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ABSTRACT 

 

Nathaniel Scott MacNell: Relation of Swine Industrial Livestock Operation Air Emissions 

Exposures to Sleep Duration and Time Outdoors in Residential Host Communities 

(Under the direction of David Richardson) 

 

Residents of communities hosting swine industrial livestock operations (ILOs) in North 

Carolina are exposed to mixtures of air pollutants originating from animal confinements, waste 

lagoons, and waste spray-field systems. To add to the understanding of swine ILO impacts on 

nearby community residents, I estimated the impact of swine ILO air emissions on sleep and 

time outdoors. These outcomes have not been formally assessed using epidemiologic methods, 

but are important components of quality-of-life, have implications for health and disease, and 

have been raised as concerns by community members. 

Acute exposure effects on sleep and time outdoors were estimated by applying discrete-

time hazard models to data collected in the Community Health Effects of Industrial Hog 

Operations (CHEIHO) study. CHEIHO was a community-based, participatory research study 

that coupled continuous monitoring of pollutant plume markers with twice-daily odor and 

activity diaries. Dynamic Bayesian network models were used to estimate the total chronic effect 

of exposures accounting for potential feedback between subsequent exposures and outcomes. 

Detectible swine ILO pollutants at night was associated with an average sleep deficit of 

approximately 15 minutes. Exposure to outdoor odors was associated with decreased odds of 

being outdoors during the following hour (OR 0.62, 95% interval 0.44 to 0.89). Dynamic models 



 

iv 
 

estimated that the total effects of exposures exceeded the expected total effect calculated by 

summing individual acute effects, suggesting the importance of a feedback mechanism. 

The results demonstrate measurable and important impacts of ILO air emissions on sleep 

and time outdoors among those living nearby. The modeling approaches used were robust to bias 

from factors that remained constant for each participant over the course of the study and to 

factors that varied with the time-of-day or the weather, suggesting a causal effect. Policy 

interventions to reduce community exposures to swine ILO emissions from lagoon-and-

sprayfield systems could have positive impacts on public health in rural North Carolina 

communities. 
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CHAPTER 1: BACKGROUND 

 

Swine Industrial Livestock Operations in North Carolina 

 

To date, nearly all of the pork consumed and exported by the United States is produced 

using Industrial Livestock Operations1 (ILOs). North Carolina is a leading producer of pork in 

the United States – with over 2,000 permitted swine operations and 9 million hogs2,3 – and is 

second only to Iowa in hog production4. Global and national technological and economic shifts 

led to the rapid development of industrialized pork operations in eastern North Carolina starting 

in the 1970’s, arising in the economic context of dwindling tobacco trade5. Economies of scale, 

geographically concentrated farm loss, and a moratorium on new operations has created an 

industry densely concentrated in the southeastern part of the state (Figure 1.1)6. Duplin and 

Sampson counties, the top two hog-producing counties in the state, are also the top two hog-

producing counties in the entire United States4.  

 

Figure 1.1. Geographical distribution of swine ILOs in North Carolina. 
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 Industrial livestock production systems differ from traditional methods of animal 

husbandry in their structure and functions. In the case of pork production, technological and 

organizational innovations have enabled unprecedented gains in production efficiency7,8. 

Selective breeding and genomics has led to the development of swine stocks optimized for rapid 

gestation, development, and weight gain9. Re-organization of the farm system into an industrial 

model has enabled the use of sequential habitats designed to economically optimize development 

at different stages of the life course (for instance, farrow-to-weaning, weaning-to-feeder, and 

feeder-to-finish). Large operations with high animal densities reduce infrastructure capital 

investment costs per animal and can enable even higher densities through active climate control. 

Advancements in nutrition and veterinary science have allowed for growth-promoting diets and 

prophylactic treatment of diseases that might hinder growth10. These technological advancements 

have been made possible by a re-organization of the hog farming business into a franchise 

model, where individual ILO operators compete for hog-rearing contracts from a centralized 

integrator11. The integrator sets the prices for finished hogs, organizes large-scale supply 

logistics, and manages the processing and marketing of finished hog products.   

 The systematic gains in production efficiency made possible by technological and 

business innovations have come at a cost, which is disproportionately borne by those closer to 

hog production “on the ground,” including farm workers and members of disproportionately 

minority and low-income host communities unaffiliated with the industry12. Workers in hog 

barns and meat processing spend long hours with large animals in cramped spaces, fast-moving 

machinery, concentrated agricultural dusts, and strong cleaning chemicals13. Many hog industry 

workers receive above-average salaries for the counties in which they work compared to other 
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workers, but fringe benefits are scarce, job security is limited, injury rates are high, and few hog 

industry workers are represented in collective bargaining agreements14–16. 

  

Community Health Impacts of Swine Industrial Livestock Operations 

Neighbors of ILOs in host communities face an array of impacts from ILO activities, 

many of which have been documented by researchers, the press, and community members17,18. 

Transfer of feed and hogs between operations increases heavy truck traffic, which brings noise, 

bright lights, air pollution, and road wear to the neighborhood day or night. Barn ventilation 

systems release odorous mixtures of residual feed dusts, animal dander, and dried waste 

particulates into the air. In some cases, dead animals are left in dumpsters termed “dead boxes” 

near property boundaries, which putrefy for some time before being disposed of.   

Swine waste management activities introduce many other negative impacts. In North 

Carolina, ILO operations can be issued water quality permits from the State Department of 

Environmental Quality (DEQ) for lagoon-and-spray field waste management systems, and are 

used at nearly all swine ILOs in the state19. In this system, liquid hog wastes (a mixture of urine, 

feces, dander, and dusts) fall through slatted floors and flow downhill into a large open cesspool 

of waste (“lagoon”)20,21. In the cesspool, anaerobic bacteria consume nutrients from the wastes 

and produce mixtures of metabolic byproducts that are added to the waste mixture. Periodically, 

the waste mixture is sprayed onto adjacent land as an aerosol using high-pressure spray systems. 

This reduces the quantity of waste in the lagoon and also aerates the waste (increasing 

subsequent nutrient bioavailability), but also results in the dispersal of waste aerosols in the 

community22,23. These wastes contain strong odorants24, and ILO neighbors have reported waste 
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aerosols depositing films of hog waste on their homes, vehicles, and property. Genetic tracing 

has shown that much of this waste ultimately runs off into local waterways25.        

Swine ILO waste aerosols are complex mixtures of pollutants in two functional classes. 

The first class contains pollutants directly produced by hogs, including allergens present in hog 

dander, swine intestinal bacteria, heavy metals used as growth promoters in feed, and metabolites 

from veterinary pharmaceuticals23. The second class of pollutants are created as a result of the 

waste treatment system. Anaerobic decomposition of urine and feces produces microorganisms 

and microbial metabolites including ammonia and hydrogen sulfide26, which can be released 

through passive off-gassing in addition to spraying.   

These components of hog waste aerosols have demonstrated physiological impacts. Hog 

barn dusts have been shown to cause symptoms of respiratory disease in exposed cell cultures27–

30, animals31–33, hog confinement workers13,34–50, and healthy volunteers51–64. Ammonia and 

hydrogen sulfide have been historically common occupational exposures in industrial settings 

and cause respiratory and sensory irritation. Other potential impacts have been hypothesized but 

not extensively studied. Genetic marker studies suggest that swine ILO workers can become 

colonized by bacterial strains from their workplace. Limited international evidence suggests that 

the swine ILO environment could contribute to antibiotic resistance65.  Active pharmaceutical 

metabolites could have biological effects but have not been studied in this context.  

Odorants in hog waste mixtures are an important pathway of effect, through both 

chemoreception26,66 and direct nociception (trigeminal nerve activation)67,68. Most odors are 

processed by specific olfactory neurons with receptors that respond to gas-phase molecules – this 

corresponds to odors in the popular sense69. Exposure to compounds can also trigger the 

trigeminal and other facial nerves, causing pain. For example, many people are familiar with the 
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idea that exposure to sulfur compounds from a fresh-cut onion stimulates receptors in the 

trigeminal nerve that result in a sensation of burning in the eyes and nose.  

In the epidemiologic context, community exposures to swine ILO pollutant mixtures has 

been associated with respiratory disease symptoms including excessive coughing70,71, asthma 72–

74, wheezing71,75, difficulty breathing71,75, runny nose70,71, sore throat70,75, and chest tightness71,75. 

Other observed adverse outcomes associated with exposure include mucosal 

immunosuppression76, feelings of loss of control71, increased mood disturbances77, increased 

blood pressure78, and higher infant mortality79. Ethnographic research has also documented a link 

between ILO emissions and disruption of sleep and outdoor activities80.  

 

Swine ILO Air Emissions and Sleep 

 

This work aims to quantify the impacts of swine ILO emissions on sleep. Sleep is a 

primary determinant of health. Sleep quantity and quality influences an array of disease risk 

factors and diseases, and is also an important component of quality-of-life. Sleep is important for 

DNA repair81, cellular metabolism, tissue maintenance, immunological response, mood 

regulation, and memory consolidation82,83. Based on the importance of sleep to health, the 

National Sleep Foundation recommends 7 to 9 hours of sleep per night for adults 18-65 and 7 to 

8 hours per night for adults over 6584. Getting less than this recommendation (<7 h) has been 

linked to increased risks of diabetes and obesity85–96, cardiovascular disease97–99, accidents100,101, 

poor quality of life102–107, cancer108–110, and premature death111. Sleep timing, which could be 

disrupted by unpredictable swine ILO emissions exposures, is also important for supporting 

health. Studies of shift workers have shown increased risk of mortality, increased disease risks, 

and reduced quality-of-life among those with inconsistent sleep schedules112,113.  
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Sleep is regulated through two main mechanisms: sleep-wake regulation, in which sleep 

propensity increases with more time spent awake and vice versa; and circadian regulation, in 

which sleep is regulated based on an internal hormonal clock influenced by environmental time 

cues like light114. In addition to awakenings and sleep timing delays, psychological and 

environmental stressors can interfere with sleep indirectly by influencing the regulation of sleep 

homeostasis115,116. Effects on homeostatic regulation of sleep also mean that repeated, acute sleep 

impacts could also have more severe chronic impacts on sleep than might be expected from the 

sum of individual sleep effects alone117–119.   

Exposure to ILO pollutants is associated with three main categories of health effects and 

symptoms of disease that could impact sleep duration and outdoor activity: sensory 

irritation75,120,121, difficulty breathing33,34,37,38,75, and psychological stress77,122 (Figure 1.2, 

below). Disrupted breathing can make falling asleep difficult123, cause awakenings from sleep124, 

interfere with outdoor activities125, and produce psychological stress77,122,126.  

 

 

Figure 1.2. Relationship between exposures, potential effects, and mediating factors. Dotted 

grey arrows show feedback effects, which are difficult to model using traditional methods. 
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 Studies of communities exposed to ILO pollutants have documented sensory effects 

consistent with olfactory and trigeminal nerve irritation127 and nausea71,75, burning nose and 

eyes70,71,75, and headaches70. These effects could make sleeping difficult. Disease symptoms, the 

cultural and psychological meanings of malodor122,128, the inability to control odors, and 

interference with outdoor functional physical activity and exercise80 could also make falling 

asleep more difficult and influence sleep schedules. Exposure to ammonia odorants like those 

found in swine ILO pollutants have long been known to cause awakenings from sleep; this 

property is exploited in the clinical context with the use of smelling salts129. 

 

 

Swine ILO Air Emissions and Time Outdoors 

 

This work also aims to quantify the impacts of swine ILO emissions on time outdoors. 

Outdoor activities are an important site for leisure-time and functional physical activity for rural 

residents, who typically have poor access to indoor facilities like gymnasiums and indoor 

swimming pools130. Rural residents of the U.S. South report more barriers to physical activity 

and less frequent physical activity131–135. Similarly, low-income and Black neighborhoods like 

those where swine ILOs are concentrated are less likely to have indoor exercise facilities136. 

Physical activity is important for quality of life and lack of physical activity is well-known as 

risk factor for many diseases including diabetes, heart attack, stroke, and cancer. Physical 

activity is also important for sleep and its impacts on health – physical activity is associated with 

acquiring the recommended duration of sleep and better quality sleep137–143. Exposures to strong 

odorants and pollutants from ILO air emissions can make spending time outdoors unpleasant or 

intolerable. Like a protective sleep environment, access to the outdoors is important for health 
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but also an important component of quality-of-life144–146. Particularly in rural contexts, outdoor 

activities have important implications for health promotion and disease prevention. Rural 

populations rely on the outdoors for gardening, hunting, fishing, and raising animals to improve 

access to nutritious foods80. Time spent outdoors is an important venue for relaxation, reflection, 

and stress reduction in the general population, but has a special meaning to those who grew up 

and live “in the country”80. Because rural homes often lack central heating and air conditioning 

due to their age or design, many rural residents cool their homes in summer months by opening 

windows – an economically and environmentally sustainable solution that relies on access to 

clean air. Rural neighborhoods also rely on the outdoors as a space for holding social, cultural, 

and religious gatherings – which strengthen and enrich both individual and community lives147. 

 

 

Estimating Feedback Effects in Modern Epidemiology 

Methods for estimating the acute effects of exposure are well developed in epidemiology. 

In contrast, estimating the total effects of repeated, mutually-influencing exposures and 

outcomes in epidemiology has proven a difficult problem. In the context of repeated exposures to 

swine ILO air emissions, a person’s experiences of sleep, outdoor activity, and environmental 

exposures can both mutually oppose and reinforce one another, creating a complex system.  

For instance, a sleep disruption event like night-time sleeplessness caused by exposure, 

which could lead to fatigue the next day. This fatigue effect could cause secondary effects, 

including reduced outdoor activity, an earlier bedtime, or naps during the next day. Considering 

just one of these secondary effects in turn, reduced time outdoors could reduce the need for 

sleep, reduce the potential of subsequent exposure, or increase the need for time outdoors on 
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subsequent days as potential tertiary effects. A model version of this system is shown in Figure 

1.3. 

 

 
 

Figure 1.3. Schematic diagram of potential relationships between sleep, outdoor activity, and 

ILO pollutant exposure. Arrows in this diagram represent effects at a later time point; an 

equivalent directed acyclic graph (DAG) can be created by drawing a copy of the diagram for 

each time point t and drawing each arrow from ti to ti+1 (see Figure 1.4, below). 
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biological homeostasis – and thus in the study of nature through the biological, medical, 

physical, chemical, social, and ecological sciences148 from which public health knowledge is 

derived. In epidemiology, feedback has been studied in the context of epidemics, where agent-

based (stochastic) and compartmental (differential) approaches have been used to model 

diffusion of effects between units149; the general problem of effect diffusion between units of 

study has been considered as interference in the context of infectious disease150.  

Causal reasoning about systems with feedback has proven difficult in modern 

epidemiology. This paradigm uses insights from graph theory to reduce complex causal 
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(+) (+) 

(+) (-) 

(+) 

(-) 

(-) 

(-) 

Sleep 

Environmental 

Exposures 
Disease 

Symptoms 
Mood 

(-) 

(-) (+) 

(-) 

Time 

Outdoors 



 

10 
 

similar exposed and unexposed populations. Practically, this amounts to identifying the most 

appropriate set nuisance factors (“confounders”) that must be included in a data transformation 

step to make the observed data comparable across exposure categories; popular methods of 

transformation include participant exclusion, stratification, covariate adjustment, standardization, 

matching, and weighting. The approach has proven effective for estimating short-term causal 

effects, but faces limitations in describing complex systems151. In the broader context of graph 

theory, the modern epidemiological approach for selecting adjustment sets is equivalent to the 

problem of identifying the Markov blanket associated with a particular exposure-outcome 

relationship if interest152. 

The acute effects of swine ILO emissions exposures on sleep and time outdoors can be 

assessed using standard epidemiological analysis and repeated measurements data with a few 

simplifying assumptions (Figure 1.4). The results of this approach are detailed in Chapters 2 and 

3. These estimates result from comparing time periods with different exposure and outcome 

values within participants and are robust to potential confounding biases due to differences 

between individuals or from time-varying confounders (due to adjustment by time of day).   

 

Figure 1.4: Feedback effects can be summarized as a Markov process by a time-indexed 

directed acyclic graph. Atmospheric conditions (A) influence hog emissions (H) and 

participants’ time outdoors (O). Hog emissions in turn influence participants’ Exposures (E), 
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which directly influence future values of time outdoors (O) and sleep (S). Values of outdoors 

influence future values of outdoors, sleep, and exposure; sleep values influence future values of 

outdoors and sleep. The acute effects of exposure can be estimated using traditional 

epidemiological methods. 

The limitation of the traditional model in this context is the potential for inaccurate 

characterization of chronic effects of repeated exposures, which might differ from the sum of 

individual observed acute effects. If the effect measures observed in periods later in the study are 

influenced by measures from earlier periods in the study, the overall estimate of acute effect will 

be biased, although the extent of this bias will depend on several factors including the strength of 

association between values of the outcome measure as subsequent times. The aim of this 

dissertation is to estimates average acute effects in a chronically-exposed population, rather than 

the effect of cumulative chronic exposure in an unexposed population.   

To address this limitation, this dissertation used dynamic Bayesian networks, which have 

seen use in addressing feedback in other contexts. Like the standard epidemiology approach, this 

approach is guided by a directed acyclic graph but aims to simultaneously estimate multiple 

parameters. Using these learned parameters, the network can be used to estimate chronic effects 

by comparing exposure specified exposure regimes – for instance the observed exposures and a 

counterfactual situation of no exposure. Let the estimation of this effect (of exposure 

immediately following values of sleep and outdoors) be indicated by the simplified notation 

 

𝐸𝑡  
?

→ 𝑆𝑡+1 

𝐸𝑡  
?

→ 𝑂𝑡+1 

 

to indicate interest in the effect of changes in 𝐸 at time 𝑡 on immediately following values of 𝑆 

and 𝑂. Using this notation, we can indicate interest in other causal effects – estimable effects that 



 

12 
 

are not represented by arrows in a directed acyclic graph. Consider the effects of a single 

exposure on subsequent sleep occurring in a following window of length 𝑘, offset from exposure 

by time ℎ: 

𝐸𝑡  
?

→ ∑ 𝑂𝑖

𝑘

𝑖=ℎ

 

 

This measure could indicate the effect of a single hour’s exposure on total sleep during 

the next 8 hours for 𝑘 = 8 and ℎ = 1. Alternatively, consider the total impact of exposures 

across several time periods on one outcome:  

∑ 𝐸𝑖

𝑘

𝑖=ℎ

 
?

→ 𝑂𝑡   

These example measures estimate the effect of one exposure on multiple outcomes, or of one 

outcome on multiple exposures. A further formulation considers the effect of exposure regimes 

(multiple exposures across time) on outcome regimes (multiple, temporally-intersecting 

outcomes)  

∑ 𝐸𝑖

𝑤

𝑖=0

 
?

→ ∑ 𝑂𝑗

𝑘

𝑗=ℎ

 

 

For instance, suppose that under the scenario of no exposure, a participant sleeps 8 hours 

per night, on average. Under the scenario of chronic exposure, that participant sleeps for 6 hours 

on average; 5.5 hours on odor-heavy nights, and 6.5 hours on odor-free nights. A model making 

comparisons between odor-heavy and odor-free nights might detect a 1-hour deficit effect. A 

model summing the result of one exposure on a subsequent window might see a reduced estimate 

of impact (below 1 hour) because the averaged outcomes represent a mixture of more-and-less 

acute individual effects and the components might influence each other in unforeseen ways. A 
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model estimating the single effect of multiple averaged exposures might also see a reduced 

estimate of impact (below 1 hour) because the averaged exposure windows would become more 

similar and might include exposure terms influenced by one another.  

This dynamic Bayesian network approach can directly estimate this quantity by 

comparing the expected outcome distribution under different exposure regimes. Conditional 

probabilities can be used to perform sequential inference and estimate the total impact of a 

specified exposure regime. This approach could have wider applicability to other epidemiology 

studies that using repeated measures of interrelated individual states in the presence of time-

dependent confounding. 

Swine ILOs and Environmental Justice 

 

Swine ILOs in North Carolina are concentrated in rural, poor, and Black communities12. 

Residents of these communities are more susceptible to environmental exposures because they 

have higher burdens of chronic disease, fewer health-promoting resources, and poorer access to 

disease mitigation services153,154. In North Carolina and the U.S. South, race and social class are 

tightly intertwined. This relationship can be traced to history; Black Americans have been 

economically exploited by Whites for over 300 years155. Despite being emancipated by the 

federal government in the mid-19th century, Black slaves and their descendants have faced an 

evolving system of exploitation perpetrated by the descendants of enslavers and their White 

allies. Components of this system have included convict-lease programs156 coupled with the 

criminalization of Black life157, race-specific poll taxes and tests, organized mass murder158, 

inequitable provision and restriction of public goods and services, racist public education159–161, 

and perpetual debt traps162. These efforts have made significant positive contributions to the 

health and wealth of white communities while systematically degrading the health and life 
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chances of Black Americans163. Exploitation has also been met with resistance: community 

organizing efforts beginning with the abolitionist movement and slave resistance networks have 

evolved through the Freedman’s, Civil Rights, and the recently-developed Black Lives Matter164 

movement.   

Health and disease disparities between Black and non-Black populations in the United 

States have been well documented. Blacks face more life stressors – both at home and at work – 

including discrimination165 in housing, education, and employment. Black populations face 

higher prevalence and severity of chronic diseases – including diabetes, kidney disease, cancer, 

and cardiovascular disease; unjustly, Black patients also receive poorer care for chronic disease 

and have higher associated mortality rates. In the context of the present research, Black 

populations score more poorly on measures of quality of life, sleep duration, nutrition, and 

physical activity compared to Whites166. In the historical context, disrupted Black sleep – and the 

very concept of an inherently different pattern to Black sleep – is rooted in the use of sleep 

environments as a weapon to control slaves167. Racial differences in sleep duration and quality 

have been considered as fundamental causes of health disparities in the U.S., particularly for 

cardiovascular outcomes168. 

Black communities in North Carolina have a higher proportion of the population living 

below the poverty line than the state as a whole. Poverty has been associated with many of the 

same health and disease disparities as being Black169. The poor have fewer resources to spend on 

safe housing, nutritious food, meal preparation, transportation, disease care and presentation 

services, refrigeration for safe food storage, pest control and home sanitation, personal hygiene 

products, educational activities for children, and socialization. Research has demonstrated that 
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coping with poverty typically requires sacrificing or compromising on these important 

expenditures – each of which can be important to health and quality of life.  

Swine ILOs are also concentrated in rural areas, which have been historically 

underserved by public health services, facing shortages of healthcare facilities, providers, and 

funding170. Rural areas consistently score poorly on population health indicators170,171. 

Communities in rural areas are experiencing social transitions that create health challenges172: a 

shift to corporate agriculture, job loss, outmigration of young and working people, and poorer 

access to nutritious food173.  

In parallel to these environmental justice issues, the problems presented by hog ILOs 

have proven resistant to public health intervention, partially because of the strength and 

economic importance of the North Carolina’s hog industry. Community members are often 

employed by or have family members employed by the industry, and local governments can be 

influenced by the industry’s presence on boards, relationships with sheriff’s departments, and 

health departments174. Institutions that might assist communities in finding solutions, including 

public universities, might also have conflicts of interest based on their economic and political 

relationship to the industry175. These relationships can make community members doubt the 

claim that public institutions value their interests, rather than the interests of the industry, and 

can make research engagement challenging.   

Communities affected by hog operations have been actively advocating for public health 

protections for many years, facing resistance from industry groups and the state government19. 

This advocacy, which has remained firmly grounded in grassroots community organizing, has 

included civil complaints against the industry in state and federal courts seeking to improve the 

ILO permitting process19. Litigation of these complaints relies heavily on testimony from those 
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impacted by ILOs, but scientific research can also be an important form of evidence in 

environmental justice court cases176.  

Improved hog waste treatment methods exist and continue to be actively developed177,178. 

But without a legal mandate for their use, these systems have not been widely implemented 

because their use feasibility has been assessed based on the costs to producers alone179, without 

consideration of potential health or environmental impacts. These health and environmental costs 

of improper waste disposal are externalities of prodution180 – an economic subsidy that creates 

higher profits for ILO industry at the public’s expense. While the State of North Carolina offers 

cost-sharing for lagoon conversions programs, the program typically only supports two or three 

(of the state’s over 2,000) system conversions per year181. 

 Although externalities of production have been addressed through policies including 

taxes, production rules, and offsets, purely market-based solutions have also been proposed and 

have become more popular in the current political climate. Similar to policy interventions, these 

solutions require more transparency in production so that the market can reflect the true costs of 

production182. For example, disclosure of production costs including avoidance of pesticides and 

additives, fair labor practices, and appropriate animal stewardship can be appealing to consumers 

and help pressure other firms to adopt similar practices.  

A holistic quantification of the health effects of swine ILO emissions is therefore 

important for community, industry, policy, and market-based changes that could improve the 

public’s health by reducing exposures to swine ILO pollutants. Scientific evidence about the 

health impacts of ILOs could help develop strategies to better protect environmental quality and 

public health by demonstrating the need for more sustainable agricultural production methods. 
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CHAPTER 2: AIMS, DESIGN AND METHODS 

Specific Aims 

Swine Industrial Livestock Operations (ILOs) are a significant source of air pollution in 

eastern North Carolina. The state’s 2,292 permitted swine ILOs1 are concentrated in rural, poor, 

and Black neighborhoods2 with limited resources and access to public health services. Swine 

ILOs negatively impact rural life by disrupting outdoor activities3 and causing disease symptoms 

including respiratory disease4, stress, negative mood5, and increased blood pressure6. This 

dissertation fills an important gap in the literature on swine ILO impacts by estimating the effects 

of ILO pollutant exposures on sleep duration and time outdoors. Sleep is essential for health and 

the enjoyment of life; less-than-recommended (<7h) sleep duration is associated with mental 

illness, weight gain, accidents, high blood sugar, high blood pressure, and mortality7 through 

circadian, stress, and hormonal pathways. Outdoor activities including physical activity, home 

and vehicle maintenance, gardening, socialization, and relaxation are important to health and 

quality of life in rural areas hosting swine ILOs3, particularly for children. Quantifying the 

impact of swine ILO pollutants on sleep duration and time-outdoors is important for developing 

policies that protect public health and promote responsible agricultural production.  

I use data from the Community Health Effects of Industrial Hog Operations (CHEIHO) 

study to estimate the effects of ambient swine ILO pollutant concentrations on sleep duration and 

time outdoors among those living nearby. CHEIHO was a community-based, participatory 

research project that has collected repeated assessments of air pollutant concentrations, sleep 

duration, and time outside over a two-week study period8. The study’s repeated measurements 
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facilitate effect estimation in the presence of feedback effects between less-than-recommended 

sleep duration and time outside. Feedback systems are ubiquitous in nature but have not been 

extensively studied in epidemiology; if unaccounted for, feedback could bias effect estimates. To 

improve the state of knowledge of how swine ILOs impact public health and to advance the 

epidemiological study of dynamic systems, I address the following specific aims:  

 

Aim 1 - Association between ambient swine ILO pollutant concentrations and sleep 

duration. Using measurements from air monitors, odor diaries, and sleep logs, I investigate two 

hypotheses about ILO exposure effects on sleep: Greater cumulative ILO odorant exposure 

during the evening leads to shorter total reported nightly sleep duration the following night 

(hypothesis 1a), and exposure to higher ILO odorant concentrations at night leads to a greater 

of rate of awakening from sleep (hypothesis 1b) that night.   

 

Aim 2 - Association between ambient swine ILO pollutant concentrations and time 

outdoors. Using measurements from air monitors, odor diaries, and activity logs, I investigate 

two hypotheses about ILO exposure effects on time outside: Stronger outdoor odors during 

morning data collection decrease time outdoors later that day (hypothesis 2a), and time periods 

during the day with higher odorant concentrations have a lower proportion of time outdoors 

(hypothesis 2b) 

 

Aim 3 –Feedback between exposure, time outside, and sleep. Using measurements from air 

monitors and diaries, I investigate feedback between exposure, time outside, and sleep, to 

address a hypothesis about bias due potential interrelationships between subsequent values of 
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exposures and outcomes: The estimated total effect of ILO odorant exposures are of greater 

magnitude when feedback effects are accounted for (hypothesis 3).  

This dissertation contributes to the literature on community swine ILO impacts by 

assessing the effect of exposure to swine ILO air pollutants on sleep duration and time outdoors. 

A better understanding of these impacts is important for guiding policy and technology 

development to protect the health of communities hosting swine ILOs without hindering 

sustainable agricultural production. The work should also contribute to understanding the impact 

of bias on effect estimation. 
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Methods 

Methods Overview  

This study used discrete-time hazard models to estimate the effects of ambient 

concentrations of ILO air pollutants on sleep duration (aim 1) and time outdoors (aim 2). 

Dynamic Bayesian networks were be used to estimate the effects of chronic exposure, which 

could differ from the total effect of acute exposures due to feedback (aim 3). The analysis dataset 

consists of repeated hourly measurements of air pollutant concentrations, odor, sleep status, and 

time outdoors in communities hosting swine ILOs in Eastern North Carolina. Flexible 

participant-specific discrete-time hazard functions and covariates for weather conditions were 

used in discrete hazard models to address potential time-invariant and time varying confounding 

factors.  

This work is oriented within two main theoretical frames: the causal inference paradigm9, 

and the ecosocial perspective10. The causal inference approach can be classified as a 

reductionist1, non-reflexive2, and positivist3 program to apply the advantages of the experiment to 

observational studies to identify causal explanations for disease outcomes. In contrast, the 

ecosocial perspective combines a multi-level, dynamic, and holistic (“ecological”) perspective of 

health with an acknowledgement that health and disease are socially produced and represent 

physical embodiments of underlying power dynamics in society. This work attempts to benefit 

                                                           
1 Reductionism is the belief that a complex system is are best understood by breaking it down 

into component parts that are more amenable to analysis. 
2 A non-reflexive science limits its domain of inquiry to impartial observations of the natural 

world, excluding the social production of knowledge and the potential biases of the observer as 

topics of study. This is also known as the single hermeneutic.  
3 Positivity holds that valid knowledge comes only from direct sensory experience, i.e. 

experimentation and observation. 
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from both paradigms to rigorously estimate causal effect measures within theoretical and social 

contexts. 

Data Source and Population 

This dissertation uses existing data collected as part of the Community Health Effects of 

Industrial Hog Operations (CHEIHO) study. CHEIHO was a community-based participatory 

research study designed in collaboration with community members that aimed to investigate the 

impacts of industrial hog operations on the general health, disease symptoms, and well-being of 

those living nearby8. The study took place between 2003 and 2005 and enrolled 101 participants 

living in 16 neighborhoods in Eastern North Carolina that were affected by industrial hog 

operations11; each community participated in the study for a period of at least two weeks. Despite 

the relatively small number of subjects, the study has a larger effective sample size because 

repeated measurements were collected for each subject. For instance, participants recorded 

hourly odor for two weeks – producing 336 potential records for each of 101 participant clusters, 

or 33,936 potential records total.  

Neighborhoods that chose to participate in CHEIHO were identified by community 

organizers from the North Carolina Environmental Justice Network. Selection of communities 

using this approach was important for ethical and logistical reasons. Because the swine industry 

in North Carolina has retaliated against research participants in research studies seen as 

unfavorable to the industry12, it was important for communities to be prepared for potential 

consequences of participation beyond researchers’ control. Recruiting interested communities 

was also important due to historical exploitation of minority study participants by researchers in 

the United States8. This collaborative approach facilitated fair treatment and also contributed to a 

high response rate among participants (98%)13.   
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Although they were not randomly sampled, participating neighborhoods were fairly 

representative of populations affected by swine ILOs in North Carolina. These neighborhoods 

had a higher proportion of households in poverty and a higher proportion of residents identifying 

as Black and a higher proportion of older residents, compared to the state as a whole2. Because 

older individual and minorities typically have greater disease susceptibility and higher existing 

disease burdens, estimates produced in this analysis might be greater than the effects on the 

general North Carolina population, but are generalizable to the population affected by swine 

ILOs air pollutants in North Carolina.  

To be eligible for participation, potential study enrollees had to be non-smokers, have a 

freezer available in their home to store saliva samples, and be able to commit two periods per 

day to data collection activities. Because non-participant names were not recorded to protect 

individual confidentiality, the number of excluded participants is unknown. The exclusion of 

smokers is expected to lead the study to under-estimate the true effect of air pollutants on swine 

ILO neighbors, if smokers are more susceptible to air pollutants because of existing respiratory 

system stress. The average age of participants enrolled in the CHEIHO study was 53 and 65% 

were female. Most (83%) identified as Black11, 15% identified as white, 1% identified as Latino, 

and 1% identified as Black/Native American. 

 

Exposure Assessments 

This study used ambient air pollutant concentrations and participants’ self-reports of 

odor, instead of direct measurements of human exposure, as the independent variables of interest. 

During the study period, air monitors located near participants’ homes assessed ambient 

concentrations of hydrogen sulfide (H2S), a specific marker for swine ILO emissions in the study 
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context, at 15-minute intervals. Twice per day, participants also rated the strength of hog odors 

they sensed outdoors and recalled the strength of odors they sensed for each of the prior 12 hours 

(inside or outside, depending on their location during each hour).  

Participants rated odors were rated on a scale of 0 (no odor) to 8 (strong odor). Each 

participants’ odor perception was assessed at baseline using a butanol dilution series11. In this 

test, participants were presented with two vials of liquid, one with increasing concentrations of 

odorants and the other with plain water. The concentration at which a participant could reliably 

tell the difference between the two vials was used to estimate their odor perception threshold. 

This threshold might be an effect measure modifier for exposure effect pathways depending on 

odor perception, but in past CHEIHO research it did not have a significant impact6. The exposure 

and exposure assessment processes are summarized in Figure 2.1, below. A list of the exposure 

measurements is presented in Table 2.1. 

 

Figure 2.1. Simplified CHEIHO exposure model. Chemical mixtures originating from 

swine ILOs were carried into participants’ neighborhoods by the wind where they could 

diffuse into homes. Monitor records reflected neighborhood concentrations of hydrogen 

sulfide and particulate matter “upstream” of human exposure; odor diaries reflected 

somatosensory “downstream” effects of human exposure to odorant chemicals.  

Swine ILO Neighborhood Home 

Diffusion 
Environmental 

Transport 

Participant 

Away 

Odor 

Reports 
H2S, PM 

Monitor 

Outdoor 

Reports 
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Meteorological instruments on a monitoring trailer were used to simultaneously record 

temperature, humidity, wind speed, and wind direction during the study. These variables were 

considered potential confounders because they might influence recent exposures and an 

individual’s propensity to sleep or spend time outdoors.  

Assessment Type Period Location Units 

H2S Monitor Hourly average Neighborhood ppb 

Odorant Chemicals 

(Current location) 

Participant 

Report 

Hourly rating 

(24 per day) 

Current 

Location 

Strength (0 to 8) 

Odorant Chemicals 

(Outdoors) 

Participant 

Report 

10 minutes  

(2 per day) 

Outdoors 

(Home) 

Strength (0 to 8) 

Table 2.1. Summary of CHEIHO exposure assessment methods used in this dissertation.  

 

Outcome Ascertainment 

At each of two daily data collection sessions, participants indicated if they were inside (at 

home), outside (at home), away from home, or asleep for each of the preceding 12 hours using an 

hourly grid (see example in Figure 5, below). Participant used two identical sheets per day – one 

for morning data collection and one for nightly data collection. Morning data collection forms 

were used to assess sleep status on an hourly scale, and the nightly data collection form was used 

to assess outdoor status on an hourly scale. Night-shift or rotating-shift workers in the population 

were excluded from the study because their sleep and activity schedules were different from the 

remainder of the study population. 

Compared to the gold standard of polysomnography (multiple-electrode brain and muscle 

signal measurement), self-reported-sleep is expected to systematically overestimate total sleep 

duration14–16, with greater errors for lower sleep duration values. This effect is expected to result 

in a systematic bias towards a null effect in the study; the bias is expected to make the outcome 
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distribution more similar between exposed and non-exposed groups. Although it is possible that 

participants’ modified their responses to create the appearance of sleep impacts, this is 

unexpected since assessment of sleep impacts was not an explicit aim of the original study. The 

Z indicators used to indicate sleep in odor diaries were originally intended to distinguish “skip 

pattern” missing data during sleep from “true” missing data from participant error (Figure 2.2). 

An assessment showing that participants’ other reports showed high agreement between 

biometric and environmental measures in the study and suggests that participants accurately 

reported their sleep status13. 

 

 

Figure 2.2. Hypothetical sleep record showing sleep coding for a person who came home at 

10:00pm, spent an hour outside and an hour inside before going to sleep, woke at 2:00am, then 

slept until 5:00am, and awoke to livestock odors in the morning both inside and outside. This 

example shows how three different types of sleep disruption - delayed sleep, awakening during 

the night, and early awakening – might manifest in study records. 

 

Model Selection 

The statistical models used for this analysis were chosen using three criteria: (1) models 

must estimate parameters appropriate for answering the research questions, (2) models must take 

Participant: 007 Study Day: 4 of 14 Time: Morning  

For each of the preceding twelve hours indicate the strength of livestock odors perceived on a scale of 0 (no odor) to 8 (strong odor) [write 

“Z” if you were asleep]: 

Hour 9:00p 10:00 11:00 12:00a 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 

Away 0  Z Z Z 2 Z Z 4 1 1 1 1 

Outside  3            

Inside 

 

  2 Z Z 6 Z Z 3 4 5   
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advantage of the availability of repeated measurements to address potential confounding factors, 

and (3) model outcome format must match available study data. Based on these criteria, aims 1 

and 2 were be assessed using discrete-time hazard models, and aim 3 was addressed using 

dynamic Bayesian network models. The relationship between the models and the study questions 

is depicted in Table 2.2.  

As a generalized linear model, the discrete-time hazard inherits the assumptions of the 

linear model (homoscedasticity or common-variance, multivariate normal distribution of 

transformed residuals, and independence of observations between clusters) but replaces the 

linearity assumption with the proportional hazards assumption. Since the parameter of interest is 

a ratio of hazards, it is assumed that the difference in hazards between exposed and unexposed 

groups is proportional to the baseline hazard17. The validity of these assumptions were assessed 

during the analysis using standard graphical methods, drawing inference from the distribution of 

model residuals18. 

 The dynamic Bayesian network (DBN) models in Aim 3 have several advantages in the 

context of estimating feedback effects in epidemiology. First, the DBN is modeled as a directed 

acyclic graph (DAG) in which the probability distribution of each node, based on the values of 

its parents nodes, is explicitly modeled19. This enables the DBN approach to benefit from the 

same epidemiological paradigm of causal inference, which uses on the relationship between just 

two nodes on a graph to infer the appropriate conditioning sets for estimating a given exposure-

response relationship20. Second, the DBN allows flexible modeling for the conditional 

distributions of nodes. Generalized linear models, also commonly used in epidemiology, can be 

used for these distributions, generating coefficients with similar interpretations as those used 

elsewhere in the modern epidemiology literature.  
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Aim Inference target Exposure  Outcome 

(window) 

Regression model 

(estimate) 

MA1 

1 Sleep  Sleep (hour) Discrete hazard 

(odds ratio) 

MN, H 

CI, M0, 

PH 

1a Difficulty sleeping 

from evening odor 

Evening 

outdoor odor 

 Model 1a “ 

1b Awakening from 

sleep from odor 

Hourly H2S  Model 1b ‘” 

2 Time Outdoors  Outdoor 

(hour) 

Discrete-time 

hazard (odds 

ratio) 

MN, H, 

CI, M0, 

PH 

2a Sheltering indoors 

due to poor air 

quality 

Odors (hour) Time outdoors 

(hour) 

Model 2a “ 

2b Avoidance of 

outdoor activities 

due to poor 

expected air quality 

Outdoor odor 

(morning) 

Hours 

outdoors (day) 

Model 2b “ 

3 Feedback between 

exposures, sleep, 

and time outdoors  

Indoor and 

outdoor H2S 

(hour) 

Sleep and time 

outdoors 

(hour) 

Dynamic 

Bayesian Network 

(odds ratio) 

MN, H, 

CI, M0 

 

Table 2.2. Summary of regression models used in this analysis and their relationship to 

study Aims. Aim 1 and 2 each use one model with a common outcome but two exposure 

terms to address subaims a and b; Aim 3 is addressed using a dynamic Bayesian network. 

1. MA: Model Assumptions.  2. MN: Multivariate normality (transformed) 3. H: 

homoscedastic (common-variance) 4. CI: Cluster independence (between subjects, 

communities) 5. M0: No measurement error 6. PH: Proportional hazards   

 

Three classes of alternate models were considered for this analysis. Random-effect 

models could be used to model each participants’ baseline outcome risk (i.e. model intercept) as 



 

42 
 

an independent random variable, but this approach assumes that these baseline risks were 

independent of the values of the exposures4. Generalized Estimating Equations (GEE) could be 

used to model outcomes in the population using a covariance structure within participants, but 

this method produces non-collapsible21 marginal estimates5 that do not condition on influence of 

unmeasured participant-specific confounding factors. Marginal structural models were 

considered for Aim 3, but do not offer the same advantages of the DBN important in this context 

(similar interpretability to existing models and flexible distributional specification). 

 

Potential Confounding 

Analyses can be influenced by confounding bias if there are factors that causally precede 

exposures and outcomes. Ambient concentrations of ILO air pollutants vary based on production 

factors, relative ILO location, wind speed, wind direction, time of day11, and temperature. Sleep 

and daily outdoor activities could be influenced by temperature and time of day. These potential 

confounders are time-varying, but the potential for time-invariant confounding factors is also 

addressed below.  

Exposure to ILO emissions in the CHEIHO study can also be broken down into two 

mechanisms relevant to their potential for confounding: routine life-course exposures, and study-

initiated exposures.  Routine exposures occurred in participants’ lives as a result of industrial 

                                                           
4 Mean exposures in CHEIHO differed between neighborhoods (and therefore between individuals). The approach 

ultimately used is comparable to a fixed-intercept approach (within the class hierarchical models) without explicit 

estimation of these fixed effects. 

5 GEE uses a specified a covariance matrix structure to account for similarity between observations; this approach 

treats the similarities between individuals’ responses in CHEIHO as a nuisance parameter to be eliminated, rather 

than as a basis for efficient causal inference. 
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livestock operations nearby. These exposures reflect participants’ typical exposures6 and were 

the exposures assessed both by air monitors (capturing “upstream” indicators of human 

exposure) and hourly odor recalls (capturing a “downstream” biomarker of human exposure). 

Depending on the concentration of ILO air pollutants, this could have resulted in exposure to 

ILO air pollutants outdoors, indoors, or away from home. While participants did not have control 

over the concentration of ILO air pollutants at these times, they had some control over their 

potential for exposure (by going indoors, outdoors, or away from home). 

Study-initiated exposures occurred during twice-daily data collection sessions. In the 

course of data collection, participants were asked to expose themselves to ambient air for 10 

minutes and then rate the strength of odors they experienced. For this category of exposure 

mechanism, participants had control over neither their exposure to outdoor air nor the 

concentration of ILO pollutants in ambient air. 

The difference between these two mechanisms of exposure is relevant to confounding 

potential because routine daily exposures had the potential to be influenced by other factors 

while exposures to air occurring during data collection aren’t influenced by the same set of 

factors because they occurred every morning and evening. For morning and evening exposures 

required by the study design, participants’ received exposures could depend on the emissions 

source or on weather conditions, but not on participants’ behavior history. This reduced the 

potential for confounding bias among exposures occurring during data collection. In both cases, 

whenever participants were exposed to outdoor air, their exposures to ILO emissions also 

depended on the concentration of ILO pollutants in the air at that time.  

                                                           
6 There was evidence that ILO operators reduced waste spraying (and therefore participants’ exposures) in response 

to seeing the monitoring trailers during the course of the study. This would suggest that the routine exposures 

recorded during CHEIHO are lower than typical exposures, although the extent of this difference was not formally 

assessed. 
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Unmeasured confounding factors that remained constant throughout the study period for 

each participant were handled using conditional logistic regression models (conditioned on 

individual hazard functions). The conditional logistic approach uses a partial likelihood 

calculation that conditions out the influence of unmeasured individual factors (modeled as a 

flexible discrete-time hazard function). Potential time-varying confounding factors were 

addressed using covariate adjustment. Temperature and time of day were considered potential 

confounding factors because they can influence ambient ILO air pollutant concentrations, sleep, 

and time outdoors.  

 

Effect measure modification  

Odor perception threshold can be considered a potential effect-measure modifier. 

Pathways that depend on individuals’ perceptions of odor (for instance, mood changes caused by 

frustration with odors or avoidance of outdoor activities due to odors) could be reduced among 

individuals less able to perceive odors, resulting in a dampened response to ambient ILO air 

pollutant concentrations. On the other hand, individuals with low odor sensitivity might be better 

able to avoid exposures if they are better able to detect them, which could lead to increased 

response to air pollutant concentrations among those with poorer sensitivity. Odor perception 

could also be associated with factors that could affect participants’ susceptibility to exposures in 

other ways. For example, odor perception could be lower in older participants and participants 

with respiratory disease symptoms. 

The potential for effect measure modification was assessed by stratifying participants by 

odor sensitivity threshold. Odor sensitivity thresholds was assessed at baseline using a butanol 

dilution series. In this procedure, participants were presented with a series of two vials 
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containing different concentrations of an odorant chemical and scored based on their ability to 

consistently identify the vial containing a higher concentration by smell. Participants were 

stratified based on a butanol perception threshold of 40 ppm (parts per million). This level was 

chosen to maintain an adequate sample size in each of the stratification groups. 

 

Missing data 

Prior CHEIHO analyses have indicated that data completeness and quality are high, but 

considered measures that were important to the original study design, including disease 

symptoms and biometric measurements. In the context of this work, the completeness of the 

exposures and outcomes are less complete. Some variables, like indoor odor, outdoor odor, and 

sleep were mutually incompatible and thus can be considered missing by design in this analysis. 

For example, participants could not record odors while they were asleep, and also could not 

report outdoor odors while indoors. Other variables may have had less completeness than 

expected because they were not the main focus of the study. For example, sleep status was 

estimated using a missing data code for odor diaries. 

Missing data was addressed by the study design, exclusion, and multiple imputation when 

necessary. First, the conditional models used in this analysis enabled data missing “by design” to 

fall out of analyses as necessary. For instance, comparisons for the effect of outdoor odor on time 

outdoors during the next hour only used hours during which participants recorded outdoor odors 

(and thus were outdoors); although the hourly data might appear “missing” in an hour-by-hour 

dataset, these data are not truly missing in the design since the effect of interest only occurs 

during certain time periods.  



 

46 
 

Data that could not be meaningfully imputed, based on stratification by subject, were 

excluded to preserve the conditional-on-participant method of analysis. For example, one 

participant did not record any sleep missing value codes. Participants with too many missing 

observations for sleep, odor, or time outdoors (>50%) were excluded from the analysis.  

Imputation was used for missing data for which there was sufficient data to build an 

imputation model. This approach reduces potential biases presented by missing data using 

bootstrapping; the distribution missing values is characterized using a predictive model built 

from non-missing data, and resampling is used to propagate the effect of this uncertainty on the 

final effect estimates22.  

 

  



 

47 
 

REFERENCES 

1.  North Carolina Department of Environmental Quality. List of Permitted Animal 

Facilities. November 2016. https://ncdenr.s3.amazonaws.com/s3fs-

public/NC%20Permitted%20Animal%20Facilities-11-04-2016.xls. Accessed January 23, 2017. 

2.  Wing S, Cole D, Grant G. Environmental injustice in North Carolina’s hog industry. 

Environmental Health Perspectives. 2000;108(3):225. 

3.  Tajik M, Muhammad N, Lowman A, Thu K, Wing S, Grant G. Impact of odor from 

industrial hog operations on daily living activities. New Solutions: A Journal of Environmental 

and Occupational Health Policy. 2008;18(2):193–205. 

4.  Schinasi L, Horton RA, Guidry VT, Wing S, Marshall SW, Morland KB. Air Pollution, 

Lung Function, and Physical Symptoms in Communities Near Concentrated Swine Feeding 

Operations: Epidemiology. 2011;22(2):208-215. doi:10.1097/EDE.0b013e3182093c8b 

5.  Horton RA, Wing S, Marshall SW, Brownley KA. Malodor as a trigger of stress and 

negative mood in neighbors of industrial hog operations. Am J Public Health. 2009;99(suppl 

3):S610–S615. 

6.  Wing S, Horton RA, Rose KM. Air pollution from industrial swine operations and blood 

pressure of neighboring residents. Environ Health Perspect. 2013;121(1):92–96. 

7.  Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s updated sleep 

duration recommendations: final report. Sleep Health. 2015;1(4):233-243. 

doi:10.1016/j.sleh.2015.10.004 

8.  Wing S, Horton RA, Muhammad N, Grant GR, Tajik M, Thu K. Integrating 

Epidemiology, Education, and Organizing for Environmental Justice: Community Health Effects 

of Industrial Hog Operations. Am J Public Health. 2008;98(8):1390-1397. 

doi:10.2105/AJPH.2007.110486 

9.  Rothman KJ, Greenland S. Causation and causal inference in epidemiology. American 

journal of public health. 2005;95(S1):S144–S150. 

10.  Krieger N. Theories for social epidemiology in the 21st century: an ecosocial perspective. 

International journal of epidemiology. 2001;30(4):668–677. 

11.  Wing S, Horton RA, Marshall SW, et al. Air pollution and odor in communities near 

industrial swine operations. Environ Health Perspect. 2008;116(10):1362–1368. 

12.  Wing S. Social responsibility and research ethics in community-driven studies of 

industrialized hog production. Environmental Health Perspectives. 2002;110(5):437. 

13.  Schinasi L, Horton RA, Wing S. Data completeness and quality in a community-based 

and participatory epidemiologic study. Progress in community health partnerships: research, 

education, and action. 2009;3(2):179–190. 



 

48 
 

14.  Lauderdale DS, Knutson KL, Yan LL, Liu K, Rathouz PJ. Self-reported and measured 

sleep duration: how similar are they?, Sleep duration: how well do self-reports reflect objective 

measures? The CARDIA Sleep Study. Epidemiology. 2008;19, 19(6, 6):838, 838-845. 

doi:10.1097/EDE.0b013e318187a7b0, 10.1097/EDE.0b013e318187a7b0 

15.  De Marchi S, Hamilton JT. Assessing the accuracy of self-reported data: an evaluation of 

the toxics release inventory. Journal of Risk and Uncertainty. 2006;32(1):57–76. 

16.  Girschik J, Fritschi L, Heyworth J, Waters F. Validation of self-reported sleep against 

actigraphy. Journal of epidemiology. 2012;22(5):462–468. 

17.  Allison PD. Discrete-time methods for the analysis of event histories. Sociological 

methodology. 1982;13:61–98. 

18.  Faraway JJ. Extending the Linear Model with R: Generalized Linear, Mixed Effects and 

Nonparametric Regression Models, Second Edition. CRC Press; 2016. 

19.  Murphy KP. Dynamic bayesian networks. Probabilistic Graphical Models, M Jordan. 

2002;7. 

20.  Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC medical 

research methodology. 2008;8(1):70. 

21.  Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. 

Statistical Science. 1999:29–46. 

22.  Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for missing data in 

epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. 

doi:10.1136/bmj.b2393 

 

  



 

49 
 

 

 

CHAPTER 3: EFFECTS OF REPEATED EXPOSURES TO AIR EMISSIONS FROM 

SWINE INDUSTRIAL LIVESTOCK OPERATIONS ON SLEEP DURATION AND 

AWAKENINGS 

 

OVERVIEW 

Waste from swine industrial livestock operations (ILOs) produces air pollutants that have 

been associated with negative health impacts among those living nearby. This study aims to 

assess the impact of odor emissions on sleep duration and awakenings, important components of 

health and quality-of-life that affects morbidity and mortality. Following a repeated-measured 

design, study participants from communities in eastern North Carolina hosting swine ILOs 

completed twice-daily diaries in which they rated the strength of hog odors and indicated their 

sleep status every hour for two weeks. Simultaneously, a monitoring trailer placed in each 

community measured the atmospheric concentration of hydrogen sulfide (H2S) nearby. Subject-

conditional fixed-effects regression models were used to estimate associations between two 

markers of swine ILO pollutant exposures (H2S and swine odor) and two sleep outcomes (nightly 

sleep duration and awakening from sleep). Nightly swine odor was associated with decreased 

nightly sleep duration (mean -14.3 minutes, 95% interval -25.0 to -3.3 minutes) and nightly 

hydrogen sulfide concentration was associated with an increased hazard of awakening (HR = 

1.23, 95% interval 0.98 to 1.55). These results suggest that emissions reductions and odor 

abatement are important public health goals in designing policy and technology solutions to the 

problems of livestock production and waste management.  
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INTRODUCTION 

Swine Industrial Livestock Operations (ILOs) are a prevalent source of air pollutants in 

eastern North Carolina. Today, nearly all of the pork consumed and exported by the United 

States is produced by industrial livestock operations1 and North Carolina is a leading producer - 

with over 2,000 permitted operations and 9 million swine2,3. The industry is highly concentrated 

in the southeastern part of the state4, where the two top-producing counties are also the two top-

producing counties in the entire United States5.  

This context has produced an environment where communities hosting swine ILOs can 

face concentrated industrial air emissions not typically associated with rural areas. Rural areas 

consistently score poorly on population health indicators6,7, and rural communities are 

experiencing social transitions that create health challenges8: a shift to corporate agriculture, job 

loss, outmigration of young and working people, and poorer access to nutritious food9. Air 

pollution produced by swine ILOs contains complex mixtures of particulate matter, aerosols, and 

gasses that can vary by facility, time of day, weather, and season. A large proportion of these air 

pollutants are produced by lagoon-and-sprayfield systems, which are used for waste management 

at swine ILOs in North Carolina10. In this system, wet swine wastes flow through the slatted 

floors of confinement buildings into open pits where they decompose anaerobically to produce 

mixtures of microbial metabolites including ammonia and hydrogen sulfude11. These wastes are 

sprayed onto adjacent fields to encourage aerobic decomposition, but this process also produces 

waste aerosols that spread liquid pollutants into the air and groundwater.  

Exposure to ammonia odorants like those found in swine ILO pollutants have long been 

known to cause awakenings from sleep12; this property has been exploited in the clinical context 

as smelling salts13.  In ethnographic research conducted in communities near swine ILOs, 

neighbors have reported that swine ILO air pollutants interfere with sleeping and time outdoors 
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14 but these associations have not been quantified statistically.  Many of the disease symptoms 

linked to swine ILO air emissions in past research are consistent with sleep impairment. 

Disrupted breathing can make falling asleep difficult15, cause awakenings from sleep16, interfere 

with outdoor activities17, and produce psychological stress18–20. Respiratory disease symptoms, 

the cultural and psychological meanings of malodor18,21, and the inability to control odors could 

make falling asleep more difficult.  

This study seeks to expand the understanding of the health effects of ILO pollutant 

exposures by assessing their impact on sleep. Associations between two exposure markers 

(swine odors and atmospheric hydrogen sulfide concentration) and two outcome measures 

(nightly sleep duration and sleep instability) are estimated.  

 

METHODS 

Study population.  This study uses data collected as part of the Community Health 

Effects of Industrial Hog Operations (CHEIHO) study. Potential CHEIHO communities were 

identified in collaboration with community organizations and had at least four residents 

interested in study participation. 101 CHEIHO participants were recruited from 16 North 

Carolina communities hosting industrial swine operations from 2003 to 200522. To be eligible for 

CHEIHO, participants had to live within 1.5 miles of an active ILO containing swine, not smoke, 

be at least 18 years old, and have access to a freezer to store saliva samples collected as part of 

the study. An initial training session in each community was used to obtain informed consent and 

train study participants in data collection procedures. A baseline assessment of odor sensitivity 

was conducted for each participant at baseline using a butanol dilution series23.     
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Exposure assessments.   Swine ILO pollutant exposures were characterized using 

participants’ hourly swine odor ratings, participants’ twice-daily outdoor swine odor ratings, and 

hydrogen sulfide concentrations recorded by monitors.  Over a two-week study period, each 

participant completed a twice-daily diary form containing questions on the strength of swine 

odors. Each participant completed two diary data-collection sessions per day at times identified 

in conjunction with research staff. Each participants’ daily diaries were made 12 hours apart 

between 7 and 9 am and 7 to 9 pm (e.g. 8am and 8pm), providing 24-hour coverage if all diary 

entries were completed but allowing data collection to occur at convenient times for each 

participant. At the beginning of each diary session, participants rated the odor from swine 

operations during the preceding twelve hours using a 9-point scale (0-8); for each rated hour, 

participants also indicated if the rated odor was indoors, outdoors, or away from home. 

Participants then spent ten minutes outside and rated the current strength of outdoor odor from 

swine operations on the same scale.  

Simultaneously, a mobile air monitoring trailer was used to make meteorological 

measurements (temperature, humidity, wind direction, and wind speed) and record atmospheric 

concentrations of hydrogen sulfide (H2S). Atmospheric hydrogen sulfide (H2S) is produced by 

the anaerobic decomposition of swine waste and has been used as a specific marker of ILO 

emissions plumes. The monitor was placed in a central location in each community, on average 

0.2 miles from participants’ homes. H2S was measured as a chemical marker specific to the 

complex mixtures of air pollutants produced by liquid swine waste management systems in rural 

areas. Mean 15-minute H2S accumulations were originally measured by an MDA Scientific 

Single Point Monitor (Zellweger Analytics, Inc.) using a chemcasette with a detection limit of 1 

part-per-billion volume (ppb) and converted to hourly averages to align with participants’ odor 
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records. A HOBO microstation datalogger (Onset Computer Corporation) with temperature and 

humidity sensors was used to measure meteorological conditions.  

Outcome ascertainment.  During twice-daily data collection sessions, participants 

indicated if they were asleep during each of the preceding 12 hours on a diary form (Table 3.5) 

Each participants’ daily diaries were made 12 hours apart between 7 and 9 am and 7 to 9 pm 

(e.g. 8am and 8pm), providing 24-hour coverage of sleep status if all diary entries were 

completed, but allowing data collection to occur at convenient times for each participant. Sleep 

status was classified as a binary variable on an hourly scale in each participants’ diary. These 

hourly values were summed by night to produce a variable representing the number of hours of 

sleep each evening. Sleep instability (awakening) was defined as a period when a participant 

reported at least one hour of wake time, following at least one hour of sleep time.  

 

Statistical methods.  

Sleep duration each night was modeled as a Poisson distributed outcome following the 

form 

ln 𝑛𝑖𝑗 = 𝛿𝑖 + 𝑋𝑖𝑗𝛽  (1) 

where 𝑛𝑖𝑗 is the number of hours of sleep, 𝑖 is the participant index, 𝑗 is the night index, 𝑋 is a 

vector of exposures and covariates, and 𝛿𝑖 represents a subject-conditional fixed effect24 for each 

participant that is conditioned out of the model likelihood by using a conditional likelihood 

function. In this fixed-effect model form, potential confounding factors are limited to those that 

vary with time and are associated with odor and nightly sleep duration. The combination of high 

relative humidity and hot temperature (humid heat) was treated as a potential confounder 

because it has the potential to disrupt sleep25 and odorant production23. Based on experimental 
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data, humid-heat was defined as a dry-bulb temperature above 80 °F and relative humidity above 

60%26.   Therefore, in our fitted model the 𝑋 vector consists of the potential confounder, humid-

heat, and the exposure of primary interest.  We estimated associations with hourly hydrogen 

sulfide level, nightly average swine odor, or evening outdoor odor.  To facilitate interpretation of 

model parameters, average sleep duration for all study participants was substituted into the 

model using the formula �̂� ∗ (𝑒𝑥𝑝(𝛽) − 1) to yield an estimate of the average exposure effect in 

the total population at the reference level of the confounder. 

We also fitted a model for sleep stability (i.e., discrete time hazard of awakening from 

sleep).  Sleep stability was modeled as a binary outcome variable using a discrete-time hazard 

model following the logistic form  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑦𝑖,𝑗,𝑡) ) = 𝛼𝑖, + 𝜆𝑡 + 𝑋𝑖,𝑗𝛽  (2) 

where 𝑦𝑖𝑗 is sleep stability (taking a value of 1 if a person is awakened at hour j, conditional on 

having been asleep at hour j-1, and 0 otherwise), i is the participant index, j is the hour index, 𝛼𝑖 

are an participant-specific fixed-effects conditioned out of the likelihood, 𝜆𝑡are used to model the 

baseline hazard as a function of time-asleep, and 𝑋 is the vector of humid-heat and hydrogen 

sulfide.  We report estimates of association between sleep stability and current hydrogen sulfide 

exposure, as well as associations with hydrogen sulfide exposure in the preceding hour (i.e., one-

hour lagged exposure), 

 Given the highly skewed distribution of hydrogen sulfide, with 92% of hourly measured 

below the limit of detection, in current analyses hydrogen sulfide level was modeled as a binary 

variable coded as 1 if above the limit of detection, and 0 otherwise. Model precision is reported 

using 95% intervals, rather than 95% confidence intervals, as the data do not come from a 

random sample. 
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RESULTS 

Of a potential 26,880 person-hours, 24,552 (91.3%) were used due to missing outcome 

data, covering 1023 day/night person-periods. 21 participants’ records were excluded due to 

insufficient exposure or outcome data (11 participants) or atypical sleep patterns (10 

participants), including apparent night-shift work. Demographic characteristics of the 101 

original study participants and 80 eligible participants are shown in Table 3.1. The CHEIHO 

cohort and the analytic sample had similar distributions of age, gender, and race but a smaller 

proportion of participants in the analytic sample had a butanol odor detection threshold below 40 

ppm (35% versus 39.6%). Due to missing data, a higher proportion of study records were from 

non-Black participants (21.4%) compared to the proportion of non-Black participants in the 

original CHEIHO study (15.8)  

The distributions of sleep and odorant exposures are described in Table 3.2. Hydrogen 

sulfide was above detection threshold 8.2% of all study hours and participants reported odors 

14.5% of their time awake. Evening outdoor odorants were higher on average than morning 

outdoor odorants (1.50 vs. 1.34). Participants experienced at least one odor episode on 46.8% of 

days and 50.0% of nights. Atmospheric temperature ranged from 31 °F to 87 °F (mean 62 °F) 

and relative humidity ranged from 40.7% RH to 100% RH (mean 80.4% RH); 12.4% of nights 

were classified as hot-humid. Participants slept 7.3 hours per night on average, and 8.3% of days 

contained at least one nap episode.  

Nightly detection of H2S, nightly swine odor, and evening outdoor ratings were each 

associated with lower nightly sleep duration (Table 3.3). Models estimated that the presence of 

nightly swine odor decreased nightly sleep duration in the study population by 14.3 minutes (3.3 
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to 25.0, 95% interval) on average. Through a similar calculation, the presence of nightly 

hydrogen sulfide decreased nightly sleep duration by 5.0 minutes on average (-5.8 to 15.6, 95% 

interval). These estimated associations did not differ by participants’ sensitivity to odors. 

Detection of hourly H2S concentration was associated with a greater hazard of awakening 

from sleep (Table 3.4). The presence of hydrogen sulfide above increased the discrete time 

hazard of awakening by 24% during that hour (HR=1.24, 95% interval: 0.99 to 1.55) and by 23% 

(HR=1.23; 95% interval: 0.98 to 1.55) during the following hour (i.e., a 1-hour lagged analysis).  

An increased hazard of awakening was observed among participants with higher sensitivity to 

odor (threshold <40 ppm; HR=1.62, 95% interval 1.10 to 2.40) compared to participants with a 

lower sensitivity to odor (threshold >=40 ppm; HR=1.08, 95% interval 0.82 to 1.43). 

 

DISCUSSION 

This study estimated the effect of exposures to swine ILO pollutants on sleep. Night-time 

ILO pollutant exposures (hydrogen sulfide and odor from swine operations) were associated with 

adverse sleep effects. Episodes of nightly hydrogen sulfide exposure and odor, two markers of 

swine ILO pollutant exposures, decreased participants sleep by 14.2 minutes on average and 

increased the hazard of awakening from sleep by 23%. In the context of chronic daily exposures, 

these impacts could lead to substantial sleep losses over time. 

Observed associations between ILO pollutants and sleep could be attributable to several 

causes. Hydrogen sulfide, amines, and other emissions components could have direct chemical 

effects - prompting awakening12 or disrupting homeostatic (sleep-wake) or circadian 

regulation27. Studies of communities exposed to ILO pollutants have documented sensory effects 

consistent with olfactory and trigeminal nerve irritation28 including nausea29,30, burning nose and 
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eyes29–31, and headaches31 that could cause awakenings from sleep. Inability to control exposures 

during the day and night could also cause annoyance, stress, negative thoughts, and anger that 

could make sleeping difficult. Respiratory effects of exposures could have secondary effects on 

sleep by lowering lung function or exacerbating existing conditions like asthma, obstructive 

pulmonary disease, or sleep apnea16. Respiratory symptoms consistent with sleep impairment 

have been linked to ILO pollutant exposures in Western Europe and the United States, including 

excessive coughing29,31, asthma32–34, wheezing29,30, difficulty breathing29,30, runny nose29,31, sore 

throat30,31, and chest tightness29,30.  

Due to the repeated-measures design, observed associations cannot not be explained by 

factors that remained constant for participants over the study period. For instance, neither 

participants’ pre-existing medical conditions nor seasonal effects could not create an association 

between ILO pollutant exposures and sleep loss because they remained fixed over the study 

period for each participant. As potential participants were excluded from the study if they 

smoked or were unable to participate, it is possible that the true effect is stronger than estimated 

here due to participants being healthier than the population exposed to swine ILO air emissions. 

Similarly, participants were excluded if they had atypical sleep schedules, which could have 

made the analytic sample appear healthier than the general population. Replicating the analysis 

without any participant exclusions yielded similar (estimated effect direction and magnitude) but 

less precise results. 

The study is limited by the quality of exposure and outcome data. The study used two 

exposure assessments: participants’ perceptions of odor from swine operations, and hydrogen 

sulfide concentrations measured in participants’ neighborhoods. In the present study context, 

odor perception can be understood as a biomarker of exposure and is limited by potential 
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hysteresis, between-person variability, and non-linearity. Although environmental monitors were 

placed close to participants’ homes (mean 0.2 mi), they only measured one marker of a complex 

mixture of pollutants and did not quantify individually-received exposures. The outcome data 

used for this study were collected from self-report in a parent study that was not originally 

designed to assess sleep disturbances, and are less complete compared to other study data. Self-

reported sleep duration data has been shown to over-report actual sleep duration; the correlation 

between self-reported sleep duration and actigraphy-measured sleep was 0.29 in Black 

participants in the Multi-Ethnic Study of Atherosclerosis35. Sleep under-report in the Chicago 

site of the Coronary Artery Risk Development in Young Adults Study was inversely proportional 

to sleep duration, as participants with less sleep under-reported their sleep more36. This 

measurement error could mask observed sleep impacts, as those with the largest sleep deficits 

may appear more similarly to those with more sleep. A study design using more objective, 

personal, and comprehensive exposure assessment and an automated method of recording sleep 

data with improved temporal specificity (e.g. personal accelerometers) could help overcome 

these limitations.  

The repeated-measures models used for the study address some of these limitations and 

also reduces the potential for confounding biases. These models estimated associations between 

within-person variations in exposure and outcome and are comparable to models adjusted by 

participant. This design removed the influence of factors that remained constant for each 

participant throughout the two-week study period, including demographic characteristics, season, 

odorant sensitivity, baseline sleep quality, and home permeability to odorants. Of the remaining 

potential time-varying potential confounding factors, heat-humidity was the most concerning and 

could be adjusted for in each model.  
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The associations observed between swine ILO emissions exposure markers and sleep in 

this study suggest that ILO emissions have negative impacts on sleep among those living nearby. 

Sleep influences an array of disease risk factors and diseases, but is also an important part of 

health in its own right. Sleep is important for DNA repair37, cellular metabolism, tissue 

maintenance, immunological response, mood regulation, and memory consolidation38. Based on 

the importance of sleep to health, the National Sleep Foundation recommends 7 to 9 hours of 

sleep per night for adults 18-65 and 7 to 8 hours per night for adults over 6539; the American 

Academy of Sleep Medicine and the Sleep Research Society recommend at least 7 hours of sleep 

per night for health adults40. Getting less than this recommendation (<7 h) has been linked to 

increased risks of diabetes and obesity41–52, cardiovascular disease53, accidents54,55, poor quality 

of life56–61, and premature death62. The average sleep duration observed among participants in 

this study (7.3 hours per night) was not far from the 7-hour recommended minimum. 

The social context of pollutant production in swine industrial livestock operations has 

proven resistant to public health intervention. Swine industrial livestock operations offer 

economic benefits to a select few that can use their political influence to secure their legal right 

to pollute63, leading to regulatory capture favoring larger operations64,65. Emissions abatement 

through technology or policy improvements could offer relief66–68, but have proven difficult to 

implement through traditional regulatory channels10. In conjunction with existing data on the 

community health impacts of industrial animal operations, this study could help guide public 

policy recommendations on health-based emissions controls for livestock waste treatment 

systems69. Odor abatement, in addition to nutrient management, should be an important 

consideration in designing systems to manage large-scale animal wastes.  
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Although this study focused on odor and hydrogen sulfide from industrial livestock 

operations, environmental odorants from industrial sources in other areas could also be important 

for sleep hygiene and the secondary health effects associated with sleep. From a public health 

perspective, greater community control over local industrial development could help reduce the 

high concentrations of swine ILOs and other facilities that create environmental pollutants and 

positively impact population health. Scientific evidence about the health impacts of ILOs could 

help facilitate meaningful public engagement around the health effects of environmental quality 

and promote public health by demonstrating the need for more sustainable methods of 

production. 
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Table 3.1. Distributions of demographic characteristics of study participants by grouped by 

eligibility and number of records  

              

   Participants  Person-time 

   CHEIHO  

Current 

Study  Person-hours  Person-days 

Variable     

(n=101) 

n (%)   

(n=80) 

n (%)   

(n=24552) 

n (%)   

(n=1023) 

n (%) 

Age                           

 ≥65  24 (23.8)  20 (25.)  6768 (27.6)  282 (27.6) 

 24-64  77 (76.2)  60 (75.)  17784 (72.4)  741 (72.4) 

Gender                           

 Women  66 (65.3)  54 (67.5)  16656 (67.8)  694 (67.8) 

 Men  35 (34.7)  26 (32.5)  7896 (32.2)  329 (32.2) 

Race                           

 Black  85 (84.2)  66 (82.5)  19296 (78.6)  804 (78.6) 

 

non-

Black  16 (15.8)  14 (17.5)  5256 (21.4)  219 (21.4) 

Odor Sensitivity                         

 

≤40 

ppm  40 (39.6)  28 (35.)  8256 (33.6)  344 (33.6) 

 

>40 

ppm  57 (56.4)  48 (60.)  15360 (62.6)  640 (62.6) 

 Missing  4 (4.)  4 (5.)  936 (3.8)  39 (3.8) 
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Table 3.2. Distributions [n (%)] of odor ratings, hydrogen sulfide 

concentration (H2S) and sleep, on hourly, daily, and nightly scales. 

Variable  Hourly   Dailya   Nightlyb 

(Unit)   (0-8)     (0-8)     (0-8)   

 n (%)  n (%)  n (%) 

Odor (0-8) Average (1h)   Outdoor (10m)   Outdoor (10m) 

0  14566 (59.3)  474 (46.3)  465 (45.5) 

1-2  1254 (5.1)  273 (26.7)  278 (27.2) 

3-4  681 (2.8)  142 (13.9)  123 (12.) 

5-8  527 (2.1)  71 (6.9)  107 (10.5) 

Missingc  7524 (30.6)  63 (6.2)  50 (4.9) 

H2S (ppb)   Average (1h)   Average (12h)   Average (12h) 

0  20804 (84.7)  826 (80.7)  663 (64.8) 

0-2  1143 (4.7)  189 (18.5)  319 (31.2) 

>2  726 (3.)  8 (.8)  41 (4.) 

Missing  1879 (7.7)  0 (.)  0 (.) 

Sleep (hrs) Sleep (1h)d   Naps (12h)   Sleep (12h) 

1-3  239 (1.)  69 (6.7)  7 (.7) 

4-6  1488 (6.1)  10 (1.)  251 (24.5) 

7-9  5554 (22.6)  6 (.6)  728 (71.2) 

10-12  365 (1.5)  0 (.)  37 (3.6) 

Awake   16906 (68.9)   938 (91.7)   0 (.) 

a 9am to 9pm b 9pm to 9am  cParticipants did not record odors during sleep 
dProportion of all hours by sleep episode length 
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Table 3.3. Estimated change in daily sleep duration by hydrogen sulfide, evening, and 

nightly odors in the Community Health Effects of Industrial Hog Operations (CHEIHO) 

study, North Carolina. 

All Participants βa (95% Interval) n   RDb (minutes)  

H2S -0.012 (-0.036, 0.013) 865 
 -5.0 (-15.6, -5.8)  

Odor (swine ILO) 
    

     

 Evening (outdoor) -0.005 (-0.029, 0.020) 883  -2.0 (-12.4, 8.7)  

 Nightly -0.033 (-0.059, -0.008) 933  -14.3 (-25.0, -3.3)  

Low Odor Sensitivity β (95% Interval) n  RD (Minutes)  

H2S -0.023 (-0.053, 0.008) 541  -9.8 (-22.6, 3.4)  

Odor (swine ILO)        

 Evening (outdoor) -0.006 (-0.036, 0.024) 557  -2.6 (-15.2, 10.4)  

 Nightly -0.043 (-0.074, -0.012) 596  -18.3 (-30.1, -5.2)  

High Odor 

Sensitivity 
β (95% Interval) n  RD (Minutes)  

H2S 0.018 (-0.028, 0.064) 285  8.1 (-12.0, 29.1)  

Odor (swine ILO)        

 Evening (outdoor) -0.007 (-0.053, 0.040) 287  -2.3 (-22.7, 17.9)  

 Nightly -0.024 (-0.075, 0.026) 298  -10.5 (-31.5, 11.6)  

Model design adjusts for all time-invariant factors and heat-humidity.  
a Quasipoisson rate parameter . bRD = estimated absolute change in sleep duration per night.    
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Table 3.4. Estimated association between awakening from sleepa and 

pollutant exposure indicators   

           

All Participants   HRb (95% Interval) nc 

H2S (current measure)  
 

1.23 (0.98, 1.55) 6643 

H2S (lagged 1-hour)   1.24 (0.96, 1.53) 6645 

Low Odor Sensitivity      

H2S (current measure)   1.08 (0.82, 1.43) 4119 

H2S (lagged 1-hour)   1.08 (0.81, 1.44) 4118 

High Odor Sensitivity      

H2S (current measure)   1.62 (1.10, 2.40) 2270 

H2S (lagged 1-hour)   1.57 (1.04, 2.38) 2273 
a Night-time interruption in sleep (≥1 hr) preceded by one or more hours of 

sleep; model design adjusts for all time-invariant factors, heat-humidity, and 

time-asleep. b Hazard ratio. c Number of sleep periods during which awakening 

could have occurred. 
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Table 3.5. Hypothetical sleep and odor record for a study participant. This example shows how 

three different types of sleep instability - delayed sleep, awakening during the night, and early 

awakening – might manifest in study records. 

 
 

  

Participant: 007 Study Day: 4 of 14 Time: Morning  

For each of the preceding twelve hours indicate the strength of livestock odors perceived on a scale of 0 (no odor) to 8 (strong 

odor) [write “Z” if you were asleep]: 

Hour 9:00p 10:00 11:00 12:00a 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00a 

Away 0            

Outside  3          4 

Inside 

 

  2 Z Z 6 Z Z 3 4 5  
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CHAPTER 4: EFFECTS OF REPEATED EXPOSURES TO AIR EMISSIONS FROM 

SWINE INDUSTRIAL LIVESTOCK OPERATIONS ON TIME OUTDOORS 

OVERVIEW 

Communities hosting industrial hog operations have reported adverse health and quality-

of-life impacts from swine industrial livestock operations (ILOs). This study aims to quantify the 

impact of swine ILO air emissions exposures on the amount of time community residents spend 

outdoors. Following a repeated-measured design, 88 study participants from communities in 

eastern North Carolina with swine ILOs completed twice-daily diaries in which they rated the 

strength of hog odors and indicated their time spent outdoors every hour for two weeks. 

Simultaneously, a monitoring trailer placed in each community measured the atmospheric 

concentration of hydrogen sulfide (H2S) nearby.  Fixed-effects conditional regression models 

were used to estimate associations between three exposure markers (morning odor, daily odor, 

and H2S concentration) and time outdoors. Morning outdoor swine odor (OR=0.82, 95% interval 

0.59 to 1.12), hourly outdoor swine odor (OR=0.62, 95% interval 0.44 to 0.89), hourly indoor 

swine odor (OR=0.47, 95% interval 0.18 to 1.25), and hourly H2S concentration (OR=0.78, 95% 

interval 0.56 to 1.11) were associated with reduced time spent outdoors. These observed 

associations suggest that swine ILO emissions exposures have significant impacts on neighbors’ 

access to the outdoors. Technology and policy developments aimed at reducing air pollutants in 

rural areas, including swine ILOs pollutants, should consider quality-of-life impacts like time 

outdoors. 

 



 

72 
 

 

INTRODUCTION 

North Carolina hosts over 2,000 permitted swine industrial livestock operations (ILOs) 

containing around 9 million hogs1. Wastes produced by these operations are treated using 

lagoon-and-sprayfield systems that emit complex mixtures of air pollutants into surrounding 

communities, including ammonia, hydrogen sulfide (H2S), dander, dusts, and microbial 

components2,3. Ethnographic research in communities hosting swine ILOs has documented a 

variety of negative quality-of-life impacts stemming from rural residents’ relationship to the 

outdoors. The presence of outdoor air pollutants and odorants can make spending time outdoors 

unpleasant, or even unbearable. The outdoors is an important venue for relaxation, reflection, 

and stress reduction in the general population, but also has a special meaning to those who grew 

up and live “in the country”4. Rural residents rely on access to the outdoors for important health 

behaviors including functional physical activity, food provisioning, home climate control, and 

socialization. 

Although swine ILO neighbors have reported that swine ILO air pollutants interfere with 

time outdoors in ethnographic research4, these effects have not been quantified. This study aims 

to quantify the impacts of air emissions from swine industrial livestock operations on time 

outside among those living nearby.   

 

METHODS 

Study population. This study uses data originally collected in the Community Health 

Effects of Industrial Hog Operations (CHEIHO) study, which recruited 101 study participants 

from communities in Eastern North Carolina hosting industrial swine operations. To be eligible 
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for the study, participants had to be at least 18 years old, live within 1.5 miles of a swine ILO, 

not smoke, and have access to a freezer for storing saliva samples. For the present study, 

participants were also excluded if they did not engage in any outdoor activities, aside from the 10 

minutes each morning and evening required for study participation. Participants were also 

excluded if they experienced odors on one or fewer days during the study due to lack of exposure 

contrast. 

Exposure assessments. Exposure to swine ILO pollutants was assessed using two 

markers specific to swine ILOs in the context of rural environmental exposures: self-reported 

strength of hog odor, and atmospheric hydrogen sulfide (H2S) concentration. As part of the 

CHEIHO study, participants completed a twice-daily diary session during which they recorded 

the strength of hog odors they sensed for each of the preceding twelve hours (on a 0 to 8 scale). 

After each diary session, participants spent ten minutes outdoors and rated the strength of 

outdoor odors on the same scale. Each participant chose their own consistent times to complete 

their odor logs (e.g. 7 to 9 am, and 7 to 9 pm), providing full 24-hour coverage if all diary entries 

were completed, but enabling participants to collect data at convenient times. Participants’ 

sensitivity to odors at baseline was assessed using a butanol dilution series5.   

During the study, a mobile air monitoring trailer was placed in a central location in each 

community. Mean 15-minute H2S accumulations were measured by an MDA Scientific Single 

Point Monitor (Zellweger Analytics, Inc.) using a chemcasette with a detection limit of 1 part-

per-billion volume (ppb) and were converted to hourly averages to match the timing of 

participants’ odor records. A HOBO microstation datalogger (Onset Computer Corporation) with 

temperature and humidity sensors was used to measure meteorological conditions. 
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Outcome ascertainment. Time outdoors per day and the length of outdoor episodes 

were ascertained from information collected twice daily regarding location (indoors, outdoors, or 

away from home) for each of the preceding twelve hours. Daily time outdoors was calculated by 

summing all hourly outdoor values between the bounds of morning and early data collection for 

all participants (9am to 6pm). Morning and afternoon time outside were calculated by splitting 

eligible day hours in half (morning 9am to 1pm, afternoon 2pm to 6pm) and summing the 

number of hours in each time period     

Statistical Methods. Cumulative time spent outdoors per day was modeled as a Poisson-

distributed variable following the formula 

log(𝑛𝑖,𝑗) =  𝛼𝑖 +  𝑋𝛽 + 𝑍𝛾 

where 𝑛 is the number of hours spent outside, 𝑖 indexes study participant; 𝑗 indexes day in study; 

𝛼 is fixed individual effect (conditioned out of the likelihood function); 𝑋 is an indicator of 

either morning H2S exposure, morning 10-minute outdoor odor rating, or daily outdoor odor; and 

Z is a vector of temperature and wind speed (potential confounders); 𝛽 and 𝛾 are corresponding 

coefficient vectors. Extremes of outdoor temperature and wind speed have the potential to 

influence participants’ time outside per day and temperature and wind speed also influence swine 

industrial livestock emissions. Temperature and wind speed were modeled as binary variables 

(65° F - 85° F versus <65° F or >85° F, and ≤0.58 mph versus >0.58 mph) to capture 

atmospheric stability and effect on outdoor activity. H2S and odor were modeled as binary 

variables (detect/non-detect and odor/no odor). To assess effect-measure modification by time of 

day, separate models were also used for morning (9am-1pm) and afternoon periods (2pm-6pm). 

Sensitivity to odor was also considered as a potential effect-measure modifier. 
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In addition, we also fitted a model for discrete time probability of being outdoors each 

hour.  A binary indicator of location (outdoors versus not outdoors) was used to model whether a 

person was outdoors each hour (during daytime hours) as a binomial-distributed variable 

following the formula 

𝑦𝑖,𝑗,𝑘 =  𝛼𝑖,𝑘 +  𝑋𝛽 + 𝑍𝛾 

where 𝑦 is a binary indicator of outside location at hour k, for study participant 𝑖, on study day 𝑗; 

𝛼𝑖,𝑘 is a fixed individual effect conditioned out of the likelihood function; 𝑋 is  hourly H2S 

exposure or hourly odor rating; Z denotes a vector of temperature and wind speed on the hour 

scale; and 𝛽 is the corresponding coefficient vector. As above, temperature and wind speed were 

modeled as binary variables, H2S and odor were modeled as binary variables (detect/non-detect 

and odor/no odor), and time-of-day and odor sensitivity were considered as potential effect-

measure modifiers. To assess the sensitivity of the hourly model, several lags (1-hour, 2-hour, 

and 3-hour) of the hydrogen sulfide term and a term for prior number of hours outside per day 

were also used in separate models. 

 

RESULTS 

88 participants’ records were used for the analysis, covering a total of 21,408 person-

hours. Thirteen participants from the CHEIHO parent study were excluded due to insufficient 

exposure or outcome data. Due to data entry errors or missing data, 12,418 hourly records were 

excluded. The demographic characteristics of CHEIHO and present study participants, along 

with daily and hourly record-weighted distributions of these characteristics, are shown in Table 

4.1. The distributions of age, sex, race, and estimated odor sensitivity in the present study were 

similar to those from the parent study. 
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Participants’ odor ratings, neighborhood H2S concentrations, and time outside values are 

described in Table 4.2. Participants were outside for at least one hour of consecutive time on 

95.2% of study days. They experienced morning outdoor swine odors during data collection on 

42.4% of study days. Atmospheric hydrogen sulfide was detected in participants’ neighborhoods 

during 41.2% of study days. Morning outdoor odors and were lower on average than outdoor 

odors reported later in the day (mean 1.26 vs. 1.36). Participants experienced morning outdoor 

swine odors during 42.9% of the study hours that they were outside. Atmospheric hydrogen 

sulfide was detected during 6.7% of daytime study hours.  

We examined the association between the number of hours spent outside each morning 

and self-assessed morning outdoor odor (Table 4.3). A negative association was observed 

between morning outdoor 10-minute odor rating and subsequent time outdoors during the 

morning. Participants spent 20% fewer hours outdoors on mornings when they reported outdoor 

swine odors during their 10-minute morning data collection (β= -0.069, 95% interval -0.218 to 

0.077). A weak negative association was observed between morning hydrogen sulfide detection 

and number of hours spent outdoors (β= -0.198, 95% interval -0.515 to 0.101).  In contrast, a 

weak positive association was observed between morning 10-minute outdoor swine odor and the 

number of hours spent outside that afternoon (β = 0.106, 95% interval -0.053 to 0.265). 

Next we examined the association between markers of ILO emissions and the probability 

of being outdoors each hour. Negative associations were observed between markers of swine 

ILO emissions exposures and hourly time outside. Participants’ odds of being outside during an 

hour following perception of swine odor were lower compared to periods without swine odors 

(outdoor odor OR=0.62, 95% interval 0.44 to 0.89; indoor odor OR=0.47, 95% interval 0.18 to 

1.25). Participants’ hourly odds of being outside were also lower during periods when hydrogen 
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sulfide was detected (OR=0.78, 95% interval 0.56 to 1.11) and on days when hog odors were 

detected outdoors during morning data collection (OR=0.82, 95% interval 0.59 to 1.12).  

Associations between exposure markers and time outside were stronger among 

participants with greater sensitivity to odors at baseline (butanol sensitivity ≤ 40 ppm; Table 4.4). 

More odor-sensitive participants were less likely to spend time outside hours with hydrogen 

sulfide detection (OR=0.45, 95% interval 0.26 to 0.79) and during hours following perception of 

outdoor odors (OR=0.39, 95% interval 0.23 to 0.68) compared to hours without pollutant marker 

detection. Models for hydrogen sulfide lag terms and models with adjustment for prior time 

outside per day showed similar results to those reported above (data not shown). 

 

DISCUSSION 

This study estimated the effect of exposure to swine ILO air emissions on time outside. 

Markers of greater exposure (higher atmospheric H2S concentration and higher rated swine 

odors) were associated with reduced odds of spending time outdoors. Most prominently, 

perceiving outdoor swine odor reduced the odds of going outside the following hour by 38% 

(OR=0.62, 95% interval 0.44 to 0.89), while the detection of hydrogen sulfide in ambient air 

reduced the odds of going outside during that hour by 22% (OR=0.78, 95% interval 0.56 to 

1.11).  

While participants’ perceptions of odor and their time outdoors were self-reported, 

atmospheric concentrations of hydrogen sulfide (H2S) were objectively measured and these 

readings were not available to participants during the study. Misclassification of time outdoors 

by H2S concentration due to reporting errors is therefore expected to be non-differential with 

respect to the exposure and attenuate the observed associations.  
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Similarly, odor sensitivity was objectively measured using a butanol dilution series at 

baseline. The stronger observed associations between exposure indicators and outcomes among 

participants with a higher sensitivity to odors at baseline suggests that participants accurately 

recorded odors, since more exposure misclassification in the lower sensitivity group could 

attenuate the association between odor and time outdoors. Modification of the association 

between H2S exposure and time outdoors by odor perception threshold further suggests that odor 

perception could be an important mechanism through which ILO emissions influence time 

outdoors, since odor perception threshold could not influence the atmospheric concentration of 

H2S.  

A causal association between ILO emissions exposures and time outside could be 

explained in several ways, including participants’ avoidance of unpleasant sensory stimuli and 

protective actions (sheltering indoors) taken to avoid the effects of exposure. Sulfuric and 

ammonic components of swine waste can cause unpleasant olfaction and also stimulate facial 

trigeminal nociception, causing physical pain typically described as burning of the eyes and 

nose. In past research, swine ILO emissions exposures have been linked to disease symptoms 

that could make outdoor activities unpleasant or more difficult, including coughing6,7, asthma8–10, 

wheezing7,11, difficulty breathing7,11, runny nose6,7, sore throat6,11, and chest tightness7,11. In the 

context of cyclic and chronic exposures, those living near swine ILOs could be both 

psychologically and physiologically sensitized to exposures, leading to greater negative effects 

than might be expected in the general population. 

Associations were weaker when considered on the day scale; this could be due to 

increased measurement error caused by poorer spatial resolution. The difference in associations 

observed for morning and evening outcomes could suggest that effects could be concentrated on 
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morning hours, that participants changed the timing of outdoor activities to avoid odors, or that 

participants showed greater variability in time outdoors in the afternoon. Stronger negative 

associations observed among participants with greater sensitivity to odor is consistent with swine 

ILO neighbors’ reports that odor perception is an important way in which swine ILO pollutants 

impact outdoor activities. 

Disruption of time outdoors could have negative secondary impacts in population 

exposed to swine ILO emissions. In rural areas, outdoor activities are important for leisure time 

and functional physical activity. Compared to urban areas, rural communities are less likely to 

have indoor exercise facilities12 like pools, tracks, game courts, and gymnasiums. Rural residents 

of the U.S. South report more barriers to physical activity and less frequent physical activity13–17 

compared to their urban counterparts. Physical activity is important for quality of life and lack of 

physical activity is well-known as risk factor for many diseases including diabetes, heart attack, 

stroke, and cancer.  

Rural populations rely on access to the outdoors for other health behaviors, including 

gardening, hunting, fishing, and raising animals to improve access to nutritious foods4. Because 

rural homes often lack central heating and air conditioning systems due to their age or design, 

many rural residents cool their homes in hot months by opening windows – an economically and 

environmentally sustainable solution that relies on access to clean air. Residents of rural 

neighborhoods rely on the outdoors as a space for holding social, cultural, and religious 

gatherings, which strengthen and enrich both individual and community lives18.  

Compared to the general population, communities hosting swine ILOs in North Carolina 

also have a higher proportion of low-income and Black residents, who face higher burdens of 

disease and poorer access to public health and medical care services compared to the general 
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population. Differences in life stressors including discrimination19 in housing, education, and 

employment, as well as disparities in the prevalence and severity of chronic diseases, the quality 

of care received from health care providers, and mortality rates highlight the need for improved 

access to health resources in Black neighborhoods. In the context of the present research, 

limitations on outdoor activity might be particularly damaging to Black communities, which 

already score more poorly on measures of quality of life and physical activity compared to White 

communities20. 

In the historical context of the U.S. South, agricultural production has harmed Black 

communities for centuries. Despite being emancipated by the federal government in the mid-19th 

century, Black slaves and their descendants in the U.S. have faced an evolving system of 

exploitation predicated on controlling Black activities, perpetrated by the descendants of White 

enslavers and their allies. Components of this system have included convict-lease programs21 

coupled with the criminalization of Black life22, race-specific poll taxes and tests, organized 

mass murder23, inequitable provision and restriction of public goods and services, racist public 

education24–26, perpetual debt traps27, and disproportionate application of lethal force by 

representatives of the State. Like these past systems, harm caused to Black communities is used 

to reap economic benefits for a small elite group; in this case, money saved through insufficient 

investments in pollutant control systems comes at the expense of health and quality-of-life in 

predominantly Black communities hosting swine ILOs. And like past systems of Black 

exploitation, swine ILOs have proven difficult to address as a public health problem because 

profits are used by exploiters to secure legal protections, gain political favor, sway public 

opinion, and undermine investigations. 
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A strength of the study is control of many potential time-invariant confounding factors by 

the study design. The fixed-effect regression models used for analysis condition out factors that 

remained constant for participants across the two-week study, including sex, age, race, and 

sensitivity to odorants. Heat-humidity, the most prominent time-varying potential confounding 

factor, was addressed using measured temperature and wind speed data and including these 

factors as model covariates. Hourly models could condition on past history outside, further 

limiting potential confounding bias. This study inherited several advantages of the parent study. 

Due to the community-based participatory research design of the original study, this study was 

able to benefit from the high-quality data collected by engaged community members28. Similarly, 

the research questions addressed in this study were informed by the lived experiences of those 

experiencing swine ILO air exposures. 

A limitation of the study is measurement error. Although the hydrogen sulfide air 

monitors used in this study were placed close to participants’ homes, they measured a marker of 

neighborhood-level emissions, not individually-received emissions exposures. Similarly, outdoor 

odors were self-reported and only recorded during time periods that participants were outside. 

Assessment of time outside was not part of the original study design and was indirectly derived 

from odor logs. 

This study could have implications for technology and policy interventions to improve 

health and quality of life in communities impacted by swine ILOs. Innovations in swine waste 

treatment or science and health-based emissions controls for industrial livestock operations could 

be evaluated using health impacts assessments including quality-of-life, rather than static 

emissions thresholds. The social and economic value of organizational changes in meat 

production firms or legal changes to the relationship between producers and host communities 
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could be more fairly evaluated if the breadth of community exposure effects are accounted for. 

Further, inviting input from community members who are actually affected by the day-to-day 

operations of swine ILOs improves the relevance of the work to public health. These 

developments could have long-term positive consequences for health and quality of life in rural 

communities. 
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Table 4.1. Distributions [n (%)] of demographic characteristics of study participants 

grouped by eligibility and number of records  

              

   Participants  Person-time 

   CHEIHO  Eligible  Person-hours  Person-days 

Variable     (n=101)   (n=88)   (n=21408)   (n=1197) 

Age                           

 ≥65  24 23.8  18 20.5  4653 21.7  260 21.7 

 24-64  77 76.2  70 79.5  16755 78.3  937 78.3 

Gender                           

 Women  66 65.3  61 69.3  14691 68.6  821 68.6 

 Men  35 34.7  27 30.7  6717 31.4  376 31.4 

Race                           

 Black  85 84.2  75 85.2  17862 83.4  998 83.4 

 

Non-

Black  16 15.8  13 14.8  3546 16.6  199 16.6 

Odor Sensitivity                         

 

≤40 

ppm  40 39.6  33 37.5  8145 38  456 38.1 

 

>40 

ppm  57 56.4  51 58.0  12474 58.3  697 58.2 

 Missing  4 4.0  4 4.5  789 3.7  44 3.7 
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Table 4.2. Distributions [n (%)] of persons and person-

hours by odor rating, hydrogen sulfide concentration 

(H2S), and time outdoors. 

Variable 

(Unit) 
  

Hourly 

 (persons) 

  

 
Dailya 

 (person-hours) 

        

Odor          (0-

8)     Outdoor (1h)   

Morning 

Outdoor (10m) 

0   2389 11.2  508 42.4 

1-2   849 4  394 32.9 

3-4   499 2.3  150 12.5 

5-8   444 2.1  88 7.4 

Missingb   17227 80.5  57 4.8 

H2S (ppb)     Average (1h)   Average (10h) 

0   18949 88.5  674 56.3 

0-2   924 4.3  457 38.2 

>2   441 2.1  15 1.3 

Missing   1094 5.1  51 4.3 

Outdoors (hrs)   Outdoors (1h)   Total (10h) 

Outdoors 

1-

2  4181 19.5  454 37.9 

 

3-

4  - -  381 31.8 

 

5-

6  - -  188 15.7 

 7+  - -  117 9.8 

Indoors 0  17227 80.5  57 4.8 

a 6am to 9pm bOnly reported when outdoors 

 

 

 

 

 



 

 
 

Table 4.3. Model coefficients for regression models of associations between exposure indicators and time 

outside. 

                  

 Period  Dailya  Morningb  Afternoonc  
           

Model Form  Poissond,e   Poissond,e  Poissond,e  
               

All Participants β (SE) z-value   β (SE) z-value   β (SE) z-value  

H2S Detected  -0.0690 0.0752 -0.917  -0.1976 0.1568 -1.260  -0.0326 0.1209 -0.270  

Morning Odor  -0.0198 0.0660 -0.300  -0.2255 0.1138 -1.982  0.1061 0.0809 1.310  

High Odor Sensitivity            

H2S Detected  -0.1834 0.1129 -1.642  -0.4504 0.2335 -1.929  -0.2477 0.2047 -1.210  

Morning Odor  -0.0478 0.1002 -0.477  -0.4080 0.1798 -2.269  0.1357 0.1210 1.122  

Low Odor Sensitivity            

H2S Detected  0.0310 0.1033 0.300  0.0460 0.2185 0.210  0.0984 0.1560 0.631  

Morning Odor  -0.0028 0.0895 -0.032  -0.0759 0.1505 -0.504  0.0575 0.1113 0.516  

 a 9:00 am to 6:00 pm b 9:00 am to 1:00 pm c 2:00 pm to 6:00 pm d model design adjusts for all time-invariant factors. e 

model adjusted by outdoor temperature and wind speed. f 10-minute morning outdoor odor rating  

8
5
 



 

 
 

Table 4.4. Model coefficients for regression models of associations between exposure indicators and time 

outside among participants with low butanol sensitivity (>40 ppm) 

               

 
Participant Group 

  
All Participants High Sensitivity Low Sensitivity 

Exposure Indicator β (SE) z β (SE) z β            (SE) z 

H2S Detected -0.2402 0.1760 -1.365 -0.7807 0.2810 -2.778 0.2838 0.2395 1.185 

Swine Odor Detected 

 Morningf -0.2029 0.1636 -1.240 -0.2894 0.2322 -1.246 -0.1245 0.2344 -0.531 

 Outdoor -0.4721 0.1803 -2.618 -0.9340 0.2796 -3.341 -0.1730 0.2482 -0.697 

 Indoor -0.7538 0.4998 -1.508 0.2448 0.7857 0.312 -1.1561 0.6336 -1.824 
 
a 9:00 am to 1:00 pm b 2:00 pm to 6:00 pm c 9:00 am to 6:00 pm d model design adjusts for all time-invariant factors. e 

model adjusted by outdoor temperature and wind speed. f 10-minute morning outdoor odor rating  
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CHAPTER 5: ESTIMATING CHRONIC EXPOSURE EFFECTS IN REPEATED-

MEASURES STUDIES BY G-ESTIMATION USING DYNAMIC BAYESIAN 

NETWORKS. 

OVERVIEW 

The effect of an acute exposure in an environmental setting is readily assessed using 

standard epidemiologic methods allowing for potentially complex relationships between 

exposure, outcome, and covariates over time. Recent approaches have clarified estimation of 

causal effects of acute exposures in a cohort study. In contrast, in studies of chronic or repeated 

environmental exposures, estimates of effects may be complicated due to feedback processes, 

and such processes have not been well characterized in environmental epidemiology. I propose 

estimating total effects of a chronic exposure, allowing for potential feedback, by extending g-

estimation to the general case of exposure regimes using dynamic Bayesian networks. Using the 

example of community exposures to swine Industrial Livestock Operation (ILO) air pollutants in 

rural North Carolina, I show that the total chronic effect of observed exposures on sleep differs 

from what would be expected from marginal acute effects alone, suggesting the importance of a 

feedback mechanism. This method could be widely applicable to longitudinal epidemiology 

studies with more than two time points and potentially resonant outcome-exposure mechanisms. 

 

INTRODUCTION 

Chronic exposures present unique challenges to epidemiologists in occupational and 

environmental health contexts. Complex causal relationships between sequential values of 

exposures, responses, and covariates can lead to seemingly-paradoxical situations where a 
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response may be confounded by (past) values of the response, possibly affected by prior 

exposure. Solutions to this problem have been proposed, including marginal structural models 

and repeated-measures designs1. These approaches can estimate unconfounded direct causal 

effects of exposure contrasts, but gain these advantages by narrowing their focus to the acute 

effects of exposure. For instance, a repeated-measures study of the effect of an outdoor exposure 

on sleep duration could draw a comparison between subject-standardized sleep values (-0.5 

hours average on exposed nights and +0.5 hours average on unexposed nights, relative to each 

participant’s mean) and estimate an effect of exposures on sleep duration. While this estimate 

cannot be confounded by factors remaining constant for each participant over time, it cannot 

easily estimate the effects of chronic exposure.  

These existing solutions leave open the question of estimating chronic exposure effects 

from longitudinal data. Here I propose the use of a Dynamic Bayesian Network (DBN) model to 

address research questions in such settings2. To illustrate the utility of this approach, I consider 

the example of chronic community exposures to hog ILO air pollutants in the Community Health 

Effects of Industrial Hog Operations (CHEIHO) study3. In this context, community members 

have described how the unpredictability, timing, and lack of control over pollutant and odorant 

exposures leads to stress and disruption of life - including negative impacts on sleep (due to 

awakening from sleep and difficulty falling asleep) and time spent outdoors (due to sheltering 

from unpleasant odors).  

 

METHODS 

Chronic effects can be practically modeled as n-order feedback effects - a generalization 

of second-order effects. In the sleep example, a single exposure’s disruption of sleep is a first 
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order-effect. Second-order effects could include downstream effects affecting subsequent values 

of the exposure (if fatigue resulting from lack of sleep leads to less time spent outdoors on the 

subsequent day) and outcome (if this fatigue and/or sleep deprivation affect future nights’ sleep); 

n-order effects extend this idea to include the “total effect” of a single exposure on all time 

periods, perhaps until a reasonable washout period is reached.  

Feedback captures the idea that these n-order effects could potentially outweigh first-

order effects under conditions of residual system memory and effect self-reinforcement. For 

instance, feedback enables even a soft noise to send a microphone-speaker system into a spiral of 

increasing volume resulting on the blowout of the speaker system. Famously, feedback caused 

the destruction of the Tacoma Narrows Bridge from relatively modest (but repeated) wind gusts4. 

Similarly, feedback effects in the chronic exposure context could potentially lead to self-

amplifying (or self-limiting) effects of exposure. The total effect of an exposure sequence or 

regime could differ from what might be expected from the sum of the individual effect 

components. 

 

Dynamic Bayesian networks for causal inference by exposure regime  

A dynamic Bayesian network model can be used to address research questions about n-

order total causal effects (chronic effects) and distinguish them from first-order (acute) effects. 

Specifically, this framework extends the approach of g-estimation to the case of estimating the 

total effects of exposure regimes in study context. The DBN model can be understood as a 

probabilistic directed acyclic graph (pDAG) in which the relationship between nodes is 

parametrized at the node level by an empirical probability distribution of values conditional on 

that node’s parents. As an extension to the DAG, the DBN retains features of the DAG essential 
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for causal inference – directionality (preservation of temporal specificity) and a network-based 

representation of conditional dependence (and independence) between events. DAGs used in 

causal inference epidemiology correspond to a DBN simplified to the parents and descendants of 

one edge of interest; the statistical properties of nodes about this edge can be used to derive the 

unconfounded direct causal effect of the upstream node on the downstream node. 

The benefit of the extending the DAG to the DBN is the ability to specify complex 

counterfactual regimes. Traditionally, a counterfactual is drawn (or alternatively, an intervention 

is simulated) by changing the value of a single exposure node and estimating the effect on the 

distribution of the outcome node. Unitary measures, like model-adjusted odds ratios estimating a 

causal effect, are derived from the DAG model mathematically by fixing the distributions of 

relevant covariate nodes (e.g. a minimal sufficient adjustment set) and comparing the resulting 

conditional distribution of the outcome node value under contrasting distributions of the 

exposure node (Fig 1). G-estimation extends this approach by specifying contrast distributions, 

rather than set values, for the exposure. The DBN model demonstrated here further extends g-

estimation by enabling simultaneous specification of multiple exposure nodes in counterfactuals 

and thus calculating total effects of contrasted exposure regimes5.  

 The DBN model can be thought of an extension of the generalized linear model approach 

with a conditional structure. The traditional regression model is estimated by finding the 

parameter vector 𝛽 that maximizes the likelihood 

𝐿(𝛽|𝑋, 𝑦) =  ∏ 𝑝(𝑦𝑖|𝑋𝑖)

𝑛

𝑖=1
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Given covariate matrix 𝑋 and outcome vector 𝑦. In the case of logistic regression, the log odds of 

an individual’s outcome 𝑝(𝑦𝑖) are modeled as a linear parametric function of an intercept and 

one or more covariate terms that can be interpreted log-odds ratios: 

𝑙𝑜𝑔 (
𝑝(𝑦𝑖|𝑋𝑖)

1 − 𝑝(𝑦𝑖|𝑋𝑖)
) = 𝛽0 +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 휀𝑖 

In the DBN, the likelihood function does not use an explicit outcome and but is based on 

past data for each individual:  

𝐿(𝛽|𝑍) =  ∏ ∏ 𝑝𝑗(𝑍𝑖|𝑍𝑖,𝑗−1)

𝑛

𝑖=1

𝑘

𝑗=1

 

Where 𝑍𝑖,𝑗−1 includes variables for participant 𝑖 at prior time points and the function 𝑝𝑗 

represents a node on the directed acyclic including 1 … 𝜌 parents in the general form 

𝑙𝑜𝑔 (
𝑝𝑗(𝑍𝑖|𝑍𝑖−1)

1 − 𝑝𝑗(𝑍𝑖|𝑍𝑖−1)
) =  𝛽𝑗0 +  𝛽𝑗1𝑍𝑖−1,1 + 𝛽𝑗2𝑍𝑖−1,2 + ⋯ + 𝛽𝜌𝑍𝑖−1,𝜌 + 휀𝑖𝑗 

In this formulation, the difference in exposure regime can be estimated from the set of all 𝛽𝑗𝜌 

representing conditional probabilities using a Monte Carlo approach substituting values of no 

exposure for observed values. 

 

 

Empirical Example 

To illustrate this approach I use data from 88 participants of the CHEIHO study, enrolled 

from rural communities in Eastern North Carolina hosting industrial swine operations. CHEIHO 

participants had to be at least 18 years old, be able to read and write, and have a freezer for 

storing saliva samples. For the present study, participants were excluded if they spent no time 

outdoors or if there was evidence or reporting errors in sleep logs during the study. I have 
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previously reported the estimated acute effects of exposures on sleep from this study using fixed-

effects model in a repeated-measures design. I compare the chronic total estimated effects of 

observed exposure regimes to the total estimated effect derived from replicated marginal (acute-

effect) models to estimate the magnitude of feedback effects in determining the total chronic 

effect of exposure. 

Exposure Assessments 

From the complex mixture of air pollutants and odorants comprising swine ILO air 

pollutant plumes, two marker chemicals were used to assess exposures: neighborhood-level 

atmospheric hydrogen-sulfide (H2S) concentration measured near participants’ homes (ppb), and 

participant-reported swine odor (on a scale of 0 to 8). In CHEIHO these measures were well-

correlated, even though participants had no access to atmospheric data. For this analysis, the H2S 

concentration was considered the underlying exposure due to its near-universal availability in the 

time series data (odors could not be recorded during sleep); odor perception was considered a 

pathway of exposure impact in the network model.    

Outcome Ascertainment 

Hourly sleep and time outdoor outcomes were ascertained from odor diaries kept by the 

participants during the study. Twice per day, participants rated the strength of hog odors they 

perceived each hour over the past twelve hours; in this process participants also indicated if they 

were indoors, outdoors, or asleep during each of past twelve hours.   

Statistical Method 

A dynamic Bayesian network (DBN) model was used to estimate the causal structure of 

relationship between variables across time. Instead of using a network structure (DAG) to 

represent each time point of the study across participants (i.e. 88 participants’ over 336 hours = 
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29,568 time points), a more extended network structure including multiple time slices (or “panel 

data”) was used. To observe the effect of different network structures on estimated chronic 

effects, two network types were used: a “marginal” dynamic network without belief propagation 

mimicking a traditional regression model with lag terms, and a dynamic Bayesian network with 

belief propagation between subsequent time points capturing chronic feedback effects.  

After the DBN was trained from the observed data, counterfactual values of total sleep 

and time outdoors could be computed for each participant by setting the underlying exposures 

values to zero and aggregating the predicted DBN outcomes by participant. Credible intervals for 

these expected outcomes were computed using the bootstrap method. To illustrate the flexibility 

of the DBN model, three potential exposure regimes are compared: observed (full) exposures, 

eliminated exposure (none), and mitigated exposures (reduced by half) that could result from 

implementation of environmentally-superior technology. DBN models were fit using the R 

package bnlearn6. 

 

RESULTS 

The demographic characteristics of study participants and the distributions of key study 

variables are shown in Table 5.1. The parsimonious network structure refined to facilitate 

comparison to marginal models is shown in Figure 5.2. The predicted sleep and time outdoor 

outcomes for each exposure regime and DBN type, as well as marginal acute estimates, are 

shown in Table 5.2. DBN models showed an estimated increase in sleep duration and time 

outdoors with reduced exposures. Across DBN models for both outcomes, the expected total 

effect of observed exposures on sleep was higher than the total marginal effect, suggesting the 

importance of a feedback mechanism; compared to observed exposures, this difference for sleep 
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was 3.94 minutes per night (95% interval 1.46 to 5.83) in the marginal model and 4.78 minutes 

per night (95% interval 1.76 to 7.00) in the model accounting for feedback. 

 

DISCUSSION 

In this empirical example, the total chronic effect of exposures to swine ILO air 

emissions differed from the sum of total individual exposure effects, suggesting the importance 

of feedback effects. In this model, these feedback effects were modeled as potential disruption of 

participants’ daily and nightly schedules, since sleep and time outdoors could be influenced by 

lagged values. In the case of swine ILO emissions, the effects of chronic exposures could also 

differ due to other (not modeled) factors including sensitization, accumulative effects (allostatic 

load), or interactions of effects across multiple domains (respiratory disease, stress, etc.). 

Feedback could also occur as participants take protective actions against exposures – if 

sheltering indoors reduces exposures, exposure effect estimates made form observational data 

might underestimate the harmful effects of exposure if this protective behavior is not accounted 

for.   

Neighbors of swine ILOs face chronic exposures to air emissions as source operations are 

ongoing and immobile. Those affected have little control over exposures; sheltering outdoors 

does not always provide relief as odors can seep indoors. Acute effects of swine ILO emissions 

exposures on health and quality of-life include increased risks of respiratory and neurological 

disease symptoms, increased blood pressure, and negative mood. Chapters 3 and 4 aimed to 

estimate the magnitude of two quality-of-life impacts that should also be considered – sleep and 

time outdoors. Sleep is essential to health and inadequate sleep is associated with increased 

disease incidence and mortality. Time outdoors is particularly relevant to health in rural areas, as 
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access to the outdoors is important for health-promoting activities like gardening, functional 

physical activity, leisure, temperature control in homes, and socialization. The Chronic effects 

resulting from repeated exposures assessed in this chapter, including disruption of daily activities 

and sleep schedules, should also be considered in reckoning the total impacts of swine ILOs. 

In the present empirical example, the use of a DBN enables estimation of feedback 

effects by modeling the propagation of effects through first-order lag terms. In a traditional 

epidemiology model, these lag terms are set to the observed values of the outcome at past time 

points. In the dynamic model, lag terms for future time points are instead set to the estimated 

value they would take under a counterfactual exposure regime. This could represent the effect 

last night’s sleep on tonight’s sleep, the effect of yesterday’s time outdoors on today’s time 

outdoors. Thus, all prior lag terms have the potential to influence the estimated outcomes even 

though only one lag term is explicitly modeled at each node.    

The approach detailed here can be used to estimate the effect of defined interventions in 

the context of chronic, repeated exposures. Traditional approaches like marginal structural 

models and repeated-measures designs are powerful tools for estimating short-term, acute effects 

of single exposures, but the summation of these acute effects may not be equal to the total 

chronic effect of repeated exposures in the presence of system feedback. The DBN provides a 

unified approach to estimating acute effects, chronic effects, and the effects of counterfactual 

exposure regimes. In this example, exposure regime effects were compared to acute effects to 

estimate the relative importance of feedback and this method could be generally applicable to 

studies of repeated exposures.  

A fully-study DBN might be feasible with a large sample size, but in this example of 88 

participants (optimized for a repeated-measures marginal effect estimation design), a simplified 
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time-slice model incorporating one day of feedback offered improved precision relative to a full-

study model. This approach also enabled a conditional-on-participant design, which addresses 

potential confounding factors that remained constant for each participant over the study period.  

A secondary benefit of the DBN approach, even in the estimation of acute effects in more 

traditional study designs, is that the network can deduce conditional dependencies without 

manual intervention, given the temporal ordering of variables. This underscores the possibility 

for applying machine-learning to causal inference in the design phase, as well as the analysis 

phase of epidemiology research. For instance, a DBN could identify potential confounders in a 

complex study design with hundreds or thousands of covariates that could then be reviewed by 

an analyst in the process of model specification. Similarly, a proposed causal model (and the 

focus of arguments for or against such a model) for an epidemiology study could be compared to 

the “machine-null” model, rather than a “saturated null” model of universal dependence that 

proves unmanageable in complex study designs.   

The DBN, an extension of the DAG that is easily amenable to g-estimation, could have 

wide applicability to studies of repeated exposures. The ability to identify and quantify feedback 

effects could also provide strong evidence for interventions focused on controlling the timing of 

exposures or the identification of windows of increased susceptibility to exposure.  
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Table 5.1. Distributions [n (%)] of demographic characteristics, exposures, and outcomes 

of interest among study participants 

              

   Participants  Hourly Records 

   CHEIHO  Eligible           

Variable     (n=101)   (n=88)  (n=21,408) 

Age                Swine Odor       

 ≥65  24 23.8  18 20.5   Absent  2389 11.2 

 24-64  77 76.2  70 79.5   Present  1792 8.3 

Gender                 Missinga  17227 80.5 

 Women  66 65.3  61 69.3  H2S (ppb)   Average (1h) 

 Men  35 34.7  27 30.7   0  18949 88.5 

Race                 >0  1365 6.4 

 Black  85 84.2  75 85.2   Missing  1094 5.1 

 non-Black  16 15.8  13 14.8  State       

Odor Sensitivity               Indoors  TD TD 

 ≤40 ppm  40 39.6  33 37.5   Outdoors 4148 TD 

 >40 ppm  57 56.4  51 58   Asleep  TD TD 

  Missing   4 4   4 4.5     Missing   TD TD 
aParticipants did not record odors during sleep.        

 



 

 
 

Table 5.2. Estimated differences in sleep and time outdoors by exposure model. 

                  

 Network Scale  Sleep (Min)  Outdoors (Morning)  Outdoors (Afternoon)  
           

Replicates (n)  916   916  916  
               

Exposure Regime   Mean 

L95

% 

U95

%   Mean 

L95

% 

U95

%   Mean 

L95

% 

U95

%  

Marginal BN              

    As exposed  0 (ref)   0    0    

    No Exposures  3.94 1.46 5.83  9.92 9.36 10.59  12.90 12.50 13.30  

    Mitigated Exposures  1.96 -0.11 3.89  10.04 9.41 10.59  13.37 13.33 13.91  

Dynamic BN              

    As exposed  0 (ref)   0    0    

    No Exposures  4.78 1.76 7.00  9.85 9.57 10.27  12.90 12.48 13.33  

    Mitigated Exposures  2.40 0.11 4.40  10.02 9.59 1.039  13.37 13.33 13.94  
 a Calculated as the total effect divided by the total number of nodes, to estimate a comparable marginal effect 

including feedback.  b Calculated using the marginal effect multiplied by the total number of nodes, to estimate a 

comparable total effect without feedback.  
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Figure 5.1. Comparison of the dynamic Bayesian network approach to the directed acyclic 

graph. The DBN (a) contains a collection of nodes covering multiple time slices, including nodes 

not directly related to the exposure and outcome. The DAG (b) subsets the DBN to a series of 

nodes directly related to the exposure-outcome model, enabling analysis with traditional 

statistical methods. 

(a) 

 

(b) 
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Figure 5.2. Directed acyclic graph of one time slice from the simplified Bayesian network 

model. 

 

e0 night H2S exposure 

e1 morning H2S exposure 

e2 afternoon H2S exposure 

s0 nightly sleep duration 

sg nightly sleep duration (lagged by one day) 

o1 time outdoors (morning) 

o2 time outdoors (afternoon) 

og daily time outdoors (lagged by one day) 
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CHAPTER 6: DISCUSSION  

 

This study aimed to estimate the acute and chronic impacts of swine ILO air emissions 

exposures on sleep and time outdoors in rural communities hosting swine ILOs. Acute impacts 

on sleep (Aim 1) and time outdoors (Aim 2) were estimated using discrete hazard modeling of 

repeated measurements from the Community Health Effects of Industrial Hog Operations 

(CHEIHO) study. Chronic impacts, which might differ from acute impacts due to feedback 

effects, were estimated by applying dynamic Bayesian network modeling to CHEIHO data (Aim 

3).  

Synthesis of Findings 

In Chapter 3, associations were observed between swine ILO air emissions exposures 

indicators and sleep. H2S detection was associated with reduced nightly sleep duration (14.2 

minutes, 95% interval 3.3 to 25.0 minutes), and an increased hazard of awakening (HR 1.24, 

95% interval 0.99 to 1.55). The hazard ratio for awakening was greater for participants with 

higher sensitivity to odors at baseline (HR 1.62, 95% interval 1.10 to 2.40), suggesting the 

importance of odor perception to the mechanism of impact. Due to the importance of sleep 

timing to sleep quality and the impact of sleep on health, these awakenings could have higher 

impacts than might be expected from the difference in sleep duration alone. 

Although no studies have assessed the relationship between swine ILO air emissions and 

sleep, these results are consistent with the literature on sleep and odor and fit with the known 

effects of exposure to swine ILO emissions. Strong odorants can cause awakening from sleep1 
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and hydrogen sulfide is a nociceptive neurotransmitter2,3. Exposure to swine ILO emissions has 

been linked to symptoms of respiratory disease4, which could cause sleep impairment5. Sleep 

impacts mortality and influences a wide array of health and disease outcomes6. 

In Chapter 4, associations were observed between swine ILO air emissions exposures 

indicators and time outdoors. Perceiving outdoor swine odor reduced the odds of going outside 

the following hour by 38% (OR=0.62, 95% interval 0.44 to 0.89), and this effect was stronger 

among participants with higher sensitivity to odor (OR=0.39, 95% interval 0.23 to 0.68). 

Similarly, participants were less likely to go outdoors when H2S was detected (OR=0.78, 95% 

interval 0.56 to 1.11) and this effect was stronger among participant with higher odor sensitivity 

(OR=0.46, 95% interval 0.26 to 0.79). 

 Few studies have explored the impact of odors on time outdoors, although these impacts 

have been qualitatively described in past CHEIHO research7. Odorant chemical and H2S 

emissions from swine ILOs have been well-documented8–12. Malodorous pollution can cause 

annoyance13, stress14, and increased frustration15. Malodors could make time outdoors less 

enjoyable, and avoidance of symptoms resulting from exposures could lead to rescheduling or 

avoiding time outdoors16. Time outdoors in rural settings supports a variety of health-promoting 

behaviors including gardening, functional physical activity, leisure, and socialization. 

In Chapter 5, the chronic effect of swine ILO emissions exposures was estimated to be 

greater than the sum of acute effects, when disruption of sleep and activity schedules was 

accounted for using a dynamic model. Other factors like sensitization to odors or cumulative 

impact of exposures could cause further differences between estimated acute effects and real-

world chronic effects in exposed populations living near swine ILOs. These differences could 
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cause effect estimates derived from traditional epidemiology models to underestimate the true 

impact of exposures on those living nearby.   

 

Strengths and Weaknesses of Design and Methodology 

The design of the parent CHEIHO study was unique in several ways. First, the research 

design arose and research questions were developed in collaboration with community 

members17. This enabled the research to directly address community concerns, promoted the 

ethical treatment of participants and the protection of confidentiality in the context of 

intimidation by the swine industry18, and improved the quality and completeness of self-reported 

data19. The collaborative nature of the study set the groundwork for future scientific 

collaborations, helped provide community members access to public health tools, and provided 

learning opportunities for both professional researchers and citizen scientists.  

Second, the study combined self-reports of exposures and outcomes with machine-

collected atmospheric and biometric data. The use of self-reported data enabled more specific 

capture of individual exposure (odor) and outcomes (activity and sleep) with higher temporal 

resolution than would have been possible with monitoring equipment alone. For example, 

personal air monitors could not feasibly deployed at each participants’ home, and biometric 

monitors like automated blood pressure cuffs could not be left on around the clock. The 

availability of machine-recorded atmospheric and biometric data enabled validation of self-

reported data. Validated self-reported measures could be used in future research and exposure 

assessments at low cost. 

The environmental exposure assessments used in this study were based on the principle 

that hydrogen sulfide and odorant chemicals serve as markers of pollutant plumes arising from 
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swine ILOs. The independent effects of these complex mixtures components could not be 

assessed and could differ from the impacts estimated here. Similarly, other potential pollutants 

arising from swine ILOs – such as noise and light – could impact sleep in nearby communities 

but were not assessed here.   

Third, CHEIHO used a repeated-measurements design in which each participant recorded 

data repeatedly twice daily for a period of at least two weeks. This design offers several potential 

analytic advantages. The availability of multiple data points for each participant enables the use 

of conditional or stratified models in which estimates can be computed within person. This can 

produce conditional averages that cannot be influenced by differences between participants that 

remained constant over the study period. The collection of time-dependent covariates, including 

weather conditions and health symptoms, also enables adjustment for factors that changed over 

the study period that could have potentially confounded the relationship between swine ILO 

emissions exposures and sleep or time outdoors. 

This study design used for Aims 1 and 2 was focused on reducing potential confounding 

bias, at the expense of precision. The design of the original CHEIHO study, as well as the 

methods of analysis presented here, enable accounting for potential cofounding factors that 

might otherwise bias estimated associations. These differences – for example age, sex, lung 

function, occupation, income, and race – could be relevant in a study of environmental sources of 

exposure since they could potentially influence the severity of exposures and the severity of 

outcomes. The inclusion of model intercept terms for time-of-day and weather conditions 

reduced the potential impact of factors that varied periodically by time-of-day. Previous research 

has demonstrated the high quality of self-reported data in CHEIHO, a direct result of 

participants’ commitment to the study’s participatory design. 
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The original CHEIHO design trades these advantages for several limitations. In 

epidemiology research, effects of exposures in chronically exposed populations can be difficult 

to estimate, even when using a repeated measures design. While acute effects can be estimated 

by making comparisons between time points within the same participant, this approach limits the 

range of exposures available in each comparison, since each person’s own experiences tend to be 

more similar to one another than as compared to others’ experiences. For example, a heavily-

exposed participant always experiencing negative exposure effects and a lightly-exposed 

participant experiencing few exposure effects would contribute little information to a study 

conditioned on participant. This differs from an unconditional model in which the most and 

least-heavily exposure participants typically contribute the most information. In this sense, the 

CHEIHO design is focused primarily on estimation of acute effects of exposure and these effects 

can be difficult to precisely estimate if there are insufficient exposure contrasts observed over the 

study period.  

A second potential limitation is the selection of CHEIHO participants. Due to concerns 

with confidentiality and participant protection, as well as the typically tightly-coupled 

interpersonal social structure of rural communities, potential participants were enrolled from 

swine ILO host communities that expressed interest in participating. This could be compared to a 

two-stage sampling design in which selection biases could occur in the selection of blocks or in 

the enrollment of participants within blocks. At the participant level, exclusion of participants 

due to inability to complete study protocols could have removed sicker or more susceptible 

potential participants from cohort of those eligible. At the community level, lack of common 

awareness of swine ILOs as a problem could have removed less-exposed communities from the 
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eligible pool. CHEIHO, therefore, could be expected to be representative of healthier residents of 

neighborhoods impacted by heavier swine ILO emissions.  

The present study attempts to leverage the benefits of the CHEIHO design while 

addressing the limitations. The dynamic Bayesian network model shown here improves the 

estimation of chronic effects in addition to acute effects by accounting for feedback. The 

limitation of this approach is that if inferences about chronic effects are derived from observed 

conditional distributions of exposures and outcomes, they still express the magnitude of these 

effects in the context of other potential effect-measure modifiers – potentially including history 

of exposure. Thus, while this model can estimate the additional total effects of exposure due to 

feedback effects, it cannot estimate the full effect of exposure in a truly unexposed population 

due to sensitization or acclimation to exposures.   

Despite the high general quality of self-reported data in CHEIHO, the self-reported sleep 

and time outdoors data used in the study are indirectly inferred from missing data codes on odor 

diaries and were not independently validated using a sub-study or biometric equipment. Self-

reported sleep data can over-estimate actinographic sleep duration20–23, which in this study could 

have biased effect estimates towards a null effect if this classification was non-differential. 

Although the accuracy of self-report of time outdoors has not been as extensively studied, 

participants’ reports are expected to differ somewhat from actual values since they could only be 

reported in 1-hour increments. 

 Outcome ascertainment could have been improved for sleep and time outdoors by 

providing participants with passive electronic activity trackers24, which have imperfect accuracy 

but good intra-device reliability. Accelerometer (movement) readings can be used to estimate 

periods of activity and inactivity, including sleep, and would have minimal impact on participant 
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confidentiality, since the data only includes the magnitude of movements with time and not the 

participants’ location. Activity trackers are widely available at low cost, can be worn by 

participants discreetly, need no maintenance over a month or more, and are common enough to 

have an element of plausible deniability even if they are discovered by antagonists. Similarly, 

GPS-enabled mobile phone applications25 could be used to autonomously record masked relative 

participant positions (e.g. transmitting a participant’s distance from a user-specified “home 

location”) and sleep (by recording wake and sleep time through alarms or prompts). Future 

research assessing community-scale sleep, activity, and time outdoors could be improved by 

incorporating these methods of semi-automated data collection. 

 

Statistical Methods 

 Dynamic Bayesian models (DBNs) have wide potential applicability to epidemiology. 

These models use directed acyclic graphs as a basis of model presentation and assumption 

encoding, which are quickly becoming more popular in epidemiology as a tool for guiding 

analysis decisions. The approach takes advantage of a specified causal structure to 

simultaneously model multiple conditional dependencies in the data, many of which can have 

causal interpretations. It also enables estimation of novel effects, including the impact of 

exposure regimes through time on ranges of outcomes.  

In lived experience, individuals’ exposures and outcomes are not as neatly arranged as 

might be expected from an epidemiology study. In the modern epidemiological paradigm, 

departures from this real-world experience are seen as necessary because they provide the basis 

for causal inference. For example, a randomized controlled trial exposing volunteers to swine 

ILO air emissions in a clinical sleep study would only leave causal explanations for observed 
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associations between exposure and outcomes, but this design does not match the lived experience 

of swine ILO neighbors. A randomized experiment with healthy volunteers would not account 

for any number of potential effect measure modifiers: co-exposures, the psychological meanings 

of malodor and lack of control, or the cumulative effect of past exposures. 

Similarly, a cohort study comparing populations in communities exposed and unexposed 

to swine ILO air emissions could use inverse probability-of-allocation weighting to produce 

pseudo-populations which could be compared to estimate a causal effect of acute exposure. But 

this design depends on the assumption that the two communities, if standardized to have similar 

distributions of demographic characteristics and risk factors, are fair counterfactuals (similar in 

all aspects except the exposure). Some factors unique to the exposed community, like history of 

exposure, or sensitization to exposures, could not be equalized between the two groups.    

Generalizing effect estimation to a full DAG structure, rather than focusing on two nodes 

as in the modern epidemiology approach, can bring the model closer to reality while still 

allowing estimating of analogous causal effects. Because the likelihood function used for 

Bayesian networks is equal to the product of each node probability, the likelihood function used 

in a traditional epidemiology model is equivalent to a “partial likelihood” of the full BN model, 

with the remaining nodes conditioned out. In the example of the randomized experiment, this 

partial likelihood is conditional on the observed distribution of covariates within the 

experimental sample. If this distribution is equivalent to the distribution of covariates within a 

target population (as in the case of a random, representative sample), the conditioning can be 

ignored and the estimate is generalizable. 

Basic software for fitting DBN models is available both as free and open-source software 

(FOSS) and in commercial statistical software packages, but is not yet user-friendly for a general 
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audience. Development of diagnostic tools for understanding model behavior, performance, and 

the validity of model assumptions could help DBNs become more commonplace in 

epidemiology. Currently, these tasks require development of custom software as default settings 

do not match common epidemiological methods. For instance, a popular use of DBNs is to 

estimate network structure from data using criteria of statistical significance in conditional 

associations. While this data-driven approach works well for outcome prediction, decisions about 

network structure in epidemiology are typically based on a combination of a priori subject-

matter knowledge and a posteriori evaluations of parsimony, observed associations, and bias-

precision tradeoffs. While methods for algorithmically deriving and simplifying DAG structures 

from observed data are popular in artificial intelligence research, epidemiologists might be 

expected to prefer structures that accurately represent the study design and hypothesized 

relationship of interest. Broader use of DBNs in epidemiology will require working out the 

appropriate modeling approach in different study contexts. 

 

Public Health Significance 

 The observed impacts of swine ILOs on sleep and outdoor activities have implications for 

environmental justice and health disparities. North Carolina’s swine ILOs are disproportionately 

concentrated in Black communities26, meaning that exposure effects from swine ILOs worsen 

both environmental injustice and health disparities. In this context, loss of control over daily 

activities and sleep can be understood as an externalities of production – increased profits made 

off cost savings for hog waste treatment are obtained at the expense of nearby community 

residents. Historically, control over Black lives in the United States has been turned to profit in 
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variety of evolving systems of exploitation including chattel slavery, discriminatory tenant 

farming, discriminatory incarceration coupled with convict lease programs, and debt traps27.     

 In the face of this environmental injustice, public interest in swine ILOs and community 

organizing around swine ILOs are on the rise. Public demonstrations and recent high-profile civil 

cases, featuring the ILO integrators and the State of North Carolina as defendants, consider 

concerns about community health impacts but also the civil rights impacts of disproportionate 

impacts concentrated in communities of color28. Although a moratorium on new lagoon-and-

sprayfield systems has remained in place since last action in 2007, existing operations remain a 

concern for host communities. Surprisingly, only a handful of operations have adopted improved 

environmentally superior technology (EST) treatment systems despite a 75% cost-sharing 

program offered by the North Carolina General Assembly through the Lagoon Conversion 

Program (LCP)29. While these improvements do not address air emissions from swine 

confinements, they could substantially reduce total emissions if appropriately implemented. 

Reductions to emissions produced by swine waste treatment lagoons could produce 

public health gains by reducing the environmental exposures experienced by rural North 

Carolinians and others living in communities hosting swine ILOs26. The development of 

environmentally superior technology for waste treatment could also have secondary benefits for 

communities, including energy production and job creation. Policy changes to improve the 

competitiveness of smaller and locally-owned swine herds could improve the sustainability and 

economic resilience of these rural communities.     
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Networked Sensors in Repeated-Measures Designs  

In the fifteen years since the CHEIHO study began, new developments in sensor and 

instrumentation technology have enabled improved ways to record repeated measurements of 

various dimensions of exposure and outcomes. Networked, low-cost environmental monitors for 

temperature, humidity, wind, barometric pressure have become commonplace; basic sensors for 

atmospheric pollutants like hydrogen sulfide have become available to the budget-conscious 

hobbyist. These sensors could add rich covariate and contextual data that could improve 

repeated-measures like those use here. Similarly, sensors for noise and light pollution could also 

enhance holistic assessments of community impacts of industrial facilities, including industrial 

livestock operations.     

Sensors for assessing sleep duration, awakenings from sleep, and daily physical activity 

could similarly improve impact assessments by offering real-time outcome measures. Integrated 

actigraphy could be accomplished with wearable accelerometers now available from many 

manufacturers; some devices offer pulse-rate measurements or other biometric data. These high-

resolution outcome measures could be used to explore the temporal scale of potential exposure 

effects with unprecedented specificity. The use of networked sensors, capable of securely 

recording and transmitting data with minimal intervention could improve data quality and 

improve patient protections. The ubiquity and small size of these sensors could help protect the 

confidentiality of participants.       

Final Conclusions and Summary 

The results demonstrate measurable impacts of ILO air emissions on sleep and time 

outdoors among those living in residential communities nearby. The modeling approaches used 

were robust to bias from factors that remained constant for each participant over the course of the 

study and also to factors that varied with the time-of-day or the weather, suggesting acute causal 
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effect of exposures to ILO air emissions on sleep and time outdoors. Policy interventions to 

reduce community exposures to swine ILO emissions from lagoon-and-spray field systems could 

have positive impacts on public health in rural North Carolina communities. 
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