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ABSTRACT 

Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex 
Disease Data 

(Under the direction of Rebecca Fry) 
  

The current regulatory framework in toxicology is expanding beyond traditional animal toxicity 

testing to include new approach methodologies (NAMs) like computational models built using rapidly 

generated dose-response information like US Environmental Protection Agency’s Toxicity Forecaster 

(ToxCast) and the interagency collaborative Tox21 initiative. These programs have provided new 

opportunities for research but also introduced challenges in application of this information to current 

regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like 

cancer or other complex diseases. To utilize NAMs in prediction of complex disease, information from 

traditional and new sources must be interoperable for easy integration. The work presented here 

describes the development of a bioinformatic tool, a database of traditional toxicity information with 

improved interoperability, and efforts to use these new tools together to inform prediction of cancer and 

complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject 

Heading (MeSH) to gene associations based on literature support, enabling connection of complex 

diseases to genes potentially involved. Second, a seminal resource of traditional toxicity information, 

Toxicity Reference Database (ToxRefDB), was redeveloped, including a controlled vocabulary for 

adverse events used to map identifiers in the Unified Medical Language System (UMLS), thus enabling a 

connection to MeSH terms. Finally, gene to MeSH associations were used to evaluate the biological 

coverage of ToxCast for cancer to understand the capacity to use ToxCast to identify chemical hazard 

potential. ToxCast covers many gene targets putatively linked to cancer; however, more information on 

pathways in cancer progression is needed to identify robust associations between chemical exposure and 

risk of complex disease. The findings herein demonstrate that increased interoperability between data 
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resources is necessary to leverage the large amount of data currently available to understand the role 

environmental exposures play in etiologies of complex diseases. 
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Current issues in data interoperability to support computational toxicology and chemical safety 

evaluation 

Toxicology has been undergoing a period of rapid change and growth to meet the challenge of 

safety assessment for tens of thousands of chemicals with both potential environmental exposure and a 

lack of a complete dataset for hazard identification (1–4). After over a decade since the publication of the 

seminal National Research Council report, Toxicity Testing in the 21st Century: A Vision and a Strategy 

(5) calling for advancements in the field of toxicology using new approach methodologies (NAMs) (6,7), 

substantial progress has been made initially driven by the interagency collaboration for Toxicity Testing in 

the 21st Century (Tox21) (8,9) and the US Environmental Protection Agency (EPA) Toxicity Forecaster 

(ToxCast) program (10,11). These massive data generation efforts have produced dose-response 

information for chemical interactions with biological targets (2,9,12), and further motivated development of 

aggregated digital resources of legacy toxicity information (13,14) and software to access and analyze 

this information (15–20). Many fit-for-purpose applications have been developed to understand how to 

use the generated information. As a result, information is siloed, which prevents easy integration and 

exchange of data (i.e. interoperability) creating problems like inconsistent versioning, lack of provenance, 

and unnecessary duplication. Ultimately the consequence of the lack of data interoperability is that 

progress in understanding biological and toxicological effects of chemical exposures is hampered despite 

an abundance of information. To fully leverage the resulting information from NAMs for toxicology and 

public health questions, efforts must be applied to enabling connections between data sources (6). 

Overcoming the high opportunity cost of enabling interoperability of various data streams will help realize 

the following goals: rapidly and reproducibly associate NAM-based information with phenotypes and 

outcomes of interest for development of computational models (21–29), hypothesis generation aimed at 
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increased mechanistic knowledge (30–35), and systematic literature reviews (36), all of which can 

support efficient and state-of-the-art screening level chemical safety evaluation (37).  

Interoperability refers to “the ability of data or tools from non-cooperating resources to integrate 

or work together with minimal effort” (38). Data interoperability can be accomplished through numerous 

means like development and adherence to controlled vocabularies (CVs) and compliance with formatting 

standards for exchange of data. Computational efforts in toxicology to generate and analyze massive 

amounts of data are relatively new, so CVs and formatting standards are not widely used and accepted. 

Of course, data interoperability challenges are not unique to toxicology and, in fact, are one of the key 

challenges facing each industry from finance to social media to public health and biomedicine (38–44). As 

an example of how interoperability promotes greater consumption of data for biological learning, platforms 

from companies like Affymetrix were developed to rapidly and affordably capture and analyze 

transcriptomic data. The application of Affymetrix platforms and other microarray technologies in a clinical 

setting was aided by standardization efforts (i.e. to support interoperability) for mass distribution of kits as 

well as standard reporting of results, which subsequently led to development of tool suites that could 

consume and analyze the information (45).  The adherence to data formatting standards allowed for 

aggregation into a single resource called Gene Expression Omnibus (GEO), which allows access to the 

research community (46,47). For toxicology, the lack of consensus on how the vast amount of 

concentration-response data collected from a myriad of in vitro platforms can be applied to regulatory 

toxicology applications has clarified the need for implementation of data management strategies that 

maximize interoperability. For instance, “big data” is being generated via whole-genome sequencing (48), 

high-content imaging (49,50), and high-throughput screening (9,11), and how they are formatted, 

processed, analyzed, stored, and accessed are dissimilar, between data types and data generators, 

which creates an additional obstacle for data integration to answer applied questions. Building consensus 

on reporting standards, both for assay design principles and observed effects, would contribute to 

progress in the use of these data for regulatory applications.  

Data interoperability is a salient and critical need to address if computational toxicology is to 

succeed in supporting modern chemical safety evaluation and research in public health and toxicology. 

Indeed, in alignment with the amended Toxic Substances Control Act (TSCA) (4) the EPA is required to 
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develop a risk-based method for chemical prioritization and in doing so to use NAMs or the equivalent in 

lieu of traditional methods. A state has been reached in which volumes of data can be generated, but full 

utilization of these information to find creative scientific solutions absolutely necessitates taking the time 

to adopt improved data management practices in order to connect the appropriate data to a biological 

target and to understand the methodology employed. Good data management practices are embodied by 

the FAIR Data Principles or Findability, Accessibility, Interoperability, and Reusability (38). These 

principles were defined to guide existing and future endeavors in scientific research as technology 

advances and data is generated to support knowledge discovery. Without proper data interoperability, 

progress in other areas will remain limited. In support of public health research goals, these principles are 

echoed in the National Institutes of Health (NIH) Strategic Plan for Data Science, with emphasis on 

infrastructure development and support for good data management practices as a crucial effort for 

continued success (51).  One of the first steps outlined in NIH’s approach is to update the current NIH 

infrastructure by connecting related systems for increased data interoperability. The answer to the overall 

challenge of achieving interoperability is simple to describe but difficult to implement, not only due to 

mountains of legacy data trapped in antiquated or difficult to process formats, but also due to rapid data 

generation efforts with lack of standardization creating data “silos”. Clearly the NIH has identified data 

interoperability as a key measure needed to achieve near and long-term goals for health-related 

research, but the field of toxicology needs more examination and consideration of why data 

interoperability is needed and how it could be achieved (52). The objective of this chapter is to provide the 

needed introduction to the current data landscape in toxicology, including specific use case examples that 

demonstrate a need for increased data interoperability for computational toxicology. As part of this 

introduction, research needs and key questions relevant to data interoperability in the public health and 

toxicology fields are highlighted. 

 

Current state of the data landscape in toxicology 

Toxicology is a diverse and applied field where health-related information from models of animal 

and/or human toxicity are translated into actionable items for chemical safety assessment. Decisions 

made based on toxicity data can not only dramatically affect human health and the environment but also 
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have major economic implications. Thus, any changes to the existing paradigms for data collection, 

evaluation, and analysis as technology and science advances come under intense scrutiny. However, 

NAM-based data generation is proceeding, and myriad ongoing efforts continue to demonstrate how this 

information could be used to answer regulatory toxicology questions (21–23,53–58). In this section, the 

apparent lack of data interoperability for both traditional and NAM-based toxicity information are reviewed. 

Much of the available traditional toxicology data for human health safety evaluations has been 

collected through animal experimentation to identify doses that do not cause adverse health effects and 

to identify hazards. This information is captured in physical and digital text documents. Many of these 

documents are used for regulatory purposes and not computationally accessible, e.g. the data are 

available for capture in text or PDF or in database formats that are not easily integrated. The existing 

information can be found in various formats scattered across different digital systems like Integrated Risk 

Information System (IRIS) (59), PubMed (60), https://www.regulations.gov, Chemical Effects of Biological 

Systems (CEBS) (61), eChemPortal (62), Provisional Peer-Reviewed Toxicity Value (PPRTV) (63), 

Carcinogenic Potency Database (CPDB) (64), and Toxicity Reference Database (ToxRefDB) (13). This 

exemplifies lack of interoperability that promotes duplication of information and challenges in data 

provenance that culminate in a lack of data interoperability. A specific example of these issues is the 

inability to identify identical National Toxicology Program (NTP) reports in databases that collect this 

information: CEBS (61), ToxRefDB (13), and CPDB (64). These resources are databases that have 

extracted data from animal toxicity studies conducted by NTP; however, the source documents are 

available as either full reports from various online locations or broken up as separate publications that can 

be found across different scientific journals. Because of source document management that was initiated 

without understanding of the future database needs (i.e. lack of versioning and unique identifiers) due to 

the age of some of the studies, as well as differences in how entities like a “study” are defined, it’s 

extremely difficult to identify the overlap between the two resources. These issues primarily encompass 

the legacy or historical data problems the field faces, but extensive efforts are under way to increase data 

interoperability to mitigate such issues. Addressing these challenges is critical as the field is rapidly 

changing because the success of new approaches often depends on the use of legacy information as a 

reference.  
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One of the first implementations of a public repository that integrated information on a by-

chemical basis from in vitro bioassays and in vivo toxicology data from myriad public sources was the 

Aggregated Computational Toxicology Resource, or ACToR (14) (Figure 1.1A). ACToR initially provided 

the legacy information and access to two prominent projects within NCCT, ToxCast and ToxRefDB 

through a single web application and subsequently began developing Representational State Transfer 

(RESTful) web services (65) for increased availability of the resources. ToxCast and ToxRefDB, among 

others, moved the field forward because of the massive amount of information made available to explore 

computational modeling approaches to examine chemical hazard (13,21–23,25,66,67). With the progress 

made through ToxCast and Tox21, other projects grew into defined research areas or domains like 

“Exposure” (3) and “Use” (68) that spawned the development of different databases, applications, and 

software packages to meet specific research needs (Figure 1.1B). Many of these efforts have been siloed 

endeavors that have led to duplication of information across databases and difficulty in managing this 

information with time and resources spent on “data cleaning”, version control, and quality assurance 

measures. Other centralized user interfaces for accessing both NAMs and traditional data, including the 

Comptox Chemicals Dashboard (17), NTP BioPlanet (18), National Library of Medicine (NLM) PubChem 

(69), Comparative Toxicogenomics Database (35), and NTP Interagency Center for the Evaluation of 

Alternative Toxicological Methods (NICEATM) Integrated Chemical Environment (ICE) (20), have all led 

to increased access of data. Based on the rapid growth of these user interfaces, and their capabilities, it 

is clear that tools are needed to help data stakeholders integrate and organize this information, either by 

chemical or by biological process.  
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Figure 1.1: Evolving infrastructure to support modern chemical safety evaluation 

Pictured is an abstract representation of the changing infrastructure that supports USEPA’s computational 
toxicology efforts. (A) Initially, information across relevant domains in toxicology were aggregated from 
external databases to a single database accessed through a single web application called ACToR. (B) With 
continued success in data generation projects like ToxCast, multiple products were developed. The dashed 
arrows represent indirect access to the needed information. Indirect access means that the underlying 
information was duplicated because each web application is supported by a separate database, which is 
consistent with siloing and reinforcing data inconsistency. Appendix 1 further describes each product shown 
in this figure. 
 
 

Modern chemical safety evaluation requires a framework to link relevant information 

To enable modern chemical safety evaluation, several knowledge domains must be considered 

and integrated: (1) information on chemicals or substances; (2) information on chemical bioactivity, 

phenotypes, and toxicity; and, (3) information by testing methodology, assay principle, and intended 

target. Linking chemical exposure to disease or toxicity remains a challenge in part because chemical risk 

assessment is chemical centric, and information about the development and progression of disease or 

toxicity is thus not easily examined to allow inference of which chemical exposures are linked to these 

biological outcomes. Thus, efforts to increase data interoperability for bioactivity, toxicity, or phenotype 

and testing methodology, assay principle, or intended target would enable more inferences from disease 

or toxicity back to chemical exposure. Already, there is a framework to link biological observations: the 

adverse outcome pathway (AOP) (70–76). AOP networks are excellent for organizing information related 
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to complex diseases and phenotypes; this cataloguing of interrelated biological processes and actions is 

advancing efforts in toxicology to use NAMs that may be used to predict adverse outcomes. However, 

novel, hypothetical associations between chemical exposure(s) and diseases may require bioinformatic 

tools and unsupervised approaches to putatively link chemical exposures with adverse outcomes. Though 

AOPs provide organization, in consideration of the AOP framework, it is clear that computationally 

accessible databases and additional bioinformatic tools to link information to AOPs rapidly are 

increasingly needed in modern chemical safety evaluation. 

The Adverse Outcome Pathway (AOP) framework has been proposed as a method to aggregate 

relevant information together and define a set of processes contributing an adverse outcome (AO), or an 

event relevant to regulatory concern. An AOP is defined as “an analytical construct that describes a 

sequential chain of causally linked events at different levels of biological organization that lead to an 

adverse health or ecotoxicological effect” (77). An AOP is mapped as a linear progression of a series of 

key events (KEs) linked together by qualitative or quantitative key event relationships (KERs) across 

biological levels of organization, beginning with a specialized KE known as a molecular initiating event 

(MIE) and culminating with another specialized KE known as an adverse outcome (AO). As high-

throughput screening, transcriptomics, epidemiology, etc. have generated large datasets for evaluating 

the effects of chemical exposure, the field of toxicology has been evolving to create new strategies for 

linking macromolecular and cellular changes with adverse outcomes to leverage all of this new data for 

safety evaluation. Key strategies for doing this include systematic literature review and predictive 

modeling (21–23,36). Either of these can inform a network of AOPs to describe biology pertinent to 

mechanisms of disease. However, problems persist in development of AOPs: (1) how can more AOPs be 

developed via rapid linkage of MIE or KE related information from NAM-based and traditional toxicology 

screening methods? (2) How can hypotheses be generated to suggest more potential MIE to AO 

associations? To address these persistent questions, additional tools need to be developed to make the 

NAM and traditional information more accessible, and further, existing information from disparate 

resources need to be leveraged to support discovery of novel MIE to AO relationships. 

Relevant to the questions above, knowledge discovery and chemical safety evaluation for 

toxicology necessitate improvements to the FAIR data landscape as mentioned previously, thus enabling 
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integration of data that were previously siloed, and these efforts are ongoing. To use NAMs, i.e. high-

throughput transcriptomics, high-throughput screening, and high-content imaging data, more effectively in 

screening level assessment, better tools to link these data to MIEs, KEs, and AOs of interest for 

regulatory toxicology are needed. However, even the traditional toxicity information could benefit from 

more standardization and computationally accessibility for linkages to be established to AOs within AOPs.   

A primary obstacle to interoperability of NAM and legacy-based information in siloed resources is 

balancing the need for domain-specific details with the need to reduce complexity to enable use of the 

data. There are several opposing drivers in balancing data complexity and simplicity, including the 

differences among data stakeholders. For instance, the needs of data scientists in terms of available tools 

and datasets may differ from the needs of the general public for data transparency and availability and 

the needs of regulatory toxicologists charged with making public health decisions. Currently, domain 

specific complexity has led to a number of standalone resources with separate databases and 

programming utilities (such as R packages to manage ToxCast or high-throughput toxicokinetic data) that 

require the user to develop a deeper understanding of how to integrate the resources.  

Increased data interoperability of traditional toxicity and NAM-based toxicity information is 

discussed further in the facets of specific use cases. One example for hypothesis generation for AOP 

development is to relate complex disease phenotypes, such as cancer, with gene information that may be 

informative. The need to associate NAM information with outcomes at higher levels of biological 

organization necessitates high quality curation and structuring of legacy toxicology information, from 

animal and human studies. The archiving and curation of legacy data supports computational model 

development to predict adverse outcomes, but this process of data management is complex. An 

additional use case for computational toxicology is the integration of both NAM and traditional data 

resources to better understand how to predict complex outcomes and prioritize adverse outcome pathway 

development.  
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Example Use Cases 

Standardization and mapping of vocabularies 

As previously stated, development and adherence to formatting standards and CVs increases 

interoperability, especially for legacy information systems or new data streams without existing standards. 

The updates to Toxicity Reference Database (ToxRefDB) further described in Chapeter 3 (13) are an 

example of how legacy information can be modernized for easier integration and use to advance 

research.  ToxRefDB is the largest publicly available digital resource aggregating results from animal 

toxicity studies that was initially created for retrospective analysis and as a reference to validate both 

ToxCast bioactivities and computational models (28,29). The impetus for the recent update was to collect 

dose-response information that was not originally extracted from the studies. However, endeavors to 

increase interoperability were also undertaken. The studies in ToxRefDB span decades where the 

language for reporting adverse events is inconsistent from either subjective expert preferences or 

updates as knowledge about pathology has advanced. The terminology in ToxRefDB was standardized 

for a ToxRefDB-specific CV. The CV was mapped to concepts in Unified Medical Language System 

(UMLS), which is a resource managed by National Library of Medicine integrating over 150 biomedical 

vocabularies into a semantic network (78). By mapping to a standard that is already integrated, 

interoperability is achieved with any other resource that is also mapped to the same standard.  

A goal of this type of work will be to more easily pass information across different resources that 

could benefit from the information. For example, CEBS also captures information from animal toxicity 

studies and the adverse event reporting for histopathology results adheres to a CV called International 

Harmonization of Nomenclature and Diagnostic Criteria (INHAND) and accounted for in NTP’s 

Nonneoplastic Lesion Atlas (NLA) (79). Despite adherence to a CV, INHAND is not mapped to any other 

resources, which makes interoperability difficult. Since INHAND is not mapped to any of the UMLS 

vocabularies, interoperability between the reported adverse events in ToxRefDB and CEBS is difficult. 

However, a primary user of INHAND is the eTox consortium (80), which is a group of pharmaceutical 

companies that have compiled animal studies into a single resource. Continuing efforts of eTox include 

increased interoperability though ontology development and mapping (81). Another resource that collects 

animal toxicity information is the Health Assessment Workspace Collaborative (HAWC) (82). Although a 
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CV is available, it does not capture the granularity needed for interoperability. Finally, another resource 

that collects information on animal toxicity studies is International Uniform Chemical Information Database 

(IUCLID) (83). Like HAWC, IUCLID has a limited CV available as a “picklist” (84) and still lacks granularity 

for adverse events that is captured in ToxRefDB. IUCLID is the primary tool used by European Chemicals 

Agency (ECHA) to collect and evaluate chemicals for regulatory applications. IUCLID is separate from the 

previously mentioned applications because it adheres to data formatting standards developed in 

conjunction with Organisation for Economic Co-operation and Development (OECD) called OECD 

Harmonised Templates (OHTs). IUCLID can consume any data formatted according to OHTs. Both 

HAWC and IUCLID have been developed for chemical-centric regulatory applications, therefore 

aggregation of information has also been primarily chemical-centric. However, moving forward with 

research endeavors investigating NAMs and to answer questions about reproducibility in animal toxicity 

studies, the adverse event reporting also must adhere to CVs and formatting standards and fully support 

interoperability. 

A massive amount of information is readily available from each of the information systems above, yet 

interoperability is still lacking primarily due to lack of CVs and data format standards. The progress made 

in ToxRefDB with CV development and mapping was a manual effort; however, automatic mapping is 

possible. Several tools like National Center for Biomedical Ontologies (NCBO) Bioportal Annotator and 

UMLS MetaMap are available map text to respective CVs using Natural Language Processing (NLP) 

techniques. Without definitions or full text input, these methods are limited to string comparisons, which 

are not always very accurate. For example, the ToxRefDB term “pathology microscopic” was manually 

mapped to the UMLS term “Histopathology Result”. When using the BioPortal Annotator, the UMLS terms 

that are mapped to “pathology microscopic” are “Pathology” and “Microscopic”, which, even together, do 

not represent “pathology microscopic” as well as “Histopathology Result”. In many cases, manually 

mapping terms may be the best option because of the accuracy, but automatic mapping pipelines can still 

be utilized and should always be investigated as an option. 
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Putative gene-outcome relationships for complex phenotypes  

As previously stated, one of the most prominent challenges for adopting NAMs for chemical risk 

assessment is understanding how results can be applied to current public health issues like cancer. One 

approach from Kleinsteuer et al. (2013) (25) attempted to use odds ratios between in vitro bioactivity in 

ToxCast assay and cancer-related phenotypes in rodents, as documented in ToxRefDB, to develop 

chemical cancer hazard scores. Subsequently, the biological plausibility of links between ToxCast assays 

and ToxRefDB cancer outcomes was manually assessed by a literature review. The limitations of this 

approach were made clear in Cox et al. (2016) (85) stating that small changes to the dataset dramatically 

changed the results. This model instability could be the result of false positives i.e. the chemical 

bioactivity observed in ToxCast is not related to the cancer outcome observed in ToxRefDB. The 

approach could benefit if each ToxCast assay, which are linked to gene target(s), can be established in 

cancer AOPs. Indeed, this type of approach was taken by the International Agency for Research on 

Cancer (IARC) (86,87) where each ToxCast assay was reviewed and binned into the ten key 

characteristics of carcinogens (TKCC) (88). A toxicological priority index (ToxPi) was calculated for each 

chemical based on the bioactivities of each assay in each TKCC. Further, Becker et al (2017) (89) used 

the IARC binning of ToxCast assays and cancer designations by USEPA Office of Pesticides Program 

(OPP) Cancer Assessment Review Committee (CARC) as descriptors for machine learning models to 

classify chemicals as carcinogens, and ultimately concluded that ToxCast could not classify chemicals as 

carcinogens. Associating in vitro screening data with cancer-related outcomes, and understanding 

whether this is feasible and informative with ToxCast data, is an active area of research. 

Thus, a challenge remains: the above strategies heavily rely on expert knowledge to establish 

biological links between gene targets and complex outcomes, based on previous understanding of the 

etiology and progression of these outcomes; however, expert knowledge is limited due to the reliance on 

low-throughput manual literature review, and cancer etiology, especially the role environmental chemicals 

play, is not well understood and may benefit from new information. Data-driven strategies can be 

considered as support for interoperability continues. A wealth of gene information is available that may be 

relevant to cancer etiology or other complex phenotypes that may be difficult for an expert to identify. For 

example, Chapter 2 describes a resource that links genes to Medical Subject Headings (MeSH), or 
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keywords in literature. This resource is called Entity MeSH Co-occurrence Network (EMCON) (32) and 

can be used to identify genes that are linked to complex disorders like breast cancer. EMCON was also 

used as a data stream in Grashow et al. (2018) (90) as part of a comprehensive gene prioritization 

framework to identify a breast cancer gene panel. The impetus for this type of approach was linking dose-

response gene expression profiles with adverse outcomes of interest. The traditional approach to analyze 

gene expression results is gene set enrichment analysis (GSEA), where pathways or other concepts are 

identified from overrepresented differentially-expressed genes in reference gene sets that are primarily 

manually curated (91). Relevant gene sets for understanding links between chemical exposures and 

complex phenotypes are not readily available. Most gene sets are available through Molecular Signatures 

Database (MSigDB) (91–93) or other resources for GSEA like Enrichr (94,95). A commonly used 

resource that links genes to disease is Online Mendelian Inheritance in Manâ (OMIM) (96), which links 

genetic variants to disease; however, variants that have been linked to complex phenotypes have 

primarily been identified in genome wide association studies (GWAS) and are not always easy to 

mechanistically characterize.  

A well-curated resource that attempts to link chemical exposures to disease is Comparative 

Toxicogenomics Database (CTD) (35). CTD curates qualified chemical-gene interactions from literature 

and integrates gene-disease relationships from primarily OMIM. The chemical-disease links are inferred 

according to the overlapping genes between chemical-gene interactions and gene-disease relationships 

(97).  CTD is a high-quality resource but dependent on manual curation, which is low-throughput. Manual 

curation efforts cannot keep pace with the rate of publication, which highlights a need for alternative 

methods for data extraction like Named Entity Recognition (NER) (98,99). A comprehensive resource of 

bioassay information is PubChem (69). Bioassay information is crowdsourced, and deposition of 

information is generalized in order to store heterogenous data in the single resource. PubChem allows 

adherence to standards, specifically Bioassay Ontology (BAO) (100,101), but is not enforced. PubChem 

is the largest single resource for chemical bioassay information, however, much of the deposited 

information does not adhere to a data formatting standard beyond what is enforced in the deposition 

templates, which creates problems with interoperability like aggregating bioactivities by target. More work 



 
 

13 

still needs to be considered for increased interoperability to utilize all available information for chemical 

safety evaluation. 

To identify environmental exposures that could potentially influence susceptibility to a complex 

disease, more complex gene networks, not comprised of only variants, may be important to identify. Other 

manual curation efforts of literature continue for gene and gene function information (102); proteins 

(103,104); pathways (105–108); diseases (109); and chemicals (35,82,110). Aggregating this curated 

information with chemical dose-response information from new technologies targeting different levels of 

biological information, while also considering interoperability, could lead to rapid putative AOP 

development and development of robust chemical hazard computational models. 

 

 
Conclusion 

The current regulatory framework for toxicology is becoming more flexible to keep pace with 

modern public health needs. However, a major hurdle is data interoperability. Overcoming these 

challenges will enable researchers to interrogate available data to better understand the existing 

knowledge landscape identifying gaps in our understanding of environmental toxicity and how it 

influences complex disease. Initial efforts in toxicology to promote interoperability demonstrate immense 

progress and promise, yet, for continued success, more work is needed in development and adherence to 

CVs and data formatting standards as well as implementing modern infrastructures to support the 

massive amounts of data generated and subsequent analytics.  

 

Scope of dissertation 

The focus of this dissertation is on data interoperability and how efforts to increase data 

interoperability benefit toxicology and advance our understanding of how chemical exposures affect 

complex disease. Chapter 2 highlights a use case in leveraging curated information from literature to 

extract knowledge about a complex disease, breast cancer that would not have been accessible from 

expert review alone. The data is from articles in PubMed, which is a well-known resource supporting FAIR 

data guidelines to support scientific research. The articles are manually curated by PubMed indexers to 

extract information on genes as well identifying keywords called Medical Subject Headings (MeSH) that 
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are a part of a CV, which is also one of the vocabularies in UMLS. With this information and the use of 

networks, a novel bioinformatic tool was built called Entity MeSH Co-occurrence Network (EMCON) that 

can be queried to identify putative genes linked to any outcome of interest that has been published within 

the curated set of literature. EMCON helps overcome issues in data interoperability between many 

sources of gene and gene-disease relationships. When considering applications within toxicology, this 

approach can be used to identify important targets of interest when screening chemicals as well as linking 

bioactivities to complex adverse events and disease. 

Chapter 3 describes a major update to Toxicity Reference Database (ToxRefDB). The most 

significant update to support interoperability is establishing a ToxRefDB-specific CV and mapping the 

terms to UMLS. This work exposes points of integration, therefore data from ToxRefDB can be consumed 

and used with other datasets.  

Finally, Chapter 4 utilizes work from the previous chapters to answer relevant questions about the 

use of ToxCast for identifying chemical hazard for cancer and complex disease. A major critique of the 

utility of ToxCast for building computational models for complex disease has been the lack of biological 

coverage within the dataset. In fact, this critique is the impetus to move forward with dose-response 

transcriptomics studies that capture many more targets. Recent efforts have attempted to use ToxCast to 

identify the cancer hazard for chemicals and a relevant question is: “does ToxCast have relevant 

biological coverage of cancer?” Because of the previous work, two data integration approaches were 

possible. One, involves the use of EMCON alone to identify ToxCast gene targets that are linked to 

cancer or cancer processes. The second uses both EMCON and ToxRefDB to identify genes linked to 

specific cancer outcomes observed in animal toxicity studies. The chapter concludes that ToxCast has 

several gene targets linked to cancer or cancer processes, but identifying what amount of biological 

coverage is necessary to identify chemical cancer hazard remains difficult. More work is needed that 

supports interoperability to continue building resources and investigating questions like those described in 

this dissertation. 
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Introduction 

Rapid technological advances in biomedical and life sciences have led to an inundation of 

heterogeneous information across these fields. For instance, high-throughput technologies like RNA-Seq 

and other transcriptomics methods generate large amounts of gene-related data such that underlying 

biological processes can be illuminated through pathway enrichment or association (91,111). Linking 

these functional genomic data to well-characterized ubiquitous diseases such as breast cancer (112) 

could provide opportunities to derive additional etiological insight, generate new hypotheses, identify 

critical genes and pathways, and develop novel therapeutics. However, while the current volume of 

genetic, experimental, toxicological and other data presents an incredible opportunity for biomedical and 

basic science to make great knowledge gains, many challenges remain in understanding how this 

information can be best integrated and queried to produce valuable insight.  

Currently, there is no research precedent on how to link genetic and toxicological data to complex 

disease phenotypes. For example, given that breast cancer will affect one in eight U.S. women and that 

susceptibility is shaped by both genetic and environmental factors (113–118), it is worthwhile to query 

publicly available data resources to better understand how risk factors like chemical exposures initiate 

biological changes to increase disease risk (119–121). Such an approach represents a departure from 

conventional toxicological strategies, in which a single chemical exposure is investigated as the driver of 

adverse effects, rather than considering other components of risk, e.g. genetic and lifestyle factors (122). 

As an alternative, the strategy outlined in this study aligns with the Adverse Outcome Pathway (AOP) 

                                                   
 

1 This chapter previously appeared as an article in Computational Toxicology. The original citation is as follows: Watford, S., 
Grashow, R., De La Rosa, V., Rudel, R., Paul-Friedman, K., Martin, M. (2018). Novel application of normalized pointwise mutual 
information (NPMI) to mine biomedical literature for gene sets associated with disease: use case in breast carcinogenesis. 
Computational Toxicology, 7, 46-57. 

CHAPTER 2: NOVEL APPLICATION OF NORMALIZED POINTWISE MUTUAL 

INFORMATION (NPMI) TO MINE BIOMEDICAL LITERATURE FOR GENE SETS ASSOCIATED WITH 

DISEASE1 
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conceptual framework that focuses on aggregating information on perturbed systems across levels of 

biological organization (70,123). However, development of AOPs faces the same challenges in linking 

molecular initiating events (MIE), subsequent key events (KE), and adverse outcomes (AOs) in that the 

most relevant MIEs of KEs for a given AO may not be known, and it may be difficult to link specific risk 

factors such as chemical exposures to the AO of concern. With respect to breast cancer, it is possible that 

many chemicals or mixtures contribute to risk through many mechanisms; therefore, it may be more 

pertinent to work backwards from the AO to better understand the etiology and more effectively identify 

KEs and MIEs that may lead to increased breast cancer risk (124). However, without a comprehensive 

data science resource that can integrate gene identifiers or related information on early KEs in toxicity or 

disease with AOs, the considerable amount of information already available from academic, public, and 

private sector research may not be fully leveraged for hypothesis generation regarding mechanisms of 

toxicity or disease. The goal of the work presented herein is to provide just this kind of resource that can 

provide a putative, ranked linkage between an AO of concern and a given “entity,” i.e., a gene, biological 

process, or chemical; the result of using this new tool is a ranked list of potentially relevant entities that 

can be evaluated in follow-up screening, representing a quantitative approach to literature review and 

hypothesis generation. 

Currently there are several high-profile, publicly-available efforts in toxicology developed to 

explore how chemicals perturb biological systems, including the US Environmental Protection Agency’s 

Toxicity Forecaster (ToxCast) (125) and the larger, interagency collaboration Tox21 (9). The high-

throughput bioactivity results from these research programs have been used for chemical screening 

efforts of regulatory importance, like the Endocrine Disruptor Screening Program (EDSP) (126). These 

data have also been useful in research and development of putative AOPs, wherein the chemical-target 

interactions from high-throughput screening can be used as MIEs (34). However, even with this 

considerable amount of information, linking high-throughput screening data to AOs like diseases can be 

challenging without integration with information at various levels of biological complexity that consider 

toxicity. Another effort in linking chemical exposures to disease is the Comparative Toxicogenomics 

Database (CTD). In CTD, chemical-gene interactions are manually curated from published articles and 

then connected to diseases via inference (35,97). The chemical-disease inference is based on 
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overlapping genes for a given chemical-gene pair where the disease-related genes are either manually 

curated from articles or pulled in from another publicly available resource, Online Mendelian Inheritance 

in Man (OMIM) (127). While these disease sources are helpful for exploring gene-disease associations for 

inherited variants, they do not consider genes involved with the initiation and progression of a disease 

from non-inherited (i.e. environmental) risk factors. Finally, massive data generation efforts for 

toxicogenomics are ongoing with applications like the Connectivity Map (CMAP) (33) and the S1500+ 

from Tox21 (128,129); in these efforts, analysis of gene expression changes resulting from chemical 

exposures are being used for drug discovery and repositioning as well as understanding chemical 

mechanisms of toxicity. With these large data generation activities underway, it is more important than 

ever that toxicologists have access to a tool that can enable ranked associations between gene identifiers 

or early KEs and possible AOs; such a tool would require integration of multiple types and sources of data 

or information. 

The most substantial source of biological and biomedical information is PubMed, a freely 

available database managed by the National Library of Medicine (NLM) that contains over 27 million 

scientific articles that are indexed by medical subject headings (MeSH terms) (130,131). MeSH terms are 

arranged in a hierarchical tree with parent-child relationships such that each parent encompasses the 

concepts of each of its descendants, i.e. child MeSH terms are narrower in scope than their broader-

scoped parents. For example, as seen in Figure 2.1, “Ductal, Carcinoma, Breast” has one immediate 

parent from two branches: “Breast Neoplasms”. “Carcinoma, Ductal, Breast” is a narrower concept than 

its parent and other ancestors in the tree. MeSH terms cover topics across all the articles within PubMed, 

but the most relevant topics to the work presented here are those on diseases, symptoms, processes, 

and related biological and chemical entities, which are well-represented in MeSH terms. These MeSH 

terms need to be linked with gene identifiers, which requires some additional consideration as gene 

identifiers are not automatically tagged to articles in PubMed. 
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Figure 2.1: MeSH tree branches for “Carcinoma, Ductal, Breast” 

Shown are two branches for the MeSH term “Carcinoma, Ductal, Breast”. These branches have two root 
MeSH terms: “Neoplasms” and “Skin and Connective Tissue Diseases”. Preceding MeSH terms (i.e. 
traversal towards a root MeSH term) are ancestors, where descendants are the MeSH following (i.e. 
traversal away from a root MeSH term). The depth of a MeSH term corresponds to the number of 
ancestors it has with depth increasing with traversal away from the root MeSH term. 

Although some genes can be specifically identified by MeSH terms, not all genes are 

represented, especially since gene identifiers are species-specific. Systematic approaches for tagging 

genes that use strategies like named entity recognition (NER) have been implemented(98). However, 

despite the most successful efforts(99), no global approach exists where all genes can be systematically 

identified across all articles in PubMed. In lieu of a global systematic approach, we can rely on numerous 

manual curation efforts with publicly available resources that tag articles with relevant unique gene 

identifiers (GeneID). Although manual curation efforts are low throughput, the quality of mappings is 

higher, especially in resources built based on their manual curation efforts, including CTD and Universal 

Protein Resource (UniProt/SwissProt)(132). These manually curated resources offer valuable information 

alone, but also have great potential for discovery if tied together into one larger resource that also 

includes CTD’s chemical-gene interactions and UniProt’s protein-specific topics.  

Here we describe a novel and transferrable methodology, producing a resource known as the 

Entity MeSH Co-occurrence Network (EMCON), that integrates several resources to develop a network 

connecting genes to MeSH terms. EMCON uses ranked associations between genes and MeSH terms to 

produce ranked gene sets for hypothesis generation and testing. The utility of EMCON was demonstrated 

by evaluating genes putatively linked to breast carcinogenesis, an example highly relevant to public 

health. Given the breadth of ongoing research on chemicals known to increase the frequency of breast 

tumors in animals and humans(113–118), important information about breast cancer mechanisms and 
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risk could be uncovered by integrating already existing data housed in resources mentioned above. In this 

example, MeSH terms were selected that represent important processes in carcinogenesis and, more 

specifically, breast carcinogenesis.  These MeSH terms were used to query EMCON and retrieve a 

ranked list of genes. Previously, Silent Spring Institute (SSI) created a list of nearly 300 genes as a 

reference gene set for breast carcinogenesis through expert literature review (ELR)(90). For the purposes 

of this study, that reference gene list was used to measure relevance of the EMCON search results. This 

work demonstrates a novel application of NPMI that critically informs hypothesis generation regarding 

genes that may be involved in breast carcinogenesis. EMCON may be useful in prioritization and 

selection of gene sets for transcriptomic experiments and/or articles to be manually reviewed for 

reference information. The methods described here are transferrable to any disease or AO of interest and 

could be tailored to myriad biomedical or life science research questions.  

 

Methods 

The overall workflow detailed in this paper is represented in Figure 2.2. First, we integrated seven 

resources, including gene2pubmed(102,133), Gene Reference into Function (GeneRIF)(102,134), 

CTD(35,135), UniProt/SwissProt(132,136), Reactome(137,138), Rat Genome Database (RGD)(139,140), 

and Mouse Genome Informatics (MGI)(141,142), to develop a network of naive GeneID-MeSH 

associations. Parent MeSH terms are less specific than their child terms, and as such, associations with 

parent MeSH terms may give less specific insight into the AO (see Figure 2.1); these parent MeSH terms 

should be mapped to all articles mapped to their child terms to reflect this relationship. Accordingly, we 

normalized the MeSH term frequencies to reflect the hierarchy within the MeSH tree so that broader 

terms appeared in associations more frequently while narrower, more specific terms showed up less 

often. This resulted in the less specific parent MeSH terms being mapped more promiscuously. Lastly, the 

GeneID-MeSH associations were ranked using an association measure called normalized pointwise 

mutual information (NPMI) (143). NPMI is commonly used in text mining for collocation extraction to 

identify words that co-occur together more than expected by random chance; the NPMI for any given 

association is a continuous value between -1 and 1. An NPMI greater than zero indicates a co-occurrence 

with greater probability than chance, with increasing significance of the probability as the NPMI value 
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approaches 1. A positive NPMI does not indicate the direction of association (positive or negative 

association) between the GeneID and MeSH term. The final resource of ranked GeneID-MeSH 

associations is represented by EMCON: a scalable, queryable resource for retrieval of a ranked list of 

genes for a specific topic covered within MeSH terms. 

 

Integration of biomedical text resources 

To build a network relating genes to MeSH terms, we first identified biomedical databases that 

manually link genes or gene products to relevant articles. These databases included Comparative 

Toxicogenomics Database (CTD) (35,135), gene2pubmed (102,133), Gene Reference into Function 

(generif)( 102,134), Universal Protein Resource/Swiss-Prot (UniProt) (132,136), Reactome (137,138), Rat 

Genome Database (RGD) (139,140), Mouse Genome Informatics (MGI) (141,142). Each of these 

resources provide cross-references to Entrez Gene (GeneID) along with a PubMed Identifier (PMID) that 

uniquely identifies a gene and PubMed article respectively. Entrez Gene is a resource managed by the 

National Center for Biotechnology Information (NCBI) providing unique identifiers for genes and linking 

information to genes (biological function, gene products, sequences, etc.) as this type of information is 

discovered (102). PubMed is also managed by NCBI and is the largest resource of freely accessible 

biomedical text with over 27 million citations from a variety of sources including peer-reviewed, biomedical 

journals. Each of the resources listed above can be integrated into a single resource that links PMIDs with 

GeneIDs (Figure 2.2A). 

Next GeneIDs were linked to concepts across PubMed via Medical Subject Headings (MeSH 

terms;Figure 2.2A). Articles within PubMed are both manually and automatically tagged with MeSH terms, 

which is a controlled vocabulary of over 27,000 keywords structured in hierarchical trees used to 

categorize the concepts covered in an article(131). For example a publication titled “Estrogen receptor 

variant messenger RNA lacking exon 4 in estrogen-responsive human breast cancer cell lines“ (144) has 

been tagged with MeSH term “Breast Neoplasms”, “Receptors, Estrogen”, “RNA, Messenger”, and others. 

This is exemplified in Figure 2.3, which shows how GeneIDs are mapped to MeSH terms.  This article has 

also been manually tagged with the gene estrogen receptor alpha (ESR1). Combined with another 

article(145) that is also manually tagged with ESR1 and a few overlapping MeSH terms, the gene ESR1 
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now has two articles that support a relationship to the MeSH term “Molecular Sequence Data”, “Amino 

Acid Sequence”, “Receptors, Estrogen”, “RNA, Messenger”, and “Tumor Cells, Cultured” (Figure 2.3). As 

more articles are added to the network, the number of supporting articles for a GeneID-MeSH association 

grows. Integration of these resources yielded a network of naive GeneID-MeSH associations (Figure 

2.2A). 

 

 

Figure 2.2: Workflow for building Entity MeSH Co-occurrence Network (EMCON) 

EMCON is created by (A) integration of biomedical resources, specifically manually annotated datasets of 
GeneID-PMID mappings. These data are combined with PMID-MeSH mappings to create a naive GeneID-
MeSH network. (B) Next, the naive GeneID-MeSH network is expanded by mapping orthologous genes 
followed by MeSH term frequency normalization. The GeneID-MeSH associations are then ranked to 
generate the final EMCON resource. (C) EMCON can be queried with specific use cases where experts 
identify MeSH terms important to a topic of interest. Those selected MeSH terms are expanded to include 
descendants, which is the full set of MeSH terms used to query EMCON. The final output is a ranked list of 
genes ranked according to overrepresentation of the topic of interest.   
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Figure 2.3: Example of the naive GeneID-MeSH network 

The naive GeneID-MeSH network consists of GeneIDs that have been manually tagged to articles within 
PubMed, which are connected to MeSH terms. 
 

Cross-species gene orthologs 

Several of the resources above do not exclusively contain information on human genes, but for 

this work, we are only concerned with human genes. To maximize the number of articles and avoid 

excluding those that do not have human genes from the network altogether, we identified human 

orthologous genes. We assumed that the topics from an article about non-human orthologs are relevant 

to humans. We utilized UniProt Reference Clusters (UniRef), specifically UniRef50, to identify non-human 

proteins that have a human reference protein with a similar sequence(104). Proteins were mapped back 

to the naive GeneID-MeSH network via GeneID cross-references from UniProt/SwissProt. Then all 

articles tagged with the non-human GeneIDs were mapped back to the reference human GeneID from 

the corresponding similarity cluster (Figure 2.2B).  
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Medical Subject Heading (MeSH term) Frequency Normalization 

At the top of the MeSH hierarchical structure are sixteen root MeSH terms, such as “Anatomy”, 

“Diseases”, “Chemicals and Drugs”, and “Phenomena and Processes”. These broader terms maintain 

parent-child relationships in that each parent MeSH term branches into more specific "child" MeSH terms 

that fall under the umbrella of the broader “parent.” MeSH terms are not limited to any one branch, which 

means that MeSH terms can have multiple parents. For example, “Breast Neoplasms” has the parent 

“Neoplasms by Site” as well as “Breast Diseases” (Figure 2.4A). To reflect this hierarchical structure so 

that broader MeSH terms are mapped more promiscuously to articles than narrower MeSH terms, we 

normalized the frequency of MeSH terms (Figure 2.2B) by mapping the ancestors of a MeSH term back to 

articles of the descendants (Figure 2.4B). This ensures that broader, parent MeSH terms are mapped at 

higher or comparable frequencies than their narrower, more specific descendants. This same type of 

normalization can be seen in gene sets for hierarchical pathway datasets like that of Reactome(137,138). 

This normalization prevents skewing of results towards broader MeSH terms, which may have been 

inconsistently mapped to articles, and enables identification of more specific associations with child terms 

within the MeSH tree, which cuts down on the overall noise to identify the most relevant associations. 

This normalization is defined in equations !(#′)	and '(#′) in Table 2.1.  

 
Figure 2.4: Example of MeSH term frequency normalization 

(A) Shown are the same branches from Figure 2.1. The MeSH term “Breast Neoplasms” has a total of five 
ancestors with two root MeSH Terms: “Neoplasms” and “Skin and Connective Tissue Diseases.” (B) All the 
ancestors for a given a MeSH term are subsequently tagged to each article of a specific MeSH term. The 
original mapped associations are indicated by solid arrows and inferred associations as part of our MeSH 
term normalization are indicated by dashed arrows. 
*MeSH terms only used for structuring the MeSH tree and not used for tagging articles. 
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Equation Description 

( = {+,, … +/	} a set of co-occurrences, where c is a GeneID-MeSH 
term co-occurrence that is unique by PMID and 1 is the 

total number of co-occurrences 
2(3) the number of co-occurrences of ( that contain gene, 3 

!(#) the number of co-occurrences of ( that contain MeSH 
term, # 

!(#′) the number of co-occurrences of ( that contain # and 
all the descendants of # 

T(3;#) the subset of C that contains co-occurrences with both 
3 and # 

'(3) = 	 |2(3)|1  the probability of 3 occurring 

'(#) = 	 |!(#)|1  the probability of # occurring based on frequencies 
before MeSH term frequency normalization 

'(#′) = 	 |!(#′)|1  
the probability of # and all the descendants of # 
occurring based on frequencies after MeSH term 

frequency normalization 

'(3;#) = 	 |6(3;#)|1  the probability of 3 and # co-occurring 

'#7(3;#) 	= 	893(	 '(3;#)'(3)'(#′)) pointwise mutual information for a given 3 and # 

1'#7(3;#) 	= 	 '#7(3;#)
−893('(3,#)) normalized pointwise mutual information for a given 3 

and # 

Table 2.1: Equations for ranking GeneID-MeSH co-occurrences 
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Ranking Gene-MeSH co-occurrences 

The naive GeneID-MeSH network only contains associations between a gene and a MeSH term 

based on the frequency with which those two entities occur together in an article. To extract meaningful 

co-occurrences of a GeneID and a MeSH term, we calculated a rank measure called normalized 

pointwise mutual information (NPMI), which is the normalized variant of pointwise mutual information 

(PMI) (Table 2.1). PMI is a rank measure commonly used in text mining for collocation extraction, i.e., 

identifying words that co-occur together more than random indicating a shared meaning like “hot tea” and 

“crystal clear”. Because PMI is a rank measure, there is no level of significance or accepted cutoff to use 

for co-occurring terms; however, the normalized variant, NPMI, calculates a continuous value between -1 

and 1 where -1 is interpreted as no co-occurrence, 1 is interpreted as perfect co-occurrence, and 0 is 

interpreted as co-occurrence at random(143). These interpretations can be made about GeneID-MeSH 

co-occurrences because GeneIDs were tagged to articles independent of MeSH terms.  Also, NPMI is 

biased in that low frequency co-occurrences are ranked higher(143). To reduce the potential for spurious 

or less-replicable co-occurrences to drive this bias, GeneID-MeSH associations with less than three 

PubMed articles were excluded from the network. This cutoff was chosen based on assumptions that can 

be made about positive reporting of results due to publication bias(146). We assumed that for a GeneID-

MeSH association with three or more PubMed articles that support the association, it was likely that at 

least two of the articles reported positive results for a relationship between the GeneID and MeSH term.  

Table 2.1 summarizes the equations needed to calculate NPMI. The probability of a MeSH term 

# and all the descendants of # occurring ('(#′)) will increase the denominator of PMI resulting in an 

overall lower NPMI for broader terms since frequency is increased for a given MeSH term based on its 

descendants. This adjustment decreases the overall ranks of MeSH terms with many descendants 

whereas more specific MeSH terms ranked higher. The final network was filtered to include only GeneID-

MeSH associations with NPMI > 0, which indicates that each association present exceeds the 

associations expected from random chance (Figure 2.2B).  

 

MeSH Terms for breast carcinogenesis 

MeSH terms that comprehensively capture the use case of breast carcinogenesis were needed to 
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query EMCON and retrieve a ranked list of relevant genes. As described in Grashow et al.(90), experts 

selected seventeen MeSH terms that encompassed concepts from seminal papers on 

carcinogenesis(88,147,148)  and breast carcinogenesis(118), including: Neovascularization, pathologic; 

Neovascularization, physiologic; Apoptosis; Cell cycle; Epigenomics; DNA damage; DNA repair; Growth 

hormone; Cell survival; Immune system; Inflammation; Breast; Breast Diseases; Oxidative stress; Cell 

proliferation; Gonadal steroid hormones; and Xenobiotics. These seventeen MeSH terms alone do not 

necessarily reflect the full scope of the concept they represent, therefore the full query also includes all 

descendants of these MeSH terms for a total of 214 MeSH terms to represent breast carcinogenesis. 

Clearly, some of these concepts may be related to cancer phenotypes more broadly, and some may be 

more specific for breast carcinogenesis. 

 

Relevance of retrieved gene list 

For the topic of breast carcinogenesis, a reference gene set of 287 genes was compiled through 

expert literature review (ELR) by Silent Spring Institute as described in Grashow et al.(90) , including: (1) 

gene targets for quantitative nuclease protection assays in ToxCast Phase I; (2) genes responsive to 

nuclear receptors of interest (estrogen, progesterone, androgen, and aryl hydrocarbon receptors); (3) 

genes included in Qiagen microarray panels designed to probe pathways relevant to breast cancer 

(estrogen receptor signaling, breast cancer, DNA repair, DNA damage, growth factors, cellular stress 

response); (4) important genes in breast cancer based on key literature reports(113,149–151); (5) genes 

listed as related to breast cancer in curated databases (OMIM, CTD); and, (6) genes listed by partners at 

NCATS Chemical Genomics Center (NCGC) as important in cytotoxicity response (Figure 2.2C). Potential 

housekeeping genes were chosen from previous reports in MCF-7 cells(152–154). This ELR gene set 

was used as a reference gene set to measure the relevance of the retrieved gene list from EMCON to the 

topic of breast carcinogenesis. 

The EMCON search was conducted 214 times to generate one gene list for each MeSH term in 

the search query. The final gene list was obtained by averaging the NPMI rank per gene in the set of 214 

iterations. Relevance to breast carcinogenesis of the final gene list from EMCON was measured by 

comparing the mean rank of the ELR gene set to the distribution of mean ranks of 1000 randomly 
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generated gene sets of the same length as the ELR gene set of 287 genes. The retrieved gene list was 

considered relevant to breast carcinogenesis if the mean rank for the ELR gene set is higher than the 

distribution of mean ranks for randomly generated gene sets yielding an empirical p-value < 0.01. We 

used an empirical p-value because the comparison dataset is simulated, i.e. it was not derived using 

reference gene sets from other disorders. We felt that the best comparison would be against random 

gene sets rather than make inferences about how similar or dissimilar disorders may be based on 

respective genes. Recall was calculated as the fraction of ELR genes retrieved in the final list produced 

by EMCON, where the ELR gene set was considered a standard to evaluate the gene list produced by 

EMCON. Precision scores were calculated based on expert assessment of relevance of the top five 

genes for each of the seventeen selected MeSH terms. This expert assessment involved manual review 

of the literature that resulted in the GeneID-MeSH association to classify the association as true positive 

or false positive. 

 

Comparison to a similar tool 

EMCON’s performance was compared to Génie, another literature-based gene prioritization 

approach(155). Génie uses a naive linear Bayesian classifier in conjunction with a Fisher’s exact test to 

produce a list of genes ranked by false discovery rate (FDR). We compared our method with that of Génie 

by using a Spearman rank correlation of the ELR gene set from the EMCON search results with search 

results from Génie. Two gene sets were obtained from Génie: one using only the MeSH term “Breast 

Neoplasms” and another using all 214 MeSH terms used to query EMCON. 

 

Computational and statistical analyses 

All data were downloaded as flat files from their respective sources (Table 2.2). Python 3.6+(156) 

was used to parse the files and import into MongoDB 3.4+(157). All methods were implemented using 

MongoDB’s aggregate pipeline or python packages pandas 0.20+(158), numpy(159), and numba(160). 

All code is available via iPython notebooks(161) at https://github.com/USEPA/CompTox-HTTr-EMCON. 
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Results 

Entity MeSH co-occurrence network (EMCON) 

Seven resources that manually tag PubMed articles with GeneIDs were identified (Table 2.2) and 

integrated into a single resource containing GeneID-PMID associations. Subsequently, MeSH terms were 

incorporated to generate a naive GeneID-MeSH network. Most of the genes in the naive GeneID-MeSH 

network are not human, but many produce proteins with high similarity to human protein orthologs, such 

that the information from non-human genes may be relevant to human-related research questions. To 

boost the number of articles mapped to human genes, UniRef50 clusters were used to identify human 

orthologous genes to increase the human relevant articles from around 500,000 to nearly 900,000. Next, 

the MeSH term frequency was normalized by mapping MeSH term ancestors back to articles to which 

their descendants were already mapped. Finally, GeneID-MeSH were ranked using NPMI to create a final 

network called Entity MeSH Co-occurrence Network (EMCON). EMCON is comprised of nearly 14 million 

associations, and, when filtered to require an article count > 2, the associations were dramatically 

reduced with 3.56 million remaining associations. The GeneID-MeSH associations in EMCON have article 

counts ranging from three to 10,276. The NPMI scores range from -0.5 to 0.7 with a mean of 0.025 

(Figure 2.5) and 2.13 million GeneID-MeSH associations with NPMI > 0.  

  



 
 

29 

Gene and gene product databases Number of 
articles  

Number of 
GeneIDs in 

articles 

Number 
of 

species 
across 
GeneID

s 

gene2pubmed (133) 1,062,713 5,565,651  12,782 

Gene Reference into Function (GeneRIF) (134) 
705,441 90,329  1,913 

Comparative Toxicogenomics Database (CTD) 
(135) 58,180 43,298  76 

Universal Protein Resource (UniProt/Swiss-Prot) 
(136) 950,989 5,156,248  12,555 

Reactome (137) 38 15,650 11,110  9 

Rat Genome Database (RGD) (139) 40 834,585 87,874  7 

Mouse Genome Informatics (MGI) (141) 181,519 42,020  1 

Total Unique 1,238,879 7,074,406  14,126 

Table 2.2:  Manually curated resources used to construct EMCON 

A total of seven resources that manually tag GeneID’s to articles within PubMed were integrated to serve 
as the initial dataset for building EMCON. Over 1.2 million articles make up the naive GeneID-MeSH 
network with over 7 million genes for over 14K species.  
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Figure 2.5: EMCON NPMI distribution. 

 

MeSH term frequency normalization 

The MeSH term frequency normalization (represented as p(m’); See Methods) increased the 

promiscuity of MeSH tree terms based on descendants within the hierarchical trees, via mapping MeSH 

terms back to the articles of their descendants. The probability of a given MeSH term occurring in the 

naive GeneID-MeSH network (p(m)) increased with the number of descendants present in the network. 

This increase in promiscuity for broader MeSH terms corresponds to decreased NPMI for associated 

genes. Figure 2.6 demonstrates the probability of a MeSH term occurring before (p(m)) and after (p(m’)) 

frequency normalization; the probability of the MeSH term co-occurring with the gene of interest (p(g,m)); 

and the associated NPMI scores for the GeneID-MeSH co-occurrences for two MeSH branches, “Cell 

Cycle” and “Skin Diseases”.  
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Figure 2.6: MeSH frequency normalization for two branches 

Two branches from the MeSH hierarchical tree were used to demonstrate how the annotation bias 
correction alters the probability of a MeSH term occurring (p(m)) along with the resulting NPMI with a 
relevant gene. These values correspond with the depth of a given MeSH term in the hierarchical tree. 

 

First, p(m) and p(m’) were compared for MeSH terms in the “Cell Cycle” and “Skin Diseases” 

branches (Figure 2.5A). p(m) did not inversely decrease with the depth of the MeSH hierarchical tree for 

“Cell Cycle” or “Skin Diseases.” This relationship implied that “Breast Neoplasms” was broader than “Skin 

Diseases” because the p(m) for “Breast Neoplasms” (p(m)=0.001) was greater than the p(m) for “Skin 

Diseases” (p(m)=2.3e-5). However, after MeSH term frequency normalization, p(m’) decreased as the 

depth increased for a given branch. For example, the p(m’) for “M Phase Cycle Checkpoints,” a term 

representing increased depth within the “Cell Cycle” branch, was less than the p(m’) values associated 

with its ancestors. Figure 2.6A also shows that despite p(m’) decreasing as depth increased within the 

“Cell Cycle” branch, the MeSH term “Cell Nucleus Division” was nearly absent from the network 

altogether with a p(m’)=2e-6. Similarly, following frequency normalization, the probability of the MeSH 

term “Skin Diseases” occurring in the gene-curated literature was greater than the probability of observing 

“Triple Negative Breast Neoplasms.”  

Increases in p(m’) correlated with decreases in NPMI, as illustrated in Figure 2.6B. In other 

words, for more promiscuous MeSH terms, the GeneID-MeSH term co-occurrence for that term was less 

likely to be specifically relevant for the specific topic of interest. When looking at the association between 

the MeSH branch, “Skin Diseases,” with epidermal growth factor receptor (EGFR), we see that the 

broader MeSH terms “Skin Diseases” and “Breast Diseases” had an NPMI < 0 (Figure 2.5B), indicating 
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that these MeSH terms were less relevant specifically to breast carcinogenesis. The NPMI scores for the 

MeSH terms “Breast Neoplasms” and “Triple Negative Breast Neoplasms” co-occurring with EGFR 

remained at 0.1 and 0.21, respectively, because the p(m’) remained relatively similar to p(m). The NPMI 

decreased for most MeSH terms with MAD2L1 where “Cell Division” and “Cell Nucleus Division” drop 

below zero, which are excluded from EMCON. However, the NPMI scores for “Mitosis” and “M Phase Cell 

Cycle Checkpoints” remained above 0, therefore these associations were preserved. Despite the 

decreased NMPI for “Cell Cycle” and MAD2L1, these associations remained above 0 and were also 

preserved.  

 By normalizing the MeSH term frequency, we reduced the noise introduced into the network to 

retrieve more specific and useful GeneID-MeSH co-occurrences. This network cleaning approach 

assured that broader terms would not be ranked higher than more specific terms. The net impact is that 

less-specific MeSH terms will have lower NPMIs; many articles relate to “Skin Diseases” or “Breast 

Neoplasms,” but these articles may have little association with “Triple Negative Breast Neoplasms.” 

MeSH terms more closely associated with the pathological finding of interest such as“Triple Negative 

Breast Neoplasms,” will have a greater NPMI due to closer association. For all gene ID-MeSH co-

occurences for a given branch, the NPMI will increase with depth; i.e., the lowest descendant MeSH term-

gene co-occurrence will have the greatest NPMI. Thus, the most salient associations will be quantitatively 

identified. 

 

Relevance of search results to breast cancer 

 Genes related to the topic of breast carcinogenesis were retrieved from EMCON using seventeen 

expert-selected MeSH terms that represent concepts from seminal papers on the topic of specifically 

breast carcinogenesis(118) and carcinogenesis in general(88,147,148). These seventeen MeSH terms 

were expanded to include all descendants in the MeSH trees to ensure the full scope is represented 

within the selection. The final list of MeSH terms totals 214, which were used to query EMCON and 

retrieve a final list of 14,811 genes.  

Relevance of the EMCON-returned genes to breast cancer was evaluated by comparing the 

mean rank of the ELR gene set to the distribution of the mean ranks of randomly generated gene sets 
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(Figure 2.6). The random gene sets were generated by randomly selecting 287 genes, which is the length 

of the ELR gene set. The average rank of the ELR gene set was clearly distinguished from the random 

gene set distribution (empirical p-value << 0.01). Using the ELR gene set, recall from EMCON search 

results was 0.983. Precision was calculated by manually assessing the relevance of the top five genes 

with the corresponding MeSH term. The average precision across the seventeen selected MeSH terms 

was 0.87 (Table 2.3). We then looked at the top MeSH terms related to well-studied, breast cancer 

genes: BRCA1, BRCA2, ESR1, ESR2, and PGR (Table 2.4). The MeSH terms retrieved are all specific to 

breast cancer or molecules linked to breast cancer like “Progesterone” and “Estradiol”. 

 

Figure 2.7: Comparison of mean rank of ELR, breast cancer-specific gene set to random gene sets 

within EMCON search results 

The ELR gene set is, on average, ranked higher than any of the mean ranks for randomly generated gene 
sets of the same length. Shown are 300 representative random gene sets from a total of 1000. The mean 
rank across all the random gene sets is 7405.  
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MeSH name Top five genes (gene symbol) Precision 

Neovascularization, Pathologic VEGFA, KDR, ANGPT2, ANGPT4, 
VASH1 

1 

Neovascularization, Physiologic KDR, FLT1, TEK, ANGPT1, EPHB4 1 
Apoptosis CASP3, BAX, CASP9, BCL2, CASP8 1 
Cell Cycle CDK2, CDK1, CCNE1, CCNA2, CDKN1B 1 
Epigenomics PARP12, DNMT3A, TET3, GREB1, KAT8 0.6 
DNA Damage ATR, CHEK1, ATM, MDC1, DDB2 1 
DNA Repair RAD51, XRCC1, XPC, ERCC2, XPA 1 
Growth Hormone CSHL1, GH1, GH2, GHR, CSH1 1 
Cell Survival ARIH2OS, CASP3, BAD, BCL2, BCL2L1 0.8 
Immune System LAT2, CLEC4E, ARL4C, CLEC6A, NAV1 0.6 
Inflammation NLRP3, CRP, PYDC1, SPATA31E1, 

NLRP13 
0.8 

Breast SCGB3A1, WISP3, PTK6, SCGB2A1, 
SCGB2A2 

1 

Breast Diseases TBX3, IGFBP3, TP63, TP73, IGF1 1 
Oxidative Stress CAT, GSR, NFE2L2, SOD2, GPX1 1 
Cell Proliferation CCND1, FOXM1, CDKN1B, YAP1, 

CDKN1A 
1 

Gonadal Steroid Hormones SEMG2, ACRV1, HSD17B1, SEMG1, 
HSD17B3 

1 

Xenobiotics NR1I3, NR1I2, ACSM2A, ACSM2B, 
NAT1 

1 
  

0.870588 
Table 2.3: Manual Precision for 17 selected MeSH terms 

Relevance of the five top ranked genes for each of the seventeen selected MeSH terms relevant to breast 
carcinogenesis was evaluated by performing a literature search of through Entrez Gene. Gene symbols in 
red were not explicitly related to the corresponding MeSH term. 
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GeneID Gene 

Symbol 

MeSH Term 

672 BRCA1 Breast Neoplasms 
Triple Negative Breast Neoplasms 
Breast Neoplasms, Male 
Hereditary Breast and Ovarian Cancer Syndrome 
Carcinoma, Ductal, Breast 

675 BRCA2 Breast Neoplasms, Male 
Hereditary Breast and Ovarian Cancer Syndrome 
Breast Neoplasms 
Triple Negative Breast Neoplasms 

2099 ESR1 Estradiol 
Fibrocystic Breast Disease 
Estrogens, Conjugated (USP) 
Breast Neoplasms 

2100 ESR2 Estradiol 
Estrogens, Conjugated (USP) 

5241 PGR Progesterone 
Table 2.4: Top MeSH terms for genes BRCA1, BRCA2, ESR1, ESR2, and PGR from EMCON 

Five breast cancer-related genes were used to search EMCON. Shown are the top-ranking co-occurring 
MeSH terms. 
 
Comparison to Génie 

We searched Génie with two different queries to obtain breast cancer-related genes to compare 

to EMCON results. The Spearman rank correlation for the results from the query with all 214 MeSH terms 

is 0.561 (Figure 2.7) with a recall for the ELR gene set of 0.718. When using only the MeSH term “Breast 

Neoplasms” to retrieve breast cancer-related genes, the Spearman rank correlation drops to 0.451 

(Figure 2.7) and the recall for the ELR gene set also drops to 0.641. 
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Figure 2.8: The rank comparison of the ELR gene set from EMCON and Génie 

We obtained the two Génie gene sets by searching with 214 breast cancer-related MeSH terms and with 
only “Breast Neoplasms”. The correlation of the rank comparisons was similar across the two queries. 
 

Discussion 

We have developed an accessible and scalable resource called EMCON that is comprised of 

ranked associations between genes and MeSH terms. This novel tool is a needed public health and 

toxicology resource that enables connection of an AO of concern with hypothetical MIE or KE information, 

thus improving development of putative AOPs and providing an empirical approach to hypothesis 

generation. EMCON was developed via integration of multiple data sources and subsequent computation 

of the rank of specific associations. In the example herein, a ranked list of genes putatively related to 

breast carcinogenesis was defined using EMCON for use in hypothesis testing. The performance of 

EMCON in this example was evaluated in three ways: (1) comparison of the mean rank of the ELR gene 

set compared to randomly generated gene sets from the EMCON search results using the expert-

selected MeSH terms related to breast carcinogenesis; (2) evaluation of the recall and precision of the 

EMCON search results using the ELR-derived gene set as a standard; and, (3) comparison to results for 
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the 214 breast carcinogenesis-related MeSH terms from an existing tool, Génie. These three evaluations 

demonstrated that EMCON performed well for the use case of defining genes linked to MeSH terms. 

Within the EMCON search results, the ELR gene set for breast carcinogenesis ranked, on average, 

higher than any randomly generated gene set based on NPMI. Further, EMCON demonstrated excellent 

manually assessed precision (0.87) and recall (0.983) using the ELR gene set, and the EMCON results 

correlated with results from Génie, with some differences noted based on different methodological 

choices. Overall, the results presented herein suggest this is a valuable tool for hypothesis generation, 

providing critical support for the building of AOPs and AOP networks in addition to advancing research in 

biological and biomedical fields. 

EMCON was constructed to better utilize existing information in systematic information extraction 

of information used in hypothesis generation. EMCON was built by first integrating heterogeneous 

resources that map genes to articles containing information across a multitude of topics from PubMed. 

Then protein similarity clusters from UniRef50 were used to identify articles with similar, non-human 

genes to be mapped to the corresponding human gene. MeSH term frequency was normalized by 

mapping MeSH term ancestors back to articles of their descendants so that MeSH frequencies 

correspond to the depth of the MeSH tree. Lastly, GeneID-MeSH associations were ranked using NPMI. 

For construction of EMCON, we utilized several resources that manually curate PubMed articles with 

genes relevant to the content of the article. Each curation effort prioritizes articles based on specific areas 

of interest: pathways (Reactome), proteins (UniProt), chemical-gene/gene product interactions (CTD), etc.  

The total number of articles from all the resources totals to almost 1 million out of 27 million articles within 

PubMed.  Without the development of systematic information extraction or tagging efforts like NER [30], 

researchers are forced to rely on manual approaches. The mappings from manual efforts may be higher 

quality than those derived from potential systematic approaches, but the throughput is low. Also, each 

resource is biased towards a specific topic, so specific topics of interest may not be well represented in 

EMCON.  

An ongoing limitation of any data mining approach using manually curated information from 

PubMed is that curation efforts are not standardized, as demonstrated by curation of certain GWAS and 

gene expression profiling studies. These curated studies have varying number of genes mapped without 
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an explanation of whether it was all genes included in the panels, only variants identified, or only those 

with differential expression. This lack of standardization or clarification introduces noise into the network. 

However, the article count cutoff used in this approach (see Methods) filtered out much of this noise, 

reducing the total set of associations by 75%. Noise in the set of GeneID-MeSH associations was also 

reduced through MeSH term frequency normalization, which is similar to approaches used in 

overrepresentation analysis like gene set enrichment analysis (GSEA)(91). The Reactome gene set 

available for GSEA or similar pathway analysis methods is normalized in the same manner, i.e., genes 

from the child pathways are all annotated to the parent pathways as well(137).  A further limitation of only 

using manually curated information is applicability to certain use cases. In this work, we explored breast 

cancer, which has a lot of literature in the curated space, but other diseases or outcomes may not be 

associated with any curated data. In moving forward with this work, systematic approaches can be 

developed to extract relevant information from articles to fill in gaps in knowledge. Although a particular 

disease or outcome may have limited information, EMCON could be used if more broad MeSH terms 

could be connected to these topics. 

The universe of possible human-relevant GeneID-MeSH associations was expanded by using 

UniProt Reference 50 (UniRef50) clusters to map non-human genes to corresponding human orthologs. 

Human genes are overrepresented in the curated PubMed literature accounting for nearly 50% of the 

articles with thousands of other species accounted for the remaining articles. However, genes from other 

research conducted in model species may be relevant to human pathogenesis, at least at the level of 

hypothesis generation.  UniRef50 was used because the protein clusters included the cross-species 

orthologs whereas UniRef90 and UniRef100 are typically clusters of same-species protein isoforms. 

Homologene is a resource that also clusters cross-species gene orthologs together(162) and is used by 

similar methods in literature-based gene prioritization(155). However, Homologene has not been updated 

since the last release in 2014. UniRef50 is regularly updated and supports many other efforts in 

proteomics work, and thus presented a clear choice for use in EMCON. It is possible that by expanding 

the network to include human orthologs, we introduced noise by including genes that may not be relevant 

for human pathogenesis. This aspect could potentially be explored in further analyses, especially since 
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these articles on the human orthologs can be easily identified and then removed if deemed irrelevant. 

This type of noise would not necessarily detract from the utility of EMCON for hypothesis generation. 

Normalized pointwise mutual information or NPMI was chosen as the association measure 

because of the defined threshold of NPMI>0.0 is interpreted as having dependent co-occurrence. Similar 

measures exist like Fisher’s exact, log-likelihood ratio, and Pearson’s chi-square (163), but despite their 

similar use in ranking, do not have defined thresholds to distinguish between independent and dependent 

co-occurrence. Similar co-occurrence measures to identify GeneID-MeSH associations are implemented 

in Gene2MeSH(164) and MeSHOPs(165). However, Gene2MeSH does not normalize the MeSH term 

frequency, and both lack cross species similarity mappings and use Fisher’s exact test to identify and 

rank MeSH terms associated with a gene. There is currently no consensus on which association measure 

works best because each measure can outperform the other depending the dataset(163,166). For the 

purposes of this paper, NPMI was chosen because a continuous rank measure could be more easily 

incorporated into other methods like the gene prioritization workflow implemented in Grashow et al.(90). It 

is possible that the best use of an association measure with this dataset may be a combination of the 

previously listed measures. However, this work demonstrated the utility of NPMI for this problem where 

previous work has only focused on use of Fisher’s exact(164,165) or more complex machine learning 

methods(155).   

The utility of EMCON was demonstrated within the scope of breast carcinogenesis. Breast 

carcinogenesis was chosen as a use case because of the large amount of information available on the 

topic due to major public health interest. Seventeen MeSH terms were selected by experts that, along 

with their descendants, represented important characteristics of breast carcinogenesis. A total of 214 

MeSH terms were used to query EMCON and retrieve ranked lists of genes where the NPMI was 

averaged across all MeSH terms for a final ranked list of genes. The MeSH tree was not considered when 

MeSH terms were selected, so the depth of each MeSH term varies. Due to the inclusion of descendants 

with MeSH terms at varying depths, MeSH terms like “Immune System” are overrepresented with 69 

descendants, while MeSH terms like “Epigenomics” are underrepresented with 0 descendants. This over- 

and underrepresentation introduces bias in the results for breast cancer. It is possible the MeSH term 

selection process can be improved with a systematic, data-driven approach rather than a manual 
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approach. The MeSH term selection could also be improved by consideration of the parent-child 

relationships in the MeSH tree and the MeSH-MeSH association from common publications(167). 

Comprehensive gene sets for complex disorders are typically comprised of variants derived from 

genome-wide association studies (GWAS). However, for this work, we wished to include a more 

heterogeneous set of genes that may be related to processes seen in carcinogenesis. A breast cancer-

specific gene set compiled through ELR was used to evaluate the relevance of the retrieved gene list to 

the topic of breast carcinogenesis. Using the ELR gene set as a standard, the final breast cancer gene list 

from EMCON had a recall of 0.983, and the ELR gene set ranked well above randomly generated gene 

sets of the same length (empirical p<<0.01) indicating that the higher-ranking genes from EMCON are 

likely relevant to breast carcinogenesis. This was further demonstrated by manually assessing precision 

of the top five genes for the seventeen selected MeSH terms (average precision=0.87). The MeSH terms 

that did not have a precision of 1 had either very few descendants (“Cell Survival” and “Epigenomics”) or 

had many descendants (“Immune System” and “Inflammation”; Figure 2.9). MeSH terms with few 

descendants could represent newer topics with fewer relevant articles or could represent cases wherein 

few genes have been specifically annotated to the topic, e.g., “Epigenomics”. MeSH terms with many 

descendants could have genes promiscuously mapped to them because of the large number of varied 

topics within the descendants. In both cases, the genes that were not explicitly related to the 

corresponding MeSH term were not well annotated, demonstrated low article count relative to the other 

top-ranked genes, or may have resulted from promiscuous mapping of geneID to MeSH. This type of 

false positive is an artifact of using NPMI since rare co-occurrences (GeneID-MeSH associations with low 

article counts) are artificially ranked higher. The article count cutoff could be raised to a more 

conservative number to remove these types of associations and tune EMCON to the specific research 

application based on the level of specificity required. When evaluating MeSH terms related to well-known 

breast cancer-related genes (BRCA1, BRCA2, ESR1, ESR2, and PGR), the topics were all specific to 

breast cancer in that they related to breast tissue-specific tumors or molecules like estradiol and 

progesterone.  
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Figure 2.9: Number of genes retrieved for the 17 selected MeSH terms 

The number of genes reflects the genes mapped to select MeSH term along with those genes also 
mapped to the descendants.  
 

EMCON’s performance was compared to results from Génie(155). The Spearman rank 

correlations indicate that EMCON has a strong positive correlation with a more complicated method. The 

recall values for the ELR gene set in both result sets from Génie were much lower than EMCON; Génie 

did not retrieve all genes identified as breast cancer-relevant through expert review. The differences in 

recall between the two tools may be due to some key differences in the function of Génie; unlike EMCON, 

Génie relies on gene2pubmed and GeneRIF rather than all available sources of curated GeneID-PMID 

mappings and does not correct for MeSH term tagging frequency. EMCON is further distinguished from 

Génie as a standalone, easily searchable resource that is scalable to include updates from any of the 

included resources.  

Other previous efforts in data mining to link genes to disease have included a variety of 

implementations, including GeneDistiller(168), Endeavor(169), and many more further outlined in Moreau 

and Tranchevent(170). However, many of these resources have not been updated or maintained, are 

commercial products, or have limited accessibility for further customized integration. Further 

distinguishing EMCON from these resources is the use of MeSH term frequency normalization, 

orthologous genes, and the ease of scaling to include other relevant resources. Finally, EMCON is 



 
 

42 

compatible with previous efforts at putative AOP development, but clearly different in its approach. 

Putative AOPs have been developed using frequent itemset mining(34) based on shared chemicals in 

ToxCast and CTD, in an effort to identify MIEs and KEs that may be relevant. In contrast, EMCON works 

in the opposite direction, i.e. starting with the AO and its associated MeSH terms, with the goal of finding 

possible targets for an MIE or KE related to an AO of interest. 

EMCON has been used as one of several data streams for a gene prioritization project to identify 

breast cancer gene sets for investigating the molecular mechanisms of mammary carcinogens(90). Other 

potential applications of EMCON include defining reference gene sets for high throughput transcriptomics 

chemical screening efforts(128,129). It can be used alongside traditional pathway analysis, as it provides 

a means of linking differentially expressed genes to perturbations at higher levels of biological 

organization (tissue, organ, body, etc.). Also, due to the scalability of EMCON, other data can easily be 

incorporated from chemical and toxicity resources like PubChem(171), the Toxicity Reference 

Database(28), and ToxCast. These additional resources would provide associations between chemicals 

and biological entities (genes, pathways, in vitro and in vivo toxicity endpoints), further expanding the 

utility of EMCON for hypothesis generation, chemical hazard identification and prioritization, and putative 

AOP development. Ultimately, EMCON provides a scalable, comprehensive resource to strengthen 

empirical experimental design and systematic literature review via prioritization of hypotheses based on 

GeneID-MeSH associations. EMCON is a bioinformatic tool for public health and biomedical sciences that 

leverages the existing body of information on putative gene-outcome relationships to support research 

and improve health outcomes. 

 

Summary 

Entity MeSH Co-occurrence network (EMCON) was created using a novel data integration 

pipeline and available information on genes extracted from research articles. The resulting resource, 

EMCON, can be queried to retrieve a ranked list of genes linked to any topic that is captured in literature. 

To demonstrate the utility of EMCON, genes linked to breast cancer were retrieved and success was 

measured by comparing the average rank of a list of known breast cancer genes to randomly generated 

gene lists. The results show that the known breast cancer genes are collectively ranked higher than any 
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list of random genes indicating the results returned from EMCON are, in fact, relevant to breast cancer. 

The resource can be extended for any topic of interest that is covered within biomedical literature. This 

work demonstrates resources that support interoperability i.e., curating information to exposure points of 

integration, opens up new paths to investigate biology.   
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Introduction 

With an increasing need for rapid screening and prioritization of chemicals for hazard and risk 

evaluations, researchers are developing new strategies for predicting chemical toxicity. In accordance 

with these efforts, the Toxicity Forecaster (ToxCast) research program (11) has been developed by the 

U.S. Environmental Protection Agency (EPA) to assist in the realization of the National Research 

Council’s (NRC) vision for improving rapid assessment of the hazard potential of many chemicals for 

human, animal, and environmental health (5,172). These efforts served as an impetus to develop the 

Toxicity Reference Database (ToxRefDB), a digital resource of in vivo toxicity study results. ToxRefDB 

comprises information from over fifty years of in vivo toxicity data, largely from summaries of studies 

performed in accordance with US EPA Office of Chemical Safety and Pollution Prevention (OCSPP) 870 

series health effects test guidelines. The database includes information for over 1,000 chemicals, and is 

being used as a primary source of validation for continued efforts of the ToxCast program(28,29), as well 

as for numerous predictive and retrospective analyses(25,27,173,174). The utility of ToxRefDB to 

predictive toxicology is clear; it has been used as the basis for validation of new approach methods 

(NAMs) to identify specific adverse outcomes of interest(24,26,175,176), as a retrospective benchmark 

for predictive performance of NAMs (27,173,177,178), and in evaluation of the reproducibility and 

interpretation of observed in vivo outcomes(179,180). ToxRefDB has been used for a wide variety of 

applications across industry, government, and academia, with 41 other publications citing either Martin et 

al. (2009) (28) or Martin et al. (2009) (29) in PubMed (APPENDIX 1) as of October 2018. Using 

ToxRefDB to develop an understanding of the reproducibility and variability in in vivo toxicity testing 

                                                   
 

2 This chapter has been submitted to the journal Reproductive Toxicology for publication in 2019. Watford, S., Pham, L., Wignall, J., 
Shin, R., Martin, M., Paul-Friedman, K. (2019). ToxRefDB version 2.0: Improved Utility for Predictive and Retrospective Toxicology 
Analyses.. 

CHAPTER 3: TOXREFDB VERSION 2.0: IMPROVED UTILITY FOR PREDICTIVE AND 

RETROSPECTIVE TOXICOLOGY ANALYSES2 
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clearly supports development of baseline expectations for NAMs that promise to assist with rapid 

prioritization and screening level assessments(181–185). Thus, ToxRefDB represents a seminal resource 

for predictive toxicology applications, and lessons learned from the initial implementation have been 

addressed in a major re-development that we describe herein as ToxRefDB version 2.0. 

To understand this re-development, it is necessary to further describe previous development and the 

evolution of ToxRefDB. The first version of ToxRefDB (ToxRefDB v1) initially captured basic study design, 

dosing, qualitative information for effects, and point of departures (PODs) from summaries of roughly 400 

chemicals tested in over 4,000 registrant-submitted toxicity studies, known as data evaluation records 

(DERs), from the U.S. EPA’s Office of Pesticide Programs (OPP). These studies adhered to Office of 

Chemical Safety and Pollution Prevention (OCSPP) 870 series Health Effects testing guidelines. As this 

resource was intended to serve as training information in understanding the utility of NAMs like those 

employed in ToxCast(9,125), the chemical selection for ToxRefDB was originally prioritized to maximize 

the overlap with ToxCast phase 1 chemicals (ToxCast ph1v1)(1), which were compiled based on 

commercial availability, solubility in dimethyl sulfoxide, chemical structural features suggesting diversity, 

and the availability of in vivo data, with the result that pesticide active ingredients comprised a high 

percentage of the ToxRefDB and ToxCast ph1v1 libraries. Expanded efforts in data collection and 

curation, driven by an attempt to cover as much of the primary ToxCast chemical library as possible, 

increased the chemical and biological coverage of ToxRefDB v1.3 to over 5,900 in vivo toxicity studies 

from additional sources, including the National Toxicology Program (NTP), peer-reviewed primary 

research articles, and pharmaceutical preclinical toxicity studies, among others, for a total of over 1,000 

chemicals. As an update to ToxRefDB v1, ToxRefDB v1.3 was released in 2014 to the public as three 

spreadsheets that consolidated information on adverse effects from the database as well as study 

citations(186,187). 

Though ToxRefDB is unique in its public availability, level of curation, and coverage of chemicals and 

study types, since the initial release of ToxRefDB v1 in 2009 and through subsequent updates, 

challenges have surfaced surrounding the extraction, storage, and maintenance of heterogeneous in vivo 

toxicity information. Several stakeholders commented on challenges in using ToxRefDB with respect to 

the vocabulary used to describe effects, including concerns about grouping effects as “neoplastic” or 
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“non-neoplastic,”(188), as well as the need to be able to integrate the data from ToxRefDB with other 

public databases(189). Further concerns about the need for negatives, i.e. chemicals tested and shown to 

be negative for a specific endpoint or effect, to form balanced datasets for predictive 

modeling(24,25,180,190) strongly relate to the need for an updated vocabulary and determination of 

which effects are measured in a given study. The desire for more quantitative dose-response information 

is obvious, given that benchmark dose modeling(191) may provide POD estimates less dependent on 

specific dose selection. Developmental and reproductive effects, involving complex study designs with 

multiple generations, also appeared to require a more complex database structure to distinguish effect 

levels between generations(175). A more nebulous problem that is common to all databases that seek to 

make legacy information computationally accessible is minimizing data entry error rate. While error rates 

never reach zero, they could be improved through standardized form-based data extraction with 

additional layers of quality assurance (QA)(192). 

In this work, we further describe the challenges realized through the use and release of ToxRefDB v1, 

and how these challenges have been addressed to date with development of ToxRefDB v2, including a 

detailed description of the new content in ToxRefDB v2. The goal of ToxRefDB v2 is to provide a public 

database that better supports the needs of predictive toxicology by increasing the qualitative and 

quantitative information available and by facilitating the interoperability of legacy in vivo hazard 

information with other tools and databases. Recognizing that predictive toxicology will require iterative 

efforts to build computational resources like ToxRefDB, work to generate ToxRefDB v2 has been 

conducted primarily in three main areas: 

• Aggregation of complex and heterogeneous study designs; 

• Controlled vocabulary for accurate data extraction, aggregation, and integration; and, 

• Quantitative data extraction, including quality assurance and efforts to reduce error rate. 

This work represents a significant advancement in increasing the richness of information available for 

predictive and retrospective analyses from ToxRefDB. 
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Meeting Challenges in ToxRefDB 2.0 

ToxRefDB Overview 

Like ToxRefDB v1, ToxRefDB v2 contains summary information for over 5,900 studies labeled 

“acceptable” for data extraction purposes only, i.e. source document was readable and study design was 

clear, from six main subsources: DERs from the US EPA OPP (OPP DER), a subset of available NTP 

study reports (NTP), the open literature (OpenLit), donated pharmaceutical industry studies (pharma), 

and other (Other; including unpublished submissions and unknown sources) (Figure 3.1A). The study 

types included in ToxRefDB v2 cover the same study designs as ToxRefDB v1: chronic (CHR; 1-2 year 

exposures depending on species and study design) bioassays conducted predominantly in rats, mice, 

and dogs; subchronic (SUB; 90 day exposures) bioassays conducted predominantly in rats, mice, and 

dogs; subacute (SAC; 14-28 day exposures depending on the source and guideline) bioassays 

conducted predominantly in rats, mice, and dogs; developmental toxicity studies (DEV) conducted 

predominantly in rats and rabbits; multigeneration reproductive toxicity studies (MGR) conducted 

predominantly in rats; reproductive (REP) toxicity studies conducted largely in rats; developmental 

neurotoxicity (DNT) studies conducted predominantly in rats; and a small number of studies with designs 

characterized as acute (ACU), neurological (NEU), or “other” (OTH) (Figure 3.1B). Though ToxRefDB v2 

contains summary data from roughly the same number of studies and chemicals as ToxRefDB v1, 

substantial additions that increase the utility of these data have been made.  
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Figure 3.1: Number of studies by study type and species in ToxRefDB v2 

(A) ToxRefDB contains over 5,900 animal toxicity studies from a variety of sources include Office of 
Pesticides Programs Data Evaluation Records (OPP DER), National Toxicology Program study reports 
(NTP), pharmaceutical preclinical testing (pharma), open literature (OpenLit), and others (Other). (B) The 
study designs include chronic (CHR), sub-chronic (SUB), developmental (DEV), subacute (SAC), 
multigeneration reproductive (MGR), developmental neurotoxicity (DNT), reproductive (REP), neurotoxicity 
(NEU), acute (ACU), and other (OTH) for numerous species, but mostly for rat, mouse, rabbit, and dog.  
 

Aggregation of complex and heterogeneous study designs 

Animal studies are designed to address specific hypotheses, with flexibility in study design required to 

potentially reduce cost, time, and the number of animals needed(193). However, this flexibility presents 

challenges in structuring the study-related information, so when designing a database to capture both 

study design and adverse effect-related information, a structure that allows for that flexibility is necessary. 

An example of the needed flexibility in terms of archiving information on many treatment groups becomes 

apparent in consideration of the MGR study in rats(194) (Figure 3.2). The addition of quantitative data 

required a reorganization and expansion of the previous database. Thus, the number of tables and their 

connections have been significantly increased in ToxRefDB v2 to enable archiving of information from 
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heterogeneous study designs that also may have additions or deletions of treatment groups or doses 

needed to thoroughly investigate toxicity and complete a study (Figure 3.3). 

 

 

Figure 3.2: Three generation MGR example 

This example demonstrates that within the MGR study design, there could be 14 treatment groups, which 
would then need to be multiplied by the number of doses used in the study. Many of the study designs in 
ToxRefDB have the potential for the addition of interim, recovery, and satellite groups in order to 
investigate findings of interest. Even though the guidance in the associated MGR guideline (194) does not 
require an F3 generation, many studies will report findings from at least a “first mating” treatment group of 
the F3 generation. 
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Figure 3.3: ToxRefDB general schema with changes made from ToxRefDB v1 to ToxRefDB v2 

Highlighted in blue are the additions to the generic schema to accommodate the updates and additional 
features for ToxRefDB v2. These include tables to capture the dose-response, quantitative data; guideline 
profiles for the inference workflow to determine negative endpoints and effects; UMLS cross-references; 
and effect groupings for systematically calculating PODs and associated effect levels. 
 

Controlled effect vocabulary for accurate data extraction, aggregation, and integration 

Controlled effect vocabulary 

A controlled effect vocabulary is critical for any resource aggregating information across a diverse 

set of sources for efficient retrieval and to enforce semantics, especially within biology (195). ToxRefDB 

exemplifies this need as it is used for modeling efforts and retrospective analysis. One of the most 

significant challenges in extracting and/or integrating in vivo toxicity studies is the lack of adherence to 

controlled vocabularies. Inconsistencies in vocabulary arise both as advancements are made to better 

understand adverse effects in the fields of pathology and toxicology and through preferential terminology 

in reporting due to differences among experts (196). These inconsistencies can also be seen across 

studies adhering to the same guideline but conducted years apart. Without adherence to a standard 

vocabulary that is actively updated and maintained, these studies can only be manually integrated in a 

way that is unreliably subjective (197). The current landscape of pathology terminology appears to be 

growing, but with more terminologies for specific species and lesion types available via the Society of 
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Toxicologic Pathology (STP) as part of the International Harmonization of Nomenclature and Diagnostic 

Criteria (INHAND) project (198). Perhaps most evolved and ready for current use are solutions in the 

medical science field that can be seen through the adoption of electronic medical records and electronic 

health records for reporting adverse events, including data reporting from clinical trials for 

pharmaceuticals and medical devices (199,200). In fact, current efforts are underway to develop 

international standards for capturing data from clinical trials, which includes non-clinical data. These 

efforts are led by the Clinical Data Interchange Standards Consortium (CDISC), where collaboration 

between international regulatory agencies and their stakeholders is fostered to develop standards for 

digital submission of clinical trial data (201,202). 

Originally, ToxRefDB vocabulary for endpoints distinguished between non-neoplastic and 

neoplastic lesions, which conformed to the vocabulary used by NTP (79). Improving the controlled 

endpoint vocabulary for ToxRefDB was a particular challenge because the terminology found in OCSPP 

guidelines or NTP study specifications may not necessarily match the reported pathology, clinical 

chemistry, and toxicology study results, where terminology is sometimes more specific. Guideline 

language needs to be flexible and lasting, rather than overly prescriptive, but this needed flexibility also 

leads to potential mismatching of information across studies. One demonstrative example is provided by 

the terminology of the guideline requirement for OCSPP 870.4100, “full histopathology on the organs and 

tissues…of all rodents and nonrodents in the control and high-dose groups, and all rodents and 

nonrodents that died or were killed during the study” (203), which doesn’t distinguish between non-

neoplastic and neoplastic lesion types nor detail all possible histological findings that could be observed, 

e.g., hypertrophy, adenoma, fatty changes. In ToxRefDB v1, the effect vocabulary was generally 

standardized and hierarchically structured into broader categories called endpoints (Figure 3.4 and further 

described below). Effects were grouped into categories like carcinogenic, neoplastic, and non-neoplastic 

pathology, organ weight, etc. This categorization was maintained for ToxRefDB v2, however, as 

mentioned before, the terminology for endpoints reported in the studies did not match the terminology in 

the corresponding guidelines and specifications. This was problematic for two primary reasons: (1) 

identifying the correct endpoint within a guideline is required to determine whether or not it was negative 

and, (2) the endpoint terminology relied on determination of the contribution of a given endpoint to a non-
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neoplastic or neoplastic process rather than allowing the user to define what effects might be related to 

cancer phenotypes or other adverse outcomes. 

 

Figure 3.4: Example of the controlled effect terminology in ToxRefDB v2 

An example of the terminology hierarchy is demonstrated for an effect described as “intrahepatic bile duct 
hyperplasia”. The finding is recorded as the “effect description free”, which is the wording used in the 
study report. The remaining fields are part of the ToxRefDB controlled terminology. The endpoint 
category is systemic, the endpoint type is pathology microscopic, the endpoint target is the liver, the effect 
description is hyperplasia, and the specific observation of “intrahepatic bile duct hyperplasia” was made in 
the adult life-stage at the specific target site, the bile duct. 
 

The terminology for both endpoints and effects was standardized to better reflect the terminology 

used in both the OCSPP guidelines as well as what was reported in the summaries in DERs. The primary 

change made in ToxRefDB v2 is that for the endpoint category “systemic,” the tissue pathology endpoint 

types are now “pathology microscopic” and “pathology gross,” with no a priori suggestion of whether the 

observation relates to specific cancer or non-cancer related adverse outcomes. Further, duplicative 

endpoints were standardized, reducing the number of endpoints from approximately 500 to 400. The 

number of effects remained the same as they were re-binned into the most relevant endpoint. Though the 

endpoint and effect terminology in ToxRefDBv2 is not comprehensive for all in vivo toxicity studies, it 

captures the observations from the studies and study types currently within ToxRefDB. Each effect can 

be further qualified to include life stage, direction of effect (increase, decrease, neutral), target site, and 

exact terms from the source document used to capture the effect (a field called “effect description free”) 

(Figure 3.4).  

The endpoint category “neurological” was not updated and has been left out of the release of 

ToxRefDB v2. The corresponding effects for that endpoint are associated with 18 NEU and 185 DNT 

studies. However, the study design, dosing, and treatment group information is still available for these 

studies in the current 2014 release of ToxRefDB v1.3 (187). The neurological terminology is still under 
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development, with the intention to extend the controlled terminology and extract this information to be 

available in future updates.  

 

Enabling semantic interoperability 

Adopting a controlled terminology for ToxRefDB is beneficial for data extraction and data 

retrieval, but we can also extend the use to enable semantic interoperability across similar resources 

archiving in vivo toxicology data. This will allow interoperability with other sources that also capture in vivo 

toxicology data like Chemical Effects of Biological Systems (CEBS) (61), International Uniform Chemical 

Information Database (IUCLID) (83), and eTox (80).  We identified resources like CDISC that actively 

maintain and update controlled vocabularies for all aspects of nonclinical studies. Specifically, we were 

interested in the terminology developed in Standards for Exchange of Nonclinical Data (CDSIC-SEND) 

and Study Data Tabulation Model (CDISC-SDTM). These vocabularies are maintained by National 

Cancer Institute Thesaurus (NCIt), which is a subset of the National Library of Medicine’s (NLM) Unified 

Medical Language System (UMLS) (78). UMLS is a semantic network linking over 150 terminology 

resources (CDISC being one of those resources) within the biomedical domain. A UMLS concept is 

uniquely identified by a concept code. These concept codes were mapped to the controlled terminology 

defined in ToxRefDB on a manual basis, using the UMLS Terminology Services and NCI Thesaurus 

browsers. Figure 3.5 describes the completeness of the mapping for endpoints and effects and the 

coverage from CDISC-SEND and CDISC-SDTM. By cross-referencing ToxRefDB terminology with 

UMLS, a crosswalk to any other resources that adhere to any of the terminology resources maintained 

within UMLS is enabled.  
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Figure 3.5: Terminology sources and membership of UMLS concept codes cross-referenced to 

ToxRefDB endpoints and effects 

Over 1,800 UMLS concept codes were mapped to endpoints and effects in ToxRefDB. Only 500 of those 
concept codes are a part of the CDISC-SEND terminology. All of the concept codes are a part of 
vocabularies within both National Cancer Institute Thesaurus (NCIt) as well as UMLS. 
 
Quantitative data extraction, quality assurance, and efforts to reduce error rate 

Study extraction process 

Initially, studies available in ToxRefDB v1 lacked quantitative, dose response information; the 

quantitative information and its application is described in the next section in more detail but served as a 

strong impetus to motivate re-extraction of the studies in ToxRefDB. This task initially proceeded using an 

Excel file-based extraction. However, there were faults in this process that required manual corrections 
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after uploading study extractions to the ToxRefDB MySQL database, including: inconsistent comments, 

different number of animals for the same treatment group, and added effects outside of the controlled 

terminology. Thus, following initial attempts with Excel-based extraction, an Access database file was 

generated from the MySQL database for each study (Figure 3.6). The Access database files featured 

several improvements, including: standardized options for more consistent reporting in some fields, such 

as the units on time and dose, dose-treatment group, and effect information; checkbox reporting for 

observation status on each endpoint and effect; and a log for tracking changes and facilitating QA. Nearly 

32% of the studies were extracted using Excel-based approach, with the remaining studies extracted 

using the Access database approach. Switching to Access database files significantly reduced errors and 

increased standardization of reporting. 

 

Figure 3.6: Data extraction and review workflow 

Access databases are generated for each study and batched to data extractors with the corresponding 
source files. The data in the Access databases are curated with additional data extracted from the source 
files with up to three levels of review. The Access databases are batched back and the data is imported 
back into the MySQL database. 
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Guidance for data extraction was stratified first according to study type (e.g., CHR, SUB, DEV, 

MGR) then by study source (e.g., OPP DER and NTP) because of the differences in both study design 

and adverse effects required for reporting as stated in guidelines. The process used to extract study 

information was also an important aspect of QA efforts for ToxRefDB v2. First, a primary reviewer 

extracted study, dose, treatment group, effect, and endpoint observation information, per standard 

operating procedures provided to the reviewer. The instructions detailed how to review the toxicological 

data and extract it from the original data sources consistently across reviewers using the Access 

database. This was reviewed by a second, senior reviewer, who was asked to review all extracted 

information as if they were extracting it again and, also, to review the comment log from the primary 

reviewer. Finally, if either the primary or secondary reviewer noted that it was necessary, an additional 

senior toxicologist reviewed the comment logs, extracted information, and resolved any conflicts or 

questions prior to finalization of the extraction. The final, tertiary review occurred for approximately 10% of 

the studies. All reviewers were trained in the procedures prior to reviewing studies. For release of 

ToxRefDBv2, the full quantitative data extraction for all CHR and SUB studies were completed, with 

quantitative data extraction completed for many other study types and sources as well (additional 

quantitative data will be added in updates to the version 2 release). Table 3.1 lists the current number of 

studies with quantitative data extracted by study type and source.   
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A Study type Study source Number of studies 
extracted 

CHR NTP 347 
CHR OPP DER 1,079 
CHR OpenLit 9 
DEV NTP 10 
DEV OPP DER 958 
DEV OpenLit  1 
DEV  Other 6 
MGR OPP DER 345 
MGR OpenLit  1 
MGR Other 20 
SAC NTP 59 
SAC OPP DER 25 
SUB NTP 247 
SUB OPP DER 769 
SUB OpenLit  6 
Total 3,882 

 

B Study type Number of chemicals 
ACU 10 
CHR 663 
DEV 710 
DNT 124 
MGR 458 
NEU 18 
OTH 18 
REP 77 
SAC 191 
SUB 659 
Total chemicals 1142 

Table 3.1: Extraction progress as of ToxRefDB v2 release 

Over 65% of the studies have been curated with dose-response, quantitative data extracted. Priority was 
given to chronic (CHR) and sub-chronic (SUB) OPP DERs and NTP study reports, which are completed. 
The remaining studies are predominantly from OpenLit and pharma.  A) The number of studies per 
source by study type. B) The number of chemicals per study type. 
 

Critical Effect Determination 

ToxRefDB v1 and v2 have several effect levels stored; treatment-related effects define lowest effect 

levels (LELs) and no effect levels (NELs), whereas critical effect designations define the lowest 

observable adverse effect and no observable adverse effect levels (LOAELs, NOAELs). A critical effect 

level is defined as the dose at which a treatment-related effect is deemed to have toxicological 

significance. Critical effects are typically used to define the study-level POD for regulatory toxicology 

applications. Not all studies within ToxRefDB v1 had been assessed for critical effects, or the critical 

effects had not been extracted. For extractions of OPP DER files, the critical effect was simply captured 
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from the source document as previously identified by toxicologists who had reviewed the original study 

file. If for a given source document, particularly those from sources other than OPP DER files, critical 

effect information was lacking, senior toxicologists trained to extract information for ToxRefDB reviewed 

the study and determined the critical effects and critical effect levels. For each study, the reviewers 

determined the critical effect and lowest observed adverse effect level(s) (LOAEL) using a weight-of-

evidence (WoE) approach (204), like the approach used to evaluate registrant-submitted studies for 

generation of DERs. Using this approach, the identification of potential critical effects from a given study 

was determined based on statistical significance, considerations of biological relevance, and consistency 

across multiple endpoints (in the presence or absence of statistical significance) to select the appropriate 

LOAEL value(s) and the overall study LOAEL. The WoE evaluation included review of all pertinent 

information so that the full impact of biological plausibility and coherence was adequately considered. 

This approach involves weighing individual lines of evidence and combining the entire body of evidence 

to make an informed judgment. Judgment about the WoE involved considerations of the quality and 

adequacy of data, and consistency of responses induced by the agent in question. The WoE judgment 

required combined input of relevant disciplines. Generally, no single factor determined the overall weight; 

all potential factors were judged in combination. The results of these reviews were recorded along with 

appropriate rationales and can be found in ToxRefDB v2.  

Quality assurance and quality control efforts to reduce error rate 

Error rate is an inherent problem for legacy databases as much of the source information was 

entered manually, so human errors resulting from transcription are impossible to completely avoid (192). 

However, as part of the ToxRefDB v2 effort, increased QA measures to promote greater fidelity of the 

information captured, which included numerous quality control (QC) checks to ensure data integrity were 

implemented. First, studies were extracted utilizing a defined QA process, with multiple levels of review 

and Access form-based entry (described previously) to prevent extraction errors as described above. 

Upon upload into ToxRefDB v2, these extractions were required to pass QC measures because, although 

the Access database files enforce the MySQL database constraints as well as use of the controlled 

terminology to minimize data entry error, logical errors can persist. We checked a series of potential 

logical errors after the extracted was uploaded through the import script. These errors were identified by 
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defining a series of tests up front that must resolve to a particular answer. Below are some of the logical 

errors that were flagged using a QC check following import of the Access database files to the MySQL 

database: 

• Dose level numbering did not correspond to the total number of doses; 

• Duplication of concentration/dose values, including two control doses; 

• No concentration and no dose adjusted value for a reported effect (possible extraction error or 

possibly that the effect was qualitatively reported); 

• The critical effect level is at a dose below where treatment-related effects were observed; and/or, 

• The control was incorrectly identified as a critical effect level. 

Any of these issues that could not be resolved systematically were flagged to undergo a second 

round of extraction and QA to correct. Though QC is an ongoing and evolving process, these QC checks 

are serving as an improvement to the overall database and database development process. 

An additional ongoing problem for reporting quantitative data from clinical or related laboratory 

findings is unit standardization (205,206). No guidance is provided on how to report findings in the 

OCSPP guidelines nor from any other sources, so units were extracted exactly as they were presented in 

the reports. The units were standardized by eliminating duplicate entries for the same units that were 

originally entered differently or with typographical errors. Units were only standardized, so no conversions 

were made. Further work must be undertaken to further standardize units and define conversions that can 

be systematically automated.  

In order to understand how increased quality assurance and quality control may have affected 

quantitative information in ToxRefDB, a comparison of study level LEL and LOAEL values for 3,446 

studies between ToxRefDB v1.3 and v2 was conducted. This evaluation showed ~95% concordance for 

the LELs and ~90% for LOAELs between ToxRefDB v1.3 and ToxRefDB v2. Though the values in v1.3 

and v2 were largely concordant, addition of critical effect review for studies that previously lacked a 

critical effect and/or error correction account for the minute differences. The magnitude of the differences 

ranged from 0.1 log10-mg/kg/day to 2.4 log10-mg/kg/day, with an average difference of 0.52 log10-

mg/kg/day for LEL and 0.57 log10-mg/kg/day average difference for LOAELs. 



 
 

60 

Distinctions between negative effects and not tested effects 

Many study sources only report information on the adverse effects, and data extracted in ToxRefDB 

v1 reflected this (i.e. only contained data for positive or treatment-related effects). These values were 

reported as lowest effect levels (LELs) or lowest observable adverse effect levels (LOAELs), with no 

effect and no observable adverse effect levels (NELs, NOAELs) inferred as the next lowest dose, 

respectively. A positives-only database presented a major challenge for predictive modeling applications 

that require balanced training sets of positive and negative findings: the user was left to infer negatives 

from the database without the guidance of what was tested and reported for the study based on its 

adherence (or non-adherence) to a guideline. Finding a solution to systematic and accurate inference of 

negatives involved leveraging the new controlled effect terminology to match the OCSPP guidelines 

(described above) and annotating endpoints as required, triggered, or recommended. Required endpoints 

are always tested according to the guidelines, whereas triggered endpoints are required under specific 

circumstances, e.g. if a chemical is known to perturb a specific system based on information from 

previous studies. A recommended endpoint is not always tested but are mentioned as important in the 

guidelines. All other endpoints not explicitly mentioned in the guidelines were assumed to be not required. 

The collections of endpoint annotations for guidelines are referred to as guideline profiles.  

These guideline profiles enable assumptions about whether an endpoint was tested for a given study 

based on which guideline the study followed. A majority of the studies (58%) described in ToxRefDB are 

based on OPP DERs, which summarize registrant-submitted data in accordance with OCSPP series 870 

Health Effects Testing Guidelines as seen in Table 3.2. Additionally, though not strictly referred to as 

guidelines, study specifications for SAC, SUB, and CHR studies from NTP (207) were also reviewed and 

developed into guideline profiles to allow for their inclusion in determination of negatives. Developmental 

and reproductive studies from the NTP were not included in guideline profile development at this time due 

to the assumption that these studies may have been highly customized based on the experimental need, 

and as such inference of negatives may not lead to accurate conclusions (personal communication, John 

Bucher and Paul Foster). Because the studies included in ToxRefDB span decades, we also included 

guideline profiles for updated guidelines. For example, since testing requirements were added to the 

MGR guideline (OCSPP 870.3800) in 1998 (194), the MGR study type has two associated guideline 
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profiles: one for studies conducted before 1998 and another for studies conducted in 1998 and later. All of 

the guideline profiles were reviewed by an independent senior toxicologist familiar with the guideline and 

guidance documents. 

Observations were recorded and confirmed in the data extraction process for each to reflect 

concordance with guideline profiles, deviations, endpoints that were measured following a trigger, etc. An 

observation is defined as the testing and reporting status of a given endpoint in the study. Extractors 

made decisions about testing and reporting status as described in Table 3.3, where for example 

endpoints that were reported as tested can be differentiated from endpoints that are assumed to be 

tested based on the guideline profile. The important result of the development of these guideline profiles 

is that missing or not tested data can now be distinguished from negative (tested with no effect seen) for 

a large fraction of the studies described in ToxRefDB v2. The inference workflow to determine negative 

effects based on observations and guideline profiles is described in Figure 3.7. 

Guideline number Guideline name Study Type in ToxRefDB 
870.3100 90-day Oral Toxicity in Rodents SUB 
870.3150 90-day Oral Toxicity in Nonrodents SUB 
870.3250 90-day Dermal Toxicity SUB 
870.3465 90-Day Inhalation Toxicity SUB 
870.3550 Reproduction/Development Toxicity Screening 

Test 
REP 

870.3700 Prenatal Developmental Toxicity Study DEV 
870.3800 Reproduction and Fertility Effects MGR 
870.4100 Chronic Toxicity CHR 
870.4200 Carcinogenicity CHR 
870.4300 Combined Chronic Toxicity/Carcinogenicity CHR 
870.6200 Neurotoxicity Screening Battery NEU 
870.6300 Developmental Neurotoxicity Study DNT 
870.3050 28-day Oral Toxicity in Rodents SAC 

Table 3.2: OCSPP 870 series health effects guidelines in ToxRefDB 
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Tested status Reported status Example 
Tested Reported The endpoint was SPECIFICALLY written in the text of 

the study source indicating that data was collected 
(default if required by the guideline for that study type) 

Not tested Reported The endpoint was SPECIFICALLY written in the text of 
the study source indicating that data was NOT collected, 
even if required by the guideline 

Tested Not reported The endpoint was NOT specifically written in the text of 
the study source, however other evidence indicates it 
can be deduced that it was tested (or was required by 
the guideline to be tested) 

Not tested Not reported The endpoint was NOT specifically written in the text of 
the study source and is not required by the guideline, so 
we assume that the endpoint was not collected in this 
study 

Table 3.3: Observations for guideline profiles 

The tested status indicates if the endpoint was evaluated or not by the given study.  The reported status 
indicates if the testing status was reported in the given study. Combining the tested and reported status 
yields the observation status for the specific endpoint of interest on a study-by-study basis. 
 

 

Figure 3.7: Inference workflow to determine negative effects 

Four steps are taken to systematically infer true positives and negatives: (1) study extracted completely; 
(2) application of the observation status; (3) determination of the effect seen (yes/no) on the basis of 
statistically significant findings; (4) conclusion, with true positive (green), true negative (red), not tested 
(orange), and inconclusive (gray) as possible outcomes. 
 

Study Reliability (ToxRTool) 

A majority of the studies referenced within ToxRefDB were extracted via summaries from OPP 

DERs, and these studies typically follow OCSPP 870 series Health Effects Testing Guidelines; however, 

as ToxRefDB was expanded, other studies were summarized from various sources, including: NTP, 

pharma, OpenLit, and Other. NTP and pharma studies were considered guideline-like, as a study 
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guideline or specification that these studies resembled could be identified, but OpenLit studies were not 

assumed to conform to any guideline. Therefore, all open literature studies were assessed for reliability 

and guideline adherence. The Toxicological Data Reliability Assessment Tool (ToxRTool) was adapted 

for this assessment(208). ToxRTool is an Excel application that includes questions across 5 criteria with 

numerical responses that are summed to lead to a Klimisch score: a score ranging from 1-4 that captures 

an overall assessment of reliability(209). The ToxRTool was adapted specifically in the following ways for 

this project: 

• Added Guideline Adherence Score (an initial question for the reviewer regarding the study’s 

adherence to or consistency with OCSPP guidelines with a five-point rating scale) further 

described in Table 3.4.   

• Added “Context of Tool and Rationale/Intent for Study” field (an open-text field to insert the 

purpose of the study quality review to address the concern raised by Segal et al. (2015) (210) 

that the intended purpose of the ToxRTool-facilitated review could influence evaluations).  

• Added additional scoring notes (to help the reviewers assign scores consistently). 

• Added option for “0.5” rating for selected criteria (for some questions considered more subjective 

than others, if the reviewer concluded the question was partially fulfilled).  

A total of 522 OpenLit studies were assessed with the ToxRTool with scores ranging from 8 to 23 with 23 

being the highest score. The majority of the studies reviewed for ToxRefDB v2 corresponded to Klimisch 

quality scores of 1 (ToxRTool score of ≥ 18) or 2 (ToxRTool score of 13-18). The ToxRTool scores could 

be used as a quality flag both to qualify and prioritize studies for the extraction process, or by users who 

are performing reviews of information on a single chemical basis.  
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Score Description 
5 Adheres to modern* OECD/EPA guideline for repeat-dose toxicity studies (explicitly stated by 

authors; broad endpoint coverage and ability to assess dose-response) 
4 Adheres to an existing or previous guideline (explicitly stated by authors; previous version of 

OECD/EPA guidelines or FDA guidelines) 
3 Not stated to adhere to guideline but guideline-like in terms of endpoint coverage and ability to 

assess dose-response (e.g., NTP). Please see Quick Guide to EPA Guidelines for Chronic and 
Subchronic studies.  In this table, you can easily assess whether the study was guideline-like 
in terms of the animals used (species, sex, age, number), dosing requirements, and reporting 
recommendations. 

2 Unacceptable adherence to guideline (intended to adhere to guideline but had major 
deficiencies) 

1 Unacceptable (no intention to be run as a guideline study, purely open literature or specialized 
study) 

Table 3.4: Guideline adherence scoring added to ToxRTool 

Note that many of the studies extracted, particularly from sources like the NTP and open literature, were 
never intended to adhere to a guideline and as such “unacceptable” in this case only refers to their 
guideline adherence and not the study design itself. 
*A study is considered as adhering to “modern” OECD/EPA guidelines if it was published after 1998, 
which is the date that many Health Effect 870 series guidelines were re-published.  
 

Extensions of ToxRefDB v2 updates for research applications 

Systematic calculation of point of departures (PODs) and related effect levels 

Related to the new ToxRefDB v2 controlled effect terminology is the application of this 

terminology for calculation of PODs and related effect levels for various modeling and retrospective 

analyses in the predictive toxicology realm. For purposes of predictive toxicology, PODs can be computed 

per chemical (i.e., lowest dose that produced effects or adverse effects across all study types included in 

the database) or per study (i.e., lowest dose that produced effects or adverse effects in a given study of 

interest). PODs computed by chemical could be broken down into a POD for some combination of effects 

in a POD “category,” e.g., the lowest dose that produced effects or adverse effects on developmental or 

reproductive effects as a group. Acknowledging that the specific application may define the appropriate 

aggregation of the effect data in ToxRefDB for calculation of PODs, ToxRefDB v2 (Figure 3.3) enables 

definition of the list of effects to be grouped together, followed by storage of the PODs calculated based 

on that list. A collection of effect groupings is referred to as an effect profile. An initial set of effect profiles 

were created to define custom grouping of effects from the study, treatment groups, and effects. For 

example, all developmental effects, across studies, could be combined to give a POD, or minimum 

LOAEL or LEL value, for developmental effects. The NEL and NOAEL are designated as the next lowest 

doses from the LEL and LOAEL, respectively. A complication in providing PODs is that not every effect is 
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necessarily of toxicological significance and may not correspond to the critical effect level as reviewed by 

toxicologists. In the case that no effects of toxicological significance were observed for a given category 

of effects, or by study, the LOAEL is greater than the highest dose tested and the NOAEL is greater than 

or equal to the highest dose tested for that effect (i.e., a “free-standing NOAEL”). For all POD types, 

including NEL, NOAEL, LEL, and LOAEL, a qualifer (<, >, or =) is provided to assist with quantitative 

interpretation of these values.  

The effect profiles are an important feature addition and address problems previously 

highlighted(189); essentially, the endpoints and effects in ToxRefDB can be grouped a number of ways, 

which may lead to differing interpretations. However, there is no single way to create POD values via 

grouping of effects, as differing interpretations may be equally valid for divergent applications of the data. 

The two effect profiles currently available in ToxRefDB v2 are summarized in Table 3.5 for clarity, with the 

expectation that as use of the database grows, additional effect profiles can be added. It should be noted 

that these effect profiles, and the POD values generated in using them, are for research purposes and do 

not necessarily reflect POD values that may be used in chemical safety evaluations. 

First, effect level data were grouped by study type, endpoint category, and life stage. This first 

effect profile produced POD values for each study type, life stage, and endpoint category combination. 

This first effect profile was used to calculate effect levels for the CompTox Dashboard (17).  

A second effect profile was also employed, where PODs were calculated for each endpoint 

category-endpoint type pairing, except in the case of the systemic endpoint category, where PODs were 

reported for each endpoint targets (i.e., organs). This second effect profile produced POD values for 

cholinesterase, developmental, and reproductive endpoint categories; hematology, in-life observation, 

and urinalysis endpoint types; and organ-specific endpoint targets (e.g., liver). Either of these effect 

groupings and associated effect levels may be useful for research purposes as a meaningful way of 

considering many pieces of information for a chemical at one time.



 

 

 

Effect profile id 
Description 

Example output 

1 Endpoints are grouped by study type, life stage, and endpoint category to produce a POD. NEL, LEL, NOAEL, and LOAEL 

will be presented for 

combinations, e.g.: 

 

MGR/systemic/adult 

CHR/cholinesterase/adult 

DEV/systemic/fetal 

DEV/reproductive/adult-

pregnancy 

 

 

Study type 

• SAC 

• SUB  

• CHR  

• DEV 

• MGR 

• OTH 

Endpoint category 

• Cholinesterase 

• Reproductive 

• Developmental 

• Systemic 

Lifestage 

• Adult 

• Adult_pregnancy 

• Juvenile 

• Fetal 

2 Endpoints are grouped according to endpoint category, endpoint type, or endpoint target. The 

endpoint target is used for systemic pathology endpoints, i.e. if the effects are organ-level, the POD 

is reported for the organ system. 

NEL, LEL, NOAEL, and LOAEL 

will be presented for 

combinations, e.g.: 

 

Cholinesterase 

Reproductive 

Developmental  

Systemic/liver 

Systemic/clinical chemistry 

 

Endpoint category 

• Cholinesterase 

• Reproductive 

• Developmental 

For the systemic endpoint category, either the endpoint type or organ are used 

Endpoint Type: 

• Clinical chemistry 

• Hematology 

• In life observation 

For pathology microscopic and gross, and organ weights, the organ name is used, e.g.: liver, kidney, 

heart 

Table 3.5: Effect profiles in ToxRefDB v2 for POD computation 
Two effect profiles group effects for computation of POD values, i.e. NEL, LEL, NOAEL, and LOAEL values, which can be used in research 

applications. 

6
6
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Benchmark Dose (BMD) Modeling for ToxRefDB  

Quantitative dose-response modeling yields PODs for research applications that are less 

dependent on the doses selected for a given study, and ensures that dose values selected correspond to 

similar levels of effects across studies (211). Though there are many possible approaches to curve-

fitting(16,212), the US EPA Benchmark Dose Modeling Software (BMDS)(213–215) has become the 

canonical tool for use in toxicology regulatory and research applications(212,216–218). Using BMDS to fit 

the quantitative response data in ToxRefDB provides modeled values, e.g., benchmark dose (BMD) 

values, using the default recommendations from the BMDS guidance(191).  In ToxRefDB v2, we report 

the results from the largest use of batch processing with BMDS v2.7 employed to date, using a Python 

package(219) (Pham et al). The objectives in reporting this demonstration within the database are (1) to 

promote the use of BMD values in development of predictive toxicology solutions for regulatory 

applications; and (2) to demonstrate the feasibility of large-scale BMDS analysis of legacy toxicology 

information. The BMD values reported are in no way intended to reflect any regulatory decision-making 

on a single chemical basis. 

Over 92,000 quantitative dose-response datasets, i.e. data from chemical-effect pairs, from 

complete study extractions with at least 3 non-control dose levels in ToxRefDB v2 were filtered to yield 

datasets amenable to modeling using BMDS. For each dose group of a study, BMDS analysis requires 

the dose, N, and dichotomous incidence or the continuous effect level mean and variance. In large part 

due to inconsistent or incomplete reporting of variance for continuous responses, only about one-third of 

the total datasets were available for BMDS modeling (nearly 28,000). For each modeled dose-response, 

the data were grouped according to the response type, i.e., continuous response, continuous response 

for organ and body weights, dichotomous response, or dichotomous cancer response. The response type 

guided selection of the models and benchmark response (BMR) used in the automated analysis, as 

shown in Table 3.6, as recommended by the BMDS guidance(191). The effect terminology corresponding 

to cancer is available in APPENDIX 2.  

The current BMD table in ToxRefDB v2 holds results for nearly 28,000 datasets. This includes 

BMD models with 1 standard deviation for continuous data, 10% relative deviation for organ/body weight, 
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and 5 and 10% BMR for dichotomous data. Almost 90% of the datasets were successfully modeled and 

have at least one recommended model and therefore a BMD value (Figure 3.8).  Currently, there are 627 

unique chemicals (as indicated by CAS registry number) with at least one modeled BMD value. The lower 

95% confidence limit on the BMD value estimate, known as the BMDL, is also stored in the database. 

However, some recommended models are associated with cautions for using the BMD and BMDL values 

that were auto-generated by BMDS (v2.7). For example, there may be warnings to indicate a large 

distance between the BMD and BMDL, or that a computed BMDL is likely imprecise because the model 

has not converged. All warnings related to model recommendations are stored in the “logic cautions” 

column of the “bmd” table in the database and should be considered by the end user of the data. The 

rates at which recommended models were achieved for each data type and BMD model type are 

illustrated in Figure 3.9.   

One hypothesis in modeling these dose-response data is that BMDL values will tend to be lower 

than the discrete NOAEL or NEL values for a given study-level effect. Indeed, most of the recommended 

BMDL values are less than the stored NOAEL and NEL values for that effect. For datasets (continuous 

and dichotomous) successfully modeled using a BMR of 5% extra risk (dichotomous) or 5% increase 

relative to control mean estimate (continuous), 98% of the BMDL values were less than the 

corresponding NOAEL values, and 66.4% of the BMDL values were less than the corresponding NEL 

values. For the datasets with a BMR of 10% extra risk (dichotomous) or 10% increase relative to control 

mean estimate (continuous), 95.7% of the BMDL values were lower than the NOAEL values, and 48.5% 

of the BMDLs were lower than the corresponding NEL values. This is mostly consistent with previous 

works showing that modeled BMDLs are a more conservative estimation of PODs than the statistically 

derived NOAELs(220,221). Similarly, we also compared BMD values to LEL and LOAEL values. For the 

datasets that used a BMR of 5% extra risk (dichotomous) or 5% increase relative to control mean 

estimate (continuous), BMD values were less than their corresponding LEL or LOAEL values 

approximately 89% of the time. For the datasets that used a BMR of 10% extra risk (dichotomous) or 10% 

increase relative to control mean estimate (continuous), the BMD values were less than the 

corresponding LEL values 80% of the time and less than the corresponding LOAEL values 81% of the 

time. 
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All study type and BMDS-amenable data were used for this exercise to model the largest dataset 

possible. Some caution needs to be taken when evaluating the BMD models, particularly for studies 

where multiple generations are evaluated. Ideally, for MGR and DEV studies, a nested model should be 

used to calculate BMDs for the litters and, if needed, a correction for the degree of variability or sample 

size adjustment. However, due to the availability of information from source files, and the data structure in 

ToxRefDB v2, information from individuals in each litter were not available. Therefore, the summary data 

and statistics for litters were used for BMD modeling. 

Data type 

Number of 
datasets 

available for 
BMDS 

Benchmark 
responses used 

Have 
Recommended 

BMD Model 

Chemicals (n) 
with a 

Recommended 
BMD Model / 

Total 

Cancer 1 170 
5% 1 101 243 / 247 

10% 1 107 246 / 247 

Non-cancer 
dichotomous 17 318 

5% 16 059 609 / 612 

10% 16 165 611 / 612 

Continuous 
body/organ weight 

9 268 

10% relative 
deviation 

4 151 416 / 430 

Continuous 
non-body/organ 

weight 

1 standard 
deviation 

3 006 284 / 300 

Table 3.6: Number of datasets in ToxRefDB v2 for BMDS modeling 
Each dataset consists of all doses, number of test animals, effect values, and variance information if 
available. The table shows the number of modeled datasets, the BMR used, the number of recommended 
models, and number of chemicals with a recommended BMD model by type of data.  The  chemical 
counts are by data type, as the same chemical can have data in multiple data types. The “total” number of 
chemicals refers to the total number of chemicals associated with the datasets available for BMDS. 
 



70 
 

 

Figure 3.8: Proportion of effects in ToxRefDB that can be modeled 
(A) Of the 92,646 quantitative dose response datasets, approximately one third met data quality filters for 
BMDS. (B) There were 27,756 datasets that met data quality filters for using BMDS. Of the ~28k 
datasets, 87% produced a recommended model result. The percentage of the data corresponding to each 
data type (10% BMR for dichotomous) that yielded winning models are shown. 
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Figure 3.9: The number and type of models for each dataset 
The stacked bars for each model indicates the number of models that were or were not recommended.  
For each dataset type, the BMR was also indicated with their label. A 10 % relative deviation was used as 
the BMR for the continuous datasets for the body weight and organ weights.  All other continuous 
datasets used a BMR of 1 standard deviation.  The dichotomous datasets used a 5 and a 10% BMR. 
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Data Integration  

It is increasingly apparent that many toxicology research questions will require the integration of 

public data resources, both with those containing the same types of information, as well as with other 

databases to connect different kinds of information. For example, with increasing global interest in finding 

rapid chemical screening alternatives like the use of ToxCast to build predictive models, the need for 

linking in vitro effects to outcomes observed in vivo is essential(222). To connect the ToxRefDB endpoint 

and effect terminology with other resources, the ToxRefDB terminology was standardized and cross-

referenced to the United Medical Language System (UMLS). UMLS cross-references enable mapping of 

in vivo pathological effects from ToxRefDB to PubMed (via Medical Subject Headings or MeSH terms) 

that may be relevant for toxicological research and systematic review. This enables linkage to any 

resource that is also connected to PubMed or indexed with MeSH. For example, Entity MeSH Co-

occurrence Network (EMCON)(32), a resource to retrieve ranked lists of genes for a given topic, can be 

used to identify genes related to adverse effects observed in ToxRefDB. Subsequently, ToxCast can be 

integrated since the intended targets are mapped to Entrez gene IDs. The result of updating the 

terminology in ToxRefDB v2 and linking to the UMLS concepts is that ToxRefDB may be used to better 

anchor or compare to in vitro data like ToxCast data, or to other in vivo databases of toxicological 

information, like those available from eChemPortal(223), e-TOX(80), or others. Integration of these data 

resources is a major hurdle toward to evaluating the reproducibility and biological meaning of both 

traditional, legacy toxicity information and the data from NAMs. 

 

Conclusions 

ToxRefDB has served as a seminal resource for in vivo toxicity studies with broad applications in 

predictive modeling, retrospective analysis, and validation of in vitro chemical screening results. Although 

robust in scope for capturing effect information, early versions of ToxRefDB only contained data for 

positive findings and thus were limited by a lack of distinction between tested and not tested effects. 

Additionally, the terminology concerning endpoints did not adhere to a standardized classification system. 

Moreover, specific effect information and quantitative, dose-response information were needed to support 

predictive toxicology questions. To address these issues, ToxRefDB has undergone extensive updates 
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that include extraction of additional information (quantitative data as well as observations about tested 

endpoints), data standardization, and quality assurance measures to maintain data integrity. With these 

updates, the utility of ToxRefDB can be extended to myriad applications, and our process can serve as a 

reference for other resources aggregating similar information. The features added in this release of 

ToxRefDB v2 support ongoing efforts to use these data to train predictive models and also to evaluate the 

reproducibility and variability in existing animal-based approaches for safety testing used for model 

training and performance evaluation. The MySQL database and all associated summary flat files are 

available at ftp://newftp.epa.gov/comptox/High_Throughput_Screening_Data/Animal_Tox_Data/current/. 

Further documentation, code, and examples are available at https://github.com/USEPA/CompTox-

ToxRefDB. 

Summary 

Toxicity Reference Database (ToxRefDB) underwent significant updates to extract more 

information from animal toxicity studies, ensure quality, and support interoperability. Of the updates, the 

most relevant to the overall theme of this dissertation is the establishment of a controlled vocabulary (CV) 

for reporting of adverse events as well as mapping the CV to Unified Medical Language Systems (UMLS), 

a semantic network comprised of over 150 biomedical vocabularies. The mappings support 

interoperability by exposing a point of integration with any resource that also maps to UMLS; e.g., 

outcomes related to cancer can be rapidly identified and connected to other information related to those 

outcomes, such as articles in PubMed labeled with relevant Medical Subject Heading terms (MeSH). 

ToxRefDB can now be included in data integration pipelines to make use of animal toxicity studies in new 

investigative approaches to understand how chemicals influence complex disease.  
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Introduction 

With increasing global interest in utilizing new approach methodologies (NAMs) (6,7,224)  for 

rapid screening and prioritization of chemicals for safety applications(37), agencies including the US 

Environmental Protection Agency (USEPA), the US Food and Drug Administration (FDA), the National 

Intitules of Environmental Health Sciences (NIEHS), Health Canada, the European Chemicals Agency 

(ECHA), the European Food Safety Authority (EFSA), and many others (225) are actively generating and 

aggregating data to support the development of computational models to predict adverse outcomes 

(AOs). Among these efforts are USEPA’s Toxicity Forecaster (ToxCast) program (8,11) that has produced 

in vitro toxicity information on over 3,000 chemicals and 400 gene targets. The resulting information from 

these efforts has been used to develop a number of computational models. However, adoption by 

regulators has been slow with questions about the relevance of mechanistic data within the context of 

human-related AOs like cancer both due to lack of clear links between mechanisms and AOs as well as 

relevant biological coverage. The work in this publication seeks to address the questions on the biological 

coverage of ToxCast assay information for specific AOs using a computational approach, rather than an 

expert-driven approach, to better understand the challenges in using the information for chemical safety 

applications. The result is a demonstration of a new computational approach that is relatable to any AO.   

Currently, only the ToxCast estrogen receptor model (23) has been adopted for regulatory 

applications; However, an androgen receptor model (21) and steroidogenesis model (22) are also being 

considered for use in screening chemicals as part of the Endocrine Disruptor Screening Program (EDSP). 

Chemical-mediated endocrine disruption has been well-characterized mechanistically with clear links 

between exposures and human-relevant AOs (226,227). For example, exposure to diethylstilbestrol 

(DES), which is a xenoestrogen, has been linked to breast cancer as well a number of other AOs from in 

CHAPTER 4: EVALUATING THE CANCER- RELATED BIOLOGICAL COVERAGE OF 
TOXICITY FORECASTER (TOXCAST): IDENTIFICATION OF KNOWLEDGE GAPS AND 

IMPLICATIONS FOR CHEMICAL SCREENING 
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utero exposure (114). However, other human-relevant AOs are complex without clear links between 

chemical exposures and a resulting phenotype as is the case for many types of cancer (228) and 

metabolic disorders (229). Also, many environmental chemicals do not have well defined targets (12), so 

establishing clear links between exposure and outcome can be difficult. Both promiscuous bioactivity of 

chemicals and lack of concordant responses between in vitro and in vivo studies is evident in attempts at 

building computational models for complex AOs like reproductive (173) or developmental (27) toxicity, 

hepatotoxicity (24), and even cancer (25). From these models, despite being considered successful, 

questions remain about why some in vitro targets would be predictive for the corresponding AO. 

Findings from both Cox et al. (2016) (85) and Becker et al. (2017) (89) echo these concerns and 

propose that a “more rigorous mode-of-action pathway-based framework to organize, evaluate, and 

integrate mechanistic evidence with animal toxicity”(89) is needed. This approach aligns with the Adverse 

Outcome Pathway (AOP) framework that can be used to organize relevant biological events across levels 

of biological organization(70). The typical structure of an AOP begins with an upstream molecular 

initiating event (MIE), in which a chemical interacts with a biological molecule. An MIE is then connected 

to a series of downstream key events (KE) by key event relationships (KER) that contains evidence 

showing a progression from one KE to the next. Finally, the AOP ends with an adverse outcome (AO), 

which is a phenotype that is of toxicological importance.  

The interest in establishing AOPs for regulatory use is to not only organize existing toxicity data 

but also to serve as a screening and prioritization approach. For example, if evidence links a data-poor 

chemical (i.e. no animal toxicity data is available) to early KEs within an established AOP, then 

assumptions can be made about the hazard potential based on the evidence along an already 

established AOP. The major challenge in developing AOPs is identifying and filling gaps of information. 

Current approaches in toxicity testing capture information at either end of the AOP, (i.e. MIE to early KE 

or only the AO). For example, ToxCast provides information about chemical-biological interactions 

predominantly within the cell. The next steps would be to extrapolate from those bioactivities to tissue 

level effects like hypertrophy or some other lesion that would be measurable in vivo. However, this is 

difficult since current approaches to capture toxicity information at higher levels of biological organization 

are low throughput and costly. Assays targeting this level of organization are rapidly under 
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development(49), but still remain medium to low throughput with applications as a validation component 

in a tiered screening approach rather than data generation as is the case for high throughput approaches. 

Toxicity data generated at the AO are from animal toxicity studies, which are low throughput, but a 

massive amount of animal toxicity data exists within publications and regulatory documents. Thus, 

USEPA’s Toxicity Reference Database (ToxRefDB)(13) serves to aggregate animal toxicity data into a 

digital repository to support development of computational models.  

ToxRefDB aggregates animal toxicity information for over 1,000 chemicals that are mostly 

pesticides. The information is primarily from registrant submitted studies to USEPA’s Office of Pesticides 

Programs (OPP) and has been extracted from the summary reports called data evaluation records 

(DERs). The information available in ToxRefDB are effects measured in vivo that would be considered 

complex AOs within the context of an AOP.  

The previous attempts to link in vitro and in vivo effects using ToxCast and ToxRefDB 

respectively have primarily consisted of identifying activities for the same chemical across these two 

domains(25), yet we understand the limitations of such an analysis: it is unclear if observed concordance 

is due to the same mechanism(s) operating in vitro and in vivo, and conversely, it is unclear if lack of 

observed concordance is due to lack of biological or mechanistic coverage, e.g. aspects of absorption, 

distribution, metabolism, and excretion, or other aspects of the in vitro screening approach. Additionally, 

there are known factors that contribute to uncertainty in interpretation of the in vitro and in vivo data and 

increase the chances for discordant results, including: compensatory mechanisms in vivo akin to the 

“tipping points” investigated for in vitro effects(50), high-throughput screening assay technology domains 

of applicability(1,23,67,230,231), and in vivo study-level design features like strain used, dose selection, 

etc.(178,232). Thus, a biological connection between the in vitro and in vivo resources is needed to 

understand if more assays or screening information would improve predictions for complex AOs (86,89).  

The complex AO we focus on in this work is cancer. Cancer is a multifactorial adverse outcome 

where susceptibility is influenced by lifestyle, genetic variants, and chemical exposures. Identification of 

chemical carcinogens is predominantly based on available human and animal data that associates 

exposure of a chemical with cancer (233). Human and animal data can be stronger when chemical 

modes of action (MOA) tie the link between exposure and outcome together as is the case for DNA 
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adduct formation in nasal mucosa from inhaled formaldehyde that leads to increased risk of 

nasopharyngeal cancer(234). However, associations are not always so clear as exemplified with 

formaldehyde exposures and links to leukemia. Despite being classified as carcinogenic to humans 

(Group 1) by International Agency for Research on Cancer (IARC)(228), links between formaldehyde 

exposure and leukemia are abundant from epidemiological studies(235), but mechanistic links are still 

being investigated. Currently mechanistic data is being used to more rapidly identify carcinogenicity of a 

chemical by binning ToxCast assays into Ten Key Characteristics of Carcinogens (TKCC) (86–88) and 

subsequently evaluating total bioactivity observed in each of those assays for a given chemical. However, 

this use of chemical-centric data serves to identify carcinogens with more direct links between exposure 

and outcome and not those with an unknown number of chained events that culminate in a measurable in 

vivo effect(5,236). With the example of formaldehyde exposures and leukemia, if critical events leading to 

leukemia can be identified, indirect links between the known formaldehyde mechanisms and leukemia 

could be made. Here we present a data integration approach to evaluate the biological coverage of 

ToxCast for cancer by identifying putative upstream KEs from cancer thus bridging the gap between in 

vitro and in vivo data. In evaluating the biological coverage of ToxCast for cancer, we can further identify 

the potential utility of this data in further building predictive models. 

The work presented here extends previous work from Watford et al. (32) and Grashow et al. (90) 

where a putative gene set for breast cancer was retrieved from a resource called Entity MeSH Co-

occurrence Network (EMCON). EMCON is built using biomedical literature and contains links between 

Entrez gene identifiers (GeneIDs)(102) and Medical Subject Headings (MeSH terms) (131). MeSH terms 

are keywords used to index articles within PubMed, the largest publicly available resource of biomedical 

literature. The genes retrieved from searching EMCON serve as a point of integration to link in vitro 

targets either directly to a corresponding search concept or indirectly through other concepts like 

pathways. We construct two search strategies to build queries to retrieve gene sets from EMCON. The 

first strategy is similar to that described in Watford et al. (32) where cancer concepts (CCs) like evading 

apoptosis were identified from seminal publications (88,118,147,148). A second search strategy is used 

in this approach that directly utilizes the cross-referenced observed toxicity effects from ToxRefDB. The 

observed toxicity effects were cross-referenced to Unified Medical Language System (UMLS), which is a 
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semantic network of over 150 biomedical terminologies(78). MeSH is one of those terminologies thus we 

can identify MeSH terms for each ToxRefDB observed toxicity effect. We identify the cancer-related 

effects and corresponding MeSH terms from ToxRefDB stratified by organ (i.e. liver cancer effects) that 

serve as queries for EMCON. The resulting gene sets are validated using an online tool called Enrichr(95) 

that performs gene set enrichment analysis (GSEA) (91). GSEA identifies topics from reference libraries 

that have significantly overlapping gene sets. Four reference libraries were chosen to validate the cancer-

related gene sets retrieved in this work: Gene Ontology (GO) biological process(237,238), GO molecular 

function(237,238), Reactome(138,239), and Kyoto Encyclopedia of Genes and Genomes (KEGG)(105–

107). With gene sets retrieved and validated for CCs, we can elucidate ToxCast coverage across CCs as 

well as highlight gaps in the coverage by quantifying the gene overlap (direct association) as well the 

topic overlap (indirect association) from the four reference libraries.  

Our analysis aims to estimate the biological coverage of ToxCast for cancer, addressing 

limitations in current knowledge about indirect links between chemical mechanisms and in vivo adverse 

outcomes. Some of the key conclusions of this research include a greater understanding of why ToxCast 

may currently be inadequate for unsupervised prediction of cancer on the basis of biological coverage, 

and the identification of gene sets for specific cancer-related effects observed in a rich database that may 

have forward utility in feature selection for models that use transcriptomic data to predict cancer. 

Ultimately, this work suggests that a combination of unsupervised and expert approaches may be needed 

to use the current data resource for prediction of possible cancer-related outcomes. 

 

Methods 

Overview of approach 

In this work, gene sets linked to cancer concepts (CCs) are retrieved from Entity MeSH Co-

occurrence Network (EMCON) through two search strategies (Figure 4.1A): one using an expert driven 

approach to identify CCs and a second using cancer-related observed effects from ToxRefDB. The 

resulting gene sets are validated (Figure 4.1B) and subsequently used to estimate the biological coverage 

of ToxCast for cancer (Figure 4.1C). 
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For search strategy #1 CCs are identified by experts along with corresponding seed MeSH terms. 

This approach is similar to that described in Watford et al(32) for identification of a breast cancer-related 

gene set, but instead of using the MeSH tree for expanding the MeSH term selection, a MeSH co-

occurrence network is used. A MeSH co-occurrence is any two MeSH terms that have been tagged to the 

same article(167,240). Figure 4.2 shows the workflow for building the MeSH co-occurrence network and 

is further described in the following section. The seed MeSH terms are used to query the MeSH co-

occurrence network and retrieve all other relevant MeSH terms for a CC. For search strategy #2, cancer-

related observed effects were identified from Toxicity Reference Database (ToxRefDB). The effects in 

ToxRefDB are cross-referenced to Unified Medical Language System (UMLS) concepts from which 

relevant MeSH terms can also be identified(13). This initial MeSH term selection was not expanded in this 

strategy because the effects were grouped together at the organ level. For example, effects like 

“hepatocelluar carcinoma” and “hepatocellular adenoma” are grouped together under “liver cancer”. Next, 

for both search strategies, the full set of MeSH terms are used to query EMCON and retrieve a single 

gene set per concept (e.g. “Angiogenesis” or “Liver cancer”). Each search strategy applies a separate set 

of filters (further described in following sections) to identify only the relevant genes. Next the gene sets 

were validated (Figure 4.1B) by manually assessing the relevance of enriched topics for a corresponding 

CC using a gene set enrichment tool called Enrichr (95). Finally, the cancer-related biological coverage of 

ToxCast was evaluated by quantifying the ToxCast assay endpoint gene target overlap with five different 

datasets (Figure 4.1C): CC gene sets, Reactome pathways, KEGG pathways, GO biological processes, 

and GO molecular functions. 
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Figure 4.1: Overall approach for identifying cancer-related gene sets to estimate biological 
coverage of ToxCast for cancer 
(A) First, two search strategies are used to identify cancer concepts (CCs) used to query EMCON. Search 
strategy #1 employs an expert-driven approach to identify seed MeSH terms that correspond to CCs and 
then undergo MeSH term expansion using a MeSH co-occurrence network. Search strategy #2 uses the 
organ-level, cancer-related observed effects identified from ToxRefDB where corresponding MeSH terms 
were retrieved from the UMLS metathesaurus. The queries from both search strategies comprise MeSH 
terms that are used to retrieve a gene set for each CC from EMCON. (B) Next, the resulting gene sets are 
validated using an online tool called Enrichr that was used to perform GSEA with four reference libraries. 
(C) Finally, ToxCast biological coverage was quantified as percent overlap with the CC-derived gene sets 
as well as with the enriched topics for each CC from Enrichr. 
 
Building the MeSH co-occurrence network 

A previous limitation of identifying gene sets using EMCON was expanding the MeSH term 

selection using the MeSH tree (32). Although the MeSH tree implies a relationship between parent and 

child MeSH terms, that relationship is not necessarily reflected in the article tagging. For example, the 

MeSH term “Diabetes Mellitus, Type 2” is closely related to the MeSH term “Insulin resistance” because 

insulin resistance is a key phenotype in type 2 diabetes (241), yet many “Insulin resistance” and 

“Diabetes Mellitus Type 2” do not belong to any of the same branches within the MeSH hierarchical tree. 

To account for this limitation, a MeSH co-occurrence network was built and used to expand the MeSH 
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term selection. A MeSH co-occurrence is any two MeSH terms that are tagged to the same article 

(167,242). The MeSH co-occurrence network was built using the 2017 Medline Baseline Repository 

(MBR) raw data files, specifically the file named “MH_items” (243). This file provides a snapshot of MeSH 

term to PMID mappings (Figure 4.2) from 2016 and is updated annually. This distribution is used because 

it provides only the identifiers we need to build the MeSH co-occurrence network. Next, MeSH term 

frequencies were normalized according to the MeSH tree by tagging all ancestors to articles that are 

tagged with their descendants (Figure 4.2). This ensures that the tagging frequency increases while 

traversing the MeSH tree towards a root MeSH term and that broader MeSH terms have higher 

frequencies than their more specific descendants. This normalization was previously described in Watford 

et al. (32). Next, each co-occurrence is identified by taking every two combinations of MeSH terms for an 

article and keeping only the MeSH co-occurrences that have more than 2 articles to support the 

association. Finally, the MeSH co-occurrences are ranked using normalized pointwise mutual information 

(NPMI), which is the normalized variant of pointwise mutual information that ranks association on a -1 to 1 

scale(143). NPMI values of zero or less indicate an association that may have occurred by chance, and 

NPMI values of greater than zero indicate increasing strength of the association as NPMI approaches 1. 

The MeSH co-occurrence network is filtered to include only MeSH co-occurrences with NPMI > 0.  
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Figure 4.2: Building the MeSH co-occurrence network 
The MeSH co-occurrence network was built by first normalizing the MeSH term frequency so that the 
frequency of each MeSH term is proportional to the number of descendants the MeSH term has 
according to the MeSH term tree. Next MeSH co-occurrences were identified. A MeSH term co-
occurrence is any two MeSH terms that have been annotated to the same article. Finally, MeSH term co-
occurrences were ranked using normalized pointwise mutual information (NPMI). Any MeSH term co-
occurrences with NPMI < 0 were excluded from the final network. 
 

Selecting carcinogenesis concepts and corresponding MeSH terms 

Cancer concepts (CCs) and the corresponding MeSH terms were identified from previous work to 

identify a breast cancer gene set(90). CCs are defined as critical processes that characterize the 

pathogenesis of cancer and were identified from seminal publications that investigate cancer 

(88,118,147,148). For this work, the topic of mammary tissue was excluded as the CCs of interest are not 

limited to specific breast cancer-related mechanisms. MeSH terms are needed to retrieve gene sets from 

EMCON, so corresponding MeSH terms were selected that best represent each CC (Table 4.1). These 

MeSH terms alone do not fully represent the CC, but rather serves as a seed MeSH term to retrieve all 

closely-associated MeSH terms. The MeSH co-occurrence network was queried with the seed MeSH 

terms to retrieve a comprehensive set of MeSH terms that characterize the CC. Finally, only MeSH terms 

with greater than the 95th percentile of the NPMI distribution were kept. 
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Carcinogenesis Concept MeSH term (DUI, i.e. unique identifier) 

Angiogenesis Neovascularization, Pathologic (D009389) 

Neovascularization, Physiologic (D018919) 

Apoptosis Apoptosis (D017209) 

Cell cycle Cell cycle (D002453) 

Epigenetics Epigenomics (D057890) 

Genotoxicity DNA damage (D004249) 

DNA repair (D004260) 

Growth hormones Growth hormone (D013006) 

Immortalization Cell survival (D002470) 

Immunomodulation Immune system (D007107) 

Inflammation Inflammation (D007249) 

Oxidative stress Oxidative stress (D018384) 

Proliferation Cell proliferation (D049109) 

Steroid hormones Gonadal steroid hormones (D012739) 

Xenobiotic metabolism Xenobiotics (D015262) 

Table 4.1: Carcinogenesis concepts and the corresponding MeSH term(s) 
 

ToxRefDB cancer-related effects and corresponding MeSH terms 

Toxicity Reference Database (ToxRefDB) is a digital resource of results from animal toxicity 

studies [25]. ToxRefDB reporting of observations from in vivo studies is structured as a hierarchy, with 

endpoints as a parent category for effects. For example, the endpoint “systemic pathology microscopic 

liver” is the parent for the effect “liver hyperplasia.” Each endpoint and effect has been cross-referenced 

with Unified Medical Language System (UMLS), which is a semantic network of over 150 biomedical 

vocabularies(78). One of the vocabularies maintained in the semantic network is the MeSH vocabulary. 

The MeSH terms for the subset of cancer-related effects and corresponding endpoints were retrieved 

using the UMLS representational state transfer (REST) application programming interface (API)(244). 

Each effect can link to multiple UMLS concept codes, and multiple effects may link to a single endpoint, 

so each endpoint has multiple MeSH terms mapped to it. For example, MeSH terms “Liver”, “Adenoma”, 

“Carcinoma, Hepatocellular”, and others are mapped to the endpoint “systemic microscopic pathology 

liver”. These MeSH terms are used to retrieve gene sets relevant to the endpoint. The cancer-related 

effects and endpoints are available in APPENDIX 2.  
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Gene set retrieval  

To identify putative gene sets for CCs, Entity MeSH Co-occurrence Network (EMCON) was 

queried with the expanded MeSH term selections that were derived from the methods described above. 

EMCON is a co-occurrence network of GeneID-MeSH associations derived from curated biomedical 

literature resources and ranked using NPMI(143). Like the MeSH co-occurrence network, EMCON only 

retains co-occurrences with NPMI > 0. The MeSH term selections were used to query EMCON and 

retrieve associated genes where only the GeneID-MeSH co-occurrences within the 95th percentile of the 

NPMI distribution for the corresponding MeSH term set were kept.  

Validation of gene sets  

To verify that the gene sets for each CC were, in fact, returning relevant genes, gene set 

enrichment analysis (GSEA)(91) was performed to retrieve enriched topics from four different sources 

called reference libraries: Gene Ontology (GO) biological process, GO molecular function, KEGG, and 

Reactome. GSEA is commonly used to analyze genomic and transcriptomic data to interpret the findings 

of the experimental results. Reference libraries are typically built manually by reviewing literature and 

constructing hierarchical relationships between extracted topics. The four reference libraries that were 

chosen to validate the CC gene sets are widely used and are not confined to a specific topic (i.e. confined 

to a cell line like MCF7). GSEA was performed using Enrichr, which is an online tool that performs 

enrichment analysis for a submitted gene set across over 130 reference libraries. Enrichr produces four 

values that indicates enrichment of a topic for a given gene set and reference library. A p-value is given 

as a result of either Fisher’s Exact or hypergeometric mean. An adjusted p-value is also calculated that 

corrects for multiple hypothesis testing. The z-score is the distance away the observed rank is from the 

expected rank. The converted score is the product of the log of the p-value and z-score. In this work, a 

topic was enriched if the adjusted p-value is < 0.05. Each CC gene set was submitted to Enrichr through 

the RESTful API(245). Finally, the relevance of the top five enriched topics to the corresponding CC was 

manually determined by reviewing literature associated with the enriched topic and either cancer or the 

CC. Overall precision and CC-specific precision was calculated using the relevance determinations. 
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Linking ToxCast assay endpoint targets to cancer concepts 

ToxCast assay endpoints are uniquely identified by an assay endpoint identifier (aeid)(16) and 

cover a wide range of biological concepts with genes identified as the intended targets for most assays. 

Assays that measure general cytotoxicity or a complex process (i.e. proliferation) are not necessarily 

annotated with an intended gene target. ToxCast assays and corresponding genes were downloaded 

from(246). The intended gene targets are used as a point of integration with each CC via the gene set 

retrieved from EMCON. ToxCast can be linked to a CC either by the gene set retrieved from EMCON or 

by the gene set of an enriched topic from Enrichr. The gene sets from each reference library are made 

available for download from Enrichr(247).  

 

Evaluating cancer-related biological coverage of ToxCast 

With gene sets and enriched topics identified for each CC, the biological coverage of ToxCast 

can be evaluated in two approaches (Figure 4.1C): (1) direct coverage via gene overlap with EMCON 

gene sets and (2) indirect coverage via gene overlap with enriched topics. Indirect coverage was included 

because even though ToxCast may not have a target within the retrieved gene set to assess direct 

coverage, ToxCast genes may play a role in the enriched topics that include pathways and biological 

processes related to the CC, which implies the assay endpoint may still be relevant to a CC. Direct 

coverage was quantified as the percent overlap with the gene set for each CC. Indirect coverage was 

quantified as the percent overlap with the enriched topics for each CC. Because reference libraries 

arrange topics hierarchically, gene sets are either supersets or subsets of each other. For example, the 

pathway “Estrogen-dependent gene expression”(248) has the parent “ESR mediated signaling”(249), so 

the gene set for “Estrogen-dependent gene expression” is a superset of the “ESR mediated signaling” 

gene set because each gene of the child’s gene set is present in the parent’s gene set. The consequence 

of this pattern in quantifying coverage is bias for enriched topics from a single branch because each 

member of the branch would be mapped to the same CC and ToxCast assay endpoint gene targets 

resulting in duplicative associations. To avoid this bias, enriched topics were only kept if the gene set was 

not a superset of any other gene set within their respective reference library. Finally, ToxCast is only 

considered to overlap with an enriched topic if at least five ToxCast intended gene targets overlap with 
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the enriched topic’s gene set. This threshold is called the membership cutoff. The reasoning for the cutoff 

is addressed in the results. 

Results 

MeSH co-occurrence network 

The MeSH co-occurrence network has over 76.5 million unique co-occurrences with 61% having 

more than two articles supporting the co-occurrence and 26% having an NPMI > 0.0. When applying both 

filters, the network is reduced by 83% with 13 million unique MeSH co-occurrences remaining.  

 

Cancer-related gene sets 

For search strategy #1, 13 CCs were identified along with corresponding seed MeSH terms 

(Table 4.2). For search strategy #2, 34 organ-level endpoints were identified to have cancer-related 

effects. However, many of the endpoints had extremely poor coverage with ToxCast. Liver had the most 

coverage and is the only cancer-related endpoint from ToxRefDB in the figures and tables. A summary of 

the remaining 33 organ-level and cancer-related gene sets along with the ToxCast overlap is available in 

APPENDIX 3.  

The number of MeSH terms retrieved from the MeSH co-occurrence network for each CC varied 

widely with a minimum of 2 for “Immunomodulation” to a maximum of 70 for “Oxidative Stress” (Table 

4.2). The number of genes returned for each CC also varied and is not correlated with the number of 

MeSH terms used for the query (rank correlation-coefficient 0.372).  

The NPMI distributions for both the MeSH-MeSH and GeneID-MeSH co-occurrences for all CCs 

are shaped differently. Figure 4.3 shows these distributions for the “Immunomodulation” (Figure 4.3A) and 

“Angiogenesis” (Figure 4.3B) CCs. Only 37 genes are retrieved for the “Immunomodulation” gene set 

(Figure 4.3A) while 313 genes are retrieved for the “Angiogenesis” gene set. Both MeSH-MeSH and 

GeneID-MeSH NPMI distributions for “Angiogenesis” are shifted towards zero which means many of the 

co-occurrences for “Angiogenesis” have less supporting (either as number of articles or promiscuously 

co-occurring with other entities) for the associations.  
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Search strategy 

Cancer concept Number of associated 
MeSH terms 

Number of associated 
genes 

#1 Angiogenesis 30 313 
Apoptosis 29 2025 
Cell cycle 7 711 
Epigenetics 11 221 
Genotoxicity 37 907 
Growth hormones 39 195 
Immortalization 7 825 
Immunomodulation 2 37 
Inflammation 20 467 
Oxidative stress 70 2511 
Proliferation 61 3623 
Steroid hormones 41 212 
Xenobiotic metabolism 35 336 

#2 Liver cancer (ToxRefDB) 16 478 
Table 4.2: The number of MeSH terms used to query EMCON and the total number of genes 
retrieved from EMCON for the cancer concept 
 

 

 

Figure 4.3: Filtering gene sets for cancer concepts “Immunomodulation” and “Angiogenesis” 
The GeneID-MeSH NPMI distributions and 95th percentile cutoffs are shown in black, while the MeSH-
MeSH NPMI distributions and 95th percentile cutoffs are shown in red. Each point represents two MeSH 
terms and a GeneID, along with the corresponding NPMI values. The points in blue represent 
associations that are filtered out because they fall below the 95th percentile cutoffs, while the points in 
orange represent associations that are used to identify relevant GeneIDs for a final gene set. (A)  For the 
CC “Immunomodulation”, only 37 GeneIDs are above the cutoffs. (B) For the CC “Angiogenesis”, 313 
GeneIDs are above the cutoffs. 
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Validating gene sets 

  The gene sets were validated by calculating precision for the top five enriched topics from four 

reference libraries: GO biological process, GO Molecular Function, KEGG, and Reactome. The enriched 

topics from each reference library were identified using Enrichr’s REST API(245). The relevance of an 

enriched concept to a CC was determined by reviewing abstracts retrieved from a PubMed or related 

search. For example, for the CC “Epigenetics” and enriched concept from GO biological process 

“chromatin assembly”, PubMed was searched with the query "epigenetics and chromatin assembly" which 

returns nearly 800 articles. Many of these articles not only link the CC and enriched concept, but also link 

both topics to cancer (250,251). The overall precision score is 0.975. “Growth hormones” had the lowest 

precision of any CC at 0.9 (Table 4.3). APPENDIX 4 provides the relevance decisions made for each 

enriched topic. 

 

 GO Biological 
Process 

GO Molecular 
Function 

KEGG Reactome Average 
Precision 

Proliferation 1.0 1.0 1.0 1.0 1.00 

Angiogenesis 1.0 1.0 1.0 1.0 1.00 

Oxidative Stress 1.0 1.0 1.0 1.0 1.00 

Apoptosis 1.0 1.0 1.0 1.0 1.00 

Genotoxicity 1.0 1.0 1.0 0.8 0.95 

Immortalization 1.0 1.0 0.8 1.0 0.95 

Cell Cycle 1.0 1.0 1.0 1.0 1.00 

Xenobiotic Metabolism 1.0 1.0 1.0 1.0 1.00 

Inflammation 1.0 0.8 1.0 1.0 0.95 

Epigenetics 1.0 1.0 1.0 1.0 1.00 

Steroid Hormones 1.0 0.8 1.0 1.0 0.95 

Growth Hormones 1.0 1.0 0.8 0.8 0.90 

Immunomodulation 1.0 1.0 1.0 1.0 1.00 

Liver Cancer (ToxRefDB) 1.0 1.0 1.0 1.0 1.00 

Overall precision 0.975 

Table 4.3: Precision of enriched topics retrieved from each reference library for each CC 
 

Estimating ToxCast biological coverage of cancer 

A gene set was retrieved from EMCON for each CC and validated using Enrichr to retrieve a set 

of enriched topics from four reference libraries. ToxCast biological coverage is quantified as percent 

overlap with the gene set for each CC and the percent enriched topics with overlapping genes greater 
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than the membership cutoff. The membership cutoff of four is approximately the 95th percentile for each 

reference library as indicated by the black dashed line in Figure 4.4A. With a membership cutoff of 0 (at 

least 1 gene is present in the enriched topic’s gene set), the average percent coverage from the four 

reference libraries would be 65% with KEGG having the highest percent coverage of 82%.  

As shown in Figure 4.4B, the gene set overlap alone is low with a mean coverage of 6%, but 

when expanded for enriched topics and at a membership cutoff of 4, the coverage increases to an 

average of 32%. No ToxCast intended gene targets overlap with the “Epigenetics” gene set, but they 

overlap with enriched topics from all four reference libraries. The genes in the “Epigenetics” gene set 

account for protein-coding genes for histone modifications and DNA methylation, which were not 

considered in selection of ToxCast targets. ToxCast targets were selected by both availability of assay 

technologies as well as targeting endocrine disruption and metabolic activity. ToxCast has the highest 

coverage from KEGG for each CC; however, this may be misleading because KEGG has the lowest 

number of topics at 278 as well as the largest gene sets per topic at an average of 80.6 (Table 4.4).  

For this approach, no other aspects are considered like assay technology or cell line, which 

means the average cancer-related biological coverage with a membership cutoff of 4 is 32% is the 

maximum coverage that will only decrease as other parameters are considered. Because of this, the 

biological coverage is considered low and insufficient for the CCs identified which also includes all organ-

level effects from ToxRefDB. The enriched topics with the most overlapping genes from each reference 

library are in Table 4.5. The enriched topic with the highest percent coverage is “Nuclear Receptor 

transcription pathway (R-HSA-383280)” from Reactome with 47 ToxCast genes present in the gene set of 

51 genes. 
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Figure 4.4: The ToxCast coverage for cancer-related gene sets and enriched topics from four gene 
set reference libraries 
(A) Shown is the average percent coverage across all CCs for each reference library as the membership 
cutoff increases. The black dashed line is the membership cutoff of 4 genes and is approximately the 95th 
percentile for each reference library. (B) Also, shown in this figure is the percent of the ToxCast intended 
gene targets that overlap with the gene sets per CC and the percent of enriched topics identified using 
Enrichr from four reference libraries: GO biological process, GO molecular function, KEGG, and 
Reactome. 
 

Reference library Number of topics Mean gene set length per topic 

GO biological process 3076 23.3 
GO molecular function 697 23.5 
Reactome 699 23.7 
KEGG 278 80.6 

Table 4.4: Summary statistics for reference libraries 
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Reference library Enriched topic (identifier) ToxCast genes 
present in 
gene set 

Total number of 
genes in gene set 

KEGG Neuroactive ligand-receptor 
interaction (hsa04080) 

71 277 

GO Biological Process positive regulation of nucleic acid-
templated transcription 
(GO:1903508) 

51 503 

GO Molecular Function RNA polymerase II core promoter 
proximal region sequence-specific 
DNA binding (GO:0000978) 

35 263 

Reactome Nuclear Receptor transcription 
pathway (R-HSA-383280) 

47 51 

Table 4.5: Enriched topics with the highest number of ToxCast genes present in gene set 
 

Discussion 

In this work, we presented novel methods 1) to identify gene sets linked to cancer concepts (CCs) 

and specifically to cancer-related animal toxicity endpoints from ToxRefDB and 2) to estimate the cancer-

related biological coverage of ToxCast. The goal was to understand if unsupervised approaches could be 

used to relate ToxCast information to prediction of cancer. Two search strategies were implemented to 

identify cancer-related gene sets. The first approach, search strategy #1, is an expert driven approach 

where seed MeSH terms were selected that best represent a concept of interest (e.g. evading apoptosis). 

Next, the seed MeSH terms were used to query the MeSH co-occurrence network to retrieve closely 

associated MeSH terms that serve as the full query for EMCON and retrieve gene sets relevant to the 

CCs. The second approach, search strategy #2, uses the UMLS cross-references to cancer-related 

animal toxicity endpoints from ToxRefDB to identify relevant MeSH terms to query EMCON and retrieve 

corresponding gene sets. Gene set enrichment analysis (GSEA) was performed on each gene set using 

Enrichr to identify enriched topics from four reference libraries: GO biological process, GO molecular 

function, KEGG, and Reactome. Precision was calculated by manually determining the relevance of the 

top five enriched topics from each reference library and CC. The precision was 0.975 with only seven of 

280 associations not directly relevant. Finally, the biological coverage of ToxCast for each CC was 

estimated directly by ToxCast intended gene target overlap with each CC gene set and indirectly by 

percent enriched topics with at least five ToxCast intended gene targets overlapping with each enriched 

topic’s gene set. The average direct coverage across each CC is only 6% while the average indirect 

coverage across each CC is 32%, which is considered a maximum coverage that will decrease when 
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considering other parameters like membership cutoff. Because of these dependencies, the cancer-related 

biological coverage of ToxCast is consider poor, implying the use of ToxCast for unsupervised prediction 

of cancer is limited. However, the unsupervised approaches here to identify ToxCast data that may be 

relevant to prediction of cancer could be reviewed by experts in support of weight-of-evidence analysis for 

carcinogenesis. 

Co-occurrence networks are used to represent knowledge in datasets whether it’s from social 

media (252), language (253), or biomedical concepts (42,167,254) that can subsequently be used to 

support information retrieval, analytics, and predictive modeling like link prediction for knowledge 

discovery, i.e. identify future associations. In this work, two co-occurrence networks, MeSH co-

occurrences and MeSH-GeneID co-occurrences (EMCON), were used to retrieve cancer-related gene 

sets. Related efforts have been previously used to identify gene sets from co-occurrence networks like 

that from Gene2MeSH (164) and MeSH Overrepresentation Profiles (MeSHOPs) (165), but combining 

this information with MeSH co-occurrences has not been done before. This approach yields a high 

precision of 0.975 of the enriched topics from GSEA indicating that relevant genes to each CC, including 

the cancer-related ToxRefDB observed effects, are retrieved. The success of this approach supports the 

notion that our current methodologies can be improved upon with integrating more data for richer 

datasets, yet complexity in managing and analyzing this information increases exponentially (42,51). One 

of the major challenges in this approach was properly managing numerous external resources (i.e. 

PubMed and resources supporting EMCON) in a single infrastructure to support the analysis. Further 

work could incorporate many other entities (e.g. pathways, chemicals, proteins, and experimental results), 

but, without both a standard data model (255–257) and a modern technology stack to support the 

increased complexity, this approach becomes chaotic. Also, EMCON maintains the limitations previously 

described in Watford et al. (2018) (32): EMCON is built using only manually curated biomedical 

resources. EMCON contains information from nearly 700K PubMed articles, but much more information 

about genes remains in articles that have yet to be curated.  

The number of associated MeSH terms retrieved from the MeSH co-occurrence network was not 

correlated with the number of genes retrieved from EMCON as indicated by the rank correlation 

coefficient of 0.372. Other factors that may contribute to the number of MeSH terms or genes retrieved is 
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the number of descendants a MeSH term has according to the MeSH hierarchical tree. For example, the 

CC with the fewest number of genes is “Immunomodulation” with only 37 genes. The seed term used to 

represent “Immunomodulation” is “Immune System”, which has 69 descendants. Immune system function 

is a broad topic that plays a role is nearly all aspects of biology and is related to many of the other CCs 

used in this approach like “Oxidative stress”, which has only 2 descendants, and “Apoptosis”, which has 

only 3 descendants. Though this approach improved upon the original expert-driven search strategy from 

initial implementation of EMCON for breast cancer research (32,90), limitations remain in selection of the 

MeSH terms that are most relevant. 

Gene set enrichment analysis (GSEA) was performed by Enrichr to validate that the cancer- 

related genes, were, in fact, being identified from EMCON. GSEA relies on reference libraries of gene 

sets that are specific to a topic. Of the four reference libraries used in this approach, only two, Reactome 

and KEGG, arrange the gene sets according to the relationships between genes or provide pathway 

diagrams. Both GO reference libraries are a collection of annotations from GO consortium participants. 

Each reference library varied by the number of topics as well as the average gene set length per topic. 

KEGG varied the most with the lowest number of lowest-level (determined by gene set subsets) topics at 

278 and the highest average gene set length at 80.6. Reference library selection is crucial in interpreting 

GSEA results (258) as exemplified in the contrasting results in Figure 4.4B. Without comparison to other 

reference libraries, we might have concluded that ToxCast cancer-related biological coverage is sufficient 

for building predictive models in cancer from KEGG alone. However, when identifying the KEGG enriched 

topic with the most overlapping ToxCast intended gene targets (Neuroactive ligand-receptor interaction), 

we find that it is a non-specific topic of 277 genes that wouldn’t necessarily be useful in interpreting 

results from a predictive model. Both GO reference libraries show similar results. In contrast, the 

Reactome enriched topic with the most overlapping ToxCast intended gene targets (Nuclear Receptor 

transcription pathway) is well characterized with only 51 genes. However, this includes estrogen receptor 

and androgen receptor activity, which is already the primary use case in building predictive models using 

ToxCast (21,23). These models comprise multiple assays but only account for two genes each (ER model 

(23): ESR1 and ESR2, AR model (21): AR and SRC). All genes except for SRC are present in 

Reactome’s “Nuclear Receptor transcription pathway”, although, SRC-mediated interactions are 
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mentioned in the description of a reaction in the pathway (259). Because ToxCast intended gene targets 

cover many other genes involved with the “Nuclear Receptor transcription pathway”, a more 

comprehensive computational network model combining both existing ER and AR models could be 

developed to include more reactions that are downstream KEs for endocrine disruption AOs. Both KEGG 

and Reactome would be great sources to look further into for applicability of building computational 

network models similar to the AR and ER models because the genes are arranged in a pathway with 

evidence linking each reaction together similar to linking KEs. This would require manual review of the 

enriched topics and expert knowledge on the ToxCast assay technologies to determine relevance, and 

each enriched topic has been linked to cancer with supporting evidence from EMCON. This approach can 

be expanded to include other topics besides cancer.  

Despite possible applications to further utilize ToxCast for building predictive models for cancer 

mentioned above, the overall cancer-related biological coverage of ToxCast is considered poor. This 

conclusion was made primarily on the average percent coverage across each CC and reference libraries, 

which was 32% despite having higher coverage when lowering the membership cutoff (Figure 4.4A). 

Cancer, along with the cancer concepts selected in this work, is a broad topic that involves complex 

biological interactions across nearly all known domains of biology. The ToxCast assays comprise 

chemical bioactivity information on over 350 gene targets, but account for numerous cell types, species, 

and technologies limiting the applicability to few domains. Ongoing efforts to generate a dose-response 

high throughput transcriptomics (HTTr) information(33,128,129) will eliminate some parameters because 

the technology will be consistent as well eliminate questions on relevant biological coverage by evaluating 

the whole genome. However, questions still remain on how to analyze dose-response transcriptomic data 

linking the changes in gene expression to adverse outcomes (i.e. linking genotype to phenotype) (112).  

The approach in this work has myriad applications in computational toxicology including 

information retrieval and organization for systematic review(260), putative linkage of key events (KEs) to 

fill knowledge gaps in existing Adverse Outcome Pathways(261), and analysis of high throughput 

transcriptomics (HTTr) or gene expression profiling results(33,128,129). Identifying gene sets specific to a 

concept allows for linking other topics like pathways to that concept as well. This provides a way to 

organize available information to aid in manual review process like that of annotating ToxCast assays or 
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identifying linked information for a systematic review. Traditional pathway analysis of gene expression 

results relies on GSEA. Finally, the methods presented here allow for retrieval of gene sets relevant to 

any topic that could be used as a reference library to link the observed changes to downstream 

phenotypes. 

 

Summary 

Chapter 2 introduced a resource called EMCON created using a data integration pipeline that 

links genes to any topic in literature. Chapter 3 highlights a major update to ToxRefDB that exposes a 

point of integration so that the resource can be included in data integration pipelines. The work presented 

in this chapter utilized work from both chapters to investigate the biological coverage of ToxCast 

specifically for cancer. Two approaches were taken to link ToxCast gene targets to cancer or cancer 

processes. The first queries EMCON to retrieve genes linked to important processes in cancer, which are 

then subsequently linked to the ToxCat genes. The second approach identifies organ-specific cancer 

genes by integrating ToxRefDB. Both direct and indirect methods were used to calculate biological 

coverage. The direct method quantifies the number of ToxCast genes are linked to each cancer process 

or organ-specific cancer observed from ToxRefDB. The indirect method incorporates pathways and 

processes from other resources like Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Reactome. The indirect biological coverage is calculated as the number of pathways or 

processes that are linked to both ToxCast gene targets and corresponding cancer processes. According 

to direct biological coverage, ToxCast is relevant to most of the cancer processes identified in this work 

except for epigenetics. The indirect coverage shows higher biological coverage indicating that ToxCast 

has relevant biological coverage for all cancer processes. Despite having relevant biological coverage for 

cancer using this method, more work is needed to understand the implications of the links identified in this 

work. Manual curation of ToxCast is needed like that from the International Agency for Research on 

Cancer (IARC), but the data integration strategy here can aid in identifying relevant information to 

manually review. More work to understand etiologies of complex disease and the influence of 

environmental chemical exposures is needed in order to answer questions about the necessary biological 

targets to probe using NAMs to enable robust predictions of adverse outcomes. 
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Interest in the development and use of NAMs for chemical safety evaluation will continue to grow 

as new technologies become available for massive data generation. The employment of this information 

in regulatory applications is still being considered as progress is made in building robust computational 

models. A prominent challenge exists in linking in vitro bioactivities to adverse outcomes (AOs) of interest. 

To understand the current data landscape and identify gaps in knowledge, legacy data as well as newly 

generated data must be able to be integrated. Thus, efforts to support interoperability across different 

information systems must be prioritized. The work outlined in this dissertation described methods for 

increasing data interoperability so resources can be combined in data integration and analysis pipelines 

as a new approach to investigate obstacles in toxicology.  

First, in Chapter 2, a resource called Entity MeSH Co-occurrence Network (EMCON) that links 

genes to any topic in literature was created from information manually extracted from literature. The utility 

of EMCON was demonstrated by identifying genes linked to breast cancer and shown to retrieve relevant 

genes to the topic of interest, namely breast cancer. Second, in Chapter 3, Toxicity Reference Database 

(ToxRefDB) was extensively updated to increase the richness of the data provided and to ensure quality 

and support interoperability. A controlled vocabulary (CV) was established for the reporting of adverse 

events observed in animal toxicity studies. The CV was mapped to Unified Medical Language System 

(UMLS), a semantic network of over 150 biomedical vocabularies that allows for easy integration with 

other resources that are also mapped to UMLS or any of the contained vocabularies. Finally, in Chapter 

4, the work from the previous two chapters was utilized to investigate the biological coverage of ToxCast 

for cancer. ToxCast is comprised of a number of assay endpoints that employ measures of genes 

relevant for all of the cancer processes identified in this work, except for epigenetics. When including 

pathways that contain the genes associated with ToxCast assay endpoints as an indirect measurement of 

biological coverage, the coverage of cancer concepts was higher and also included epigenetics. Despite 

CHAPTER 5: CONCLUSIONS, PERSPECTIVES, AND FUTURE DIRECTIONS 
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having relevant biological coverage for cancer using this method, the use of ToxCast for building robust 

computational models for chemical cancer hazard classification may still not be feasible at this time. 

The data integration workflow presented in Chapter 2 is an extension of other strategies for 

integrating the same information. The workflow and the use of normalized pointwise mutual information 

(NPMI) to identify relevant GeneID-MeSH associations were shown to be successful, supporting the 

assertion that bioinformatic tools like EMCON that bridge gaps in data interoperability will critically inform 

hypothesis generation and further research. However, caveats in this approach remain. The available 

information was limited to curated literature. Of the over 28 million articles in PubMed, less than one 

million were able to be integrated into EMCON. As manual curation and extraction efforts continue, 

there’s a need to develop automatic data extraction pipelines. The rate of publishing will always outpace 

the rate of manual curation, so unless automatic data extraction of relevant information exists, no one 

resource relying on information extracted from literature can be considered comprehensive. 

For legacy information databases like ToxRefDB, manual curation and extraction of data is the 

only solution for many of the documents due to the format of the source files, which are not amenable to 

computational processing. The updates to ToxRefDB exemplify a good approach to ensure data quality 

and completeness. The use of a CV enforced consistency and reduced error rates. Although, manual 

extraction can never accomplish an error rate of zero due to unavoidable human error, quality checks can 

be put into place to identify errors derived from manual entry. Unfortunately, many legacy information 

systems with relevant toxicity data are in need of updates similar to ToxRefDB, and document 

management and an underlying infrastructure to support such updates are not prioritized. Without an 

emphasis on document management and building modern and flexible infrastructures, legacy systems 

will continue to grow in silos. Updating information systems infrastructure and prioritizing interoperability 

are feasible as exemplified by the recent changes to FDA’s data submission standards (262). FDA 

worked closely with an international data standards organization, CDISC, to define data formatting 

standards for global exchange of clinical and nonclinical information. Currently, companies that submit 

information on drugs to the FDA for review must comply with strict data formatting standards. A relevant 

use case in toxicology for the benefits of data formatting standards is the analysis of ToxCast data. 

Chemical dose-response data is collected from several vendors in various formats and may limit insights 
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using established data analysis pipelines (e.g., tcpl). Developing data formatting standards for chemical 

dose-response information could speed up the delivery and analysis of results by enabling easier 

integration into other systems for the development of automated pipelines.  

A significant application of this work is the use in organizing information for automatic binning and 

subsequent manual review for tasks like that of IARC in identifying ToxCast assays relevant to any of the 

TKCC. In Chapter 4, cancer processes were defined by consulting seminal publications in cancer; 

however, IARC only considered the TKCC. The data integration and binning methods from Chapter 4 can 

be updated to focus on TKCC to identify putative links between ToxCast assays and the TKCC. The 

underlying information that supports the associations can then be manually reviewed. The information 

available for review includes PubMed articles that support the links between ToxCast assay gene targets 

and TKCCs, enriched pathways and terms from the indirect biological coverage, and the evidence (i.e. 

research articles) linking genes to each pathway and term. This data organization approach yields a more 

comprehensive review of available information than a literature search alone and can be applied to any 

concept beyond cancer.  

A further application of the work presented in this dissertation is a new route for exploring 

biological information within existing applications like the Comptox Chemicals Dashboard and the AOP 

wiki. Currently within the Comptox Chemicals Dashboard, information about assays is accessible if some 

aspect about the assay is known like the gene target or assay design. However, many users are 

interested in which assays are related to complex diseases, a feature that is not currently available. 

Within the AOP wiki, the information has been incorporated by crowdsourcing. With an underlying 

resource like EMCON, a biological search and subsequent exploration modules can be designed for 

browsing. In the AOP wiki, genes, gene products (e.g. proteins), pathways, and related concepts can be 

putatively added to gaps in existing AOPs for manual review. Also possible is condensing manual 

curation efforts. For example, AOPs for each TKCC or other relevant cancer process can be added 

automatically into the AOP wiki from EMCON. The AOP could then serve as a data curation and 

extraction tool used by IARC to continuously and transparently build evidence linking ToxCast assays to 

relevant cancer processes. Crowdsourcing or internal manual curation can continue to improve quality, 

but, if interoperability is considered when designing the application, information can continuously be 
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incorporated whenever available. Continued development of resources like EMCON is iterative because 

information can be incrementally added by manual review and identifying and integrating other available, 

relevant resources.  

Resources like EMCON can also be used to analyze information from new data streams like high-

throughput transcriptomics. Identifying environmental chemical biological targets from gene expression 

data remains an active field of research as the understanding of genotype-phenotype relationships 

becomes more complex. Instead of traditional methods like GSEA and using reference gene set libraries 

to link pathways or other processes, a graph-based approach like those used to understand genetic 

susceptibility to complex disease (263–266) could be implemented. A network like EMCON could serve 

as a starting point to develop new methods for analyzing the dose-response gene expression profiles 

from high-throughput transcriptomics. As more information is added and curated, the analysis methods 

can iteratively be explored and improved upon. Table 5.1 further presents challenges faced by specific 

user groups or organizations while describing how EMCON can be applied to address their respective 

challenges. An IARC use case is further described in Figure 5.1 depicting how the original workflow can 

be augmented with EMCON incorporating a data-driven approach to identifying assays relevant to 

consider in evaluating carcinogenic potential of chemicals. 

The path forward in the toxicology must include consideration of how data can be integrated and 

used, coinciding with expansion of the methods and approaches used in regulatory toxicology to 

investigate the impact chemical exposures have on human health. As federal agencies begin to prioritize 

good data management and modernize existing infrastructures, new analytical methods will continue to 

become available to explore not just how chemicals affect biological systems, but, also, deepen our 

understanding of human disease. 
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User group 
/Organization 

Challenge EMCON application 

IARC Bin in vitro assays into 
TKCC to evaluate 
mechanistic bioactivity per 
chemical 

IARC has been increasingly relying on 
mechanistic information for identifying 
carcinogenic potential of chemicals for 
subsequent grouping. The ToxCast assays 
have been identified as a source of mechanistic 
data to be used in a weight-of-evidence 
approach by binning assays into TKCC. The 
original workflow relies only on experts to 
manually bin the assays into TKCC, but 
EMCON can be utilized as a data-driven 
approach to bin assays into TKCC while also 
pulling in relevant articles to review.  
 
Experts can select MeSH that represent each 
TKCC to retrieve both gene sets and relevant 
enriched topics from relevant reference libraries 
like Reactome or Gene Ontology. The links 
between the gene or enriched topic and one of 
the TKCC is supported with literature that can 
be reviewed. Expert involvement is still required 
because prior knowledge about the assay 
platform and any targets is needed as well as 
expertise to review literature. Figure 5.1 shows 
where EMCON can be incorporated in the 
existing workflow for using ToxCast as a source 
of mechanistic data to evaluate carcinogenic 
potential of chemicals. 

EPA/Integrated Risk 
Information System 
(IRIS) 

Identify relevant literature 
and related evidence for 
building chemical 
assessments 

The IRIS program is tasked with building 
chemical assessments that include evidence 
supporting links between a given chemical 
exposure and specific health outcomes through 
a process called systematic review. Information 
is initially collected from a broad literature 
search from a number of different databases 
and then iteratively filtered using approaches 
like topic modeling. Manual review of literature 
is required, so maximizing retrieval of only 
relevant articles to minimize time spent 
reviewing irrelevant articles is a goal. EMCON 
can be used as one of the databases to retrieve 
literature as well as pulling in associated meta-
data (e.g. linked pathways or other topics) as 
additional evidence. 
 
For this application, EMCON would be best 
utilized if chemicals were added the network. 
Experts can select MeSH that best account for 
health outcomes of interest pulling out relevant 
links to genes as well as chemicals. All links are 
supported by articles that can be further 
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reviewed and considered as evidence in the 
assessment. 

NTP, EPA/NCCT Analyze dose-response 
transcriptomics data 
streams from S1500+ and 
HTTr projects by linking 
changes in gene 
expression to adverse 
outcomes 

Both S1500+ and HTTr projects aim to generate 
dose-response transcriptomics information. 
Among the benefits of this approach are use of 
a single platform and ability to collect 
information from human cell lines. This 
approach has the potential to generate a 
massive amount of information, yet 
understanding how to analyze this information 
and linking the changes in gene expression to 
relevant adverse outcomes remains a 
challenge. Many of the environmental chemicals 
screened do not have well-defined molecular 
targets and, therefore, a gene expression profile 
may be difficult to extract and subsequently link 
to any adverse outcome. EMCON can be used 
to generate gene sets for any adverse outcome 
of interest. Traditional GSEA can be used, but 
would eliminate the need for manually curated 
reference libraries that may not capture relevant 
information about toxicity pathways.   
 
Experts select MeSH for adverse outcomes of 
interest or select toxicity outcomes from 
ToxRefDB to identify gene sets that serve as a 
reference for GSEA to analyze results from 
S1500+ and HTTr. 

Table 5.1 Example use cases for using EMCON to address ongoing efforts in toxicology 
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Figure 5.1 Example IARC workflow for using ToxCast to identify carcinogenic potential of 
chemicals 
A) The original workflow relies experts with prior knowledge about the ToxCast assays as well as relevant 
expertise to review literature to bin each of the assays into one or more of the TKCC. EMCON can be 
used to modify this workflow and putatively bin many more assays into the TKCC. Iterative manual review 
is still required to eliminate false positives. B) The remaining original workflow would not have to be 
modified, but more assays could be utilized in this weight-of-evidence approach. 
 

 



103 
 

Name Description 

ToxCast (invitrodb) invitrodb is a database that stores the processed outputs and resulting data from 
the complete analysis pipeline (16) from different high-throughput technologies 
used for screening chemicals. The full MySQL database as well as a number of 
summary files are available from EPA’s ftp website (267). 

ToxVal ToxVal is a database that contains Toxicity Values, or values that may be used 
within regulatory applications, derived from a number of sources (268). 

ToxRefDB Toxicity Reference Database (ToxRefDB) is a publicly available database of 
animal toxicity studies that primarily adhere to guideline studies (13). The recent 
update will include increased accessibility to the resource that includes access to 
the full database, summary files, example code, and a user’s guide. 

CPDat Chemical Products Database (CPDat) stores information on chemicals in various 
products (68,269). The information is accessible through the Comptox Chemistry 
Dashboard (17). 

DSSTox Distributed Structure Searchable Toxicity Database (DSSTox) stores high quality 
chemical information and serves as the primary resource supporting the Comptox 
Chemistry Dashboard.  

httk High-throughput toxicokinetics (httk) is an R software package that implements 
models to calculate the dose a species would have been exposed to given the 
bioactivities in ToxCast (15).  

ACToR Aggregated Computational Toxicology Resource (ACToR) was a web application 
and database providing access to toxicity information across numerous domains. 
As other tools and applications have been developed, the ACToR project’s 
primary focus has been development of a web services API called actorws (65). 

tcpl ToxCast pipeline (tcpl) is an R package used to model dose-response curves 
from ToxCast (16). 

ToxCast 
Dashboard 

The ToxCast Dashboard is a web application that exclusively provides access to 
the chemical and dose-response information for the ToxCast assays (270). 

EDSP21 
Dashboard 

The EDSP21 Dashboard is a web application that provides access to the ToxCast 
data that was used to develop computational models to support the Endocrine 
Disruptor Screening Program (EDSP). The information available in this tool is the 
2015 snapshot coinciding with the public notice on EDSP in the federal register 
(271,272). 

CompTox 
Chemistry 
Dashboard 

The Comptox Chemistry Dashboard provides toxicity and chemical information 
from a majority of the resources available within the EPA and many external 
resources. The web application serves as a step towards increasing 
interoperability across all existing resources currently supporting EPA’s 
computational toxicology efforts (17). 

APPENDIX 1: USEPA PRODUCTS SUPPORTING COMPUTATIONAL TOXICOLOGY 
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PubMed identifier 
(PMID) 

Article title Journal title Publication type(s) 

19479008 The toxicity data landscape for 
environmental chemicals. 

Environmental health 
perspectives 

Journal Article;Review 

20056575 Integrating omic technologies into 
aquatic ecological risk assessment 

and environmental monitoring: 
hurdles, achievements, and future 

outlook. 

Environmental health 
perspectives 

Congresses;Research 
Support, Non-U.S. Gov't 

20368123 In vitro screening of 
environmental chemicals for 

targeted testing prioritization: the 
ToxCast project. 

Environmental health 
perspectives 

Journal 
Article;Research 
Support, U.S. Gov't, 
Non-P.H.S. 

20421935 Simulating microdosimetry in a 
virtual hepatic lobule. 

PLoS computational 
biology 

Journal 
Article;Research 
Support, U.S. Gov't, 
Non-P.H.S. 

20483702 Computational toxicology: 
realizing the promise of the 

toxicity testing in the 21st century. 

Environmental health 
perspectives 

Congresses 

20572635 Trust, but verify: on the 
importance of chemical structure 
curation in cheminformatics and 

QSAR modeling research. 

Journal of chemical 
information and 

modeling 

Journal 
Article;Research 
Support, N.I.H., 
Extramural;Research 
Support, U.S. Gov't, 
Non-P.H.S. 

20702588 A novel framework for predicting 
in vivo toxicities from in vitro data 
using optimal methods for dense 
and sparse matrix reordering and 

logistic regression. 

Toxicological sciences 
: an official journal of 

the Society of 
Toxicology 

Journal 
Article;Research 
Support, N.I.H., 
Extramural;Research 
Support, U.S. Gov't, 
Non-P.H.S. 

20826373 Endocrine profiling and 
prioritization of environmental 
chemicals using ToxCast data. 

Environmental health 
perspectives 

Journal 
Article;Research 
Support, U.S. Gov't, 
Non-P.H.S. 

21339822 Using nuclear receptor activity to 
stratify hepatocarcinogens. 

PloS one Journal Article 

21538556 Genetic toxicology in the 21st 
century: reflections and future 

directions. 

Environmental and 
molecular 

mutagenesis 

Journal Article;Review 

21556171 Combined toxic exposures and 
human health: biomarkers of 

exposure and effect. 

International journal 
of environmental 

Journal 
Article;Research 

APPENDIX 2: METADATA FOR PUBMED ARTICLES CITING EITHER MARTIN ET AL. (2009) (28) OR 
MARTIN ET AL. (2009) (29) AS OF AUGUST 8, 2018 
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research and public 
health 

Support, Non-U.S. 
Gov't;Review 

21666745 Evaluation of 309 environmental 
chemicals using a mouse 

embryonic stem cell adherent cell 
differentiation and cytotoxicity 

assay. 

PloS one Journal 
Article;Research 
Support, U.S. Gov't, 
Non-P.H.S. 

21745399 Simulating quantitative cellular 
responses using asynchronous 

threshold Boolean network 
ensembles. 

BMC systems biology Journal Article 

21788198 Environmental impact on vascular 
development predicted by high-

throughput screening. 

Environmental health 
perspectives 

Evaluation 
Studies;Journal 
Article;Research 
Support, U.S. Gov't, 
Non-P.H.S. 

22387746 Predictive modeling of chemical 
hazard by integrating numerical 

descriptors of chemical structures 
and short-term toxicity assay data. 

Toxicological sciences 
: an official journal of 

the Society of 
Toxicology 

Journal 
Article;Research 
Support, N.I.H., 
Extramural;Research 
Support, U.S. Gov't, 
Non-P.H.S. 

22405527 Toxic environmental chemicals: 
the role of reproductive health 

professionals in preventing 
harmful exposures. 

American journal of 
obstetrics and 

gynecology 

Journal 
Article;Research 
Support, N.I.H., 
Extramural;Research 
Support, Non-U.S. Gov't 

22408426 Aggregating data for 
computational toxicology 

applications: The U.S. 
Environmental Protection Agency 
(EPA) Aggregated Computational 

Toxicology Resource (ACToR) 
System. 

International journal 
of molecular sciences 

Journal 
Article;Research 
Support, U.S. Gov't, 
Non-P.H.S.;Review 

23056181 Integrating constitutive gene 
expression and chemoactivity: 
mining the NCI60 anticancer 

screen. 

PloS one Journal Article 

23086837 From QSAR to QSIIR: searching for 
enhanced computational 

toxicology models. 

Methods in 
molecular biology 

(Clifton, N.J.) 

Journal 
Article;Research 
Support, Non-U.S. 
Gov't;Review 

23603051 A C. elegans screening platform 
for the rapid assessment of 

chemical disruption of germline 
function. 

Environmental health 
perspectives 

Journal 
Article;Research 
Support, N.I.H., 
Extramural;Research 
Support, Non-U.S. Gov't 
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23603828 Improving the human hazard 
characterization of chemicals: a 

Tox21 update. 

Environmental health 
perspectives 

Evaluation 
Studies;Journal 
Article;Review 

23844697 Advancing human health risk 
assessment: integrating recent 

advisory committee 
recommendations. 

Critical reviews in 
toxicology 

Journal Article;Review 

23958734 Incorporating new technologies 
into toxicity testing and risk 

assessment: moving from 21st 
century vision to a data-driven 

framework. 

Toxicological sciences 
: an official journal of 

the Society of 
Toxicology 

Journal 
Article;Research 
Support, Non-U.S. Gov't 

24415822 THE INTERACTIVE DECISION 
COMMITTEE FOR CHEMICAL 

TOXICITY ANALYSIS. 

Journal of statistical 
research 

Journal Article 

24950175 Profiling animal toxicants by 
automatically mining public 

bioassay data: a big data approach 
for computational toxicology. 

PloS one Journal 
Article;Research 
Support, N.I.H., 
Extramural;Research 
Support, Non-U.S. Gov't 

24972337 Multigenerational exposure to 
dietary zearalenone (ZEA), an 
estrogenic mycotoxin, affects 
puberty and reproduction in 

female mice. 

Reproductive 
toxicology (Elmsford, 

N.Y.) 

Journal 
Article;Research 
Support, N.I.H., 
Extramural 

25326588 Identification of Environmental 
Chemicals Associated with the 

Development of Toxicant-
associated Fatty Liver Disease in 

Rodents. 

Toxicologic pathology Journal 
Article;Research 
Support, N.I.H., 
Extramural;Review 

25821157 Models of germ cell development 
and their application for toxicity 

studies. 

Environmental and 
molecular 

mutagenesis 

Journal 
Article;Research 
Support, N.I.H., 
Extramural;Research 
Support, Non-U.S. 
Gov't;Review 

25836969 Predicting the future: 
opportunities and challenges for 
the chemical industry to apply 
21st-century toxicity testing. 

Journal of the 
American Association 

for Laboratory 
Animal Science : 

JAALAS 

Journal Article 

25984295 Reproductive toxicity and meiotic 
dysfunction following exposure to 

the pesticides Maneb, Diazinon 
and Fenarimol. 

Toxicology research Journal Article 

26106137 Assessing the carcinogenic 
potential of low-dose exposures to 

Carcinogenesis Journal 
Article;Research 
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chemical mixtures in the 
environment: focus on the cancer 
hallmark of tumor angiogenesis. 

Support, N.I.H., 
Extramural;Research 
Support, Non-U.S. 
Gov't;Review 

26496690 Developmental Effects of the 
ToxCast™ Phase I and Phase II 
Chemicals in Caenorhabditis 
elegans and Corresponding 

Responses in Zebrafish, Rats, and 
Rabbits. 

Environmental health 
perspectives 

Journal 
Article;Research 
Support, U.S. Gov't, 
Non-P.H.S.;Research 
Support, N.I.H., 
Extramural;Research 
Support, N.I.H., 
Intramural 

26506572 Health effects of toxicants: Online 
knowledge support. 

Life sciences Journal 
Article;Research 
Support, N.I.H., 
Intramural 

26662846 Systems Toxicology of Male 
Reproductive Development: 
Profiling 774 Chemicals for 

Molecular Targets and Adverse 
Outcomes. 

Environmental health 
perspectives 

Journal Article 

26863090 Global analysis of publicly 
available safety data for 9,801 
substances registered under 

REACH from 2008-2014. 

ALTEX Journal 
Article;Research 
Support, N.I.H., 
Extramural;Research 
Support, Non-U.S. Gov't 

27884602 A data-driven weighting scheme 
for multivariate phenotypic 

endpoints recapitulates zebrafish 
developmental cascades. 

Toxicology and 
applied 

pharmacology 

Journal Article 

28531190 Real-time cell toxicity profiling of 
Tox21 10K compounds reveals 
cytotoxicity dependent toxicity 

pathway linkage. 

PloS one Journal Article 

29075892 Predicting in vivo effect levels for 
repeat-dose systemic toxicity 

using chemical, biological, kinetic 
and study covariates. 

Archives of 
toxicology 

Journal Article 

29155963 Generating Modeling Data From 
Repeat-Dose Toxicity Reports. 

Toxicological sciences 
: an official journal of 

the Society of 
Toxicology 

Journal Article 

30090397 Improving the prediction of 
organism-level toxicity through 
integration of chemical, protein 

target and cytotoxicity qHTS data. 

Toxicology research Journal Article 
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30090410 QSAR modeling for predicting 
reproductive toxicity of chemicals 

in rats for regulatory purposes. 

Toxicology research Journal Article 
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Endpoint 
category 

Endpoint type Endpoint target Effect description 

systemic pathology microscopic bone marrow lymphoma malignant 

systemic pathology gross full gross 
necropsy 

lipoma 

systemic pathology microscopic thyroid gland adenocarcinoma 

systemic pathology microscopic epididymis mesothelioma nos 

systemic pathology microscopic uterus interstitial stromal tumor 

systemic pathology microscopic clitoral gland adenoma 

systemic pathology microscopic testes adenoma 

systemic pathology microscopic ovary granulosa cell tumor 

systemic pathology microscopic liver hepatocholangiocarcinoma 

systemic pathology microscopic epididymis sarcoma 

systemic pathology microscopic uterus polyp adenomatous 

systemic pathology microscopic kidney neoplasm nos 

systemic pathology microscopic zymbal's gland squamous cell carcinoma 

systemic pathology microscopic stomach hemangiosarcoma 

systemic pathology microscopic skin fibrous histiocytoma 

systemic pathology microscopic preputial gland neoplasm nos 

systemic pathology microscopic stomach adenoma 

systemic pathology microscopic intestine large adenoma/carcinoma 
combined 

systemic pathology microscopic liver sarcoma 

systemic pathology microscopic lymph node leukemia 

systemic pathology microscopic pancreas hemangiosarcoma 

systemic pathology gross full gross 
necropsy 

mesothelioma malignant 

systemic pathology microscopic bone osteosarcoma 

systemic pathology microscopic uterus histiocytic sarcoma 

systemic pathology microscopic seminal vesicle adenoma 

systemic pathology microscopic skin subcutaneous mass 

systemic pathology microscopic lung histiocytic sarcoma 

systemic pathology gross full gross 
necropsy 

neoplasm nos 

systemic pathology microscopic skin adenocarcinoma 

systemic pathology microscopic ovary hemangiosarcoma 

systemic pathology microscopic mammary gland fibroadenoma 

systemic pathology microscopic skin papilloma 

systemic pathology microscopic skin lipoma 

systemic pathology microscopic blood leukemia mononuclear 

APPENDIX 3: SUBSET OF TOXREFDB ENDPOINTS AND EFFECTS CONSIDERED CANCER-
RELATED FOR RESEARCH PURPOSES 
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systemic pathology microscopic skin adenoma 

systemic pathology microscopic thymus lymphoma nos 

systemic pathology microscopic lung carcinoma nos 

systemic pathology microscopic brain glioma nos 

systemic pathology microscopic mammary gland adenoacanthoma 

systemic pathology microscopic lymph node lymphoma malignant 

systemic pathology microscopic skin basal cell carcinoma 

systemic pathology microscopic stomach fibrosarcoma 

systemic pathology microscopic harderian gland adenocarcinoma 

systemic pathology microscopic ovary sex cord stromal tumor, 
benign 

systemic pathology gross full gross 
necropsy 

lymphoma nos 

systemic pathology microscopic lung adenoma/carcinoma 
combined 

systemic pathology microscopic zymbal's gland carcinoma 

systemic pathology microscopic intestine large carcinoma 

systemic pathology microscopic spleen leukemia lymphocytic 

systemic pathology microscopic kidney lymphoma malignant 

systemic pathology microscopic pituitary gland acidophil adenoma 

systemic pathology microscopic liver cholangioma 

systemic pathology microscopic testes mesothelioma nos 

systemic pathology microscopic mammary gland adenocarcinoma 

systemic pathology microscopic adrenal gland pheochromocytoma 
malignant 

systemic pathology microscopic skin trichoepithelioma 

systemic pathology microscopic skin carcinoma 

systemic pathology microscopic parathyroid 
gland 

adenoma 

systemic pathology microscopic bone marrow leukemia 

systemic pathology microscopic skin basal cell adenoma 

systemic pathology microscopic pharynx squamous cell papilloma 

systemic pathology microscopic nose squamous cell carcinoma 

systemic pathology microscopic intestine small carcinoma 

systemic pathology microscopic liver adenoma/carcinoma 
combined 

systemic pathology microscopic liver hemangiosarcoma 

systemic pathology microscopic urinary bladder papilloma 

systemic pathology microscopic mammary gland adenoma/carcinoma 
combined 

systemic pathology microscopic mesentery mesothelioma nos 

systemic pathology gross full gross 
necropsy 

leukemia mononuclear 
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systemic pathology microscopic lung alveolar/bronchiolar 
adenoma 

systemic pathology microscopic kidney sarcoma 

systemic pathology microscopic mammary gland mixed tumor nos 

systemic pathology microscopic stomach neoplasm nos 

systemic pathology microscopic brain astrocytoma malignant 

systemic pathology microscopic skin fibroma 

systemic pathology microscopic uterus deciduoma nos 

systemic pathology microscopic spleen fibroma 

systemic pathology microscopic zymbal's gland adenoma 

systemic pathology microscopic stomach leiomyosarcoma 

systemic pathology microscopic adrenal gland pheochromocytoma nos 

systemic pathology microscopic spleen hemangiosarcoma 

systemic pathology microscopic liver leukemia lymphocytic 

systemic pathology microscopic adrenal gland hemangiosarcoma 

systemic pathology microscopic blood neoplasm nos 

systemic pathology microscopic liver neoplasm nos 

systemic pathology microscopic nose mixed tumor malignant 

systemic pathology microscopic liver neoplastic nodule 

systemic pathology microscopic testes neoplasm nos 

systemic pathology microscopic skin mesothelioma malignant 

systemic pathology microscopic gallbladder adenoma 

systemic pathology microscopic uterus polyp 

systemic pathology microscopic uterus adenoma/carcinoma 
combined 

systemic pathology microscopic mammary gland carcinoma 

systemic pathology microscopic skin keratoacanthoma 

systemic pathology microscopic ovary granulosa-theca tumor nos 

systemic pathology microscopic peritoneum neoplasm nos 

systemic pathology microscopic thyroid gland neoplasm nos 

systemic pathology microscopic liver mixed tumor nos 

systemic pathology microscopic lacrimal gland lymphoma malignant 

systemic pathology microscopic tongue papilloma 

systemic pathology microscopic skin rhabdomyosarcoma 

systemic pathology microscopic epididymis mesothelioma benign 

systemic pathology microscopic pituitary gland adenoma 

systemic pathology microscopic oral mucosa squamous cell carcinoma 

systemic pathology microscopic nerve sarcoma 

systemic pathology microscopic skin hemangioma 

systemic pathology microscopic nose neoplasm nos 

systemic pathology microscopic urinary bladder lymphoma nos 

systemic pathology microscopic liver mixed tumor malignant 
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systemic pathology microscopic preputial gland adenoma/carcinoma 
combined 

systemic pathology microscopic blood lymphoma malignant 

systemic pathology microscopic skin schwannoma nos 

systemic pathology gross full gross 
necropsy 

osteosarcoma 

systemic pathology microscopic intestine small adenoma 

systemic pathology microscopic liver adenocarcinoma 

systemic pathology microscopic liver hepatocellular carcinoma 

systemic pathology microscopic liver hepatoblastoma 

systemic pathology microscopic blood leukemia lymphocytic 

systemic pathology microscopic tongue carcinoma 

systemic pathology microscopic liver adenoma 

systemic pathology microscopic liver cholangiocarcinoma 

systemic pathology microscopic salivary glands lymphoma malignant 

systemic pathology microscopic lung adenocarcinoma 

systemic pathology microscopic heart schwannoma malignant 

systemic pathology microscopic stomach squamous cell carcinoma 

systemic pathology microscopic oral mucosa carcinoma nos 

systemic pathology microscopic uterus adenocarcinoma 

systemic pathology microscopic brain astrocytoma nos 

systemic pathology microscopic intestine large adenoma 

systemic pathology microscopic stomach squamous cell papilloma 

systemic pathology microscopic harderian gland carcinoma 

systemic pathology microscopic intestine large hemangiosarcoma 

systemic pathology microscopic peritoneum mesothelioma benign 

systemic pathology microscopic lymph node hemangioma 

systemic pathology microscopic heart lymphoma malignant 

systemic pathology microscopic nose adenocarcinoma 

systemic pathology microscopic bone adenoma 

systemic pathology microscopic lymph node lymphoma nos 

systemic pathology microscopic kidney adenoma/carcinoma 
combined 

systemic pathology microscopic spleen fibrosarcoma 

systemic pathology microscopic blood lymphoma malignant 
histiocytic 

systemic pathology microscopic skin squamous cell carcinoma 

systemic pathology microscopic intestine small neoplasm nos 

systemic pathology microscopic pituitary gland carcinoma 

systemic pathology microscopic ovary mixed tumor benign 

systemic pathology microscopic ureter papilloma 

systemic pathology microscopic thymus thymoma nos 

systemic pathology microscopic thyroid gland cystadenoma 
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systemic pathology microscopic intestine large squamous cell carcinoma 

systemic pathology gross full gross 
necropsy 

rhabdomyosarcoma 

systemic pathology microscopic uterus polyp stromal 

systemic pathology microscopic lung alveolar/bronchiolar 
carcinoma 

systemic pathology microscopic tongue squamous cell papilloma 

systemic pathology microscopic thyroid gland adenoma/carcinoma 
combined 

systemic pathology microscopic esophagus squamous cell papilloma 

systemic pathology microscopic clitoral gland adenoma/carcinoma 
combined 

systemic pathology microscopic preputial gland squamous cell carcinoma 

systemic pathology microscopic spleen sarcoma 

systemic pathology microscopic intestine small polyp adenomatous 

systemic pathology microscopic nose polyp 

systemic pathology microscopic thymus lymphoma malignant 

systemic pathology microscopic skin squamous cell papilloma 

systemic pathology microscopic pituitary gland adenoma/carcinoma 
combined 

systemic pathology gross full gross 
necropsy 

lymphoma malignant 

systemic pathology microscopic skeletal muscle sarcoma 

systemic pathology microscopic thyroid gland mixed tumor nos 

systemic pathology microscopic blood leukemia 

systemic pathology microscopic ovary neoplasm nos 

systemic pathology microscopic blood vessel hemangioma 

systemic pathology gross full gross 
necropsy 

leukemia granulocytic 

systemic pathology microscopic kidney transitional epithelial 
carcinoma 

systemic pathology microscopic lung squamous cell carcinoma 

systemic pathology microscopic spleen neoplasm nos 

systemic pathology microscopic skin fibrous histiocytoma benign 

systemic pathology microscopic adrenal gland adenoma 

systemic pathology microscopic testes interstitial cell tumor benign 

systemic pathology microscopic mesentery hemangiosarcoma 

systemic pathology microscopic kidney papilloma 

systemic pathology microscopic stomach carcinosarcoma 

systemic pathology microscopic uterus mesothelioma malignant 

systemic pathology microscopic intestine small adenoma/carcinoma 
combined 

systemic pathology microscopic lung carcinoma 

systemic pathology microscopic seminal vesicle carcinoma 
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systemic pathology microscopic pancreas adenoma 

systemic pathology microscopic preputial gland adenoma 

systemic pathology microscopic urinary bladder carcinoma 

systemic pathology microscopic pancreas adenoma/carcinoma 
combined 

systemic pathology microscopic liver carcinoma nos 

systemic pathology microscopic uterus carcinoma 

systemic pathology microscopic stomach papilloma 

systemic pathology microscopic uterus sarcoma 

systemic pathology microscopic lung mixed tumor nos 

systemic pathology gross full gross 
necropsy 

adenoma 

systemic pathology microscopic liver hemangioma 

systemic pathology microscopic adrenal gland pheochromocytoma benign 

systemic pathology gross full gross 
necropsy 

hemangiosarcoma 

systemic pathology microscopic urinary bladder squamous cell carcinoma 

systemic pathology microscopic kidney adenocarcinoma 

systemic pathology microscopic skin fibrosarcoma 

systemic pathology microscopic kidney lymphoma nos 

systemic pathology microscopic harderian gland adenoma/carcinoma 
combined 

systemic pathology microscopic seminal vesicle carcinoma nos 

systemic pathology microscopic liver carcinoma 

systemic pathology microscopic liver hepatocholangioma 

systemic pathology microscopic adrenal gland adenoma/carcinoma 
combined 

systemic pathology gross full gross 
necropsy 

hemangioma 

systemic pathology microscopic testes interstitial cell tumor nos 

systemic pathology microscopic ovary lymphoma malignant 

systemic pathology microscopic bone marrow leukemia mononuclear 

systemic pathology microscopic lymph node leukemia granulocytic 

systemic pathology microscopic lung cystic keratinizing 
epithelioma 

systemic pathology microscopic brain adenoma 

systemic pathology microscopic mammary gland mixed tumor malignant 

systemic pathology microscopic liver histiocytic sarcoma 

systemic pathology microscopic liver leukemia mononuclear 

systemic pathology microscopic nose carcinoma 

systemic pathology microscopic adrenal gland pheochromocytoma 
complex 

systemic pathology microscopic ovary adenoma 

systemic pathology microscopic kidney carcinoma 
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systemic pathology microscopic skin hemangiosarcoma 

systemic pathology microscopic preputial gland carcinoma 

systemic pathology microscopic uterus adenoma 

systemic pathology microscopic intestine large polyp adenomatous 

systemic pathology microscopic gallbladder papilloma 

systemic pathology microscopic prostate adenoma 

systemic pathology microscopic thyroid gland adenoma 

systemic pathology microscopic pancreas adenocarcinoma 

systemic pathology microscopic gallbladder hemangioma 

systemic pathology microscopic intestine large lipoma 

systemic pathology microscopic ureter adenoma 

systemic pathology microscopic blood vessel hemangiosarcoma 

systemic pathology microscopic uterus squamous cell carcinoma 

systemic pathology microscopic spinal cord astrocytoma nos 

systemic pathology microscopic eye adenoma 

systemic pathology microscopic stomach carcinoma in situ 

systemic pathology microscopic stomach adenocarcinoma 

systemic pathology microscopic heart hemangiosarcoma 

systemic pathology microscopic ovary tubulostromal adenoma 

systemic pathology microscopic pancreas lymphoma nos 

systemic pathology microscopic ovary interstitial stromal tumor 

systemic pathology microscopic stomach carcinoma 

systemic pathology gross full gross 
necropsy 

histiocytic sarcoma 

systemic pathology microscopic intestine small mixed tumor nos 

systemic pathology microscopic liver hepatocellular adenoma 

systemic pathology microscopic mesentery hemangioma 

systemic pathology microscopic uterus hemangioma 

systemic pathology microscopic oral mucosa squamous cell papilloma 

systemic pathology microscopic urinary bladder leiomyosarcoma 

systemic pathology microscopic pharynx carcinoma 

systemic pathology microscopic zymbal's gland adenoma/carcinoma 
combined 

systemic pathology microscopic spleen leukemia mononuclear 

systemic pathology microscopic intestine large adenocarcinoma 

systemic pathology microscopic intestine small sarcoma 

systemic pathology microscopic nose sarcoma 

systemic pathology microscopic ovary granular cell tumor 
malignant 

systemic pathology microscopic spleen osteosarcoma 

systemic pathology microscopic urinary bladder transitional epithelial 
carcinoma 

systemic pathology microscopic mammary gland fibroma 
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systemic pathology microscopic vagina squamous cell carcinoma 

systemic pathology microscopic intestine small adenocarcinoma 

systemic pathology microscopic thyroid gland carcinoma 

systemic pathology microscopic ear squamous cell papilloma 

systemic pathology microscopic skin sarcoma 

systemic pathology microscopic stomach polyp adenomatous 

systemic pathology microscopic mammary gland adenoma 

systemic pathology microscopic mammary gland carcinosarcoma 

systemic pathology microscopic blood lymphoma nos 

systemic pathology gross full gross 
necropsy 

sarcoma 

systemic pathology microscopic nose papilloma 

systemic pathology microscopic peritoneum sarcoma 

systemic pathology microscopic ovary granular cell tumor benign 

systemic pathology microscopic ovary granulosa cell tumor 
benign 

systemic pathology microscopic clitoral gland carcinoma 

systemic pathology microscopic nose rhabdomyosarcoma 

systemic pathology microscopic ovary luteoma 

systemic pathology microscopic lung adenoma 

systemic pathology microscopic nose adenoma 

systemic pathology microscopic lymph node hemangiosarcoma 

systemic pathology microscopic testes mesothelioma malignant 

systemic pathology microscopic blood histiocytic sarcoma 

systemic pathology gross full gross 
necropsy 

fibrosarcoma 

systemic pathology microscopic lung neoplasm nos 

systemic pathology microscopic kidney adenoma 

systemic pathology gross full gross 
necropsy 

lymp lymphoma malignant 
lymphocytic 

systemic pathology microscopic harderian gland adenoma 

systemic pathology microscopic uterus neoplasm nos 

systemic pathology microscopic ovary cystadenoma 

systemic pathology microscopic ovary carcinoma nos 

systemic pathology microscopic [other] histiocytic sarcoma 

systemic pathology microscopic [other] hemangioma 

systemic pathology microscopic [other] hemangiosarcoma 

systemic pathology microscopic [other] leukemia granulocytic 

systemic pathology microscopic [other] lymphoma malignant 

systemic pathology microscopic [other] leukemia mononuclear 
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Endpoint 
category 

Endpoint type Endpoint target Number of 
ToxCast 

intended gene 
targets 

Number of 
AEIDs 

systemic pathology microscopic prostate 1 9 

systemic pathology microscopic blood vessel 1 2 

systemic pathology microscopic thymus 1 2 

systemic pathology microscopic harderian gland 1 4 

systemic pathology microscopic pancreas 1 1 

systemic pathology microscopic mesentery 1 2 

systemic pathology microscopic oral mucosa 1 4 

systemic pathology microscopic skeletal muscle 1 2 

systemic pathology microscopic adrenal gland 2 2 

systemic pathology microscopic gallbladder 2 9 

systemic pathology microscopic zymbal's gland 2 16 

systemic pathology microscopic seminal vesicle 2 11 

systemic pathology microscopic preputial gland 2 16 

systemic pathology microscopic blood 2 2 

systemic pathology microscopic thyroid gland 2 5 

systemic pathology microscopic spleen 3 8 

systemic pathology microscopic brain 3 4 

systemic pathology microscopic [other] 3 8 

systemic pathology gross full gross necropsy 3 5 

systemic pathology microscopic kidney 4 19 

systemic pathology microscopic bone marrow 4 11 

systemic pathology microscopic stomach 4 12 

systemic pathology microscopic intestine large 4 20 

systemic pathology microscopic lymph node 4 8 

systemic pathology microscopic nose 4 18 

systemic pathology microscopic testes 4 4 

systemic pathology microscopic ovary 5 8 

systemic pathology microscopic vagina 5 25 

systemic pathology microscopic urinary bladder 6 9 

systemic pathology microscopic uterus 7 40 

systemic pathology microscopic lung 7 25 

systemic pathology microscopic mammary gland 8 42 

systemic pathology microscopic skin 10 22 

systemic pathology microscopic liver 31 68 

 

APPENDIX 4: CANCER-RELATED ENDPOINTS FROM TOXREFDB AND THE CORRESPONDING 
TOXCAST INTENDED GENE TARGETS AND ASSAY ENDPOINTS 
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Term Relevance 
(0/1) 

Carcinogenesis concept 
(CC) 

Reference library 

regulation of endothelial 
cell chemotaxis to 

fibroblast growth factor 
(GO:2000544) 

1 Angiogenesis GO_Biological_Process_2018 

fibroblast growth factor 
receptor signaling 

pathway (GO:0008543) 

1 Angiogenesis GO_Biological_Process_2018 

Activation of gene 
expression by SREBF 

(SREBP)_Homo 
sapiens_R-HSA-2426168 

1 Liver_cancer_(ToxRefDB) Reactome_2016 

regulation of 
angiogenesis 
(GO:0045765) 

1 Angiogenesis GO_Biological_Process_2018 

cellular response to 
fibroblast growth factor 
stimulus (GO:0044344) 

1 Angiogenesis GO_Biological_Process_2018 

activin-activated receptor 
activity (GO:0017002) 

1 Angiogenesis GO_Molecular_Function_2018 

growth factor activity 
(GO:0008083) 

1 Angiogenesis GO_Molecular_Function_2018 

Alcoholism_Homo 
sapiens_hsa05034 

1 Epigenetics KEGG_2016 

fibroblast growth factor 
receptor binding 
(GO:0005104) 

1 Angiogenesis GO_Molecular_Function_2018 

APC/C:Cdc20 mediated 
degradation of 
Securin_Homo 

sapiens_R-HSA-174154 

1 Apoptosis Reactome_2016 

APC/C:Cdc20 mediated 
degradation of 
Securin_Homo 

sapiens_R-HSA-174154 

1 Cell_cycle Reactome_2016 

APC/C:Cdc20 mediated 
degradation of 
Securin_Homo 

sapiens_R-HSA-174154 

1 Proliferation Reactome_2016 

Ascorbate and aldarate 
metabolism_Homo 
sapiens_hsa00053 

1 Growth_hormones KEGG_2016 

Autodegradation of Cdh1 
by Cdh1:APC/C_Homo 
sapiens_R-HSA-174084 

1 Apoptosis Reactome_2016 

Autodegradation of Cdh1 
by Cdh1:APC/C_Homo 
sapiens_R-HSA-174084 

1 Cell_cycle Reactome_2016 

C3HC4-type RING finger 
domain binding 
(GO:0055131) 

1 Immortalization GO_Molecular_Function_2018 

APPENDIX 5: RELEVANCE DECISIONS FOR TOP TEN TERMS FROM EACH REFERENCE LIBRARY 
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CARD domain binding 
(GO:0050700) 

1 Inflammation GO_Molecular_Function_2018 

DEx/H-box helicases 
activate type I IFN and 
inflammatory cytokines 

production_Homo 
sapiens_R-HSA-3134963 

1 Inflammation Reactome_2016 

DNA biosynthetic process 
(GO:0071897) 

1 Oxidative_stress GO_Biological_Process_2018 

DNA helicase activity 
(GO:0003678) 

1 Epigenetics GO_Molecular_Function_2018 

DNA-dependent ATPase 
activity (GO:0008094) 

1 Apoptosis GO_Molecular_Function_2018 

negative regulation of 
ubiquitin-protein ligase 

activity involved in mitotic 
cell cycle (GO:0051436) 

1 Apoptosis GO_Biological_Process_2018 

anaphase-promoting 
complex-dependent 
catabolic process 

(GO:0031145) 

1 Apoptosis GO_Biological_Process_2018 

cell cycle G2/M phase 
transition (GO:0044839) 

1 Apoptosis GO_Biological_Process_2018 

positive regulation of 
ubiquitin-protein ligase 

activity involved in 
regulation of mitotic cell 

cycle transition 
(GO:0051437) 

1 Apoptosis GO_Biological_Process_2018 

DNA-dependent ATPase 
activity (GO:0008094) 

1 Epigenetics GO_Molecular_Function_2018 

DNA-dependent ATPase 
activity (GO:0008094) 

1 Oxidative_stress GO_Molecular_Function_2018 

double-strand break 
repair via 

nonhomologous end 
joining (GO:0006303) 

1 Oxidative_stress GO_Biological_Process_2018 

kinase binding 
(GO:0019900) 

1 Apoptosis GO_Molecular_Function_2018 

damaged DNA binding 
(GO:0003684) 

1 Apoptosis GO_Molecular_Function_2018 

Nucleotide excision 
repair_Homo 

sapiens_hsa03420 

1 Apoptosis KEGG_2016 

Dual Incision in GG-
NER_Homo sapiens_R-

HSA-5696400 

1 Oxidative_stress Reactome_2016 

p53 signaling 
pathway_Homo 

sapiens_hsa04115 

1 Apoptosis KEGG_2016 

Cell cycle_Homo 
sapiens_hsa04110 

1 Apoptosis KEGG_2016 

Apoptosis_Homo 
sapiens_hsa04210 

1 Apoptosis KEGG_2016 



120 
 

Dual incision in TC-
NER_Homo sapiens_R-

HSA-6782135 

1 Oxidative_stress Reactome_2016 

Activation of NF-kappaB 
in B cells_Homo 

sapiens_R-HSA-1169091 

1 Apoptosis Reactome_2016 

Processing of DNA 
double-strand break 

ends_Homo sapiens_R-
HSA-5693607 

1 Apoptosis Reactome_2016 

Energy dependent 
regulation of mTOR by 

LKB1-AMPK_Homo 
sapiens_R-HSA-380972 

1 Immortalization Reactome_2016 

ERCC6 (CSB) and 
EHMT2 (G9a) positively 

regulate rRNA 
expression_Homo 

sapiens_R-HSA-427389 

1 Epigenetics Reactome_2016 

negative regulation of 
G2/M transition of mitotic 
cell cycle (GO:0010972) 

1 Cell_cycle GO_Biological_Process_2018 

regulation of 
hematopoietic progenitor 

cell differentiation 
(GO:1901532) 

1 Cell_cycle GO_Biological_Process_2018 

exodeoxyribonuclease 
activity, producing 5'-
phosphomonoesters 

(GO:0016895) 

1 Apoptosis GO_Molecular_Function_2018 

anaphase-promoting 
complex-dependent 
catabolic process 

(GO:0031145) 

1 Cell_cycle GO_Biological_Process_2018 

positive regulation of 
ubiquitin-protein ligase 

activity involved in 
regulation of mitotic cell 

cycle transition 
(GO:0051437) 

1 Cell_cycle GO_Biological_Process_2018 

Fanconi anemia 
pathway_Homo 

sapiens_hsa03460 

1 Genotoxicity KEGG_2016 

FGFR2c ligand binding 
and activation_Homo 

sapiens_R-HSA-190375 

1 Angiogenesis Reactome_2016 

kinase binding 
(GO:0019900) 

1 Cell_cycle GO_Molecular_Function_2018 

FGFR4 ligand binding 
and activation_Homo 

sapiens_R-HSA-190322 

1 Angiogenesis Reactome_2016 

FoxO signaling 
pathway_Homo 

sapiens_hsa04068 

1 Apoptosis KEGG_2016 
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FoxO signaling 
pathway_Homo 

sapiens_hsa04068 

1 Immortalization KEGG_2016 

frizzled binding 
(GO:0005109) 

1 Cell_cycle GO_Molecular_Function_2018 

Oocyte meiosis_Homo 
sapiens_hsa04114 

1 Cell_cycle KEGG_2016 

Glucagon-type ligand 
receptors_Homo 

sapiens_R-HSA-420092 

1 Growth_hormones Reactome_2016 

Cell cycle_Homo 
sapiens_hsa04110 

1 Cell_cycle KEGG_2016 

The role of GTSE1 in 
G2/M progression after 
G2 checkpoint_Homo 

sapiens_R-HSA-8852276 

1 Cell_cycle Reactome_2016 

glucuronate metabolic 
process (GO:0019585) 

0 Growth_hormones GO_Biological_Process_2018 

Glucuronidation_Homo 
sapiens_R-HSA-156588 

0 Growth_hormones Reactome_2016 

Hepatitis B_Homo 
sapiens_hsa05161 

0 Immortalization KEGG_2016 

Hippo signaling 
pathway_Homo 

sapiens_hsa04390 

1 Cell_cycle KEGG_2016 

DNA replication-
independent nucleosome 

organization 
(GO:0034724) 

1 Epigenetics GO_Biological_Process_2018 

chromatin silencing at 
rDNA (GO:0000183) 

1 Epigenetics GO_Biological_Process_2018 

negative regulation of 
gene expression, 

epigenetic (GO:0045814) 

1 Epigenetics GO_Biological_Process_2018 

ATP-dependent 
chromatin remodeling 

(GO:0043044) 

1 Epigenetics GO_Biological_Process_2018 

chromatin assembly 
(GO:0031497) 

1 Epigenetics GO_Biological_Process_2018 

HTLV-I infection_Homo 
sapiens_hsa05166 

1 Cell_cycle KEGG_2016 

HTLV-I infection_Homo 
sapiens_hsa05166 

1 Proliferation KEGG_2016 

Integrin cell surface 
interactions_Homo 

sapiens_R-HSA-216083 

1 Angiogenesis Reactome_2016 

interstrand cross-link 
repair (GO:0036297) 

1 Oxidative_stress GO_Biological_Process_2018 

nucleosomal DNA 
binding (GO:0031492) 

1 Epigenetics GO_Molecular_Function_2018 

Lysine 
degradation_Homo 
sapiens_hsa00310 

1 Epigenetics KEGG_2016 

Transcriptional 
misregulation in 

1 Epigenetics KEGG_2016 
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cancer_Homo 
sapiens_hsa05202 

MAPK signaling 
pathway_Homo 

sapiens_hsa04010 

1 Angiogenesis KEGG_2016 

Melanoma_Homo 
sapiens_hsa05218 

1 Angiogenesis KEGG_2016 

microtubule plus-end 
binding (GO:0051010) 

1 Cell_cycle GO_Molecular_Function_2018 

HDACs deacetylate 
histones_Homo 

sapiens_R-HSA-3214815 

1 Epigenetics Reactome_2016 

mitochondrial electron 
transport, NADH to 

ubiquinone 
(GO:0006120) 

1 Oxidative_stress GO_Biological_Process_2018 

DNA methylation_Homo 
sapiens_R-HSA-5334118 

1 Epigenetics Reactome_2016 

RMTs methylate histone 
arginines_Homo 

sapiens_R-HSA-3214858 

1 Epigenetics Reactome_2016 

PRC2 methylates 
histones and DNA_Homo 
sapiens_R-HSA-212300 

1 Epigenetics Reactome_2016 

interstrand cross-link 
repair (GO:0036297) 

1 Genotoxicity GO_Biological_Process_2018 

non-recombinational 
repair (GO:0000726) 

1 Genotoxicity GO_Biological_Process_2018 

DNA replication 
(GO:0006260) 

1 Genotoxicity GO_Biological_Process_2018 

double-strand break 
repair via 

nonhomologous end 
joining (GO:0006303) 

1 Genotoxicity GO_Biological_Process_2018 

transcription-coupled 
nucleotide-excision repair 

(GO:0006283) 

1 Genotoxicity GO_Biological_Process_2018 

DNA helicase activity 
(GO:0003678) 

1 Genotoxicity GO_Molecular_Function_2018 

DNA-directed DNA 
polymerase activity 

(GO:0003887) 

1 Genotoxicity GO_Molecular_Function_2018 

DNA-dependent ATPase 
activity (GO:0008094) 

1 Genotoxicity GO_Molecular_Function_2018 

damaged DNA binding 
(GO:0003684) 

1 Genotoxicity GO_Molecular_Function_2018 

single-stranded DNA 
binding (GO:0003697) 

1 Genotoxicity GO_Molecular_Function_2018 

Base excision 
repair_Homo 

sapiens_hsa03410 

1 Genotoxicity KEGG_2016 

Alcoholism_Homo 
sapiens_hsa05034 

1 Genotoxicity KEGG_2016 
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Viral 
carcinogenesis_Homo 

sapiens_hsa05203 

1 Genotoxicity KEGG_2016 

mTORC1-mediated 
signalling_Homo 

sapiens_R-HSA-166208 

1 Immortalization Reactome_2016 

Nucleotide excision 
repair_Homo 

sapiens_hsa03420 

1 Genotoxicity KEGG_2016 

Nonhomologous End-
Joining (NHEJ)_Homo 

sapiens_R-HSA-5693571 

1 Genotoxicity Reactome_2016 

Dual incision in TC-
NER_Homo sapiens_R-

HSA-6782135 

1 Genotoxicity Reactome_2016 

NAD+ ADP-
ribosyltransferase activity 

(GO:0003950) 

1 Apoptosis GO_Molecular_Function_2018 

Processing of DNA 
double-strand break 

ends_Homo sapiens_R-
HSA-5693607 

1 Genotoxicity Reactome_2016 

Resolution of Sister 
Chromatid 

Cohesion_Homo 
sapiens_R-HSA-2500257 

1 Genotoxicity Reactome_2016 

cAMP-mediated signaling 
(GO:0019933) 

1 Growth_hormones GO_Biological_Process_2018 

JAK-STAT cascade 
involved in growth 
hormone signaling 

pathway (GO:0060397) 

1 Growth_hormones GO_Biological_Process_2018 

negative regulation of 
ubiquitin-protein ligase 

activity involved in mitotic 
cell cycle (GO:0051436) 

1 Cell_cycle GO_Biological_Process_2018 

positive regulation of 
multicellular organism 
growth (GO:0040018) 

1 Growth_hormones GO_Biological_Process_2018 

response to nutrient 
levels (GO:0031667) 

1 Growth_hormones GO_Biological_Process_2018 

insulin receptor binding 
(GO:0005158) 

1 Growth_hormones GO_Molecular_Function_2018 

neuropeptide hormone 
activity (GO:0005184) 

1 Growth_hormones GO_Molecular_Function_2018 

protein-hormone receptor 
activity (GO:0016500) 

1 Growth_hormones GO_Molecular_Function_2018 

insulin-like growth factor 
receptor binding 
(GO:0005159) 

1 Growth_hormones GO_Molecular_Function_2018 

insulin-like growth factor 
II binding (GO:0031995) 

1 Growth_hormones GO_Molecular_Function_2018 

Neuroactive ligand-
receptor 

0 Growth_hormones KEGG_2016 
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interaction_Homo 
sapiens_hsa04080 

NF-kappa B signaling 
pathway_Homo 

sapiens_hsa04064 

1 Inflammation KEGG_2016 

Ovarian 
steroidogenesis_Homo 

sapiens_hsa04913 

1 Growth_hormones KEGG_2016 

Steroid hormone 
biosynthesis_Homo 
sapiens_hsa00140 

1 Growth_hormones KEGG_2016 

NOD1/2 Signaling 
Pathway_Homo 

sapiens_R-HSA-168638 

1 Immortalization Reactome_2016 

NOD-like receptor 
signaling pathway_Homo 

sapiens_hsa04621 

1 Inflammation KEGG_2016 

Prolactin receptor 
signaling_Homo 

sapiens_R-HSA-1170546 

1 Growth_hormones Reactome_2016 

Regulation of Insulin-like 
Growth Factor (IGF) 

transport and uptake by 
Insulin-like Growth Factor 

Binding Proteins 
(IGFBPs)_Homo 

sapiens_R-HSA-381426 

1 Growth_hormones Reactome_2016 

Growth hormone receptor 
signaling_Homo 

sapiens_R-HSA-982772 

1 Growth_hormones Reactome_2016 

Pentose and glucuronate 
interconversions_Homo 

sapiens_hsa00040 

1 Growth_hormones KEGG_2016 

regulation of autophagy 
(GO:0010506) 

1 Immortalization GO_Biological_Process_2018 

autophagy of nucleus 
(GO:0044804) 

1 Immortalization GO_Biological_Process_2018 

mitochondrion 
disassembly 

(GO:0061726) 

1 Immortalization GO_Biological_Process_2018 

positive regulation of 
autophagy (GO:0010508) 

1 Immortalization GO_Biological_Process_2018 

regulation of 
macroautophagy 
(GO:0016241) 

1 Immortalization GO_Biological_Process_2018 

phosphatidylcholine-
sterol O-acyltransferase 

activator activity 
(GO:0060228) 

0 Inflammation GO_Molecular_Function_2018 

death domain binding 
(GO:0070513) 

1 Immortalization GO_Molecular_Function_2018 

kinase binding 
(GO:0019900) 

1 Immortalization GO_Molecular_Function_2018 

cysteine-type 
endopeptidase activity 

1 Immortalization GO_Molecular_Function_2018 
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involved in execution 
phase of apoptosis 

(GO:0097200) 
phosphatidylinositol-4,5-
bisphosphate 3-kinase 
activity (GO:0046934) 

1 Angiogenesis GO_Molecular_Function_2018 

phosphatidylinositol-4,5-
bisphosphate 3-kinase 
activity (GO:0046934) 

1 Oxidative_stress GO_Molecular_Function_2018 

phospholipase activator 
activity (GO:0016004) 

1 Immunomodulation GO_Molecular_Function_2018 

Longevity regulating 
pathway - 

mammal_Homo 
sapiens_hsa04211 

1 Immortalization KEGG_2016 

p53 signaling 
pathway_Homo 

sapiens_hsa04115 

1 Immortalization KEGG_2016 

Apoptosis_Homo 
sapiens_hsa04210 

1 Immortalization KEGG_2016 

Regulation of TP53 
Activity through 

Phosphorylation_Homo 
sapiens_R-HSA-6804756 

1 Immortalization Reactome_2016 

PI3K-Akt signaling 
pathway_Homo 

sapiens_hsa04151 

1 Angiogenesis KEGG_2016 

PI3K-Akt signaling 
pathway_Homo 

sapiens_hsa04151 

1 Proliferation KEGG_2016 

Platelet 
degranulation_Homo 

sapiens_R-HSA-114608 

1 Angiogenesis Reactome_2016 

Macroautophagy_Homo 
sapiens_R-HSA-1632852 

1 Immortalization Reactome_2016 

monocyte chemotaxis 
(GO:0002548) 

1 Immunomodulation GO_Biological_Process_2018 

chemokine-mediated 
signaling pathway 

(GO:0070098) 

1 Immunomodulation GO_Biological_Process_2018 

neutrophil chemotaxis 
(GO:0030593) 

1 Immunomodulation GO_Biological_Process_2018 

B cell activation 
(GO:0042113) 

1 Immunomodulation GO_Biological_Process_2018 

B cell receptor signaling 
pathway (GO:0050853) 

1 Immunomodulation GO_Biological_Process_2018 

C-C chemokine binding 
(GO:0019957) 

1 Immunomodulation GO_Molecular_Function_2018 

positive regulation of 
protein kinase B signaling 

(GO:0051897) 

1 Angiogenesis GO_Biological_Process_2018 

Processing of DNA 
double-strand break 

ends_Homo sapiens_R-
HSA-5693607 

1 Oxidative_stress Reactome_2016 
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chemokine activity 
(GO:0008009) 

1 Immunomodulation GO_Molecular_Function_2018 

CCR chemokine receptor 
binding (GO:0048020) 

1 Immunomodulation GO_Molecular_Function_2018 

Hematopoietic cell 
lineage_Homo 

sapiens_hsa04640 

1 Immunomodulation KEGG_2016 

Chemokine signaling 
pathway_Homo 

sapiens_hsa04062 

1 Immunomodulation KEGG_2016 

B cell receptor signaling 
pathway_Homo 

sapiens_hsa04662 

1 Immunomodulation KEGG_2016 

Primary 
immunodeficiency_Homo 

sapiens_hsa05340 

1 Immunomodulation KEGG_2016 

Cytokine-cytokine 
receptor 

interaction_Homo 
sapiens_hsa04060 

1 Immunomodulation KEGG_2016 

Immunoregulatory 
interactions between a 
Lymphoid and a non-
Lymphoid cell_Homo 

sapiens_R-HSA-198933 

1 Immunomodulation Reactome_2016 

Prostanoid ligand 
receptors_Homo 

sapiens_R-HSA-391908 

1 Immunomodulation Reactome_2016 

TNFs bind their 
physiological 

receptors_Homo 
sapiens_R-HSA-5669034 

1 Immunomodulation Reactome_2016 

CD22 mediated BCR 
regulation_Homo 

sapiens_R-HSA-5690714 

1 Immunomodulation Reactome_2016 

Chemokine receptors 
bind chemokines_Homo 
sapiens_R-HSA-380108 

1 Immunomodulation Reactome_2016 

regulation of interleukin-6 
production (GO:0032675) 

1 Inflammation GO_Biological_Process_2018 

positive regulation of 
interleukin-1 beta 

secretion (GO:0050718) 

1 Inflammation GO_Biological_Process_2018 

negative regulation of 
defense response 

(GO:0031348) 

1 Inflammation GO_Biological_Process_2018 

neutrophil degranulation 
(GO:0043312) 

1 Inflammation GO_Biological_Process_2018 

regulation of 
inflammatory response 

(GO:0050727) 

1 Inflammation GO_Biological_Process_2018 

Proteasome_Homo 
sapiens_hsa03050 

1 Cell_cycle KEGG_2016 
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proteasome-activating 
ATPase activity 
(GO:0036402) 

1 Cell_cycle GO_Molecular_Function_2018 

interleukin-1 receptor 
binding (GO:0005149) 

1 Inflammation GO_Molecular_Function_2018 

Toll-like receptor binding 
(GO:0035325) 

1 Inflammation GO_Molecular_Function_2018 

chemokine activity 
(GO:0008009) 

1 Inflammation GO_Molecular_Function_2018 

Toll-like receptor 
signaling pathway_Homo 

sapiens_hsa04620 

1 Inflammation KEGG_2016 

protein homodimerization 
activity (GO:0042803) 

1 Immortalization GO_Molecular_Function_2018 

Pertussis_Homo 
sapiens_hsa05133 

1 Inflammation KEGG_2016 

protein homodimerization 
activity (GO:0042803) 

1 Oxidative_stress GO_Molecular_Function_2018 

Cytokine-cytokine 
receptor 

interaction_Homo 
sapiens_hsa04060 

1 Inflammation KEGG_2016 

protein-lysine N-
methyltransferase activity 

(GO:0016279) 

1 Epigenetics GO_Molecular_Function_2018 

Proteoglycans in 
cancer_Homo 

sapiens_hsa05205 

1 Proliferation KEGG_2016 

The NLRP3 
inflammasome_Homo 

sapiens_R-HSA-844456 

1 Inflammation Reactome_2016 

Chemokine receptors 
bind chemokines_Homo 
sapiens_R-HSA-380108 

1 Inflammation Reactome_2016 

Platelet 
degranulation_Homo 

sapiens_R-HSA-114608 

1 Inflammation Reactome_2016 

lipid hydroxylation 
(GO:0002933) 

1 Liver_cancer_(ToxRefDB) GO_Biological_Process_2018 

fatty acid beta-oxidation 
using acyl-CoA oxidase 

(GO:0033540) 

1 Liver_cancer_(ToxRefDB) GO_Biological_Process_2018 

omega-hydroxylase P450 
pathway (GO:0097267) 

1 Liver_cancer_(ToxRefDB) GO_Biological_Process_2018 

glucuronate metabolic 
process (GO:0019585) 

1 Liver_cancer_(ToxRefDB) GO_Biological_Process_2018 

epoxygenase P450 
pathway (GO:0019373) 

1 Liver_cancer_(ToxRefDB) GO_Biological_Process_2018 

CoA hydrolase activity 
(GO:0016289) 

1 Liver_cancer_(ToxRefDB) GO_Molecular_Function_2018 

glucuronosyltransferase 
activity (GO:0015020) 

1 Liver_cancer_(ToxRefDB) GO_Molecular_Function_2018 

acyl-CoA oxidase activity 
(GO:0003997) 

1 Liver_cancer_(ToxRefDB) GO_Molecular_Function_2018 
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oxidoreductase activity, 
acting on paired donors, 

with incorporation or 
reduction of molecular 

oxygen, reduced flavin or 
flavoprotein as one 

donor, and incorporation 
of one atom of oxygen 

(GO:0016712) 

1 Liver_cancer_(ToxRefDB) GO_Molecular_Function_2018 

steroid hydroxylase 
activity (GO:0008395) 

1 Liver_cancer_(ToxRefDB) GO_Molecular_Function_2018 

Rap1 signaling 
pathway_Homo 

sapiens_hsa04015 

1 Angiogenesis KEGG_2016 

Ras signaling 
pathway_Homo 

sapiens_hsa04014 

1 Angiogenesis KEGG_2016 

Metabolism of 
xenobiotics by 

cytochrome P450_Homo 
sapiens_hsa00980 

1 Liver_cancer_(ToxRefDB) KEGG_2016 

Chemical 
carcinogenesis_Homo 

sapiens_hsa05204 

1 Liver_cancer_(ToxRefDB) KEGG_2016 

Drug metabolism - 
cytochrome P450_Homo 

sapiens_hsa00982 

1 Liver_cancer_(ToxRefDB) KEGG_2016 

regulation of 
hematopoietic progenitor 

cell differentiation 
(GO:1901532) 

1 Apoptosis GO_Biological_Process_2018 

CYP2E1 reactions_Homo 
sapiens_R-HSA-211999 

1 Liver_cancer_(ToxRefDB) Reactome_2016 

Recycling of bile acids 
and salts_Homo 

sapiens_R-HSA-159418 

1 Liver_cancer_(ToxRefDB) Reactome_2016 

PPARA activates gene 
expression_Homo 

sapiens_R-HSA-1989781 

1 Liver_cancer_(ToxRefDB) Reactome_2016 

Glucuronidation_Homo 
sapiens_R-HSA-156588 

1 Liver_cancer_(ToxRefDB) Reactome_2016 

Regulation of RAS by 
GAPs_Homo sapiens_R-

HSA-5658442 

1 Angiogenesis Reactome_2016 

Resolution of Sister 
Chromatid 

Cohesion_Homo 
sapiens_R-HSA-2500257 

1 Cell_cycle Reactome_2016 

Retinol 
metabolism_Homo 
sapiens_hsa00830 

1 Liver_cancer_(ToxRefDB) KEGG_2016 

RHO GTPases Activate 
Formins_Homo 

sapiens_R-HSA-5663220 

1 Cell_cycle Reactome_2016 
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cellular response to 
oxidative stress 
(GO:0034599) 

1 Oxidative_stress GO_Biological_Process_2018 

RHO GTPases Activate 
Formins_Homo 

sapiens_R-HSA-5663220 

0 Genotoxicity Reactome_2016 

RNA polymerase II core 
promoter sequence-
specific DNA binding 

(GO:0000979) 

1 Immunomodulation GO_Molecular_Function_2018 

RNA polymerase II distal 
enhancer sequence-
specific DNA binding 

(GO:0000980) 

1 Epigenetics GO_Molecular_Function_2018 

glutathione transferase 
activity (GO:0004364) 

1 Oxidative_stress GO_Molecular_Function_2018 

damaged DNA binding 
(GO:0003684) 

1 Oxidative_stress GO_Molecular_Function_2018 

SCF-beta-TrCP mediated 
degradation of 

Emi1_Homo sapiens_R-
HSA-174113 

1 Apoptosis Reactome_2016 

Drug metabolism - 
cytochrome P450_Homo 

sapiens_hsa00982 

1 Oxidative_stress KEGG_2016 

Chemical 
carcinogenesis_Homo 

sapiens_hsa05204 

1 Oxidative_stress KEGG_2016 

Metabolism of 
xenobiotics by 

cytochrome P450_Homo 
sapiens_hsa00980 

1 Oxidative_stress KEGG_2016 

Non-alcoholic fatty liver 
disease (NAFLD)_Homo 

sapiens_hsa04932 

1 Oxidative_stress KEGG_2016 

Senescence-Associated 
Secretory Phenotype 

(SASP)_Homo 
sapiens_R-HSA-2559582 

1 Oxidative_stress Reactome_2016 

Steroid hormone 
biosynthesis_Homo 
sapiens_hsa00140 

1 Liver_cancer_(ToxRefDB) KEGG_2016 

Oxidative Stress Induced 
Senescence_Homo 

sapiens_R-HSA-2559580 

1 Oxidative_stress Reactome_2016 

Systemic lupus 
erythematosus_Homo 

sapiens_hsa05322 

1 Epigenetics KEGG_2016 

transcriptional activator 
activity, RNA polymerase 
II core promoter proximal 
region sequence-specific 

binding (GO:0001077) 

1 Cell_cycle GO_Molecular_Function_2018 

anaphase-promoting 
complex-dependent 

1 Proliferation GO_Biological_Process_2018 
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catabolic process 
(GO:0031145) 

cell cycle G2/M phase 
transition (GO:0044839) 

1 Proliferation GO_Biological_Process_2018 

regulation of stem cell 
differentiation 
(GO:2000736) 

1 Proliferation GO_Biological_Process_2018 

regulation of 
hematopoietic progenitor 

cell differentiation 
(GO:1901532) 

1 Proliferation GO_Biological_Process_2018 

positive regulation of 
nucleic acid-templated 

transcription 
(GO:1903508) 

1 Proliferation GO_Biological_Process_2018 

DNA-dependent ATPase 
activity (GO:0008094) 

1 Proliferation GO_Molecular_Function_2018 

RNA polymerase II core 
promoter proximal region 
sequence-specific DNA 
binding (GO:0000978) 

1 Proliferation GO_Molecular_Function_2018 

transcriptional activator 
activity, RNA polymerase 
II core promoter proximal 
region sequence-specific 

binding (GO:0001077) 

1 Proliferation GO_Molecular_Function_2018 

kinase binding 
(GO:0019900) 

1 Proliferation GO_Molecular_Function_2018 

phosphatidylinositol-4,5-
bisphosphate 3-kinase 
activity (GO:0046934) 

1 Proliferation GO_Molecular_Function_2018 

Transcriptional regulation 
of white adipocyte 

differentiation_Homo 
sapiens_R-HSA-381340 

1 Inflammation Reactome_2016 

Focal adhesion_Homo 
sapiens_hsa04510 

1 Proliferation KEGG_2016 

Cell cycle_Homo 
sapiens_hsa04110 

1 Proliferation KEGG_2016 

type II transforming 
growth factor beta 
receptor binding 
(GO:0005114) 

1 Angiogenesis GO_Molecular_Function_2018 

Viral 
carcinogenesis_Homo 

sapiens_hsa05203 

1 Epigenetics KEGG_2016 

Processing of DNA 
double-strand break 

ends_Homo sapiens_R-
HSA-5693607 

1 Proliferation Reactome_2016 

Autodegradation of Cdh1 
by Cdh1:APC/C_Homo 
sapiens_R-HSA-174084 

1 Proliferation Reactome_2016 
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Oxidative Stress Induced 
Senescence_Homo 

sapiens_R-HSA-2559580 

1 Proliferation Reactome_2016 

Viral 
carcinogenesis_Homo 

sapiens_hsa05203 

1 Oxidative_stress KEGG_2016 

Senescence-Associated 
Secretory Phenotype 

(SASP)_Homo 
sapiens_R-HSA-2559582 

1 Proliferation Reactome_2016 

sodium-independent 
organic anion transport 

(GO:0043252) 

1 Steroid_hormones GO_Biological_Process_2018 

progesterone metabolic 
process (GO:0042448) 

1 Steroid_hormones GO_Biological_Process_2018 

C21-steroid hormone 
metabolic process 

(GO:0008207) 

1 Steroid_hormones GO_Biological_Process_2018 

flavonoid glucuronidation 
(GO:0052696) 

1 Steroid_hormones GO_Biological_Process_2018 

glucuronate metabolic 
process (GO:0019585) 

1 Steroid_hormones GO_Biological_Process_2018 

aryl sulfotransferase 
activity (GO:0004062) 

1 Steroid_hormones GO_Molecular_Function_2018 

inorganic anion 
exchanger activity 

(GO:0005452) 

0 Steroid_hormones GO_Molecular_Function_2018 

ketosteroid 
monooxygenase activity 

(GO:0047086) 

1 Steroid_hormones GO_Molecular_Function_2018 

glucuronosyltransferase 
activity (GO:0015020) 

1 Steroid_hormones GO_Molecular_Function_2018 

sodium-independent 
organic anion 

transmembrane 
transporter activity 

(GO:0015347) 

1 Steroid_hormones GO_Molecular_Function_2018 

Ascorbate and aldarate 
metabolism_Homo 
sapiens_hsa00053 

1 Steroid_hormones KEGG_2016 

Drug metabolism - 
cytochrome P450_Homo 

sapiens_hsa00982 

1 Steroid_hormones KEGG_2016 

Chemical 
carcinogenesis_Homo 

sapiens_hsa05204 

1 Steroid_hormones KEGG_2016 

Metabolism of 
xenobiotics by 

cytochrome P450_Homo 
sapiens_hsa00980 

1 Steroid_hormones KEGG_2016 

Steroid hormone 
biosynthesis_Homo 
sapiens_hsa00140 

1 Steroid_hormones KEGG_2016 

Common Pathway of 
Fibrin Clot 

1 Steroid_hormones Reactome_2016 
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Formation_Homo 
sapiens_R-HSA-140875 
Hormone ligand-binding 

receptors_Homo 
sapiens_R-HSA-375281 

1 Steroid_hormones Reactome_2016 

Transport of organic 
anions_Homo 

sapiens_R-HSA-879518 

1 Steroid_hormones Reactome_2016 

Androgen 
biosynthesis_Homo 

sapiens_R-HSA-193048 

1 Steroid_hormones Reactome_2016 

Glucuronidation_Homo 
sapiens_R-HSA-156588 

1 Steroid_hormones Reactome_2016 

flavonoid glucuronidation 
(GO:0052696) 

1 Xenobiotic_metabolism GO_Biological_Process_2018 

glucuronate metabolic 
process (GO:0019585) 

1 Xenobiotic_metabolism GO_Biological_Process_2018 

glycosaminoglycan 
metabolic process 

(GO:0030203) 

1 Xenobiotic_metabolism GO_Biological_Process_2018 

aminoglycan metabolic 
process (GO:0006022) 

1 Xenobiotic_metabolism GO_Biological_Process_2018 

epoxygenase P450 
pathway (GO:0019373) 

1 Xenobiotic_metabolism GO_Biological_Process_2018 

steroid hydroxylase 
activity (GO:0008395) 

1 Xenobiotic_metabolism GO_Molecular_Function_2018 

aryl sulfotransferase 
activity (GO:0004062) 

1 Xenobiotic_metabolism GO_Molecular_Function_2018 

glucuronosyltransferase 
activity (GO:0015020) 

1 Xenobiotic_metabolism GO_Molecular_Function_2018 

oxidoreductase activity, 
acting on paired donors, 

with incorporation or 
reduction of molecular 

oxygen, reduced flavin or 
flavoprotein as one 

donor, and incorporation 
of one atom of oxygen 

(GO:0016712) 

1 Xenobiotic_metabolism GO_Molecular_Function_2018 

glutathione transferase 
activity (GO:0004364) 

1 Xenobiotic_metabolism GO_Molecular_Function_2018 

Retinol 
metabolism_Homo 
sapiens_hsa00830 

1 Xenobiotic_metabolism KEGG_2016 

Steroid hormone 
biosynthesis_Homo 
sapiens_hsa00140 

1 Xenobiotic_metabolism KEGG_2016 

Metabolism of 
xenobiotics by 

cytochrome P450_Homo 
sapiens_hsa00980 

1 Xenobiotic_metabolism KEGG_2016 

Drug metabolism - 
cytochrome P450_Homo 

sapiens_hsa00982 

1 Xenobiotic_metabolism KEGG_2016 
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Chemical 
carcinogenesis_Homo 

sapiens_hsa05204 

1 Xenobiotic_metabolism KEGG_2016 

CYP2E1 reactions_Homo 
sapiens_R-HSA-211999 

1 Xenobiotic_metabolism Reactome_2016 

Miscellaneous 
substrates_Homo 

sapiens_R-HSA-211958 

1 Xenobiotic_metabolism Reactome_2016 

Synthesis of Leukotrienes 
(LT) and Eoxins 

(EX)_Homo sapiens_R-
HSA-2142691 

1 Xenobiotic_metabolism Reactome_2016 

Fatty acids_Homo 
sapiens_R-HSA-211935 

1 Xenobiotic_metabolism Reactome_2016 

Glucuronidation_Homo 
sapiens_R-HSA-156588 

1 Xenobiotic_metabolism Reactome_2016 
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