (almost) none. XIST, labeled in green, 
binds 119 of 120 proteins in K562 cells. The right edge of the HepG2 distribution is farther to the 
left than the K562 distributions since there are fewer eCLIP data sets in HepG2. (B) 
Distributions of all coverage ratios (pre-normalization values) in HepG2 cells, K562 cells, and 
just within XIST. On average, a protein that binds XIST can bind a larger percentage of XIST 
than other RNA-protein interactions. HepG2’s distribution is not clearly visible because it is 
nearly the same as the K562 distribution. (C) The correlation between each expressed K562 
transcript’s k-mer profile similarity to XIST’s k-mer profile, and a random transcript’s protein 
profile similarity to XIST’s protein profile. As expected, there is no correlation. The blue is a 2 
dimensional density estimate of all K562 transcripts. The orange line is the line of best fit. (D) 
The same as (C), but the k-mer profile r-values not been scrambled and are paired with their 
transcript’s true protein binding profile r-value. 

 

  



128 
 

REFERENCES 

1 Harrow, J. et al. GENCODE: The reference human genome annotation for The ENCODE Project. 
Genome Research 22, 1760–1774 (2012). 
 

2 Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene 
structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012). 
 

3 Alpert, T., Herzel, L. & Neugebauer, K. M. Perfect timing: splicing and transcription rates in living 
cells. Wiley Interdisciplinary Reviews: RNA 8, e1401 (2017). 
 

4 Krämer, A. THE STRUCTURE AND FUNCTION OF PROTEINS INVOLVED IN MAMMALIAN PRE-
mRNA SPLICING. Annual Review of Biochemistry 65, 367–409 (1996). 
 

5 Padgett, R. A., Grabowski, P. J., Konarska, M. M., Seiler, S. & Sharp, P. A. Splicing of Messenger 
Rna Precursors. Annual Review of Biochemistry 55, 1119–1150 (1986). 
 

6 Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-
aware quantification of transcript expression. Nature Methods; New York 14, 417–419 (2017). 
 

7 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq 
quantification. Nature Biotechnology 34, 525–527 (2016). 
 

8 Nariai, N., Hirose, O., Kojima, K. & Nagasaki, M. TIGAR: transcript isoform abundance estimation 
method with gapped alignment of RNA-Seq data by variational Bayesian inference. 
Bioinformatics 29, 2292–2299 (2013). 
 

9 Traag, V. A., Waltman, L. & Eck, N. J. van. From Louvain to Leiden: guaranteeing well-connected 
communities. Scientific Reports 9, 5233 (2019). 
 

10 Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 9, 90–
95 (2007). 

 

  



129 
 

CHAPTER 5 

Conclusion and Future Directions 

SEEKR1 is a simple yet surprisingly effective method for predicting the biological 

properties of lncRNAs. It is fast: analyses are possible that would be either cumbersome or 

impossible with more sophisticated alignment algorithms. It’s intuitive: each element in a kmer 

profile is directly tied to an understandable biological interpretation. Likewise, similarities 

between two transcripts are simply defined by the correlation between their kmer profiles. It’s 

extensible: because of its other properties, modifying or building additional analyses off of the 

primary algorithm is straightforward. Together, these properties make SEEKR an extremely 

effective tool for studying lncRNAs, particularly in the context of tying sequence to function. 

One of the difficulties—but also one of the most exciting opportunities—of this work is 

the novelty of the lncRNA field. Many possible analyses considered during the course of this 

work were curtailed by a lack of sufficiently diverse experimental data. In the future, it should be 

possible to use machine learning techniques to gain a deeper understanding of the relationship 

between sequence and function (similar to the logistic regression experiments detailed in 

chapter 2)2,3. Supervised techniques learning, however, needs labels which are time-consuming 

and expensive to gather. Despite the costs, the amount and types of publicly available data will 

continue to grow4,5. As data becomes available, there are a number of analyses which should 

be considered. 

Chromatin modifications are an important hallmark of transcriptional regulation. In 

theory, it should be possible to uncover relationships between a lncRNA’s sequence and its 

effects on nearby chromatin modifications such as H3K27me3. We attempted several related 

analyses; for example, we investigated if we could demonstrate a correlation between XIST-
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likeness and increased H3K27me3 levels in cis. However, we were unable to yield any 

conclusive results. Additional CHIP data, along with a larger set of conclusively known 

repressive lncRNAs, may be sufficient to link sequence elements to chromatin modifications. 

lncRNAs are known to be cell-type specific6. It is reasonable to hypothesize that they are 

also cell specific and that their expression levels vary from cell to cell, even within a fairly 

homogenous cell population. If this is the case, single cell sequencing data will be an important 

future source of discoveries in the lncRNA field.  

Beyond exploring new data, future directions of this work should include the 

development of SEEKR 2.0, a new algorithm to address some of the underlying assumptions of 

the original SEEKR model. In particular, the assumption that individual kmer function is 

completely independent of linear position or sequence context is clearly an over-simplification. 

We attempted to address this concern by developing what we called “context kmers”. When 

counting kmers in the original sequence, the local GC content just up- and downstream of the 

kmer was also computed. Each kmer was then grouped into one of four categories, based on 

the local GC content. Unfortunately, “context kmers” did not appear to provide additional 

predictive power in our analyses. Another potential avenue of interest is to create an algorithm 

that mixes an HMM algorithm like nhmmer with kmers. Details of such a model have not been 

worked out, but it is certainly important to begin to capture spatial relationships between kmers 

to understand how these interactions affect the overall biological properties of a lncRNA. 

Providing evidence for the claims surrounding pre-mRNA regulator function presented in 

chapter 4 would be an exciting discovery for the entire genomics community. Despite a half 

century of extensive study of RNA biology, we were unable to find any published hypothesis, 

much less evidence, for the concept that the introns of mRNA play an important role in 

regulating the transcription of their neighboring genes. Conclusively demonstrating this effect in 

an endogenous setting may prove difficult, however. Attempting to overexpress the unspliced 

isoform must be decoupled from simultaneous overexpression of the spliced transcript. Treating 
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cells with splicing inhibitors provides an avenue for modulating the ratio of spliced to unspliced 

product, but this treatment currently cannot be applied to a single gene of interest. On the other 

hand, while caveats would remain about the effect of the spliced isoform, demonstrating 

preliminary evidence for this effect should be a relatively straightforward set of experiments. To 

begin, an experimenter could select one (or more) of the genes corresponding to the unspliced 

pre-mRNA transcripts discussed in chapter 4, which have both XIST-like kmer and protein 

binding profiles. This transcript could be endogenously overexpressed, as well as repressed, 

perhaps using a system like a dCAS9. The expression levels of several nearby, expressed 

genes of interest could then be measured for downregulation and upregulation, respectively. 
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