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ABSTRACT

WENTING MA: ESSAYS ON FINANCE AND LABOR.
(Under the direction of Paige P. Ouimet and Neville Francis)

My dissertation applies different empirical methodologies with a variety of administrative

datasets to investigate the interrelationship between firms and labor market outcomes. Chapter

1 examines how and why market power affect wages differently in financial industries. Increasing

industry concentration has raised concerns that declining competition among firms for labor has

led to slow wage growth. However, I find that finance wages have increased by almost three times

the increase in non-finance wages, despite similar trends in market concentration. Using data from

the U.S. Census, I construct measures of firm-specific market power and show that higher mar-

ket power is associated with significantly higher wages in finance than in non-finance. I provide

evidence that rent-sharing plays an essential role in driving the more pronounced effect of mar-

ket power on finance wages for two reasons. First, financial firms with higher market power can

extract relatively higher rents to share. Second, financial firms give a relatively higher share of

rents to workers, especially high-skill workers, due to relatively higher worker bargaining power.

As rents are disproportionally distributed to high-skill workers, financial firms with higher market

power are associated with relatively higher within-firm inequality.

Chapter 2 is joint work with Paige Ouimet and Elena Simintzi. This chapter confronts the

question of how mergers and acquisitions (M&As) contribute to important trends in job polariza-

tion and wage inequality. We document shifts in occupational composition following M&As along

with increases in average wages and wage inequality. We propose M&As act as a catalyst for tech-

nological change. Due to an increase in scale, improved efficiency and lower financial constraints,

M&As facilitate technology adoption, disproportionately increasing the productivity of high-skill

workers and enabling the displacement of mid-income routine occupations. We document these
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findings in M&A impacted establishments as compared to a matched sample of control establish-

ments. These results generalize within industries, suggesting M&A activity is an important driver

of economy-wide trends in job polarization and income inequality.

Chapter 3 is joint work with Tania Babina, Paige Ouimet and Rebecca Zarutskie. This chap-

ter answers why young firms pay less. Using US Census employer-employee matched data, we

show that lower wages at new firms are driven by the selection of lower quality workers into new

firms. After including worker fixed effects, nearly three quarters of the new firm wage difference

disappears. Once we control for firm fixed effects, absorbing time-invariant firm quality, the wage

difference between new and established firms becomes economically unimportant. Overall, our

findings indicate that, for a given worker who has job opportunities at similar quality new and es-

tablished firms, the expected wage penalty of working at the new firm is, on average, economically

insignificant. Moreover, young firms that can hire high-quality workers have higher future survival

rates and total employment, suggesting that human capital is an important predictor of young firm

success.
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CHAPTER 1

MARKET POWER, FINANCE WAGES AND INEQUALITY

Disclaimer

The research in this paper was conducted while the author was a Special Sworn researcher of

the U.S. Census Bureau. Research results and conclusions expressed are those of the author and

do not necessarily reflect the views of the Census Bureau. This paper has been screened to ensure

that no confidential data are revealed.
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1.1 Introduction

Recent literature documents an important trend in U.S. product markets: increasing concentra-

tion. Grullon et al. (2017) show that 75% of U.S. industries have become more concentrated since

the 1990s, and the average firm is almost three times larger. One potential concern with this rise in

industry concentration is that it reduces workers’ employment options, and thus gives employers

the ability to lower wages (Manning, 2011; Stiglitz, 2017; Benmelech et al., 2018).1 The finance

sector, however, has been an exception. I observe that from 1990 to 2008, real wages increased

by 23.38% in finance but only 8.85% in non-finance. In the same period, the degrees of industry

concentration as measured by the Herfindahl-Hirschman index (HHI) increased by roughly 40%

in both finance and non-finance. These novel findings indicate that market concentration may not

have the same wage dampening effect in the financial sector, suggesting a more nuanced under-

standing of the effects of concentration on wages and the finance wage premium.

Why does concentration impact finance wages differently? In this paper, I argue that rent-

sharing plays an essential role in driving the difference. Industry concentration increases the mar-

ket power of firms, especially larger firms within a given industry. An increase in firms’ market

power not only increases firms’ labor market monopsony power to lower wages by decreasing

competition for hiring workers, but also increases firms’ product market monopoly power by de-

creasing competition for selling products or buying inputs. With higher product market monopoly

power, firms can charge higher markup and thus extract higher rents. Wages rise when firms share

1This concern was raised in the Council of Economic Advisers Issue Brief (2016). The similar con-
cern was addressed at the 2018 Jackson Hole Economic Symposium: ”Within product markets, there has
been a notable increase in economic activity associated with large multinational corporations along with
the increased market concentration in many industries. These developments suggest that large firms to-
day may have greater market power than in the past, and this shift may result in a decrease in competi-
tion within many industries. These shifts should concern central bankers since they likely have important
linkages to observed structural changes in the global economy, including lower capital investment, a declin-
ing labor share, slow productivity growth, slow wage growth and declining dynamism.” See more details at
https://www.kansascityfed.org/∼/media/files/publicat/newsroom/2018/pressrelease jacksonhole18.pdf
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these rents with their workers.2 Therefore, higher market power is associated with two compet-

ing effects on wages: rent-sharing effect and labor monopsony effect. In finance, the rent-sharing

effect appears to dominate the labor monopsony effect, and the net effect is relatively stronger.

To support this argument, I propose and provide empirical evidence on two non-mutually exclu-

sive mechanisms. First, financial firms with higher market power can extract relatively higher

rents, and thus they have more to share with employees. Under this scenario, financial firms’ prof-

itability responds more positively to the increase in firm market power relative to non-financial

firms. Second, financial firms may have to give a larger fraction of rents to employees, especially

high-skilled workers, due to higher worker bargaining power. Under this scenario, the wages of

high-skilled workers in finance respond more positively to an increase in firm market power as

compared to those in non-finance.

Using administrative micro-level data from the U.S. Census, this paper first examines the rela-

tion between wages and industry concentration, and whether the relationship differs in finance. I

find that concentration measured by HHI is negatively correlated with wages in non-finance indus-

tries. By contrast, HHI is positively correlated with wages in finance, and the positive correlation

is statistically significant at 1% level. These findings are robust to various measures of industry

concentration, indicating that industry concentration has different implications in finance.

While industry concentration means higher market power for firms remaining in the industry on

average, previous studies argue that concentration disproportionally benefits larger players within

industries. Relative to small players in a given industry, larger firms have higher market power to

raise prices or lower input prices and thus make higher rents. In other words, market power should

be firm-specific and dependent on the firm’s market share, implying that rents increase with firm

size within industries (Shepherd, 1972; Porter, 1979). With more rents, firms with higher market

2Previous literature provides evidence that firms share rents with their workers. For example, Blanchflower et
al. (1996) use CPS data to show that changes in wages are explained by increases in industry profitability within the
manufacturing sector. Card, Deficient and Maida (2014) use employer-employee matched data from Italy to show an
increase in firm-specific profitability leads to significant increases in wages. Card et al. (2018) provides a summary
of recent studies on rent sharing. A string of literature provides various reasons of rent-sharing: 1. making managers’
lives easier (Bertrand and Mullainatha,2003; Cronqvist et al., 2009); 2. providing workers with incentives to keep
working hard (Katz and Summer, 1989; Akerlof and Yellen,1990); 3. poor governance (Bebchuck and Fried, 2006).
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power can afford higher wages on average as compared to firms with lower market power within

a given industry. Using this within-industry variation, I next conduct firm-level cross-sectional

analysis to examine how the relationship of firm-specific market power and wages in finance is

different from that in non-finance.

As the baseline, a firm’s market power is defined as its employment share in its industry.3 The

main result of this paper is that higher firm market power is associated with significantly higher

wages in finance than that in non-finance. This result holds when controlling for a battery of factors

that are likely to drive the heterogeneity of wage-setting behaviors across firms. Also, this result

holds for defining firms’ market by either two-digit or three-digit Standard Industry Classification

(SIC). The difference between finance and non-finance is still significant if I instead look at median

wages, average wages adjusted by cost of living, and average wages of male or female workers.

I next provide evidence for two non-mutually exclusive mechanisms that can explain why the

positive relationship between firm market power and wages is stronger in finance. First, I argue

that financial firms with higher market power can extract relatively higher rents as compared to

non-financial firms. Market power may be particularly valuable in finance due to a stronger belief

in “too big to fail, ” or less geographical restrictions for allocating resources. For example, the

“too big to fail ” argument suggests that larger financial firms are more likely to be supported by

the government when they face potential failure, and thus they can borrow at a much lower cost

than smaller financial firms who must borrow based on their creditworthiness (Baker et al., 2009).

Because financial firms can extract relatively higher rents with higher market power, they have

more to share with workers. In support of this mechanism, I find that firms with higher market

power exhibit higher profitability measured by return on assets (ROA) in finance relative to non-

finance.4

3This measure is used by the courts as a primary criterion to assess the existence of monopoly power in a given
product market. See chapter 2 in “Competition and Monopoly: Single-Firm Conduct Under Section 2 of the Sherman
Act” by Department of Justice for more details.

4Barber and Lyon(1996) show that ROA is a better measure than other profitability measures in detecting abnormal
operating performance. Grullon et al. (2017) also uses this measure to investigate the relationship between market
concentration and abnormal profits.
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To further investigate the sources of the additional profitability created by firm market power in

finance, I decompose ROA into two components: the Lerner Index and the Asset Utilization ratio.

The Lerner Index (or price-cost margin) has been widely used in the literature as a proxy for the

extent to which prices exceed marginal costs (e.g., Muller et al., 2017; Aghion, 2005; Grullon et

al., 2017). The asset utilization ratio captures operational efficiency (Grullon et al., 2017). Results

show that financial firms can generate relatively higher profitability with higher market power

because they are able to charge significantly higher price-cost margins relative to non-financial

firms.

Second, compared to non-financial firms, financial firms may have to give a higher proportion

of their rents to workers due to higher worker bargaining power. This mechanism should apply

especially to high-skilled workers in finance because they are more likely to be matched with

larger scale tasks, or high external visibility of their performance increases the probability of being

poached. I find that a one standard deviation increase in firm market power is associated with 1.7%

higher average wages for high-skill workers in non-financial firms, whereas the effect is 6.37% in

finance, which can be translated into $1468 per quarter. The results are robust to various definitions

of high-skill workers.

As a consequence of rents being disproportionally distributed to high-skilled workers within

firms, I find that financial firms with higher market power exhibit higher within-firm inequality,

especially among male workers, as compared to non-financial firms.

The final part of my study conducts a comprehensive set of robustness analysis to eliminate

alternative explanations. First, I conduct firm-local labor market level analysis to examine whether

the difference in finance arises because non-financial firms are more likely to compete locally and

measuring market power across national markets underestimates the firms ability to extract rents.

Results at firm-local labor market-level are qualitatively similar to those at firm-level and do not

support this alternative explanation. Second, I re-define market power using sales data to make

sure market power is not more valuable in finance because market power measured by domestic

employment captures characteristics that are more valuable in finance than in non-finance. Third,
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finance wages still have the highest sensitivity to market power when compared with wages in non-

finance industries facing low import exposure. This result helps alleviate the concern that market

power measured by domestic share is less valuable in non-finance because non-finance firms face

higher import competition. Lastly, I conduct individual-level analysis while controlling for indi-

vidual time-varying and time-unvarying quality. I continually find higher firm market power is

associated with significantly higher wages in finance as compared to non-finance, which alleviates

the concern that my results could be explained by sorting effect based on worker quality.

My paper builds on several bodies of literature. First, it builds on the literature on market con-

centration and its potential effects on wages. Much of this literature focuses on non-finance sectors,

and a discussion on how and why concentration plays a differential role in finance wages has been

missing. Weiss (1966) shows that wages are higher in more concentrated industries. However, the

relationship is no longer significant and positive after controlling for personal characteristics, and

the results only hold within manufacturing, transportation, and utility industries. Landon (1970)

finds higher concentration in the newspaper industry is associated with lower wages. More re-

cently, Autor et al. (2017) document higher industry concentration is associated with lower labor

share. However, they do not find a significant relationship between concentration and wages in

manufacturing. Benmelech et al. (2018) use U.S. manufacturing data to show that employer con-

centration increases firms’ labor monopsony power, thus lowering wages. This study contributes

to the literature by uncovering the differential role of market power on finance wages. I further

provide evidence that rent-sharing can help explain the difference. Meanwhile, this study also

contributes to the literature by showing that higher firm market power has different effects on the

wages of different skill-level workers, thus contributing to higher within-firm inequality.

This study complements the literature that seeks to understand the substantial wage premium

in finance industries (Philippon and Reshef, 2012; Boudtanifar et al., 2018; Bohm, Metzger and

Stromberg, 2018; Axelson and Bond, 2015). Consistent with previous literature, I confirm finance

wages are on average higher than non-finance wages using data from the U.S. Census. While

previous literature shows that worker- and industry-level characteristics contribute to high wages
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in finance, these factors cannot fully explain the surge of finance wage premium (Philippon and

Reshef, 2012; Bohm, Metzger and Stromberg, 2018). Building on previous literature, my paper

provides a more nuanced understanding of finance wage premium through the lens of firms. Using

U.S. employer-employee matched data, I show that higher market power is associated with higher

wages in finance because market power is associated with a stronger rent-sharing effect in finance.

My results suggest that firm market power can help explain the finance wage premium.

This paper also builds on the literature that investigates factors affecting within-firm inequality.

Muller, Ouimet, and Simintzi (2017) examine UK data and find that, on average, larger firms have

high pay inequality. Consistent with their finding, my results show firms with relatively larger

sizes in a given industry exhibit higher pay inequality. My study further shows that firms that

are relatively larger in finance industries are associated with even higher within-firm inequality

because rents are disproportionally distributed to finance high-skilled workers who have relatively

higher worker wage bargaining power. Ma, Ouimet, and Simintzi (2018) document that mergers

and acquisitions (M&A) act as the catalyst for firm technology adoption, which in turn leads to an

increase in inequality within target establishments. Instead of looking at how firm reorganization

affects the wage distribution within the firm, my paper shows that the variation in firm market

power can explain the heterogeneity of within-firm inequality.

1.2 Data

In this section, I start with reviewing multiple data sources used in this study and describing

how I combine them to construct the baseline sample. I then describe how firms’ industry and

financial firms are defined. At the end of this section, I construct the measures of industry concen-

tration and firm market power.

1.2.1 Datasources

The analysis in this paper combines data from three confidential databases maintained by the

U.S. Census Bureau: 1) the Longitudinal Employment-Household Dynamics database (LEHD);

2) the Longitudinal Business Database (LBD); and 3) the Business Register(BR). I also link firm

financial statement data from Compustat to firms in LBD through a Census internal bridge.
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I use the LEHD to obtain information on firms’ wage patterns and workforce composition.

The LEHD is an employer-employee matched database which tracks employees and their wages

with various employers on a quarterly basis.5 Individual wages reported in the LEHD include

all forms of compensation that are immediately taxable, including bonuses and exercised stock

options which take a heavyweight in finance sector pay.6 The LEHD also reports age, gender, and

education level of each employee.7 As workers in this program can be linked to their employers, it

allows me to track wage distribution and workforce composition within each employer. The data

start in 1990 for several states and coverage of states increases over time. The data coverage ends

in 2008. This project has access to 31 states.8 I map these states in Appendix Figure A1. While

I do not observe data for all states, I observe almost 100% of private employment for any state in

the program. I discuss the consequence of omitting states in section 1.7.

I supplement the information in the LEHD with firm-level information on employment and

industry from the LBD.9 This database tracks all US business establishments on an annual basis.

An establishment is any separate physical location operated by a firm with at least one paid em-

ployee. The LBD includes information on industry, the number of employees and total payroll

at each establishment. Also, the LBD contains a unique firm-level identifier which longitudinally

links establishments that are part of the same firm. As the LBD tracks all establishments in the

U.S., it allows me to measure total domestic employment for each firm and industry by aggregat-

ing employment across establishments. In section 1.2.3, I will discuss how I utilize establishment

employment and industry to define firms’ industry and identify financial firms.

5See Abowd et al. (2006) for a more detailed description of the LEHD program and the underlying datasets that
it generates.

6Axelson and Bond (2015) show that the financial sector is featured with high reliance on bonuses. Bell and Van
Reenen (2013) use UK data to show the increase in top bankers’ pay is entirely due to increased bonuses.

7Education is imputed for employees with missing education data (Abowd et al. 2006).

831 states include: Arkansas, Colorado, Florida, Georgia, Hawaii, Iowa, Idaho, Illinois, Indiana, Louisiana, Mary-
land, Maine, Minnesota, Missouri, Montana, North Carolina, New Jersey, New Mexico, Nevada, Oklahoma, Oregon,
Rhode Island, South Carolina, Tennessee, Texas, Utah, Virginia, Vermont, Washington, Pennsylvania and Wisconsin.

9See Jarmin and Miranda (2002) for more details.
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To conduct mechanism tests in section 1.4, I collect firm financial information on earnings

before interests, taxes, depreciation and amortization (EBITDA), total sales, and total assets from

Compustat.

Lastly, I obtain sales data for firms from the Business Register (BR) database to conduct ro-

bustness checks in section 1.5.10 This database collects business sales, including total revenue

from selling products, interest income and gross rents, from the Internal Revenue Service (IRS). It

tracks firms from all 50 states and the District of Columbia on an annual basis. A key advantage of

the sales data from BR over standard firm-level databases such as Compustat is that they comprise

both private and public listed firms.

1.2.2 Sample Construction

The baseline sample is at firm-year-quarter-level and spans from 1990 to 2008. To obtain firm

wage patterns and workforce composition, I start with linking filtered employee-level data from

the LEHD to firm identifiers in the LBD through federal employer identifier (EIN), and then I

aggregate employee-level data to firm-level in each year-quarter.11

Specifically, I restrict my attention to full time workers in the LEHD by only including workers

aged between 16 and 65 years old and by excluding employee-quarter that earned less than 80%

of the 1990 federal minimum wage following Philippon and Reshef (2012), where wages are con-

verted to constant 2001 dollars.12 To ensure that I am not observing quarters in which an employee

was only partially employed at a given firm, I only keep employee-firm quarters where I observe a

full quarter of employment at the firm prior to and post that quarter.13

10Before 2002, this database was referred as the Standard Statistical Establishment List(SSEL). See DeSalvo et al.
(2016) for more information about the dataset.

11The matching process between establishments in LBD and units in LEHD is not perfect because the LBD in-
frastructure is based on physical establishments while the LEHD infrastructure uses reporting units (SEIN) in a given
state for a given firm. SEINs may or may not match the physical establishments identified in the LBD. Therefore, I
take firm as the unit of analysis.

1280% of the 1990 federal minimum wage in 2001 dollars is equal to $1923/quarter (=0.8×$3.8/hour ×40
hours/week × 12 weeks/quarter ×1.318).

13To limit the probability of data errors in the sample, I also drop all observations for individuals where wages
change by extreme values in one quarter.
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I then link the filtered employee data to firms in the LBD to construct firm-year-quarter-level

measures of wage patterns and workforce compositions. Since self-employment may have different

wage setting behavior, I exclude firms who only have one paid employee to minimize the possibility

of picking up self-employment. I define all the variables used in my analysis, in more detail, in the

Appendix.

1.2.3 Define Firm Industry and Finance Firms

Throughout the study, I use the 1987 Standard Industry Classification (SIC) codes to define

markets. To define a firm’s market (termed ”firm industry”), I use establishment-level information

on SIC and employment from the LBD.14 For a firm owning only one establishment, its industry

is defined by its establishment’s industry. For a firm owning multiple establishments spanned

multiple industries, the firm is classified in an industry where it has more than 50 percent of its

employment. I drop a negligible percentage of firms who span in multiple industries, but their

employment share in each industry is less than 50 percent. Following these rules, a firm’s industry

is defined by a 2-digit or 3-digit SIC code.15

Following Philippon and Reshef (2012), finance industries include depository institutions (ex-

cept central reserve depository institutions), nondepository institutions, security and commodity

14Census uses SIC to define industries until 2002. Starting 1997, Census defines industries using the North Amer-
ican Industry Classification System (NAICS). To get SIC codes for post-2001 observations, I follow Babina (2016) to
build a crosswalk between SIC and NAICS codes using LBD data between 1997 and 2001. However, the mapping
between SIC and NAICS may not be a one-to-one mapping. Under the case of one NAICS code being matched with
multiple SIC codes, I assign the NAICS code with the SIC code used by the most number of establishments to create a
one-to-one mapping between NAICS and SIC. For example, NAICS 0001 is matched with SIC 111 for 100 establish-
ments, but it is only matched with SIC 112 for 10 establishments. Then I assign establishments in post-2001 classified
into NAICS 0001 with SIC 111. If there is a tie in the number of establishments under different SIC’s, then I assign
the NAICS code with the SIC with the highest employment.

15The first two digits of SIC codes indicate the major group, and the first three digits indicate the industry group.
While 3-digit SIC is a more granular way of defining product markets, it may be too narrow for some large firms
whose activities span over closely related but separate markets. For example, for a large insurance company like State
Farm or GEICO, they may have a similar proportion of activities within SIC 631(Life insurance), SIC 632(medical
serve and health insurance), SIC 633 (fire, marine and causality insurance) and SIC 639(insurance carriers). By using
a 2-digit SIC classification, I increase the probability that large corporations are grouped together as competing firms
in the same industry. Grullon, Larkin, and Michaely (2017) use a similar idea when they define firm industry codes by
NAICS.
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brokers, insurance carriers, insurance agents, brokers and service and holding and other invest-

ment offices. Non-finance industries include all other nonfarm private industries. For a corporate

to be a finance firm, its industry must be in one of the finance industries. Similarly, a firm is clas-

sified as a non-finance firm if its industry is in one of the non-finance industries.16 Based on this

classification rules, financial firms account for approximately 4.3% of my baseline sample, which

is similar to the statistics reported in the Statistics of U.S. Businesses (SUSB): 4.1% in 2000 and

4.27% in 2008.17

1.2.4 Industry Concentration and Firm Market Power

In this subsection, I construct the measures of industry concentration and firm market power

using employment data from the LBD.

To measure the degree of industry concentration, I construct the Herfindahl-Hirschman Index

(HHI) as the sum of the squared firm employment shares in industry j in year y:

HHIj,y =
∑
f

(
empf,j,y
empj,y

)2 (1.1)

where empf,j,y is employment of firm f in industry j in year t. empj,y is the total employment in

industry j in year t. I construct two variants of the HHI measures using two- or three-digit SIC

industry codes.

As the HHI’s are measured using employment data for almost all private and publicly listed

firms in the U.S., they can capture the degree of industry concentration more accurately than the

ones constructed using publicly listed firms. Moreover, my measures of HHI cover a wider range of

industries and years than the publicly available statistics reported in the Economic Census, where

HHI is limited to manufacturing industries in calendar years ending in 2 or 7.18

16To reduce the probability of misclassifying workers into finance industries, I drop a small proportion of firms
which have employment in both finance and non-finance industries. In the unreported results, I find baseline findings
are robust to including these firms.

17In the SUSB, a firm is classified into 2-digit NAICS sector in which it paid the largest share of its payroll. See
more details at https://www.census.gov/programs-surveys/susb/technical-documentation/methodology.html

18See more details about concentration ratios published by Census at
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I next define the market power for a firm classified into industry j as the ratio of total employ-

ment in firm f in industry j to total employment in industry j:

MarketPowerEf,j,y =
empf,j,y
empj,y

× 100 (1.2)

where empf,j,y is employment of firm f in industry j in year t. empj,y is the total employment

in industry j in year t. E represents this market power measure is constructed using employment

data. I construct two variants of the firm market power measures using two or three-digit SIC codes

to define industries.

A firm’s market power can be interpreted as its ability in extracting rents. The measure of

firm market power is constructed following the argument of Shepherd (1972) that market power

is firm-specific and it depends on the firm’s market share. Relative to other firms within the same

market, firms with higher market share are expected to extract higher rents because they have the

higher bargaining power to lower input prices, they can take advantage of economies of scale, or

they have higher monopoly power in raising prices. This measure has been used by courts as a

primary criterion to assess the existence of monopoly power in a specific product market because

measuring market power using firm-level markup is notoriously difficult.19 20

Measures constructed in this section are at annual-level since the LBD reports employment as

of March 12th in each year. To create a quarterly panel, I then link these measures in the year y to

quarterly measures of firm workforce composition and wage patterns in the first three quarters of

year y and the last quarter of year y − 1.

https://www.census.gov/econ/concentration.html

19See chapter 2 in ”Competition and Monopoly: Single-Firm Conduct Under Section 2 of the Sherman Act” by
Department of Justice for more details. Other examples mentioned in this article are: U.S. Anchor Mfg., Inc. v. Rule
Indus., Inc., 7 F.3d 986, 999 (11th Cir. 1993) (”The principal measure of actual monopoly power is market share...”);
Weiss v. York Hosp., 745 F.2d 786, 827 (3d Cir. 1984) (”A primary criterion used to assess the existence of monopoly
power is the defendant’s market share.”).

20Measuring firm-level markup requires detailed information on product prices, quantities produced, characteristics
of products and marginal costs for producing each additional unit. However, such detailed data is often not available,
especially for non-manufacturing industries.
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1.2.5 Summary Statistics

1. Trends in Concentration and Wages: Finance vs. Non-finance. Figure 1a plots trends of the

Herfindahl-Hirschman Index(HHI) constructed by Equation (1) using 3-digit SIC. The computed

HHI is averaged across industry-year cells within each of the six-year periods (the last period

includes seven years, 2002-2008) using the number of employees in each cell as the weight. The

average HHI can be interpreted as the degree of employer concentration the average worker faces

in the finance or non-finance industries. On average, the employer concentration keeps increasing

since 1990 in both finance and non-finance industries. Specifically, the average HHI concentration

measure has increased by approximately 39.56% in finance, and by about 40.16% in non-finance.21

Figure 1b plots trends of average real wages computed in finance and non-finance industries.

The computed average wage is averaged across firm-year-quarter cells within each of the six-year

periods (the last period includes seven years, 2002-2008) using the number of employees in each

cell as the weight. Figure 1b shows stronger growth in real wages in finance over 1990-2008:

real wages on average have increased by 23.38% in finance, whereas the increase is only 8.95%

in non-financial industries within the sample. By looking at changes, figure 1a and 1b show that

the increase in finance wages is around 2.6 times than the increase in non-finance wages while the

changes in concentration are similar in the financial and non-financial industries. These results

indicate that industry concentration creates less wage dampening effect on finance wages.

2. Cross-sectional Summary Statistics. Table 1.1 reports summary statistics of firm-level vari-

ables from the baseline sample. Column 1 reports mean values along with standard deviation

in parentheses calculated across all firm-quarter within the sample. Column (2) and (3) report

mean values calculated for non-finance and financial firms respectively. The last column reports

the difference between columns (3) and (2) along with statistical significance-level. Panel A re-

ports summary statistics of firm-level wage patterns, and Panel B reports other firm characteristics

including measures of firm market powers and workforce composition respectively.

21All observation counts and estimates are rounded according to Census disclosure policies.
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Panel A shows that the quarterly average wage in finance is $10914 within the sample, which

is 24% higher than the one in non-finance. Moreover, the average wage of high-skilled workers is

34.16% higher in finance. Compared to existing literature, I document a lower finance excess wage

due to:1) the calculated wage is averaged across workers from the LEHD. However, the coverage

of the LEHD data used in this study only extends to 31 states, and thus I may underestimate average

finance wages by excluding workers working in excluded states such as New York and Connecticut

where excess wages paid by financial firms are even higher (Philippon and Reshef, 2012). 2) The

frequency of my baseline sample is quarterly. The excess wages paid by financial firms, which is

mainly driven by bonuses (Bell and Van Reenen, 2013), may be smoothed out by taking averages

across quarters. 3) Based on my firm classification rules described in section 1.2.3, I drop firms

spanning in both financial and non-financial industries. I also drop firms which are too diversified

to be classified into one single industry. Applying these filters exclude some diversified and large

firms which pay higher wages (Oi and Idson,1999). I discuss the consequences of these restrictions

in Section 1.7.

Panel B shows that, on average, firm market power constructed by equation (2) using two-

digit (three-digit) SIC industries is 0.002 percentage points (0.011 percentage points) with a stan-

dard deviation of 0.05 percentage points (0.193 percentage points) for all firms within the sample.

Among financial firms, the average of their market powers in two-digit (three-digit) SIC industries

is 0.003 percentage points (0.014 percentage points) which is slightly higher than the average of

non-financial firms by 0.001 percentage points (0.003 percentage points).

Panel B also reports summary statistics of variables measuring firms’ workforce composition,

including the average of workers’ education level, the average of working experience, the share

of college-educated workers and the share of male workers. Financial firms on average hire a

higher share of college workers and more experienced workers as compared to non-financial firms.

Consistent with findings in existing literature, these results indicate finance is a high-skill industry.

Interestingly, the share of male workers in financial firms is 31.39%, which is 24.74% lower than

the share in non-financial firms. The fact that financial firms hire relatively less male employees
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on average is consistent with the labor force statistics reported by the Bureau of Labor Statistics.22

1.3 Empirical Analysis

1.3.1 Concentration and Average Wages

Trends presented in Figure 1 indicate that industry concentration affects finance wages differ-

ently, but the difference can be driven by other factors varying across industries. This subsection

conduct a cross-sectional analysis to estimate the difference between finance and non-finance in

the correlation of concentration and average wages with controlling for other observed and un-

observed factors. At one extreme, firms in more concentrated industries may extract higher rents

by exercising product market monopoly power, and wages should rise when firms share these

rents with workers (rent-sharing effect). Alternatively, workers in a more concentrated industry

may face fewer outside options in the industry. In this case, firms have labor market monopsony

power to lower wages (labor monopsony effect). The relationship between industry concentration

and wages depends on the relative strength of rent-sharing effect and labor monopsony effect in a

given industry.

To examine the relation between industry concentration and average wages, I estimate the

following cross-sectional regression:

logWagef,j,t =αt + γ1HHIj,t−4 + γ2FINf + γ3FINf × HHIj,t−4 + X
′

f,j,t−4β + εf,j,t (1.3)

where logWagef,j,t is the log of average wages in firm f , operating within industry j, in year-

quarter t. HHIj,t−4 is the four-quarter lagged measure of concentration in industry j; FINf is

equal to 1 if the firm is a finance firm. Xf,j,t−4 is a vector of firm-level control variables in four-

quarter lags comprising the log of average worker education level, the share of male workers, the

share of college workers, the log of average working experience and the log of firm age. All re-

gressions include year-quarter fixed effect, αt, to control for macro-level trends in affecting wages.

To control for potential time-series dependence in the residuals, I cluster the standard errors at the

22See more at https://www.bls.gov/cps/cps aa2002.htm
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industry-level.

Table 1.2 presents the results from estimating Equation (3). Column (1) shows that, on aver-

age, wages in private sectors are negatively correlated with industry concentration measured by

Herfindahl- Hirschman Index (HHI) using two-digit SIC industry codes. The negative relationship

is still statistically significant at the 1% level after controlling for firm workforce composition and

firm age which may affect firms’ productivity and thus affect wages (column (2)). While there is a

negative relationship between wages and industry concentration in non-finance, column (3) shows

the relationship is positive in finance and significant at the 1% level after controlling for firm work-

force composition and firm age. Precisely, a one standard deviation increase in HHI is associated

with 13.78% (=0.011 × (-3.917+16.44) ×100) higher average wages in finance. Column (4) shows

results are robust to HHI defined using three-digit SIC industry codes.

For robustness, I follow Grullon, et al (2018) and use total number of firms in a given two-digit

SIC industry as a proxy of industry concentration. An industry is more concentrated when fewer

firms remain in the industry. Consistently, column (5) shows that a decrease in the number of firms

is associated with lower average wages in non-finance, whereas it is associated with significantly

higher average wages in finance. In sum, these results indicate industry concentration is associated

with stronger rent-sharing effect in finance.

1.3.2 Firm Market Power and Finance Wages

1.3.2.1 Main Result

While industry concentration means higher market power for firms remaining in the industry on

average, previous studies show that concentration disproportionally benefits larger players within

industries (Shepherd, 1972; Porter, 1979; Gale, 1972). Relative to small players in a given industry,

larger ones are expected to yield higher rents for the following reasons. First, larger players’

products have share-based product differentiation advantage in the sense that their products are

widely advertised and recognized. Second, larger players can take advantage of economies of

scale to achieve a cost advantage over rivals operating at a lower rate of output. Lastly, larger

players have higher bargaining power to lower input prices or setting product prices to reflect their
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own interests. Therefore, market power should be firm-specific and dependent on the firm’s market

share. Firms with higher market power can extract higher wages as compared to firms with lower

market power. Using this within-industry variation in this subsection, I examine the relationship

between firm-specific market power and average wages to better identify the marginal difference

in the treatment of firm market power on finance wages.

To visualize the relationship between firm market power and wages, I conduct a flexible esti-

mation of the following equation for finance and non-financial firms separately:

logWagesf,j,t =αt + γ1D2nd
f,j,t−4 + γ1D3rd

f,j,t−4 + γ1D4th
f,j,t−4 + X

′

f,j,t−4β + εf,j,t (1.4)

where logWagesf,j,t represents the log of average wages at firm f , operating within industry j,

in year-quarter t. D2nd
f,j,t−4, D3rd

f,j,t−4, or D4th
f,j,t−4 are equal to 1 if the firm f ’s market power in year-

quarter t−4 is respectively in the second, third or fourth quartile of firm market power distribution

within the sample, where firm market power is constructed by equation (2) based on two-digit

SIC industry classification. Xf,j,t−4 is a vector of workforce composition variables in 4-quarters

lags comprising the log of average worker education level, the share of male workers, the share of

college workers, and the log of average working experience.

I plot the coefficients of D2nd
f,j,t−4, D

3rd
f,j,t−4, and D4th

f,j,t−4 from estimating equation (4) in Figure

2a. Overall, the relationship between firm market power and wages appears to be convex and the

slope is significantly steeper in finance. Specifically, workforce composition adjusted wages (wage

premium) paid by financial firms with high market power (in the fourth quartile) is about 33%

higher than financial firms with low market power (in the first quartile), whereas non-financial

firms with high market power only pay about 3.69% higher. The high wage premium paid by

financial firms with market power above the third quartile indicate that the firms with high market

power drive up the average of finance wages.

I next measure the sensitivity of wages to firm market power in finance and non-finance by
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estimating the following equation:

logWagesf,j,t =αt + γ1MarketPowerEf,j,t−4 + γ2FINf + γ3FINf · MarketPowerEf,j,t−4 + X
′

f,j,t−4β + εf,j,t (1.5)

where MarketPowerEf,j,t−4 is the market power of firm f , operating mainly in industry j (two- or

three-digit SIC) in year-quarter t− 4 and firm market power is defined by equation (2). The other

variables are defined as the same as in equation (4). Standard errors are clustered at firm-level.

Table 1.3 reports results of estimating equation (5). Column (1) confirms that financial firms

pay 19.8% higher on average than non-finance private sector when controlling for unobserved

macro trends. I next add in my main variable of interest: MarketPowerE constructed based on

two-digit SIC codes, and I also controls for firm workforce compositions which may drive the

heterogeneity in productivity and wages across firms. 23 Column (2) reports the results. Overall,

there is a significant and positive relationship between firm market power and average wages: a one

standard deviation(0.05 percentage points) increase in firm market power is associated with 0.62%

(= 0.05 × 0.123 × 100) higher wages on average. In column (3), I measure to what extent the

sensitivity of average wage to the change in firm market power is different in finance by including

the interaction of finance firm dummy and firm market power. The estimation results show that a

one standard deviation increase in firm market power is associated with 2.64% (= 0.05× (0.112+

0.415)×100) higher average wages in finance, whereas the effect is only 0.56% (= 0.05×0.112×

100) in non-finance industries. The difference in the effect of firm market power on finance wage is

significant at the 5% level. Column (4) shows that results also hold when I include finance-by-time

fixed effects to control for time-varying differences across financial and non-financial industries.

To make sure that the positive relationship between firm market power and wages is not driven

by the facts that more established firms possess higher market power and established firms pay

higher wages (Dunne and Roberts, 1990a; Brown and Medoff, 2003), I add the log of firm age as

23Column (2) shows financial firms pay 21.9% higher on average than non-financial firms. Compared with the result
reported in column (1), the excess wage paid by financial firms is even higher after controlling for MarketPowerE

and firm workforce composition. The increase in the excess wage paid by financial firms is mainly driven by the facts
that financial firms have lower share of male workers and wages are positive correlated with share of male workers.
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an additional control and report results in column (5).24 While more established firms pay higher

wages on average, the coefficients ofMarketPowerE and its interaction with finance firm dummy

are similar the ones reported in column (3).25

In column (6), I replicate the specification as in column (3) but redefineMarketPowerE using

three-digit SIC codes to address the concern of the coarseness of defining product market using

two-digit SIC codes. Results are consistent with earlier findings. Specifically, the sensitivity of

wages in finance to the change in market power is about 2.4 times (=(0.0543+0.0381)/0.0381)

higher than that in non-finance. This finding to some extent mirrors what I observe in Figure 1:

while there is a similar increase in market power caused by concentration in finance and non-

finance, the increase in finance wage is around 2.6 times higher than the increase in non-finance.

In sum, my results show that a higher firm market power is associated with significant higher

wages in finance as compared to non-finance.

1.3.2.2 Other Measures of Wages

1. Median Wage. To make sure that the marginal difference in the treatment of firm mar-

ket power for finance and non-finance wages is not solely driven by top earners at high market

power financial firms being disproportionally benefited, I repeat the specification as in column

(5) of Table 1.3 but take the logarithm of median wages as the dependent variable. Column

(1) in Table 1.4 shows that a one standard deviation in firm market power is associated with

1.32%(= 0.05 × (0.0686 + 0.195) × 100) higher median wages in finance, whereas the effect

is only 0.34% (= 0.05 × 0.0686 × 100) in non-finance industries. The marginal difference in the

treatment of firm market power for finance and non-finance median wages is lower than that for

average wages (column (5) of Table 1.3), but it is still statistically and economically significant.

2. Wages Adjusted for Cost of Living. Financial firms, especially the ones with high market

24Firm age is defined as the oldest establishment that the firm owns in the first year the firm is observed in the LBD
(Haltiwanger, Jarmin, and Miranda, 2012).

25One concern of measuring firm market power at national-level is that it may underestimate firms’ labor monop-
sony power because job search is largely local (Moretti, 2011; Molloy, et al., 2014) and the lack of labor mobility
lower firms’ incentives in sharing rents. Firm-local labor market-level Results presented in Section 1.6.1 can alleviate
this concern.
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power, cluster in regions with high cost of living. This raises a question that whether these firms

pay higher wages to compensate for high cost of living. To test this, I adjust worker wages for

state-level price index using the methodology provided by the Bureau of Economic Analysis and

then aggregate to firm-level by taking the average across adjusted individual wages.26 Then I use

the logarithm of the average wages adjusted for cost of living as the dependent variable and repeat

the specification as in column (5) of Table 1.3. Column (2) of Table 1.4 reports the result. The

result is qualitatively and quantatively similar to what reported in column (5) of Table 1.3. The

consistency alleviates the concern that earlier findings are driven by the heterogeneity in cost of

living across regions.

3. Male and Female Wages. In this section, I investigate whether a change in firm market

power disproportionally affects average male or female wages in finance. If financial firms are

able to discriminate against female workers by disproportionally sharing rents to male workers,

the treatment of firm market power for male wages should be significantly higher than that for

female wages in finance. To investigate this, I estimate equation (5) using the log of average

wages of male or female at a given firm as the dependent variable. Results are reported in column

(3) and (4) of Table 1.4. In finance, a one standard deviation increase in firm market power is

associated with 1.99% (= 0.05 × (0.362 + 0.0354) × 100) increase in male wages and 2% (=

0.05 × (0.098 + 0.302) × 100) increase in female wages, and the difference is not statistically

significant. Therefore, the main result of this paper is not unique to a specific gender in finance.

1.4 Exploring the Mechanism

This section explores mechanisms that may explain why market power is associated with rel-

atively higher wages in finance. In this paper, I argue that market power is associated with two

competing effects: labor monopsony effect and rent-sharing effect. In finance, the rent-sharing

effect dominates labor monopsony effect and the net effect is relatively stronger. To support this

argument, I provide evidence on two non-mutually exclusive mechanisms: 1) financial firms with

26To adjust wages in all sample years, I use state-level price index in 2008, which is the first year the in-
dex is available. See more details about the methodology of adjusting wages for state-level price index at
https://www.bea.gov/sites/default/files/methodologies/RPP2016 methodology.pdf
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higher market power extract relatively higher rents; 2) financial firms have to give a higher pro-

portion of rents to their workers, especially high-skill ones, due to higher worker wage bargaining

power.

1.4.1 Evidence on Higher Rents in Finance

With higher market power, financial firms may be able to make higher rents in several ways.

First, it may be relatively easier for financial firms with higher market power to increase the com-

plexity of their products, which is positively correlated with the hidden markup in the products

(Celerier and Vallee, 2017). Second, the strong belief of “too big to fail” in finance suggests that

firms with higher market power are more likely to be supported by the government when they face

potential failure, and thus they may be able to borrow at a much lower cost than smaller financial

firms who must borrow based on their creditworthiness (e.g., Baker et al., 2009; Ahmed et al,

2015). Lastly, it may be relatively easier for financial firms to improve operational efficiency and

achieve economies of scale. For example, financial firms may be able to allocate resources or ap-

ply technology more efficiently because their production process is less geographically restricted,

and thus they can generate higher revenue from each unit of assets. Under these scenarios, higher

market power should be associated with relatively higher profitability in finance as compared to

non-finance, and financial firms pay higher because they have more profit to share. To test this

mechanism, I estimate the following equation:

ROAf,j,t =αt + γ1MarketPowerEf,j,t−4 + γ2FINf + γ3FINf · MarketPowerEf,j,t−4 + X
′

f,j,t−4β + εf,j,t (1.6)

where ROAf,j,t is the return on assets of firm f operating in industry j in year-quarter t. I follow

Grullon et al. (2017) to use ROA as a proxy for profitability because Barber and Lyon (1996)

argue that ROA is superior to other measures of profitability in detecting abnormal operating

performance. Xf,j,t−4 is a vector of firm-level control variables in 4-quarters lags comprising the

log of average worker education level, the share of male workers, the share of college workers, the

log of average working experience and the log of firm age. Standard errors are clustered at firm

level.

To conduct the analysis, I extract a sample of publicly listed firms from the baseline sample

as constructed in section 1.2.2, and match these firms with their financial statement data from
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Compustat through a Census internal LBD-Compustat bridge.27

I next estimate equation (7) using the new sample to test whether a higher firm market power

allows financial firms to create relatively higher profitability. Results are reported in Table 1.5.

Consistent with my expectation, I find a positive relationship between firm profitability and firm

market power in both finance and non-finance industries. This positive correlation is more pro-

nounced in finance. Specifically, column (1) shows that a one standard deviation (0.893) increase

in firm market power is associated with 0.029 (= 0.893× (0.0087 + 0.0242)) higher ROA within

finance, but only 0.0078 higher ROA within non-finance and the difference between finance and

non-finance is statistically significant at the 1% level. I add the log of firm age as a control in the

specification as in column (2) because firms may have a better understanding of their production

functions when they get more established. I continue to find 0.024 higher in ROA within finance,

and the difference in the effects of market power on ROA between finance and non-finance is

statistically significant at the 5% level.

To further investigate the sources of the additional profitability in finance, I follow Grullon et al.

(2017) to decompose ROA into two components: the Lerner Index and the Asset Utilization ratio.

Following Aghion et al. (2005), the Lerner Index is defined as operating income after depreciation

scaled by total sales. Depreciation is excluded from operating income to take into account the cost

of physical capital (Hall and Jorgenson,1967). This index approximates the extent to which prices

exceed marginal costs (price-cost margins). The Asset Utilization ratio is defined as the ratio of

total sales to total assets, which measures the firms’ efficiency in utilizing assets to generate sales.

27Appendix Table A.1 reports the summary statistics of key variables from the sample. Interestingly, the average
wage in finance is 3.29% lower than the average wage in other industries within this sample. This wage discount
may be explained by lower share of male workers at financial firms and by excluding a big proportion of private
hedge funds and private equity firms which pay significantly higher wage premium (Philippon and Reshef, 2012).
In unreported results, within the sample, I find financial firms on average pay higher than non-financial firms do
after controlling for the share of male worker. Moreover, as public listed firms are larger on average in terms of
employment, firms in this sample possess higher market power on average within their industries. Lastly, the mean of
ROA in finance is 0.04, which is lower than the ROA in non-finance by 0.058. The finding that the financial sector
has lower profitability is consistent with Grullon et al. (2017). As the new sample is slightly different from the sample
used in my baseline analysis, I start with replicating equation (5) using the new sample to validate my earlier findings.
Results are reported in Appendix Table A.2. Consistent with earlier findings, I find a higher firm market power is
associated with significantly higher wage in finance as compared to non-finance.
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Then I re-estimate equation (6) using the Lerner Index and the Asset Utilization ratio as dependent

variables. Table 1.6 reports results. Overall, I find firms with higher market power are associated

with higher Lerner Index in non-finance, and the positive relationship is significantly stronger in

finance. Meanwhile, I find a positive correlation between market power and Asset Utilization ratio

on average. However, the positive effect of market power on the Asset Utilization ratio is not

significantly higher in finance as compared to non-finance in all specifications.

In sum, results from this section support the hypothesis that financial firms with higher market

power are associated with relatively higher profitability due to higher price-cost margins, and thus

financial firms have more rents to share with their workers relative to non-financial firms.

1.4.2 Evidence on Higher Bargaining Power in Finance

Financial firms may have to give a relatively higher share of rents to employees because their

employees have relatively higher wage bargaining power. This mechanism should apply primarily

to high-skilled workers for the following reasons: first, a high-skilled worker in finance is more

likely to be matched to a larger project than in other industry (Celerier and Vallee, 2017). The

high scalability makes it crucial that financial workers take sufficient care of their work and get

paid more.28 It is plausible to expect financial firms to give a relatively higher share of their rents

to high-skilled employees to compensate for the high scalability, and thus wages of high-skilled

workers should be more sensitive to the change in market power within finance.

Second, relative to non-finance workers, finance workers are closer to the final products such

that their performance are directly linked to employers’ performance. Due to this reason, the costs

for rivals to evaluate workers are relatively lower and the probability of workers being poached by

rivals is relatively higher in finance. Financial firms may need to share a higher fraction of rents

with their workers to retain workers, and thus wages in finance should be more sensitive to the

change in market power. Finance high-skill workers have even higher external visibility relative

to high-skill workers in non-finance. For example, Institutional Investor conducts an annual poll

28For example, Kaplan and Rauh (2010) estimate that the average partner in U.S. private equity firms oversaw
about $430 millions of funds in 2004.
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among financial firms and reports the ranking of top money managers, analyst leaders or other roles

from different financial firms.29 Due to relatively higher scalability and external visibility, wages

of finance high-skill workers should be even more sensitive to firm market power changes.30

To examine this mechanism, I first re-estimate equation (4) with the log of average wages of

high-skilled workers as the dependent variable. As the baseline measure, high-skilled workers

are individuals whose earnings are above the 90th percentile of the wage distribution in the firm-

year-quarter.31. Figure 2b plots estimation results. Compared to Figure 2a, wage premium at

each quartile of firm market power over the first quartile is relatively higher in both finance and

non-finance, indicating average wages of high-skilled workers are more sensitive to the change in

market power. The steeper slope in finance suggests that the positive relationship between average

wages of high-skill workers and firm market power is more pronounced in finance.

I then repeat the specifications as in Table 1.3 using the same sample with the log of average

wages of high-skilled workers as the dependent variable to quantify the marginal difference in

the effect of firm market power on high-skill workers’ wages in finance. Results are reported in

Table 1.7. Column (1) shows that, on average, a one standard deviation increase in firm market

power is associated with 1.83% (= 0.05×0.365×100) higher average wages of high-skill workers.

Column (2) shows that this positive relationship is significantly stronger in finance. Specifically, a

one standard deviation increase in firm market power is associated with 6.37% (= 0.05× (0.34 +

0.933)×100) higher average wages of high-skill workers in finance, whereas the effect is only 1.7%

(= 0.05 × 0.34 × 100) in non-finance industries. Given the mean of wages of high-skill workers

29See more at ttps://www.institutionalinvestor.com/research.

30People may wonder whether financial firms give a higher share of rents to their workers due to higher unionization
rates relative to non-financial firms. While data limitation does not allow me to provide firm-level evidence, I find
unionization rates are substantially lower in finance based on statistics from the Union Membership and Coverage
Database constructed using CPS. This database has been widely used by other literature on labor economics, such as
Matsa (2010), Benmelech, et al. (2018). For example, 9.6% of workers in private non-farming sector are covered by
labor unions in 2000, whereas only 1.8% in finance are covered.

31Although the education level can be a measure of skill level, it may have different meaning across different
occupations or generations of workers (Phillippon and Reshef,2012). In unreported results of robustness checks, I find
similar results when defining high-skill workers as workers with at least 16 or 18 years of education, or workers with
wages above the 95th or 99th percentile of the within-firm wage distribution.
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in finance is $23050 per quarter within the sample, an increase of 6.37% can be translated into a

$1468.3 (= 0.0637× 23050) increase in the average quarterly wage of finance high-skill workers.

I find similar results in column (3) and (4) where I define firm market power using three-digit SIC.

People may question whether financial firms share a higher share of rents to high-skill workers

because they have relatively higher managerial power to extract higher rents without improving

firm performance. Under this hypothesis, I should observe financial firms with higher market

power perform worse than non-financial firms. However, results in section 1.4.1 do not support

this prediction because firms with higher market power are associated with relatively higher prof-

itability within finance.

1.5 Firm Market Power and Within-firm Inequality

Results from the last section indicate that rents are disproportionally distributed to high-skill

workers. Thus, it is plausible to expect that higher market power is associated with higher within-

firm inequality. In Table 1.8, I repeat the specifications as in Table 1.3 with the log difference

of average top 90th percentile wages and average bottom 10th percentile wages as the dependent

variable. Column (1) shows that a one standard deviation increase in market power is associated

with 6.66% higher within-firm pay inequality in finance, whereas the effect is only 1.94% in non-

finance. The difference between finance and non-finance is significant at the 5% level. Column (2)

shows results are robust to defining industries using 3-digit SIC codes.32

Interestingly, the relationship between firm market power and inequality is not unique to a

specific gender in both finance and non-finance. Column (3) (column (4)) in Table 1.8 shows the

results where the 90th to 10th wage ratio of male (female) workers is the outcome variable. Higher

market power is associated with higher inequality within a given gender on average, and the posi-

tive relationship is significantly stronger in finance. Even though higher inequality is found among

both male and female workers at financial firms with higher market power, the effect is more pro-

nounced for inequality among male workers than among female workers in finance. Specifically,

32In unreported results, I found qualitatively similar results when I measure within-firm pay inequality by the
standard deviation of wages within a given firm-year-quarter.
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in finance, a one standard deviation increase in firm market power is associated with 9.35% higher

pay inequality among male workers, whereas it is associated with 5.63% higher pay inequality

among female workers. This result suggests that rents in finance are disproportionally distributed

to high-skill male workers.

1.6 Additional Robustness Checks

1.6.1 Local Market Power

One alternative explanation for the difference between finance and non-finance in the sensitive

of wage patterns to firm market power measured at national-level is: some non-financial firms, such

as restaurants and health care services, compete locally. These firms may be able to extract high

rents without a high market share in national markets. Measuring market power within national-

level markets may underestimate these firms’ ability in extracting rents, and thus wages paid by

these firms are not sensitive to firm market power measured across a national-level market.

To test this explanation, I examine the treatment of firms’ market power in local markets for

their local wages and how it is different for finance wages. To construct the sample, I select workers

from LEHD following the same rules discussed in Section 1.2.2. I then aggregate worker-firm-

commuting zone level data to get wage patterns and workforce compositions at firm-commuting

zone-quarter level.33 For a firm mainly operating in industry j (two-digit SIC), its market power in

commuting zone (CZ) c is defined as its employment share in industry j-CZ c:

MarketPowerLf,j,y =
empf,c,j,y
empc,j,y

× 100 (1.7)

where empf,c,j,y is the total employment of firm f in CZ c-industry j in year y. empc,j,y is

the total employment in the CZ c-industry j in year y. I link this measure in year y to quarterly

33Commuting zones are clusters of U.S. counties that are characterized by strong within-cluster and
weak between-cluster commuting ties. See details about commuting zones at David Dorn’s website:
https://www.ddorn.net/data/Dorn Thesis Appendix.pdf. LEHD provides county codes for workers’ employers. LBD
provides county codes for firms’ establishments. Commuting zones are mapped to counties through the crosswalk
constructed by Dorn(2009).
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measures of firm-CZ workforce composition and wage patterns in the first three quarters of year y

and the last quarter of year y − 1.34

I implement the following specification to estimate the marginal difference in the effect of firm

local market power on local wage patterns of financial and non-financial firms:

yf,c,j,t =γ1MarketPowerLf,c,j,t−4 + γ2FINf + γ3FINf · MarketPowerLf,c,j,t−4 + X
′

f,c,j,t−4β + αt + τc + εf,c,j,t

(1.8)

where MarketPowerLf,c,j,t−4 is firm f ’s market power in CZ c-industry j in year-quarter t − 4.

FINf is equal to 1 if firm f is in finance. Xf,c,j,t−4 is a vector of firm-CZ workforce composition

variables in 4-quarters lags comprising the log of average worker education level, the share of male

workers, the share of college workers, and the log of average working experience. αt represents

year-by-quarter fixed effects. τc represents CZ fixed effects. Standard errors are double clustered

at firm and CZ level.

Table 1.9 reports results. Panel A examines average wages as the outcome variable. Column (1)

of Panel A shows a one standard deviation (4.81 percentage points) higher in local market power

is associated with 1.95% higher average local wages in non-finance, whereas the effect of local

market power is 0.16% higher in finance. In column (2) of Panel A, I control for finance-by-CZ-

by-time fixed effects to absorb unobservable industry shocks in local markets. The coefficient of

interaction of FIN andMarketPowerL shows that the treatment of local market power for firms’

local wages is 1.7% higher in finance than that in non-finance and the difference is significant at

1% level.

Panel B repeat specifications in Panel A, but examine the average wages of high-skilled workers

at firm-CZ-level as the outcome variables respectively. I continue to find more pronounced effects

of firm market power on wages of high-skilled workers within finance, and the differences between

finance and non-finance are significant at 1% level.

In sum, finance average wages and average wages for high-skill workers are more sensitive to

34Appendix Table A.3 reports the summary statistics of key variables in the firm-CZ-level sample.
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the change in local market power than non-finance ones. This result alleviates the concern that the

high sensitivity of finance wages is driven by firm market power defined across national market

underestimating the ability of non-financial firms who compete locally to extract rents.

An additional concern of measuring firm market power at national-level is that it may underes-

timate firms’ labor monopsony power because job search is largely local (Moretti, 2011; Molloy, et

al., 2014) and the lack of labor mobility lower firms’ incentives in sharing rents. The significantly

positive relationship between local market power and average wages alleviates concern.

1.6.2 Measuring Market Power using Sales

Using occupational data from 1990, 2000 and 2010 ACS and occupation offshorability score

from Autor and Dorn (2013), I find that jobs in finance industry have the highest offshorability on

average.35 For this reason, financial firms may be able to extract higher rents by offshoring jobs

and pay higher wages to domestic workers with a smaller increase in their employment share in the

domestic market, which is the baseline measure of firm market power. To make sure that my results

is not explained by the possibility that firm market power measured using domestic employment

captures this feature in finance, I re-define firm market power as the ratio of total sales of firm f to

total sales of firms in the sample classified in industry j:

MarketPowerSf,j,y =
salesf,y
salesj,y

× 100 (1.9)

where salesf,y is total sales of firm f in the year y from the BR.36 salesj,y is the summation of

sales of firms in the sample classified in industry j in year y, where industry is defined by two- or

three-digit SIC codes. S represents this market power measure is constructed using sales data. I

then link this measure in the year y to quarterly measures of firm workforce composition and wage

patterns in the first three quarters of year y and the last quarter of year y − 1.

35See the average offshorability of jobs in each industry in Appendix Table A.4

36The BR reports sales data at EIN-year level. To obtain firm-year-level sales, I match the BR with LBD on EIN-
year. Some firms may have multiple EINs for tax filing purposes, and I sum up EIN-year-level sales to firm-year-level
under this case.
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I then estimate equation (5) but replace firm market power measured using employment by

MarketPowerS . Table 1.10 reports the estimation results.37 Market power used in Panel A is

calculated using two-digit SIC industries while the one used in Panel B is calculated using three-

digit SIC industries. Overall, I find results which are consistent with the earlier findings: firms

with higher market power measured by firm sales exhibit higher average wages and higher wages

of high-skill workers, and these positive linkages are significantly stronger in finance industries.

The coefficients of the interaction between finance dummy and market power in Panel A show

that, within finance, a one standard deviation (0.041 percentage points) higher in market power

measured by sales is associated with additional 13.08% higher average wages and 28% higher

average wages of high skill workers in finance.38

1.6.3 Import Competition

Some non-financial industries may face relatively higher import exposure than financial indus-

tries, for example manufacturing and wholesale trade which take a large proportion of non-finance

firms. Measuring market power using only the domestic contributions to the market may under-

state the degree of competition faced by firms in these industries, and this may explain why higher

market power is associated with a smaller increase in rents and wags in non-finance relative to

finance.

One way to examine this alternative explanation is by adjusting firm market power for import

37It is worth noticing that large firms generally report sales data based on their fiscal calendar such that they may
not have sales data ready by the time Census collect the data. Also, some multiunit firms do not file separate tax forms
for each establishment location. For these reasons, sales data for a proportion of large firms are missing (DeSalvo et al.,
2016), and I have to limit the sample to a subset of firm-year-quarters from my baseline sample. Appendix Table A.5
reports summary statistics of key variables from this new sample. Within this sample, I find average wages at financial
firms on average are 26% higher the ones at non-financial firms between 1990-2008. The average of financial firms
market powers calculated using two-digit (three-digit) SIC industries is 0.007 percentage points (0.03 percentage
points) which is higher than the average of non-financial firms by 0.004 percentage points (0.008 percentage points).
While this sample only includes about 60% of firm-year-quarters from the baseline sample, in unreported results, I
find similar industry distributions and statistics of firm-level measures of workforce composition in these two samples.

38Compared to the measure of market power calculated using employment and 2-digit SIC codes, the average of
market power measured using sales in finance is much higher (about 2 times) than the one in non-finance. And the
standard deviation of market power in finance is smaller than the one in non-finance indicating that finance industries
are more likely to be dominated by fewer firms who have high market shares. The low variation of finance market
power is one potential reason to explain the large magnitudes of coefficients of the interaction between finance dummy
and market power found in Panel A.
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exposure. However, to my knowledge, the existing measures of import exposure are not available

for non-manufacturing industries due to the complexity of measuring import value. Instead, I

repeat the specification as in column (5) of Table 1.3 but omit firms in construction, transportation

and public utilities, and services as the reference group. The intuition is that these industries

should face lower import exposure as compared to other non-finance private sectors, including

manufacturing, mining, and wholesale and retail trade. The alternative explanation would hold if

the positive effect of firm market power on wages in finance is no longer higher than that in the

new reference group. In contrast, results presented in Table 1.11 show that firm market power is

associated with higher average wages and higher wages for high-skill workers in finance relative

to those in construction, transportation and public utilities, and services. The magnitude of the

difference is 2.78% (= 0.05× 0.555× 100 ) and significant at 1% level.

Table 1.11 also shows that, on average, average wages and average wages for high-skill have

the highest sensitivity to firm market power in finance as compared to the ones in other one-digit

SIC sectors. This result highlights the distinctive role of market power in finance.

1.6.4 Sorting Effect Based on Worker Characteristics

The difference between finance and non-finance wages reported in Table 1.3 could be explained

by sorting based on individual characteristics. Financial firms employing workers with higher qual-

ity would be expected to have higher market power and also pay higher wages, leading to a poten-

tial upward bias in the measured effect of firm market power in finance in cross-sectional analysis

that compare different firms at a given time. To address this concern, I construct a employee-

employer matched panel data set, where I can track workers across firms over time.39 This allows

me to estimate the marginal difference in the treatment of firm market power for finance and non-

finance wages with controlling for time-varying and time-unvarying worker quality. Specifically, I

estimate:

39To construct the sample, I apply the same filters discussed in Section 1.2.2 to select workers from LEHD database,
and also require each individual to be observed at least twice. To minimize the computing requirements of a large
sample size, I only keep the wage paid in first quarter of each year for each worker.
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logWages indi,f,y =φi + γ1MarketPowerEf,j,y−1 + γ2FINf + γ3FINf · MarketPowerEf,j,y−1 + X
′

i,f,yβ + εi,f,y

(1.10)

where logWages indi,f,y represents the log of individual i’s quarterly wage at firm f in year y.

φi represent individual fixed effects, which absorb the time-unvarying differences among workers

in observed and unobserved characteristics. MarketPowerEf,j,y−1 is the market power of firm

f , operating mainly in industry j (two-digit SIC) in year y − 1. FINf is equal to 1 if firm f

is in finance. Xi,y is a vector of time-varying controls, including year dummies interacted with

education dummies, and function of worker age interacted with education dummies. Standard

errors are clustered at firm level.

The results are reported in Table 1.12. In column (1), I only control for time fixed effect

and time-variant worker characteristics. Similar to firm-level results, wages in finance are on

average 18.2% higher than those in non-finance. Column (2) includes firm market power and

its interaction with finance dummy as additional controls. Consistent with the firm-level cross-

sectional analysis, I find higher firm market power is associated with significantly higher wages in

finance than in non-finance within the individual-level sample. In column (3), I control for worker

fixed effects to absorb unobserved variation in worker quality. The difference in the treatment

of firm market power for individual wages stays statistically significant and positive. This result

is robust to controlling for state-by-year fixed and industry-by-year fixed effects, which absorb

changes in state-level policies and fluctuations in industries respectively. Documenting consistent

results alleviates the concern that the marginal difference in the treatment of firm market power on

finance and non-finance wages is driven by the sorting based on worker quality.

1.7 External Validity

In this section, I discuss the generalizability of the results presented in this paper. The LEHD

data used in this study only cover 31 states. Given that financial firms are clustered in omitted

states like New York and Connecticut in which financial firms pay even higher wage premium
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(Philippon and Reshef, 2012), one might question whether my results can be generalized to rep-

resent the overall finance sector. I provide two sets of evidence to mitigate this concern. First, I

find similar results when I look at average per worker pay (Wage lbd) calculated using firm total

payroll and total employment data from LBD (Appendix Table A.6). Since the LBD covers payroll

and employment of all establishments in the U.S., this measure of average wage does not suffer

the problem of excluding workers who work for the same firm but located outside of the 31 states

in my sample.

Second, in the unreported results, I also find higher market power is associated with signifi-

cantly higher Wage lbd within finance relative to non-finance using all firms from the LBD with-

out controlling for firm workforce composition.40 Moreover, I find the excess wage paid in finance

within the sample of all firms from the LBD is much higher than the one I observed in my baseline

sample (24%), and it is very comparable to the one documented in (Philippon and Reshef, 2012).

These results suggest that excluding workers located outside of my 31 states underestimate the

finance wage premium, but it does not drive the relation between firm market power and wages.

For a firm in multiple industries, I classify it to the industry in which the firm has at least 50% of

its employment. This rule implicitly assumes a change in firm market power would have the same

effect on the wages of workers at establishments in different industries but belonging to the same

firm. To alleviate the concern that my earlier findings are driven by classifying some non-finance

workers into finance industries, I replicate equation (5) using establishment-year data on average

wages and industry from LBD. While I cannot control for workforce compositions due to data lim-

itation at establishment-level, I control for firm fixed effects to absorb unobservable time-invariant

firm quality. The identification is achieved using within-firm variation, comparing multiple estab-

lishments belonging to the same firm but different industries. In the untabulated results, I find the

positive relationship between firm market power and average wages is still significantly stronger

in finance within this establishment-year sample.

40Information on workforce composition are from LEHD, so they are not available for firms which are in the LBD
but cannot be matched with LEHD.
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1.8 Conclusion

Increasing industry concentration in the U.S. has raised concerns that declining competition in

the labor market has led to slow wage growth. While this linkage holds generally, this paper shows

the finance sector has been an exception. In this paper, I explore how and why market power affects

financial firms’ wage-setting behavior differently from non-financial firms. Given the size of the

unexplained wage premium in finance and how it has contributed to income inequality, it is critical

to understand why financial firms are unique in setting wages.

Using a large sample of private and publicly listed firm data from the U.S. Census Bureau,

I construct proxies for firm-specific market power to examine how the variation in firm market

power explains the heterogeneity of wages within finance and how the role of firm market power

within finance differs from non-finance. Overall, this paper shows that higher firm market power

is associated with relatively higher wages within finance as compared to non-finance.

In this paper, I argue that rent-sharing plays an essential role in driving the more pronounced

effect of firm market power on finance wages. An increase in firms’ market power not only in-

creases firms’ labor market monopsony power in lowering wages by decreasing competition for

hiring workers, but also increases firms’ product market monopoly power by decreasing compe-

tition for selling products or buying inputs. With higher market power, firms can extract higher

rents to share with their workers. As compared to non-financial firms, financial firms with higher

market power pay relatively higher wages because rent-sharing effect dominates the effect of labor

monopsony, and the net effect is relatively higher in finance.

I provide evidence on two non-mutually exclusive mechanisms that explain why rent-sharing

is more prevalent in finance. First, I show that with higher firm market power, financial firms

can extract relatively higher profits to share with workers. Market power is particularly valuable

in finance than in non-finance as it allows firms to charge relatively higher price-cost margins.

Second, financial firms have to give a higher fraction of rents with workers as finance workers

have relatively higher wage bargaining power. This mechanism is primarily applied to high-skill

workers as they are more likely to be matched with larger scale jobs in finance. Indeed, I show
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that wages of high-skilled workers at financial firms respond more positively to the change in firm-

specific market power. As financial firms disproportionally distribute rents to high-skilled workers,

I also show higher market power is associated with higher within-firm pay inequality within finance

relative to non-finance.
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Figure 1.1: Trends in Industry Concentration and Wages, 1990-2008

Figure (a) plots trends in the employment-weighted average of the Herfindahl-Hirschman Index(HHI) constructed by Equation (1) at the 3-digit-
SIC-year level by finance and non-finance sectors. Each bar represents the mean HHI in a given sector which is averaged across industry-year cells
within each of the six-year periods(the last period includes seven years, 2002-2008) using the number of employees in each cell as the weight. The
average HHI represents the degree of employer concentration the average worker faces in the finance or non-finance industries. Each straight line
represent the linear trend of HHI between 1990 and 2008 in a given sector. Figure (b) plots trends in the employment-weighted average of real
wages computed at the firm-year-quarter-level in finance and non-finance sectors. Each bar represents the average real wage which is averaged
across firm-year-quarter cells within each of the six-year periods(the last period includes seven years, 2002-2008) using the number of employees
in each cell as the weight. Each straight line represent the linear trend of average wage between 1990 and 2008 in a given sector.

(a) Trends in Average Industry Concentration

(b) Trends in Average Real Wage
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Figure 1.2: Wage Patterns and Firm Market Power: Finance vs. Non-finance Industries

The figures show how wage patterns in finance and non-finance respond to a change in firm market power from the first quartile of firm market
power distribution within the sample. A firm’s market power is measured as the firm’s employment share in its industry (defined using two-digit
SIC). Each figure plots regression coefficients of D2nd

f,j,t−4, D3rd
f,j,t−4, and D4th

f,j,t−4 from equation (4), where D2nd
f,j,t−4, D3rd

f,j,t−4, and D4th
f,j,t−4

are equal to 1 if the firm f ’s market power in year-quarter t−4 is respectively in the second, third or fourth quartile of firm market power distribution
within the sample. The depended s in plot (a) and (b) are the log of quarterly average wages (logWages) and the log of average wages of high-skill
workers (logWages hskill) respectively. The solid line indicate point estimates and the dashed line indicate 95% confidence bounds based on
standard errors clustered at the firm-level.

(a) Wage Premium and Market Power

(b) Wage Premium of High-skilled Workers and Market Power
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Table 1.1: Summary Statistics: Firm Wage Pattern, Market Power and Other Characteristics

This table reports firm-level summary statistics. The sample consists of US public and private firms, and spans
from Q2, 1990 through Q3, 2008. All refers to all observations in the sample. Non-finance refers to observations
in finance industries. Finance refers to observations in non-finance industries. In columns (1) to (3) sample means
(standard deviations) are computed across all-firm-quarter observations in each category. Column (4) provides
differences between means in column (3) and column (2). Stars in the column (4) represent the level of p-values
of testing the difference between columns 2 and 3: *** indicates p<0.01, ** indicates p<0.05, and * indicates
p<0.1. All definitions are provided in Appendix I. The number of observations is rounded following the Census
Bureau’s disclosure rules.

(1) (2) (3) (4)
All Non-finance Finance Difference

[(3)-(2)]

Panel A: Wage Pattern
Average quarterly wage ($) 8864 8771 10910 2142***

(8039) (7786) (12210)
Average quarterly wage of high-skill ($) 17430 17180 23050 5869***

(25650) (24630) (41880)
Quarterly wage 90th/10th percentile ratio 4.277 4.247 4.957 0.71***

(5.757) (5.704) (6.79)

Panel B: Firm Characteristics
MarketPowerE (2-digit SIC, %) 0.002 0.002 0.003 0.001***

(0.05) (0.051) (0.04)
MarketPowerE (3-digit SIC, %) 0.011 0.011 0.014 0.002***

(0.193) (0.192) (0.208)
HHI (2-digit SIC) 0.004 0.004 0.007 0.003***

(0.011) (0.011) (0.007)
HHI (3-digit SIC) 0.008 0.008 0.01 0.003***

(0.019) (0.019) (0.018)
Average education level (year) 13.79 13.77 14.23 0.46***

(1.355) (1.354) (1.294)
Average working experience (year) 20.62 20.57 21.64 1.062***

(6.888) (6.886) (6.865)
CollegeShare (%) 35.05 34.72 42.27 7.546***

(25.42) (25.34) (26.2)
MaleShare (%) 55.07 56.14 31.39 -24.74***

(33.42) (33.34) (25.57)
Firm age 13.04 12.99 14.13 1.136***

(8.545) (8.519) (9.02)
Number of observations 64,790,000 62,000,000 2,795,000
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Table 1.2: Industry Concentration and Firm Wages

This table presents estimates of the relation between industry concentration and firm average wage.
The sample consists of US public and private firms, and spans from Q1, 1990 through Q3, 2008.
The dependent variable is the log-transformed average quarterly wages at the firm. Wages are in
2001 constant dollars. HHI represents the Herfindahl-Hirschman Index. LogFirmN represents the
log of total number of firms in a given two-digit SIC industry. Column (2)-(5) control for the four-
quarter-lag of log of firm age and firm-level measures of workforce composition, including share of
male workers, log of average education level, share of college workers, and log of average worker
experience. All controls are lagged by four quarters, except the indicator FIN. Standard Errors are
clustered at industry level and reported in parentheses. *** indicates p<0.01, ** indicates p<0.05,
and * indicates p<0.1. All definitions are provided in Appendix I. The number of observations is
rounded following the Census Bureau’s disclosure rules.

(1) (2) (3) (4) (5)
logWages logWages logWages logWages logWages

FIN 0.114*** 0.186*** 1.347**
(0.002) (0.002) (0.642)

HHI (2-digit SIC) -3.926*** -3.374*** -3.917***
(0.027) (0.024) (0.026)

FINXHHI (2-digit SIC) 16.44***
(0.230)

HHI (3-digit SIC) -0.963***
(0.014)

FINXHHI (3-digit SIC) 3.315***
(0.074)

LogFirmN 0.0309
(0.036)

FINXLogFirmN -0.101*
(0.057)

Number of observations 64,790,000 64,790,000 64,790,000 64,790,000 64,790,000
R-squared 0.014 0.152 0.161 0.155 0.157
YearxQuarterFE YES YES YES YES YES
Workforce composition YES YES YES YES
Firm Age YES YES YES YES
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Table 1.4: Firm Market Power and Other Measures of Wages

This table presents the estimates of the effects of firm market power measured by employment on different
measures of wages of finance and non-finance firms. The dependent variables are the log of median quarterly
wages at the firm in column (1), the log of average quarterly wages adjusted for cost of living in column
(2), the log of average quarteraly wages of male workers in column (3) and the log of average quarterly
wages of female workers in column (4). Wages are in 2001 constant dollars. Standard Errors are clustered at
firm-level and reported in parentheses. *** indicates p<0.01, ** indicates p<0.05, and * indicates p<0.1.
All definitions are provided in Appendix I. The number of observations is rounded following the Census
Bureau’s disclosure rules.

(1) (2) (3) (4)
logMedWages logWages adj logWages m logWages f

FIN 0.213*** 0.223*** 0.268*** 0.148***
(0.001) (0.0016) (0.0025) (0.0016)

MarketPowerE (2-digit SIC) 0.0686*** 0.0996*** 0.0354** 0.098***
(0.0253) (0.0352) (0.0157) (0.035)

FINXMarketPowerE (2-digit SIC) 0.195** 0.389** 0.362*** 0.302**
(0.0799) (0.161) (0.138) (0.125)

Number of observations 64,790,000 64,790,000 39,990,000 39,990,000
R-squared 0.154 0.154 0.12 0.075
YearxQuarterFE YES YES YES YES
Workforce Composition YES YES YES YES
Firm Age YES YES YES YES
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Table 1.5: Firm Market Power and Profitability in Finance

This table presents the estimates of the effects of firm market power measured by employment on
the firms’ profitability within finance and non-finance. The sample consists of US public firms,
and spans from Q2, 1990 through Q4, 2005. The dependent variable is the return on asset(ROA)
at the firm, where ROA is defined as the EBITDA scaled by total assets at given firm-year-quarter.
Besides time fixed effects, all regressions control for the four-quarter-lag of firm-level measures of
workforce composition, including the share of male workers, the log of average education level, the
share of college workers, and the log of average worker experience. Column (2) and (4) also control
for the four-quarter-lag of log firm age. Standard errors are clustered at firm-level and reported in
parentheses. *** indicates p<0.01, ** indicates p<0.05, and * indicates p<0.1. All definitions
are provided in Appendix I. The number of observations is rounded following the Census Bureau’s
disclosure rules.

(1) (2) (3) (4)
ROA ROA ROA ROA

FIN -0.0527*** -0.0591*** -0.0495*** -0.0564***
(0.0054) (0.0054) (0.0054) (0.0054)

MarketPowerE (2-digit SIC) 0.0087** 0.0056**
(0.0035) (0.0024)

FIN×MarketPowerE (2-digit SIC) 0.0242*** 0.021**
(0.008) (0.0093)

MarketPowerE (3-digit SIC) 0.0047*** 0.0035***
(0.0012) (0.001)

FIN×MarketPowerE (3-digit SIC) 0.0003 0.0007
(0.002) (0.002)

lgFirmAge 0.064*** 0.063***
(0.0052) (0.0052)

Number of observations 91,000 91,000 91,000 91,000
R-squared 0.047 0.078 0.05 0.08
Year×Quarter FE YES YES YES YES
Workforce Composition YES YES YES YES
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Table 1.7: Firm Market Power and Wages of High-Skill Workers in Finance

This table presents the estimates of the effects of firm market power measured by employment on the wages of high-skill
workers at finance and non-finance firms. The sample consists of US public and private firms, and spans from Q2, 1990
through Q3, 2008. The dependent variable is the log-transformed average quarterly wages of high-skill workers at the
firm. Wages are in 2001 constant dollars. Standard errors are clustered at firm-level and reported in parentheses. ***
indicates p<0.01, ** indicates p<0.05, and * indicates p<0.1. All definitions are provided in Appendix I. The number
of observations is rounded following the Census Bureau’s disclosure rules.

(1) (2) (3) (4)
logWages hskil logWages hskil logWages hskil logWages hskil

FIN 0.242*** 0.239*** 0.242*** 0.241***
(0.0023) (0.0026) (0.0023) (0.0023)

MarketPowerE (2-digit SIC) 0.365*** 0.34***
(0.116) (0.111)

FINXMarketPowerE (2-digit SIC) 0.933**
(0.428)

MarketPowerE (3-digit SIC) 0.124*** 0.119***
(0.0156) (0.0158)

FINXMarketPowerE (3-digit SIC) 0.0919**
(0.0401)

Number of observations 64,790,000 64,790,000 64,790,000 64,790,000
R-squared 0.093 0.093 0.093 0.093
Year × QuarterFE YES YES YES YES
Workforce composition YES YES YES YES
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Table 1.11: Finance vs. construction, transportation and public utilities, and services

This table presents results of the effect of firm market power on average wages and high-sklll wages.
The sample consists of US public and private firms, and spans from Q1, 1990 through Q3, 2008. In
both columns, the reference group includes firms in Construction, Transportation and Public Utilities,
and Services. Standard Errors are clustered by firm and reported in parentheses. *** indicates
p<0.01, ** indicates p<0.05, and * indicates p<0.1. All definitions are provided in Appendix I.
The number of observations is rounded following the Census Bureau’s disclosure rules.

(1) (2)
logWages logWages hskill

Construction, Transportation, Public Utilities and Services Omitted Omitted

Mining 0.123*** 0.139***
(0.004) (0.006)

Manufacturing -0.0232*** 0.0861***
(0.001) (0.002)

Wholesale 0.0776*** 0.159***
(0.0011) (0.0016)

Retail -0.323*** -0.332***
(0.001) (0.001)

FIN 0.0655*** 0.0625***
(0.001) (0.002)

MarketPowerE (2-digit SIC) 0.0858*** 0.331***
(0.013) (0.059)

MiningXMarketPowerE 0.0262 -0.131
(0.031) (0.084)

ManufacturingXMarketPowerE 0.163*** 0.388***
(0.042) (0.135)

WholesaleXMarketPowerE 0.093 0.369
(0.088) (0.354)

RetailXMarketPowerE -0.0372 -0.189*
(0.037) (0.109)

FINXMarketPowerE 0.555*** 1.137**
(0.199) (0.472)

Observations 64,790,000 64,790,000
R-squared 0.21 0.143
Year×Quarter FE YES YES
Workforce Composition YES YES
Firm Age YES YES
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Table 1.12: Individual Level Regressions: Firm Market Power and Worker Wages

This table presents the estimates of the effects of firm market power measured by employment on the wages of
finance and non-finance firms using individual-level panel data. This sample only includes the wage paid in first
quarter of each year for each worker. The dependent variable is the log of real quarterly wages. Real wages are in
2001 constant dollars. FIN is equal to 1 if the worker’ employer is classified as a finance firm. MarketPowerE

is a measure of a firm’s market power in a given 2-digit SIC industry. All regressions control for year fixed effects,
year fixed effects by education and function of worker age interacted with education dummies. Standard Errors are
clustered by firm and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

(1) (2) (3) (4)
LogWages wk LogWages wk LogWages wk LogWages wk

FIN 0.182*** 0.156*** 0.0823***
(0.0127) (0.0072) (0.0021)

MarketPowerE (2-digit SIC) -0.00791*** -0.00171*** 0.00258***
(0.0026) (0.0006) (0.0008)

FINXMarketPowerE (2-digit SIC) 0.0945*** 0.0486*** 0.0255***
(0.0208) (0.0081) (0.007)

Observations 466,600,000 466,600,000 466,600,000 466,600,000
R-squared 0.168 0.854 0.854 0.874
Year FE YES YES YES YES
Worker FE NO NO YES YES
Edu×Year YES YES YES YES
Age×Edu YES YES YES YES
State×Year YES
Industry×Year YES
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CHAPTER 2

MERGERS AND ACQUISITIONS, TECHNOLOGICAL CHANGE AND INEQUALITY
(WITH PAIGE OUIMET AND ELENA SIMINTZI)

2.1 Introduction

The structure of job opportunities in the United States has sharply polarized over the last forty

years. Automation technologies and robotic machines have replaced workers with moderate skills

performing routine tasks (Autor, Levy, and Murnane, 2003; Acemoglu and Autor, 2011; Autor

and Dorn, 2013). At the same time, these technologies have increased the productivity of high-

skilled workers and, hence, the skill premium (Katz and Autor, 1999). Both trends have led to

increasing wage inequality. While technology adoption has long been recognized as a key factor

in the observed labor market changes, less is known about when firms decide to invest in these

technologies.1

In this paper, we provide micro foundations for these economy-wide labor market trends. We

argue that mergers and acquisitions (M&As) act as catalysts for technology adoption associated

with important occupational and wage changes. First, M&As are unambiguously economically

important events that significantly impact the target firm with potentially economy-wide implica-

tions. Second, M&As arguably lower the opportunity costs of investing in labor-saving technolo-

gies. Specifically, it may be economically efficient to adopt a given technology following an M&A

if one investment can now replace more employees or if the acquirer has specific skills in imple-

menting such technologies. Alternatively, an M&A may alleviate frictions to the implementation

of such technologies, such as financial constraints or a reluctance by the target’s manager to invest

in technology that requires firing specific employees.

1Exceptions include Jaimovich and Siu (2015), Zhang (2016), and Hershbein and Kahn (2016) who show that
technology adoption is accelerated in recessions, when opportunity cost of investing in technology is lower.
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We use establishment level data from the Occupational Employment Survey (OES), conducted

by the Bureau of Labor Statistics (BLS), to study the occupational employment and wage changes

following M&As. We focus on horizontal M&A deals over the 2001-2007 period and identify a set

of 2,141 establishments belonging to 348 M&A target firms covered by the OES survey. We form

a control sample of similar establishments in terms of industry, year of observation in the OES

survey, pre-treatment employment and share of routine occupations and perform a difference-in-

differences (DiD) identification strategy.

We find that establishments that are M&A targets become less routine task intensive, as com-

pared to a matched sample of establishments. Specifically, routine share intensity, namely the per-

cent of employees in routine occupations, is reduced by 4.4% in treated establishments, consistent

with technological adoption disproportionately displacing workers performing routine, easily cod-

ifiable tasks, a process often referred to as routine-biased technological change. Routine-intensive

occupations have been shown to be over-represented in the middle of the income distribution and,

as such, displacing those occupations with technology has been linked to the polarization of job

opportunities in the U.S. labor market (Autor and Dorn, 2013). We also find that there is an

occupational shift towards relatively more high skilled workers following M&As in treated estab-

lishments. The occupational share of high skill jobs increases by 2pp (or by 17% relative to the

pre-treatment mean), which can be explained by complementary technology increasing demand

for high skill workers, a process often referred to as skill-biased technological change. These oc-

cupational shifts away from middle- and towards high-skill workers suggest that employment in

M&A establishments tends to become more polarized.

These shifts in the employment distribution in M&A targets have implications on wages. Mean

wages may increase following M&As as the relative fraction and productivity of high-skill workers

increase. Indeed, we find a 4% increase in the average wage at treated establishments following

the acquisition, as compared to the matched sample of control establishments. Moreover, wages

are likely to become more polarized as the labor shares are increasingly represented by both the

high and low tails of the skill distribution. Consistent with the notion that M&As are associated
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with more unequal pay, we find that the standard deviation in wages relatively increases by 8.9%

We provide evidence for three non-mutually exclusive mechanisms that can help explain how

M&As act as a catalyst for labor-saving technology adoption. First, we argue that the increased

scale within occupations following an M&A can better offset the fixed costs of investing in new

technology. To fix ideas, if an investment in computer software can more efficiently perform

a specific function in accounting, then it can displace one worker in a small firm but possibly

several workers in a larger firm. In support of this mechanism, we find that labor market outcomes

are more pronounced in target establishments that have greater occupational overlap with their

acquirer. Second, M&As often target underperforming firms leading to ex-post efficiency gains

(Maksimovic and Phillips, 2001). Acquirers may have already invested in technology and as such,

may already own rights to technology which can be efficiently utilized at the target or may know

how best to integrate automation at the target. We identify such acquirers by low shares of routine

intensive occupations before the acquisition, indicating that these acquirers have already invested in

labor-saving technologies. Consistent with this mechanism, we show greater effects on the target’s

labor market outcomes when more technologically advanced acquirers are involved. Third, M&As

may resolve financial constraints at the target firm (Erel, Jang, and Weisbach, 2015). This may

induce automation if financially constrained targets were unable to finance the initial fixed costs

necessary to invest in new technologies. We show overall greater effects for private targets, namely

those targets more likely to be financially constrained (Officer, 2007).

Besides documenting labor market changes consistent with technology adoption, we provide

direct evidence that IT intensity increases following M&As. Using granular data on IT investment,

we find that investments in IT significantly increase at target establishments following the M&A,

as compared to a matched set of control establishments. We find that overall IT budgets, as well

as specific budgets for software, hardware and services, increase by about 5% post-M&As. These

results further support our argument that M&As act as a catalyst of technology adoption. These

results cannot be explained by an alternative hypothesis of simply cost-cutting following M&As,

accompanied by labor restructuring unrelated to the adoption of technology.
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Our estimates are consistent with both firms pursuing M&As with the objective of implement-

ing labor-saving technology ex-post as well as with an explanation where firms pursue M&As

for reasons orthogonal to technology and ex-post learn of the benefits to greater technological

adoption. Irrespective of their motivation, it is important to consider all M&As to document a

mechanism through which technology adoption and the accompanied labor changes feed into the

real economy. Nevertheless, we still need to rule out the possibility that an omitted variable, such

as industry or technology shocks (Harford, 2005), may lead to both M&As and changes in labor

demand. In our baseline analysis, we use a sample of matched control establishments to control for

trends that would equally affect similar firms in the economy. We also control for time-invariant

establishment characteristics by including establishment fixed effects, for time-varying industry

characteristics by including interacted industry and year fixed effects, and for time-varying local

characteristics by including interacted state and year fixed effects.

We provide additional analyses that further support a causal interpretation. We first consider

a sample of M&As that get cancelled due to an exogenous reason to labor demand. Specifically,

we look at deals that are cancelled either because of regulatory intervention or due to the bid-

der being acquired by a third party following the acquisition announcement. We follow the same

matching procedure used for our baseline analysis and create a control sample of matched estab-

lishments. We repeat our analysis using the set of the cancelled M&A targets (‘pseudo-treated’)

and the matched set of non-M&A establishments (controls). We cannot replicate the same pattern

of results in our baseline analysis; if anything, the estimated coefficients have now the opposite

sign. Assuming that both completed and exogenously cancelled M&A deals should equally re-

flect changes in demand for M&As driven by an omitted variable, these results help mitigate such

concerns.

Second, we present estimations within establishments, further alleviating concerns that time-

varying differences between treated and control establishments are driving our findings. Specifi-

cally, we separate occupations in a given establishment into routine and non-routine and estimate
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whether there are differential effects on employment and wages specific to routine occupations fol-

lowing the M&A. Consistent with technology adoption disproportionately displacing employees

performing routine tasks and thereby dampening their wages (Autor, Levy, and Murnane, 2003),

we find a greater reduction in both wages and employment for those employees performing rou-

tine tasks in the establishment, relative to their peers in non-routine occupations. Importantly,

this analysis allows us to control for interacted establishment and year fixed effects absorbing any

time-varying shocks at the establishment level that may be correlated with changes in establish-

ment labor demand.

The labor market changes we identify within establishments do not seem short-lived, or specific

to our sample of OES establishments. In a sample of establishments we are able to track over time,

we observe the same patterns hold in the long-run. Most importantly, we show that occupational

and wage changes post-M&A are generalizable industry-wide. Using data since 1980s, we mea-

sure M&A intensity as the count of horizontal deals in an industry-decade normalized by the count

of total horizontal deals in the decade. We collect data on occupational employment and wages

from the Integrated Public Use Microdata Service (IPUMS) available every decade. We are able to

replicate the same patterns at the industry level: routine share intensity decreases within industries

when past M&A activity increases; at the same time, the share of workers with college education,

an alternative measure of employee skill, increases when past M&A intensity increases. Similar

to our establishment level results, these shifts in occupational employment following M&As have

implications on industry inequality. We find that high M&A activity within industries is related to

higher average wages and higher wage disparity.

Our paper contributes to the finance literature on mergers and employment outcomes. This

literature argues that human capital considerations are important determinants of M&As. Pon-

tiff, Shleifer, and Weisbach (1990) show evidence of pension asset reversions following takeovers

consistent with the view that hostile takeovers breach contracts between firms and employees.

Dessaint, Gobulov, and Volpin (2015) and John, Knyazeva, and Knyazeva (2015) find that labor
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restructuring (in the form of layoffs) is a primary source of synergies and value creation in cor-

porate takeovers. Olsson and Tåg (2017) find that following an acquisition by a PE firm, workers

in more routine or easily offshorable occupations are more likely to lose their jobs. Ouimet and

Zarutskie (2016) show that some firms use takeover markets to acquire the workforce at the target.

Tate and Yang (2016) show that diversifying acquisitions occur more frequently among industry

pairs with higher human capital transferability. Babenko, Du, and Tserlukevich (2017) show that

employment stock option compensation may be modified by acquirers in a way that is not bene-

ficial to employees and this in turn can affect the offered premium for the acquisition. Our paper

delves deeper into the heterogeneity of employment outcomes post M&A. Workers engaged in

routine activities are most likely to be replaced as a result of investment in technology. At the same

time, high skill workers may gain following an M&A.

The paper also builds on the literature on skill-biased technological change (Katz and Autor,

1999; Goldin and Katz, 2008, 2009; Acemoglu and Autor, 2011) and routine-biased technological

change (Autor, Levy, and Murnane, 2003; Autor and Dorn, 2013; Goos, Manning, and Salomons,

2014). Rapid technological progress is viewed as the primary cause of the pattern of increasing

wage inequality in the U.S. We contribute to the literature by showing that M&A activity acts as

catalyst for job polarization leading to occupational shifts and wage trends which assimilate the

aggregate patterns.

2.2 Data and methodology

2.2.1 Data

We use confidential micro-data from the Occupational Employment Survey (OES), conducted

by the Bureau of Labor Statistics (BLS). This data comes from an annual or biannual survey

of individual establishments in the U.S. No establishment is surveyed twice within three years,

however, it is common for larger establishments to appear in the data exactly once every three

years. The surveyed establishments are selected in a manner to allow for optimal inferences about

the US economy as a whole. Aggregated versions of this data are released publicly and used to

measure national occupational employment.
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For each establishment-year, we observe employment in 800 different occupational categories

(represented by 6-digit SOC codes). Within each of these occupations at a given establishment-

year, we then observe the count of employment within twelve separate wage bins, where the exact

cutoff points for each wage bin changes over time to best reflect changing wage distributions.

Furthermore, for each surveyed establishment, we also observe its location (by county), EIN, name,

legal name (ultimate owner), industry and a time invariant establishment-identifier which we can

use to track establishments which have switched owners over time.

We identify horizontal M&A deals, namely M&As in the same 4-digit NAICS industry, from

SDC Platinum. We match those deals to the OES survey over the 2001-2007 period. We start in

2001 as the identifier which we need to link establishments over time is unavailable in earlier years.

We end in 2007 to avoid any overlap with the financial crisis which affected both the intensity of

M&A activity and firms’ labor market outcomes. We identify a total of 348 horizontal M&A deals

in the OES survey that cover 2,141 establishments that had an M&A occurring during the time

period the establishment is sampled by OES.2 We create a set of possible control establishments

after excluding all establishments identified to be involved in M&As during our sample period

from this group. For each target establishment, we find two control establishments satisfying the

following matching criteria:3 i) they operate in the same 4-digit NAICS industry as the target

establishment and appear for the first time in the same year in the OES survey, ii) they are sampled

for the second time within one year of the treated establishment’s second sampling, iii) they have

similar size with the target as measured by number of employees (within 100% of employment

distance), iv) they are similar with the target in terms of pre-treatment routine share intensity

(within 100% of routine share intensity distance).4 We end up with a sample of 3,081 control

2We use a two-step procedure to match M&A deals to the OES survey. First, we match using EIN and the
target firm’s Compustat provided EIN. However, since firms often report multiple EINs, we also use a name matching
procedure. We start with a fuzzy logic algorithm to identify possible candidates, then hand match all likely candidates.
A match is only retained if we observe the target establishment strictly before and after the M&A is completed.

3We allow matched establishments to repeat.

4In cases where more than two control establishments satisfy the matching criteria, we keep those establishments
with the closest value of ex-ante employment.
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establishments. Both treated and control establishments are observed exactly twice in the 2001-

2007 period.5

We define routine share intensity following Autor and Dorn (2013).6 Routine share intensity

(RSH) of an establishment is defined as the ratio of total employment of routine task intensive

occupations over total employment in the establishment. We use a log transformation of one plus

the average value of RSH at the establishment level to avoid dropping cases where an establishment

has no routine occupations. In the Internet Appendix, we will also present results using instead

RTI as our measure.7

We define the share of high-skill employment as total employment identified as high-skill at

the establishment-year level as a percent of total employment. We define high-skill employment as

managerial occupations in the baseline analysis. We also present robustness using three different

definitions of high-skill employment. First, we use data from the 2000 American Commuting

Survey (ACS). An occupation is high skill if the percent of workers who have completed some

college education is above the 75th percentile of the distribution across all occupations in the ACS

sample. Second, to show our results are robust to alternative cutoffs, we again use the ACS survey

but instead define an occupation to be high skill if the percent of workers who have completed

some college education is above the 66th percentile of the distribution across all occupations in the

ACS sample. Third, we define high skill occupations following Hecker (2005). These occupations

are scientific, engineering and technician occupations.

We define offshorability of a given occupation following Autor and Dorn (2013) and compute

5OES data are imputed when missing. To confirm that our results are not driven by imputation we drop cases
where establishment data is imputed for either one or for both years and re-estimate our baseline regressions. Results
are robust.

6Autor and Dorn (2013) define the frequency of “routine” tasks typically performed by employees assigned to a
given occupation. Since occupations involve multiple tasks (routine, abstract, manual) at different frequencies, Autor
and Dorn (2013) create an indicator which measures the routine task intensity (RTI) by occupation and define an
occupation as routine task intensive if in the top employment-weighted third of routine task-intensity. We merge RTI
to occupations in OES by SOC codes using crosswalks from David Dorn’s website. http://www.ddorn.net/data.htm.

78% of establishment-years in our sample have no routine occupations. We find qualitatively similar results if we
drop those from the estimation.
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an employment weighted average of offshorability at the establishment level.8 We measure wages

by taking the occupation-wage bin employment-weighted median within each establishment. All

wages are adjusted for inflation and reported in 2001 dollars. We define all variables used in our

analysis in the Appendix.

Table 2.1 reports summary statistics for our sample establishments. The average establishment

in our sample employs 199 employees. As described earlier, the OES survey over-samples larger

establishments. This limits our ability to reach conclusions about the smallest of establishments

but ensures that our results are based on a sample of economically important entities. Fifty-three

percent of employment at the average establishment is identified as routine occupations and twelve

percent as high-skill occupations. Given occupations are coded as routine if they have a routine

intensive measure in the top one third of the data, these results suggest that target establishments

(and mechanically the matched control establishments) tend to have a disproportionate share of

routine employment. Our sample firms have an average (median) wage of $16.5 ($14.2) per hour.

This is comparable to the mean (median) hourly US wage in 2001 of $16.35 ($13.0).9 Finally, we

report an average standard deviation of hourly wages equal to 8.4.

We require treated and control establishments to match in terms of pre-treatment employment

size and routine share intensity and we report summary statistics pre-treatment for the two groups

in columns 4-9, Table 2.1. Our control and treated establishments show economically similar

characteristics with the exception of routine share intensity. This may indicate that firms with high

routine-share intensity ex-ante are more likely to be M&A targets as the acquirers are aware of the

benefits of replacing routine occupations with technology. In untabulated results, we run predictive

logit regressions and confirm this to be the case. Our sample of target establishments covers a wide

range of industries. About a quarter of our sample M&As take place in the manufacturing sector

and 70% in services. The industry distribution is similar across treated and control samples by

8We use SOC codes to merge with the OES sample using crosswalks from David Dorn’s website.
http://www.ddorn.net/data.htm.

9See https://www.bls.gov/oes/bulletin 2001.pdf for more information.
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definition.

2.2.2 Methodology

To identify the effect of M&As on labor outcomes, we estimate the following difference-in-

differences specification at the establishment-year level:

yi,t =αt + αi + γ1 · Postt + γ2 · Postt · M&Ai + β ·Xi,t + εi,t (2.1)

where i denotes establishments and t denotes years. Postt is an indicator set equal to one for

years following M&As—zero otherwise. M&Ai is an indicator equal to one for establishments

targeted by M&As (treated) and zero for the matched set of control establishments.10 Both treated

and control establishments are observed exactly twice in our sample, once prior to the year of

the M&A and once after. Xi,t controls for offshorability to alleviate concerns that changes in

establishments’ offshoring potential could affect both the probability of M&As and our measured

outcomes. αi is an establishment fixed effect which controls for establishment characteristics that

do not vary over our sample period; and αt is a year fixed effect which absorbs aggregate shocks

affecting all establishments. In all specifications, we report robust standard errors clustered at the

firm level.

2.3 Results

2.3.1 Baseline results

We first examine how M&As affect the occupational composition in target firms. We hy-

pothesize that technology adoption following M&As will result in the displacement of employees

performing routine occupations. The labor economics literature (Autor, Levy and Murnane, 2003;

Autor and Dorn, 2013 among others) has established that technology is “routine-biased because

it is best at replacing workers performing routine, easily codifiable tasks that are typically tasks

10Note M&Ai is absorbed by the establishment fixed effects.
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requiring middle level skills. To test this, we examine how the share of routine-intensive occupa-

tions (RSH) changes at the target following the M&A, as compared to a matched group of control

establishments. Table 2.2 presents the results.

Column 1 shows that M&As are associated with a 4.4% average decrease in the routine share

intensity of the establishment, as compared to the matched control sample, in a specification with

establishment and year fixed effects. This result is statistically significant at the 1% level. In col-

umn 2, we control for the potential of establishments to offshore their production and continue to

find a 3.1% decrease in routine share intensity, also significant at the 1% level. Note we report a

positive correlation between the percent of offshorable jobs and the change in routine share inten-

sity. This is consistent with findings in the literature that more offshorable tasks tend to be also

more routine intensive. Goos, Manning, and Salomons (2014) report a correlation of 0.46.11 We

next repeat the estimation additionally controlling for interacted (4-digit NAICS) industry and year

fixed effects (column 3), interacted state and year fixed effects (column 4), and both industry-year

and state-year fixed effects (column 5) to control for industry shocks and local economic shocks

that might be contemporaneous with the timing of the merger, respectively. Across specifications,

the coefficients are similar in terms of magnitudes and statistical significance suggesting that in-

dustry or local shocks are not driving our findings.12

These results indicate that, on average, employment in highly routine occupations declines

by over 3% in a short window following an M&A. This is an economically important change

similar to employment losses documented following private equity acquisitions. Davis et al (2014)

find a decline in total employment at private equity acquisition targets in the three years post-

deal of 3% as well. Note we do not suggest that the observed decline in routine jobs post M&A

11In our data, we also confirm a positive univariate correlation between routine intensity and offshorability equal
to 0.54 and significant at the 1% level.

12In Internet Appendix Table B.1, we show these results are robust to an alternative measure of routine task inten-
sity. This alternative measure, RTI , is an employee-weighted average of the continuous variable measure of routine
task intensity at the occupational level, as used in Autor and Dorn (2013). The benefit of RTI is that we now use all the
variation as opposed to RSH, which is a dummy variable if RTI is in the top 1/3rd of the distribution. The downside of
this alternative measure is that it does not allow for a straight-forward interpretation of the economic magnitudes. As
such, we follow Autor and Dorn (2013) and use RSH as the primary measure but replicate results with RTI.

59



suggests a total decline in employment of 3% in our setting. In fact, our economic intuition has no

explicit prediction regarding changes in total employment as it is possible that a greater reliance

on automation ex-post may lead to an increase in employment in non-routine jobs, offsetting the

job losses in routine jobs. Specifically, technological adoption should increase demand for high

skill workers as new technology disproportionally increases productivity of high skill employees

(skill-biased technological change). In other words, technology is complementary to human capital

(Krueger, 1993; Autor, Katz, and Krueger, 1998).

In support of skill-biased technological change, we find an increase in the share of high-skill

employees in treated establishments following the M&A as compared to the group of control es-

tablishments. Table 2.3 repeats the specifications in Table 2.2 and shows a 2 percentage point

increase in the share of high-skill employees, or a 17% increase relative to the pre-treatment mean

(column 1). The coefficients are also statistically significant at the 1% level even after controlling

for industry and local economic shocks.13

Technology adoption associated with lower demand for workers performing routine tasks, dis-

proportionately represented in the middle of the wage distribution, and higher demand for high skill

employees at the right tail of the wage distribution should shift mean wages higher and increase

within-establishment wage inequality. Indeed, Table 2.4 shows a significant 4% increase in treated

establishments’ average hourly wage as compared to the control sample. This is similar to the 4%

wage increase for white collar workers following anti-takeover legislation that insulates managers

from hostile takeovers documented in Bertrand and Mullainathan (2003)—although the wage in-

creases in their setting captures managerial inertia and is associated with a fall in productivity as

opposed to upskilling following technological adoption.14 It is important to note that by focusing

on hourly wages, we avoid any contamination in our results from changes in hours worked around

the M&A event.

13In Internet Appendix Table B.2, we instead define high-skill in three different ways, as detailed in Section 2.2.1.
Our estimates are similar in both magnitudes and significance no matter which one of the three alternative skill defini-
tions we look at.

14In Internet Appendix Table B.3, we find similar results if we consider establishment median hourly wages instead.
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Moreover, we show M&As increase the within establishment wage inequality. We measure

wage inequality using the establishment standard deviation of wages, as in Barth, Bryson, Davis,

and Freeman (2016). Table 2.5 shows a 9% increase in establishment standard deviation of wages

(column 1), significant at 1% level, as compared to matched control establishments. This is a rapid

increase in inequality, compared to historical trends.15

In sum, the results are consistent with the notion that M&As act as a catalyst for labor-saving

technology adoption. We document reduced employment in high routine occupations and an in-

crease in within-establishment wage inequality. We also find evidence suggesting that the adoption

of this technology increases the productivity of high skill workers, as shown by the increase in rel-

ative employment of high skill occupations and the increase in mean wages. Thus, these results

suggest a more nuanced impact of M&As on workers as compared to earlier work which focused

on total employment changes and suggest that post-M&A changes involves a complex restruc-

turing of the labor force which may reflect cost-cutting, as evidenced in the decline of routine

employment, but also reflects significant reallocation of labor towards more skilled occupations

that accompany technology investments.

2.3.2 Evidence concerning mechanisms

We next explore potential channels driving the relationship between M&As and technological

change. We propose three non-mutually exclusive mechanisms: 1) an increase in occupational

scale; 2) tech-savvy acquirers being better equipped to adopt technology, or possibly directly im-

plement their existing technology at the target; and 3) lower financial constraints.

Our first mechanism is motivated by the fact that horizontal M&As involve the integration of

two firms engaged in the same industry. Assuming a technology is able to replace workers in a

given occupation, the fixed cost of investing in the technology is reduced as M&As increase the

number of employees in a given occupation that can be replaced by the technology. To test this

15In Internet Appendix Table B.4, we also consider the 90th to 10th percentile hourly wage ratio (in logs) within
establishments, following the labor literature studying aggregate inequality. However, such an approach is particularly
noisy in our setting given the modest distribution of employees within an establishment and the fact that our wages are
reported in bins. We report results that are qualititatively similar.
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mechanism, we measure the extent to which occupations at the target are also observed at the ac-

quirer before the acquisition. To this end, we measure ex-ante occupations at the acquirer using all

establishments which can be linked to the acquirer and observed within a two year window prior

to the acquisition. We drop treated observations for which the acquirer cannot be matched to the

OES data. Specifically, we define a dummy variable which takes the value of 1 if the percent of

target’s occupational employment overlapping with the acquirer is greater than the sample median,

0 otherwise (Overlap Occupi). We augment our baseline specification by including an interaction

between Postt ·M&Ai and Overlap Occupi. We repeat the key baseline measures, namely routine

share intensity, share of high skill occupations, average wages, and standard deviation of wages.

In all specifications, we include establishment fixed effects to control for time-invariant establish-

ment characteristics, interacted industry and year fixed effects to control for time-varying industry

shocks, and region times year fixed effects to control for time-varying local shocks. We use region

times year fixed effects, as opposed to the state times year fixed effects used in the baseline to

avoid over-saturating the model with fixed effects, due to the smaller sample. However, results

are qualititavely similar, albeit overall slightly weaker, when we use state times year fixed effects

instead.

We report the results in Table 2.6, Panel A. When looking at the proportion of routine workers,

we find consistent results with greater reduction on the labor force—a 2.2% greater decline— when

there is a greater overlap between occupations in the acquirer and the target. We find no significant

difference in the treatment effect on high skill-employment by occupational overlap. However, we

do find consistent results with an upskilling in the labor force when we look at average wages and

at within-establishment inequality. Mean wages increase by 2.7% more and standard deviation of

wages by 6.6% more when there is a greater overlap between occupations in the acquirer and the

target pre-treatment, and these effects are statistically significant.

Second, we propose that following an M&A, more technologically advanced acquirers may be

better equipped to implement labor-saving technology at targets. These acquiring firms may have

62



already invested in a certain technology that can be directly implemented at the target at competi-

tive prices. Or, these firms may just generally be better able to identify or implement value-added

automation technologies. To identify these tech-savvy acquirers, we measure ex-ante acquirers’

routine share intensity and take the employee-weighted average over the three years prior to the

acquisition. The idea is that acquirers with low routine share intensity pre-treatment should have

already invested in technology that has displaced workers performing routine tasks. We define a

dummy variable which takes the value of 1 if the pre-treatment employee-weighted average rou-

tine share intensity for the acquirer is below the sample median, 0 otherwise (Acq Low RSHi).

We thus augment our baseline specification by including an interaction between Postt · M&Ai and

Acq Low RSHi.

We repeat the same specifications as in Panel A, and report the results in Table 2.6, Panel B.

We find that routine share intensity decreases by 3.9% more for targets acquired by tech-savvy ac-

quirers although the results are just outside conventional levels of statistical significance. Note, in

unreported results, we find that the coefficient becomes significant at the 5% level once we control

for state times year (instead of region times year) fixed effects. Similarly, we find positive but in-

significant effects when we consider the share of high skill employment as our dependent variable.

Although noisy, these results are suggestive that technology is more likely to be introduced follow-

ing acquisitions by tech-savvy acquirers. Our intuition is strengthened when we instead consider

wages: both mean wages and standard deviation of wages increase by 9.13% and 15.6% more,

respectively, when the acquirer can better implement labor-saving technologies.

Third, we consider the role of financing constraints. Some M&A deals are motivated with the

goal of easing financial constraints at the target, as in Erel, Jang, and Weisbach (2015). We assume

private targets are most likely to be financially constrained, consistent with the finding in Officer

(2007) that private firms are bought at lower multiples. We identify the status of the M&A target

from SDC Platinum and create a dummy which is 1 for private targets, 0 otherwise (Privatei).

We augment our baseline specification by including an interaction between Postt · M&Ai and

Privatei and estimate our analysis using consistent samples with the previous analysis (requiring
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that the acquirer is observed in the OES data).16 We report the results in Table 2.6, Panel C. We

find stronger treatment effects for private targets when we consider changes in share of high-skill

employment, mean wages and wage inequality, but we are unable to find support for the financial

constraints channel when we instead consider changes in targets routine share intensity.

The greater treatment at private targets could also be explained by an agency mechanism. Ellul,

Pagano and Schivardi (2017) find that family firms, which represent a large fraction of private

firms, are less likely to fire workers even in the presence of a permanent shock. To the extent that

adopting labor saving technology is only value-enhancing if the technology replaces workers, these

same firms may be especially reluctant to pursue such investments. As such, acquirers of private

targets may have greater untapped opportunities to adopt labor-saving technologies, predicting

greater treatment effects.

In sum, these results suggest multiple mechanisms at play that can plausibly explain the ob-

served labor market changes post acquisitions. A caveat of this analysis, however, is that we cannot

assess the importance of each channel due to differences in the power of our empirical proxies.

2.3.3 Investment in IT

So far, we have argued that firms increase investment in labor-saving technology post M&A

by documenting changes in the labor force and compensation thereof. We next document changes

in IT spending. While we cannot directly observe investments specifically meant to reduce labor

costs, we can observe investments specific to technology using information from the Computer

Intelligence Technology Database (CiTDB), a proprietary database that provides information on

computers and telecommunication technologies at establishments across the U.S. CiTDB is a key

resource for data on IT investments at US firms and has been used in a number of papers exploring

technology spending, including Brynjolfsson and Hitt (2003), Bloom, Garicano, Sadun, and Van

Reenen (2014), Tuzel and Zhang (2017). CiTDB generates their data using annual surveys of

establishments. The data contain detailed information on IT investment and use, including budgets

16One exception is that we drop the top 10% of private targets by size, as these large private targets are unlikely to
be financially constrained.
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for new investments. This data is used by the sales and marketing teams at large US IT firms,

such as IBM and Dell, thereby assuring high data quality, as errors would be quickly picked up by

clients in their sales calls.

In this analysis, we compare outcomes at target establishments beginning two years before the

M&A effective date to two years after the M&A effective date. We follow a standard dif-in-dif

approach and compare these changes at target establishments with changes at a matched control

sample over the 2010-2015 period. CiTDB started collecting and tracking IT spending in 2007.

However, CiTDB data greatly increases in scope in 2010 with the 2010 survey covering 12 times

more establishments as compared to the 2007 or the 2009 survey. As such, we start our analysis

in 2010 although in unreported analysis we confirm our results are robust to starting our sample in

2007.17 Over our CiTDB sample period, the data covers over 19 million establishment-years. We

focus on IT budget, the main spending item related to technology adoption, and its three largest

components: i) hardware budget, ii) software budget, and iii) services budget.

We match target firm names from SDC using firm names available in the CiTDB data and we

include in the treated sample all establishments linked to the target and observed in the pre- to

post- M&A period. To create the matched sample, we start with the set of establishments which

are observed in the pre- to post- periods and are not identified as a target firm during our sample

period. We match based on establishment attributes in the pre-treatment year and require control

firms to match on (4-digit NAICS) industry, pre-treatment year and type of establishment.18 To

identify one unique control establishment out of this set of possible control establishments (all

matched by industry, year and type), we select the establishment which is closest to the treated

firm in terms of IT budget in the pre-M&A year. We end up with a sample of 4,707 unique firms

covering 230 (4-digit NAICS) industries and all states. The average (median) establishment in our

17We run this analysis on all available observations in the CiTDB data matched to an M&A and we dont limit the
sample to the establishments in our OES sample. Requiring an establishment to be observed in both data sets would
result in a small sample size.

18CiTDB identifies four different types of establishments: branch, headquarters, stand-alone and ultimate head-
quarters. The majority of our matched establishments are branches (80%) and our results are robust to limiting the
sample to just branches.
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sample spends $333 (92) thousand in IT, $57 (17) thousand in hardware, $95 ($26) thousand in

software and $ 105 ($29) thousand in services, respectively.

Table 2.7 presents the results. We control for establishment fixed effects, interacted (4-digit

NAICS) industry and year fixed effects, and interacted state and year fixed effects in all columns.

In column 1, we document IT spending increases by 4.8% post-M&A as compared to a matched

set of control establishments, and this increase is statistically significant at the 1% level. We doc-

ument similar increases that are both economically and statistically significant when we instead

consider hardware, software and sevices budget, in columns 2-4, all consistent with our argument

that targets invest in technology. Our results also hold when we normalize our dependent vari-

ables by the number of employees in the establishment, reported in columns 5-8, suggesting these

establishments become more capital intensive after they get acquired.

Overall, these results are consistent with our hypothesis that M&As act as a catalyst for tech-

nology adoption. Moreover, these results argue against an alternative cost-cutting interpretation of

our baseline findings. Firms may be reducing employment in some areas, specifically employees

engaged in routine occupations, however, they are also expanding IT budgets and increasing the

relative share of high skill employees post M&A. Moreover, the results are large given that we

conjecture that some of the technology applied at the target post M&A may be technology already

owned by the acquirer. Thus, we interpret our estimated magnitudes with caution as they may be

downwards biased.

2.3.4 Identification concerns

To study how M&A activity relates to macro labor trends, we need to consider all M&As

irrespective of whether technology adoption was part of the ex-ante incentive to pursue the M&A or

not. However, to conclude that M&As act as a catalyst for the adoption of labor saving technology,

we need to address the alternative interpretation that an omitted variable (e.g. industry shock) may

be driving both M&A activity and the associated occupational changes we document in the data.

Our analysis allows us to absorb variation in industry and local conditions by controlling for time-

varying industry and state fixed effects. In this section, we provide further evidence to mitigate an
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omitted variable concern.

First, following the approach in Seru (2014) and Malmendier, Opp, and Saidi (2016), we con-

sider a sample of M&A deals that were announced but subsequently cancelled for reasons exoge-

nous to the targets labor needs. To identify this sample, we start with all M&A deals announced

over the 2001-2007 period that were subsequently withdrawn. We then read Factiva news articles

explaining the reasons for the cancellation and retain a sample of deals where the M&A was ei-

ther blocked by regulators, typically for anti-trust concerns, or because the acquirer was acquired

ex-post and had to withdraw the deal. This leaves us with a small sample of deals cancelled for

reasons exogenous to the target’s labor demand.19 We are able to identify 33 establishments in the

OES survey data with cancelled M&A deals and this forms our ‘pseudo treated’ group. Follow-

ing the same matching procedure as described in Section 2.2, we create a control sample which

excludes establishments involved in M&As over our sample period.

Table 2.8 repeats the specification in column 3, Table 2.2 controlling for establishment and

industry times year fixed effects.20 We consider all our main dependent variables using this sample

of ‘pseudo-treated’ deals and their matched control establishments. Across all our measures, we

cannot replicate the same pattern as in our baseline results. In fact, all coefficients always take

the opposite sign from what our hypotheses predict. These findings thus reinforce the notion that

our difference-in-difference results capture the effect of M&As and not of some other confounding

variables, as such omitted variables should impact target firms associated with completed M&As

and the cancelled M&As in our sample equally.

Second, we perform estimations within establishments, absorbing any time-varying shocks

at the establishment level that could be driving our results. To include establishment-year fixed

19The other most common reasons stated for why deals get cancelled include: the management of the acquirer or
the target rejecting the deal; disagreement on the price; changes in market or industry conditions; or bad news being
revealed for the target. However, these reasons are arguably not exogenous to the target’s labor demand and therefore
we choose not to consider them.

20We do not show results where we also account for local shocks due to the small sample size in this analysis.
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effects, we need variation within establishment-year. To this end, we separate routine and non-

routine employment. We then test our predictions regarding employment and wage outcomes

post-M&A looking specifically at routine occupations, occupations that are known to be dispro-

portionately impacted by labor-saving technology, while controlling for changes at non-routine

occupations at the same establishment. Specifically, we define Routine to take a value of one for

routine employment in a given establishment and 0 for non-routine employment. We then interact

Routine with Postt · M&Ai and estimate the effect of the M&A on routine occupations within

establishments in a triple differences specification.

In Table 2.9, we show a greater reduction in the share of employment (column 1) for routine

(as opposed to non-routine) occupations in treated establishments following the acquisitions as

compared to control establishments. These results suggest lower demand for tasks substitutable by

technology in M&A targets— a prediction unique to our technology adoption hypothesis— which

is estimated after fully controlling for any contamporaneous shocks at the establishment level that

could be driving changes in employment or wages. We estimate a decline in employment in routine

workers, relative to non-routine workers of 8.5%. Comparing this estimate to the estimated decline

of 4.4% in Table 2.2, column 1, using all employees, suggests that non-routine workers gain in

employment post-M&A adding to our earlier argument that the impact of an M&A on the target

firms employees is conditional on the type of worker.

Likewise, we reported in Table 2.4 that wages, on average, increase. In column 2, we examine

what is the effect on routine workers’ wages following the acquisition. We repeat the specification

in column 1, except we additionally control for the share of employment by occupation type to

control for the concurrent occupation employment changes that take place at the establishment. We

show that wages for routine workers falls by -3.9%, suggesting differential wage results conditional

on the occupational type.

2.3.5 External validity

In the previous results, we focus on changes in a short window following the M&A, in order

to best identify changes that can be directly attributed to the M&A itself. However, these findings
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raise the question whether the labor market effects we capture are short-lived or whether, instead,

M&As create permanent shifts within target firms. Although the structure of our data does not

allow for a comprehensive assessment of long-term outcomes, we present suggestive evidence that

our findings are unlikely to be reversed in the longer term. We are able to extend a subset of our

sample to include later years.21 Specifically, we use a subset of establishments in our baseline

analysis that were also observed twice after 2007—the last year in our baseline analysis. Since

all observations in our base sample are observed twice in the baseline years, observations in this

sample are observed four times, with the second two observations occurring between the years

2008 and 2013 (inclusive).

Due to the survey nature of the data, this analysis includes one third of the original establish-

ments. We create dummies Post1, Post2 and Post3 that take a value of 1 for the first, second and

third observation of the establishment post M&A, and interact those dummies with M&Ai. We

consider all our baseline measures in a specification with establishment fixed effects, interacted

industry and year fixed effects and state and year fixed effects.22

We present results in Table 2.10. We find roughly similar point estimates of the changes in key

outcomes right around the merger, although these results are not always statistically significant, as

compared to earlier results using the full sample. Notably, there is a pattern of increasing point

estimates of the change in routine intensity post-M&A over time suggesting that the M&A may

change not just the stock of routine employment but also the rate at which routine employment is

replaced at the target. Moreover, given the statistically significant findings on Post2 ·M&Ai and

Post3 ·M&Ai, it is clear that the results we document in the baseline tests are not immediately

reversed. We also find significant effects in the long run for the rest of our measures (Post3 ·M&Ai

is always significant).

21We are unable to extend our sample backwards in time as the identifier which we need to link establishments
over time is unavailable in earlier years.

22In unreported results, we repeat our baseline analysis limiting the sample to those establishments only to address
a potential concern that these establishments would behave differently than the average firm in our baseline sample.
Results are qualitatively similar.

69



2.4 Industry-level evidence

So far, we have presented evidence documenting the micro-fundamentals of the labor market

changes associated with the adoption of automation technologies. In this section, we demonstrate

that the firm-specific evidence that we have documented aggregates to the industry level. If our

intuition that M&As are an important driver of technology adoption is correct, we should also

observe M&As to be associated with occupational and wage changes industry-wide.

2.4.1 Industry Analysis: Data and summary statistics

To create our industry sample, we combine databases from three key sources: Thompson’s

SDC; IPUMs; and datasets on routine intensity and offshorability of occupations from Autor and

Dorn (2013).

As in our baseline analysis, we collect data on horizontal mergers and acquisitions from Thom-

son’s SDC. We use all deals, announced between 1980 and 2010, of a US target and US acquirer,

for which we can confirm the acquirer completed a purchase of a majority stake.23 We define the

variable, merger intensity, as the count of horizontal deals in a given decade, for a given indus-

try, normalized by all horizontal deals in that decade. We normalize by all deals in the decade to

control for changes in the scope of coverage of SDC over time. This variable is log transformed

(adding one to account for industries with no mergers) to address skewness.

We collect data on occupational employment from the Integrated Public Use Microdata Ser-

vice (IPUMs) 5 percent extract for 1980, 1990, 2000 and the 2010 American Community Survey

(ACS).24,25 IPUMs provides detailed surveys of the American population drawn from federal cen-

suses and the American Community Surveys. IPUMs was created to facilitate time series analysis

and, as such, has unique industry (IND1990) and occupational identifiers (OCC1990), which are

defined as to minimize changes in industry and occupation definitions over time. We use the

crosswalk defined by Autor and Dorn (2013), which is a slightly modified version of occupational

23Our sample begins in 1980 due to availability of M&A activity in SDC.

24ACS is the continuation of the decennial Census surveys post-2000.

25For more information, see Ruggles, Genadek, Goeken, Grover, and Sobek (2015).
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identifiers (OCC1990) provided by IPUMs, to ensure time-consistent occupation categories.

We map NAICS industries from SDC to IPUMs industries, using the cross-walk provided by

IPUMs, as detailed in the Internet Appendix. Following this approach, we end up with 132 indus-

tries and more than 300 occupations in each Census-year. Our IPUMs sample consists of individu-

als who are between 18 and 64 years old and who were employed in the prior survey. We apply the

same sample criteria as in Autor and Dorn (2013) and drop military and farming occupations, res-

idents of institutional group quarters (e.g., prisons) and unpaid family workers. We follow Autor

and Dorn (2013) and calculate a labor supply weight equal to the number of weeks worked times

the usual number of hours per week. Each individual is weighted by their employment weight

which is equal to the Census sampling weight times the labor supply weight.

IPUMs also provides data on yearly wage and salary income (incwage), from which we

exclude self-employed workers and observations with missing wages, weeks, or hours worked.

We define hourly wages as yearly wages and salary divided by the product of weeks worked

(wkswork) and usual weekly hours (uhrswork). Wages are adjusted to year 2001 dollars using

the Consumer Price Index of all urban consumers in order to be comparable to the establishment

level analysis. IPUMs also provides data on workers’ education allowing us to define workers with

graduate education (at least 5 years of post-secondary education). We aggregate all variables at the

industry-Census year level by computing employment weighted averages.

We measure RSH as in the baseline analysis, using data in Autor and Dorn (2013). We merge

these data with IPUMs using the occupation crosswalks detailed above. Following these steps, we

can characterize occupations in a given industry-year in terms of their routine intensity and con-

struct the share of these routine intensive occupations by industry-year.26 We define all variables

used in our analysis in the Appendix.

Table 2.11 reports summary statistics of several key variables used in the analysis. We report

26Appendix Table B.5 provides some examples of our sample industries with high and low routine employment
shares. Industries with a high share of routine intensive occupations include accounting and legal services. On the
other hand, industries with a low share of routine intensive occupations include taxicab services and vending machines
operators.
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the mean value across all industries for a given year along with the standard deviation in brackets.

On average, a given industry reflects between 0.46-0.65% of the overall merger activity. Similar

to Autor and Dorn (2013), we document that around one third of all occupations are routine-

intensive. We find that over 5% of workers in our average industry had a graduate degree in 1980.

This fraction increases over time and is about 8% in 2010. The average hourly wage is $16.8 in

1980. Moreover, we show an increase in the standard deviation of wages within a given industry,

consistent with the fact that inequality has increased over time.

2.4.2 Industry Analysis: Results

To parallel our establishment-level results, we examine how shares of routine intensive occu-

pations and shares of high-skill employees evolve following M&A activity. Moreover, we explore

the wage implications of such technology adoption following M&As. We estimate the following

specification:

yj,t =αt + αj + γ · log(merger intensity)j,(t−10,t−1) + β ·Xj,t + εj,t (2.2)

where t indexes years and j indexes industries. Xj,t controls for average offshorability of tasks,

time-varying at the industry level. Merger intensity is our proxy of M&A activity defined as the

count of horizontal deals in a given decade, for a given industry, normalized by all horizontal

deals in the decade and log-transformed.27 αj is an industry fixed effect to control for industry

time-invariant characteristics; αt is a year fixed effect to control for differences across time. The

IPUMs data is only available every 10 years for the period between 1980 and 2000. As such, M&A

activity is measured over three decades in our sample: 1980-1989; 1990-1999; and, 2000-2009.28

Our outcome measures y are measured every decade in 1990, 2000, and 2010. Standard errors are

27Internet Appendix Table B.6 shows the key results are robust to using M&A transaction values to define our
M&A measure. Specifically, we define M&A activity as the logarithm of one plus the total transaction values of
horizontal deals in a given (4-digit NAICS) industry-decade normalized by total transaction values of all horizontal
deals in the decade. We use the M&A count as opposed to transaction values in our baseline analysis due to the high
number of observations with missing data on transaction values.

28Internet Appendix Table B.7 shows that the key results are robust to defining M&A activity over the first six year
of each decade.
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clustered at the industry level to take into account correlation in industries over time.

Column 1, Table 2.12, examines routine share intensity as our outcome variable. An increase in

industry M&A intensity by 1% is associated with a 2.8% decrease in routine share intensity in the

industry. These results suggest that high industry M&A intensity is associated with a subsequent

decline in occupational shares of routine tasks, consistent with our hypothesis. At the same time,

this process of automation can also increase relative demand for high-skill employees as technol-

ogy tends to be complementary to skilled labor, leading to an “upskilling” of affected industries.

Thus, column 2, Table 2.12, looks at the share of high-skill workers within a given industry, fol-

lowing mergers and acquisitions. The results are economically important: an increase in M&A

intensity by 1% is associated with an increase in the share of highly-educated employees by nearly

1 percentage point within industries.

Similar to the establishment-level evidence, these results show that M&A activity is followed

by a decrease in routine-intensive labor and a simultaneous increase in the share of high-skilled

workers in a given industry. Next, we test whether these occupational changes have important

implications for wages. In column 3, we explore predictions related to hourly wages. We use

the log of the industry average hourly wage as the dependent variable and find an increase in the

average wage in affected industries. Note these results do not necessarily translate into an increase

in wages for the same employed workers but, instead, likely reflect a change in the composition of

jobs as indicated in the previous two columns. To test the effect on wage polarization following

M&A activity, we examine the standard deviation of hourly wages in column 4. Within industries,

an increase in M&A activity by 1% increases wage disparity by 2.1%. Consistent with our estab-

lishment level findings, we report increases in wage dispersion with an industry following higher

M&A activity.

Overall, the industry-level results parallel the trends we documented at the establishment-level.

These results indicate that establishment-level changes in labor demand and compensation appear

to aggregate to the industry level. These results are not consistent with an argument that changes at

a given M&A firm are offset by counter-balancing changes at non-M&A peer firms absorbing the
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redundant labor from the M&A firms. These results also confirm that our within establishment ev-

idence are not unique to our establishment-level sample, but they have industry-wide implications

for labor outcomes and inequality.

2.5 Conclusion

Given the importance of trends in job polarization and wage inequality for workers, firms, and

society, understanding their causes and consequences has been at the epicenter of an important

literature in economics and finance. We provide micro foundations for these economy-wide labor

market trends by exploring the impact of mergers and acquisitions on changes in job polarization

and wage inequality.

We argue that M&As may accelerate technology adoption due to an increase in scale, im-

proved efficiency, or lower financial constraints. Automation should in turn lead to occupational

and wage changes consistent with changes predicted by skill-biased and routine-biased technolog-

ical change. We find that M&As within establishments are followed by a reduction in the share

of routine intensive occupations. This is often described as “hollowing-out” of the occupational

distribution as routine-intensive occupations, those most easily replaced by computers, dispropor-

tionately comprise middle-skill occupations. At the same time, we also observe an ex-post in-

crease in the demand for high-skill workers following M&As. This “upskilling” is consistent with

the argument that technology is complementary to skilled human capital and, as such, increases

demand for high-skill employees. The changes observed in occupational distributions are mirrored

in wages: we observe an increase in the average wage and, most importantly, in overall wage in-

equality within establishments. We are able to generalize those findings at the macro level, where

we find that industries impacted by high M&A activity exhibit similar changes in labor outcomes

and wages as those identified within establishments.

A key conclusion of our results, is that the impact of M&As on target firm workers is hetero-

geneous. Workers engaged in highly routine activities fare the worst, while high-skill non-routine

workers may seem expanded opportunities following the M&A. However, we need to emphasize

a caveat: Our results are unique to the sample of employed workers. As such, they are consistent
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with patterns of increasing skill premia and increasing income inequality documented in the macro

economy. However, our results do not take into account unemployed or under-employed workers.

In particular, while we show an increase in wages following M&A activity, this is only for the

employees who remain employed in the firm or industry.
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Table 2.2: Effects of M&A on establishment routine share intensity

This table presents estimates of changes in routine share intensity at establishments of M&A targets as compared
to control establishments. The dependent variable is the logarithm of one plus routine share intensity (RSH)
defined at the establishment-level. Postt is estimated but not reported for brevity. The sample consists of
establishments targeted in M&As between 2001 and 2007 and those of matched control establishments. All
variables are defined in the Appendix. Robust standard errors are clustered at the firm level. *** indicates
p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4) (5)
RSH RSH RSH RSH RSH

Postt ·M&Ai -0.0443*** -0.0314*** -0.0320*** -0.0317*** -0.0329***
(0.0058) (0.0055) (0.0052) (0.0058) (0.0053)

Offshorability 0.131*** 0.132*** 0.128*** 0.126***
(0.0096) (0.0102) (0.0083) (0.0084)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,444 10,444 10,370 10,426 10,352
R-squared 0.863 0.889 0.905 0.897 0.913
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Table 2.3: Effects of M&A on establishment high-skill employment

This table presents estimates of changes in high-skill employment share at establishments of M&A targets as compared
to control establishments. The dependent variable is the share of high-skill employment defined at the establishment-
level. Postt is estimated but not reported for brevity. The sample consists of establishments of firms targeted in M&As
between 2001 and 2007 and those of matched control establishments. All variables are defined in the Appendix. Robust
standard errors are clustered at the firm level. *** indicates p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4) (5)
Share high-skill Share high-skill Share high-skill Share high-skill Share high-skill

Postt ·M&Ai 0.0201*** 0.0172** 0.0146*** 0.0169** 0.0152***
(0.0071) (0.0069) (0.0047) (0.0072) (0.0047)

Offshorability -0.0294*** -0.0272*** -0.0283*** -0.0260***
(0.0044) (0.0044) (0.0044) (0.0044)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,444 10,444 10,370 10,426 10,352
R-squared 0.665 0.673 0.721 0.699 0.744
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Table 2.4: Effects of M&A on establishment average wages

This table presents estimates of changes in average wages at establishments of M&A targets as compared to
control establishments. The dependent variable is the log-transformed average hourly wage at the establishment-
level. Postt is estimated but not reported for brevity. The sample consists of establishments targeted in M&As
between 2001 and 2007 and those of matched control establishments. All variables are defined in the Appendix.
Robust standard errors are clustered at the firm level. *** indicates p < 0.01, ** indicates p < 0.05, and *
indicates p < 0.1.

(1) (2) (3) (4) (5)
Wage Wage Wage Wage Wage

Postt ·M&Ai 0.0398*** 0.0423*** 0.0375*** 0.0394*** 0.0396***
(0.0123) (0.0123) (0.0104) (0.0107) (0.0097)

Offshorability 0.0253** 0.0262** 0.0243** 0.0292***
(0.0112) (0.0115) (0.0110) (0.0113)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,444 10,444 10,370 10,426 10,352
R-squared 0.908 0.908 0.920 0.914 0.927
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Table 2.5: Effects of M&A on establishment wage dispersion

This table presents estimates of changes in standard deviation of hourly wages at establishments of M&A targets
as compared to control establishments. The dependent variable is the log-transformed standard deviation of hourly
wages at the establishment-level. Postt is estimated but not reported for brevity. The sample consists of establish-
ments targeted in M&As between 2001 and 2007 and those of matched control establishments. All variables are
defined in the Appendix. Robust standard errors are clustered at the firm level. *** indicates p < 0.01, ** indicates
p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4) (5)
StdWages StdWages StdWages StdWages StdWages

Postt ·M&Ai 0.0893*** 0.0926*** 0.0729*** 0.0806*** 0.0699***
(0.0298) (0.0295) (0.0242) (0.0263) (0.0226)

Offshorability 0.0377 0.0321 0.0412* 0.0397
(0.0252) (0.0264) (0.0235) (0.0246)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,222 10,222 10,138 10,202 10,118
R-squared 0.812 0.812 0.832 0.827 0.846
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Table 2.6: Mechanisms

This table presents estimates of occupational and wage changes at establishments of M&A targets as compared
to control establishments, further interacting Postt · M&Ai with characteristics of the target. In Panel A,
Overlap Occupi is an indicator variable that measures the share of employment in overlapping occupations be-
tween the target and the acquirer. In Panel B, Acq Low RSHi is an indicator variable that measures if the acquirer
had high routine share intensity prior to the acquisition. In Panel C, Privatei is an indicator variable that measures
if the target is a private firm. In column 1, the dependent variable is the logarithm of one plus routine share intensity
(RSH); in column 2, the dependent variable is the share of high-skill employment; in column 3, the dependent vari-
able is the log-transformed average hourly wage; in column 4, the dependent variable is the log-transformed standard
deviation of hourly wages. Postt is estimated but not reported for brevity. The sample consists of establishments
targeted in M&As between 2001 and 2007 and those of matched control establishments. All variables are defined in
the Appendix. Robust standard errors are clustered at the firm level. *** indicates p < 0.01, ** indicates p < 0.05,
and * indicates p < 0.1.

Panel A
(1) (2) (3) (4)

RSH Share high-skill Wage StdWages

Postt ·M&Ai -0.0106 0.0293*** 0.0237 0.0795**
(0.0071) (0.0077) (0.0144) (0.0313)

Postt ·M&Ai ·Overlap Occupi -0.0222** -0.0095 0.0266* 0.0657**
(0.0111) (0.0075) (0.0159) (0.0324)

Offshorability 0.161*** -0.0364*** -0.0007 -0.0243
(0.0145) (0.0072) (0.0156) (0.0428)

Establishment FE Yes Yes Yes Yes
Industry · Year FE Yes Yes Yes Yes
Region · Year FE Yes Yes Yes Yes

Observations 5,658 5,658 5,658 5,542
R-squared 0.915 0.739 0.928 0.830

Panel B
(1) (2) (3) (4)

RSH Share high-skill Wage StdWages

Postt ·M&Ai -0.0406*** 0.0141 -0.0007 0.0441
(0.0145) (0.0130) (0.0240) (0.0495)

Postt ·M&Ai ·Acq Low RSHi -0.0386 0.0172 0.0913** 0.156*
(0.0341) (0.0197) (0.0386) (0.0796)

Offshorability 0.158*** -0.0413*** 0.0125 -0.0132
(0.0132) (0.0085) (0.0189) (0.0430)

Establishment FE Yes Yes Yes Yes
Industry · Year FE Yes Yes Yes Yes
Region · Year FE Yes Yes Yes Yes

Observations 3,656 3,656 3,656 3,574
R-squared 0.914 0.734 0.922 0.841
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Panel C
(1) (2) (3) (4)

RSH Share high-skill Wage StdWages

Postt ·M&Ai -0.0560** -0.0159 -0.0386 -0.152*
(0.0262) (0.0216) (0.0464) (0.0886)

Postt ·M&Ai · Privatei 0.0386 0.0469** 0.0781* 0.271***
(0.0268) (0.0226) (0.0474) (0.0914)

Offshorability 0.160*** -0.0361*** -0.0007 -0.0298
(0.0148) (0.0073) (0.0159) (0.0441)

Establishment FE Yes Yes Yes Yes
Industry · Year FE Yes Yes Yes Yes
Region · Year FE Yes Yes Yes Yes

Observations 5,430 5,430 5,430 5,314
R-squared 0.915 0.737 0.928 0.828
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Table 2.8: Cancelled M&As

This table presents estimates of occupational and wage changes at establishments of M&A targets that
were announced and subsequently withdrawn as compared to control establishments. Cancelled M&A
deals are included in the sample if they were blocked by regulators or the bidder was acquired ex-post
by a third party. In column 1, the dependent variable is the logarithm of one plus routine share intensity
(RSH); in column 2, the dependent variable is the share of high-skill employment; in column 3, the
dependent variable is the log-transformed average hourly wage; in column 4, the dependent variable is
the log-transformed standard deviation of hourly wages. Postt is estimated but not reported for brevity.
The sample consists of establishments targeted in cancelled M&As between 2001 and 2007 and those
of matched control establishments. All variables are defined in the Appendix. Robust standard errors
are clustered at the firm level. *** indicates p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4)
RSH Share high-skill Wage StdWages

Postt · pseudo M&Ai 0.0120 -0.0349 -0.132* -0.222
(0.0249) (0.0292) (0.0742) (0.200)

Offshorability 0.182*** -0.0393 -0.0458 -0.129
(0.0257) (0.0346) (0.0582) (0.160)

Establishment FE Yes Yes Yes Yes
Industry · Year FE Yes Yes Yes Yes

Observations 180 180 180 170
R-squared 0.914 0.616 0.762 0.784
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Table 2.9: Within-establishment labor outcomes

This table presents estimates of changes in employment and wages within estab-
lishments of M&A targets as compared to control establishments. In column 1,
the dependent variable is the log-transformed employment at the establishment-
level; in column 2, the dependent variable is the log-transformed establishment
average wage. Routine takes a value of one if an occupation is routine, and 0
if it is non-routine. The sample consists of establishments targeted in M&As be-
tween 2001 and 2007 and those of matched control establishments. All variables
are defined in the Appendix. Robust standard errors are clustered at the firm
level. *** indicates p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1.

(1) (2)
Employment Wage

Routine -0.0576*** -0.304***
(0.0153) (0.0119)

Postt ·Routine 0.0631*** 0.0049
(0.0064) (0.0097)

M&Ai ·Routine 0.202*** 0.0347
(0.0436) (0.0311)

Postt ·M&Ai ·Routine -0.0848*** -0.0392*
(0.0118) (0.0218)

OccupationalEmployment -0.0739***
(0.0049)

Establishment · Year FE Yes Yes

Observations 20,888 18,314
R-squared 0.047 0.877
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Table 2.10: M&A long-term effects

This table presents estimates of occupational and wage changes at establishments of M&A targets as
compared to control establishments in an extended sample. The sample includes establishments that
are observed twice over 2001-2007 (as in our main analysis) and have been also surveyd twice in our
post-sample period (2008-2013). Post1, Post2, and Post3 take the value of 1 for the first, second and
third observation of the establishment post-M&A. In column 1, the dependent variable is the logarithm
of one plus routine share intensity (RSH); in column 2, the dependent variable is the share of high-
skill employment; in column 3, the dependent variable is the log-transformed average hourly wage; in
column 4, the dependent variable is the log-transformed standard deviation of hourly wages. Post1,
Post2, and Post3 are estimated but not reported for brevity. All variables are defined in the Appendix.
Robust standard errors are clustered at the firm level. *** indicates p < 0.01, ** indicates p < 0.05,
and * indicates p < 0.1.

(1) (2) (3) (4)
RSH Share high-skill Wage StdWages

Post1 ·M&Ai -0.0134 0.0252*** 0.0273 0.0659*
(0.0098) (0.0082) (0.0179) (0.0350)

Post2 ·M&Ai -0.0268*** 0.0236*** 0.0155 0.0193
(0.0098) (0.0064) (0.0190) (0.0428)

Post3 ·M&Ai -0.0425*** 0.0137* 0.0322* 0.0713*
(0.0101) (0.0070) (0.0191) (0.0418)

Offshorability 0.156*** -0.0166*** 0.0048 0.0136
(0.0106) (0.0042) (0.0133) (0.0235)

Establishment FE Yes Yes Yes Yes
Industry · Year FE Yes Yes Yes Yes
State · Year FE Yes Yes Yes Yes

Observations 6,091 6,091 6,091 6,057
R-squared 0.907 0.685 0.918 0.828
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Table 2.11: Industry-level analysis: Summary statistics

This table reports the mean and standard deviation of key variables from SDC and IPUMs for the years identified in the column header
for the industry sample. Each observation is an industry-year, measured once per decade, with the exception of merger intensity, which
is measured over years t-10 to t-1. All variable definitions are provided in the Appendix.

1980 1990 2000 2010

Merger intensity (%) 0.46 0.54 0.65
[.0075] [.0087] [.0132]

Routine share intensity (RSH) (%) 34.75 32.75 33.28 33.82
[.164] [.156] [.155] [.161]

High-skill employment share (%) 6.72 5.91 7.21 8.62
[.0805] [.0735] [.0801] [.0977]

Average hourly wage ($) 16.80 17.11 18.46 18.89
[3.53] [3.81] [4.42] [5.52]

Standard deviation of hourly wages 11.27 12.95 16.74 15.16
[2.01] [3.07] [4.23] [4.83]

Offshorability 0.12 0.12 0.13 0.16
[0.43] [0.44] [0.45] [0.45]
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Table 2.12: Industry-level analysis: Baseline results

The table presents estimates of occupational and wage changes at the industry j and time t following M&As. In
column 1, the dependent variable is the logarithm of routine share intensity (RSH); in column 2, the dependent
variable is the share of high-skill employment; in column 3, the dependent variable is the log-transformed average
hourly wage; in column 4, the dependent variable is the log-transformed standard deviation of hourly wages. The
timeline starts in 1980 and ends in 2010 with one observation per decade for each industry. All variables are defined
in the Appendix. Robust standard errors are clustered at the industry-level. *** indicates p < 0.01, ** indicates
p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4)
RSH Share high-skill Wage StdWages

Merger Intensityj,(t−10,t−1) -2.820 0.975 2.759 2.124
(0.866)*** (0.241)*** (0.895)*** (1.237)*

Offshorability 0.365 0.012 -0.023 0.007
(0.313) (0.023) (0.081) (0.152)

Year FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes

Observations 396 396 396 396
R-squared 0.956 0.965 0.960 0.97
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CHAPTER 3

ENTREPRENEURIAL WAGES (WITH TANIA BABINA, PAIGE OUIMET AND REBECCA
ZARUTSKIE)

Disclaimer

The research in this paper was conducted while the authors were Special Sworn researchers of

the U.S. Census Bureau. Research results and conclusions expressed are those of the authors and

do not necessarily reflect the views of the Census Bureau. This paper has been screened to ensure

that no confidential data are revealed.
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3.1 Introduction

Young firms account for 11% of US employment and are credited with a disproportionate share

of total job creation (Haltiwanger, Jarmin, and Miranda, 2013). Given the importance of young

firms in generating jobs, an extensive literature has explored the drivers of these new firms. How-

ever, the question of why workers join new firms remains controversial. On average, employees

earn lower wages at young firms (Brown and Medoff, 2003), small firms (Oi and Idson, 1999), and

when self-employed (Hamilton, 2000; Moskowitz and Vissing-Jorgensen, 2002). One literature

has interpreted this fact as evidence of a willingness of employees at new firms to accept below-

market wages due to offsetting attributes from working at new firms. A second, mostly theoretical,

literature has instead argued that lower wages at new firms reflect selection: Young firms employ

disproportionately more lower quality workers, either because new firms are lower quality or fi-

nancially constrained. In this paper, we revisit this debate to separate between the wage penalty

and selection interpretations of lower wages at new firms.

Using US Census employer-employee matched data over almost two decades, we confirm that

new firms, defined as three years of age or younger, pay 31% lower wages, on average. However,

we disprove the assumption that these workers are accepting lower wages, i.e. a wage penalty,

as compared to the wages they would have earned at established firms, i.e. market wages. New

firms pay economically identical wages after controlling for differences in worker quality and

time invariant firm quality. Our findings suggest that a given worker considering joining either a

new or established firm of equivalent quality would receive equivalent wages at both employment

opportunities, supporting the selection interpretation of the new firm wage discount.

To reach these conclusions, we start by including worker fixed effects. Previous studies do not

usually include worker fixed effects either because of the cross-sectional nature of the data (Brown

and Medoff, 2003) or due to a different focus (Burton, Dahl and Sorensen, 2017). With these

controls for time invariant differences in worker quality, we find the new firm wage differential

declines by almost three fourths. Adding controls for time varying observable worker character-

istics further reduces the magnitude of the new firm wage discount. These results indicate that
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new firms, on average, employ workers who receive lower market wages due to differences in

skills or talent. A disproportionate matching of low-skill workers to new firms is consistent with

positive assortative matching. New firms in our data include a large representation of low quality

firms, which are unlikely to succeed over the long run, as well as higher quality new firms with

greater survival potential. Alternatively, new firms may not have the financial resources necessary

to employ high-wage workers.

Moreover, once we add firm fixed effects, absorbing time invariant firm quality, the wage differ-

ence between new and mature firms becomes positive, although economically small. In our setting,

firm fixed effects reflect any time-invariant wage premium or discount paid to all employees of a

given firm above and beyond the person-specific component of pay, captured by the worker fixed

effects. Abowd, Kramarz and Margolis (1999) shows a positive correlation between this firm-

specific component of pay and firm-level productivity. Equivalent workers will, on average, have

relatively higher individual output in more productive firms. Our finding of a reduction in the

new firm wage discount with firm fixed effects support this argument assuming new firms have

lower initial quality, as compared to the set of established firms which have successfully survived

to maturity.

After controlling for differences in employee and firm quality, the expected wage penalty of

working at a new firm is, on average, economically insignificant. Earlier conclusions that new

firms pay lower wages still hold. However, this fact is explained by the types of workers new

firms employ and by the variety of firm quality represented by new firms. Assumptions regarding

preferences or biased beliefs are not required to understand why workers join new firms. Instead,

the difference in wages is explained by the lower mean quality of new firms or a higher likelihood

of financial constraints which limit the ability to hire high skill workers.

We find similar results if we instead use a sample of only college educated workers or a set

of college educated workers employed in the technology sectors. Documenting equivalent results

in these samples indicates that new firms hire relatively more lower-skill workers, as compared to

established firms, even within sets of high-skill workers.
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To further support our argument that employee quality reflects firm quality, we do two addi-

tional tests. First, we show that firms that survive for at least 10 (5) years (firms that are likely born

more productive) have higher quality initial workforces, as compared to firms which exit prior to

year 10 (5). Second, we document that firms which employ higher quality workers at birth have

higher 5-year total employment after their creation. These results show that the human capital of

young firms is an economically important predictor of the new firms’ performance. Hence, a new

firm’s ability to hire a high quality team matters: If firms are financially constrained or otherwise

unable to secure talent, they are less likely to survive and grow.

Firm size has also been used as a proxy for firm quality, and given that young firms also tend

to be small, it is important to document that our effect is distinct from the firm-size wage premium

documented in Oi and Idson (1999). As expected, controlling for firm size reduces the new firm

wage differential, even in the absence of worker and firm fixed effects, as size proxies for firm

quality. However, we continue to observe a significant coefficient on firm age, indicating firm age

is a distinct firm characteristic from firm size. Moreover, as in the baseline results, we observe a

decline in the magnitude of the new firm wage differential with the addition of worker fixed effects,

worker time varying controls and firm fixed effects. In addition, with both sets of fixed effects and

controls for firm size, we now document a significant new firm wage premium of nearly 2% . These

results show that firm age is unique and not fully captured by firm size.

One important caveat to our analysis is that we do not observe exogenous movement between

firms. While this is a common feature in papers that include worker fixed effects, it potentially

limits the generalizability of our results. Our conclusions apply to the real world setting where em-

ployees who chose to match to new firms presumably do so in anticipation of productive matches.

However, we also find economically similar results when estimated using only exogenous job

switchers, workers who had to change jobs following establishment closure.

Our paper is the first to use a large sample of employee-employer matched data for US firms

over nearly two decades to examine the underlying drivers of new firm wages. A handful of

prior studies have also examined the new firm wage penalty, primarily using employee-employer
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matched data in Europe. However, there are inconsistent findings across these European studies,

likely driven by differences in empirical specifications or in country-level factors. For example,

looking at young establishments in Germany, Brixy, Kohaut, and Schnabel (2007) find an 8%

wage penalty, while Schmieder (2013) instead finds a 10% wage premium. The closest paper to

ours is Burton, Dahl and Sorensen (2017), which uses Danish data and differs from our work in

other substantial ways. While Burton, Dahl and Sorensen (2017) focus primarily on disentangling

the effects of firm age on wages from the effects of firm size on wages, our paper focuses on

the question of whether a given worker will receive a wage penalty when joining a new firm.

Our main contribution to this literature is two-fold. First, by showing the impact of controlling

for time invariant worker characteristics, time varying worker characteristics and time invariant

firm characteristics - separately, we provide strong evidence that selection mechanisms explain the

difference in mean wages at new and established firms. Second, we provide new evidence using a

large sample of US employer-employee matched data.

We reach our conclusions using the AKM method, an approach that includes worker and firm

fixed effects to model wages. It was developed by Abowd, Kramarz, and Margolis (1999) and

used in Card, Heining and Kline (2013). The method was also used to explore CEOs (Bertrand

and Schoar, 2003; Graham et al, 2011), investment bankers (Chemmanur, Ertugrul, and Krishnan,

2017), venture capitalists (Chemmanur, Loutskina, and Tian, 2014; Ewens and Rhodes-Kropf,

2015), and loan officers (Gao, Martin, and Pacelli, 2017). This approach uses workers who change

jobs to simultaneously isolate employer and employee fixed effects. We contribute by focusing on

employees at young firms and show that young firms’ ability to attract high quality workers is an

important predictor of the future firm performance. Understanding wages and potential employ-

ment frictions present at young firms is important. If young firms cannot hire desirable workers,

they cannot grow.

Our paper also adds to the literature’s understanding of why people found or join new firms,

given they provide lower earnings than incumbent firms (Hamilton, 2000; Brown and Medoff,
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2003). Prior studies have argued that people select into entrepreneurship due to non-pecuniary ben-

efits (Moskowitz and Vissing-Jorgensen, 2002; Hurst and Pugsley 2011), a preference for skewness

(Kraus and Litzenberger, 1976), preferences for attributes of entrepreneurial firms, such as auton-

omy and tolerance of risk (Roach and Sauermann, 2015), overconfidence in expected benefits

(Bernardo and Welch, 2001), learning about one’s own abilities through experimentation (Manso,

2016; Dillon and Stanton, 2018), measurement issues (Hurst, Li, and Pugsley 2014; Levine and

Rubinstein, 2017), and sorting based on personal assets (Dinlersoz, Hyatt, and Janicki, 2016).

We contribute by providing a better estimate of the wage consequences of joining a new firm, as

compared to an established firm, after controlling for a given worker’s opportunity set.

3.2 Why New Firms Pay Lower Wages?

In this section, we briefly describe the key theoretical arguments pertaining to new firms and

wages which have previously been made in the existing literature. We group these arguments into

two broad categories. The first group argues that workers voluntarily accept below market wages

at new firms due to offsetting benefits associated with employment at a new firm. In effect, these

papers argue the new firm wage discount is driven by a supply of workers willing to accept a wage

penalty to be employed at a new firm. The second group argues that the wage differential is driven

by selection. In effect, these papers argue the new firm wage discount is driven by selection of

low-skill, low-wage workers into new firms.

A number of papers have argued that employees at entrepreneurial firms accept lower wages

due to the presence for offsetting attributes from working at new firms. Evans and Leighton

(1989) find greater autonomy to be a benefit to entrepreneurial work, and Blanchflower and Os-

wald (1992) find higher self-reported satisfaction among these workers. Hamilton (2000) suggests

non-pecuniary benefits explain the wage difference among self-employed. Although most of these

early papers focus on the self-employed, the same arguments can be applied among all workers

at new firms. Alternatively, employees may join new firms due to greater tolerance of risk, as in

Roach and Sauermann, (2015), preferences for skewness (Kraus and Litzenberger, 1976), or due to

overconfidence in the expected benefits, as in Bernardo and Welch, (2001). Finally, workers may
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accept lower earnings at young firms because they are willing to learn about their own abilities in

entrepreneurship (Manso, 2016; Dillon and Stanton, 2018).

The second strand of literature focuses on sorting and argues that the wage differential between

young and established firms is in fact a proxy for worker ability or differences in quality across

firms. Young firms are born with a given time-invariant draw of productivity, driven by differences

in initial ideas, technology or resources. Failure rates among young firms are high. Better firms

survive, as in Baker and Kennedy (2002) and, older firms (i.e., surviving firms) are more productive

as in Pakes and Erickson (1998), Hopenhayn (1992), and Oi and Idson (1999a, 1999b). Assortative

matching on firm and worker productivity would then suggest that low productivity, and hence low

wage workers, would disproportionately match to young firms.

Young firms are also more likely to face financial constraints as in Evans and Jovanovic (1989),

Petersen and Rajan (1994), and Hadlock and Pierce (2010). These financial constraints can be

driven by higher opacity at young firms, making access to external finance more costly (Berger

and Udell, 1998). As such, young firms may not be able to afford high-wage workers and dispro-

portionately employ low-skill, low-wage workers. Moreover, low productivity firms are relatively

more likely to be financially constrained, further reinforcing the correlation between low wages

and low productivity young firms (Evans and Jovanovic, 1989).

3.3 Data

We combine confidential databases from the US Census Bureau to form our estimation sample.

Our primary database is the Longitudinal Employer-Household Dynamics data (LEHD) main-

tained by the US Census Bureau. This employer-employee matched database tracks employees

and their wages with various employers on a quarterly basis. LEHD data are collected from the

unemployment insurance records of states participating in the program.1 The data start in 1990

for several states and coverage of states increases over time. The data coverage ends in 2008.

While our project has access to 31 states, we observe nearly 100% of private employment for these

1See Abowd et al. (2006) for a more detailed description of the program and the underlying data sets that it
generates.
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states. This comprehensive data coverage means that we cannot include all of the available states

in our estimation sample due to computational constraints: The 31 states cover over 60% of the

US private sector employment, which translates into billions of observations over the data sam-

ple period – an infeasible sample for a regression analysis.2 As we explain later, the estimation

strategy requires the inclusion of firms that are connected through worker mobility across firms.

For that reason, instead of randomly selecting workers across 31 states, for our main analysis, we

chose Maryland, Colorado and Vermont with high, average, and low population of young firms

respectively. A random sample generates selection towards large firms, as explained and shown in

Woodcock (2005).3 Selecting all workers within a state ensures that almost all observations within

a state are included. Including small firms is crucial for our analysis since most firms are born

small. For each individual we observe total quarterly wages at the current place of employment.

Although the LEHD does not contain equity ownership, wage data include all forms of compen-

sation that are immediately taxable. Stock options are typically not taxed until exercised and, as

such, are unlikely to be counted in wages at the time of the grant, but are counted at the time of

the exercise. Because our data does not have information on equity ownership, we do not separate

between founders and non-founders. Both are included in our data, although most employees are

non-founders: On average, a new firm has 15 employees in our sample, and an average firm has

two founders (Parker, 2009).4 The LEHD also allows us to observe the age, gender, race, place of

birth, and education of each employee.5

To construct our baseline sample, we start with all workers ever observed in the state. For these

workers, we retrieve their entire work history and wages in the LEHD from 1990 through 2006.

2The map of the 31 states available in the data are shown in Appendix, Figure C.1.

3In untabulated results, we find qualitatively similar results if we draw a random 10% sample of all workers or if
we use a subsample of employees across all states who were ever employed at US public firms.

4One approach used in the existing literature, such as Azoulay, Jones, Kim, and Miranda (2018), is to identify
founders as the highest wage earner at the time of founding. They show that in 60 to 70 percent of cases the top three
earners capture the founders. However, sorting on wages at the new firm is problematic in our empirical setting, given
our dependent variable is wages.

5Education is imputed for employees with missing education data (Abowd et al. 2006).
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We stop in 2006 to have enough time passed to obtain future performance outcomes for new firms.

Wages are normalized to year 2014 constant dollars and measured at the quarterly level. Following

Card, Heining and Kline (2013), we also minimize part-time jobs in our sample by keeping only

the observations with the highest paid wage when a given worker reports wages at multiple firms

in a given quarter. To limit the probability of data errors in our sample, we drop all observations

for individuals where wages change by 5,000% in one year. We use log wages in the regressions

to address the skewed distribution of wages as well as to minimize the role of outliers.

In the LEHD data, we observe wages over a full quarter with no information on weeks worked.

We follow the literature and drop observations for workers with incomplete quarters of employ-

ment, defined as employee-firm quarters where we do not observe both a previous and subsequent

quarter of employment at the same firm. This step is acutely important in our setting as worker

transitions between jobs are unlikely to occur at the exact start of a new quarter, leading to a down-

wards bias in wages around a job change. The implications of such a step is that we under-sample

workers with especially high turnover rates. Furthermore, to minimize the computing requirements

of a large sample size, we retain only the first quarterly wage estimate for each employee.

We supplement the information in the LEHD with firm-level information from the Census’s

Longitudinal Business Database (LBD). The LBD is a panel dataset that tracks all US business

establishments and described in Jarmin and Miranda (2002). An establishment is any separate

physical location operated by a firm with at least one paid employee. The LBD contains informa-

tion on the number of employees working for an establishment and total establishment payroll. In

addition, the LBD contains a unique firm-level identifier, firmid, which longitudinally links estab-

lishments that are part of the same firm. We observe the LBD for all 50 states and the District of

Columbia, which allows us to measure firms total employment across all 50 states.

We also use the LBD to measure firm age. Firm age is equal to the age of the oldest establish-

ment that the firm owns in the first year the firm is observed in the LBD (Haltiwanger, Jarmin, and

Miranda, 2013). This definition of firm age will not misclassify an establishment that changes own-

ership through M&As as a firm birth, since a firm is defined as a new firm only when all the firm
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establishments are new establishments. Given that the LBD covers employer firms with at least one

physical establishment, a representative new firm in our sample will be an incorporated business

with a few employees and a physical office. This is a distinction from the self-employed definition

of entrepreneurship who Hurst and Pugsley (2011) and Levine and Rubinstein (2017) argue have

little desire to grow and are unlikely to create economic benefits beyond the self-employed. We

link the LEHD to firm identifiers in the LBD using the employer identification numbers (EIN). We

then track whether an individual stays at the firm or moves to work for another firm.

3.4 Empirical Strategy

To identify wage patterns specific to new firms, we adapt the AKM method as developed by

Abowd, Kramarz, and Margolis (1999). We use the following specification:

yit =αi + δJ(i,t) + ηt+ X’itβ + γnewfirmJt + εit (3.1)

where yit are log quarterly real wages of individual i in year t and αi are employee fixed

effects. δJ(i,t) are firm fixed effects where J(i, t) gives the identity of the unique firm that employs

employee i in year t. ηt are year fixed effects and X ′it is a vector of time-varying observable

individual characteristics. newfirmJt is an indicator variable which assumes the value of one if

in year t the worker is employed in a firm J that is three years of age or younger in that year t.εit

is an error term.

Employee fixed effects capture the time-invariant fraction of individual pay driven by innate

skill and other individual and time-invariant attributes which are rewarded equally across employ-

ers. Firm fixed effect reflects any time-invariant wage premium or discount paid to all employees

of a given firm. Abowd, Kramarz, and Margolis (1999) and Song et al (2017) find significant

inter-firm wage differentials. These firm-specific premiums or discounts may be explained by dif-

ferences in intrinsic productivity or rent-sharing across firms. We add year fixed effects to control

for time varying changes in wages across the economy. Finally, we include the set of time-varying

worker controls, age and squared and cubed terms of age (to allow for a non-linear trend in wages
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over an employee’s lifetime) and education interacted with employee age and all nonlinear terms

of age (to allow for variation in the returns to skill over an employee’s lifetime). This is the same

specification as used in Card, Heining and Kline (2013).

For this model to be estimated, the analysis must be run on a connected set, a subset of the full

data. To be in the connected set, a firm must be linked to at least one other firm in the connected set

by worker mobility. We use the largest connected set available. Consistent with other studies that

use a universe of all workers within a state (Woodcock 2005), our connected set contains nearly all

observations and appears otherwise similar to the full set of firms.

3.5 Summary Statistics

Our baseline sample is a panel of 48.4 million worker-year observations over 1990-2006, which

includes 7.1 million unique workers and 345 thousands unique firms. All observation counts and

estimates are rounded according to the US Census disclosure policies. To motivate our analysis,

in Figure 3.1(a), we plot average wages of employees in our sample by firm age for each two-

year firm age cohort from firm birth to firms 18-19 years old and for firms 20 years or older.

As in Brown and Medoff (2003), employees at young firms receive lower wages as compared to

employees at older firms. Specifically, employees at firms aged 0-1 receive quarterly wages which

are, on average, almost $ 2,500 lower as compared to employees at firms with age 20 years or older.

This is a wage difference of 29% , as compared to the sample mean. In Figure 3.1(b), we plot a

one-year wage growth of employees by employer age. Wage growth is measured for all employees

at the firm, including new joiners and employees who were employed at the same firm in the last

period. In contrast to Figure 3.1(a), we observe no clear pattern in wage growth across firm age.

The fact that employees at firms aged 0-1 (a group disproportionately composed of employees

who recently switched to a young firm) do not realize wage declines is inconsistent with theories

of workers at new firms accepting a wage discount due to their offsetting attributes. Instead, this

group experiences an average wage growth of 5.5% , a year on year wage growth rate that is above

the sample average of 4.6% .

In Table 3.1, we report summary statistics for firms (in Panel A) and workers (in Panel B) in
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our sample. In Panel A, column 1, we report mean values and standard deviations, in parentheses,

calculated across all firm-year observations in our sample. In column 2, we report statistics for

established firms, defined as firms four years of age or greater. In column 3, we report statistics for

new firms, defined as firms less than four years of age. As expected, Panel A shows that new firms

are significantly smaller, in terms of employee counts. New firms in our sample have an average

of 15 employees, as compared to nearly 210 employees at established firms.6 However, in terms

of percent of male employees and percent of college educated workers, both samples are similar

economically. In Panel B, column 1, we report summary statistics calculated across all worker-

year observations in our sample. Column 2 contains all employees at established firms and column

3 samples all employees at new firms. As in Figure 3.1, wages at young firms are lower and wage

growth is similar, as compared to established firms. As expected, employees at older firms have

longer tenures, but economically similar representations of males and college educated workers.7

In Table 3.2, we report summary statistics for the employees who switch and do not switch

employers. Given that our estimation strategy depends on the assumption that employees who

switch jobs are representative of the overall sample, we report these summary statistics for the

set of employees who never switch employers during our sample (column 1) and employees who

switch employers (column 2). We find workers are economically similar in the two groups in terms

of education and gender. However, job switchers are younger, have lower tenure, earn lower wages

and have higher wage growth. These results are consistent with a finding that younger and shorter

tenure workers switch jobs more frequently as in Topel and Ward (1992). The table also reveals

that jobs switchers are more common that non-switchers and account for almost three quarters of

all observations, further mitigating any representatives concerns of the switchers.

6The median new (established) firm has an employment of 6 (13). Due to the US Census confidentiality rules, the
medians are calculated as an average of observations within an interquartile range.

7In Panel B, tenure is measured as maximum numbers of years the worker is employed by the current firm. We
report that the average tenure of workers at new firms is 3.2 years. This is longer than the reported average firm age
at new firms in Panel A of 1.8 years. The difference reflects the fact that some employees stay with a young firm after
the employer matures and becomes an established firms.
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3.6 Baseline Results

We report our baseline estimations in Table 3.3. All standard errors are double clustered at the

firm and at the worker level. To facilitate interpretation with previous work, we first estimate the

new firm wage penalty using a simple OLS with year fixed effects. We then add individual fixed

effects to control for time invariant worker quality. We next add controls for employee character-

istics to control for time-varying observable employee characteristics. Finally, we add firm fixed

effects to control for time invariant firm quality. We discuss the interpretation of each regression

next.

3.6.1 OLS Estimation

As reported in column 1, new firms pay wages that are 31% lower as compared to established

firms, after controlling for year fixed effects. This is consistent with results in Brown and Medoff

(2003) and Ouimet and Zarutskie (2014). This wage gap may be due to employees accepting a

wage penalty in return for compensating differentials or due to differences in the types of employ-

ees hired at new firms.

3.6.2 Worker Fixed Effects

In column 2, we include worker fixed effects. By controlling for time invariant worker quality,

the coefficients on new firms is cut by almost three fourths. In this specification, a worker who

switches between an established and new firms will earn, on average, an 8.7% lower wage at the

new firms. The difference in the magnitudes of the coefficient on new firm between columns 1

and 2 tells us that young firms employ, on average, workers who earn less – workers who pre-

sumably have lower time-invariant skill. There is also a dramatic increase in the R-squared of this

regression, suggesting that time invariant worker traits explain most of the wage variation.

Young firms may disproportionately hire low-wage workers because less productive workers

match to new firms or because they are financially constrained and cannot afford to pay the high

wages necessary to attract high skill workers. The set of new firms in our sample includes a mix of

both low quality new firms – that are unlikely to survive beyond four years – as well as high quality

young firms with strong growth potential. Under an assumption of positive assortative matching,
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lower quality employees will match to lower quality firms and receive lower wages. Financial

constraints, common at new firms, will likely reinforce this relationship as lower quality firms will

have more difficulty raising capital.

By adding worker fixed effects, we can identify the new firm wage penalty which is not driven

by employing workers of lower intrinsic quality. However, by adding the worker fixed effect, we

now estimate the new firm dummy variable using only the sample of workers who switch jobs. We

argue that this limitation does not skew the results given the generally similar summary statistics

reported for job switchers and non-job switchers in Table 3.2.

In column 3, we add controls for observable time-varying employee characteristics associated

with wages. We control for age, age squared and age cubed to control for typical non-linear

patterns in wages over the career of a typical employee. We also interact the age terms with

the employee education level to allow for the fact that more educated workers can have different

wage patterns across time (Card, Heining and Kline, 2013). Given new firms disproportionately

employ time invariant lower quality workers, it is reasonable to expect that young firms may also

disproportionately employ workers at points in their career where they would expect lower wages

(Ouimet and Zarutskie, 2014). Indeed, after controlling for time-invariant worker characteristics,

the coefficient on the new firm wage penalty is further reduced in magnitude to -0.077, consistent

with new firms hiring workers at points in time in their career where they would command lower

wages.

3.6.3 Individual and Firm Fixed Effects (AKM)

In Table 3.3, column 4, we add firm fixed effects, thereby estimating an AKM regression. The

firm fixed effects capture the firm-specific and time-invariant component of compensation above

and beyond the person-specific component of pay, as captured by the worker fixed effects. The

coefficient on new firm is now positive and statistically significant, equals to 0.7% , and economi-

cally small. The time-invariant and firm-specific component of compensation captured by the firm

fixed effects is correlated with firm productivity (Abowd, Kramarz and Margolis, 1999). As such,

the change in the coefficient on new firm with the addition of firm fixed effects is consistent with
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new firms, on average, being of lower quality. This result suggests that for a given worker who has

job opportunities from a similar quality new and established firm, the expected wage differences

of going to work at the new firm are, on average, economically insignificant.

The worker fixed effects from this specification are an estimate of time invariant worker quality

after controlling for time-varying worker characteristics and time-invariant firm differences. We

plot the mean worker fixed effect (as estimated in this specification) by firm age in Figure 3.2(a).

By construction, the average worker fixed effect across the whole sample is zero. We observe

that the mean worker fixed effect is negative for firms aged 0-1, increases with firm age and turns

positive for firms aged 12-13, peaks for firms aged 16-17, then goes down, becoming slightly

negative for firms aged 20 years and older. These novel statistics are consistent with the argument

that young firms employ lower quality workers. These statistics also are inconsistent with another

set of theories that explain lower wages in new firms due to learning and skill accumulation. They

suggest that workers might accept lower wages at new firms because they learn skills that allow

them to experience faster wage growth down the road.

Adding firm fixed effects changes the sample used to estimate the coefficient on new firm in a

manner similar to adding person fixed effects. With firm fixed effects, the coefficient on new firm

is only estimated for the set of firms which survive for four or more years. To ensure that this is not

introducing a significant bias, we estimate the same regression but define new firms as ages zero

to one. The results are reported in Appendix Table C.1. We find qualitatively similar results.

Our estimates are based on a sample of employees who endogenously match to firms. While

the presence of this type of endogenous mobility does not invalidate AKM assumptions, it does

impact the interpretation of our findings.8 Our sample of employees who move to new firms is

likely biased towards employees who specifically anticipate relatively higher productivity at these

new firms. While it is true that employees who match to established firms are likely to exhibit a

similar bias, this is unlikely to fully offset the effect at new firms. Wage gains associated with this

type of endogenous mobility should be impounded into any new hire wage bump. Given new hires

8 Section 9 discusses in more detail the type of endogenous mobility which can invalidate AKM assumptions.
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are relatively more common at new firms, this could impact the estimate of the new firm coefficient.

However, the effect, if any, appears to be modest. First, as discussed earlier, in Appendix Table C.1,

we define new firms as firms aged zero to one. In this specification, new hires should be an even

larger part of total firm employment, yet, we observe no meaningful change in the estimate of the

new firm coefficient.

Second, we find no difference in the new firm wage estimate when controlling for the one

form of endogenous mobility we can directly observe in the data, the decision to leave the current

employer. Workers who leave an established firm voluntarily to join a new firm presumably an-

ticipate especially higher productivity gains, as revealed by the preference for employment at the

new firm compared to the set of other new employment opportunities and the existing job. On the

other hand, workers who are required to leave their existing position at an established firm due to

a firm closure and then select to join a new firm are choosing from a smaller set of options. If

employees facing a relatively more constrained choice set experience significantly lower new firm

wage differentials, then this would suggest that endogenous mobility has important implications

for our results. To test this prediction, we separately estimate the new firm wage differential for

two sets of employees, employees departing a continuing establishment and employees departing

a closing establishment. As reported in Appendix Table C.2, columns 1 and 2, workers leaving a

closed establishment experience a similar new firm wage differential.

Likewise, our results are not driven by workers moving between new and young firms. In

Table 3.4, we expand Equation 1 to include ten dummy variables capturing firms in each two-year

age cohort from birth to firms 18-19 years old. Firms aged 20 or greater are the excluded set.

We then repeat the same specifications as in Table 3.3, starting with an OLS estimation and then

adding worker fixed effects, controls for time-varying characteristics and firm fixed effects. The

pattern which emerges is consistent with the earlier table. In an OLS framework, young firms pay

lower wages. However, as we add controls which absorb differences in worker and firm quality,

the wage discount at younger firms becomes a wage premium.

In conclusion, on average new firms pay lower wages. However, the large wage difference
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observed when just looking at simple averages is driven by the fact that new firms hire dispro-

portionately more workers who command lower wages due to lower intrinsic quality as well as

more workers at a point in time when they are commanding relatively lower wages due to youth

or inexperience. Moreover, some new firms are of time invariant lower quality. These firms are

likely to always pay lower wages, even if they are able to survive to maturity. Controlling for

individual time invariant and observable time varying characteristics as well as firm time invariant

characteristics largely explains the difference in wages between new and established firms.

3.7 Alternative Samples

In the previous section, we show that new firms disproportionately hire low-skill, low-wage

workers when using the full sample of employees. In this section, we re-estimate the same spec-

ifications but limit the sample to sets of high-skill workers, namely college educated workers or

college educated workers employed in the high tech sector. If our results hold in these two alter-

native samples, then we can conclude that new firms hire relatively more low quality workers, as

compared to established firms, across different distributions of skill.

3.7.1 College Educated Employees

We start by looking at the subsample of college-educated workers, defined as employees with

sixteen or more years of education. A large literature in economics shows that highly educated

workers are also relatively more skilled, compared to the general population. In Table 3.5, we

repeat the same empirical specifications as used in the baseline sample but applied to the sample

of college educated workers. We find similar results to the baseline sample with all workers. In a

univariate setting, we still observe a significantly lower wage at new firms, as reported in column

1. As in Table 3.3, employee fixed effects (column 2) and worker time varying characteristics

(column 3) continue to be important explanatory variables of wages in new firms, even within the

more homogenous set of college-educated workers. Moreover, adding firm fixed effects (column

4) lowers the new firm wage difference to be statistically zero.
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3.7.2 High Technology Firms

In Table 3.6, we further restrict the sample to just college educated workers at high technology

firms. We define the high technology sector to include firms in computers, biotech, electronics and

telecom, and use the first industry observed for a given worker.9 We focus on these industries given

the concentration of high value startups in these industries. Overall, the pattern of wages is similar

for college educated workers in high technology areas as compared to college educated workers in

the full sample.

3.8 Controlling for Firm Size

In the previous analysis, we do not control for firm size. Firm size is positively correlated with

firm age and negatively correlated with wages. As such, the exclusion of this variable is biasing

our coefficient on “new firm” downwards, or making the wage penalty for working at new firms

appear more negative. We chose not to include firm size in the baseline estimation to capture the

typical wage implications for a given employee joining a new firm, which in almost all likelihood

will also be a small firm. However, there is value in understanding how much of the wage penalty

associated with new firms is driven by firm size. Hence, in Table 3.7, we add firm size to the

baseline regressions. Specifically, we measure firm size as log employment and the second and

third order transformations of log employment.

In column 1, after controlling for firm size and year fixed effects, we find a negative and sig-

nificant coefficient on new firms. However, the coefficient on new firms is significantly smaller, as

compared in the baseline estimation suggesting that the relation between firm size and wages can

explain some of the baseline finding. Moreover, as in Oi and Idson (1999), firm size is a significant

predictor of wages. This result is inconsistent with Burton, Dahl and Sorenson (2017) which finds

that firm age has no bearing on wages, after controlling for firm size in a sample of Danish firms,

9Specifically, we define a firm as being in the ”Computer” industry if its primary SIC code is 3570-5379, 5044,
5045, 5734, or 7370-7379. A firm is in the ”Biotech/Medical” industry if its primary SIC code is 2830-2839, 3826,
3841-3851, 5047, 5048, 5122, 6324, 7352, 800-8099, or 8730-8739 excluding 8732. A firm is in the ”Electronics”
industry if its primary SIC code is 3600- 3629, 3643, 3644, 3670-3699, 3825, 5065, or 5063. A firm is in the ”Telecom”
industry if its primary SIC code is 3660-3669 or 4810-4899.
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likely reflecting differences in the samples of new firms across the two countries.

After controlling for individual fixed effects in column 2, the coefficient on new firm is further

reduced, but remains negative and significant. Furthermore, with the addition of time-varying

controls for observable worker characteristics in column 3, the magnitude of the new firm wage

differential is again further reduced.

In column 4, with the addition of firm fixed effects, we report a positive and significant coef-

ficient on new firms. The coefficient is now an economically modest but not insignificant 1.7%.

These results suggest that employees at larger new firms realize a wage premium. Likewise, adding

controls for firm size increases the coefficient on new firm if we use just the sample of college ed-

ucated workers (column 5) or college educated workers in the tech sectors (column 6).

3.9 Tenure Wage Relationship

Another common belief is that young firms offer higher wage gains for retained employees.

Such a pattern would be consistent with financial constraints, where firms essentially borrow from

workers in the early years and then repay them with higher wage growth as the firm becomes

less financially constrained (Guiso, Pistaferri and Shivardi, 2013). To test this, we create a set

of dummy variables for employees with 0, 1, 2, 3 or 4 or more years of tenure with their given

firm and interact these variables with our new firm dummy variable. We then repeat the same

specifications as in the baseline and report the results in Table 3.8.

We show a dramatic increase in wages at established firms with greater tenure. The omitted

group is workers with 0 tenure at established firms. These regressions are estimated on all workers

and, as such, the sample of workers used to estimate wages with 0 tenure is different from the

sample of workers used to estimate wages with 1 year of tenure. In column 1, the large difference in

wages between the 0 tenure and 1 year tenure is primarily driven by a selection effect. Workers who

leave within a year are, on average, less productive workers. Alternatively, by including worker

fixed effects in column 2, we can now observe the impacts of tenure on wages after controlling for

differences in worker quality across the different tenure groups. As predicted, the wage increases

with tenure are now much more gradual at established firms. Adding time varying controls or firm
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fixed effects has relatively little impact on the tenure wage gradient at established firms.

In column 1, with just year fixed effects, there is a significantly less positive tenure-wage

relation at new firms. This is consistent with results in Brown and Medoff (2003) who show that in

a cross-sectional analysis wages grow faster with tenure at more established firms. However, this

appears to be driven by the higher proportion of lower quality firms in the set of new firms. These

firms may not be able to increase wages over time as they are less productive and already starting

to fail. Once we include firm fixed effects, in column 4, there is now a more positive tenure-wage

relation at new firms, consistent with a financial constraints mechanism.

3.10 Does Worker Quality Matter for New Firm Performance?

In the previous sections, we document that young firms disproportionally hire low quality work-

ers. We argue that this selection can be attributed to a matching of less productive workers to less

productive new firms or by the fact that new firms are financially constrained and less able to pay

for high skill workers. The two explanations are inter-related: financial constraints will likely rein-

force assortative matching as lower quality firms will have more difficulty raising capital. Because

the two explanations are difficult to separate empirically, we do not try to distinguish between

them, leaving this for future research. Instead, as a means to further support both selection mech-

anisms, we explore the relation between worker quality and new firm future performance, which

should correlate with intrinsic firm quality. We explore two tests. First, we plot mean worker fixed

effects using a two by two sort on firm age and whether or not the firm survives to year 10. Then,

in a regression setting, we investigate whether firms with higher quality workers at birth perform

better ex-post. Results from both test a mechanism where low quality workers disproportionately

match to low quality firms and financially constrained firms cannot hire high skill workers and

underperform (Evans and Jovanovic, 1989).

In Figure 3.2(b), we plot mean worker fixed effects from the baseline AKM wage regression

specification in Table 3.3, column 4. We measure the quality of a firm’s workforce in a given year

as the firm’s mean worker fixed effect, using all workers employed by the firm in that year. In

Figure 3.2(b), we look at the variation within firm age group by whether or not the firm survived
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to year 10. Firms that survive to year 10 (in green) have above average worker quality at birth:

Among surviving firms, firms with age 0 to 1 have worker fixed effects equal to 4.7% higher than

the average worker’s fixed effect (which includes workers from all firms: new and established).

It also shows, that firms that exit within 9 years of birth (in red) have well below average worker

quality at birth: among these firms, the firms with age 0 to 1 have worker fixed effects 9.4% lower

than average. The difference between the mean fixed effect for surviving and failing firms aged

zero to one is 21% of the standard deviation of the worker fixed effect across the full sample (the

standard deviation is 0.66). These univariate results support our argument that young firms which

disproportionately hire low-wage workers are themselves worse quality, on average. The figure

also shows that the difference in worker fixed effects between surviving and failing firms shrinks

as firms age: the differences goes down from 14.1% to 6.5% for firms with age 8 to 9, however,

this could also be driven by the fact that the surviving to year 10 or not is less informative of firm

quality at older firms.

In a second set of tests, we examine whether the ability of young firms to attract a high quality

workforce at birth predicts young firm performance post-birth. In these tests, we use the initial

workforce quality of a firm, or the average worker fixed effects using only workers employed

by that firm in its first year of existence. Then, in OLS regressions, we predict a new firm’s

5-year exit rate and 5-year employment as a function of these worker fixed effects. Five-year

employment is set to zero if the firm fails before year 5.10 In all these regressions, we also control

for initial firm employment, birth year, and state and industry fixed effects. We report the results

in Table 3.9. The workforce quality at firm birth is positively associated with the firm survival and

future employment. Moreover, the relationship is economically significant. When all controls are

included (columns 2 and 4), one standard deviation increase in the worker fixed effect predicts an

8% higher survival rate (from the mean survival rate of 41.5% ) and a 9% higher employment. The

caveat is that these estimates do not present a causal relation between the worker intrinsic quality

10We find similar results if we use a logit specification to predict startup exit or if we measure startup exit in 6 or 4
years instead of 5 years. We also find similar results if we predict firm future employment, conditional on survival.
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and the new firm future performance (which should correlate with firm quality). However, they do

contribute to the literature that used similar methodology to estimate an effect of CEOs (Bertrand

and Schoar, 2003) on firm performance. Our results show that the human capital of young firms is

an economically important predictor of the new firms’ performance. Hence, a new firm’s ability to

hire a high quality team matters: If firms are financially constrained or otherwise unable to secure

talent, they are less likely to survive and grow.

3.11 Validating AKM Assumptions and Endogenous Mobility

In order to interpret the regression coefficients from an AKM specification in an unqualified

manner, certain conditions must be met. In this section, we show the validity of our empirical

approach by repeating the diagnostic tests used in Card, Heining and Kline (2013). In the AKM

model, the error term consists of three separate random effects: 1) a firm-employee match com-

ponent; 2) a unit root component; and 3) a transitory error. All three terms must be uncorrelated

with the firm fixed effects and three types of endogenous mobility can violate this assumption. We

discuss each in turn.

One problematic type of endogenous employee mobility would occur if employees sort into

firms based on a firm-employee match component. An example of this type of mobility follows

when employee job transitions are motivated by an expectation that employee-specific traits will

be specifically valued and compensated by the new employer, but not by other employers. It is

possible to test for such sorting in two ways.

First, if employees tend to move to jobs based on the match component, then people who

exchange workplaces will not necessarily experience systematic wage changes. Alternatively, in

the absence of worker-firm specific matches, the wage gains will be symmetric to the losses. More

precisely, if an average worker gains when moving from firm A to firm B, then an average worker

moving from firm B to firm A should realize symmetric loses. This symmetry is due to differences

in wage premiums across firms. An individual who joins a workplace where other employees are

highly paid will, on average, experience a wage gain, whereas an individual who joins a workplace

where others are poorly paid will experience a wage loss.

110



To test for this symmetry, we present event-study analyses that examines the wage effects of

switching employers, as in Card, Heining and Kline (2013). Specifically, we begin by calculating

the distribution of mean co-worker wages across all person-year observations. For each job change,

we classify the origin and destination firms into quartiles, based on the mean wages of co-workers

in the firm at that point in time. We then assign job changes to one of 16 groups based on the

quartiles of coworker wages at the origin and destination workplaces. Finally, we calculate mean

wages in the two years before and after the job change event for each group and plot in Figure 3.3.

For clarity, Figure 3.3 only shows the wage profiles for workers leaving quartile 1 and quartile

4 employers (i.e., those with the lowest- and highest-paid coworkers). The figure provides strong

evidence that moving to a job with higher paid coworkers raises pay and vice versa. Most im-

portantly, the figure shows the approximate symmetry of the wage losses and gains for those who

move between quartile 1 and quartile 4 firms. Namely, workers who move from the 4th to the 1st

quartile realize wage losses that are similar in magnitude to the wage gains of workers who move

from the 1st to the 4th quartile. The gains and losses for other mover categories exhibit a similar

degree of symmetry, particularly after adjusting for trend growth in wages (see Online Appendix

Figure C.2). This symmetry suggests that a simple model with additive worker and firm effects

may provide a reasonable characterization of the mean wages resulting from different pairings of

workers to firms.

Second, if wages tend to be set at the worker-firm match level, then the implication of such a

wage setting mechanism is that neither worker nor firm fixed effects would explain much variation

in wages. However, across all our AKM specifications, the R-squared ranges from 80 to 82 percent,

suggesting that firm and worker fixed effects explain large fraction of variation in wages.

We find no evidence that the unit root component of the error term violates the AKM assump-

tions. If a unit root error component were correlated with the firm fixed effects, then job transitions

would systematically occur following a pattern of either increasing or decreasing wages at the prior

employment. Such a pattern is best motivated by a mechanism where worker ability is revealed

slowly over time. Under this scenario, a high ability worker could realize wage increases at her
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current employer before making the transition to a firm with a relatively greater density of high-

ability workers, a firm which is likely to also be a high wage firm. If true, the individual fixed

effect would be biased low due to the years before the high quality was revealed. Moreover, this

would lead to an over-estimation of the firm fixed effect for high quality worker/high wage firms

due to the bias in the individual fixed effects.11 However, we find that the data does not support the

existence of such a pattern. In Figure 3.3, we find no evidence of trends in the wages of workers

pre-transition based on the future transition (e.g. low to high wage firm or high to low wage firm).

Most importantly, even if the estimates of the fixed effects themselves were biased, (which would

change the interpretation of the Rˆ 2 of regressions), the interpretation of the estimate on the new

firm dummy should not be affected. For example, with the inclusion of worker fixed effects, the es-

timate on the new firm dummy is measuring relative wage growth for a given person who switches

between young and old employers.

Finally, our results would be biased if fluctuations in the transitory error term were correlated

with mobility patterns between higher and lower wage firms and, potentially, with new firm status.

In other words, workers who have recently received a positive (negative) transitory wage shock

will be more likely to move to higher (lower) wage firms, leading to attenuation of the estimated

employment effects. Essentially, this would predict that transitory shocks are followed by a sys-

tematic pattern of job changes to one specific type of firm: (1) high vs. low wage; or (2) new

vs. established firm. To mitigate this concern we explore a highly relevant shock in our setting,

unemployment rates. It would be concerning if workers are more likely to transition to young

firms during periods of high unemployment and receive lower wages. However, we find no such

evidence, as reported in Appendix Table C.1, columns 3 and 4.

3.12 Conclusion

In this paper, we use US Census administrative data to report important facts regarding wages

at young firms. As in earlier studies, we confirm a lower average wage at new firms. We document

11Likewise, this same pattern would lead to an under-estimation of the firm fixed effect for low wage firms if low
ability is revealed slowly over time. For reference, please see Card, Heining and Kline (2013).
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that nearly three quarters of this wage difference can be attributed to differences in worker quality

at new firms. These results mitigate the common perception that employees joining new firms

accept a wage penalty. Instead, most of the observed wage difference is due to the fact that these

new firms are employing relatively more workers who command lower wages on the market due

to differences in inherent skills or experience.

Moreover, once we also control for time varying observable worker characteristics and firm

fixed effects, the wage penalty disappears and is instead replaced by a statistically significant but

economically small wage premium at new firms of 0.7% . In this saturated specification, we control

for time invariant differences in firm quality. This is important as new firms in our data will include

a varied group of both low quality new firms, which are unlikely to succeed over the long run, as

well as high quality new firms with tremendous potential. As such, our results can be interpreted

as saying that a given worker with job opportunities at a new and established firm of equivalent

quality will expect to earn equivalent wages at both.

These results contradict the earlier assumptions that workers had to accept a wage penalty,

on average, when joining a new firm and add to our understanding of why individuals chose to

join young businesses. These results no longer require that employees of new firms offset a wage

penalty with a compensating differential associated with working at a new firm. Instead, the new

firm wage difference appears to be driven by selection. New firms disproportionately hire lower

wage workers due to either positive assortative matching or higher likelihood of financial con-

straints at new firms which limit the ability to hire high wage workers.

One important implication of these results is that initial worker quality at a new firm is a proxy

for firm quality and an economically important predictor of future firm performance. We show that

initial worker quality at a new firm can predict 5- and 10-year survival rates and future employment.

Hence, a new firms ability to hire a high quality team matters: If firms are financially constrained

or otherwise unable to secure talent, they are less likely to survive and grow.
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Figure 3.1: Average Wages and Average Wage Growth by Firm Age

Figure shows mean worker wages (Figure (a)) and mean worker wage growth (Figure (b)) by employer age of all worker-years in the baseline
sample. The baseline sample is a worker-year panel from 1990 through 2006. In Panel A, wages are quarterly and normalized to real 2014 dollars.
In Panel B, wages growth is the log differences between the current and the previous year quarterly wages.

(a) Average Wages

(b) Average Wage Growth
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Figure 3.2: Worker Fixed Effects by Firm Age

Figure shows mean of worker wage fixed effects by employer age for workers in the baseline sample. The baseline sample is a worker-year panel
from 1990 through 2006. Wages are log normalized to real 2014 dollars. Worker wage fixed effects are estimated from the baseline wage regression
in Table 3.3, column 4. Figure (a) reports the statistics for all worker-years from the base sample.Figure (b) shows the statistics for a sub-sample
of worker-years at firms that survive for at least ten years (in green) and for a sub-sample of worker-years at firms that exit within nine years of the
firm birth (in red).

(a) All Firms

(b) Surviving and Dying Firms
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Figure 3.3: Mean Wages of Job Changers Classified by Quartile of Mean Wages of Coworkers at
Origin and Destination Firm

Figure shows mean wages of workers from the baseline sample who change jobs (i.e., employers) in the year zero, and held the preceding job for
two or more years (years -2 and -1), and the new job for two or more years (years 1 and 2). The baseline sample is a worker-year panel from 1990
through 2006. Each job is classified into quartiles based on mean wage of coworkers. Wages are log normalized to real 2014 dollars.
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Table 3.1: Summary Statistics for New and Established Firms

Panel A shows mean (standard deviation) statistics at the firm-year level, and Panel B at the worker-
year level for the baseline sample. The baseline sample is a worker-year panel from 1990 through 2006.
Column 1 reports statistics using the sample of all firms. Column 2 (3) reports statistics for established
firms (new firms). Established firm is a firm aged four or older; new firm is aged three years or less. In
Panel A, workforce statistics are calculated at a unique firm-year level in a following way: first, for a
given variable the average is calculated for each firm-year across all workers employed by that firm-year;
second, reported means and standard deviations are calculated across firm-years.

Panel A. Firm-year level variables
(1) (2) (3)

All Firms Established Firms New Firms

Firm Age 11.1 13.7 1.8
(8.1) (7.3) (1.0)

Firm Employment 167 210 14.6
(965) (1,084) (131)

Percent Male Employees 0.532 0.528 0.545
(0.330) (0.325) (0.349)

Percent College Educated Employees 0.355 0.364 0.323
(0.254) (0.246) (0.276)

Number of Observations (millions) 2.1 1.6 0.45

Panel B. Worker-year level variables
(1) (2) (3)

All Firms Established Firms New Firms

Quarterly Earnings (2014$) 8,536 8,673 6,818
(7,602) (7,643) (6,839)

Wage Growth 0.046 0.046 0.046
(0.485) (0.476) (0.582)

Tenure (years) 5.7 5.9 3.2
(4.4) (4.5) (2.7)

Age 38.7 38.9 36.0
(12.8) (12.7) (12.7)

Male 0.524 0.523 0.535
(0.499) (0.499) (0.498)

Education (years) 13.9 13.9 13.6
(2.6) (2.6) (2.5)

Number of Observations (millions) 48.4 44.8 3.6
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Table 3.2: Summary Statistics for Workers Who Change and Do Not Change Employers

Table shows summary statistics for workers who never change employers in
the sample (Column 1) and change employers at least once (Column 2) for
the workers in the baseline sample. The base sample is a worker-year panel
from 1990 through 2006. Statistics are means and standard deviations (in
parenthesis).

(1) (2)
Do Not Move Move

Quarterly Earnings (2014$) 10,020 8,002
(8,905) (6,999)

Wage Growth 0.018 0.056
(0.372) (0.519)

Tenure (years) 8.3 4.7
(5.3) (3.6)

Age 41.9 37.5
(13.4) (12.3)

Male 0.558 0.512
(0.496) (0.500)

Education (years) 14.2 13.8
(2.5) (2.6)

Number of Observations (millions) 12.8 35.6
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Table 3.3: New Firm Wages for All Workers

Table reports baseline results of wages at new firms. The baseline sample is a worker-year panel from
1990 through 2006. In all columns, the dependent variable is the log of worker total quarterly wages.
Wages are in real 2014 dollars. New firm is defined as a firm of three years of age or less. Time-varying
worker controls include worker age squared, worker age cubed, worker age times education, worker age
squared times education, worker age cubed times education. Worker age is log transformed. Education is
measured in years of schooling and log transformed. Note, worker age and education are not included as
linear controls in regressions with worker fixed effect since they are collinear with the fixed effect. Standard
errors are clustered at the firm and the worker level, and reported in parentheses. ***, **, * indicate statistical
significance as the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)
Log(Wage) Log(Wage) Log(Wage) Log(Wage)

New Firm -0.307*** -0.087*** -0.077*** 0.007***
(0.017) (0.003) (0.002) (0.002)

Observations (millions) 48.4 48.4 48.4 48.4
R-squared 0.009 0.748 0.772 0.810
Time-Varying Worker Controls No No Yes Yes
Worker FE No Yes Yes Yes
Firm FE No No No Yes
Year FE Yes Yes Yes Yes
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Table 3.4: New Firm Wages by Firm Age

Table reports baseline results of wages at firms of different age. The sample is a worker-year panel from 1990
through 2006. In all columns, the dependent variable is the log of worker total quarterly wages. Wages are
in real 2014 dollars. Worker controls include worker age squared and age cubed, and their interactions with
worker education. Time-varying worker controls include worker age squared, worker age cubed, worker
age times education, worker age squared times education, worker age cubed times education. Worker age
is log transformed. Education is measured in years of schooling and log transformed. Note, worker age
and education are not included as linear controls in regressions with worker fixed effect since they are
collinear with the fixed effect. Standard errors are clustered at the firm and the worker level, and reported in
parentheses. ***, **, * indicate statistical significance as the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)
Log(Wage) Log(Wage) Log(Wage) Log(Wage)

Firm Age 0-1 -0.382*** -0.127*** -0.126*** 0.063***
(0.025) (0.005) (0.004) (0.015)

Firm Age 2-3 -0.387*** -0.138*** -0.139*** 0.041***
(0.025) (0.005) (0.004) (0.014)

Firm Age 4-5 -0.303*** -0.105*** -0.117*** 0.038***
(0.032) (0.009) (0.006) (0.014)

Firm Age 6-7 -0.258*** -0.089*** -0.105*** 0.031**
(0.030) (0.006) (0.005) (0.012)

Firm Age 8-9 -0.208*** -0.072*** -0.090*** 0.028**
(0.033) (0.007) (0.005) (0.011)

Firm Age 10-11 -0.184*** -0.064*** -0.079*** 0.027***
(0.036) (0.008) (0.005) (0.010)

Firm Age 12-13 -0.157*** -0.052*** -0.064*** 0.028***
(0.039) (0.008) (0.006) (0.009)

Firm Age 14-15 -0.128*** -0.035*** -0.048*** 0.025***
(0.035) (0.008) (0.008) (0.007)

Firm Age 16-17 -0.081*** -0.016** -0.034*** 0.018***
(0.029) (0.007) (0.006) (0.005)

Firm Age 18-19 -0.049* -0.011*** -0.025*** 0.009**
(0.025) (0.004) (0.004) (0.004)

Firm Age 20+ (omit) (omit) (omit) (omit)

Observations (millions) 48.4 48.4 48.4 48.4
R-squared 0.018 0.748 0.772 0.810
Time-Varying Worker Controls No No Yes Yes
Worker FE No Yes Yes Yes
Firm FE No No No Yes
Year FE Yes Yes Yes Yes
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Table 3.5: New Firm Wages for College Educated Workers

Table shows results from regressions of worker wages on new firm indicator variable for college educated
workers from our baseline sample. The baseline sample is a worker-year panel from 1990 through 2006. In
all columns, the dependent variable is the log of worker total quarterly wages. Wages are in real 2014 dollars.
New firm is defined as a firm of three years of age or less. Time-varying worker controls include worker age
squared, worker age cubed, worker age times education, worker age squared times education, worker age
cubed times education. Worker age is log transformed. Education is measured in years of schooling and log
transformed. Note, worker age and education are not included as linear controls in regressions with worker
fixed effect since they are collinear with the fixed effect. Standard errors are clustered at the firm and the
worker level, and reported in parentheses. ***, **, * indicate statistical significance as the 1%, 5%, and 10%
level, respectively.

(1) (2) (3) (4)
Log(Wage) Log(Wage) Log(Wage) Log(Wage)

New Firm -0.275*** -0.092*** -0.088*** 0.002
(0.016) (0.002) (0.002) (0.003)

Observations (millions) 18.3 18.3 18.3 18.3
R-squared 0.008 0.751 0.763 0.809
Time-Varying Worker Controls No No Yes Yes
Worker FE No Yes Yes Yes
Firm FE No No No Yes
Year FE Yes Yes Yes Yes
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Table 3.6: New Firm Wages for College Educated Workers at Technology Firms

Table shows results from regressions of worker wages on new firm indicator variable for college educated
workers in technology sector from our baseline sample. The baseline sample is a worker-year panel from
1990 through 2006. In all columns, the dependent variable is the log of worker total quarterly wages.
Wages are in real 2014 dollars. New firm is defined as a firm of three years of age or less. Time-varying
worker controls include worker age squared, worker age cubed, worker age times education, worker age
squared times education, worker age cubed times education. Worker age is log transformed. Education is
measured in years of schooling and log transformed. Note, worker age and education are not included as
linear controls in regressions with worker fixed effect since they are collinear with the fixed effect. Standard
errors are clustered at the firm and the worker level, and reported in parentheses. ***, **, * indicate statistical
significance as the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)
Log(Wage) Log(Wage) Log(Wage) Log(Wage)

New Firm -0.206*** -0.095*** -0.090*** 0.005
(0.027) (0.004) (0.004) (0.005)

Observations (millions) 6.29 6.29 6.29 6.29
R-squared 0.014 0.724 0.739 0.804
Time-Varying Worker Controls No No Yes Yes
Worker FE No Yes Yes Yes
Firm FE No No No Yes
Year FE Yes Yes Yes Yes
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Table 3.8: Wages by Worker Tenure and Firm Age

Table reports results of wages by worker tenure at an employer and by the employer’s age. The sample is
a worker-year panel from 1990 through 2006. In all columns, the dependent variable is the log of worker
total quarterly wages. Wages are in real 2014 dollars. Tenure 1 (2) (3) (4+) equals one for workers who
were at the employer for one (two) (three) (four or more) years. New firm is defined as a firm of three
years of age or less. Worker controls include worker age squared and age cubed, and their interactions with
worker education. Worker age is log transformed. Education is measured in years of schooling and log
transformed. Note, worker age and education are not included as linear controls in regressions with worker
fixed effect since they are collinear with the fixed effect. Standard errors are clustered at the firm and the
worker level, and reported in parentheses. ***, **, * indicate statistical significance as the 1%, 5%, and 10%
level, respectively.

(1) (2) (3) (4)
Log(Wage) Log(Wage) Log(Wage) Log(Wage)

Tenure 0 (omit) (omit) (omit) (omit)

Tenure 1 0.165*** 0.041*** 0.010*** 0.007***
(0.005) (0.002) (0.002) (0.002)

Tenure 2 0.370*** 0.109*** 0.063*** 0.061***
(0.007) (0.003) (0.002) (0.002)

Tenure 3 0.477*** 0.128*** 0.082*** 0.085***
(0.009) (0.003) (0.003) (0.003)

Tenure 4+ 0.686*** 0.117*** 0.119*** 0.133***
(0.014) (0.004) (0.004) (0.003)

Tenure 0 * New Firm -0.086*** -0.050*** -0.047*** 0.033***
(0.014) (0.003) (0.003) (0.002)

Tenure 1 * New Firm -0.087*** -0.058*** -0.048*** 0.027***
(0.016) (0.003) (0.003) (0.002)

Tenure 2 * New Firm -0.071*** -0.059*** -0.043*** 0.027***
(0.016) (0.003) (0.002) (0.002)

Tenure 3 * New Firm -0.0263 -0.064*** -0.038*** 0.015***
(0.019) (0.004) (0.003) (0.003)

Observations (millions) 48.4 48.4 48.4 48.4
R-squared 0.079 0.749 0.773 0.812
Time-Varying Worker Controls No No Yes Yes
Worker FE No Yes Yes Yes
Firm FE No No No Yes
Year FE Yes Yes Yes Yes

124



Table 3.9: New Firm Outcomes as a Function of Worker Fixed Effects from Wage Regressions

Table shows cross-sectional OLS results from predicting new firm exit (Columns 1-2) and future employment (Columns
3-4) as a function of worker fixed effects estimated from the wage regression in Table 3, column 4. The sample is a cross-
section of new firms from the base sample. The base sample is a worker-year panel from 1990 through 2006. In Columns
1-2, dependent variable, New Firm Exits in 5 Years, equals one for new firms that exit by year five since founding. In
Columns 3-4, dependent variable, New Firm 5-year Employment, is the log of a new firm’s employment at age five. Mean
Worker Fixed Effects is the mean of worker fixed effects of workers at the new firm in its first year of existence. Estimates
for control variables (Log New Firm Employment in First Year, Log Mean Worker Education in First Year, and Log Mean
Worker Age in First Year) are not reported due to the US Census disclosure limits on the number of estimates that can be
cleared. State FE and Industry FE refer to the industry of the new firm. Standard errors are clustered at the firm level, and
reported in parentheses. ***, **, * indicate statistical significance as the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)
New Firm Exits in 5 Years New Firm 5-year Employment

Mean Worker Fixed Effects -0.077*** -0.065*** 0.177*** 0.180***
(0.006) (0.005) (0.013) (0.013)

Observations (thousands) 205 205 205 205
R-squared 0.035 0.036 0.099 0.1
Log New Firm Employment in First Year Yes Yes Yes Yes
Log Mean Worker Education in First Year No Yes No Yes
Log Mean Worker Age in First Year No Yes No Yes
Year of Firm Birth FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
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APPENDIX A

CHAPTER 1 APPENDIX

A.1 Variable Definitions

Average quarterly wage is the average quarterly wage in each firm-year-quarter. Wages are adjusted to 2001 dollars.

Source: LEHD

Average quarterly wage of high-skill is the average quarterly wage of high-skilled workers in each firm-year-quarter.

High-skilled workers are defined as workers whose earnings are above the 90th percentile of the firm wage distribution

in that year-quarter. Wages are adjusted to 2001 dollars. Source: LEHD

Quarterly wage 90th/10th percentile ratio is the ratio of the average of quarterly wages above the 90th percentile to

the average of quarterly wages below the 10th percentile of the quarterly wage distribution in that firm-year-quarter.

Wages are adjusted to 2001 dollars. Source: LEHD

logWages is the logarithm of the average quarterly wage in each firm and year-quarter. Wages are adjusted to 2001

dollars. Source: LEHD

logMedWages is the logarithm of the median quarterly wage in each firm and year-quarter. Wages are adjusted to 2001

dollars. Source: LEHD

logWages adj is the logarithm of the average quarterly wage in each firm and year-quarter. Wages are adjusted to 2001

dollars and adjusted for state-level cost of living. Source: LEHD

logWages m (logWages f) is the logarithm of the average quarterly wage of male (female) workers in each firm and

year-quarter. Wages are adjusted to 2001 dollars. Source: LEHD

logWages wk is the logarithm of a worker’s wage in the first quarter of a given year. Wages are adjusted to 2001

dollars. Source: LEHD

logWages cz is the logarithm of the average quarterly wage in each firm-commuting zone-year-quarter. Wages are

adjusted to 2001 dollars. Source: LEHD

logWages hskill is the logarithm of the average quarterly wage of high-skilled workers. High-skilled workers are

defined as workers whose earnings are above the 90th percentile of the firm wage distribution in that year-quarter.

Wages are adjusted to 2001 dollars. Source: LEHD
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logWages hskill cz is the logarithm of the average quarterly wage of high-skilled workers. High-skilled workers are

defined as workers whose earnings are above the 90th percentile of the wage distribution in that firm-commuting

zone-year-quarter. Wages are adjusted to 2001 dollars. Source: LEHD

logWages90th 10th is the log difference of the average quarterly wages above the 90th percentile and below the 10th

percentile of the quarterly wage distribution in that firm-year-quarter. Source: LEHD

logWages90th 10th m (logWages90th 10th f) is the log difference of the average male wages above the 90th percentile

and below the 10th percentile of the male wage distribution in that firm-year-quarter. Source: LEHD

logWages90th 10th cz is the log difference of the average male wages above the 90th percentile and below the 10th

percentile of the male wage distribution in that firm-commuting zone-year-quarter. Source: LEHD

logWages lbd is the logarithm of the average per worker pay in each firm and year-quarter. Average per worker pay

is calculated as the total payroll divided by the total employment as of March 12th in each firm-year. To create a

quarterly panel, the annual measure in the year y is linked to the first three quarters of year y and the last quarter of

year y − 1. Wages are adjusted to 2001 dollars. Source: LBD

Average working experience is the average of workers’ working experiences in each firm-year-quarter, where working

experience is defined as worker age minus year of education minus six. Source: LEHD

Average education level is the average of workers’ education levels in a given firm-year-quarter. Source: LEHD

MaleShare is the share of male workers (in percentage) in each firm-year-quarter. Source: LEHD

CollegeShare is the share of workers (in percentage) who have at least 4-year college education in each firm-year-

quarter. Source: LEHD

firm age is defined as the oldest establishment that the firm owns in the first year the firm is observed in the LBD

(Haltiwanger, Jarmin, and Miranda, 2012). Source: LBD

lgFirmAge is the logarithm of firm age, where firm age is defined as the oldest establishment that the firm owns in the

first year the firm is observed in the LBD (Haltiwanger, Jarmin, and Miranda, 2012). Source: LBD

Firm employment is the total number of workers in a given firm-year-quarter. Source: LBD

FIN is equal to 1 if a firm is classified as a finance firm, and equal to 0 if a firm is operating in other private non-farming

industries. A firm is classified as a finance firm if 1) more than 50 percent of its employees working in establishments

belonging to one of the finance industries, and 2) all establishments belonging to the firm are in finance industries. A
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firm is classified as a non-finance firm if 1) more than 50 percent of its employees working in establishments belonging

to a private non-finance non-farming industry, and 2) none of its establishments is in finance industries. Source: LBD

HHI (2-digit SIC) is a measure of concentration for 2-digit SIC industry in a given year-quarter. It is the summation

of the square of firm employment shares in the industry as defined by equation (1). Source: LBD

HHI (3-digit SIC) is a measure of concentration for 3-digit SIC industry in a given year-quarter. It is the summation

of the square of firm employment shares in the industry as defined by equation (1). Source: LBD

LogFirmN is a measure of concentration for 2-digit SIC industry in a given year-quarter. It is the logarithm of total

number of firms in a given industry-year. Source: LBD

MarketPowerE (2-digit SIC) is a firm’s employment share in its main industry in a given year-quarter where indus-

tries are defined using 2-digit SIC codes. textitSource: LBD

MarketPowerE (3-digit SIC) is a firm’s employment share in its main industry in a given year-quarter where indus-

tries are defined using 3-digit SIC codes. Source: LBD

MarketPowerS (2-digit SIC) is a firm’s sales share in its main industry in a given year-quarter where industries are

defined using 2-digit SIC codes. Source: BR

MarketPowerS (3-digit SIC) is a firm’s sales share in its main industry in a given year-quarter where industries is

defined using 3-digit SIC codes. Source: BR

MarketPowerL is the firm’s employment share in a given industry-commuting zone-year-quarter. Source: LBD

ROA is the ratio of earnings before tax, interest, depreciation, and amortization (EBTIDA) to total assets in a given

firm-year-quarter. The is winsorized at the 1st and 99th percentiles of its empirical distribution. Source: Compustat

Lerner Index is the ratio of operating income after depreciation to total sales in a given firm-year-quarter. The is

winsorized at the 1st and 99th percentiles of its empirical distribution. Source: Compustat

Asset utilization ratio is the ratio of total sales to total assets in a given firm-year-quarter. The is winsorized at the 1st

and 99th percentiles of its empirical distribution. Source: Compustat

Manufacturing is equal to 1 if the firm is in SIC 20-39 and is equal to 0 for firms in other industries. Source: LBD

Mining is equal to 1 if the firm is in SIC 10-14 and is equal to 0 for firms in other industries. Source: LBD
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Wholesale Trade is equal to 1 if the firm is in SIC 50-51 and is equal to 0 for firms in other industries. Source: LBD

Retail Trade is equal to 1 if the firm is in SIC 52-59 and is equal to 0 for firms in other industries. Source: LBD
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A.2 Appendix Graphs and Tables

Figure A.1: Accessible States in LEHD
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Table A.1: Summary Statistics: Public Firm Wage Pattern, Market Power and Other Characteristics

This table reports firm-level summary statistics. The sample consists of publicly listed firms only, and spans from
Q2, 1990 through Q4, 2005. All refers to all observations in the sample. Non-finance refers to observations in
finance industries. Finance refers to observations in non-finance industries. In columns (1) to (3) sample means
(standard deviations) are computed across all-firm-quarter observations in each category. Column (4) provides
differences between means in column (3) and column (2). Stars in the column (4) represent the level of p-values
of testing the difference between columns 2 and 3: *** indicates p¡0.01, ** indicates p¡0.05, and * indicates
p¡0.1. All definitions are provided in Appendix I. The number of observations is rounded following the Census
Bureau’s disclosure rules.

(1) (2) (3) (4)
All Non-finance Finance Difference [(3)-(2)]

Panel A: Wage Pattern
Average quarterly wages ($) 12780 12840 12410 -423***

(8,542) (8,451) (9,077)
Average quarterly wages of high-skill($) 34450 33610 39600 5994***

(35,460) (34,510) (40,450)
Quarterly wage 90th/10th percentile ratio 7.358 6.953 9.848 2.895***

(5.772) (5.514) (6.63)

Panel B: Firm Characteristics
MarketPowerE (2-digit SIC) 0.219 0.239 0.093 -0.146***

(0.893) (0.956) (0.258)
MarketPowerE (3-digit SIC) 0.874 0.952 0.393 -0.558***

(2.673) (2.788) (1.737)
ROA 0.089 0.097 0.04 -0.058***

(0.173) (0.181) (0.093)
Lerner Index 0.039 0.005 0.253 0.248***

(0.420) (0.429) (0.278)
Asset utilization ratio 1.241 1.408 0.217 -1.191***

(1.026) (0.99) (0.525)
Average Worker Age 38.9 38.78 39.67 0.9***

(4.393) (4.522) (3.397)
lgAvgEdu 14.24 14.2 14.44 0.237***

(0.784) (0.804) (0.604)
CollegeShare 42.46 41.9 45.89 3.989***

(14.88) (15.25) (11.82)
MaleShare 56.4 60.65 30.32 -30.32***

(22.77) (20.88) (15.37)
Firm age 18.53 18.23 20.41 2.185***

(6.572) (6.513) (6.617)
Number of observations 91,000 78000 13000
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Table A.2: Firm Market Power and Wages in Finance (Public Firms Only)

This table presents the estimates of the effects of firm market power measured by em-
ployment on the wages of finance and non-finance firms. The sample consists of US
public firms only, and spans from Q2, 1990 through Q4, 2005. The dependent variable
is the log-transformed average quarterly wages at the firm. Wages are in 2001 con-
stant dollars. Besides time fixed effects, all regressions control for the four-quarter-lag
of firm-level measures of workforce composition, including the share of male workers,
the log of average education level, the share of college workers, and the log of average
worker experience. Standard errors are clustered at firm-level and reported in parenthe-
ses. *** indicates p¡0.01, ** indicates p¡0.05, and * indicates p¡0.1. All definitions are
provided in Appendix I. The number of observations is rounded following the Census
Bureau’s disclosure rules.

(1) (2) (3)
logWages logWages logWages

FIN 0.0615*** 0.0394*** 0.0502***
(0.0147) (0.015) (0.015)

MarketPowerE (2-digit SIC) -0.0182***
(0.0046)

FIN×MarketPowerE (2-digit SIC) 0.193***
(0.0353)

MarketPowerE (3-digit SIC) -0.0049***
(0.0015)

FIN×MarketPowerE (3-digit SIC) 0.0219***
(0.0081)

Number of observations 91,000 91,000 91,000
R-squared 0.513 0.515 0.514
Year×Quarter FE YES YES YES
Workforce composition YES YES YES
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Table A.3: Summary Statistics: Local Market Power and Local Wage Patterns

This table reports firm-commuting zone-level summary statistics. The sample consists of US public and private firms, and
spans from Q2, 1990 through Q3, 2008. All refers to all observations in the sample. Non-finance refers to observations in
finance industries. Finance refers to observations in non-finance industries. In columns (1) to (3) sample means (standard
deviations) are computed across all-firm-commuting zone-quarter observations in each category. Column (4) provides
differences between means in column (3) and column (2). Stars in the column (4) represent the level of p-values of testing
the difference between columns 2 and 3: *** indicates p¡0.01, ** indicates p¡0.05, and * indicates p¡0.1. All definitions
are provided in Appendix I. The number of observations is rounded following the Census Bureau’s disclosure rules.

(1) (2) (3) (4)
ALL Non-finance Finance Difference [(3)-(2)]

Average quarterly wages (CZ, $) 8839 8742 10930 2189***
(8075) (7788) (12610)

Average quarterly wages of high-skill(CZ, $) 17340 17080 23000 5929***
(26340) (25330) (42180)

Quarterly wage 90th/10th percentile ratio (CZ) 4.233 4.202 4.897 0.695***
(5.683) (5.629) (6.726)

LocalMarketPower 0.932 0.911 1.392 0.481***
(4.810) (4.790) (5.193)

Number of observations 69,270,000 66,210,000 3,061,000
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Table A.4: Offshorability

This table reports employment weighted average of offshorability by industries.
Higher offshorability score means jobs in the industry are more offshorable.

SIC Code Non-farming Private Industry Offshorability
1000-1499 Mining -0.481
2000-3999 Manufacturing 0.227
4000-4999 Transportation and Utilities -0.771
5000-5199 Wholesale Trade 0.395
5200-5999 Retail Trade -0.009
6000-6799 Finance and Insurance 0.976
7000-8999 Services 0.059

134



Table A.5: Summary Statistics: Firm Market Power Measured by Sales and Wage Patterns

This table reports firm-level summary statistics. The sample consists of US public and private firms, and spans
from Q2, 1990 through Q3, 2008. All refers to all observations in the sample. Non-finance refers to observations
in finance industries. Finance refers to observations in non-finance industries. In columns (1) to (3) sample means
(standard deviations) are computed across all-firm-quarter observations in each category. Column (4) provides
differences between means in column (3) and column (2). Stars in the column (4) represent the level of p-values
of testing the difference between columns 2 and 3: *** indicates p¡0.01, ** indicates p¡0.05, and * indicates
p¡0.1. All definitions are provided in Appendix I. The number of observations is rounded following the Census
Bureau’s disclosure rules.

(1) (2) (3) (4)
ALL Non-finance Finance Difference [(3)-(2)]

Average quarterly wages ($) 9036 8948 11270 2326***
(8,196) (7,993) (12,080)

Average quarterly wages of high-skill($) 17920 17700 23630 5938***
(26,060) (25,260) (41,150)

Quarterly wage 90th/10th percentile ratio 4.399 4.375 5.012 0.638***
(5.988) (5.941) (7.076)

MarketPowerS (2-digit SIC) 0.004 0.004 0.007 0.004***
(0.041) (0.041) (0.023)

MarketPowerS (3-digit SIC) 0.023 0.022 0.03 0.008***
(0.306) (0.307) (0.276)

Number of observations 39,090,000 37,620,000 1,471,000
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Table A.6: External Validity

This table presents the estimates of the effects of firm market power measured by employment on the wages of
finance and non-finance firms. The sample consists of US public and private firms, and spans from Q2, 1990
through Q3, 2008. The dependent variable is the logarithm of per worker wage in the firm. Per worker wage is
calculated using total pay roll divided by total firm employment, adjusted inflation to 2001 constant dollars and
winsorized at 1%. Wages are in 2001 constant dollars. Standard errors are clustered at firm-level and reported
in parentheses. *** indicates p¡0.01, ** indicates p¡0.05, and * indicates p¡0.1. All definitions are provided in
Appendix I. The number of observations is rounded following the Census Bureau’s disclosure rules.

(1) (2) (3) (4)
logWages lbd logWages lbd logWages lbd logWages lbd

FIN 0.280*** 0.316*** 0.314*** 0.315***
(0.0018) (0.0017) (0.0018) (0.0017)

MarketPowerE (2-digit SIC) 0.104***
(0.0359)

FIN×MarketPowerE (2-digit SIC) 0.461**
(0.182)

MarketPowerE (3-digit SIC) 0.039***
(0.0049)

FIN×MarketPowerE (3-digit SIC) 0.0669***
(0.0169)

Number of observations 64,790,000 64,790,000 64,790,000 64,790,000
R-squared 0.009 0.135 0.135 0.135
Year×Quarter FE YES YES YES YES
Workforce composition YES YES YES
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APPENDIX B

CHAPTER 2 APPENDIX

B.1 Variable Definitions

Establishment-level analysis

M&Ai is an indicator equal to one if the establishment belongs to a firm acquired in an M&A and

zero otherwise.

Postt is an indicator equal to one in the year in our sample post the M&A and zero otherwise.

Routine employment share (RSH) measures the employment share of routine occupations in an es-

tablishment. It is defined as the logarithm of one plus the total employment of routine occupations

in establishment i and year t divided by the total employment in the same establishment-year. We

define occupations as routine following Autor and Dorn (2013) and merge their data to OES data

by SOC codes. See routine occupation data at http://economics.mit.edu/faculty/dautor/data/autor-

dorn-p.

High-skill workers labor share (Share high-skill) is the share of employment of managerial occu-

pations in the establishment, as defined in the SOC titles.

Average hourly wage (Wage) is the logarithm of the average hourly wage in each establishment

and year. OES data reports twelve hourly wage bins for each occupation and employment in each

wage bin-occupation. We take the average of the lower and upper bounds of each wage bin to

proxy for hourly wage of workers in that wage bin. Then we take employment-weighted mean of

hourly wages of all workers in the establishment as a proxy of establishment-level hourly wages.

Standard deviation of hourly wages (StdWages) is the logarithm of the employment-weighted

standard deviation of hourly wages in each establishment and year.

Offshorability captures the degree to which the tasks performed by occupations in an establish-

ment are offshorable. It is defined as the employment-weighted average of occupational offshora-

bility, which is available by Autor and Dorn (2013) at the occupation level and merged to OES
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data using SOC occupation codes.

Overlap Occupi is an indicator equal to one if the target has share of overlapping employment

with the acquirer greater than the sample median, 0 otherwise. For each target establishment, we

first identify occupations in the target which are overlapping with occupations in the acquirer and

we compute the share of overlapping employment in the target.

Acq Low RSHi is an indicator equal to one if the employee weighted average RSH for the ac-

quirer is below the sample median, 0 otherwise. We identify all establishments associated with

the acquirer in the same M&A deal observed in the year the M&A deal became effective or the

two prior years. For each establishment, we measure RSH. Then we take the employee weighted

average RSH over the three years.

Privatei is an indicator equal to one if the target firm is private, 0 otherwise.

pseudo M&Ai is an indicator equal to one if the establishment belongs to a firm which was the

target of a withdrawn deal. We only include deals which were withdrawn either because they were

blocked by regulators or because the acquirer was acquired ex-post and had to withdraw the deal.

Routine is an indicator equal to one if an occupation in the establishment is identified as a routine

occupation, 0 if it is a non-routine occupation. We define occupations as routine following Autor

and Dorn (2013) and merge their data to OES data by SOC codes. The routine occupation data are

available at: http://economics.mit.edu/faculty/dautor/data/autor-dorn-p.

IT budget is the logarithm of one plus the modeled budget for IT in the establishment.

Hardware budget is the logarithm of one plus the modeled budget for hardware in the establish-

ment.

Software budget is the logarithm of one plus the modeled budget for software in the establishment.

Services budget is the logarithm of one plus the modeled budget for services in the establishment.
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Industry-level analysis

Merger intensity captures the intensity of M&A activity in an industry-decade. It is the logarithm

of one plus the count of horizontal deals in a given (4-digit NAICS) industry-decade normalized

by all horizontal deals in the decade.

Routine employment share (RSH) measures the employment share of routine occupations in an

industry-year. It is defined as the logarithm of total employment of routine occupations in industry

j and year t divided by the total employment in the same industry-year. We define occupations as

routine following Autor and Dorn (2013).

High-skill workers labor share (Share high-skill) is defined as the employment share of high skill

workers in each industry and year. Those are workers with graduate degrees (5+ years of post-

secondary education).

Average hourly wage (Wage) is the logarithm of the average hourly wage in each industry and year.

It is employment-weighted average of hourly wages of workers in that industry. Each worker’s

hourly wage is calculated as annual income and salary income divided by the product of weeks

worked per year and hours worked per week. All wages are inflated to year 2001 following the

instruction provided by IPUMs, https://cps.ipums.org/cps/cpi99.shtml.

Standard deviation of hourly wages (StdWages) is the logarithm of the employment-weighted

standard deviation of hourly wages in each industry and year.

Offshorability captures the degree to which the tasks performed by an industry are offshorable.

It is defined as the employment-weighted average of occupational offshorability, which is available

by Autor and Dorn (2013) at the occupation level and merged to IPUMs data using the available

occupation crosswalks.

139



B.2 Appendix Tables

Table B.1: Robustness: Effects of M&A on establishment routine task intensity

This table repeats specifications in Table 2.2, except the dependent variable is now the logarithm of one plus
routine task intensity. RTI characterizes the routine intensive occupations in each establishment. It is the occu-
pation employment weighted average of occupation routine task indices, collected from Autor and Dorn (2013)
and merged to OES data using available occupation crosswalks from David Dorn’s website. Postt is estimated
but not reported for brevity. Robust standard errors are clustered at the firm level. *** indicates p < 0.01, **
indicates p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4) (5)
RTI RTI RTI RTI RTI

Postt ·M&Ai -0.1150*** -0.0893*** -0.0841*** -0.0921*** -0.0881***
(0.0123) (0.0117) (0.0120) (0.0123) (0.0123)

Offshorability 0.268*** 0.265*** 0.268*** 0.262***
(0.0183) (0.0189) (0.0176) (0.0185)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,408 10,408 10,332 10,390 10,314
R-squared 0.856 0.877 0.894 0.886 0.902
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Table B.2: Robustness: Effects of M&A on establishment high-skill employment

This table repeats specifications in Table 2.3, except the dependent variable is now using an alternative definition of a high-skill
occupation. Share high-skill is the employment share of high-skill workers in a given establishment-year. In Panel A, high-skill
employment is employment in high-technology occupations as defined by Hecker (2005). In Panel B, high-skill employment is based
on occupations that have a share of employees with some college education in the top quartile of the sample distribution. We obtain
data on education by occupation from ACS 2000. In Panel C, we follow the same definition as in Panel B except high-skill employment
is based on occupations that have a share of employees with some college education in the top tercile of the sample distribution. Postt
is estimated but not reported for brevity. Robust standard errors are clustered at the firm level. *** indicates p < 0.01, ** indicates
p < 0.05, and * indicates p < 0.1.

Panel A
(1) (2) (3) (4) (5)

Share high-skill Share high-skill Share high-skill Share high-skill Share high-skill

Postt ·M&Ai 0.0108*** 0.0162*** 0.0166*** 0.0162*** 0.0177***
(0.0035) (0.0035) (0.0035) (0.0038) (0.0038)

Offshorability 0.0548*** 0.0568*** 0.0550*** 0.0576***
(0.0063) (0.0066) (0.0060) (0.0062)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,444 10,444 10,370 10,426 10,352
R-squared 0.845 0.854 0.874 0.863 0.884
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Panel B
(1) (2) (3) (4) (5)

Share high-skill Share high-skill Share high-skill Share high-skill Share high-skill

Postt ·M&Ai 0.0133** 0.0177*** 0.0160*** 0.0183*** 0.0176***
(0.0053) (0.0054) (0.0046) (0.0058) (0.0051)

Offshorability 0.0448*** 0.0452*** 0.0448*** 0.0464***
(0.0072) (0.0075) (0.0070) (0.0071)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,444 10,444 10,370 10,426 10,352
R-squared 0.832 0.837 0.859 0.847 0.869

Panel C
(1) (2) (3) (4) (5)

Share high-skill Share high-skill Share high-skill Share high-skill Share high-skill

Postt ·M&Ai 0.0123* 0.0179*** 0.0144** 0.0161** 0.0142**
(0.0071) (0.0069) (0.0063) (0.0069) (0.0065)

Offshorability 0.0570*** 0.0548*** 0.0561*** 0.0559***
(0.0087) (0.0090) (0.0082) (0.0084)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,444 10,444 10,370 10,426 10,352
R-squared 0.846 0.850 0.869 0.859 0.878
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Table B.3: Robustness: Effects of M&A on establishment median wages

This table repeats specifications in Table 2.4, except the dependent variable is now median (instead of average)
hourly wage. Postt is estimated but not reported for brevity. Robust standard errors are clustered at the firm
level. *** indicates p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4) (5)
Wage Wage Wage Wage Wage

Postt ·M&Ai 0.0261** 0.0283** 0.0270** 0.0314*** 0.0345***
(0.0129) (0.0129) (0.0108) (0.0120) (0.0106)

Offshorability 0.0220* 0.0229* 0.0211* 0.0275**
(0.0120) (0.0124) (0.0117) (0.0120)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,444 10,444 10,370 10,426 10,352
R-squared 0.895 0.895 0.909 0.903 0.916

Table B.4: Robustness: Effects of M&A on establishment wage dispersion

This table repeats specifications in Table 2.5, except the dependent variable is now the log-transformed ratio of
the 90th percentile of wages to the 10th percentile of wages at the establishment-level. Postt is estimated but not
reported for brevity. Robust standard errors are clustered at the firm level. *** indicates p < 0.01, ** indicates
p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4) (5)
Wages 90/10 Wages 90/10 Wages 90/10 Wages 90/10 Wages 90/10

Postt ·M&Ai 0.0353* 0.0343* 0.0310* 0.0182 0.0184
(0.0203) (0.0202) (0.0167) (0.0168) (0.0151)

Offshorability -0.0101 -0.0107 -0.0108 -0.0131
(0.0156) (0.0160) (0.0158) (0.0160)

Establishment FE Yes Yes Yes Yes Yes
Year FE Yes Yes
Industry · Year FE Yes Yes
State · Year FE Yes Yes

Observations 10,444 10,444 10,370 10,426 10,352
R-squared 0.753 0.753 0.780 0.770 0.796
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Table B.6: Robustness: Defining M&A intensity using transaction values

This table repeats specifications in Table 2.12, except Merger Intensityj,(t−10,t−1) is based on M&A trans-
action values (instead of M&A counts). Robust standard errors are clustered at the industry level. *** indicates
p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4)
RSH Share high-skill Wage StdWages

Merger Intensityj,(t−10,t−1) -0.985 0.369 1.088 1.407
(0.622) (0.147)** (0.497)** (0.406)**

Offshorability 0.364 0.0127 -0.0217 0.0098
(0.316) (0.0223) (0.0822) (0.151)

Year FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes

Observations 396 396 396 396
R-squared 0.956 0.963 0.959 0.885
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Table B.7: Robustness: Defining M&A counts using first six years of each decade

This table repeats specifications in Table 2.12, except Merger Intensityj,(t−10,t−4) is based on M&A counts
over the first six years of each decade. Robust standard errors are clustered at the industry level. *** indicates
p < 0.01, ** indicates p < 0.05, and * indicates p < 0.1.

(1) (2) (3) (4)
RSH Share high-skill Wage StdWages

Merger Intensityj,(t−10,t−4) -3.943 1.169 3.265 2.510
(0.989)*** (0.249)*** (0.763)*** (1.115)**

Offshorability 0.370 0.0108 -0.0217 0.0041
(0.310) (0.0232) (0.0824) (0.153)

Year FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes

Observations 396 396 396 396
R-squared 0.957 0.966 0.961 0.884
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B.3 Industry Mapping Between IPUMs and SDC Data

IPUMs was created to facilitate time series analysis and, as such, has unique industry identifiers

(IND1990), which offer consistent industry definitions over time. There are 224 unique industries

defined in IND1990. IPUMs also provides a different definition of industry, INDNAICS, and a

crosswalk between INDNAICS and 2007 NAICS. SDC includes information on the target and

acquirer 2007 NAICS. To map IND1990 to 2007 NAICS, we take the following steps.

In the first step, we map the variable INDNAICS from ACS 2008-2014 samples to NAICS 2007

using a crosswalk provided by IPUMs.1 About 4% percentage of the unique IND1990 industry

classifications are not mapped to an INDNAICS. We drop these IND1990 classifications. We also

standardize NAICS codes by limiting all NAICS to four digits. This crosswalk provides a one-to-

one mapping between INDNAICS and IND1990.

In the second step, we map IND1990/INDNAICS to NAICS 2007. This step is more com-

plicated as one IND1990/INDNAICS may match to more than one NAICS and one NAICS may

match to more than one IND1990/INDNAICS. We start by saving all unique combinations of

IND1990 and NAICS 2007 codes. To identify only the set of industries for which we can cleanly

match between IND1990 and NAICS 2007 and avoid noise associated with ambiguous industry

mapping, we consider only cases (after possibly aggregating IND1990 industries to one meta-

industry) of industries (or meta-industries) that map to one and only one NAICS 2007, or aggrega-

tion of NAICS 2007 codes.

For example, IND1990 industry 0190 maps to NAICS 2213 and to NAICS 2212. NAICS 2213

and NAICS 2212 only map to IND1990 industry 0190. In this case, we combine NAICS 2213 and

NAICS 2212 into one meta-industry and identify a clean link between IND1990 industry 0190 and

NAICS industry 2213-2212. We follow an iterative approach to identify all possible such matches.

Industries which cannot be assigned to a clean match are dropped.

Upon completion, we have a mapping from IND1990 to INDNAICS to NAICS 2007. It is

1The crosswalk is available at the following website: https://usa.ipums.org/usa/volii/indcross03.shtml
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useful to think of the industry definitions in the paper as meta-industries as they may include more

than one unique IND1990 and more than one unique 4-digit NAICS 2007. We have 132 unique

meta-industries. Of the 224 unique industries in IND1990, we are able to successfully map 178

industries into our meta-industries or 79.5% of the unique IND1990 industries in IPUMs. Our

mapping includes 209 unique 4-digit NAICS 2007.
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APPENDIX C

CHAPTER 3 APPENDIX

C.1 Appendix Graphs and Tables

Figure C.1: Map of the US states available in the LEHD
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Figure C.2: Mean Adjusted Wages of Job Changers Classified by Quartile of Mean Wages of
Coworkers at Origin and Destination Firm

Figure shows mean adjusted wages of workers from the baseline sample who change jobs (i.e., employers) in the year zero, and held the preceding
job for two or more years (years -2 and -1), and the new job for two or more years (years 1 and 2). The baseline sample is a worker-year panel from
1990 through 2006. Each job is classified into quartiles based on mean wage of coworkers. Wages are log normalized to real 2014 dollars. Wages are
adjusted by employee age squared and cubed and employee age*education, employee age squared*education and employee age cubed*education.
Age, education and wages are log normalized.
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Table C.1: New Firm Wages: Define New Firm as Aged Zero or One

Table reports baseline results of wages at new firms, where new firm is defined as aged zero or one. The sample is a
worker-year panel from 1990 through 2006. In all columns, the dependent variable is the log of worker total quarterly
wages. Wages are in real 2014 dollars. New firm is defined as a firm of three years of one or less. Time-varying worker
controls include worker age squared, worker age cubed, worker age times education, worker age squared times education,
worker age cubed times education. Worker age is log transformed. Education is measured in years of schooling and log
transformed. Note, worker age and education are not included as linear controls in regressions with worker fixed effect
since they are collinear with the fixed effect. Standard errors are clustered at the firm and the worker level, and reported in
parentheses. ***, **, * indicate statistical significance as the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)
Log(Wage) Log(Wage) Log(Wage) Log(Wage)

New Firm (Age 0-1) -0.290*** -0.065*** -0.056*** 0.021***
(0.017) (0.003) (0.003) (0.002)

Observations (millions) 48.4 48.4 48.4 48.4
R-squared 0.005 0.748 0.772 0.810
Time-Varying Worker Controls No No Yes Yes
Worker FE No Yes Yes Yes
Firm FE No No No Yes
Year FE Yes Yes Yes Yes
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