Field Obstacle Identification for Autonomous Tractor Applications

Caleb Lindhorst
University of Nebraska-Lincoln, clindhorst2@gmail.com

Follow this and additional works at: https:// digitalcommons.unl.edu/biosysengdiss
Part of the Bioresource and Agricultural Engineering Commons

Lindhorst, Caleb, "Field Obstacle Identification for Autonomous Tractor Applications" (2019). Biological Systems Engineering-Dissertations, Theses, and Student Research. 94.
https://digitalcommons.unl.edu/biosysengdiss/94

FIELD OBSTACLE IDENTIFICATION FOR AUTONOMOUS TRACTOR APPLICATIONS

by
Caleb Lindhorst

A THESIS

Presented to the Faculty of
The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science

Major: Agricultural and Biological Systems Engineering

Under the Supervision of Professor Santosh Pitla

Lincoln, Nebraska
April 2019

FIELD OBSTACLE IDENTIFICATION USING MACHINE LEARNING TECHNIQUES FOR AUTONOMOUS TRACTOR APPLICATIONS

Caleb Lindhorst, M.S.
University of Nebraska, 2019

Advisor: Santosh Pitla

New technologies are being developed to meet the growing demand for agricultural products. Autonomous tractors are one of the many solutions to address this demand. Obstacle detection and avoidance is an important consideration for safe operation of any autonomous machine. Three field obstacles were chosen to be identified in this thesis work: tractors, round bales, and center pivots. Limited research work was found on the identification of center pivot detection.

Feasibility of using low cost LIDARs was considered for the detection of tractors, bales, and agricultural center pivots. Performance of LIDARs in different lighting conditions, different colors of obstacles, accuracy and angular resolution was evaluated. It was found that low cost LIDARs do not have a small enough angular resolution to detect pivots at a distance to avoid the obstacle. Formulas were derived to help find the distance between steps of the LIDAR.

Obstacle identification is also important so that proper corrective actions can be taken to avoid the obstacle. RGB cameras were used to aid in the detection of center pivots. SURF Feature Extraction and Matching, Viola-Jones algorithm and edge detection with a shape identification algorithm were tried but none of the algorithms could adapt to more than one orientation or class of object.

Obstacle identification using Convolutional Neural Networks (CNNs) for obstacle detection was pursued. Each obstacle was individually trained first and then all classes were combined to create one object detector. Faster Region based CNN (R-CNN) was used with GoogLeNet to give high mean Average Precision (mAP).

Acknowledgements

I want to first thank God for all the blessings in my life even the life-changing accident I was in. If it wasn't for the accident, I probably would not have even thought about pursuing a graduate degree.

Mom and Dad thank you for all your support and love. You always told me that you believed in me even when I didn't. You helped in more ways than I can even count. Thank you for all the things you did.

My entire family including those not technically a part of the family yet. You have been through it all. Thank you for encouraging and helping me get through things that were not going good at that moment.

My advisor for giving me this opportunity and committee members for always giving me enough constructive criticism to keep pushing and improving my research. You all had a significant part in helping me finish my research.

Dr. Santosh Pitla, Dr. Roger Hoy, Dr. Yufeng Ge, Dr. Joe Luck
Thank you to all the undergraduate students that helped me with my research even if it was the most boring task you have ever done.

> Brian Hurst, Robert Goldsworthy, Isaac Hanson

For all my office mates. Thank you for helping me on trips and making grad school bearable.

Chandler Folkerts, Gabe Stoll, Rodney Rohrer, Abbas Atefi Josh Murman, John Evans, Aaron Shearer, Rachel Stevens

Table of Contents

Chapter 1 Introduction and Background 1
Chapter 2 Sensors and Methodologies to Detect Agricultural Obstacles 6
2.1 Obstacle Definitions 6
2.2 Obstacle Detection Sensors 7
2.2.1 Ultrasonic sensors 7
2.2.2 LIDAR/LADAR 7
2.2.3 Cameras. 9
2.2.4 Sensor Fusion. 12
Chapter 3 Off-the-Shelf Inexpensive LIDAR Evaluation in Controlled Settings 13
3.1 Introduction 13
3.2 Objectives 15
3.3 Materials and Methods 15
3.4 Results and discussion 24
3.4.1 SCANSE Results and Discussion 24
3.4.2 RPLIDAR Results and Discussion 25
3.4.3 Hokuyo URG-04LX-UG01 Results and Discussion 33
3.5 LIDAR Conclusions 33
3.5.1 SCANSE Conclusion 34
3.5.2 RPLIDAR Test Conclusions 34
3.5.3 Hokuyo URG-04LX-UG01 conclusions 34
Chapter 4 Obstacle Detection and Identification Algorithms for Camera Images 35
4.1 Introduction and Objectives 35
4.2 SURF Feature Extraction and Matching 35
4.3 Edge Detection 36
4.4 Combination of SURF Feature Extraction and Matching and Edge Detection
Algorithms 38
4.5 Conclusions from SURF Feature Extraction and Matching and Edge Detection 39
4.6 Object Identification 40
4.6.1 Cascade Object Detector and the Viola-Jones Algorithm 41
4.6.2 Convolutional neural networks (CNN) 42
4.7 Conclusions 54
Chapter 5 Convolutional Neural Networks for Tractor, Round Bale, and Center-Pivot Identification 55
5.1 Intoduction and Objectives 55
5.2 R-CNN 56
5.3 Faster R-CNN 57
5.4 Training Faster R-CNN 57
5.5 Results of Faster R-CNN training 61
5.5.1 Tractor 61
5.5.2 Round Bale 64
5.5.3 Pivot 66
5.5.4 Combined 69
5.5.5 Pivotv2 71
5.6 Conclusions of Faster R-CNN Training 76
Chapter 6 Conclusions and Future Work 77
6.1 Conclusions 77
6.2 Future Work 78
References 80
APPENDIX A SCANSE. 94
APPENDIX A. 1 Test Setup 94
APPENDIX A. 2 Data Collection code (Arduino) 94
APPENDIX A. 3 Plotting Data code (MATLAB) 101
APPENDIX A. 4 Sample Data 102
APPENDIX A. 5 Sensor Calculations 105
APPENDIX A. 6 Sample Data Plot 108
APPENDIX B RPLIDAR 109
APPENDIX B. 1 Test Setup 111
APPENDIX B.1.1 Occupancy Map Setup 111
APPENDIX B.1.2 Straight Line Setup 112
APPENDIX B.1.3 Final RPLIDAR Test Setup 113
APPENDIX B. 2 Data Collection code (Arduino) 114
APPENDIX B. 3 Plotting Data code (MATLAB) 121
APPENDIX B. 4 Sample Data. 122
APPENDIX B. 5 Sensor Calculations 125
APPENDIX B. 6 Occupancy Map Generation Code (MATLAB) 127
APPENDIX B. 7 Sample Point Summaries (no false positives) 128
APPENDIX C Hokuyo URG-04LX-UG01 134
APPENDIX C. 1 Test Setup 134
APPENDIX C. 2 Data Collection code (C) 135
APPENDIX C. 3 Plotting Data code (MATLAB) 137
APPENDIX C. 4 Sample Data. 138
APPENDIX D SURF Feature Extraction and Matching and Edge Detection. 140
APPENDIX D. 1 SURF Feature Extraction and Matching Script (MATLAB) 140
APPENDIX D. 2 Edge Detection Script (MATLAB) 141
APPENDIX D. 3 Shape Identification algorithm (MATLAB) 142
APPENDIX D. 4 Edge detection and Shape Identification Algorithm (MATLAB) 145
APPENDIX D. 5 SURF Feature Extraction and Matching and Edge Detection (MATLAB) 147
APPENDIX D. 6 approxcanny 148
APPENDIX D. 7 Canny 149
APPENDIX D. 8 log 149
APPENDIX D. 9 Prewitts 150
APPENDIX D. 10 Roberts 150
APPENDIX D. 11 Sobel 151
APPENDIX D. 12 zerocross 151
APPENDIX E Viola-Jones Algorithm Script (MATLAB) 152
APPENDIX F Faster R-CNN Training 152
APPENDIX F. 1 Code used to extract images out of video (MATLAB) 152
APPENDIX F. 2 Augmentation Code (MATLAB) 153
APPENDIX F. 3 Training detector Code (MATLAB) 153
APPENDIX F. 4 Code for detecting objects using a trained detector for a single image
(MATLAB) 156
APPENDIX F. 5 Code for detecting objects using a trained detector for a multiple images (MATLAB) 156
APPENDIX F. 6 Shuffling code (MATLAB) 157
APPENDIX F. 7 Padding code (MATLAB) 157
APPENDIX F. 8 Tractor images 157
APPENDIX F.8.1 Run 1 158
APPENDIX F.8.2 Run 2 183
APPENDIX F. 9 Round Bale 204
APPENDIX F.9.1 Run 1 205
APPENDIX F.9.2 Run 2 224
APPENDIX F. 10 Pivot 243
APPENDIX F.10.1 Run 1 243
APPENDIX F.10.2 Run 2 271
APPENDIX F. 11 Combined Detector 286
APPENDIX F.11.1 GoogLeNet Run 1 287
APPENDIX F.11.2 GoogLeNet Run 2 305
APPENDIX F. 12 Pivotv2 324
APPENDIX F.12.1 GoogLeNet 324

List of Figures

Figure 2.1 From top to bottom: tractor (dynamic, John Deere, 2019), round bales (static temporary, Pixabay 2019), barn (static permanent, 95oldcolonyrd.com, 2019)................. 6

Figure 2.2 Outdoor experimental results. Green is traversable red is non-traversable
\qquad
Figure 2.3 Occupancy grid created by a LIDAR (Green box).Red lines are LIDAR beams being generated by the sensor. Black boxes are obstacle or edge of the sensor edge. White boxes are clear areas. Gray boxes are unknown.

Figure 2.4 DEM vision processing. To represent the road (blue), traffic isles (yellow) and obstacles (red). (Oniga \& Nedevschi, 2010).. 11

Figure 3.3 Arduino Mega 2560 board.. 16
Figure 3.1 The SCANSE test stand with the spinning LIDAR mounted on the top........ 16
Figure 3.2 The RPLIDAR test stand merged with an Arduino Mega 2560 on the right and a breadboard on the left

Figure 3.4 (a) Layout of a Run (b) Three runs are equal to one run 17
Figure 3.5 Red, Green, Blue obstacle configurations. Orange diamond is location of the
sensor. .. 18
Figure 3.6 Obstacle used in the SCANSE Sweep test ... 19
Figure 3.7 Obstacle used in the RPLIDAR and Hokuyo tests .. 19
Figure 3.8 Setup for the Final Test. Obstacle in the sun RPLIDAR in the shade and vice
\qquad
Figure 3.9 Location of variables ... 22

Figure 3.10 SCANSE Sweep plotted results for one data gathering session of the green
\qquad
Figure 3.11 Plotted RPLIDAR data.. 25
Figure 3.12 Occupancy Maps and two different path planning algorithms...................... 26
Figure 3.13 Obstacle setup on the brown backside in the Straight Line Test................... 27
Figure 3.14 The proportion of false positives as distance increases and in both lighting positions. The 95% confidence interval bounds are shown.. 28

Figure 3.15 The proportion of false positives between distances and obstacle colors with a range of 95% confidence interval bounds for the number of false positives 29

Figure 3.16 The average amount of data points collected and 95% confidence interval bounds with the color and distance being the set variables. ... 30

Figure 3.17 A graph showing the LS-Means and 95\% confidence interval bounds between the two color obstacles at each distance. It is noticed that at distances < six meters away the brown/black obstacles are more accurate and distances > six white obstacles are more... 31

Figure 3.18 A graph showing the LS-Means for accuracy when the RPLIDAR in the sun and both color obstacles. A glance at the graph shows accuracy staying under 100 mm
\qquad
Figure 3.19 Plotted data from Test 6 33

Figure 4.1(a) Extracted features out of the grayscale reference image. (b) Extracted features out of the grayscale test image. (c) Matching the extracted features in reference photo to features in the test photo. Only ouliers are displayed because no inliers were
\qquad

Figure 4.2 Sobel edge detection with the "Shape Recognition" algorithm. The initial image can be seen in the top left picture. The bottom left picture is the result of using the Sobel edge detection method. The top right depicts the objects the algorithm detected based on the input binary image. This image is flipped compared to the input image. The bottom right gives scores on what the shape of the object is ... 38

Figure 4.3 Positively matched points (Inliers only).. 39
Figure 4.4 Positively matched SURF Points (Including Outliers).................................... 39
Figure 4.5 Viola-Jones algorithm detecting a tractor with no clutter. Yellow bounding
box does not surround the entire tractor. .. 42
Figure 4.6 Viola-Jones algorithm detecting a pivot in the middle of a soybean field.
Yellow bounding boxes do not surround the entire pivot but, false positives.................. 42
Figure 4.7 Layout of the entirety of a CNN with a pivot as the input image 43
Figure 4.8 Layers in convolutional neural network .. 44
Figure 4.9 Layout of a single neuron in a CNN.. 45
Figure 4.10 Example of a convolution. A simple picture of a straight line. With a straight

Figure 4.11 Illustration of an image [9 9], filter size [33] and a stride of [11]........ 47
Figure 4.12 The result of convolution between the test image and the chosen filter 48
Figure 4.13 The resulting matrix after a bias of -4 is implemented.................................. 48
Figure 4.14 Graphical representation of the activation functions..................................... 49
Figure 4.15 Result of ReLu on Example 1 .. 50
Figure 4.16 Examples of the 2 methods "VALID" and "SAME" filter width $=3$ stride $=3$
Figure 4.17 Result of "VALID" max pooling in the example .. 52
Figure 4.18 Result of "SAME" max pooling 52
Figure 4.19 flattening of the "VALID" max pooling (Figure 4.17). 53
Figure 4.20 SoftMax equation and example 53
Figure 4.21 The Final Layers of a CNN. Flattening, two fully connected layers and
SoftMax to give the probability of that object in the picture 54
Figure 5.1 Steps of an R-CNN (Lee, 2017) 56
Figure 5.2 Two network layout of a Faster CNN network. The CNN can be replaced with
any CNN to best fit the application applied to. (Sinhal \& Sachan, 2017) 57
Figure 5.3 Tractor image 448×448 after padding to keep the same aspect ratio. Theblack part of the image is padding. ... 58
Figure 5.4 (a) A 1920×1080 pivot picture (b) pivot picture resized to 448×448 with no
padding. 59
Figure 5.5 Components of a pivot (a) span (b) pyramid (c) tower (d) end tower 59
Figure 5.6 Accuracy vs time, the marker shape indicates the meta-architecture and color
indficates feature extractor used. (Huang et al., 2016) 60
Figure 5.7 Tractor Faster R-CNN training graphed results 62
Figure 5.8 Tractor training results 63
Figure 5.9 Graphical representation of the training results from the round bale Faster R-
CNN training. 65
Figure 5.10 Bale detector testing images. 65
Figure 5.11 Results of pivot training graphed 67

Figure 5.12 Pivot detectorv1 labeling: (a) two spans and a tower, (b) pyramid and span,
\qquad
Figure 5.13 Accuracy vs time of combined dedectors
Figure 5.14 Results from running the Run 1 combined detector on pictures from the internet. (a) A tractor and multiple bales and (b) multiple bales in a field.

Figure 5.15 Collage of the six classes the combined detector is suppose to be able to identify.

Figure 5.16 Pivot detectorv2 labeling: (a) two spans and a tower, (b) pyramid and span,
\qquad
Figure 5.17 A graph comparing all trained detectors 74

Figure 5.18 A graphical representation of the detector testing times along with the accuracy in detection

List of Tables

Table 2.1 Examples of field obstacles and classes they are assigned to............................. 7
Table 3.1 Required sensor and tested LIDAR specifications (*calculated from other specifications **priced on roboshop.com priced 7/11/18) ... 13

Table 3.2 Data gathered during testing in the shade at a 2 meter distance red rows were eliminated and green rows were kept.. 25

Table 3.3 Sample point data summary Obstacle in the shade obstacle color is black at a distance of 1 meter .. 29

Table 5.1 Tractor Faster R-CNN training results.. 62
Table 5.2 Round Bale Faster R-CNN training result (b).. 63
Table 5.3 Results from pivot training (b)... 65
Table 5.4 Results from pivot training ... 66
Table 5.5 mAP scores for each component of the $\operatorname{pivot}(c)$... 68
Table 5.6 Results of training with more pivot image data.. 72
Table 5.7 Summary statistics for each feature extractor and object class in Faster R-CNN
\qquad
Table 5.8 Detector speed and accuracy... 75

List of Equations

Equation 1 Angular Resolution20
Equation 2 .Arc Length
21
Equation 3 Law of Cosines
Equation 4 Linear Distance between two consecutive data points22
Equation 5 Number of data points per one foot
Equation 6 Mathematical Representation of a Neuron45
Equation 7 Sigmoid Function
Equation 8 Hyperbolic Tangent
Equation 9 ReLu50
Equation 10 50
Equation 11 Parametric ReLu
Equation 12 Exponential Linear Units (ELU)51
51

Chapter 1 Introduction and Background

Food production has significantly improved in the past 300 years. Humans have applied the knowledge developed in math and sciences during the renaissance era to improve the lives of humans around the world. The industrial revolution was the beginning of a population boom that is expected to continue growing at an exponential rate. Presently there is an estimated 7 billion people on the planet and by 2050 there will be an estimated 9.6 billion people inhabiting the earth (Kochhar, 2014). New methods and technologies have been and will be developed to satisfy the growing demand for food. The expected population increase requires increasing the overall food production by nearly 70% (FAO Director's office, 2009). Cereal grains for both human and animal consumption are projected to increase by one billion metric tons.

Food production advancements started in the late 1700's with the threshing machine (Spielmaker, 2018). Farmers went from feeding an estimated 10.7 people per farmer in the 1940 's to farmers in Iowa being able to produce enough food to feed 155 people per farmer in 2010 (Sullivan, 2014). A timeline of farm mechanization advancements is shown in the list below (Spielmaker, 2018):

- 1788 - Invention of the threshing machine in by Andrew Meikle (a Scottish engineer)
- 1830 's - invention of the steel plow
- 1868 - Steam tractors are tested
- 1892 - John Froelich produced the first gasoline tractor
- 1918 - First combine with auxiliary engine introduced
- 1930s - Rubber tires first introduced
- 1945-1970s - Farmers change from horses to tractors
- 1980s - Introduction of GPS
- 2010s - Introduction of the autonomous tractor concept

Current applications of electronics in agriculture could be the current Global Positioning Systems (GPS), monitors and displays, or computers and sensors on the future autonomous equipment. GPS was first introduced in the 1980's which significantly contributed to the progress of precision farming. The idea of an autonomous tractor has been around since the introduction of precision farming in the 1980's (Big Ag, 2018). Today's technology has advanced far enough that equipment manufacturers such as Case IH, New Holland (Case IH, 2016) and AGCO are promising autonomous tractors for commercial in the coming years (Bedord, 2018)

An autonomous tractor may have three substantial benefits for farmers and farm workers (Big Ag, 2018). The first benefit is that autonomous tractors could have significantly better accuracy in field applications by increasing fertilizer and chemical application rate uniformity and reducing planting population inaccuracies. The second way that an autonomous tractor could benefit farmers is by collecting information on soil conditions and plant health during the growing season with minimal human supervision. The third benefit is that it could reduce stress and workload of farmers and farm workers during the growing season.

The five levels of autonomy as defined by Case IH ((Case IH, 2018, Vogt, 2018) are listed as follows:

1. Guidance - In Guidance, a tractor can be controlled by a GPS while driving and an operator is inside the tractor, like many tractors today. An operator is always present.
2. Coordinate and optimization - This level of autonomy is like a tractor and grain cart linked to the combine. The tractor and grain cart try to match the speed of the combine.
3. Operator Assisted Automation - This style of autonomy is much like a leader/follower architecture. One machine is fully autonomous while another machine has an operator present. The autonomous machine follows the operator through the field.
4. Supervised autonomy - This level of autonomy allows all machines to run on their own with a supervisor managing the machines nearby.
5. Full autonomy - The highest level of autonomy is full autonomy and no local supervision. However, there can be remote supervision.

An area of interest for any autonomous robot is obstacle detection. The objects that need to be detected depend on the environment of the robot. A household robot may have to detect floor obstacles like shoes or stairs; however, agricultural robots need to detect obstacles that are unique to agriculture - such as other tractors, bales, and agricultural center pivots in irrigated agricultural fields.

A center pivot is a unique obstacle to agricultural robots. A center pivot is an agricultural machine that is used to water crops during dry weather patterns and drought. These machines are found on farms throughout the world.

In this research, different sensors, cameras, and methodologies were explored to detect and identify agricultural obstacles such as tractors, bales, and center pivots.

Chapter 2: Sensors and Methodologies to Detect Agricultural Obstacles

1. Determine which sensors are used for obstacle detection
2. Methods used in Obstacle detection

Chapter 3: Off-the-Shelf Inexpensive LIDAR Evaluation in Controlled Settings

1. Test selected off-the-self sensors
2. Determine if off-the-self sensors meet performance needs

Chapter 4: Obstacle Detection and Identification Algorithms for Camera Images

1. Explore different machine vision algorithms for obstacle identification
2. Preview of a Convolutional Neural Networks (CNN)

Chapter 5: Convolutional Neural Networks for Tractor, Round Bale, and Center-
Pivot Identification

1. Identify an obstacle identification algorithm that has over 85% mean Average Precision (mAP) at 5 Hz or greater for real time obstacle detection.
2. Train an object detector for tractors, round bales and center-pivots

Chapter 6:

Conclusions and Future Work

Chapter 2 Sensors and Methodologies to Detect

Agricultural Obstacles

2.1 Obstacle Definitions

An obstacle is an obstruction in the tractor's path. Obstacles can be classified into three categories based on the obstacle's movement. The first category is a dynamic obstacle, which is moving or self-powered in nature such as a tractor, pivot, or an animal. The second category obstacle is static temporary and requires outside power to be moved. Examples of static temporary obstacles are a round bale, implement, or a temporary snow fence. The final category is static permanent. Obstacles that cannot be moved like barns, trees, or fence lines are considered static permanent. Pictures of these obstacles are shown in Figure 2.1

Figure 2.1 From top to bottom: tractor (dynamic, John Deere, 2019), round bales (static temporary, Pixabay 2019), barn (static permanent, 95oldcolonyrd.com, 2019)

2.2 Obstacle Detection Sensors

2.2.1 Ultrasonic sensors

Ultrasonic sensors use soundwaves to detect obstacles. These types of sensors measure distance by measuring the time it takes the sound waves to rebound off the obstacle. Ultrasonic sensors use higher frequency sound waves $(20-100 \mathrm{kHz})$ to overcome most noise pollution that occurs at lower wave frequencies $(20-200 \mathrm{~Hz})$.

Benefits from using an ultrasonic sensor are that they can be used in dark environment and are unaffected by color of the object or dust (Gillespie, 2018). Some of the disadvantages to an ultrasonic

Table 2.1 Examples of field obstacles and classes they are assigned to.

Field Obstacle	Obstacle class
Pivot	Dynamic
Tractor	Dynamic
Animal	Dynamic
Agricultural Implements	Static temporary
Round Bale	Static temporary
Small Piles	Static temporary
Wells	Static permanent
Field	Static Boundaries
Trees and	Static permanent
Tree Line	

2.2.2 LIDAR/LADAR

The terms LIDAR and LADAR come from LIght Detection And Ranging (LIDAR) and LAser Detection And Ranging (LADAR) sensors. LIDAR and LADAR are similar, which for the scope of this review and thesis, will be technically equivalent and referenced as LIDAR.

Two styles of LIDAR are currently found off-the shelf, spinning LIDARs and solid state LIDARs (Mokey, 2018). Both styles of LIDAR used for navigation and obstacle detection can be 2-D or 3-D LIDARs. Spinning LIDAR sensors that are 2-D have a single LIDAR that spins in a circle collecting distance data on a single plane. 3-D LIDARs have a mechanism that spins an array of LIDARs stacked on top of each other, gathering a 3-D point cloud or multiple 2-D planes, one for each LIDAR beam. The Velodyne HDL-64E has an electromechanical system that spins a small housing at a very high speed collecting up to 300,000 data points per second. These sensors can cost upwards of $\$ 75,000$ and have a life span of 1,000 to 2,000 hours (Mapanauta, 2018).

Unlike spinning LIDARs, Solid State LIDARs have no moving mechanical parts (Dubois, 2018). Quanergy's S3 solid state LIDAR uses silicon to "steer" the light. Currently a solid-state LIDAR can be purchased for around \$900, but through making several chips one solid chip, Louay Eldada the CEO of Quanergy, foresees "At that point, our sales price will become under $\$ 100$."

LIDARs are also shown to work well in agriculture. In a study by Freitas et al. (2012), an autonomous vehicle traveled between apple tree rows of an apple orchard that used wheel and steering encoders, one SICK LMS 291 laser scanner (LIDAR), and one Inertial Measurement Unit (IMU). Using a push - broom method, the researchers in this study implemented a 3-D point cloud strategy to avoid obstacles that were within 4 meters of the vehicle. Experiments were conducted in a lab setting in Pittsburg and then at an apple orchard in Washington state. The conclusions of this research showed that this method
was able to detect people moving across the row at walking speed and objects at least 15 cm tall and not covered by grass.

2.2.3 Cameras

All cameras can be either Red, Green and, Blue (RGB) or black and white, to gather image information about an object. A camera produces an image that is 2-D with no depth data. These captured images can be used in image processing. Cameras become 3D by implementing stereo vision. Stereo vision extracts 3-D information from two different camera angles and calculates distance using triangulation. Human vision is a good example of stereo vision.

2.2.3.1 RGB

RGB cameras give a matrix of three-color values for Red, Green and Blue. The color intensity of the pixel is given in the form of a three-layer matrix the size of the image. The combination of these three primary colors can provide any color that is needed. A digital camera is an example of an RGB camera.

Pictures from RGB cameras be can used in various algorithms to identify obstacles. MATLAB includes various obstacle detection algorithms using RGB cameras. The Algorithms include SURF Feature Extraction and Matching, edge detection methods, Viola-Jones Algorithm and CNNs.

2.2.3.2 RGB-D

An RGB-D camera is a RGB camera that can output the distance of an object it is capturing; hence the D in RGB-D. A low cost RGB-D camera is the Microsoft Kinect, which is a popular consumer RGB-D camera. This device uses a per-pixel depth sensing
technology developed by PrimeSense (Litomisky, 2012). The Microsoft Kinect's distance is found using an infrared camera with an infrared projector/emitter. Stereo vision from the infrared systems is used to obtain a 3-D image.

A study by Sabale and Vaidya (2016) found the accuracy of the measured distance of the Microsoft Kinect sensor. Kinect has a range from about 800 millimeters to about 4,000 millimeters. In this experiment, measurements were taken every 100 mm from 800-3500 mm using the manufacture's calibrations for the camera. It was found that the percentage error with respect to the actual distance to be approximately 3.6\%. The Microsoft Kinect had an increasing difference the further the object was from the camera, but the mean percentage error slightly decreased. Bellone et al. (2013), used an RGB-D camera to create an Unevenness Point Descriptor (UPD), a combination of the roughness and the inclination indices (Reina, 2013). Vectors normal to the terrain were calculated and could be classified into two categories: traversable surfaces (green vectors) and non-traversable objects (red vectors) (Figure 2.2). Experiments were performed in indoor and outdoor settings. The Microsoft Kinect was used for indoor experiments, while the Point Grey Bumblebee XB3 stereo system was used for the outdoor experiments. A different camera was used outdoors due to inability of the Microsoft Kinect to collect data in bright outdoor conditions. The results were successful in both the outdoor and indoor conditions, even when detecting dynamic obstacles.

Figure 2.2 Outdoor experimental results. Green is traversable red is non-traversable (Bellone et al., 2013).
2.2.3.3 Obstacle detection algorithms for $R G B-D, R G B$ cameras and

stereovision

Obstacle detection systems using stereo vision implement tessellation or clustering strategies, that can be categorized into 4 possible models: (Bernini et al., 2014)

- Probabilistic occupancy maps
- Digital elevation maps
- Scene flow segmentation
- Geometry-based cluster

The probabilistic occupancy map was proposed by Elfes in 1989 (Elfes, 1989). This method breaks the field of vision into a grid system. Grid blocks are then given one of three possible states: occupied, free, or unknown (Figure 2.3). The computer tells the machine which necessary actions need to be taken to avoid the obstacle. Processing time is not given for this visual

Figure 2.3 Occupancy grid created by a LIDAR (Green box).Red lines are LIDAR beams being generated by the sensor. Black boxes are obstacle or edge of the sensor edge. White boxes are clear areas. Gray boxes are unknown. processing method nor the accuracy of the system.

Digital elevation maps plot the heights of objects onto a Cartesian plane like the occupancy grid map (Oniga \& Nedevschi, 2010). The grid cells are often identified into three different classes, road, traffic isles, and obstacles (Figure 2.4).

Figure 2.4 DEM vision processing. To represent the road (blue), traffic isles (yellow) and obstacles (red). (Oniga \& Nedevschi, 2010)

Scene flow segmentation uses temporal correlation between two frames captured by a camera at two different times using stereo vision. (Lenz et al., 2011). To accommodate the slow processing speed, a rural traffic setting was considered for validation of the proposed obstacle detection algorithm. The study concluded that the algorithm worked well in rural settings and it detected objects up to 60 meters away. However, in urban settings it was only able to detect obstacles up to 50 meters away. Geometry based clustering will not be discussed.

2.2.4 Sensor Fusion

Many sensors are needed to avoid obstacles. Sensor fusion is the process of combining the outputs of multiple sensors to accomplish a complex task such as obstacle detection. The RGB camera and LIDARs may be used in sensor fusion. These sensors can provide information to the machine to help identify and classify obstacles. There are methods to detect obstacles using images. LIDARs can help determine distance to an obstacle detected by an RGB camera.

The Extended Kalman Filter (EKF) is an algorithm that can be applied to sensor fusion and fuse sensor information together (Barbosa et al., 2016). In this study GPS and IMU data is fused together to track the yaw rate, lateral velocity and longitudinal velocity of a car. The first obstacle detection sensors used in this study were inexpensive off-the-self sensors (Chapter 3). Obstacle detection and identification using camera images is discussed in Chapter 4 and Chapter 5.

Chapter 3 Off-the-Shelf Inexpensive LIDAR

Evaluation in Controlled Settings

3.1 Introduction

This chapter characterizes the performance of three off-the-shelf LIDAR sensors and proposes equations when selecting a LIDAR. The LIDARs were selected on 5 specifications:

- Price
- Range
- angular resolution
- sampling rate
- sunlight resistance

The driving factors were initially price and range. As more testing was completed the angular resolution, sampling rate and sunlight resistance became important characteristics. Table 3.1 list specifications of the three sensors tested. The first LIDAR explored was the SCANSE Sweep, second was the RPLIDAR and finally the HOKUYO

URG-04LX-UG-01. All three sensors output 2-D polar coordinates.
Table 3.1 Required sensor and tested LIDAR specifications (*calculated from other specifications **priced on roboshop.com priced 7/11/18)

Spec	SCANSE Sweep	RPLIDAR A2M8	Hokuyo URG-04LX-UG01
Scan Angle	360°	360°	240°
Angular Resolution	$\approx 0.36^{\circ}-7.20^{\circ} *$	$\approx 0.45^{\circ}-1.35^{\circ} *$	$\approx 0.36^{\circ}$
Range	40 m	8 m	4 m
Spinning Frequency	$1-10 \mathrm{~Hz}$	$5-15 \mathrm{~Hz}$	Solid State
Max Sampling Rate	1000 Hz	4000 Hz	$6650 \mathrm{~Hz}{ }^{*}$
Sunlight resistant	Yes	Yes	No
Price (USD)	$349^{* *}$	$319^{* *}$	$1080^{* *}$

Information regarding these sensors can be found in APPENDIX A SCANSE, APPENDIX B RPLIDAR, and APPENDIX C Hokuyo URG-04LX-UG01. The SCANSE was the first LIDAR purchased for testing. Only one test was done with the SCANSE Sweep before it malfunctioned. This sensor is no longer available in the market because the company that produces them went out of business on May $10^{\text {th }}, 2018$ (Magneon, 2018).

The RPLIDAR is a low cost sensor (\$319), that had acceptable angular resolution based on evaluations using equations developed from SCANSE testing. As shown in Table 3.1 the angular resolution was found to be between 0.45° and 1.35°, depending on the spinning frequency. The equations developed to calculate these specifications can be found in 3.4.1. The RPLIDAR did not have the range of the SCANSE Sweep. The Hokuyo was the most expensive LIDAR tested and the only solid-state LIDAR tested (\$1,080). This sensor offered a high sampling rate and a high angular resolution but, only had a 4 meter range and was tested just once.

Both SCANSE and RPLIDAR outputs were distance, azimuth and signal strength. The SCANSE measured distance to the obstacle in centimeters, the azimuth was measured in degrees and the signal strength was $0-255.255$ was the best signal strength and 0 was the worst. The data produced by the RPLIDAR were the distance in millimeters, azimuth in degrees, and the signal strength as an integer from $0-15.15$ was the highest signal strength and 0 was the weakest signal strength. The Hokuyo outputted X and Y coordinates in millimeters, azimuth measured in radians, radial distance in millimeters,
and a timestamp but does not give signal strength. All three sensors used serial communication.

3.2 Objectives

The objectives for LIDAR testing were:

- Test selected low cost off-the-self sensors (SCANSE, RPLIDAR, Hokuyo URG-04LX-UG01) to observe if low cost sensors have the capabilities of detecting bales, tractors and center pivots.
- Determine the statistical effect that distance, color of obstacle and lighting condition have on the ability of being detected by LIDAR.

If the first objective could not be met, develop equations that would aid in the sizing of LIDARs to detect obstacles. Data points would be collected to create a binary occupancy grid and see the possibility of creating probabilistic road maps. Statistical comparisons would be made on accuracy, number of data points and number of false positives between different distances, lighting conditions and color of obstacle.

3.3 Materials and Methods

The two parameters that could be set on the SCANSE were sampling rate and the spinning frequency. The sample rate of this sensor could be set to $500 \mathrm{~Hz}, 750 \mathrm{~Hz}$ or $1,000 \mathrm{~Hz}$. The spinning frequency of the head of the sensor could be set from 0 Hz to 10 Hz . The defaults of 500 Hz sampling rate and 5 Hz spinning speed were used for the SCANSE Sweep. The RPLIDAR had a set sampling rate of $4,000 \mathrm{~Hz}$ and a range of spinning frequency from 5 Hz to 15 Hz . The default settings of $4,000 \mathrm{~Hz}$ sampling rate and a spinning rate of 10 Hz were used for RPLIDAR. Solid State LIDARs do not have a
spinning head. Therefore, no spinning rate settings were adjusted on the Hokuyo. The sampling rate could not be adjusted as well.

The SCANSE and RPLIDAR were mounted on a test stand as shown in Figure 3.2 and
Figure 3.3. Both sensors were connected to an Arduino Mega 2560 (Figure 3.1).
Arduino hardware and software were used to collect data from the SCANSE Sweep and

Figure 3.2 The SCANSE test stand with the spinning LIDAR mounted on the top the RPLIDAR. There was no trouble with data collection with the SCANSE, using the

Figure 3.3 The RPLIDAR test stand merged with an Arduino Mega 2560 on the right and a breadboard on the left default settings so, a similar approach was attempted with the RPLIDAR using the default parameters. However, the dynamic memory of the Arduino could not write and save

Figure 3.1 Arduino Mega 2560 board data points fast enough during RPLIDAR data collection.

To work around this problem, the Arduino accumulated one scan's worth of data points three times then stored the data to an SD card for a collection point. Then three collection points constituted one run and three runs were gathered for each test (Figure 3.4).

A Raspberry Pi using C code was used instead of the Arduino for interfacing and data collection with the Hokuyo LIDAR because the Arduino could not handle the amount of data coming from the Hokuyo.

Example code and wiring diagram for the SCANSE Sweep wired to an Arduino MEGA 2560 was found on GitHub (sweep-arduino, 2017/2017). Example code for the RPLIDAR was also found for Arduino on GitHub (Repos, 2014/2019). Example code for the Hokuyo was found on Sourceforge (Satofumi Kamimura, 2013). All code used in LIDAR data collection can be found in SCANSE APPENDIX A. 2 Data Collection code (Arduino), RPLIDAR APPENDIX B. 2

Data Collection code (Arduino) and Hokuyo APPENDIX C. 2 Data Collection code (C). In the SCANSE and RPLIDAR tests, three sets of four obstacles were placed for the sensor to detect. An obstacle was located on each positive and negative X and Y axis and

Figure 3.4 (a) Layout of a Run (b) Three runs are equal to one run two obstacles in each quadrant of the X and Y graph. Figure 3.5 shows a typical obstacle
layout. The three generated configurations were called Red, Green and Blue configurations. The distances to the obstacles were randomly generated by a computer. The obstacle layouts for tests can be found APPENDIX A. 1 Test Setup, APPENDIX

Figure 3.5 Red, Green, Blue obstacle configurations. Orange diamond is location of the sensor.
B.1.1 Occupancy Map Setup, APPENDIX B.1.2 Straight Line Setup, APPENDIX B.1.3

Final RPLIDAR Test Setup and APPENDIX C. 1 Test Setup.
Obstacles were created from a piece of cardboard that was white on the front side and black/brown on the back.

The SCANSE obstacle measured one foot tall by three feet wide and clamped to a frame as depicted in Figure 3.6. The cardboard backing was rotated 90° for the RPLIDAR and Hokuyo as seen in Figure 3.7. Both sides were used in test to see if color of the obstacle would affect detection by the LIDARs.

Figure 3.6 Obstacle used in the SCANSE Sweep test

Figure 3.7 Obstacle used in the RPLIDAR and Hokuyo tests

In the Straight Line Test for the RPLIDAR, all of the obstacles were randomized and placed within the range of $802-777 \mathrm{~cm}$ in the Y direction, the obstacles would form a line along a wall in the X direction to document the smallest change that the LIDAR would be able to detect. Obstacles were three feet from a wall to allow room for the obstacle stands. The obstacles were placed three feet apart from each other in the X direction. Obstacles 4-12 were placed out of range of the sensor to test the true range of the sensor.

For The Final RPLIDAR Test, the test started at one meter and moved back in one meter steps, after collecting data two times on the white side and two times on the black/brown side, until 10 meters were reached. Obstacles were placed in the sun and shade
(Figure 3.8). For this test obstacles were only placed in the Y axis. Preprocessing the collected data was done manually to filter out unwanted data.

A BeagleBone microcontroller was programmed in C to collect data from the Hokuyo
LIDAR. The code can be seen in APPENDIX
C. 2 Data Collection code (C) . To simulate fence posts, the poles of the obstacle stands were used which are similar in size and cross section to a steel fence post. The obstacles were place from 0 -180° relative to the Hokuyo. Like the previous LIDAR tests, three sets of four obstacles were used.

Figure 3.8 Setup for the Final Test. Obstacle in the sun RPLIDAR in the shade and vice versa

An Excel Worksheet was created to evaluate the angular resolution of the SCANSE, based on the given parameters of the sensor. It became apparent that this sensor did not have a high enough angular resolution. The angular resolution was calculated using the following equation.

Equation 1. \qquad

$$
\varphi=\frac{360 \omega}{f_{s}}
$$

Where: $\quad \varphi=$ angular resolution (degrees)

$$
\mathrm{f}_{\mathrm{s}}=\text { sampling frequency }(\mathrm{Hz})
$$

$$
\omega=\text { spinning frequency }(\mathrm{Hz})
$$

Angular resolution varied with sensor settings. Values were spread between 0.36 and 7.20 degrees respectively. The results from these calculations on the SCANSE Sweep can be seen in APPENDIX A. 5 Sensor Calculations. The data collected had an angular resolution of 3.60 degrees. The lowest angular resolution occurred at 500 Hz sampling rate and spinning frequency of 10 Hz , whereas the highest resolutions occurred at 1000 Hz sampling rate and 1 Hz spinning frequency. The arc length and the linear length were calculated using the arc length equation for arc length (Equation 2) and law of cosines for linear length (Equation 3). Figure 3.9 shows the locations of the variables.

Equation 2
Arc Length

$$
a_{l}=\frac{2 \pi r \omega}{f_{s}}
$$

Where: $\quad a_{l}=\operatorname{arc}$ length (cm)
$\mathrm{r}=$ distance to obstacle (cm)

Equation 3 \qquad Law of Cosines

$$
a^{2}=b^{2}+c^{2}-2 b c * \cos (A)
$$

Where: $\quad \mathrm{a}=$ desired side's unknown length (cm)

A = angle opposite side of length a (degrees) $\mathrm{b}=$ side length (cm) $\mathrm{c}=$ side length (cm)

The Law of Cosines (Equation 3) was simplified to the following equation to find the

Figure 3.9 Location of variables linear distance between two data points:

Equation $4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$............................ Distance between two consecutive data points

$$
D P_{l}=\sqrt{2 r^{2}(1-\cos (\varphi))}
$$

Where: $\quad \mathrm{DP}_{\mathrm{l}}=$ linear distance (cm)
The best average number of points per obstacle was 9.7 data points per foot. The settings for this calculation was for an obstacle that was 500 cm away at a 1 Hz rotating speed and 1000 Hz sampling rate. This was calculated using the following formula.

Equation 5 \qquad Number of data points per one foot

$$
D P_{n}=\frac{f_{c}}{D P_{l}}
$$

Where: $\quad D P_{n}=$ average number of data points per one foot

$$
f_{c}=\text { conversion factor from foot to } \mathrm{cm}
$$

The results from all calculations on the SCANSE Sweep can be seen in APPENDIX A. 5 Sensor Calculations. The highest angular resolution occurred at 1 Hz spinning frequency and 1000 Hz sampling rate. The SCANSE Sweep's lowest angular resolution of 7.20° occurred at 10 Hz spinning frequency and at 500 Hz sampling rate. The average distance between data points at this settings, 20 meters away would be 251.33 cm or about $81 / 4$ feet between data points.

Using Equation 1 to find the angular resolution and Equation 2 and Equation 4. \qquad Linear Distance between two consecutive data points to find arc length and linear distance between two consecutive points. In a calculation using the highest angular resolution of 0.36° for the SCANSE Sweep, and 20 meters away for the obstacle. The arc length between two consecutive data points would be 12.57 cm or about five inches between each data point and the linear distance would be 12.57 cm . Therefore, the arc length and linear distance between two points will technically be equivalent.

3.4 Results and discussion

3.4.1 SCANSE Results and Discussion

The SCANSE Sweep completed only one run during the data gathering session. It malfunctioned during the second test of the SCANSE. More data was needed to be collected in order to draw complete conclusions. Figure 3.10 shows the raw data plotted using MATLAB code. The blue circles are data points, green circles indicate the placed obstacles, and the orange circle shows the ground interference and red arrows point to

Figure 3.10 SCANSE Sweep plotted results for one data gathering session of the green obstacle location. some of the false positives. The center of the graph is the sensor. The plotting code can be seen in APPENDIX A. 3 Plotting Data code (MATLAB). Two of the four obstacles that were placed were detected, along with false positives by the sensor. Obstacles 5 and 11 were detected, 7 and 12 were not detected in the green configuration.

From this one test and plotting the data points, two possible sources of error could have been:

1) The obstacles were not in the Field of Vision (FOV) of the sensor
2) The sensor missed obstacles because of the angular resolution of the sensor

3.4.2 RPLIDAR Results and Discussion

The unsorted data was first plotted using the code in APPENDIX B. 3

Plotting Data code (MATLAB).
An example of the plotted
RPLIDAR data can be seen in
Figure 3.11. Data was manually
sorted to contain only detected
obstacle data to use for data

Figure 3.11 Plotted RPLIDAR data
analysis. When preprocessing the data it was noticed that data contained false positives in between two positive data points (Table 3.2). When the data was used for statistical analysis the false positives were omitted to give a better reflection of how the sensor
performed. The data in the green rows are positive data points and were used in the statistical analysis of the data.

Rows in red were omitted. It was
noticed that the signal strength was zero when no distance data was available.

Table 3.2 Data gathered during testing in the shade at a 2 meter distance red rows were eliminated and green rows were kept

Angle	358.719	Distance	2055.5	Signal Strength	15
Angle	358.406	Distance	0	Signal Strength	0
Angle	358.406	Distance	2045	Signal Strength	15
Angle	358.375	Distance	0	Signal Strength	0
Angle	358.359	Distance	2043.75	Signal Strength	14
Angle	358.313	Distance	2040.75	Signal Strength	13
Angle	358.266	Distance	0	Signal Strength	0
Angle	358.234	Distance	2026.75	Signal Strength	13

It was assumed that the sensor reported a 0 distance when a false positive occurred.
The Final RPLIDAR Test had statistics done with and without false positives to determine the statistical difference between data that included false positives and the data that did not include false positives.

The beginning runs with the RPLIDAR were successful and occupancy maps could be made (Mathworks, 2019). The path planning algorithm would choose a different path every time it ran (Figure 3.12). On the left side, data points captured by the LIDAR are inserted into a binary occupancy grid to show where obstacles were located. In the middle and right pictures, the red dots are gathered data points or objects detected and the objects are increased in size and a path was planned around the obstacles creating a probabilistic roadmap. The blue lines are possible paths a robot could take to avoid the obstacles. The orange line was the route chosen to get around the obstacles. The path

Figure 3.12 Occupancy Maps and two different path planning algorithms.
planning algorithm did not choose the same path every time so, it was thought that a minimization algorithm, like the genetic algorithm, could be tried to find the shortest path but it was out of the scope of this research so that was not pursued. Obstacle locations and distances can be seen in APPENDIX B.1.1 Occupancy Map Setup.

In the Straight Line RPLIDAR Test, the sensor was able to detect obstacles $1-9$ and 11 on the white side and obstacles $1-7$ on the brown/black side indicating that the sensor had more than an eight meter range in the shade Figure 3.13. This supported the hypothesis that white obstacles were more likely to return sensor light packets than the brown/black obstacles. This test also showed that the RPLIDAR was inaccurate to reliably detect small obstacles. The average error was -12.56 cm on the brown/black side and -16.29 cm on the white side. Locations and obstacles can be seen in APPENDIX B.1.2 Straight Line Setup. In the Final RPLIDAR Test, the statistical analyses were completed by the UNL Statistics Help Desk.

When obstacles were in the sun 42.10\% or 570 data points were false positive readings. When the obstacles were in the shade 41.65% or 1,251 data points were

Figure 3.13 Obstacle setup on the brown backside in the Straight Line Test. false positive readings.

When comparing the number of data points collected, analysis combines both the front and back sides and lighting positions (Figure 3.14). Statistical analysis found that the proportion of false positives increases from 1-4 meters and then plateaus around a proportion of .5 at distances over 5 meters

Figure 3.14 The proportion of false positives as distance increases and in both lighting positions. The 95% confidence interval bounds are shown.
It was found that of the data points gathered on the back side and 45.59% of the data points recorded on the white side would be false positives. With a p-value of 0.4579 , there is no significant interaction between the number of false positives and the color of the obstacle (Figure 3.15).

This analysis showed there was only a statistically significant difference in the number of false positives collected when one meter results were compared to every other distance (all p-values were <.0001). It was concluded that false positives would be removed as to not skew statistics.

There were 40 sample points gathered and a summary table was created for each point. The summary tables provide the mean, standard deviation, minimum and maximum values for accuracy and measured distance. This table also gives the number of data

Figure 3.15 The proportion of false positives between distances and obstacle colors with a range of 95% confidence interval bounds for the number of false positives
points collected. The highlighted words above the table gives information on the lighting condition of the obstacle in "weather". The color of the obstacle and the distance in meters the obstacle is away. An example of sample point data summary can be seen in

Table 3.3. These summary tables can be seen in APPENDIX B. 7 Sample Point Summaries.

Table 3.3 Sample point data summary Obstacle in the shade obstacle color is black at a distance of 1 meter
Weather=Shade Color=black Dist=1

Variable	Label	\mathbf{N}	Mean	Std Dev	Minimum	Maximum
Accuracy	Accuracy	283	-39.64	12.14	-75.00	-15.50
MeasuredDistance	MeasuredDistance	283	1039.64	12.14	1015.50	1075.00

Analysis was done on the number of data points collected for each color and distance. There was a significant difference also found between the number of data points collected and the distances the obstacles were from the sensor (Figure 3.16). Obstacles closer to the sensor had more data points than those further away. There was a statistically significant difference in the number of data points collected between the front and back sides when the distances were one (p -value of 0.0205), three (p -value of 0.0322) and four (p -value of $0.0445)$ meters away.

Figure 3.16 The average amount of data points collected and 95% confidence interval bounds with the color and distance being the set variables.
The accuracy of the RPLIDAR was found by taking the actual distance in millimeters then subtracting the distance measured by the RPLIDAR. The closer the number is to
zero the better the accuracy. While the RPLIDAR was in the shade and obstacles in the sun, black/brown obstacles at six meters or less were within -100 mm . But, when obstacles were six meters or further, the black/brown side had a lower accuracy than -200 mm (Figure 3.17). The white obstacles were between -100 mm and -200 mm throughout the test.

When the same comparison is made for the obstacles that were in the shade and RPLIDAR was in sun, it was noticed that the accuracy was improved. For both the white and brown/black obstacle colors, the accuracy is less than 100 mm at obstacles less than

Figure 3.17 A graph showing the LS-Means and 95\% confidence interval bounds between the two color obstacles at each distance. It is noticed that at distances < six meters away the brown/black obstacles are more accurate and distances > six white obstacles are more
nine meters away. Much like the previous analysis the brown/black color obstacle is more accurate at closer distances. Brown/black obstacles less than 8 meters give a more accurate reading than white obstacles. A graph comparing the accuracy at each distance
and lighting condition when the RPLIDAR is in sun can be seen in Figure 3.18. The accuracy is only greater than 100 mm at distances greater than eight meters.

Analysis was done to see if there was a factor that affected the accuracy of the sensor.

Figure 3.18 A graph showing the LS-Means for accuracy when the RPLIDAR in the sun and both color obstacles. A glance at the graph shows accuracy staying under 100 mm untl it reaches 9000 mm When distance and color were held constant and the lighting condition was changed between shade and sun, a statistically significant difference was found between every color and distance (all p-values <.0043).

3.4.3 Hokuyo URG-04LX-UG01 Results and Discussion

The result of the test was
unsatisfactory for detecting fence posts. The Hokuyo URG-04LX-UG01 was unable to detect even the closest obstacle at 141.455 cm away. The calculations from Equation

4...ear

Distance between two consecutive data points
showed that this sensor could detect obstacles less than .89 mm wide at 141.455 cm away. It was noted in the manual that it was not sunlight resistant, but it was unknown if ambient sunlight was a factor even in the shade. An example dataset from the test can be seen in Figure 3.19. The sensor detected a wall past its range.

3.5LIDAR Conclusions

It was found that LIDARs could possibly be a capable sensor for detecting large solid objects like round bales or tractors but would not be able to detect large truss structures like pivots. Calculations from developed equations from the data, showed that angular resolutions would not be small enough to detect a pivot's truss structure at a distance far enough away to avoid it with off-the-self LIDARs. High Resolution LIDARs do have a small enough angular resolution to detect pivots at 20 meters however, they were out of
the scope of this project to pursue because they were too expensive to obtain. Use of cameras to detect and identify field obstacles was pursued next.

3.5.1 SCANSE Conclusion

After performing the calculations to find the angular resolution and analyzing the limited data collected, SCANSE could have been used for obstacle detection but, with limitations. It would only be able to detect large obstacles at closer distances and hence using SCANSE in field condition is not recommended.

3.5.2 RPLIDAR Test Conclusions

A total of three unique tests were performed for this sensor. In the Occupancy Map Tests an occupancy map with a path planned around the obstacles was successfully created. This was not in the scope of the study, so it was not pursued further. In the Straight Line Test, the RPLIDAR was not able to identify small changes with error of 12 cm or greater, depending on the color of the obstacle. In the Final RPLIDAR Test the sensor had a proportion of 0.5 in the number of false positives collected to total points collected. This test also revealed that the lighting of obstacles had an impact on how well the sensor detects obstacles.

3.5.3 Hokuyo URG-04LX-UG01 conclusions

The sensor had the specifications desired to detect small obstacles at short distances. However, it was evident from the data that it would not work for the requirements needed in the outdoor conditions. It is confirmed that this would only work indoors.

Chapter 4 Obstacle Detection and Identification

Algorithms for Camera Images

4.1 Introduction and Objectives

It was shown in the previous chapters that low cost LIDARs had challenges because of the low angular resolution between data points. RGB cameras were explored next for being able to detect agricultural obstacles. This chapter:

1. Explores different image processing algorithms and techniques using RGB images for agricultural obstacle detection
2. Evaluates multiple object edge detection algorithms for suitability of identifying obstacles common to agricultural fields based on images (RBG and RGB-D)
3. Discusses the applicability of convolutional neural networks for detecting in-field obstacles based on RGB or RBG-D image processing techniques.

4.2 SURF Feature Extraction and Matching

The first approach to detecting objects in camera images was the Speed Up Robust Features (SURF) Extraction and Matching algorithm. This algorithm is designed to detect close similarities between pictures of the same scene or object (Bay et al., 2006). A grayscale image is loaded initially into SURF. Figure 4.1a shows a reference image and the feature points detected in the reference image. These feature points needed to be detected in the test image. Figure 4.1 b is the test image in which the feature points detected are displayed. Figure 4.1c depicts both matched outlier and inlier feature points between the images in Figure 4.1a and Figure 4.1b. Inlier points are positive matches
between the two images and outliers are points that match but are not identical to the points in the reference photo. It is assumed that no inlier points existed between the two photos because no image could be produced of matching inlier points.

SURF Feature Extraction and
Matching was able to detect a few similar feature points in both images. It was later learned that an almost exact copy of the test image had to be matched with the input image in order to be detected.

Even though this method
looked promising, it was
quickly eliminated
because it did not adapt

(a)

(b)

(c)

Figure 4.1(a) Extracted features out of the grayscale reference image. (b) Extracted features out of the grayscale test image. (c) Matching the extracted features in reference photo to features in the test photo. Only ouliers are displayed because no inliers were preent
well to new images. Script can be seen in APPENDIX D. 1 SURF Feature Extraction and Matching Script (MATLAB).

4.3 Edge Detection

Edge detection of the structural components and identifying shapes was recognized as another approach to identifying a pivot. Seven unique edge detection algorithms found in MATLAB were tested to find which method gave the most useful image data. The seven
methods were approxcanny, Canny, log, Prewitt, Roberts, Sobel, and zerocross (MATLAB, 2018c). Each method gives a unique result of edge detection. (Script can be seen in APPENDIX D. 2 Edge Detection Script (MATLAB)) An algorithm found on MathWorks File Exchange called "Shape Recognition" (Samieh, 2016) was used to identify shapes. Shapes could be identified as a circle, square or other shape. This Script can be seen in APPENDIX D. 3 Shape Identification algorithm (MATLAB).

It was forewarned in the documentation that this algorithm would have difficulties recognizing shapes with differing aspect ratios of the object (Samieh, 2016). Many of the shapes found could not be identified as either a circle or square because of the variability of camera angles and how the edge recognition algorithms extracted shapes. Figure 4.2 shows the results from the Sobel edge detection algorithm with the shape recognition algorithm. Outputs from the other edge detection methods can be seen in APPENDIX D SURF Feature Extraction and Matching and Edge Detection. The code for this algorithm can be seen in APPENDIX D. 4 Edge detection and Shape Identification Algorithm (MATLAB).

Figure 4.2 Sobel edge detection with the "Shape Recognition" algorithm. The initial image can be seen in the top left picture. The bottom left picture is the result of using the Sobel edge detection method. The top right depicts the objects the algorithm detected based on the input binary image. This image is flipped compared to the input image. The bottom right gives scores on what the shape of the object is .

4.4 Combination of SURF Feature Extraction and Matching

and Edge Detection Algorithms

The idea of merging SURF Feature Matching and Extraction and Edge Detection with shape identification algorithm seemed appropriate as a method to help in the identification of obstacles. The idea was to use Edge Detection with SURF Feature Extraction and Matching, by matching edges in pictures. The concern about merging of these two methods was that features extracted would be hard to differentiate in the two images because of the lack of grayscale in the image.

In the first run of merging of the two different algorithms, the volume of positively matched points including outliers suggested that the grayscale concern was not a factor

Figure 4.4). However, the number on inlier points was significantly less. Every inlier point found one feature point that matched (Figure 4.3).

Only having one inlier point proved that the combination of the two algorithms was not an effective way to detect and identify obstacles. The MATLAB script can be seen in APPENDIX D. 5 SURF Feature Extraction and Matching and Edge Detection (MATLAB).

Figure 4.4 Positively matched SURF Points (Including Outliers)

Figure 4.3 Positively matched points (Inliers only)

4.5 Conclusions from SURF Feature Extraction and

Matching and Edge Detection

It was concluded that SURF Feature Extraction and Matching, edge detection with a shape identification algorithm would not suffice for pivot obstacle detection. The algorithms could not adjust to the different orientations and aspect ratios of the objects. Object identification using the Viola - Jones algorithm and a Convolutional Neural

Network (CNN) were identified as possible object identification algorithms using machine vision.

4.6 Object Identification

The cascade object detector uses the Viola-Jones algorithm to detect people's mouth, ears, nose, face or upper body (David \& Viola, 2001). This algorithm can be trained to identify other things but, the objects cannot have substantial aspect ratio changes. A single detector cannot handle every orientation and cannot handle more than one class of objects so more than one detector has to be used (Mathworks, 2018b).

Tractors and pivots were trained through the cascade object detector that uses the Viola Jones algorithm. Code for the cascade object detector that uses the Viola - Jones algorithm can be seen in

APPENDIX E Viola-Jones Algorithm Script (MATLAB).

4.6.1 Cascade Object Detector and the Viola-Jones Algorithm

4.6.1.1 Tractors

The first obstacle to be trained was a tractor. The picture quality of the training image and quantity of tractor images were unknown. Forty-two pictures of tractors were used. Each image had to be labeled. Labeling is the process of drawing a region of interest (ROI) box around the object to be identified.

4.6.1.2 Pivots

The pivot was trained using video labeling and extracting the images from the video. The video used was recorded in a field located near Lindsay, Nebraska. Picture quality and quantity needed for training was unknown. 67 pictures of pivots were used.

4.6.1.3 Results and Discussion

The Viola - Jones algorithm could identify a tractor. However, the bounding box could not encompass the entire tractor and could not detect a tractor in clutter. The best detection found of a tractor is shown in Figure 4.5 Viola-Jones algorithm detecting a tractor with no clutter. Yellow bounding box does not surround the entire tractor. This image features a single tractor with no clutter around it.

A separate detector was trained on the image data of a pivot. After training, the detector was not able to clearly identify a pivot.

There was a significant number of false positives in the test image (Figure 4.6).

The Viola-Jones research and experimental training objects confirmed that the Viola-

Figure 4.5 Viola-Jones algorithm detecting a tractor with no clutter. Yellow bounding box does not surround the entire tractor.

Jones algorithm would not be pursued due to its performance and inadaptability to classify an array of objects.

Another possible solution to object detection and identification is with a CNN.
4.6.2 Convolutional
neural networks

Abstract

(CNN)

Figure 4.6 Viola-Jones algorithm detecting a pivot in the
middle of a soybean field. Yellow bounding boxes do not
Figure 4.6 Viola-Jones algorithm detecting a pivot in the
middle of a soybean field. Yellow bounding boxes do not surround the entire pivot but, false positives.
,

CNNs are Deep Learning algorithms that can be used for object detection and classification. CNNs were pioneered in 1994 by Yann LeCun (Yann Lecun \& Bengio, 1994). LeCun's paper based the neural network on three features that were found in the mammalian visual cortex: local connections, hierarchy of different clusters of neurons, and spatial invariance. LeCun named his network LeNet5 (Lecun et al., 1998). LeNet5 uses a sequence of 3 layers: convolution, pooling and non-linearity

From 1994 to 2012, work with CNNs was non-existent (Ujjwalkarn, 2016). During this time data became increasingly easier to obtain and computing power increased. In 2012, Alex Krizhevsky designed a neural network that won the difficult ImageNet Competition by designing a deeper and wider version of LeNet. In this CNN there are 25 layers compared to three in LeNet (Mathworks, 2018e).

AlexNet is the cause for the widespread application of CNNs today. The layers are a combination of convolution, nonlinearity function and pooling. The number of layers in a network can be as small as tens or as many as hundreds of layers deep (Mathworks, 2018a).

Major companies use neural networks. Facebook uses them in photo recognition algorithms, Google uses neural networks for photo search, and Amazon uses them for product recommendations (Deshpande, 2016). Figure 4.7 illustrates the general flow of a CNN.

Figure 4.7 Layout of the entirety of a CNN with a pivot as the input image

4.6.2.1 Beginning layer in a $C N N$

A CNN is made of layers that are stacked on top of each other. Each layer's output is the next layer's input. The first layer is the input layer and followed by the hidden layers (aka: feature learning layers). The hidden layers are composed of three layers:
convolution, an activation function and pooling. (The convolution layer is always followed by an activation function layer so, sometimes they are considered one layer.) The last layers of the convolutional network are called the final layers. The final layers consist of flattening, fully connected and SoftMax (classification). These layers are like parts of a sandwich (Figure 4.8). The input layer is the top bun, hidden layers are the meat, cheese and toppings that you can put into any order and the final layers are the bottom bun.

4.6.2.1.1 Input

The input layer is the image coming into the neural network needing to be classified. The input layer has dimensions [width x height x depth]. If the example

Figure 4.8 Layers in convolutional neural network was an RGB image the width of 32 pixels, the height of 32 pixels and the depth might be 3 for the three matrices of color. The dimensions would be [$32 \times 32 \times 3$]. The input layer needs to be divisible by two, many times (Doukkali, 2017). Different CNNs require different sized inputs. After the input layer, the feature learning layers begin. Each layer consists of neurons, weights and biases.

4.6.2.1.2 Neurons

Neurons are cells in a matrix. Neurons take in values and the weight assigned to them from the previous layer, sum the values, performs an activation function (discussed later) then outputs the data to the next layer.

The mathematical representation for a neuron is:

Equation 6 \qquad Mathematical Representation of a Neuron

$$
\sum_{n=1}^{r}\left(\left(x_{n} * w_{n}\right)+b\right)
$$

Where:

$$
x_{n}=\text { incoming value }
$$

Figure 4.9 Layout of a single neuron in a CNN

4.6.2.2 Hidden Layers (Feature Learning)

These layers can be put in specific sequences to extract certain features. The layers are convolution, an activation function layer or regularization layer, and pooling. These layers can be repeated as many times as the designer of the CNN would like.

4.6.2.2.1 Convolution

Convolution is the first layer after the input layer and does most of the heavy computation in a CNN. Convolution uses filters to pull out important features in an image. The number of filters adds depth to the convolution layer.

In convolution, a dot product is taken of the filter and every pixel value. Depending on the CNN, the dot product is divided by either the size of the filter for an average value or the product is left untouched. The dot product is the new value after convolution.

An example of convolution is given in Figure 4.10. Convolution starts by comparing the first pixel in the image to the top left value in the filter or kernel (yellow box in filter and yellow box in the image). In the example, the pixel value is not averaged for each
 bottom left right] (Mathworks, 2018d).

Yellow: $-1 * 0=0$

Green: $1^{*}-1=-1$
Total (Blue) $-=(0+0+0+0-1+1+0-1+1)=0$

Yellow: $-1^{*}-1=1$

Green: 1 * $1=-1$
Total $($ Blue $)=(0+0+0+1-1+1+1-1+1)=2$

Figure 4.10 Example of a convolution. A simple picture of a straight line. With a straight line filter. The input image with $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ is in (a) resulting matrix (b) and stride [lll 1 ll.

The output size of a convolution is:

$$
W 2=\frac{W 1-F+2 P}{S}+1
$$

$$
H 2=\frac{H 1-F+2 P}{S}+1
$$

$$
D 2=K
$$

Where: $\quad[W 1$ X H1 X D1] $=$ are input volume size
[W2 X H2 X D2] = are output volume size
$\mathrm{F}=$ Width of the filter
$S=$ Stride
$\mathrm{P}=$ Amount of padding used
$\mathrm{K}=$ Depth (number of filters)
The stride is how many pixels the filter is moved between convolutions. (Stanford, 2018). The filter size used during convolution is a hyperparameter or, a parameter that can be controlled by the designer. Strides are commonly 1 or 2 in magnitude (Figure 4.11).

Filters can be as small as [11] or larger size filters are [7 7] or bigger.

Figure 4.11 Illustration of an image [9 9], filter size [33] and a stride of [11].

The result of convolution from the example can be seen in Figure 4.12. A color gradient is added to help see the gradients in the numbers. Weights and biases are also a part of the network. For this example, weight is a consistent 1 and bias was -4 . For every neuron a weight is assigned to its output for the next layer. These weights and biases are computed during training. Figure 4.13 is the result after weights and

Figure 4.12 The result of convolution between the test image and the chosen filter biases are added to convolution. The color gradients remain the same, but this bias will help in the next layer.

4.6.2.2.2 Activation function

There are multiple activation functions to normalize convolutional data and are nonlinear in nature. The activation function takes the previous layers output, applies a mathematical function to normalize the data, then outputs it to the next layer as an input. The activation functions and corresponding graphed equations are in Figure 4.14. Activation functions can

Figure 4.13 The resulting matrix after a bias of -4 is implemented. be classified into two types of functions: ReLu and non-ReLu.

Figure 4.14 Graphical representation of the activation functions

4.6.2.2.2.1 Non-ReLu functions

The Sigmoid function is an example of a non-ReLu activation function. The sigmoid function keeps the number always between 0 and 1 . However the Sigmoid can be computationally expensive because of the exponential function (Jadon, 2018). Sigmoid functions have saturated gradients, a vanishing gradient problem and have slow convergence (V, 2017) . Vanishing gradients can cause the algorithm to stop training by not being able to learn or becomes slow. The sigmoid function is defined as:

Equation 7. \qquad Sigmoid Function

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

The hyperbolic tangent function has a range between -1 and 1 and is centered on zero. Like the Sigmoid function the hyperbolic tangent can develop saturated gradients and vanishing gradients. The hyperbolic tangent is defined:

Equation 8 \qquad .Hyperbolic Tangent

$$
\tanh (x)
$$

The Sigmoid and tanh should not be used because of the vanishing gradient problem; that causes the network to have a lower accuracy and poorer performance.

4.6.2.2.2.2 Rectified Linear Units (ReLu)

ReLu is the most used activation function because of its simplicity during backpropagation and is not computationally expensive. The main formula for ReLu is: Equation 9 \qquad

$$
\max (0, x)
$$

In ReLu a comparison between the neuron value and 0 is made and the higher value is the new neuron value. Figure 4.15 shows what ReLu does to the example convolution.

When a neuron gets a zero value from the previous layer that neuron becomes "dead". This problem is known as the "dying ReLu" problem, meaning no information is passed through that neuron to the next layer. The zeros in Figure 4.15 are considered dead neurons. Alternative equations are proposed to fix the dead neuron problem

0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.4	0.0	0.0	0.0
0.0	0.0	0.0	0.6	0.0	0.0	0.0
0.0	0.0	0.0	0.6	0.0	0.0	0.0
0.0	0.0	0.0	0.6	0.0	0.0	0.0
0.0	0.0	0.0	0.4	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
Figure 4.15 Result of ReLu on						
Example 1						

| |
| :--- | :--- | :--- | (Liu, 2017). The first equation is leaky ReLu:

Equation 10 \qquad .Leaky ReLu

$$
\max (0.01 x, x)
$$

In Leaky ReLu the max value between 0.01 x and x is the value given to that neuron.

Parametric ReLu (PReLu) is like leaky ReLu but it does not have a predetermined slope (Liu, 2017). Instead the slope is a parameter (a) that is set by the CNN during training. The formula for parametric ReLu is the following:

Equation 11 Parametric ReLu

$$
\left\{\begin{array}{ll}
x & x \geq 0 \\
a x & x<0
\end{array}\right\}
$$

Another variation to counter the "dying ReLu" problem is Exponential Linear Units (ELU). However, ELU is computationally expensive because of an exponential function in its formula. The equation is:

Equation 12.
..Exponential Linear Units (ELU)

$$
\left\{\begin{array}{ll}
x & x \geq 0 \\
a\left(e^{x}-1\right) & x<0
\end{array}\right\}
$$

4.6.2.2.3 Pooling

The Pooling layer is inserted into a CNN to reduce the spatial size of the data in the network. A 3×3 filter with a stride of 3 is an example of pooling parameters in this process. Max pooling uses the maximum value in the filter to use the replacement value. Other pooling methods like average pooling and L2-norm pooling are used less often. L2norm pooling is a vector norm of the filtered values (Weisstein, 2018).

In the example found in Figure 4.10, the image size is not devisable by the size of the filter. When this occurs "SAME" and "VALID" methods are used in pooling (MiniQuark, 2018).

In the "SAME" method, there is " 0 " padding added to the image. In this option "SAME" tries to pad the matrix evenly on all sides.

The method called "VALID" is without padding, the right-most columns or the bottom-most rows are dropped and are not used in pooling. Figure 4.16 shows examples of both "SAME" and "VALID"

VALID

Figure 4.16 Examples of the 2 methods "VALID" and "SAME" filter width $=3$ stride $=3$ methods.

When max pooling of the output image from Figure 4.10, "VALID" and "SAME" methods are performed on the output of the convolution layer. "VALID" method results can be seen in Figure 4.17 and the "SAME" method results can be seen in Figure 4.18.

0.0	3.0	0.0
0.0	5.0	0.0
0.0	5.0	0.0

Figure 4.17
Result of "VALID" max pooling in the example
These are the three sub-layers that can be found in the hidden layers: convolution, activation function layers, and pooling. The last layers are the final layers.

4.6.2.3 Final Layers

The final layers are how the CNN relates the hidden layer data to

$$
\begin{array}{llll}
0.0 & 3.0 & 0.0 & 0.0 \\
0.0 & 5.0 & 0.0 & 0.0 \\
0.0 & 5.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0
\end{array}
$$

Figure 4.18 Result of "SAME" max pooling the classification of the image. Several layers can be stacked on top of each other.

4.6.2.3.1 Flattening

This layer only happens once because in this layer it takes the matrices from the last convolution and "flattens" them (Kirill Eremenko, 2018). Figure 4.19 shows an example of flattening. In the example the "VALID" max pooling shown previously was used.

4.6.2.3.2 Fully Connected

The fully connected layer connects the flattening layer to the SoftMax function or to another fully connected layer. Each neuron in a layer is connected to every neuron in the next layer including weights and biases. This is the layer that helps connect numerical data into classification of objects.

4.6.2.3.3 SoftMax function

The SoftMax Function is the last step in a CNN and calculates the probability of the object to each class. The highest probability class is then given to the identified object. The sum of all probabilities is equal to one. An example and the SoftMax equation are in Figure 4.20

Figure 4.19 flattening of the "VALID" max pooling (Figure 4.17)

Figure 4.20 SoftMax equation and example
Figure 4.21 shows an example of the final layers of a CNN. Values from the last convolution are first flattened then two additional fully connected layers followed by SoftMax equation to classify the object.

Figure 4.21 The Final Layers of a CNN. Flattening, two fully connected layers and SoftMax to give the probability of that object in the picture

4.7 Conclusions

In this chapter several object detection algorithms were explored but were unsuccessful in clearly detecting the obstacle. This research led to obstacle identification algorithms. The Viola - Jones algorithm was the first algorithm to be used to help identify obstacles. This algorithm was unable to handle different orientations because the algorithm required keeping the aspect ratio the same as the training images. Convolutional Neural Networks were discussed and explained in detail. In the next Chapter, CNNs are trained and used to identify tractors, bales and pivots.

Chapter 5 Convolutional Neural Networks for

Tractor, Round Bale, and Center-Pivot Identification

5.1 Introduction and Objectives

Previous chapters experimented with LIDARs and other obstacle identification algorithms. Tractors and bales can possibly be detected by off-the-shelf LIDARs but, are unable to detect pivots because of pivots' truss structure. The angular resolution needed to detect an object the size of the truss was less than provided by the LIDAR sensors tested. Obstacle detection algorithms using machine vision were explored before CNNs because they were less complex. The previously explored machine vision algorithms could detect pivots only under certain conditions. A CNN was previously explained and will be pursued as a method to detect a pivot.

CNNs are used for image classification without localizing where the object is. Object detection is finding the location of objects in an image. In this chapter several CNNs are chosen to act as a feature extractor in the Region based-CNN (R-CNN) architecture to detect and identify a pivot, tractors and bales The objectives for this chapter are:

1. Compare CNN, R-CNN, and Faster R-CNN architectures for suitability to detect objects common to an agricultural field (e.g., tractors, round bales, and center pivots).
2. Evaluate promising architectures for mean Average Precision and detection time with the goal of real-time obstacle detection using image processing techniques

5.2 R-CNN

CNNs are used for image
classification whereas
Region based
Convolutional Neural
Networks (R-CNN) are
R-CNN: Regions with CNN features

Figure 5.1 Steps of an R-CNN (Lee, 2017) used for object identification (Girshick et al., 2013). The R-CNN uses a selective search algorithm that proposes 2000 bounding box regions at random and a CNN is performed on each bounding box area (Figure 5.1). The CNN acts like a feature extractor and feeds a support vector machine (SVM) to predict if the object is in that bounding box. The SVM returns four offset values that predict where a better bounding box location may be. It takes roughly 49 seconds for this algorithm to process.

5.3 Faster R-CNN

The Faster R-CNN is an improvement of R-CNN. It takes about 0.2 seconds per image. This speed is fast enough for real-time object detection. Faster R-CNN contains two networks (Figure 5.2), a region proposal network (RPN) that generates region proposals and a CNN that uses these region proposals to identify objects (Ren et al., 2015). The RPN is used instead of the selective search algorithm which speeds up the processing time (Gao, 2017). The CNN in Figure 5.2, can be any network most appropriate for the application.

Figure 5.2 Two network layout of a Faster CNN network. The CNN can be replaced with any CNN to best fit the application applied to. (Sinhal \& Sachan, 2017)

5.4 Training Faster R-CNN

All training and evaluations were done on a NVIDIA GeForce GTX 1060 6GB GPU in MATLAB 2018 b update 2. All code, training outputs and mean Average Precision (mAP) graphs from training are in APPENDIX F Faster R-CNN Training. mAP is a metric used to measure the accuracy of object detectors (Hui, 2018). Values are between zero and one.

Images for tractors and bales were resized to 448×448 from various resolution pictures and padded to keep aspect ratios the same (Figure 5.3). After resizing, the images were labeled and augmented. Tractor and bale images were brightened, darkened, sharpened and blurred to create more images for training. After augmentation, 210 images of tractors and 250 images of round bales were available for training.

Pivot images used for training were taken from three minutes and 24 seconds of pivot videos. MATLAB was able to extract 1,231 images from the pivot videos

Figure 5.3 Tractor image 448×448 after padding to keep the same aspect ratio. The black part of the image is padding. pang.
initially. Pivot images were not augmented to create more images because a satisfactory number of images were already collected.

These pivot videos had an original resolution of 1920×1080 but were resized to $448 \times$ 448 pixels and labeled without padding because it was unknown at the time of labeling that keeping the aspect ratio the same was important (Figure 5.4). The four main identifiable components of a pivot are pyramids, towers, spans and end towers (Figure 5.5).

Components of the pivot were labeled because each component is treated as an individual obstacle to be identified.

Four CNNs were tested as feature extractors
for the Faster R-CNN: InceptionResNetv2,
ResNet 101, Inceptionv3 and GoogLeNet.

InceptionResNetv2, ResNet 101 and
Inceptionv3 were shown to be the top performing CNNs in Faster R-CNN (Huang et al., 2016, Figure 5.6) and GoogLeNet was chosen at random. The hyperparameters and settings used in Huang's study were not
followed because it was unknown how to

Figure 5.4 (a) A 1920×1080 pivot picture (b) pivot picture resized to 448×448 with no padding.

Figure 5.5 Components of a pivot (a) span (b) pyramid (c) tower (d) end tower
change them which may have made the results unfairly reflect the true capabilities of the networks.

ResNet 101, Inception V3 and GoogLeNet were trained twice in the Faster R-CNN. The best average hyperparameter settings found after experimentation were used for the pivot and combined trainings.

Max Epochs and Initial Learn Rate were the two hyperparameters changed for tractor and round bale training only, Run 1 had Max Epochs set to 1 and the Initial Learn Rate was .01 and Run 2 had Max Epochs set to 2 and the Initial Learn Rate was .005 . Max Epochs

Figure 5.6 Accuracy vs time, the marker shape indicates the meta-architecture and color indficates feature extractor used. (Huang et al., 2016)
is how many times the model trains on a set of images (Anirudh Sharma, 2018). Initial Learn Rate is how fast the algorithm can make changes in weight. Initial Learn Rate will increase both training time and accuracy (Zulkifli, 2018).

The best performing set of hyperparameters from the round bale and tractor training were used in the pivot training. Pivot images were trained twice. Run 1 was the first-time training and Run 2 was the second time training.

The highest mAP hyperparameter settings and CNN were used for the combined image's Faster R-CNN training. The mAP of training was determined to be a higher priority than training time. During training it was noted that 30 pivot images had bounding boxes that extended past the image boundaries. These images were omitted from the training data. It was found through analysis of the original code and output that every fifth image was extracted out of the pivot videos. A small adjustment to the code allowed each video frame to be extracted and used for training for a total of 6,148 or $5 x$ Pivot training data (APPENDIX F. 1 Code used to extract images out of video (MATLAB)). Pivotv2 was trained with five times the number of images compared to Pivot Run $1 \&$ Run 2 to observe if more images improved training results. GoogLeNet was used with the hyperparameters used in Run 2 in the round bale and tractor training. Only one detector was trained using the newly extracted images. The goal was to get a mAP of at least 80% on all obstacles, then combined for the final Faster R-CNN training.

5.5 Results of Faster R-CNN training

5.5.1 Tractor

Tractor training used GoogLeNet, ResNet 101, Inception ResNet V2 and Inception V3 feature extractors. Each feature extractor was tried with both sets of hyperparameters except that Inception ResNet V2 was only ran once.

Training time and the mAP results for tractor training can be seen in Table 5.1. GoogLeNet and ResNet 101 averaged a mAP of 90% and 49.5%, respectively between the two runs. Inception V3 was able to complete training but, outputted an average mAP
of 0%. Inception ResNet V2 required more memory than was available and couldn't be run (APPENDIX F.8.1.4 Inception ResNet V2).

Table 5.1 Tractor Faster R-CNN training results

Tractor (210 pictures)			
Network/version	Trainining time (s)	mAP (\%)	
GoogLeNetv2	241	87\%	Run1
ResNet101v3	450	9\%	
Inceptionv3v4	828	0\%	
GoogLeNetv5	309	93\%	Run2
ResNet101v6	921	90\%	
Inceptionv3v7	994	0\%	
InceptionResNetv2v8	error		Run1

GoogLeNet was both the most accurate and fastest to train. ResNet 101 had mixed accuracy results by having mAPs of 9% in Run 1 and 90% in Run 2, Inception V3 training had a mAP of 0% in both runs. It was determined that only GoogLeNet, ResNet 101 and Inception V3 would be tried for round bale training. A graphical representation of training time vs. mAP percentage is shown in Figure 5.7.

Run 2 was identified as the set of hyperparameters that worked the best for tractor detection. These hyperparameters returned a 93% in Run 2 compared to an 87% in Run 1 for GoogLeNet and a 90% in Run 2 compared to 9% in Run 1 for ResNet 101.

The training times of the feature extractor from slowest to fastest was Inception V3 at 4.34 seconds/image, ResNet 101 was 3.26 seconds/image

Figure 5.7 Tractor Faster R-CNN training graphed results
and GoogLeNet was the fastest in tractor training at 1.31 seconds/image.
A trained detector "tdgooglenetv2", was tested on tractor images found on the internet and the results can be seen in APPENDIX F.8.1.1 GoogLeNet.
. In Figure 5.8 (a) the detector labeled the image of the tractor and planter eight different times instead of labeling the tractor once. This showed that more data was needed to clearly define the tractor from other equipment. The tractor in Figure 5.8 (b) is correctly labeled but the bounding box does not enclose the tractor tightly. More results from testing detectors on test tractor images can be seen in APPENDIX F Faster R-CNN Training.

Figure 5.8 Tractor training results
GoogLeNet as the feature extractor in Faster R-CNN was able to identify tractors at about 644 milliseconds per image. When ResNet 101 was used as the feature extractor it took roughly 966 milliseconds to identify the tractor. Both feature extractors worked well but are still not fast enough for real time obstacle detection. More training test images are in APPENDIX F. 8 Tractor images.

5.5.2 Round Bale

A round bale detector was trained using GoogLeNet, ResNet 101 and Inception V3 using the same hyperparameters as Run 1 and Run 2 . GoogLeNet was the only network to return mAP for round bales. The mAPs for round bale training on GoogLeNet were 77\% for Run 1 and 94% on Run 2. Run 2 hyperparameters had a 17\% higher mAP compared to Run 1 for training done in GoogLeNet (Figure 5.9). Inception V3 completed training for the first run but was unable to complete the second run because it could not find region proposals to use as positive training samples causing the error.

ResNet 101 was able to complete both training runs but unable to give a mAP. The results can be seen in Table 5.2 Round Bale Faster R-CNN training result

Table 5.2 Round Bale Faster R-CNN training result

Round Bale (250 pictures)				
Network/version	Training time (s)	mAP (\%)		
GoogLeNetv2	347	77%	Run1	
ResNet101v3	920	0%		
Inceptionv3v4	1073	0%		
GoogLeNetv5	405	94%	Run2	
ResNet101v6	1184	0%		
Inceptionv3v7	error			

. It was determined that Inception V3 would not be used and Run 2 hyperparameters with GoogleNet would be used for pivot training.

Inception V3 had the longest training time of 4.29 seconds/image followed by ResNet 101 at 4.21 seconds/image. The fastest training time was GoogLeNet at 1.50 seconds/image.

ResNet 101 was not able to identify round bales for the calculation of mAP. Test images were tried on GoogLeNet.

In Figure 5.10(a) the detector labeled both bounding boxes correctly but, mislabeled

Figure 5.10(b), labeling the

Figure 5.9 Graphical representation of the training results from the round bale Faster R-CNN training.

Figure 5.10 Bale detector testing images.
tractor as a round bale. In this detector the tractor was not a class during training. It is fair to assume that the detector mistook the tire as a bale. It was determined that only Run 2 hyperparameters would be used and only ResNet 101 and GoogLeNet would be used for pivot detection. More training test images can be found in APPENDIX F. 9 Round Bale.

Round bale detection using GoogLeNet averaged 990 milliseconds per image.

5.5.3 Pivot

A mAP was created for each component of the pivot when it was trained using GoogLeNet but was unable to produce a mAP for the components when ResNet 101 was used. Two pivot detectors were trained for both GoogLeNet and ResNet 101. When training was done using GoogLeNet, Run 1 had an average mAP for the components of 95% and Run 2 had a mAP of 92%, respectively. ResNet 101 was able to complete the first run of training but unable to complete the second training.

The highest component mAP was the pyramid at 99% for Run 1 and the tower at 98% for Run 2. The lowest was the end tower and span at 92% for Run 1 and the end tower was the lowest 81% for Run 2. Table 5.4

Results from pivot training
shows a breakdown of component mAPs for both runs of GoogLeNet

Table 5.4 Results from pivot training

Pivot			
Network/version/class	Training time (s)	mAP (\%)	
GoogLeNetv1 Avg.	1177	95\%	Run1
pyramid		99\%	
span		92\%	
tower		98\%	
end_tower		92\%	
ResNet101v2 Avg.	3622	0\%	
pyramid		0\%	
span		0\%	
tower		0\%	
end_tower		0\%	
GoogLeNetv3 Avg.	1170	92\%	Run2
pyramid		96\%	
span		91\%	
tower		98\%	
end_tower		81\%	
ResNet101v4 Avg.	N/A		
pyramid			
span			
tower			
end_tower			

The average training time per image was 0.95 seconds/image in GoogLeNet. The training time for the one run of ResNet 101 was 2.94 seconds/image.

Figure 5.11 plots the times and mAPs of training for the GoogLeNet and ResNet 101 against each other. It was determined that GoogLeNet will be selected for the final combined training given the reduced average training time and superior mAP values.

In Figure 5.12 (a) is identified correctly with the two spans and tower. In Figure 5.12(b), the span was broken into two pieces to fully bind the span and part of the pyramid was wrongly labeled as a span. In

Figure 5.12 c the end tower is

Figure 5.11 Results of pivot training graphed incorrectly identified as a
tower but, the entire span is correctly bound. Only GoogLeNet would be used as a feature extractor. GoogLeNet took approximately 1.125 seconds per image for identification.

More training test images are in APPENDIX F. 10 Pivot.

Figure 5.12 Pivot detectorv1 labeling: (a) two spans and a tower, (b) pyramid and span, (c) span and end tower

5.5.4 Combined

The combined detector used Faster R-CNN with GoogLeNet as the feature extractor. Run 1 is the first time the algorithm was trained and Run 2 is the second time the algorithm was ran with the same hyperparameters in both runs. All the image data were randomized and hyperparameters were the same as Run 2 of tractor and round bale training for both combined detector trainings. The average mAP for the combined pictures was 89% for the Run 1 and 91% for Run 2 (Figure 5.13).

The pyramid class had the highest mAP in both Run 1 and Run 2 at 97% and 99% respectively. The lowest mAPs occurred in end tower class in both Run 1 and Run 2 at 65% and 82%.

A total of 1691 images were used to train GoogLeNet for the combined detector. The time and accuracy are plotted in Figure 5.13.

The detectors were tested by pictures found on the internet. Test results for Run 1 can be seen in Figure 5.14. The results for more images can be seen in APPENDIX F. 11 Combined Detector. When examining these images, it was found that some images were labeled incorrectly despite the high mAP. In Figure 5.14 (a) the tractor is identified correctly but labels the round bales as tractors. In Figure 5.14 (b), the detector correctly identifies all three images.

The detector when pictures were collaged together (Figure 5.15), was able to correctly identify round bales, a tractor, the span and tower of a pivot. It

Figure 5.13 Accuracy vs time of combined dedectors.

Figure 5.14 Results from running the Run 1 combined detector on pictures from the internet. (a) A tractor and multiple bales and (b) multiple bales in a field.
incorrectly labeled the end
tower as a tower. It was noticed that the bounding boxes were not tightly bounding the images. The detector was unable to notice an image of a pyramid though it was 99% mAP.

Figure 5.15 Collage of the six classes the combined detector is suppose to be able to identify.

For the combined detector it roughly takes 1.67 seconds per image which is not fast enough for real time detection. More combined test images can be seen APPENDIX F. 11 Combined Detector.

5.5.5 Pivotv2

It was not known that every $5^{\text {th }}$ image of video was being extracted, for the previous training data. The code can be seen APPENDIX F. 1 Code used to extract images out of video (MATLAB). Pivotv2 training data had extracted every image extracted out of the video for a total of 6,148 images. Pivotv2 was the last training and used the same hyperparameters and CNN as the combined training.

Having the new data improved the mAP results over the first detector of pivots. The end tower mAP improved by 18%, the span 5%, pyramid 3% and tower stayed the same
(Table 5.6). Results on test images can be seen in Figure 5.16. More test images can be seen APPENDIX F. 12 Pivotv. With more training data it was still unable to identify the end tower correctly. The increase in number of training pictures did not affect the speed Faster R-CNN with GoogLeNet detected pictures. With the additional training images detection was roughly 1.08 seconds per image.

Pivotv2 (6148 pictures)			
Network/version	Training time (s)	$\begin{aligned} & \text { mAP } \\ & \text { (\%) } \end{aligned}$	
GoogLeNetv3v2	6093	98\%	Run1
pyramid		99\%	
span		96\%	
tower		98\%	
end_tower		99\%	

A summary of the feature extractors and training statistics can be found in Table 5.7 and
Figure 5.17. GoogLeNet had the fastest training times out of all trained detectors.
GoogLeNet had the fastest detection time in all instances those times are in Table 5.8 and can be seen in Figure 5.18. It can be noted that a $0 \% \mathrm{mAP}$ cannot detect objects. Padded pivot images could have improved pivot detector accuracy. Both training and test images were skewed for the pivot which may have taught the detector wrong. The trained detectors were tested on various times for speed in detection of objects GoogLeNet was mostly around 1 second. The statistics can be found in Table 5.8. A graphical comparison between the detection times can be seen in Figure 5.18.

(a)

(b)

(c)

Figure 5.16 Pivot detectorv2 labeling: (a) two spans and a tower, (b) pyramid and span, (c) span and end tower

Table 5.7 Summary statistics for each feature extractor and object class in Faster R-CNN

Figure 5.17 A graph comparing all trained detectors

Table 5.8 Detector speed and accuracy

Figure 5.18 A graphical representation of the detector testing times along with the accuracy in detection

5.6 Conclusions of Faster R-CNN Training

It was determined that Faster R-CNN architecture would work best for obstacle detection. A larger data set made up of round bales and tractors may have resulted in better detection because a larger amount of data increased mAP in pivot detection. It was determined that GoogLeNet would work well for agricultural obstacles achieving over an $85 \% \mathrm{mAP}$ and an increase in the number of images (5 x the original amount) increased the mAP of pivots 6%. A drawback to using GoogLeNet as the feature extractor was it did not perform fast enough to reach the 5 Hz processing time needed for real time obstacle detection. Even though no feature extractor could be identified for real-time detection this proves that CNNs can work for pivot and other truss like object detection. It was determined that the size of hardware may have been a limiting factor during training and evaluation of the trained detectors.

Chapter 6 Conclusions and Future Work

6.1 Conclusions

Different sensors and methodologies were experimented and tested for practical use in agricultural object detection. The main objective of detecting obstacles was successful after many different algorithms and methodologies were tried.

Off the shelf LIDARs were thoroughly tested for obstacle detection. The biggest factor in LIDAR obstacle detection was angular resolution. Range, effectiveness in sunlight and sampling rate were also important factors for obstacle detection. It was proven that LIDARs work for obstacle detection for large objects like tractors or bales but, proved ineffective in detecting small truss like structures found in pivots.

The width between two data points would be too large in detecting a pivot at a respectable distance required for obstacle avoidance. Another limitation of LIDARs is identifying the obstacles they detect. Algorithms do exist that are able to tell you what shape the object is by comparing neighboring LIDAR data points but are unable to determine what the obstacle is. Computer vision was tested next to identify truss like structures such as pivots.

Methods in computer vision were tested first. Feature Extracting and Matching was experimented first trying to match a reference image features to an input image. The algorithm was unable to clearly identify the reference pivot image in the input image of a pivot. The algorithm was found not to be adaptable to the incoming image orientations.

Edge detection was the next methodology tried. A shape identifying algorithm was implemented that used the circularity of the identified shape to determine the class of shape. This method proved to be unreliable and could be dependent on camera angles. A combination of edge detection and SURF Feature Matching and Extracting was tried next but, quickly proved to be ineffective when all matching points in the reference image consolidated to one single point in the test image.

A Convolutional Neural Network was determined to be the most effective algorithm for pivot detection and other obstacle identification. It was determined that GoogLeNet with Faster R-CNN would be the algorithms of choice to clearly identify obstacles such as tractors, bales and pivots. It must be noted that even though GoogLeNet used in R-CNN was the most accurate, the time needed to identify the object was unrealistic for real time detection at 1.17 seconds average per image during testing of the detectors.

RGB cameras with CNNs can identify objects a far distance away. Which will help with obstacle avoidance by warning the computer that an obstacle exists, but it would need the help of other sensors to clearly detect the obstacles.

In this study more images are needed to make the CNN more robust. Only a small amount images were collected and used in this study.

6.2 Future Work

A task that can be done is collecting and labeling thousands of more pictures of many farm obstacles. This study focused on tractors, round bales and pivots and laid the foundation for others to build upon. Another challenge would be learning how to use sensor fusion and SLAM to clearly identify where the obstacle is relative to the
autonomous tractor. Future work would be finding and implementing a faster feature detector for the Faster R-CNN than GoogLeNet or a different object detector algorithm such as the Single-Shot Detector (SSD) or the "You Only Look Once" (YOLO) network. The hope of this study was to shed light on what is possible for obstacle detection for autonomous tractors.

References

Agricar. (2019). New Holland T7.210 Tractor at Agricar. Retrieved March 13, 2019, from Agricar website: https://www.agricar.co.uk/item/11525/agricar/New-Holland-T7210-Tractor.html

Anirudh Sharma. (2018, July 20). What is an epoch in deep learning? Retrieved March 12, 2019, from https://www.quora.com/What-is-an-epoch-in-deep-learning Arduino Library for Scanse Sweep LiDAR [Arduino]. (2017). Retrieved from https://github.com/scanse/sweep-arduino (Original work published 2017)

AuctionTime Blog. (2018). Case IH Autonomous Concept Tractor Wins GOOD DESIGN Award. Retrieved March 15, 2019, from AuctionTime.com website: https://www.auctiontime.com/blog/fun-stuff/2018/01/case-ih-autonomous-concept-tractor-wins-good-design-award

Barbosa, D., Lopes, A., \& Araújo, R. E. (2016). Sensor fusion algorithm based on Extended Kalman Filter for estimation of ground vehicle dynamics. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 1049-1054. https://doi.org/10.1109/IECON.2016.7793145

Bay, H., Tuytelaars, T., \& Van Gool, L. (2006). SURF: Speeded Up Robust Features. In A. Leonardis, H. Bischof, \& A. Pinz (Eds.), Computer Vision - ECCV 2006 (Vol. 3951, pp. 404-417). https://doi.org/10.1007/11744023_32

Bedord, L. (2018, February 14). Case IH Moves Autonomous Concept Tractor Forward. Successful Farming. Retrieved from
https://www.agriculture.com/news/technology/case-ih-moves-autonomy-projectforward
beefmagazine.com. (2014, October 6). Why You Must Remove Net Wrap On Round Bales Before Feeding To Cattle. Retrieved March 15, 2019, from Beef Magazine website: https://www.beefmagazine.com/beef-cattle-feed/why-you-must-remove-net-wrap-round-bales-feeding-cattle

Bellone, M., Messina, A., \& Reina, G. (2013). A new approach for terrain analysis in mobile robot applications. 2013 IEEE International Conference on Mechatronics (ICM), 225-230. https://doi.org/10.1109/ICMECH.2013.6518540

Bernini, N., Bertozzi, M., Castangia, L., Patander, M., \& Sabbatelli, M. (2014). Real-time obstacle detection using stereo vision for autonomous ground vehicles: A survey. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 873-878. https://doi.org/10.1109/ITSC.2014.6957799

Big Ag. (2018, January 18). Autonomous Tractors- The Future of Farming? Retrieved August 21, 2018, from Big Ag website: http://www.bigag.com/topics/equipment/autonomous-tractors-future-farming/

Case IH. (2016, August 30). CNH Industrial brands reveal concept autonomous tractor development. Retrieved August 21, 2018, from http://www.cnhindustrial.com/enUS/media/press_releases/2016/august/pages/CNH_Industrial_brands_reveal_conc ept_autonomous_tractor_development_Announcement.aspx

Case IH. (2018, February 14). Case IH Defines Categories of Autonomy and Announces Pilot Program. Retrieved October 9, 2018, from
https://cloudfront.cdn.caseih.com:4495/emea/en-za/News/Pages/2018-02-14-Case-IH-Defines-Categories-of-Autonomy-and-Announces-Pilot-Program.aspx Chicot Irrigation. (2019). Valley Center Pivots. Retrieved March 15, 2019, from https://www.chicotirrigation.com/valley-center-pivots

David, L., \& Viola, P. (2001, April). The Viola/Jones Face Detector. Lecture Presentations presented at the University of California-Berkley. Retrieved from https://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf

Denise O’Sullivan. (2019). Awesome! Tractor Loader Transformer. Mega Bale Spear and Bale Fork. Retrieved March 15, 2019, from Pinterest website: https://www.pinterest.com/pin/759489924632642728/

Deshpande, A. (2016, July 20). A Beginner's Guide To Understanding Convolutional Neural Networks. Retrieved October 11, 2018, from https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Doukkali, F. (2017, September 28). Convolutional Neural Networks (CNN, or ConvNets). Retrieved October 15, 2018, from Firdaouss Doukkali website: https://medium.com/@phidaouss/convolutional-neural-networks-cnn-or-convnetsd7c688b0a207

Dubois, C. (2018). What Is Solid State LiDAR and Is It Faster, Cheaper, Better? All About Circuits. Retrieved from https://www.allaboutcircuits.com/news/solid-state-lidar-faster-cheaper-better/

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6), 46-57. https://doi.org/10.1109/2.30720
everythingattachments.com. (2019). Bale Spears for Skid Steers. Retrieved March 15, 2019, from https://www.everythingattachments.com/Skid-Steer-Bale-Spears/109.htm

FAO Director's office. (2009, October). High Level Export Forum- How to Feed the World in 2050. Retrieved August 21, 2018, from http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Glo bal_Agriculture.pdf

Freitas, G., Hamner, B., Bergerman, M., \& Singh, S. (2012). A practical obstacle detection system for autonomous orchard vehicles. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3391-3398.
https://doi.org/10.1109/IROS.2012.6385638
Gao, H. (2017, September 27). Faster R-CNN Explained. Retrieved January 18, 2019, from Hao Gao website: https://medium.com/@ smallfishbigsea/faster-r-cnn-explained-864d4fb7e3f8

Gillespie, K. (2018, February 19). Ultrasonic Sensors: Advantages and Limitations. Retrieved September 27, 2018, from MaxBotix Inc. website: https://www.maxbotix.com/articles/articlesadvantages-limitations-ultrasonic-sensors-htm.htm

Girshick, R., Donahue, J., Darrell, T., \& Malik, J. (2013). Rich feature hierarchies for accurate object detection and semantic segmentation. ArXiv:1311.2524 [Cs]. Retrieved from http://arxiv.org/abs/1311.2524

Global Auction Guide. (2019). Image Viewer. Retrieved March 15, 2019, from https://www.globalauctionguide.com/image-viewer/54692238

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., ... Murphy, K. (2016). Speed/accuracy trade-offs for modern convolutional object detectors. ArXiv:1611.10012 [Cs]. Retrieved from http://arxiv.org/abs/1611.10012

Hui, J. (2018, March 27). Object detection: speed and accuracy comparison (Faster RCNN, R-FCN, SSD, FPN, RetinaNet and.... Retrieved October 2, 2018, from Medium website: https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fen-ssd-and-yolo-5425656ae359

Jadon, S. (2018, March 16). Introduction to Different Activation Functions for Deep Learning. Retrieved November 1, 2018, from Medium website: https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Jo, Youngtae., \& Jung, Inbum. (2014). Analysis of Vehicle Detection with WSN-Based Ultrasonic Sensors. Sensors (Basel, Switzerland), 14(8), 14050-14069. https://doi.org/10.3390/s140814050

John Deere. (2019). Tractors | John Deere US. Retrieved March 13, 2019, from https://www.deere.com/en/tractors/

Keeping It Dutch. (2015). How to move a round bale of hay without a tractor. Retrieved from https://www.youtube.com/watch?v=KSAovFiLO7s

Kirill Eremenko. (2018, August). Deep Learning A-Z ${ }^{T M}$: Convolutional Neural Networks (CNN) - Step 3: Fla.... Education. Retrieved from https://www.slideshare.net/KirillEremenko/deep-learning-az-convolutional-neural-networks-cnn-step-3-flattening?ref=https://www.superdatascience.com/convolutional-neural-networks-cnn-step-3-flattening-presentation/

Kochhar, R. (2014, February 3). 10 projections for the global population in 2050. Retrieved July 3, 2018, from Pew Research Center website: http://www.pewresearch.org/fact-tank/2014/02/03/10-projections-for-the-global-population-in-2050/

Kubota. (2019). Tractor | Products. Retrieved March 13, 2019, from https://www.kubota.com/products/tractor/

Lecun, Y., Bottou, L., Bengio, Y., \& Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791

Lecun, Yann, \& Bengio, Y. (1994). Word-level training of a handwritten word recognizer based on convolutional neural networks. Proceedings of the International Conference on Pattern Recognition, Jerusalem, October 1994, 88-92.

Lenz, P., Ziegler, J., Geiger, A., \& Roser, M. (2011). Sparse scene flow segmentation for moving object detection in urban environments. 2011 IEEE Intelligent Vehicles Symposium (IV), 926-932. https://doi.org/10.1109/IVS.2011.5940558

Lindsay Europe. (2019). 9500P - Center irrigation pivot by LINDSAY. Retrieved March 15, 2019, from http://www.agriexpo.online/prod/lindsay-europe-sa/product-179304-85640.html

Litomisky, K. (2012, Spring). Consumer RGB-D Cameras and their Applications. Retrieved November 29, 2017, from http://alumni.cs.ucr.edu/~klitomis/files/RGBD-intro.pdf

Liu, D.-C. (2017, November 30). A Practical Guide to ReLU. Retrieved October 22, 2018, from TinyMind website: https://medium.com/tinymind/a-practical-guide-to-relu-b83ca804f1f7

Magneon. (2018, May 11). Robotics [Www.reddit.com]. Retrieved August 29, 2018, from What happen to Scanse LIDAR website: https://www.reddit.com/r/robotics/comments/8fjpql/what_happen_to_the_scanse_ lidar/

Mahindra. (2019). 2019 Mahindra 1526 4WD Shuttle. Retrieved March 13, 2019, from https://www.esuperbike.com/Tractors-Mahindra-1526-4WD-Shuttle-2019-Evansville-IN-e6eea2b1-cb2a-4781-aa06-a9d60085c059

Mapanauta. (2018, May 24). Why Solid-State Lidar Is Key to the Future of Self-Driving Cars. Retrieved August 20, 2018, from Medium website:
https://medium.com/@mapanauta/why-solid-state-lidar-is-key-to-the-future-of-self-driving-cars-5e90ea906608

Marybeth Feutz. (2010, October 2). Farm Equipment Friday: Bale spear. Retrieved March 15, 2019, from My Fearless Kitchen website: https://www.myfearlesskitchen.com/farm-equipment-friday-bale-spear/ Mathworks. (2018a). Convolutional Neural Network. Retrieved October 12, 2018, from https://www.mathworks.com/solutions/deep-learning/convolutional-neuralnetwork.html

Mathworks. (2018b). Detect objects using the Viola-Jones algorithm. Retrieved December 28, 2018, from https://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-systemobject.html?s_tid=doc_ta

Mathworks. (2018c). Find edges in intensity image. Retrieved December 29, 2018, from https://www.mathworks.com/help/images/ref/edge.html?s_tid=srchtitle

Mathworks. (2018d). Max pooling layer. Retrieved October 22, 2018, from https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.maxpooling2dl ayer.html

Mathworks. (2018e). Pretrained AlexNet convolutional neural network - MATLAB alexnet. Retrieved October 10, 2018, from https://www.mathworks.com/help/deeplearning/ref/alexnet.html Mathworks. (2019). Path Planning in Environments of Different Complexity. Retrieved March 21, 2019, from https://www.mathworks.com/help/robotics/examples/path-
planning-in-environments-of-difference-
complexity.html;jsessionid=1b8c1fda0df72f1490d9e739d50d
Mesa Irrigation Co in Lamesa, TX. (2019). Mesa Irrigation Co in Lamesa, TX. Retrieved March 15, 2019, from YP.com website:
http://www.yellowpages.com/lamesa-tx/mip/mesa-irrigation-co-
448942?lid=448942\&from=SocSh_Facebook
MiniQuark. (2018, September 7). python - What is the difference between "SAME" and "VALID" padding in tf.nn.max_pool of tensorflow? Retrieved October 23, 2018, from Stack Overflow website:
https://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-pool-of-t

Mokey, N. (2018, March 15). A self-driving car in every driveway? Solid-state lidar is the key. Retrieved August 20, 2018, from Digital Trends website: https://www.digitaltrends.com/cars/solid-state-lidar-for-self-driving-cars/

New Holland. (2017). NEW HOLLAND AGRICULTURE UNVEILS METHANE POWERED CONCEPT TRACTOR AND ITS VISION FOR THE SUSTAINABLE FUTURE OF FARMING. Retrieved March 15, 2019, from https://agriculture.newholland.com/apac/en-nz/about-us/whats-up/news-events/2017/new-holland-unveils-methane-powered-concept newwayirrigation.com. (2019). Pivots. Retrieved March 15, 2019, from New Way Irrigation website: https://newwayirrigation.com/pivots/

Ohio’s Country Journal. (2019). Alternative Uses for Round Bales. Retrieved March 15, 2019, from https://www.ocj.com/2010/09/alternative-uses-for-round-bales/ Oniga, F., \& Nedevschi, S. (2010). Processing Dense Stereo Data Using Elevation Maps: Road Surface, Traffic Isle, and Obstacle Detection. IEEE Transactions on Vehicular Technology, 59(3), 1172-1182. https://doi.org/10.1109/TVT.2009.2039718
pivotsplus.com. (2019). Image: Used Zimmatic Pivot 0148. Retrieved March 15, 2019, from https://www.google.com/imgres?imgurl=http://www.pivotsplus.com/Images/listin gs/pivots/zim148/083.jpg\&imgrefurl=http://www.pivotsplus.com/pivots/used-zimmatic-pivot0148\&h=612\&w=816\&tbnid=2rj2b6IxxjhJ3M\&tbnh=194\&tbnw=259\&usg=K_n m34EtP1JKrxtGHQAjKdgK_mTfo=\&hl=en\&docid=boSJoNxUOwABcM RainFine Irrigation Solution. (2019). CENTER PIVOT FIXED. Retrieved March 15, 2019, from http://www.rainfineaustralia.com/?page_id=8873

Reina, G. (2013, February). Unevenness Point Descriptor for Terrain Analysis in Mobile Robot Applications. Retrieved March 19, 2019, from ResearchGate website: https://www.researchgate.net/publication/260024583_Unevenness_Point_Descrip tor_for_Terrain_Analysis_in_Mobile_Robot_Applications

Ren, S., He, K., Girshick, R., \& Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, \& R. Garnett (Eds.), Advances in Neural Information

Processing Systems 28 (pp. 91-99). Retrieved from
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

Repos, R. P. (2019). RoboPeak RPLIDAR driver for Arduino and Arduino-compatible devices: robopeak/rplidar_arduino [C++]. Retrieved from https://github.com/robopeak/rplidar_arduino (Original work published 2014)

Ritchie Bros. (2019). New and used tractors for sale. Retrieved March 13, 2019, from https://www.rbauction.com/agriculture-tractors?cid=23572767093

Sabale, A. S., \& Vaidya, Y. M. (2016). Accuracy measurement of depth using Kinect sensor. 2016 Conference on Advances in Signal Processing (CASP), 155-159. https://doi.org/10.1109/CASP.2016.7746156

Samieh, A. (2016, March 31). Shape Recognition [File Exchange - MATLAB Central]. Retrieved December 28, 2018, from https://www.mathworks.com/matlabcentral/fileexchange/15491

Satofumi Kamimura. (2013, January 31). URG Helper. Retrieved May 31, 2019, from SourceForge website: https://sourceforge.net/projects/urgwidget/

Senix Corporation. (2018). Ultrasonic Sensors - Object Detection. Retrieved March 18, 2019, from https://senix.com/object-detection/

Sheridan Reality \& Auction Co. (2017). 2016 Zimmatic Center Pivot, 8- tower. Retrieved March 18, 2019, from https://bid.sheridanauctionservice.com/m/lot-details/index/catalog/15357/lot/2085832/Zimmatic-7-tower-Center-Pivot-1-center-section-is-damaged

Southern Plains Photography. (2019). Hay Bale and Storm Photography Print. Retrieved March 15, 2019, from https://www.amazon.com/Hay-Bale-Storm-PhotographyPrint/dp/B01E7VGGRS

Spielmaker, D. M. (2018, March 21). Growing a Nation Historical Timeline. Retrieved June 22, 2018, from https://www.agclassroom.org/gan/timeline/index.htm Stanford. (2018, October 5). CS231n Convolutional Neural Networks for Visual Recognition. Retrieved October 5, 2018, from http://cs231n.github.io/convolutional-networks/\#conv

Sullivan, A. (2014, May 24). Fact Check: Reynolds says one Iowa farmer feeds 155 people worldwide. Retrieved June 22, 2018, from The Gazette website: http://thegazette.com/subject/news/government/fact-check/fact-check-reynolds-says-one-iowa-farmer-feeds-155-people-worldwide-20140524

Tracey Media. (2013). Tractor Making Hay Bales. Retrieved from https://www.youtube.com/watch?v=B2dmW2MWfGw

Ujjwalkarn. (2016, August 11). An Intuitive Explanation of Convolutional Neural Networks. Retrieved October 16, 2018, from the data science blog website: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

V, A. S. (2017, March 30). Understanding Activation Functions in Neural Networks. Retrieved November 2, 2018, from Medium website: https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks9491262884e0

Vishal Agro Industries. (2019). Vishal Agro Industries. Retrieved March 15, 2019, from https://www.vishalagroindustries.com/

Vodar Co., Ltd. (2019). Vodar Center Pivot Irrigation System For Alfalfa Irrigation. Retrieved March 15, 2019, from www.alibaba.com website: //www.alibaba.com/product-detail/VODAR-Center-Pivot-Irrigation-Systemfor_60675652116.html

Vogt, W. (2018, March 7). Defining the levels of automation. Retrieved October 9, 2018, from Wallaces Farmer website: https://www.wallacesfarmer.com/technology/defining-levels-automation

Weisstein, E. W. (2018, October 22). L^2-Norm [Text]. Retrieved October 23, 2018, from http://mathworld.wolfram.com/L2-Norm.html

Wiring Schematic Design. (2019). Valley Center Pivot Irrigation Systems. Retrieved March 15, 2019, from Wiring Schematic Diagram website: http://157.twizer.co

WorldAgNetwork. (2016, February 15). 50-plus Years of Center-pivot Irrigation. Retrieved March 15, 2019, from World Agriculture Network website: https://worldagnetwork.com/50-plus-years-of-center-pivot-irrigation/

Zulkifli, H. (2018, January 21). Understanding Learning Rates and How It Improves Performance in Deep Learning. Retrieved March 13, 2019, from Towards Data Science website: https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

APPENDIX A SCANSE

APPENDIX A. 1 Test Setup

Obstacle	X Coordinate	Y Coordinate	X Coordinate	Y Coordinate	X Coordinate	Y Coordinate	radial distance	radial distance	azimuth
number	columns	rows	feet	feet	cm	cm	feet	cm	degrees
1	3	0	36	0	1097.28	0	36	1097.28	0.00
2	6	9	72	18	2194.56	548.64	74.21590126	2262.10067	14.04
3	5	13	60	26	1828.8	792.48	65.3911309	1993.12167	23.43
4	0	12	0	24	0	731.52	24	731.52	90.00
5	4	10	48	20	-1463.04	609.6	52	1584.96	157.38
6	8	7	96	14	-2926.08	426.72	97.01546269	2957.031303	171.70
7	10	0	120	0	-3657.6	0	120	3657.6	180.00
8	4	5	48	10	-1463.04	-304.8	49.03060269	1494.45277	191.77
9	7	15	84	30	-2560.32	-914.4	89.19641248	2718.706653	199.65
10	0	19	0	38	0	-1158.24	38	1158.24	270.00
11	3	12	36	24	1097.28	-731.52	43.26661531	1318.766435	326.31
12	10	9	120	18	3657.6	-548.64	121.3424905	3698.51911	351.47

APPENDIX A. 2 Data Collection code (Arduino)

/*
 Scanse Sweep Arduino Library Examples

MegaSerialPrinter:

- Example sketch for using the Scanse Sweep with the Arduino Mega 2560. Collects 3 complete scans, and then prints the sensor readings
- Assumes Sweep sensor is physically connected to Serial \#1 (RX1 \& TX1)
- For the sweep's power, ground, RX \& TX pins, follow the connector
pinouts in the sweep user manual located here:
http://scanse.io/downloads
- Be sure to connect RX_device -> TX_arduino \& TX_device -> RX_arduino
- For best results, you should provide dedicated external 5V power to the Sweep rather than using power from the Arduino. Just be sure to connect the ground from the power source and the arduino. If you are just experimenting, you can run the sweep off the 5 V power from the Arduino with the Arduino receiving power over USB. However this has only been tested with an external powered USB hub. It is possible that using a low power USB port (ex: laptop) to power the arduino \& sweep together will result in unexpected behavior.
- Note that running off of USB power is not entirely adequate for the sweep, so the quantity and quality of sensor readings will drop. This is OK for this example, as it is only meant to provide some visual feedback over the serial monitor.
- In your own projects, be sure to use dedicated power instead of the USB.

Created by Scanse LLC, February 21, 2017.
Released into the public domain.

```
*/
```

\#include <Sweep.h>
\#include "SD.h"
\#include <Wire.h>
\#include "RTClib.h"
int record = 39;
int recLED = 52;
// Create a Sweep device using Serial \#1 (RX1 \& TX1)
Sweep device(Serial1);
// Scan packet struct, used to store info for a single reading
ScanPacket reading;
// keeps track of how many scans have been collected
uint8_t scanCount $=0$;
// keeps track of how many samples have been collected
uint16_t sampleCount = 0 ;
// Arrays to store attributes of collected scans
bool syncValues[500]; // 1 -> first reading of new scan, 0 otherwise
float angles[500]; // in degrees (accurate to the millidegree)
uint16_t distances[500]; // in cm
uint8_t signalStrengths[500]; // 0:255, higher is better
// Finite States for the program sequence
const uint8_t STATE_WAIT_FOR_USER_INPUT = 0;

```
const uint8_t STATE_ADJUST_DEVICE_SETTINGS = 1;
const uint8_t STATE_VERIFY_CURRENT_DEVICE_SETTINGS = 2;
const uint8_t STATE_BEGIN_DATA_ACQUISITION = 3;
const uint8_t STATE_GATHER_DATA = 4;
const uint8_t STATE_STOP_DATA_ACQUISITION = 5;
const uint8_t STATE_REPORT_COLLECTED_DATA = 6;
const uint8_t STATE_RESET = 7;
const uint8_t STATE_ERROR = 8;
// Current state in the program sequence
uint8_t currentState;
// String to collect user input over serial
String userInput = "";
// A simple data logger for the Arduino analog pins
#define LOG_INTERVAL 1000 // mills between entries
#define ECHO_TO_SERIAL 1// echo data to serial port
#define WAIT_TO_START 0// Wait for serial input in setup()
// the digital pins that connect to the LEDs
#define redLEDpin 3
#define greenLEDpin 4
RTC_DS1307 RTC; // define the Real Time Clock object
// for the data logging shield, we use digital pin 10 for the SD cs line
const int chipSelect = 10;
// the logging file
File logfile;
void error(char *str)
{
    Serial.print("error: ");
    Serial.println(str);
    // red LED indicates error
    digitalWrite(redLEDpin, HIGH);
    while(1);
}
void setup()
```

```
{
    pinMode(record, INPUT);
    pinMode(recLED, OUTPUT);
    digitalWrite(recLED, LOW);
    // Initialize serial
    Serial1.begin(115200); // sweep device
    // reserve space to accumulate user message
    userInput.reserve(50);
    // initialize counter variables and reset the current state
    reset();
    Serial.begin(9600);
    Serial.println();
#if WAIT_TO_START
    Serial.println("Type any character to start");
    while (!Serial.available());
#endif //WAIT_TO_START
}
// Loop functions as an FSM (finite state machine)
void loop()
{
    switch (currentState)
    {
    case STATE_WAIT_FOR_USER_INPUT:
        if (listenForUserlnput())
        currentState = STATE_ADJUST_DEVICE_SETTINGS;
        break;
    case STATE_ADJUST_DEVICE_SETTINGS:
    currentState = adjustDeviceSettings() ? STATE_VERIFY_CURRENT_DEVICE_SETTINGS :
STATE_ERROR;
    break;
    case STATE_VERIFY_CURRENT_DEVICE_SETTINGS:
    currentState = verifyCurrentDeviceSettings() ? STATE_BEGIN_DATA_ACQUISITION :
STATE_ERROR;
    break;
    case STATE_BEGIN_DATA_ACQUISITION:
    currentState = beginDataCollectionPhase() ? STATE_GATHER_DATA : STATE_ERROR;
    break;
    case STATE_GATHER_DATA:
    gatherSensorReading();
    if (scanCount > 3)
```

```
        currentState = STATE_STOP_DATA_ACQUISITION;
    break;
case STATE_STOP_DATA_ACQUISITION:
    currentState = stopDataCollectionPhase() ? STATE_REPORT_COLLECTED_DATA :
STATE_ERROR;
    break;
    case STATE_REPORT_COLLECTED_DATA:
    printCollectedData();
    currentState = STATE_RESET;
    break;
case STATE_RESET:
    Serial.println("\n\nAttempting to reset and run the program again...");
    reset();
    currentState = STATE_WAIT_FOR_USER_INPUT;
    break;
default: // there was some error
    Serial.println("\n\nAn error occured. Attempting to reset and run program again...");
    reset();
    currentState = STATE_WAIT_FOR_USER_INPUT;
    break;
}
}
// checks if the user has communicated anything over serial
// looks for the user to send "start"
bool listenForUserInput()
{
    while (Serial.available())
    {
    userInput += (char)Serial.read();
}
if (userInput.indexOf("start") != -1)
{
    Serial.println("Registered user start.");
    return true;
}
    return false;
}
// Adjusts the device settings
bool adjustDeviceSettings()
{
// Set the motor speed to 5HZ (codes available from 1->10 HZ)
bool bSuccess = device.setMotorSpeed(MOTOR_SPEED_CODE_5_HZ);
Serial.println(bSuccess ? "\nSuccessfully set motor speed." : "\nFailed to set motor speed");
```

```
/*
// Device will always default to 500HZ scan rate when it is powered on.
// Snippet below is left for reference.
// Set the sample rate to 500HZ (codes available for 500, 750 and 1000 HZ)
bool bSuccess = device.setSampleRate(SAMPLE_RATE_CODE_500_HZ);
Serial.println(bSuccess ? "\nSuccessfully set sample rate." : "\nFailed to set sample rate.");
*/
    return bSuccess;
}
// Querries the current device settings (motor speed and sample rate)
// and prints them to the console
bool verifyCurrentDeviceSettings()
{
    // Read the current motor speed and sample rate
    int32_t currentMotorSpeed = device.getMotorSpeed();
    if (currentMotorSpeed < 0)
    {
        Serial.println("\nFailed to get current motor speed");
        return false;
}
int32_t currentSampleRate = device.getSampleRate();
if (currentSampleRate < 0)
{
    Serial.println("\nFailed to get current sample rate");
    return false;
}
// Report the motor speed and sample rate to the computer terminal
Serial.println("\nMotor Speed Setting: " + String(currentMotorSpeed) + " HZ");
Serial.println("Sample Rate Setting: " + String(currentSampleRate) + " HZ");
    return true;
}
// Initiates the data collection phase (begins scanning)
bool beginDataCollectionPhase()
{
    // Attempt to start scanning
    Serial.println("\nWaiting for motor speed to stabilize and calibration routine to complete...");
    bool bSuccess = device.startScanning();
    Serial.println(bSuccess ? "\nSuccessfully initiated scanning..." : "\nFailed to start scanning.");
    if (bSuccess)
        Serial.println("\nGathering 3 scans...");
    return bSuccess;
}
```

```
// Gathers individual sensor readings until 3 complete scans have been collected
void gatherSensorReading()
{
    // attempt to get the next scan packet
    // Note: getReading() will write values into the "reading" variable
    if (device.getReading(reading))
    {
        // check if this reading was the very first reading of a new 360 degree scan
        if (reading.blsSync)
        scanCount++;
    // don't collect more than 3 scans
    if (scanCount > 3)
        return;
    // store the info for this sample
    syncValues[sampleCount] = reading.blsSync;
    angles[sampleCount] = reading.angle;
    distances[sampleCount] = reading.distance;
    signalStrengths[sampleCount] = reading.signalStrength;
    // increment sample count
    sampleCount++;
}
}
// Terminates the data collection phase (stops scanning)
bool stopDataCollectionPhase()
{
    // Attempt to stop scanning
    bool bSuccess = device.stopScanning();
    Serial.println(bSuccess ? "\nSuccessfully stopped scanning." : "\nFailed to stop scanning.");
    return bSuccess;
}
// Prints the collected data to the console
// (only prints the complete scans, ignores the first partial)
void printCollectedData()
{
    Serial.println("\nPrinting info for the collected scans (NOT REAL-TIME):");
int indexOfFirstSyncReading = 0;
// don't print the trailing readings from the first partial scan
while (!syncValues[indexOfFirstSyncReading])
```

```
{
    indexOfFirstSyncReading++;
}
// print the readings for all the complete scans
for (int i = indexOfFirstSyncReading; i < sampleCount; i++)
{
    if (syncValues[i])
    {
        Serial.printIn("\n----------------------NEW SCAN---------------------------})
    }
    Serial.println("Angle: " + String(angles[i], 3) + ", Distance: " + String(distances[i]) + ", Signal
Strength: " + String(signalStrengths[i]));
    }
}
// Resets the variables and state so the sequence can be repeated
void reset()
{
    scanCount = 0;
    sampleCount = 0;
    // reset the sensor
    device.reset();
    delay(50);
    Serial.flush();
    userlnput = "";
    Serial.println("\n\nWhenever you are ready, type \"start\" to to begin the sequence...");
    currentState = 0;
}
```

 APPENDIX A. 3 Plotting Data code (MATLAB)
    ```
filename = 'SCANSE12.CSV';
ScanseData = xlsread(filename);
wdist = 0; %distance threshold for an obstacle---furthest distance that
it will detect an obstacle
lowangle = 0;% lowest angle that you want to see in FOV
highangle = 360; % highest angle that you want to see in FOV
num = length(ScanseData); %measures the length of the Scanse data
thetad = ScanseData(:,1); %pulls the azimuth data from the Scanse data
r = ScanseData(:,3); %pulls the distance data from the Scanse data
wtheta=[];
wr= [];
```

```
for k=1:num % compares the measured angle to see if ots the FOV it was
given
    if (thetad(k) >= lowangle) && (thetad(k) <= highangle)
        thetad(k) = thetad(k);
    end
    if r(k)> 4000
        r(k) = 0;
    end
end
xdist=r.*cosd(thetad);%produces the x axis distance
ydist=r.*sind(thetad);%produces the y axis distance
thetar = deg2rad(thetad); %converts scanse theta to radians from
degrees
for k =1:num %compares every data point to the warning distance
    if r(k) < wdist && r(k) ~= -1
        wtheta(k) = thetar(k);
        wr(k) = r(k);
    end
end
[pathstr,name,ext] = fileparts (filename); %added these next two lines
for sure. (25 & 26)
figure ('name', name, 'numbertitle', 'off');
polarscatter(thetar, r, 'bo') %plots the Scanse data in a polar graph
hold on
polarscatter(wtheta, wr, 'r*')
hold off
polarscatter(thetar, r, 'bo') %plots the Scanse data in a polar graph
hold on
polarscatter(wtheta, wr, 'r*')
hold off
legend('data points','obstacle')
```


APPENDIX A. 4 Sample Data

| $--------------------N E W ~ S C A N--------------------~$ | | | | | |
| :--- | ---: | :--- | ---: | :--- | ---: |
| Angle | 3 | Distance | 1089 | Signal Strength | 45 |
| Angle | 4 | Distance | 1096 | Signal Strength | 183 |
| Angle | 12 | Distance | 1105 | Signal Strength | 40 |
| Angle | 19 | Distance | 1 | Signal Strength | 20 |
| Angle | 26 | Distance | 1 | Signal Strength | 20 |
| Angle | 34 | Distance | 1 | Signal Strength | 25 |
| Angle | 41 | Distance | 1 | Signal Strength | 20 |

| Angle | 48 | Distance | 1 | Signal Strength | 30 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Angle | 56 | Distance | 1 | Signal Strength | 20 |
| Angle | 63 | Distance | 1 | Signal Strength | 25 |
| Angle | 71 | Distance | 1 | Signal Strength | 20 |
| Angle | 78 | Distance | 1 | Signal Strength | 45 |
| Angle | 86 | Distance | 3247 | Signal Strength | 45 |
| Angle | 90 | Distance | 717 | Signal Strength | 98 |
| Angle | 92 | Distance | 722 | Signal Strength | 191 |
| Angle | 93 | Distance | 724 | Signal Strength | 191 |
| Angle | 95 | Distance | 721 | Signal Strength | 191 |
| Angle | 102 | Distance | 1 | Signal Strength | 35 |
| Angle | 110 | Distance | 1 | Signal Strength | 40 |
| Angle | 117 | Distance | 134 | Signal Strength | 55 |
| Angle | 119 | Distance | 128 | Signal Strength | 199 |
| Angle | 120 | Distance | 127 | Signal Strength | 199 |
| Angle | 122 | Distance | 134 | Signal Strength | 199 |
| Angle | 129 | Distance | 1 | Signal Strength | 35 |
| Angle | 136 | Distance | 1 | Signal Strength | 30 |
| Angle | 144 | Distance | 1 | Signal Strength | 25 |
| Angle | 151 | Distance | 1 | Signal Strength | 15 |
| Angle | 159 | Distance | 1 | Signal Strength | 20 |
| Angle | 166 | Distance | 1 | Signal Strength | 25 |
| Angle | 173 | Distance | 1 | Signal Strength | 20 |
| Angle | 181 | Distance | 1 | Signal Strength | 25 |
| Angle | 188 | Distance | 1 | Signal Strength | 20 |
| Angle | 196 | Distance | 1487 | Signal Strength | 40 |
| Angle | 203 | Distance | 1 | Signal Strength | 30 |
| Angle | 210 | Distance | 1 | Signal Strength | 25 |
| Angle | 218 | Distance | 1 | Signal Strength | 20 |
| Angle | 226 | Distance | 1 | Signal Strength | 25 |
| Angle | 233 | Distance | 1 | Signal Strength | 20 |
| Angle | 240 | Distance | 1 | Signal Strength | 20 |
| Angle | 248 | Distance | 1 | Signal Strength | 20 |
| Angle | 255 | Distance | 1 | Signal Strength | 30 |
| Angle | 263 | Distance | 1 | Signal Strength | 25 |
| Angle | 270 | Distance | 5 | Signal Strength | 25 |
| Angle | 277 | Distance | 1 | Signal Strength | 25 |
| Angle | 285 | Distance | 1 | Signal Strength | 20 |
| Angle | 292 | Distance | 1 | Signal Strength | 25 |
| Angle | 300 | Distance | 1 | Signal Strength | 30 |
| Angle | 307 | Distance | 1 | Signal Strength | 25 |

| Angle | 314 | Distance | 1 | Signal Strength | 35 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Angle | 322 | Distance | 1 | Signal Strength | 20 |
| Angle | 329 | Distance | 1 | Signal Strength | 20 |
| Angle | 337 | Distance | 1 | Signal Strength | 25 |
| Angle | 344 | Distance | 3294 | Signal Strength | 20 |
| Angle | 351 | Distance | 1 | Signal Strength | 20 |
| Angle | 359 | Distance | 1 | Signal Strength | 20 |

| ---------------------NEW SCAN---------------------- | | | | | |
| :--- | ---: | :--- | ---: | :--- | ---: |
| Angle | 4 | Distance | 1091 | Signal Strength | 84 |
| Angle | 11 | Distance | 1087 | Signal Strength | 30 |
| Angle | 19 | Distance | 1 | Signal Strength | 25 |
| Angle | 26 | Distance | 1 | Signal Strength | 25 |
| Angle | 34 | Distance | 1 | Signal Strength | 40 |
| Angle | 41 | Distance | 1 | Signal Strength | 25 |
| Angle | 48 | Distance | 1 | Signal Strength | 40 |
| Angle | 56 | Distance | 579 | Signal Strength | 15 |
| Angle | 63 | Distance | 1 | Signal Strength | 25 |
| Angle | 71 | Distance | 1 | Signal Strength | 35 |
| Angle | 78 | Distance | 1 | Signal Strength | 40 |
| Angle | 86 | Distance | 3244 | Signal Strength | 50 |
| Angle | 90 | Distance | 716 | Signal Strength | 98 |
| Angle | 92 | Distance | 723 | Signal Strength | 191 |
| Angle | 93 | Distance | 721 | Signal Strength | 191 |
| Angle | 101 | Distance | 719 | Signal Strength | 45 |
| Angle | 108 | Distance | 1 | Signal Strength | 20 |
| Angle | 116 | Distance | 143 | Signal Strength | 60 |
| Angle | 117 | Distance | 129 | Signal Strength | 199 |
| Angle | 118 | Distance | 128 | Signal Strength | 199 |
| Angle | 120 | Distance | 126 | Signal Strength | 199 |
| Angle | 121 | Distance | 135 | Signal Strength | 199 |
| Angle | 129 | Distance | 1 | Signal Strength | 25 |
| Angle | 136 | Distance | 1 | Signal Strength | 30 |
| Angle | 144 | Distance | 1 | Signal Strength | 25 |
| Angle | 151 | Distance | 1 | Signal Strength | 35 |
| Angle | 159 | Distance | 1 | Signal Strength | 25 |
| Angle | 166 | Distance | 6681 | Signal Strength | 25 |
| Angle | 173 | Distance | 1 | Signal Strength | 25 |
| Angle | 181 | Distance | 1 | Signal Strength | 35 |
| Angle | 188 | Distance | 1 | Signal Strength | 20 |
| Angle | 195 | Distance | 1493 | Signal Strength | 35 |

| Angle | 203 | Distance | 1 | Signal Strength |
| :--- | :--- | :--- | :--- | :--- |
| Angle | 210 | Distance | 1 | Signal Strength | 45040

APPENDIX A. 5 Sensor Calculations

| | DATA POINTS PER REVOLUTION | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Motor speed (Hz) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| samples (n) | | | | | | | | | | |
| 500 | 500.00 | 250.00 | 166.67 | 125.00 | 100.00 | 83.33 | 71.43 | 62.50 | 55.56 | 50.00 |
| 750 | 750.00 | 375.00 | 250.00 | 187.50 | 150.00 | 125.00 | 107.14 | 93.75 | 83.33 | 75.00 |
| 1000 | 1000.00 | 500.00 | 333.33 | 250.00 | 200.00 | 166.67 | 142.86 | 125.00 | 111.11 | 100.00 |
| AVERAGE DEGREES PER REVOLUTION | | | | | | | | | | |
| 500 | 0.72 | 1.44 | 2.16 | 2.88 | 3.60 | 4.32 | 5.04 | 5.76 | 6.48 | 7.20 |
| 750 | 0.48 | 0.96 | 1.44 | 1.92 | 2.40 | 2.88 | 3.36 | 3.84 | 4.32 | 4.80 |
| 1000 | 0.36 | 0.72 | 1.08 | 1.44 | 1.80 | 2.16 | 2.52 | 2.88 | 3.24 | 3.60 |

| distance to obstacle (cm) | Spinning frequency of the LIDAR (Hz) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| | ARCH LENGTH (CENTIMETERS) BETWEEN TWO DATA POINTS (500 Hz) | | | | | | | | | |
| 500 | 6.28 | 12.57 | 18.85 | 25.13 | 31.42 | 37.70 | 43.98 | 50.27 | 56.55 | 62.83 |

| 125.66 | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1000 | 12.57 | 25.13 | 37.70 | 50.27 | 62.83 | 75.40 | 87.96 | 100.53 | 113.10 | 125 |
| 1500 | 18.85 | 37.70 | 56.55 | 75.40 | 94.25 | 113.10 | 131.95 | 150.80 | 169.65 | 188.50 |
| 2000 | 25.13 | 50.27 | 75.40 | 100.53 | 125.66 | 150.80 | 175.93 | 201.06 | 226.19 | 251.33 |
| 2500 | 31.42 | 62.83 | 94.25 | 125.66 | 157.08 | 188.50 | 219.91 | 251.33 | 282.74 | 314.16 |
| 3000 | 37.70 | 75.40 | 113.10 | 150.80 | 188.50 | 226.19 | 263.89 | 301.59 | 339.29 | 376.99 |
| 3500 | 43.98 | 87.96 | 131.95 | 175.93 | 219.91 | 263.89 | 307.88 | 351.86 | 395.84 | 439.82 |
| 4000 | 50.27 | 100.53 | 150.80 | 201.06 | 251.33 | 301.59 | 351.86 | 402.12 | 452.39 | 502.65 |

ARCH LENGTH (CENTIMETERS) BETWEEN TWO DATA POINTS (750 Hz)

| | 800 | 4.19 | 8.38 | 12.57 | 16.76 | 20.94 | 25.13 | 29.32 | 33.51 | 37.70 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 41.89 | | | | | | | | | | |
| 1000 | 8.38 | 16.76 | 25.13 | 33.51 | 41.89 | 50.27 | 58.64 | 67.02 | 75.40 | 83.78 |
| 1500 | 12.57 | 25.13 | 37.70 | 50.27 | 62.83 | 75.40 | 87.96 | 100.53 | 113.10 | 125.66 |
| 2000 | 16.76 | 33.51 | 50.27 | 67.02 | 83.78 | 100.53 | 117.29 | 134.04 | 150.80 | 167.55 |
| 2500 | 20.94 | 41.89 | 62.83 | 83.78 | 104.72 | 125.66 | 146.61 | 167.55 | 188.50 | 209.44 |
| 3000 | 25.13 | 50.27 | 75.40 | 100.53 | 125.66 | 150.80 | 175.93 | 201.06 | 226.19 | 251.33 |
| 3500 | 29.32 | 58.64 | 87.96 | 117.29 | 146.61 | 175.93 | 205.25 | 234.57 | 263.89 | 293.22 |
| 4000 | 33.51 | 67.02 | 100.53 | 134.04 | 167.55 | 201.06 | 234.57 | 268.08 | 301.59 | 335.10 |

ARCH LENGTH (CENTIMETERS) BETWEEN TWO DATA POINTS (1000 Hz)

| 500 | 3.14 | 6.28 | 9.42 | 12.57 | 15.71 | 18.85 | 21.99 | 25.13 | 28.27 | 31.42 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1000 | 6.28 | 12.57 | 18.85 | 25.13 | 31.42 | 37.70 | 43.98 | 50.27 | 56.55 | 62.83 |
| 1500 | 9.42 | 18.85 | 28.27 | 37.70 | 47.12 | 56.55 | 65.97 | 75.40 | 84.82 | 94.25 |
| 2000 | 12.57 | 25.13 | 37.70 | 50.27 | 62.83 | 75.40 | 87.96 | 100.53 | 113.10 | 125.66 |
| 2500 | 15.71 | 31.42 | 47.12 | 62.83 | 78.54 | 94.25 | 109.96 | 125.66 | 141.37 | 157.08 |
| 3000 | 18.85 | 37.70 | 56.55 | 75.40 | 94.25 | 113.10 | 131.95 | 150.80 | 169.65 | 188.50 |
| 3500 | 21.99 | 43.98 | 65.97 | 87.96 | 109.96 | 131.95 | 153.94 | 175.93 | 197.92 | 219.91 |
| 4000 | 25.13 | 50.27 | 75.40 | 100.53 | 125.66 | 150.80 | 175.93 | 201.06 | 226.19 | 251.33 |

Spinning frequency of the LIDAR (Hz)

| distance to obstacle (cm) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | LINEAR DISTANCE (CENTIMETERS) BETWEEN TWO DATA POINTS (500 Hz)

| 500 | 6.28 | 12.57 | 18.85 | 25.13 | 31.41 | 37.69 | 43.97 | 50.24 | 56.52 | 62.79 | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| 1000 | 12.57 | 25.13 | 37.70 | 50.26 | 62.82 | 75.38 | 87.94 | 100.49 | 113.04 | 125.58 | | | |
| 1500 | 18.85 | 37.70 | 56.55 | 75.39 | 94.23 | 113.07 | 131.90 | 150.73 | 169.56 | 188.37 | | | |
| 2000 | 25.13 | 50.26 | 75.39 | 100.52 | 125.64 | 150.76 | 175.87 | 200.98 | 226.07 | 251.16 | | | |
| 2500 | 31.42 | 62.83 | 94.24 | 125.65 | 157.05 | 188.45 | 219.84 | 251.22 | 282.59 | 313.95 | | | |
| 3000 | 37.70 | 75.40 | 113.09 | 150.78 | 188.46 | 226.14 | 263.81 | 301.47 | 339.11 | 376.74 | | | |
| 3500 | 43.98 | 87.96 | 131.94 | 175.91 | 219.88 | 263.83 | 307.78 | 351.71 | 395.63 | 439.53 | | | |
| 4000 | 50.27 | 100.53 | 150.79 | 201.04 | 251.29 | 301.52 | 351.74 | 401.95 | 452.15 | 502.32 | | | |
| | | | | | | | | | | | | | |
| 500 | 4.19 | 8.38 | 12.57 | 16.75 | 20.94 | 25.13 | 29.32 | 33.50 | 37.69 | 41.88 | | | |
| 1000 | 8.38 | 16.75 | 25.13 | 33.51 | 41.88 | 50.26 | 58.63 | 67.01 | 75.38 | 83.75 | | | |

| 1500 | 12.57 | 25.13 | 37.70 | 50.26 | 62.83 | 75.39 | 87.95 | 100.51 | 113.07 | 125.63 |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2000 | 16.76 | 33.51 | 50.26 | 67.02 | 83.77 | 100.52 | 117.27 | 134.02 | 150.76 | 167.50 |
| 2500 | 20.94 | 41.89 | 62.83 | 83.77 | 104.71 | 125.65 | 146.59 | 167.52 | 188.45 | 209.38 |
| 3000 | 25.13 | 50.26 | 75.40 | 100.53 | 125.65 | 150.78 | 175.90 | 201.02 | 226.14 | 251.25 |
| 3500 | 29.32 | 58.64 | 87.96 | 117.28 | 146.60 | 175.91 | 205.22 | 234.53 | 263.83 | 293.13 |
| 4000 | 33.51 | 67.02 | 100.53 | 134.04 | 167.54 | 201.04 | 234.54 | 268.03 | 301.52 | 335.01 |

| 500 | 3.14 | 6.28 | 9.42 | 12.57 | 15.71 | 18.85 | 21.99 | 25.13 | 28.27 | 31.41 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1000 | 6.28 | 12.57 | 18.85 | 25.13 | 31.41 | 37.70 | 43.98 | 50.26 | 56.54 | 62.82 |
| 1500 | 9.42 | 18.85 | 28.27 | 37.70 | 47.12 | 56.55 | 65.97 | 75.39 | 84.81 | 94.23 |
| 2000 | 12.57 | 25.13 | 37.70 | 50.26 | 62.83 | 75.39 | 87.96 | 100.52 | 113.08 | 125.64 |
| 2500 | 15.71 | 31.42 | 47.12 | 62.83 | 78.54 | 94.24 | 109.95 | 125.65 | 141.35 | 157.05 |
| 3000 | 18.85 | 37.70 | 56.55 | 75.40 | 94.24 | 113.09 | 131.94 | 150.78 | 169.62 | 188.46 |
| 3500 | 21.99 | 43.98 | 65.97 | 87.96 | 109.95 | 131.94 | 153.93 | 175.91 | 197.89 | 219.88 |
| 4000 | 25.13 | 50.27 | 75.40 | 100.53 | 125.66 | 150.79 | 175.92 | 201.04 | 226.16 | 251.29 |

AVERAGE DATA POINTS FOR OBSTACLES (RPLIDAR)

DATA POINTS PER REVOLUTION

| Motor speed (Hz) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| samples (n) | | | | | | | | | | |
| 1000 | 1000.00 | 500.00 | 333.33 | 250.00 | 200.00 | 166.67 | 142.86 | 125.00 | 111.11 | 100.00 |
| 750 | 750.00 | 375.00 | 250.00 | 187.50 | 150.00 | 125.00 | 107.14 | 93.75 | 83.33 | 75.00 |
| 500 | 500.00 | 250.00 | 166.67 | 125.00 | 100.00 | 83.33 | 71.43 | 62.50 | 55.56 | 50.00 |
| | CM TO FEET | | 30.48 | | | | | | | |
| | AVERAGE NUMBER OF DATA POINTS PER FOOT | | | | | | | | | 1 |
| distance to obstacle (cm) | Spinning frequency of the LIDAR (500 Hz) | | | | | | | | | |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 500 | 4.8511 | 2.4256 | 1.6171 | 1.2129 | 0.9704 | 0.8087 | 0.6932 | 0.6066 | 0.5393 | 0.4854 |
| 1000 | 2.4255 | 1.2128 | 0.8086 | 0.6064 | 0.4852 | 0.4043 | 0.3466 | 0.3033 | 0.2696 | 0.2427 |
| 1500 | 1.617 | 0.8085 | 0.539 | 0.4043 | 0.3235 | 0.2696 | 0.2311 | 0.2022 | 0.1798 | 0.1618 |
| 2000 | 1.2128 | 0.6064 | 0.4043 | 0.3032 | 0.2426 | 0.2022 | 0.1733 | 0.1517 | 0.1348 | 0.1214 |
| 2500 | 0.9702 | 0.4851 | 0.3234 | 0.2426 | 0.1941 | 0.1617 | 0.1386 | 0.1213 | 0.1079 | 0.0971 |
| 3000 | 0.8085 | 0.4043 | 0.2695 | 0.2021 | 0.1617 | 0.1348 | 0.1155 | 0.1011 | 0.0899 | 0.0809 |
| 3500 | 0.693 | 0.3465 | 0.231 | 0.1733 | 0.1386 | 0.1155 | 0.099 | 0.0867 | 0.077 | 0.0693 |
| 4000 | 0.6064 | 0.3032 | 0.2021 | 0.1516 | 0.1213 | 0.1011 | 0.0867 | 0.0758 | 0.0674 | 0.0607 |
| | | | | pinning fr | quency | the LIDAR | 750Hz) | | | |
| 500 | 7.2766 | 3.6383 | 2.4256 | 1.8192 | 1.4554 | 1.2129 | 1.0397 | 0.9097 | 0.8087 | 0.7279 |
| 1000 | 3.6383 | 1.8192 | 1.2128 | 0.9096 | 0.7277 | 0.6064 | 0.5198 | 0.4549 | 0.4043 | 0.3639 |
| 1500 | 2.4255 | 1.2128 | 0.8085 | 0.6064 | 0.4851 | 0.4043 | 0.3466 | 0.3032 | 0.2696 | 0.2426 |

| 2000 | 1.8191 | 0.9096 | 0.6064 | 0.4548 | 0.3639 | 0.3032 | 0.2599 | 0.2274 | 0.2022 | 0.182 | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2500 | 1.4553 | 0.7277 | 0.4851 | 0.3638 | 0.2911 | 0.2426 | 0.2079 | 0.1819 | 0.1617 | 0.1456 | |
| 3000 | 1.2128 | 0.6064 | 0.4043 | 0.3032 | 0.2426 | 0.2021 | 0.1733 | 0.1516 | 0.1348 | 0.1213 | |
| 3500 | 1.0395 | 0.5198 | 0.3465 | 0.2599 | 0.2079 | 0.1733 | 0.1485 | 0.13 | 0.1155 | 0.104 | |
| 4000 | 0.9096 | 0.4548 | 0.3032 | 0.2274 | 0.1819 | 0.1516 | 0.13 | 0.1137 | 0.1011 | 0.091 | |
| | | | Spinning frequency of the LIDAR (1000Hz) | | | | | | | | |
| 500 | 9.7021 | 4.8511 | 3.2341 | 2.4256 | 1.9405 | 1.6171 | 1.3861 | 1.2129 | 1.0782 | 0.9704 | |
| 1000 | 4.8511 | 2.4255 | 1.617 | 1.2128 | 0.9702 | 0.8086 | 0.6931 | 0.6064 | 0.5391 | 0.4852 | |
| 1500 | 3.234 | 1.617 | 1.078 | 0.8085 | 0.6468 | 0.539 | 0.462 | 0.4043 | 0.3594 | 0.3235 | |
| 2000 | 2.4255 | 1.2128 | 0.8085 | 0.6064 | 0.4851 | 0.4043 | 0.3465 | 0.3032 | 0.2695 | 0.2426 | |
| 2500 | 1.9404 | 0.9702 | 0.6468 | 0.4851 | 0.3881 | 0.3234 | 0.2772 | 0.2426 | 0.2156 | 0.1941 | |
| 3000 | 1.617 | 0.8085 | 0.539 | 0.4043 | 0.3234 | 0.2695 | 0.231 | 0.2021 | 0.1797 | 0.1617 | |
| 3500 | 1.386 | 0.693 | 0.462 | 0.3465 | 0.2772 | 0.231 | 0.198 | 0.1733 | 0.154 | 0.1386 | |
| 4000 | 1.2128 | 0.6064 | 0.4043 | 0.3032 | 0.2426 | 0.2021 | 0.1733 | 0.1516 | 0.1348 | 0.1213 | |

APPENDIX A. 6 Sample Data Plot

APPENDIX B RPLIDAR

RPLIDAR

| Motor | DATA POINTS PER REVOLUTION | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| speed (Hz) | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| samples (n) | | | | | | | | | | | |
| 4000 | 800.00 | 666.67 | 571.43 | 500.00 | 444.44 | 400.00 | 363.64 | 333.33 | 307.69 | 285.71 | 266.67 |
| AVERAGE DEGREES PER REVOLUTION | | | | | | | | | | | |
| 4000 | 0.45 | 0.54 | 0.63 | 0.72 | 0.81 | 0.90 | 0.99 | 1.08 | 1.17 | 1.26 | 1.35 |
| Spinning frequency of the LIDAR (Hz) | | | | | | | | | | | |
| distance to obstacle | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| (mm) | ARCH LENGTH (MILLIMETERS) BETWEEN TWO DATA POINTS (4000 Hz) | | | | | | | | | | |
| 1000 | 7.85 | 9.42 | 11.00 | 12.57 | 14.14 | 15.71 | 17.28 | 18.85 | 20.42 | 21.99 | 23.56 |
| 2000 | 15.71 | 18.85 | 21.99 | 25.13 | 28.27 | 31.42 | 34.56 | 37.70 | 40.84 | 43.98 | 47.12 |
| 3000 | 23.56 | 28.27 | 32.99 | 37.70 | 42.41 | 47.12 | 51.84 | 56.55 | 61.26 | 65.97 | 70.69 |
| 4000 | 31.42 | 37.70 | 43.98 | 50.27 | 56.55 | 62.83 | 69.12 | 75.40 | 81.68 | 87.96 | 94.25 |
| 5000 | 39.27 | 47.12 | 54.98 | 62.83 | 70.69 | 78.54 | 86.39 | 94.25 | 102.10 | 109.96 | 117.81 |
| 6000 | 47.12 | 56.55 | 65.97 | 75.40 | 84.82 | 94.25 | 103.67 | 113.10 | 122.52 | 131.95 | 141.37 |
| 7000 | 54.98 | 65.97 | 76.97 | 87.96 | 98.96 | 109.96 | 120.95 | 131.95 | 142.94 | 153.94 | 164.93 |
| 8000 | 62.83 | 75.40 | 87.96 | 100.53 | 113.10 | 125.66 | 138.23 | 150.80 | 163.36 | 175.93 | 188.50 |
| Spinning frequency of the LIDAR (Hz) | | | | | | | | | | | |

| | Spinning frequency of the LIDAR (Hz) | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| distance to obstacle (cm) | 1 | 2 | \% 3 | (4 | 5 | HE TWO | FFEREN | METHO | $\begin{array}{r} 9 \\ S(4000 \text { r } \end{array}$ | 10 | 11 |
| 1000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0003 | 0.0004 | 0.0004 | 0.0005 |
| 2000 | 0.0000 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0003 | 0.0004 | 0.0006 | 0.0007 | 0.0009 | 0.0011 |
| 3000 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0004 | 0.0005 | 0.0006 | 0.0008 | 0.0011 | 0.0013 | 0.0016 |
| 4000 | 0.0001 | 0.0001 | 0.0002 | 0.0003 | 0.0005 | 0.0006 | 0.0009 | 0.0011 | 0.0014 | 0.0018 | 0.0022 |
| 5000 | 0.0001 | 0.0002 | 0.0003 | 0.0004 | 0.0006 | 0.0008 | 0.0011 | 0.0014 | 0.0018 | 0.0022 | 0.0027 |
| 6000 | 0.0001 | 0.0002 | 0.0003 | 0.0005 | 0.0007 | 0.0010 | 0.0013 | 0.0017 | 0.0021 | 0.0027 | 0.0033 |
| 7000 | 0.0001 | 0.0002 | 0.0004 | 0.0006 | 0.0008 | 0.0011 | 0.0015 | 0.0020 | 0.0025 | 0.0031 | 0.0038 |
| 8000 | 0.0002 | 0.0003 | 0.0004 | 0.0007 | 0.0009 | 0.0013 | 0.0017 | 0.0022 | 0.0028 | 0.0035 | 0.0044 |

AVERAGE DATA POINTS FOR OBSTACLES (RPLIDAR)

| Motor speed (Hz) | DATA POINTS PER REVOLUTION | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| samples (n) | | | | | | | | | | | |
| 4000 | 800.00 | 666.67 | 571.43 | 500.00 | 444.44 | 400.00 | 363.64 | 333.33 | 307.69 | 285.71 | 266.67 |
| | MM TO FEET | | 304.8 | | | | | | | | |
| | AVERAGE NUMBER OF DATA POINTS PER FOOT | | | | | | | | | | 1 |
| distance to obstacle (mm) | Spinning frequency of the LIDAR (Hz) | | | | | | | | | | |
| | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 1000 | 38.808 | 32.34 | 27.72 | 24.255 | 21.56 | 19.404 | 17.64 | 16.17 | 14.927 | 13.86 | 12.936 |
| 2000 | 19.404 | 16.17 | 13.86 | 12.128 | 10.78 | 9.7022 | 8.8202 | 8.0852 | 7.4633 | 6.9302 | 6.4682 |
| 3000 | 12.936 | 10.78 | 9.2401 | 8.0851 | 7.1868 | 6.4681 | 5.8801 | 5.3901 | 4.9755 | 4.6201 | 4.3121 |
| 4000 | 9.7021 | 8.0851 | 6.9301 | 6.0638 | 5.3901 | 4.8511 | 4.4101 | 4.0426 | 3.7316 | 3.4651 | 3.2341 |
| 5000 | 7.7617 | 6.4681 | 5.5441 | 4.8511 | 4.3121 | 3.8809 | 3.5281 | 3.2341 | 2.9853 | 2.7721 | 2.5873 |
| 6000 | 6.4681 | 5.3901 | 4.6201 | 4.0426 | 3.5934 | 3.2341 | 2.9401 | 2.6951 | 2.4878 | 2.3101 | 2.1561 |
| 7000 | 5.5441 | 4.6201 | 3.9601 | 3.4651 | 3.0801 | 2.7721 | 2.5201 | 2.3101 | 2.1324 | 1.9801 | 1.8481 |
| 8000 | 4.8511 | 4.0426 | 3.465 | 3.0319 | 2.695 | 2.4255 | 2.205 | 2.0213 | 1.8658 | 1.7326 | 1.6171 |

APPENDIX B. 1 Test Setup

APPENDIX B.1.1 Occupancy Map Setup

| Obstacle | X Coordinate | Y Coordinate | X Coordinate | Y Coordinate | X Coordinate | Y Coordinate | radial distance | radial distance | azimuth | Measure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| number | columns | rows | feet | feet | cm | cm | feet | cm | degrees | d |
| 12 | 8 | 0 | 24 | 0 | 731.52 | 0 | 24 | 731.52 | 0.00 | 19.4 |
| 11 | 4 | 2 | 12 | 3 | 365.76 | 91.44 | 12.36931688 | 377.0167784 | 14.04 | 14.6 |
| 10 | 3 | 16 | 9 | 24 | 274.32 | 731.52 | 25.63201124 | 781.2637025 | 69.44 | 25.4 |
| 9 | 0 | 17 | 0 | 25.5 | 0 | 777.24 | 25.5 | 777.24 | 90.00 | 17.6 |
| 8 | 3 | 10 | 9 | 15 | -274.32 | 457.2 | 17.49285568 | 533.1822413 | 120.96 | 26.1 |
| 7 | 5 | 4 | 15 | 6 | -457.2 | 182.88 | 16.15549442 | 492.41947 | 158.20 | 6 |
| 6 | 2 | 0 | 6 | 0 | -182.88 | 0 | 6 | 182.88 | 180.00 | 16.1 |
| 5 | 8.25 | 5 | 24.75 | 7.5 | -754.38 | -228.6 | 25.86140947 | 788.2557608 | 196.86 | 17.3 |
| 4 | 3 | 10 | 9 | 15 | -274.32 | -457.2 | 17.49285568 | 533.1822413 | 239.04 | 25.6 |
| 3 | 0 | 17 | 0 | 25.5 | 0 | -777.24 | 25.5 | 777.24 | 270.00 | 26.1 |
| 2 | 3 | 8 | 9 | 12 | 274.32 | -365.76 | 15 | 457.2 | 306.87 | 12.4 |
| 1 | 6 | 5 | 18 | 7.5 | 548.64 | -228.6 | 19.5 | 594.36 | 337.38 | 24 |

APPENDIX B.1.2 Straight Line Setup

| Obstacle | X Coordinate | Y Coordinate | X Coordinate | Y Coordinate | X Coordinate | Y Coordinate | radial distance | radial distance | azimuth | Measure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| number | columns | rows | feet | feet | cm | cm | feet | cm | degrees | d |
| 12 | 11 | 17.3 | 33 | 25.95 | 1005.84 | 790.956 | 41.98097784 | 1279.580204 | 38.18 | 25.87 |
| 11 | 10 | 17 | 30 | 25.5 | 914.4 | 777.24 | 39.37321425 | 1200.09557 | 40.36 | 25.83 |
| 10 | 9 | 17.12 | 27 | 25.68 | 822.96 | 782.7264 | 37.26207724 | 1135.748114 | 43.56 | 26.22 |
| 9 | 8 | 17.16 | 24 | 25.74 | 731.52 | 784.5552 | 35.19300499 | 1072.682792 | 47.00 | 27.55 |
| 8 | 7 | 17.23 | 21 | 25.845 | -640.08 | 787.7556 | 33.30111147 | 1015.017878 | 129.10 | 28.97 |
| 7 | 6 | 17.3 | 18 | 25.95 | -548.64 | 790.956 | 31.58167982 | 962.6096008 | 124.75 | 29.9 |
| 6 | 5 | 17.17 | 15 | 25.755 | -457.2 | 785.0124 | 29.80469804 | 908.4471961 | 120.22 | 31.65 |
| 5 | 4 | 17.56 | 12 | 26.34 | -365.76 | 802.8432 | 28.944699 | 882.2344254 | 114.49 | 33.45 |
| 4 | 3 | 17.32 | 9 | 25.98 | -274.32 | 791.8704 | 27.49473404 | 838.0394936 | 109.11 | 35.18 |
| 3 | 2 | 17 | 6 | 25.5 | 182.88 | 777.24 | 26.19637379 | 798.4654733 | 76.76 | 37.18 |
| 2 | 1 | 17.08 | 3 | 25.62 | 91.44 | 780.8976 | 25.79504604 | 786.2330032 | 83.32 | 39.34 |
| 1 | 0 | 17.25 | 0 | 25.875 | 0 | 788.67 | 25.875 | 788.67 | 90.00 | 41.92 |

APPENDIX B.1.3 Final RPLIDAR Test Setup

APPENDIX B. 2 Data Collection code (Arduino)

```
/*
*
* USAGE:
* -------------------------------
* 1. Download this sketch code to your Arduino board
* 2. Connect the RPLIDAR's serial port (RX/TX/GND) to your Arduino Com port 2
* Yellow ----------------> pin 17
* Green ---------------> pin 16
* GND ----------------> GND
* 3. Connect the RPLIDAR's motor ctrl pin to the Arduino board pin 3
* Blue -----------------> Pin 3
*
* 4. Connect Leds to pins 24, 26,28
* 5. connect Button to pin 22
* 6. Plug in SD card Shield
*/
/*
* Copyright (c) 2014, RoboPeak
* All rights reserved.
* RoboPeak.com
*/
// This sketch code is based on the RPLIDAR driver library provided by RoboPeak
#include <RPLidar.h>
#include <SD.h>
// create an driver instance
RPLidar RPlidar;
#define RPLIDAR_MOTOR 3 // The PWM pin for control the speed of RPLIDAR's motor.
    // This pin should connected with the RPLIDAR's MOTOCTRL signal
// LED and button pin convigurations
const byte red_LED = 24;
const byte clear_LED = 28;
const byte button = 22;
uint16_t sampleCount = 0; // keeps track of how many samples have been collected
bool firstRun = true;
//Timing variables
unsigned long sampleTime \(=10000\); // time to sample in milliseconds
```

unsigned long startTime;

```
// Arrays to store attributes of collected scans
#define numberOfSamples 600 // = (sample rate / motor speed) * number pf scans
float distances[numberOfSamples]; // in mm
float angles[numberOfSamples]; // in degrees
bool startBit[numberOfSamples]; // 1 -> first reading of new scan, 0 otherwise (syncValues)
uint8_t quality[numberOfSamples]; // 0:255, higher is better (signal Strength)
// Finite States for the program sequence
const byte STATE_WAIT_FOR_USER_INPUT = 0;
const byte STATE_BEGIN_DATA_ACQUISITION = 1;
const byte STATE_GATHER_DATA = 2;
const byte STATE_STOP_DATA_ACQUISITION = 3;
const byte STATE_REPORT_COLLECTED_DATA = 4;
const byte STATE_RESET = 5;
const byte STATE_ERROR = 6;
// Current state in the program sequence
byte currentState;
// String to collect user input over serial
String userInput = "";
//SD stuff
File logfile;
const byte chipSelect = 10;
void setup() {
    // bind the RPLIDAR driver to the arduino hardware serial
    RPlidar.begin(Serial2);
    Serial.begin(250000);
    // set pin modes
    pinMode(RPLIDAR_MOTOR, OUTPUT);
    //----------- SD setup --------------------
// initialize the SD card
    // make sure that the default chip select pin is set to
    // output, even if you don't use it:
    pinMode(chipSelect, OUTPUT);
    Serial.print("Initializing SD card.... ");
```

```
// see if the card is present and can be initialized:
if (!SD.begin(chipSelect)) {
    Serial.println("Card failed, or not present");
    // don't do anything more:
}
else{
    Serial.println("Card initialized");
    // don't do anything more:
}
// initialize counter variables and reset the current state
reset();
}
void loop() {
switch (currentState)
{
case STATE_WAIT_FOR_USER_INPUT:
    while (Serial.available()){
        userInput += (char)Serial.read();
    }
    // create a new file with an original name (include date first)
    char filename[] = "529RPLOO.CSV";
    if (userInput.indexOf("start") != -1){
        Serial.printIn(F("Registered user start."));
            Serial.print("Attempting to create logFile... ");
            for (uint8_t i= 0; i < 100; i++) {
            filename[6] = i/10 + '0';
            filename[7] = i%10 + '0';
            if (! SD.exists(filename)) {
            // only open a new file if it doesn't exist
            logfile = SD.open(filename, FILE_WRITE);
            break; // leave the loop!
        }
        }
        if (! logfile) {
            Serial.println("Couldn't initialize logfile");
            // don't do anything more:
        }
        else{
            Serial.println("Scucessfully created " + String(filename));
        // don't do anything more:
        }
        currentState = STATE_BEGIN_DATA_ACQUISITION;
```

```
        startTime = millis();
    }
    if (digitalRead(button) == HIGH){
        Serial.println(F("Registered user start."));
    // blink LED to confirm
    digitalWrite(red_LED, HIGH);
    Serial.print("Attempting to create logFile... ");
    for (uint8_t i= 0; i < 100; i++) {
        filename[6] = i/10 + '0';
        filename[7] = i%10 + '0';
        if (! SD.exists(filename)) {
            // only open a new file if it doesn't exist
            logfile = SD.open(filename, FILE_WRITE);
            break; // leave the loop!
        }
    }
    if (! logfile) {
        Serial.println("Couldn't initialize logfile");
        // don't do anything more:
    }
    else{
            Serial.println("Successfully created " + String(filename));
        // don't do anything more:
        }
        currentState = STATE_BEGIN_DATA_ACQUISITION;
        startTime = millis();
}
    break;
case STATE_BEGIN_DATA_ACQUISITION:
    currentState = beginDataCollectionPhase() ? STATE_GATHER_DATA : STATE_ERROR;
    break;
case STATE_GATHER_DATA:
    gatherSensorReading();
    if (sampleCount >= numberOfSamples)
        currentState = STATE_STOP_DATA_ACQUISITION;
    break;
case STATE_STOP_DATA_ACQUISITION:
    currentState = stopDataCollectionPhase() ? STATE_REPORT_COLLECTED_DATA :
STATE_ERROR;
```

```
    break;
case STATE_REPORT_COLLECTED_DATA:
    printCollectedData();
    if(startTime <= millis()- sampleTime){
        currentState = STATE_RESET;
    }
    else{
    // Serial.println(F("\nGathering more data\n"));
        sampleCount = 0;
        currentState = STATE_BEGIN_DATA_ACQUISITION;
    }
    break;
case STATE_RESET:
    Serial.println(F("\n\nAttempting to reset and run the program again..."));
    reset();
    currentState = STATE_WAIT_FOR_USER_INPUT;
    break;
default: // there was some error
    Serial.println(F("\n\nAn error occured. Attempting to reset and run program again..."));
    reset();
    currentState = STATE_WAIT_FOR_USER_INPUT;
    break;
}
}
// checks if the user has communicated anything over serial
// looks for the user to send "start"
bool listenForUserInput(){
    while (Serial.available())
    {
        userInput += (char)Serial.read();
    }
    if (userInput.indexOf("start") != -1){
        Serial.println(F("Registered user start."));
        return true;
}
    return false;
}
```

```
// Initiates the data collection phase (begins scanning)
bool beginDataCollectionPhase(){
```

```
if(firstRun)
```

if(firstRun)
Serial.println(F("Attempting to start the motor."));
Serial.println(F("Attempting to start the motor."));
// start motor rotating at max allowed speed
// start motor rotating at max allowed speed
analogWrite(RPLIDAR_MOTOR, 255);
analogWrite(RPLIDAR_MOTOR, 255);
if(firstRun == true){
if(firstRun == true){
delay(10000);
delay(10000);
firstRun = false;
firstRun = false;
Serial.println(F("firstRun = false."));
Serial.println(F("firstRun = false."));
}
}
else {
else {
Serial.println(F("Failed to start motor."));
Serial.println(F("Failed to start motor."));
}
}
delay(50);
delay(50);
// Attempt to start scanning
// Attempt to start scanning
// try to detect RPLIDAR...
// try to detect RPLIDAR...
rplidar_response_device_info_t info;
rplidar_response_device_info_t info;
if (IS_OK(RPlidar.getDevicelnfo(info, 100))) {
if (IS_OK(RPlidar.getDevicelnfo(info, 100))) {
// detected...
// detected...
if(firstRun)
if(firstRun)
Serial.println(F("Motor successfully started.\n\n Starting data collection.\n"));
Serial.println(F("Motor successfully started.\n\n Starting data collection.\n"));
RPlidar.startScan();
RPlidar.startScan();
return true;
return true;
}
}
else {
else {
analogWrite(RPLIDAR_MOTOR, 0); //stop the rplidar motor
analogWrite(RPLIDAR_MOTOR, 0); //stop the rplidar motor
// try to detect RPLIDAR...
// try to detect RPLIDAR...
rplidar_response_device_info_t info;
rplidar_response_device_info_t info;
if (IS_OK(RPlidar.getDeviceInfo(info, 100))) {
if (IS_OK(RPlidar.getDeviceInfo(info, 100))) {
// detected...
// detected...
RPlidar.startScan();
RPlidar.startScan();
// start motor rotating at max speed
// start motor rotating at max speed
analogWrite(RPLIDAR_MOTOR, 255);
analogWrite(RPLIDAR_MOTOR, 255);
delay(1000);
delay(1000);
}
}
}

```
}
```

// Gathers individual sensor readings until 3 complete scans have been collected void gatherSensorReading()\{
digitalWrite(red_LED, LOW);
if (IS_OK(RPlidar.waitPoint())) \{
//if(RPlidar.getCurrentPoint().quality != 0)\{
if($0==0$) \{
// store the info for this sample
startBit[sampleCount] = RPlidar.getCurrentPoint().startBit; //whether this point is belong to a
new scan
angles[sampleCount] = RPlidar.getCurrentPoint().angle; //anglue value in degree distances[sampleCount] = RPlidar.getCurrentPoint().distance; //distance value in mm unit quality[sampleCount] = RPlidar.getCurrentPoint().quality; //quality of the current measurement

```
// Serial.println(sampleCount);
```

 //Serial.println("A:" + String(angles[sampleCount]) + ":D:" + String(distances[sampleCount]));
 //Uncomment to see data real time
// increment sample count
if(sampleCount < numberOfSamples)\{
sampleCount++;
\}
\}
\}
\}
// Terminates the data collection phase (stops scanning)
bool stopDataCollectionPhase()\{
// Attempt to stop scanning
bool bSuccess = true;
RPlidar.stop();
if(firstRun)
Serial.printIn(bSuccess ? F("\nSuccessfully stopped scanning.") : F("\nFailed to stop
scanning."));
digitalWrite(clear_LED, HIGH);
delay(250);
digitalWrite(clear_LED, LOW);
return bSuccess;
\}

```
// Prints the collected data to the console
// (only prints the complete scans, ignores the first partial)
void printCollectedData(){
    Serial.println(F("\nPrinting info for the collected scans (NOT REAL-TIME):"));
    digitalWrite(red_LED, HIGH);
    int indexOfFirstSyncReading = 0;
    // don't print the trailing readings from the first partial scan
    while (!startBit[indexOfFirstSyncReading])
    {
    indexOfFirstSyncReading++;
}
// print the readings for all the complete scans
for (int i = indexOfFirstSyncReading; i < sampleCount; i++)
{
    Serial.println("Angle: " + String(angles[i], 3) + ", Distance: " + String(distances[i]) + ", Signal
Strength: " + String(quality[i]));
    logfile.printIn("Angle," + String(angles[i], 3) + ",Distance," + String(distances[i]) + ",Signal
Strength," + String(quality[i]));
    digitalWrite(red_LED, !digitalRead(red_LED)); //blink the red led while writing data
}
logfile.flush();
    digitalWrite(red_LED,LOW);
}
// Resets the variables and state so the sequence can be repeated
void reset(){
    sampleCount = 0;
    // reset the sensor
// RPlidar.reset();
    delay(50);
    Serial.flush();
    //logfile.close();
    userInput = "";
    Serial.println(F("\n\nWhenever you are ready, type \"start\" to to begin the sequence..."));
    currentState = 0;
}
```

APPENDIX B. 3 Plotting Data code (MATLAB)

```
RPLIDARdata = xlsread('RLIDAR05.CSV');%reads in all Scanse data
wdist = 100; %distance threshold for an obstacle---furthest distance
that it will detect an obstacle
lowangle = 90;% lowest angle that you want to see in FOV
```

```
highangle = 270; % highest angle that you want to see in FOV
num = length(RPLIDARdata); %measures the length of the Scanse data
thetad = RPLIDARdata(:,1); %pulls the azimuth data from the Scanse data
r = RPLIDARdata(:,3); %pulls the distance data from the Scanse data
wtheta=[];
wr= [];
%------------------------------------------------------------------------------
-----------------------------------------------------
for k=1:num % compares the measured angle to see if ots the FOV it was
given
    if (thetad(k) >= lowangle) && (thetad(k) <= highangle)
        thetad(k) = thetad(k);
    end
    if r(k)> 15000
        r(k) = 0;
    end
end
xdist=r.*cosd(thetad);%produces the x axis distance
ydist=r.*sind(thetad); %produces the y axis distance
thetar = deg2rad(thetad); %converts scanse theta to radians from
degrees
for k =1:num %compares every data point to the warning distance
    if r(k) < wdist && r(k) ~= -1
        wtheta(k) = thetar(k);
        wr(k) = r(k);
    end
end
polarscatter(thetar, r, 'bo') %plots the Scanse data in a polar graph
hold on
polarscatter(wtheta, wr, 'r*')
hold off
legend('data points','possible obstacle')
```


APPENDIX B. 4 Sample Data

| Angle: | 357.484 | Distance: | 0 | Signal | Strength: | 0 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Angle: | 1.438 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 5.391 | Distance: | 0 | Signal | Strength: | 0 |

| Angle: | 9.328 | Distance: | 0 | Signal | Strength: | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle: | 5.844 | Distance: | 2569.25 | Signal | Strength: | 8 |
| Angle: | 17.234 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 21.094 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 25.031 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 28.969 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 32.891 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 36.844 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 40.766 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 44.766 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 48.688 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 52.641 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 56.563 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 60.531 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 64.469 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 68.313 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 72.234 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 76.188 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 80.109 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 84.047 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 87.969 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 91.984 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 95.938 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 99.891 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 103.844 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 107.766 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 111.703 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 115.594 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 119.531 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 123.453 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 127.391 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 131.328 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 128.109 | Distance: | 1834.5 | Signal | Strength: | 15 |
| Angle: | 139.156 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 143.078 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 146.984 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 150.922 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 147.156 | Distance: | 5032.5 | Signal | Strength: | 14 |
| Angle: | 158.766 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 162.766 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 159.063 | Distance: | 4003.5 | Signal | Strength: | 12 |

| Angle: | 163.141 | Distance: | 2852.5 | Signal | Strength: | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle: | 174.563 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 178.484 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 182.438 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 186.375 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 182.422 | Distance: | 11001.5 | Signal | Strength: | 8 |
| Angle: | 186.375 | Distance: | 10990.5 | Signal | Strength: | 9 |
| Angle: | 190.297 | Distance: | 11023.75 | Signal | Strength: | 10 |
| Angle: | 194.234 | Distance: | 11388.5 | Signal | Strength: | 9 |
| Angle: | 206.031 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 202.156 | Distance: | 11879.75 | Signal | Strength: | 9 |
| Angle: | 213.906 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 217.875 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 221.781 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 225.734 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 229.656 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 233.625 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 237.609 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 241.563 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 245.516 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 249.453 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 253.375 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 257.344 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 261.125 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 265.047 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 269 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 265.453 | Distance: | 2799.25 | Signal | Strength: | 7 |
| Angle: | 269.328 | Distance: | 2818.25 | Signal | Strength: | 6 |
| Angle: | 280.75 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 284.859 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 288.828 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 292.797 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 296.719 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 300.672 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 304.641 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 308.422 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 312.359 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 316.281 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 320.219 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 324.172 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 328.094 | Distance: | 0 | Signal | Strength: | 0 |

| Angle: | 332.078 | Distance: | 0 | Signal | Strength: | 0 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| Angle: | 336.031 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 339.953 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 343.891 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 347.828 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 351.781 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 355.766 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 359.719 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 3.672 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 7.625 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 11.578 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 15.516 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 19.375 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 23.328 | Distance: | 0 | Signal | Strength: | 0 |
| Angle: | 27.266 | Distance: | 0 | Signal | Strength: | 0 |

APPENDIX B. 5 Sensor Calculations

| Motor speed(Hz) | DATA POINTS PER REVOLUTION | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| samples (n) | | | | | | | | | | | |
| 4000 | 800.00 | 666.67 | 571.43 | 500.00 | 444.44 | 400.00 | 363.64 | 333.33 | 307.69 | 285.71 | 266.67 |
| AVERAGE DEGREES PER REVOLUTION | | | | | | | | | | | |
| 4000 | 0.45 | 0.54 | 0.63 | 0.72 | 0.81 | 0.90 | 0.99 | 1.08 | 1.17 | 1.26 | 1.35 |
| Spinning frequency of the LIDAR (Hz) | | | | | | | | | | | |
| distance to obstacle | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| (mm) | ARCH LENGTH (MILLIMETERS) BETWEEN TWO DATA POINTS (4000 Hz) | | | | | | | | | | |
| 1000 | 7.85 | 9.42 | 11.00 | 12.57 | 14.14 | 15.71 | 17.28 | 18.85 | 20.42 | 21.99 | 23.56 |
| 2000 | 15.71 | 18.85 | 21.99 | 25.13 | 28.27 | 31.42 | 34.56 | 37.70 | 40.84 | 43.98 | 47.12 |
| 3000 | 23.56 | 28.27 | 32.99 | 37.70 | 42.41 | 47.12 | 51.84 | 56.55 | 61.26 | 65.97 | 70.69 |
| 4000 | 31.42 | 37.70 | 43.98 | 50.27 | 56.55 | 62.83 | 69.12 | 75.40 | 81.68 | 87.96 | 94.25 |
| 5000 | 39.27 | 47.12 | 54.98 | 62.83 | 70.69 | 78.54 | 86.39 | 94.25 | 102.10 | 109.96 | 117.81 |
| 6000 | 47.12 | 56.55 | 65.97 | 75.40 | 84.82 | 94.25 | 103.67 | 113.10 | 122.52 | 131.95 | 141.37 |
| 7000 | 54.98 | 65.97 | 76.97 | 87.96 | 98.96 | 109.96 | 120.95 | 131.95 | 142.94 | 153.94 | 164.93 |
| 8000 | 62.83 | 75.40 | 87.96 | 100.53 | 113.10 | 125.66 | 138.23 | 150.80 | 163.36 | 175.93 | 188.50 |
| Spinning frequency of the LIDAR (Hz) | | | | | | | | | | | |
| distance to obstacle | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| | LINEAR DISTANCE (MILLIMETERS) BETWEEN TWO DATA POINTS (4000 Hz) | | | | | | | | | | |
| 1000 | 7.85 | 9.42 | 11.00 | 12.57 | 14.14 | 15.71 | 17.28 | 18.85 | 20.42 | 21.99 | 23.56 |

| | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2000 | 15.71 | 18.85 | 21.99 | 25.13 | 28.27 | 31.42 | 34.56 | 37.70 | 40.84 | 43.98 | 47.12 |
| 3000 | 23.56 | 28.27 | 32.99 | 37.70 | 42.41 | 47.12 | 51.84 | 56.55 | 61.26 | 65.97 | 70.68 |
| 4000 | 31.42 | 37.70 | 43.98 | 50.27 | 56.55 | 62.83 | 69.11 | 75.40 | 81.68 | 87.96 | 94.25 |
| 5000 | 39.27 | 47.12 | 54.98 | 62.83 | 70.69 | 78.54 | 86.39 | 94.25 | 102.10 | 109.95 | 117.81 |
| 6000 | 47.12 | 56.55 | 65.97 | 75.40 | 84.82 | 94.25 | 103.67 | 113.10 | 122.52 | 131.94 | 141.37 |
| 7000 | 54.98 | 65.97 | 76.97 | 87.96 | 98.96 | 109.95 | 120.95 | 131.94 | 142.94 | 153.93 | 164.93 |
| 8000 | 62.83 | 75.40 | 87.96 | 100.53 | 113.10 | 125.66 | 138.23 | 150.79 | 163.36 | 175.93 | 188.49 |

| distance to
 obstacle
 (cm) | 1 | 2 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0003 | 0.0004 | 0.0004 | 0.0005 |
| 2000 | 0.0000 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0003 | 0.0004 | 0.0006 | 0.0007 | 0.0009 | 0.0011 |
| 3000 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0004 | 0.0005 | 0.0006 | 0.0008 | 0.0011 | 0.0013 | 0.0016 |
| 4000 | 0.0001 | 0.0001 | 0.0002 | 0.0003 | 0.0005 | 0.0006 | 0.0009 | 0.0011 | 0.0014 | 0.0018 | 0.0022 |
| 5000 | 0.0001 | 0.0002 | 0.0003 | 0.0004 | 0.0006 | 0.0008 | 0.0011 | 0.0014 | 0.0018 | 0.0022 | 0.0027 |
| 6000 | 0.0001 | 0.0002 | 0.0003 | 0.0005 | 0.0007 | 0.0010 | 0.0013 | 0.0017 | 0.0021 | 0.0027 | 0.0033 |
| 7000 | 0.0001 | 0.0002 | 0.0004 | 0.0006 | 0.0008 | 0.0011 | 0.0015 | 0.0020 | 0.0025 | 0.0031 | 0.0038 |
| 8000 | 0.0002 | 0.0003 | 0.0004 | 0.0007 | 0.0009 | 0.0013 | 0.0017 | 0.0022 | 0.0028 | 0.0035 | 0.0044 |

AVERAGE DATA POINTS FOR OBSTACLES (RPLIDAR)

| Motor speed DATA POINTS PER REVOLUTIO | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Hz) | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| samples (n) | | | | | | | | | | | |
| 4000 | 800.00 | 666.67 | 571.43 | 500.00 | 444.44 | 400.00 | 363.64 | 333.33 | 307.69 | 285.71 | 266.67 |

APPENDIX B. 6 Occupancy Map Generation Code

(MATLAB)

```
tic
filename = 'RPLIDAR17.CSV';
RPLIDARdata = xlsread(filename);
numclust = 15; %leave at twelve to identify little changes in
elevation.
options = [2 10 1e-4 false];
maxwidth=3;
robotRadius = 2; %sets width of the Robot
num = length(RPLIDARdata); %measures the length of the Scanse data
thetad = RPLIDARdata(:,1); %pulls the azimuth data from the Scanse data
sgnlStrngth = RPLIDARdata(:,5);
r = RPLIDARdata(:,3);
bob = RPLIDARdata(r > 1, :);
toc
%% remove NaN from the angle and distance columns and delete zero rows
tic
for i= 1:num
    if thetad(isnan(thetad(i)))
        thetad(i) = (thetad(i-1));
    end
    if r(isnan(r(i)))
        r(i) = 1;
    end
end
bobangler = deg2rad(bob(:,1));
bobr = bob(:,3);
%% convert the polar coordinates to rectangular
xdist=bobr.*cos(bobangler);%produces the x axis distance
ydist=bobr.*sin(bobangler);%produces the y axis distance
scandata = [xdist ydist];
occenters=((scandata+15000)/1000);%scale the points to match the grid
%%
map = robotics.BinaryOccupancyGrid(30,30,1);
setOccupancy(map,occenters,1); %replace scandata with occenters
show(map);
mapInflated = copy(map);
```

```
inflate(mapInflated,robotRadius);%inflates objects to allow the robot
to pass
% prm = robotics.PRM(mapInflated);
planner = robotics.PRM(mapInflated); %creates a path planner object for
the occupancy map
xy= findpath(planner, [15 0], [15 30]); %developes a path connecting
given datapoints
[pathstr,name,ext] = fileparts (filename); %pulls apart the filename
figure ('name', name, 'numbertitle', 'off');%I cannot find how to
calculate the total pixels
show(map); %shows the binary occupancy map
hold on
show(planner)
plot(occenters(:,1),occenters(:,2),'or','LineWidth',3) %plots the
obstacles on the occupancy grid
plot(15,15,'+g','MarkerSize',10,'LineWidth',3)
grid on%creates grid on the binary occupancy grid
set(gca,'XTick',0:1:30,'YTick',0:1:30)
plot(xy(:,1),xy(:,2),'-x')%plot path found
toc
```


APPENDIX B. 7 Sample Point Summaries (no false

positives)

Weather=Shade Color=black Dist=1

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 283 | -39.64 | 12.14 | -75.00 | -15.50 |
| MeasuredDistance | MeasuredDistance | 283 | 1039.64 | 12.14 | 1015.50 | 1075.00 |

Weather=Shade Color=black Dist=2

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 148 | -48.16 | 19.54 | -97.00 | 52.00 |
| MeasuredDistance | MeasuredDistance | 148 | 2048.16 | 19.54 | 1948.00 | 2097.00 |

Weather=Shade Color=black Dist=3

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 102 | -61.96 | 26.50 | -201.75 | 0.25 |
| MeasuredDistance | MeasuredDistance | 102 | 3061.96 | 26.50 | 2999.75 | 3201.75 |

Weather=Shade Color=black Dist=4

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 73 | -61.26 | 26.71 | -116.25 | 5.25 |
| MeasuredDistance | MeasuredDistance | 73 | 4061.26 | 26.71 | 3994.75 | 4116.25 |

Weather=Shade Color=black Dist=5

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 24 | -63.89 | 61.25 | -140.25 | 84.50 |
| MeasuredDistance | MeasuredDistance | 24 | 5063.89 | 61.25 | 4915.50 | 5140.25 |

Weather=Shade Color=black Dist=6

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 34 | -86.99 | 84.44 | -318.00 | 109.50 |
| MeasuredDistance | MeasuredDistance | 34 | 6086.99 | 84.44 | 5890.50 | 6318.00 |

Weather=Shade Color=black Dist=7

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 17 | -202.79 | 127.86 | -362.50 | 23.50 |
| MeasuredDistance | MeasuredDistance | 17 | 7202.79 | 127.86 | 6976.50 | 7362.50 |

Weather=Shade Color=black Dist=8

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 3 | -326.50 | 102.62 | -445.00 | -267.25 |
| MeasuredDistance | MeasuredDistance | 3 | 8326.50 | 102.62 | 8267.25 | 8445.00 |

Weather=Shade Color=black Dist=9

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 5 | -411.75 | 388.83 | -1084.75 | -146.50 |
| MeasuredDistance | MeasuredDistance | 5 | 9411.75 | 388.83 | 9146.50 | 10084.75 |

Weather=Shade Color=white Dist=1

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 32 | -130.22 | 18.97 | -189.25 | -96.75 |
| MeasuredDistance | MeasuredDistance | 32 | 1130.22 | 18.97 | 1096.75 | 1189.25 |

Weather=Shade Color=white Dist=3

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 13 | -153.48 | 31.72 | -195.25 | -105.00 |
| MeasuredDistance | MeasuredDistance | 13 | 3153.48 | 31.72 | 3105.00 | 3195.25 |

Weather=Shade Color=white Dist=4

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 9 | -103.81 | 184.02 | -430.75 | 251.75 |
| MeasuredDistance | MeasuredDistance | 9 | 4103.81 | 184.02 | 3748.25 | 4430.75 |

Weather=Shade Color=white Dist=6

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 5 | -149.15 | 187.46 | -310.75 | 162.50 |
| MeasuredDistance | MeasuredDistance | 5 | 6149.15 | 187.46 | 5837.50 | 6310.75 |

Weather=Shade Color=white Dist=7

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 10 | -162.48 | 299.85 | -854.75 | 127.75 |
| MeasuredDistance | MeasuredDistance | 10 | 7162.48 | 299.85 | 6872.25 | 7854.75 |

Weather=Shade Color=white Dist=8

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 9 | -222.89 | 180.05 | -490.50 | 54.75 |
| MeasuredDistance | MeasuredDistance | 9 | 8222.89 | 180.05 | 7945.25 | 8490.50 |

Weather=Shade Color=white Dist=9

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 8 | -192.09 | 133.36 | -364.25 | 32.25 |
| MeasuredDistance | MeasuredDistance | 8 | 9192.09 | 133.36 | 8967.75 | 9364.25 |

Weather=Shade Color=white Dist=10

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 9 | -80.31 | 177.18 | -389.25 | 123.25 |
| MeasuredDistance | MeasuredDistance | 9 | 10080.31 | 177.18 | 9876.75 | 10389.25 |

Weather=Sun Color=black Dist=1

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 311 | 13.20 | 9.1181527 | -8.25 | 33.75 |
| MeasuredDistance | MeasuredDistance | 311 | 986.79 | 9.1181527 | 966.25 | 1008.25 |

Weather=Sun Color=black Dist=2

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 143 | -14.63 | 11.35 | -49.25 | 38.50 |
| MeasuredDistance | MeasuredDistance | 143 | 2014.63 | 11.35 | 1961.50 | 2049.25 |

Weather=Sun Color=black Dist=3

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 107 | 5.67 | 32.21 | -179.00 | 72.75 |
| MeasuredDistance | MeasuredDistance | 107 | 2994.33 | 32.21 | 2927.25 | 3179.00 |

Weather=Sun Color=black Dist=4

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 84 | 14.07 | 34.96 | -97.50 | 90.50 |
| MeasuredDistance | MeasuredDistance | 84 | 3985.93 | 34.96 | 3909.50 | 4097.50 |

Weather=Sun Color=black Dist=5

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 60 | -13.02 | 41.55 | -102.25 | 130.50 |
| MeasuredDistance | MeasuredDistance | 60 | 5013.02 | 41.55 | 4869.50 | 5102.25 |

Weather=Sun Color=black Dist=6

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 46 | -16.79 | 60.53 | -128.75 | 125.25 |
| MeasuredDistance | MeasuredDistance | 46 | 6016.79 | 60.53 | 5874.75 | 6128.75 |

Weather=Sun Color=black Dist=7

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 35 | -28.06 | 68.65 | -171.25 | 127.75 |
| MeasuredDistance | MeasuredDistance | 35 | 7028.06 | 68.65 | 6872.25 | 7171.25 |

Weather=Sun Color=black Dist=8

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 26 | -72.14 | 110.87 | -311.00 | 88.75 |
| MeasuredDistance | MeasuredDistance | 26 | 8072.14 | 110.87 | 7911.25 | 8311.00 |

Weather=Sun Color=black Dist=9

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 14 | -206.21 | 134.03 | -501.75 | 32.25 |
| MeasuredDistance | MeasuredDistance | 14 | 9206.21 | 134.03 | 8967.75 | 9501.75 |

Weather=Sun Color=white Dist=1

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 296 | -12.51 | 13.91 | -78.75 | 9.75 |
| MeasuredDistance | MeasuredDistance | 296 | 1012.51 | 13.91 | 990.25 | 1078.75 |

Weather=Sun Color=white Dist=2

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 158 | -28.88 | 9.96 | -85.00 | -12.50 |
| MeasuredDistance | MeasuredDistance | 158 | 2028.88 | 9.96 | 2012.50 | 2085.00 |

Weather=Sun Color=white Dist=3

| Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 106 | -20.14 | 17.92 | -91.50 | 28.75 |
| MeasuredDistance | MeasuredDistance | 106 | 3020.14 | 17.92 | 2971.25 | 3091.50 |

Weather=Sun Color=white Dist=4

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 84 | 5.24 | 39.54 | -233.50 | 79.25 |
| MeasuredDistance | MeasuredDistance | 84 | 3994.76 | 39.54 | 3920.75 | 4233.50 |

Weather=Sun Color=white Dist=5

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 56 | -22.63 | 41.83 | -104.50 | 77.75 |
| MeasuredDistance | MeasuredDistance | 56 | 5022.63 | 41.83 | 4922.25 | 5104.50 |

Weather=Sun Color=white Dist=6

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 52 | -38.81 | 75.70 | -339.75 | 109.50 |
| MeasuredDistance | MeasuredDistance | 52 | 6038.81 | 75.70 | 5890.50 | 6339.75 |

Weather=Sun Color=white Dist=7

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 55 | -101.12 | 59.65 | -241.75 | 140.50 |
| MeasuredDistance | MeasuredDistance | 55 | 7101.12 | 59.65 | 6859.50 | 7241.75 |

Weather=Sun Color=white Dist=8

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 51 | -51.09 | 162.30 | -698.50 | 184.00 |
| MeasuredDistance | MeasuredDistance | 51 | 8051.09 | 162.30 | 7816.00 | 8698.50 |

Weather=Sun Color=white Dist=9

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 37 | -127.80 | 221.95 | -711.25 | 363.00 |
| MeasuredDistance | MeasuredDistance | 37 | 9127.80 | 221.95 | 8637.00 | 9711.25 |

Weather=Sun Color=white Dist=10

| Variable | Label | \mathbf{N} | Mean | Std Dev | Minimum | Maximum |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Accuracy | Accuracy | 31 | -243.69 | 213.71 | -744.00 | 331.50 |
| MeasuredDistance | MeasuredDistance | 31 | 10243.69 | 213.71 | 9668.50 | 10744.00 |

APPENDIX C Hokuyo URG-04LX-UG01

APPENDIX C. 1 Test Setup

| Obstacle | X Coordinate | Y Coordinate | X Coordinate | Y Coordinate | X Coordinate | Y Coordinate | radial distance | radial distance | azimuth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| number | columns | rows | feet | feet | cm | cm | feet | cm | degrees |
| 12 | 3.5 | 0.736266314 | 10.5 | 1.104399471 | 320.04 | 33.66209587 | 10.55792111 | 321.8054355 | 6.004345 |
| 11 | 3 | 0.951008892 | 9 | 1.426513338 | 274.32 | 43.48012653 | 9.112350976 | 277.7444577 | 9.006542 |
| 10 | 2.5 | 1.477913982 | 7.5 | 2.216870973 | 228.6 | 67.57022724 | 7.8207747 | 238.3772129 | 16.46677 |
| 9 | 2 | 0.926921941 | 6 | 1.390382912 | 182.88 | 42.37887114 | 6.158990554 | 187.7260321 | 13.0469 |
| 8 | 3.5 | 0.932531414 | 10.5 | 1.398797121 | -320.04 | 42.63533624 | 10.59276326 | 322.867424 | 172.4118 |
| 7 | 3 | 1.185282266 | 9 | 1.777923399 | -274.32 | 54.19110519 | 9.173931088 | 279.6214196 | 168.8253 |
| 6 | 2.5 | 1.678478045 | 7.5 | 2.517717067 | -228.6 | 76.74001621 | 7.911314633 | 241.13687 | 161.4433 |
| 5 | 2 | 2.666694823 | 6 | 4.000042235 | -182.88 | 121.9212873 | 7.211125979 | 219.7951198 | 146.3097 |
| 4 | 1.5 | 0.756618095 | 4.5 | 1.134927142 | -137.16 | 34.5925793 | 4.640911507 | 141.4549827 | 165.8449 |
| 3 | 1 | 2.496225428 | 3 | 3.744338141 | 91.44 | 114.1274265 | 4.797923313 | 146.2407026 | 51.29795 |
| 2 | 0.5 | 0.997409338 | 1.5 | 1.496114008 | 45.72 | 45.60155495 | 2.118574314 | 64.57414509 | 44.92569 |
| 1 | 0 | 1.841387998 | 0 | 2.762081997 | 0 | 84.18825928 | 2.762081997 | 84.18825928 | 90 |

APPENDIX C. 2 Data Collection code (C)

```
/*!
    \example calculate_xy.c Calculates X-Y coordinates
    Having the X axis aligned to the front step of the sensor, calculates the
coordinates for measurement data
    \author Satofumi KAMIMURA
    $Id$
*/
#include "urg_sensor.h"
#include "urg_utils.h"
#include "open_urg_sensor.h"
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
//Makes a file to write to and opens it. Will eventually be replaced with code to
speak to other devices.
        char filename[50];
    sprintf(filename, "/media/sf_Hokuyo_Data/%s.csv", argv[1]);
    FILE *fp = NULL;
    fp = fopen (filename, "w");
```

```
    if (fp == NULL) {
        printf ("File not created okay");
        return 1;
    }
    else {
    printf ("File created okay.\n");
    }
//set Variables
    urg_t urg;
    long *data;
    long max_distance;
    long min_distance;
    long time_stamp;
    int i;
    int n;
    int count;
    int scantime = atoi(argv[2]);
//Create a timer to run the program for a specified time period
    time_t start,end;
    double elapsed;
    time(&start); //starts the timer
    if (open_urg_sensor(&urg, argc, argv) < 0) {
        return 1;
    }
while (elapsed <= scantime) {
    data = (long *)malloc(urg_max_data_size(&urg) * sizeof(data[0]));
    if (!data) {
        perror("urg_max_index()");
        return 1;
    }
    // Gets measurement data
    urg_start_measurement(&urg, URG_DISTANCE, 1, 0);
    n = urg_get_distance(&urg, data, &time_stamp);
    if (n<0) {
        printf("urg_get_distance: %s\n", urg_error(&urg));
        urg_close(&urg);
        return 1;
    }
    // Outputs X-Y coordinates
    urg_distance_min_max(&urg, &min_distance, &max_distance);
    for (i = 0; \overline{i}<\overline{n};++i) {
        long distance = data[i];
        double radian;
        long x;
        long y;
        if ((distance < min_distance) || (distance > max_distance)) {
            continue;
        }
        radian = urg_index2rad(&urg, i);
```

```
x = (long)(distance * cos(radian));
y = (long)(distance * sin(radian));
printf("X: \%ld Y: \%ld radian: \%lf distance(r): \%ld \(\backslash n ", x, y, r a d i a n\),
distance);
            fprintf(fp, "X: %ld Y: %ld radian: %lf distance(r): %ld \n", x, y,radian,
distance);
    }
    printf("\n");
    //Change the time elapsed
    time(&end);
    elapsed = difftime(end,start); //use difftime() for time_t structs
}
    fclose(fp);
    // Disconnects
    free(data);
    urg_close(&urg);
#if defined(URG_MSC)
    getchar();
#endif
    return 0;
}
```


APPENDIX C. 3 Plotting Data code (MATLAB)

```
filename = 'hokR03.CSV';
hokuyo = xlsread(filename);
wdist =0; %distance threshold for an obstacle---furthest distance that
it will detect an obstacle
lowangle = 30;% lowest angle that you want to get rid of in FOV
highangle = 3; % highest angle that you want to get rid in FOV
num = length(hokuyo); %measures the length of the Scanse data
thetar = hokuyo(:,3); %pulls the azimuth data from the Scanse data
r = hokuyo(:,4); %pulls the distance data from the Scanse data
wtheta=[];
wr= [];
%----------------------------------------------------------------------------------
-------------------------------------------------------
xdist=r.*cos(thetar);%produces the x axis distance
ydist=r.*sin(thetar);%produces the y axis distance
```

```
[pathstr,name,ext] = fileparts (filename); %added these next two lines
for sure. (25 & 26)
figure ('name', name, 'numbertitle', 'off');
polarscatter(thetar, r, 'bo') %plots the Scanse data in a polar graph
legend('data points')
```


APPENDIX C. 4 Sample Data.

X: | | | Radian: | Distance: | Timestamp: |
| :---: | ---: | ---: | ---: | ---: |
| -203 | -359 | -2.08621 | 413 | 392329 |
| -204 | -365 | -2.08008 | 419 | 392329 |
| -199 | -361 | -2.07394 | 413 | 392329 |
| -196 | -363 | -2.06781 | 413 | 392329 |
| -189 | -353 | -2.06167 | 401 | 392329 |
| -186 | -353 | -2.05553 | 400 | 392329 |
| -179 | -346 | -2.0494 | 390 | 392329 |
| -177 | -347 | -2.04326 | 390 | 392329 |
| -178 | -354 | -2.03713 | 397 | 392329 |
| -177 | -358 | -2.03099 | 400 | 392329 |
| -174 | -356 | -2.02486 | 397 | 392329 |
| -173 | -360 | -2.01872 | 400 | 392329 |
| -171 | -361 | -2.01258 | 400 | 392329 |
| -169 | -364 | -2.00645 | 402 | 392329 |
| -169 | -369 | -2.00031 | 406 | 392329 |
| -166 | -370 | -1.99418 | 406 | 392329 |
| -162 | -367 | -1.98804 | 402 | 392329 |
| -160 | -368 | -1.9819 | 402 | 392329 |
| -158 | -369 | -1.97577 | 402 | 392329 |
| -156 | -370 | -1.96963 | 402 | 392329 |
| -153 | -371 | -1.9635 | 402 | 392329 |
| -151 | -372 | -1.95736 | 402 | 392329 |
| -152 | -381 | -1.95122 | 411 | 392329 |
| -150 | -382 | -1.94509 | 411 | 392329 |
| -144 | -375 | -1.93895 | 402 | 392329 |
| -146 | -386 | -1.93282 | 413 | 392329 |
| -144 | -389 | -1.92668 | 416 | 392329 |
| -142 | -390 | -1.92054 | 416 | 392329 |
| -140 | -393 | -1.91441 | 418 | 392329 |
| -140 | -399 | -1.90827 | 423 | 392329 |

| -137 | -399 | -1.90214 | 423 | 392329 |
| ---: | ---: | ---: | ---: | ---: |
| -138 | -411 | -1.896 | 434 | 392329 |
| -137 | -416 | -1.88986 | 439 | 392329 |
| -181 | -560 | -1.88373 | 589 | 392329 |
| -179 | -567 | -1.87759 | 595 | 392329 |
| -318 | -4312 | -1.64443 | 4324 | 392329 |
| -291 | -4314 | -1.63829 | 4324 | 392329 |
| -49 | -4029 | -1.58307 | 4030 | 392329 |
| -24 | -4029 | -1.57693 | 4030 | 392329 |
| 0 | -4030 | -1.5708 | 4030 | 392329 |
| 27 | -4480 | -1.56466 | 4481 | 392329 |
| 17 | -473 | -1.53398 | 474 | 392329 |
| 20 | -473 | -1.52785 | 474 | 392329 |
| 337 | -4218 | -1.49103 | 4232 | 392329 |
| 363 | -4216 | -1.48489 | 4232 | 392329 |
| 739 | -4595 | -1.41126 | 4655 | 392329 |
| 599 | -3588 | -1.40513 | 3638 | 392329 |
| 621 | -3584 | -1.39899 | 3638 | 392329 |
| 597 | -3322 | -1.39286 | 3376 | 392329 |
| 665 | -3576 | -1.38672 | 3638 | 392329 |
| 1149 | -4977 | -1.34377 | 5109 | 392329 |
| 563 | -2373 | -1.33763 | 2440 | 392329 |
| 578 | -2370 | -1.3315 | 2440 | 392329 |
| 459 | -1835 | -1.32536 | 1892 | 392329 |
| 607 | -2363 | -1.31922 | 2440 | 392329 |
| 1228 | -4662 | -1.31309 | 4822 | 392329 |
| 3014 | -4452 | -0.97561 | 5377 | 392329 |
| 3041 | -4433 | -0.96948 | 5377 | 392329 |
| 2977 | -4282 | -0.96334 | 5216 | 392329 |
| 3003 | -4264 | -0.9572 | 5216 | 392329 |
| 3028 | -4244 | -0.95107 | 5214 | 392329 |
| 3052 | -4223 | -0.94493 | 5211 | 392329 |
| 2962 | -4045 | -0.9388 | 5014 | 392329 |
| 2986 | -4027 | -0.93266 | 5014 | 392329 |
| 3011 | -4008 | -0.92652 | 5014 | 392329 |
| 3055 | -4015 | -0.92039 | 5046 | 392329 |
| 3079 | -3996 | -0.91425 | 5046 | 392329 |
| 3104 | -3977 | -0.90812 | 5046 | 392329 |
| 3076 | -3892 | -0.90198 | 4962 | 392329 |
| 2970 | -3711 | -0.89585 | 4754 | 392329 |
| 2969 | -3663 | -0.88971 | 4716 | 392329 |
| | | | | |

| 2988 | -3641 | -0.88357 | 4711 | 392329 |
| :--- | :--- | ---: | :--- | :--- |
| 2993 | -3602 | -0.87744 | 4684 | 392329 |
| 3011 | -3578 | -0.8713 | 4677 | 392329 |
| 3022 | -3547 | -0.86517 | 4660 | 392329 |
| 3001 | -3480 | -0.85903 | 4596 | 392329 |
| 2993 | -3427 | -0.85289 | 4551 | 392329 |
| 2988 | -3380 | -0.84676 | 4512 | 392329 |
| 2954 | -3299 | -0.84062 | 4429 | 392329 |
| 2972 | -3280 | -0.83449 | 4427 | 392329 |
| 2941 | -3205 | -0.82835 | 4350 | 392329 |
| 2946 | -3171 | -0.82221 | 4329 | 392329 |
| 2899 | -3083 | -0.81608 | 4233 | 392329 |
| 2917 | -3064 | -0.80994 | 4231 | 392329 |
| 2936 | -3046 | -0.80381 | 4231 | 392329 |
| 2938 | -3011 | -0.79767 | 4208 | 392329 |
| 2933 | -2969 | -0.79153 | 4174 | 392329 |
| 2931 | -2931 | -0.7854 | 4146 | 392329 |
| 2905 | -2870 | -0.77926 | 4084 | 392329 |
| 2915 | -2845 | -0.77313 | 4074 | 392329 |
| 2933 | -2827 | -0.76699 | 4074 | 392329 |
| 2920 | -2780 | -0.76085 | 4033 | 392329 |
| 2924 | -2749 | -0.75472 | 4014 | 392329 |
| 2880 | -2675 | -0.74858 | 3931 | 392329 |
| 2896 | -2657 | -0.74245 | 3931 | 392329 |
| 2888 | -2618 | -0.73631 | 3899 | 392329 |
| 2898 | -2594 | -0.73018 | 3890 | 392329 |
| APPENDIX D SURF Feature Extraction and Matching | | | | |

and Edge Detection

APPENDIX D. 1 SURF Feature Extraction and Matching

Script (MATLAB)

```
% learning image
pivotImage = rgb2gray(imread(%image name));
figure ('name', 'Learning Image');
imshow(pivotImage);
title('Learning Image');
```

```
%trying to identify this image
sceneImage = rgb2gray(imread(%image name));
figure ('name', 'Image to be Classified');
imshow(sceneImage);
title('Image to be Classified');
%detect points in the images
pivotPoints = detectSURFFeatures(pivotImage);
scenePoints = detectSURFFeatures(sceneImage);
%Extract feature descriptors at the interest points in both images.
[pivotFeatures, pivotPoints] = extractFeatures(pivotImage,
pivotPoints);
[sceneFeatures, scenePoints] = extractFeatures(sceneImage,
scenePoints);
%match the features
pivotPairs = matchFeatures(pivotFeatures, sceneFeatures);
%display positively matched features
matchedPivotPoints = pivotPoints(pivotPairs(:, 1), :);
matchedScenePoints = scenePoints(pivotPairs(:, 2), :);
figure ('name','Outlier');
showMatchedFeatures(pivotImage, sceneImage, matchedPivotPoints, ...
    matchedScenePoints, 'montage');
title('Putatively Matched Points (Including Outliers)');
%locate and show the object in the scene
[tform, inlierPivotPoints, inlierScenePoints] = ...
    estimateGeometricTransform(matchedPivotPoints, matchedScenePoints,
'affine');
figure;
showMatchedFeatures(pivotImage, sceneImage, inlierPivotPoints, ...
    inlierScenePoints, 'montage');
title('Matched Points (Inliers Only)');
```


APPENDIX D. 2 Edge Detection Script (MATLAB)

```
img = %File location
method = %edge detection method
%reads in an image
pivotImage =imread(img);
gray = rgb2gray(pivotImage);
figure
% ('name', method);
% subplot(1,2,1)
imshow(pivotImage);
title('Image of a Pivot');
%finds the edges in the picture and filters out noise
```

```
BW = wiener2(edge(gray,method));
% subplot(1,2,2)
imshow(BW);
title (method)
```


APPENDIX D. 3 Shape Identification algorithm (MATLAB)

```
% Demo to find certain shapes in an image based on their shape.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures.
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.
fontSize = 20;
% Read in a standard MATLAB gray scale demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'pillsetc.png';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
    % File doesn't exist -- didn't find it there. Check the search
path for it.
    fullFileName = baseFileName; % No path this time.
    if ~exist(fullFileName, 'file')
        % Still didn't find it. Alert user.
        errorMessage = sprintf('Error: %s does not exist in the search
path folders.', fullFileName);
        uiwait(warndlg(errorMessage));
        return;
    end
end
% Read in image into an array.
rgbImage = imread(fullFileName);
[rows, columns, numberOfColorBands] = size(rgbImage);
% Display it.
subplot(2, 2, 1);
imshow(rgbImage, []);
title('Input Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Give a name to the title bar.
set(gcf,'name','Shape Recognition Demo','numbertitle','off')
% If it's monochrome (indexed), convert it to color.
if numberOfColorBands > 1
    grayImage = rgbImage(:,:,2);
else
    % It's already a gray scale image.
```

```
    grayImage = rgbImage;
end
% Make a triangle on it.
triangleXCoordinates = [360 420 480];
triangleYCoordinates = [350 252 350];
traiangleBinaryImage = poly2mask(triangleXCoordinates,
triangleYCoordinates, rows, columns);
% Burn it into the gray scale image.
grayImage(traiangleBinaryImage) = 255;
% Display it.
subplot(2, 2, 2);
imshow(grayImage, []);
title('Grayscale Image', 'FontSize', fontSize);
% Binarize the image.
binaryImage = grayImage > 120;
% Display it.
subplot(2, 2, 3);
imshow(binaryImage, []);
title('Initial (Noisy) Binary Image', 'FontSize', fontSize);
% Remove small objects.
binaryImage = bwareaopen(binaryImage, 300);
% Display it.
subplot(2, 2, 4);
imshow(binaryImage, []);
title('Cleaned Binary Image', 'FontSize', fontSize);
[labeledImage numberOfObjects] = bwlabel(binaryImage);
blobMeasurements = regionprops(labeledImage,...
    'Perimeter', 'Area', 'FilledArea', 'Solidity', 'Centroid');
% Get the outermost boundaries of the objects, just for fun.
filledImage = imfill(binaryImage, 'holes');
boundaries = bwboundaries(filledImage);
% Collect some of the measurements into individual arrays.
perimeters = [blobMeasurements.Perimeter];
areas = [blobMeasurements.Area];
filledAreas = [blobMeasurements.FilledArea];
solidities = [blobMeasurements.Solidity];
% Calculate circularities:
circularities = perimeters .^2 ./ (4 * pi * filledAreas);
% Print to command window.
fprintf('#, Perimeter, Area, Filled Area, Solidity,
Circularity\n');
for blobNumber = 1 : numberOfObjects
    fprintf('%d, %9.3f, %11.3f, %11.3f, %8.3f, %11.3f\n', ...
                        blobNumber, perimeters(blobNumber), areas(blobNumber), ...
                        filledAreas(blobNumber), solidities(blobNumber),
circularities(blobNumber));
```

```
end
% Say what they are.
% IMPORTANT NOTE: depending on the aspect ratio of the rectangel or
triangle
for blobNumber = 1 : numberOfObjects
    % Outline the object so the user can see it.
    thisBoundary = boundaries{blobNumber};
    subplot(2, 2, 2); % Switch to upper right image.
    hold on;
    % Display prior boundaries in blue
    for k = 1 : blobNumber-1
            thisBoundary = boundaries{k};
            plot(thisBoundary(:,2), thisBoundary(:,1), 'b', 'LineWidth',
3);
    end
    % Display this bounary in red.
    thisBoundary = boundaries{blobNumber};
    plot(thisBoundary(:,2), thisBoundary(:,1), 'r', 'LineWidth', 3);
    subplot(2, 2, 4); % Switch to lower right image.
    % Determine the shape.
    if circularities(blobNumber) < 1.2
            message = sprintf('The circularity of object #%d is %.3f,\nso
the object is a circle',...
            blobNumber, circularities(blobNumber));
            shape = 'circle';
    elseif circularities(blobNumber) < 1.6
            message = sprintf('The circularity of object #%d is %.3f,\nso
the object is a square',...
            blobNumber, circularities(blobNumber));
            shape = 'square';
    elseif circularities(blobNumber) > 1.6 && circularities(blobNumber)
< 1.8
            message = sprintf('The circularity of object #%d is %.3f,\nso
the object is an isocoles triangle',...
            blobNumber, circularities(blobNumber));
        shape = 'triangle';
    else
        message = sprintf('The circularity of object #%d is %.3f,\nso
the object is something else.',...
            blobNumber, circularities(blobNumber));
        shape = 'something else';
    end
    % Display in overlay above the object
    overlayMessage = sprintf('Object #%d = %s\ncirc = %.2f, s = %.2f',
        blobNumber, shape, circularities(blobNumber),
solidities(blobNumber));
    text(blobMeasurements(blobNumber).Centroid(1),
blobMeasurements(blobNumber).Centroid(2), ...
            overlayMessage, 'Color', 'r');
    button = questdlg(message, 'Continue', 'Continue', 'Cancel',
'Continue');
```

```
    if strcmp(button, 'Cancel')
        break;
    end
end
```


APPENDIX D. 4 Edge detection and Shape Identification

Algorithm (MATLAB)

```
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures.
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.
fontSize = 18;
img = %image name
method = % =edge detection method
    %reads in an image
pivotImage =imread(img);
gray = rgb2gray(pivotImage);
figure ('name', method);
%finds the edges in the picture and filters out noise
BW = wiener2(edge(gray,method));
subplot(2, 2, 1);
imshow(pivotImage, []);
title('Input Image', 'FontSize', fontSize);
    % Display it.
    subplot(2, 2, 2);
% imshow(grayImage, []);
    title('Objects Detected', 'FontSize', fontSize);
subplot(2, 2, 3);
%imshow(binaryImage, []);
imshow(BW, [])
title('Initial Edge Detection Image', 'FontSize', fontSize);
binaryImage = bwareaopen(BW, 300);
% Display it.
subplot(2, 2, 4);
imshow(binaryImage, []);
title('Cleaned Binary Image', 'FontSize', fontSize);
[labeledImage numberOfObjects] = bwlabel(binaryImage);
blobMeasurements = regionprops(labeledImage,...
    'Perimeter', 'Area', 'FilledArea', 'Solidity', 'Centroid');
```

```
% Get the outermost boundaries of the objects, just for fun.
filledImage = imfill(binaryImage, 'holes');
boundaries = bwboundaries(filledImage);
% Collect some of the measurements into individual arrays.
perimeters = [blobMeasurements.Perimeter];
areas = [blobMeasurements.Area];
filledAreas = [blobMeasurements.FilledArea];
solidities = [blobMeasurements.Solidity];
% Calculate circularities:
circularities = perimeters .^2 ./ (4 * pi * filledAreas);
% Print to command window.
fprintf('#, Perimeter, Area, Filled Area, Solidity,
Circularity\n');
for blobNumber = 1 : numberOfObjects
    fprintf('%d, %9.3f, %11.3f, %11.3f, %8.3f, %11.3f\n', ...
            blobNumber, perimeters(blobNumber), areas(blobNumber), ...
            filledAreas(blobNumber), solidities(blobNumber),
circularities(blobNumber));
end
% Say what they are.
for blobNumber = 1 : numberOfObjects
    % Outline the object so the user can see it.
    thisBoundary = boundaries{blobNumber};
    subplot(2, 2, 2); % Switch to upper right image.
    hold on;
    % Display prior boundaries in blue
    for k = 1 : blobNumber-1
            thisBoundary = boundaries{k};
            plot(thisBoundary(:,2), thisBoundary(:,1), 'b', 'LineWidth',
3);
    end
    % Display this bounary in red.
    thisBoundary = boundaries{blobNumber};
    plot(thisBoundary(:,2), thisBoundary(:,1), 'r', 'LineWidth', 3);
    subplot(2, 2, 4); % Switch to lower right image.
    % Determine the shape.
    if circularities(blobNumber) < 1.2
            message = sprintf('The circularity of object #%d is %.3f,\nso
the object is a circle',...
            blobNumber, circularities(blobNumber));
        shape = 'circle';
    elseif circularities(blobNumber) < 1.6
        message = sprintf('The circularity of object #%d is %.3f,\nso
the object is a square',...
            blobNumber, circularities(blobNumber));
            shape = 'square';
        elseif circularities(blobNumber) > 1.6 && circularities(blobNumber)
< 1.8
```

```
    message = sprintf('The circularity of object #%d is %.3f,\nso
the object is an isocoles triangle',...
            blobNumber, circularities(blobNumber));
        shape = 'triangle';
    else
        message = sprintf('The circularity of object #%d is %.3f,\nso
the object is something else.',...
            blobNumber, circularities(blobNumber));
        shape = 'something else';
    end
    % Display in overlay above the object
    overlayMessage = sprintf('Object #%d = %s\ncirc = %.2f, s = %.2f',
        blobNumber, shape, circularities(blobNumber),
solidities(blobNumber));
    text(blobMeasurements(blobNumber).Centroid(1),
blobMeasurements(blobNumber).Centroid(2), ...
            overlayMessage, 'Color', 'r');
    button = questdlg(message, 'Continue', 'Continue', 'Cancel',
'Continue');
    if strcmp(button, 'Cancel')
        break;
    end
end
```


APPENDIX D. 5 SURF Feature Extraction and Matching

and Edge Detection (MATLAB)

```
img1 = reference image
img2 = test image
% reference image (img1)
pivotImage = edge_detection_method_3(img1);
figure;
imshow(pivotImage);
title('Image of a known obstacle');
%test image (img2)
sceneImage = edge_detection_method_3 (img2);
figure;
imshow(sceneImage);
title('Image of a Cluttered Scene');
%detect points in the images
pivotPoints = detectSURFFeatures(pivotImage);
scenePoints = detectSURFFeatures(sceneImage);
%Extract feature descriptors at the interest points in both images.
```

```
[pivotFeatures, pivotPoints] = extractFeatures(pivotImage,
pivotPoints);
[sceneFeatures, scenePoints] = extractFeatures(sceneImage,
scenePoints);
omatch the features
pivotPairs = matchFeatures(pivotFeatures, sceneFeatures);
%display positively matched features
matchedPivotPoints = pivotPoints(pivotPairs(:, 1), :);
matchedScenePoints = scenePoints(pivotPairs(:, 2), :);
figure;
showMatchedFeatures(pivotImage, sceneImage, matchedPivotPoints, ...
    matchedScenePoints, 'montage');
title('Putatively Matched Points (Including Outliers)');
%locate and show the object in the scene
[tform, inlierPivotPoints, inlierScenePoints] = ...
    estimateGeometricTransform(matchedPivotPoints, matchedScenePoints,
'affine');
figure;
showMatchedFeatures(pivotImage, sceneImage, inlierPivotPoints, ...
    inlierScenePoints, 'montage');
title('Matched Points (Inliers Only)');
```


APPENDIX D. 6 approxcanny

APPENDIX D. 7 Canny

Initial Edge Detection Image

APPENDIX D. 8 log

Initial Edge Detection Image

Cleaned Binary Image

Cleaned Binary Image

APPENDIX D. 9 Prewitts

Initial Edge Detection Image

APPENDIX D. 10 Roberts

Initial Edge Detection Image

Cleaned Binary Image

Cleaned Binary Image

APPENDIX D. 11 Sobel

Initial Edge Detection Image

APPENDIX D. 12 zerocross

Initial Edge Detection Image

Cleaned Binary Image

Cleaned Binary Image

APPENDIX E Viola-Jones Algorithm Script

(MATLAB)

```
gTruth = load(%ground Truth data);
trainingData = objectDetectorTrainingData(gTruth);
positiveInstances = trainingData(:,1:2);
negativeFolder = fullfile(%location of negative images) ;
negativeImages = imageDatastore(negativeFolder);
trainCascadeObjectDetector(%name of trained detector positiveInstances,
negativeFolder,...
    'FalseAlarmRate',0.025,'NumCascadeStages',3);
detector = vision.CascadeObjectDetector(%name of trained detector);
img = imread(%name of test image);
b.box = step(detector,img);
detectedImg = insertObjectAnnotation(img,'rectangle',bbox, %name of
bounding box);
figure; imshow(detectedImg);
```


APPENDIX F Faster R-CNN Training

APPENDIX F. 1 Code used to extract images out of video

(MATLAB)

```
gTruth = load(%ground truth data fom video);
trainingData = objectDetectorTrainingData(gTruth.gTruth);
%Default 'SamplingFactor' is set to 5 to sample every 5th image
%This extracts evey single image
%('SamplingFactor',1) at end of gTruth video data to sample every
picture
```


APPENDIX F. 2 Augmentation Code (MATLAB)

```
tic
%% blurring, sharpening, and change the brightness of the color images
srcFiles = dir(%location of original photos);
for K= 1:50
cd(srcFiles(1).folder)
filename = strcat(srcFiles(K).name);
image = imread(filename);
Blurred_Image= imgaussfilt(image);
Sharped_Image=imsharpen(image);
Brighter_Image=image+50;
Darker_image=image-50;
cd(%location for blurred images)
imwrite(Blurred_Image,filename)
cd(%location for} sharpened images
imwrite(Sharped_Image,filename)
cd(%location for brighter images)
imwrite(Brighter_Image,filename)
cd(%location for darker images)
imwrite(Darker_image,filename)
end
toc
```

 APPENDIX F. 3 Training detector Code (MATLAB)
    ```
tic
% Load vehicle data set
data = load(%load groundtruth data);
vehicleDataset = %location of the data inside the data variable;
label = %label locations inside the data variable
net = 'googlenet'; % load in any pretrained network
% can replace 'googlenet' with any of the pretrained networks. must
download the support package...
% home-> addons->search
% 'alexnet'
    'vgg16'
    'vgg19'
    'resnet50'
    'resnet101'
    'inceptionv3'
    'googlenet'
    'inceptionresnetv2'
    'squeezenet'
%%
% Split data into a training and test set.
idx = floor(0.6 * height(vehicleDataset));
trainingData = vehicleDataset(1:idx,:);
testData = vehicleDataset(idx:end,:);
```

```
%% Change hyperparameters
% Options for step 1.
optionsStage1 = trainingOptions('sgdm', ...
    'MaxEpochs', 2, ... %How many time does your model train on usually
range f% from 1 -> 5. First, usaually use 1 at first.
    'MiniBatchSize', 1, ...
    'InitialLearnRate', .005, ... %% 1 -> 1e-3. Boost this up %% tune
this to increase accuracy + trianing time
    'CheckpointPath', tempdir)
% Options for step 2.
optionsStage2 = trainingOptions('sgdm', ...
    'MaxEpochs', 2, ... %How many time does your model train on usually
range f% from 1 -> 5. First, usaually use 1 at first.
    'MiniBatchSize', 1, ...
    'InitialLearnRate', .005, ... %% 1 -> le-3. Boost this up %% tune
this to increase accuracy + trianing time
    'CheckpointPath', tempdir)
% Options for step 3.
optionsStage3 = trainingOptions('sgdm', ...
    'MaxEpochs', 2, ... %How many time does your model train on usually
range f% from 1 -> 5. First, usaually use 1 at first.
    'MiniBatchSize', 1, ...
    'InitialLearnRate', .005, ... %% 1 -> le-3. Boost this up %% tune
this to increase accuracy + trianing time
    'CheckpointPath', tempdir)
% Options for step 4.
optionsStage4 = trainingOptions('sgdm', ...
    'MaxEpochs', 3, ... %How many time does your model train on usually
range f% from 1 -> 5. First, usaually use 1 at first.
            'MiniBatchSize', 1, ...
            'InitialLearnRate', .005, ... %% 1 -> 1e-3. Boost this up %% tune
this to increase accuracy + trianing time
    'CheckpointPath', tempdir)
options = [
    optionsStage1
    optionsStage2
    optionsStage3
    optionsStage4
    ];
%%
% train Faster R-CNN object detector
trainedDetector = trainFasterRCNNObjectDetector(trainingData,
net,options)
doTrainingAndEval = true;
toc
tic
```

```
%%
if doTrainingAndEval
    % Run detector on each image in the test set and collect results.
    resultsStruct = struct([]);
    for i = 1:height(testData)
                % Read the image.
                I = imread(testData.imageFilename{i});
            % Run the detector.
            [bboxes, scores, labels] = detect(trainedDetector, I);
            % Collect the results.
            resultsStruct(i).Boxes = bboxes;
            resultsStruct(i).Scores = scores;
            resultsStruct(i).Labels = labels;
    end
    % Convert the results into a table.
    results = struct2table(resultsStruct);
else
    % Load results from disk.
    results = data.results;
end
% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);
% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results,
expectedResults);
%%
% Plot precision/recall curve
for k = 1:length(label)
figure(k)
plot(recall{k},precision{k})
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %. 2f\n%s', ap(k), label{k}))
end
toc
```


APPENDIX F. 4 Code for detecting objects using a trained detector for a single image (MATLAB)

```
%load detector
detector = load(detectorFile);
% Read a test image.
I = imread(testImage);
% Run the detector.
    [bboxes,scores,labels] = detect(detector.trainedDetector,I);
% Annotate detections in the image.
I = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));
figure
imshow(I)
```


APPENDIX F. 5 Code for detecting objects using a trained

 detector for a multiple images (MATLAB)```
srcFiles = dir(%image file directory);%load images
detector = load(%detector file); %load detector
for n= 1:length(srcFiles)
 cd (srcFiles(1).folder)
 filename = strcat(srcFiles(n).name);
 image = imread(filename);
 % Read a test image.
 I = imread(filename);
 % Run the detector.
 [bboxes,scores,labels] = detect(detector.trainedDetector,I);
 bob{n} = [scores];
 % Annotate detections in the image.
 I = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));
 figure ('name', filename);
 imshow(I)
end
```


## APPENDIX F. 6 Shuffling code (MATLAB)

```
load %load a ground truth table of your image files
shuffledArray = orderedArray(randperm(size(orderedArray,1)), :);
%this line sfuffles the images
```


## APPENDIX F. 7 Padding code (MATLAB)

```
srcFiles = dir(%directory image files are located);
for n=1:length(srcFiles)
 cd (srcFiles(1).folder)
 filename = strcat(srcFiles(n).name);
 YourImage = imread(filename);
if isinteger(YourImage)
 pad = intmax(class(YourImage));
else
 pad = 1; %white for floating point is 1.0
end
%figure out which dimension is longer and rescale that to be the 256
%and pad the shorter one to 256
[r, c, ~] = size(YourImage);
if r > c
 NewImage = imresize(YourImage, 'new image height' / r);
 NewImage(:, end+1 : 'new image height', :) = pad;
elseif c > r
 NewImage = imresize(YourImage, 'new image width' / c);
 NewImage(end+1 : 'new image width', :, :) = pad;
else
 NewImage = imresize(YourImage, ['new image width' 'new image
height']);
end
 cd (%new image file location)
 imwrite (NewImage, filename)
end
```


## APPENDIX F. 8 Tractor images

Image 1 - (John Deere, 2019)
Image 2 - (Mahindra, 2019)
Image 3 - (Agricar, 2019)

Image 4 - (Ritchie Bros., 2019)
Image 5 - (Kubota, 2019)

## APPENDIX F.8.1 Run 1

```
'MaxEpochs', 1,
'MiniBatchSize', 1,
'InitialLearnRate', .01,
'CheckpointPath', tempdir)
```


## APPENDIX F.8.1.1 GoogLeNet

>> TractorDetectorgooglenetv2
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $2=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: $[1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []

ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $4=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
*
Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN). Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.
|====================================================================1
$======================================\mid$
| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base Learning |


Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.



Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.


Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:

ModelName: 'tractors'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $4 \times 2$ double]
ClassNames: \{'tractors' 'Background'\}
MinObjectSize: [16 16]

Elapsed time is 241.028839 seconds.
Elapsed time is 26.416004 seconds.

## APPENDIX F.8.1.1.1 Result



## APPENDIX F.8.1.1.2 Results on test pictures




## APPENDIX F.8.1.2 ResNet 101

>> TractorDetectorresnet101v3
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Temp\'

ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage2 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'

GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage4 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: 'I2norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 126 training images...done.

Training on single GPU.


Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.

======================================1


Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.


Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:

ModelName: 'tractors'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $4 \times 2$ double]
ClassNames: \{'tractors' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 749.969774 seconds.
Elapsed time is 45.415633 seconds.
APPENDIX F.8.1.2.1 Result


APPENDIX F.8.1.2.2 Results on test pictures



APPENDIX F.8.1.3 Inception V3
>> TractorDetectorinceptionv3v4
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: $[1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: 'I2norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Temp\'
ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $2=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: $[1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf

MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ' ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $4=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ' ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 126 training images...done.

Training on single GPU.


Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.

======================================1


Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.


Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:

ModelName: 'tractors'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $4 \times 2$ double]
ClassNames: \{'tractors' 'Background'\}
MinObjectSize: [18 18]
Elapsed time is 827.975924 seconds.
Elapsed time is 91.680995 seconds.
APPENDIX F.8.1.3.1 Result


APPENDIX F.8.1.4 Inception ResNet V2
>> TractorDetectorinceptionvresnetv2v8
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050

```
LearnRateScheduleSettings: [}1\times1\mathrm{ struct]
 L2Regularization: 1.0000e-04
GradientThresholdMethod: '12norm'
 GradientThreshold: Inf
 MaxEpochs: }
 MiniBatchSize: 1
 Verbose: 1
 VerboseFrequency: 50
 ValidationData: []
 ValidationFrequency: 50
 ValidationPatience: Inf
 Shuffle: 'once'
 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'
 ExecutionEnvironment: 'auto'
 WorkerLoad: []
 OutputFen: []
 Plots: 'none'
 SequenceLength: 'longest'
 SequencePaddingValue: 0
optionsStage2 =
TrainingOptionsSGDM with properties:
```

Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'

SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $4=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1

VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************ *

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.

$==================================1$
Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.

$=================================1$
| Epoch | Iteration \| Time Elapsed \| Mini-batch \| Mini-batch \| Mini-batch \| Base Learning |


Warning: GPU is low on memory, which can slow performance due to additional data transfers with main memory. Try reducing the
'MiniBatchSize' training option. This warning will not appear again unless you run the command:
warning('on','nnet_cnn:warning:GPULowOnMemory').
$\begin{array}{lllllll}|1| & 1 \mid & 00: 00: 10 \mid & 0.9738 \mid & 14.06 \% \mid & 1.20 \mid & 0.0050 \mid\end{array}$
Warning: While copying object of class 'gpuArray':
'Out of memory on device. To view more detail about available memory on the GPU, use 'gpuDevice()'. If the problem persists, reset
the GPU by calling 'gpuDevice(1)'.'
> In nnet.internal.cnn.DAGNetwork/forwardPropagationWithMemory (line 330)
In nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 562)
In nnet.internal.cnn.Trainer/computeGradients (line 184)
In nnet.internal.cnn.Trainer/train (line 85)
In vision.internal.cnn.trainNetwork (line 47)
In fastRCNNObjectDetector.train (line 190)
In trainFasterRCNNObjectDetector (line 410)
In TractorDetectorinceptionvresnetv2v8 (line 61)
Warning: While copying object of class 'gpuArray':
'Out of memory on device. To view more detail about available memory on the GPU, use
'gpuDevice()'. If the problem persists, reset
the GPU by calling 'gpuDevice(1)'.'
> In nnet.internal.cnn.DAGNetwork/forwardPropagationWithMemory (line 286)
In nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 562)
In nnet.internal.cnn.Trainer/computeGradients (line 184)
In nnet.internal.cnn.Trainer/train (line 85)
In vision.internal.cnn.trainNetwork (line 47)
In fastRCNNObjectDetector.train (line 190)
In trainFasterRCNNObjectDetector (line 410)
In TractorDetectorinceptionvresnetv2v8 (line 61)
Warning: While copying object of class 'gpuArray':
'Out of memory on device. To view more detail about available memory on the GPU, use 'gpuDevice()'. If the problem persists, reset
the GPU by calling 'gpuDevice(1)'.'
> In nnet.internal.cnn.DAGNetwork/forwardPropagationWithMemory (line 286)
In nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 562)
In nnet.internal.cnn.Trainer/computeGradients (line 184)
In nnet.internal.cnn.Trainer/train (line 85)
In vision.internal.cnn.trainNetwork (line 47)

In fastRCNNObjectDetector.train (line 190)
In trainFasterRCNNObjectDetector (line 410)
In TractorDetectorinceptionvresnetv2v8 (line 61)
Error using nnet.internal.cnn.layer.CustomLayer/forward (line 103)
Error using 'predict' in Layer nnet.inceptionresnetv2.layer.ScalingFactorLayer. The function threw an error and could not be executed.

Error in nnet.internal.cnn.DAGNetwork>@()this.Layers\{i\}.forward(XForThisLayer) (line 330)

$$
\text { @() this.Layers\{i\}.forward( XForThisLayer ), ... }
$$

Error in nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery (line 11) [ varargout $\{1:$ nOutputs $\}$ ] = computeFun();

Error in nnet.internal.cnn.DAGNetwork>iExecuteWithStagedGPUOOMRecovery (line 1195)
[varargout $\{1$ :nargout $\}$ ] = nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery(varargin $\{:\}$ );

Error in nnet.internal.cnn.DAGNetwork/forwardPropagationWithMemory (line 329) [outputActivations, memory] = iExecuteWithStagedGPUOOMRecovery( ...

Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 562)
[activationsBuffer, memoryBuffer, layerIsLearning] = this.forwardPropagationWithMemory(X);

Error in nnet.internal.cnn.Trainer/computeGradients (line 184)
[gradients, predictions, states] = net.computeGradientsForTraining(X, Y, needsStatefulTraining, propagateState);

Error in nnet.internal.cnn.Trainer/train (line 85)
[gradients, predictions, states] = this.computeGradients(net, X , response, needsStatefulTraining, propagateState);

Error in vision.internal.cnn.trainNetwork (line 47)
trainedNet = trainer.train(trainedNet, trainingDispatcher);
Error in fastRCNNObjectDetector.train (line 190)
[network, info] = vision.internal.cnn.trainNetwork(ds, lgraph, opts, mapping, checkpointSaver);

Error in trainFasterRCNNObjectDetector (line 410)
[stage2Detector, fastRCNN, $\sim, \operatorname{info}(2)]=$ fastRCNNObjectDetector.train(trainingData, fastRCNN, options(2),
iStageTwoParams(params), checkpointSaver);
Error in TractorDetectorinceptionvresnetv2v8 (line 61)
trainedDetector $=$ trainFasterRCNNObjectDetector(trainingData, net,options)
Caused by:
Error using *
The data no longer exists on the device.
>>
APPENDIX F.8.2 Run 2

```
'MaxEpochs', 2,
'MiniBatchSize', 1,
'InitialLearnRate', .005,
'CheckpointPath', tempdir
```

APPENDIX F.8.2.1 GoogLeNet
>> TractorDetectorgooglenetv5
optionsStage $1=$

## TrainingOptionsSGDM with properties:

Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: 'l2norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Temp\'
ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $2=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf

MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ' ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage4 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ' ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 126 training images...done.

Training on single GPU.


Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.


Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.

=========================================|
Detector training complete.
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'tractors'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $4 \times 2$ double]
ClassNames: \{'tractors' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 309.450047 seconds.
Elapsed time is 30.981631 seconds.
APPENDIX F.8.2.1.1 Result


APPENDIX F.8.2.1.2 Results on test pictures




APPENDIX F.8.2.2 ResNet 101
>> TractorDetectorresnet101v6
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ' ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $2=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []

ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $4=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************
*
Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN). Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.


Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.



$==================================1$
Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.


Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'tractors'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $4 \times 2$ double]
ClassNames: \{'tractors' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 921.760705 seconds.
Elapsed time is 49.185925 seconds.
APPENDIX F.8.2.2.1 Result


APPENDIX F.8.2.2.2 Results on test pictures




APPENDIX F.8.2.3 Inception V3
>> TractorDetectorinceptionv3v7
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ' ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $2=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []

ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage4 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************
*
Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN). Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.
$\mid===========================================================1$

| Epoch \| Iteration \| Time Elapsed \| Mini-batch \| Mini-batch \| Mini-batch \| Base Learning |

=========================================|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 126 training images...done.
Training on single GPU.


Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'tractors'
Network: [ $1 \times 1$ DAGNetwork]
AnchorBoxes: [ $4 \times 2$ double]
ClassNames: \{'tractors' 'Background'\}
MinObjectSize: [18 18]
Elapsed time is 994.296007 seconds.
Elapsed time is 88.889685 seconds.
APPENDIX F.8.2.3.1 Result


## APPENDIX F. 9 Round Bale

Image 1 - (everythingattachments.com, 2019)
Image 2 - (Southern Plains Photography, 2019)
Image 3 - (Global Auction Guide, 2019)

Image 4 - (Ohio's Country Journal, 2019)
Image 5 - (Marybeth Feutz, 2010)
APPENDIX F.9.1 Run 1

```
'MaxEpochs', 1,
'MiniBatchSize', 1,
'InitialLearnRate', .01,
'CheckpointPath', tempdir)
APPENDIX F.9.1.1 GoogLeNet
```

RBDetectorgooglenetv2
optionsStage1 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage2 $=$

TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'

CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'<br>ExecutionEnvironment: 'auto'<br>WorkerLoad: []<br>OutputFen: []<br>Plots: 'none'<br>SequenceLength: 'longest'<br>SequencePaddingValue: 0

optionsStage $4=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.
************************************************************************
*
Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 150 training images...done.
Training on single GPU.


Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN. Training on single GPU.
|===================================================================1 =========================================1
Epoch \| Iteration \| Time Elapsed \| Mini-batch \| Mini-batch \| Mini-batch \| Base Learning |
$\mid=============================================================$

| 1 | 1\| | 00:00:00\| | 0.4178 \| | 100.00\% \| | 0.73 \| | 0.0100 \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $50 \mid$ | 00:00:02 | 0.4448 | 100.00\% | 0.77 | 0.0100 |


| 1 | 100 | 00:00:04 | 0.3046 | 100.00\% | 0.79 | 0.0100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 150 | 00:00:07 | 0.1029 | 100.00\% | 0.88 | 0.0100 |

Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 150 training images...done.
Training on single GPU.


Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'roundbale'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'roundbale' 'Background'\}
MinObjectSize: [16 16]

Elapsed time is 347.412311 seconds.
Elapsed time is 92.124512 seconds.
APPENDIX F.9.1.1.1 Result


## APPENDIX F.9.1.1.2 Results on test pictures





## APPENDIX F.9.1.2 ResNet 101

>> RBDetectorresnet101v3
optionsStage $1=$
TrainingOptionsSGDM with properties:

Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50

```
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ' ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage2 \(=\)
TrainingOptionsSGDM with properties:
```

Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 =
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100

```
LearnRateScheduleSettings: [}1\times1\mathrm{ struct]
 L2Regularization: 1.0000e-04
GradientThresholdMethod: '12norm'
 GradientThreshold: Inf
 MaxEpochs: 1
 MiniBatchSize: 1
 Verbose: 1
 VerboseFrequency: 50
 ValidationData: []
 ValidationFrequency: 50
 ValidationPatience: Inf
 Shuffle: 'once'
 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'
 ExecutionEnvironment: 'auto'
 WorkerLoad: []
 OutputFen: []
 Plots: 'none'
 SequenceLength: 'longest'
 SequencePaddingValue: 0
optionsStage4 =
TrainingOptionsSGDM with properties:
```

Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'

SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************ *

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.

| \| Epoch | Iteration | Time Elapsed \| Mini-batch \| Mini-batch \| Mini-batch \| Base |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Learning \| |  |  |  |  |  |  |  |  |  |  |  |  |
|  | \| (h | :mm:ss) | Loss |  | Accura |  | RMSE |  |  | Rate |  |  |
| $====================================1$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | $1 \mid$ | 00:00:00\| |  | .8881 \| |  | .94\% | 0.7 | 72 \| |  | 0.0100 | \| |  |
| 1 | 50\| | 00:00:19 \| |  | . 6631 |  | \| |  | 0.80 |  |  | . 0100 |  |
| 1 | $100 \mid$ | 00:00:39 \| |  | . 4379 \| |  | 00.00\% |  | 0.84 |  |  | 0100 |  |
| 1 | 150 | 00:00:59 \| |  | . 5513 \| |  | 0.00\% |  | 0.94 |  |  | 0100 |  |

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 150 training images...done.

Training on single GPU.

=========================================|
Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.


Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 150 training images...done.
Training on single GPU.


Detector training complete.
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'roundbale'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'roundbale' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 920.846822 seconds.
Elapsed time is 168.548623 seconds.
APPENDIX F.9.1.2.1 Result


APPENDIX F.9.1.3 Inception V3
>> RBDetectorinceptionv3v4
optionsStage $1=$

TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage2 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'

CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'<br>ExecutionEnvironment: 'auto'<br>WorkerLoad: []<br>OutputFen: []<br>Plots: 'none'<br>SequenceLength: 'longest'<br>SequencePaddingValue: 0

optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0100
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 1
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage4 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$

GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 150 training images...done.
Training on single GPU.


Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.
|======================================================================1
$======================================1$
| Epoch | Iteration \| Time Elapsed \| Mini-batch \| Mini-batch \| Mini-batch | Base Learning |
| $============================================================$

Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 150 training images...done.
Training on single GPU.


| 2 | 150 | 00:02:02 | NaN | 3.91\% | NaN | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mid$ | 200 | 00:02:39 | NaN | 6.25\% | NaN | 0.0050 |
| $2 \mid$ | 250 | 00:03:17 | NaN | 2.42\% | NaN | 0.0050 |
| $3 \mid$ | 300 | 00:04:06 | NaN | 3.91\% | NaN | 0.0050 |
| $3 \mid$ | 350 | 00:04:43 | NaN | 3.91\% | NaN | 0.0050 |
| $3 \mid$ | 400 | 00:05:21 | NaN | 7.81\% | NaN | 0.0050 |
| $3 \mid$ | 432 | 00:05:45 | NaN | 2.36\% | NaN | 0.0050 |

Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'roundbale'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'roundbale' 'Background'\}
MinObjectSize: [18 18]
Elapsed time is 1073.125178 seconds.
Elapsed time is 278.413001 seconds.

## APPENDIX F.9.1.3.1 Result



## APPENDIX F.9.2 Run 2

```
'MaxEpochs', 2,
'MiniBatchSize', 1,
'InitialLearnRate', .005,
'CheckpointPath', tempdir
```

APPENDIX F.9.2.1 GoogLeNet
>> RBDetectorgooglenetv5
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]

L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $2=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'

SequencePaddingValue: 0
optionsStage3 =
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $4=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: 1.0000e-04
GradientThresholdMethod: 'l2norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50

ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0

## ************************************************************************ *

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 150 training images...done.

Training on single GPU.



Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.


Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 150 training images...done.
Training on single GPU.



Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'roundbale'
Network: [ $1 \times 1$ DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'roundbale' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 404.969511 seconds.
Elapsed time is 95.141504 seconds.

## APPENDIX F.9.2.1.1 Result



## APPENDIX F.9.2.1.2 Results on test pictures





## APPENDIX F.9.2.2 ResNet 101

>> RBDetectorresnet101v6
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50

ValidationPatience: Inf<br>Shuffle: 'once'<br>CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ' ExecutionEnvironment: 'auto'<br>WorkerLoad: []<br>OutputFen: []<br>Plots: 'none'<br>SequenceLength: 'longest'<br>SequencePaddingValue: 0

optionsStage2 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: 1.0000e-04
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 =
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050

```
LearnRateScheduleSettings: [\(1 \times 1\) struct]
 L2Regularization: \(1.0000 \mathrm{e}-04\)
GradientThresholdMethod: '12norm'
 GradientThreshold: Inf
 MaxEpochs: 2
 MiniBatchSize: 1
 Verbose: 1
 VerboseFrequency: 50
 ValidationData: []
 ValidationFrequency: 50
 ValidationPatience: Inf
 Shuffle: 'once'
 CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Temp\'
 ExecutionEnvironment: 'auto'
 WorkerLoad: []
 OutputFen: []
 Plots: 'none'
 SequenceLength: 'longest'
 SequencePaddingValue: 0
```

optionsStage $4=$
TrainingOptionsSGDM with properties:

Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'

SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************ *

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 150 training images...done.
Training on single GPU.


| 2 | 250 | 00:03:42 | NaN | 2.34\% | NaN | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 300 | 00:04:25 | NaN | 6.03\% | NaN | 0.0050 |

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.

$=====================================1$
Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 150 training images...done.
Training on single GPU.



Detector training complete.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'roundbale'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'roundbale' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 1183.976877 seconds.
Elapsed time is 159.679516 seconds.

## APPENDIX F.9.2.2.1 Result



APPENDIX F.9.2.3 Inception V3
>> RBDetectorinceptionv3v7
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50

ValidationData: []<br>ValidationFrequency: 50<br>ValidationPatience: Inf Shuffle: 'once'<br>CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'<br>ExecutionEnvironment: 'auto'<br>WorkerLoad: []<br>OutputFen: []<br>Plots: 'none'<br>SequenceLength: 'longest'<br>SequencePaddingValue: 0

optionsStage2 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: 'I2norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:

Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage4 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []

## OutputFen: []

Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************
*
Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).
Training on single GPU.


Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 150 training images...done.
Error using vision.internal.cnn.fastrenn.imageCentricRegionDatastore (line 153) Unable to find any region proposals to use as positive training samples. Lower the first value of PositiveOverlapRange to increase the number of positive region proposals.

Error in fastRCNNObjectDetector/createTrainingDatastore (line 1212)
$\mathrm{ds}=$ vision.internal.cnn.fastrenn.imageCentricRegionDatastore (...
Error in fastRCNNObjectDetector.train (line 174)
ds $=$ fastRCNNObjectDetector.createTrainingDatastore(...

Error in trainFasterRCNNObjectDetector (line 410)
[stage2Detector, fastRCNN, $\sim, \operatorname{info}(2)]=$ fastRCNNObjectDetector.train(trainingData, fastRCNN, options(2),
iStageTwoParams(params), checkpointSaver);
Error in RBDetectorinceptionv3v7 (line 61)
trainedDetector $=$ trainFasterRCNNObjectDetector(trainingData, net,options)
APPENDIX F.9.2.3.1 Result
Error caused no training to take place

## APPENDIX F. 10 Pivot

Image 1 - (Mesa Irrigation Co in Lamesa , TX, 2019)
Image 2 - (WorldAgNetwork, 2016)
Image 3 - (Sheridan Reality \& Auction Co., 2017)
Image 4 - (newwayirrigation.com, 2019)
Image 5 - (pivotsplus.com, 2019)
Image 6 - (Chicot Irrigation, 2019)
Image 7 - (RainFine Irrigation Solution, 2019)

## APPENDIX F.10.1 Run 1

## APPENDIX F.10.1.1 GoogLeNet

>> pivotDetectorGoogLeNetv1
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: 'l2norm'
GradientThreshold: Inf
MaxEpochs: 2

MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $2=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$

TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Temp\'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $4=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'

CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'<br>ExecutionEnvironment: 'auto'<br>WorkerLoad: []<br>OutputFen: []<br>Plots: 'none'<br>SequenceLength: 'longest'<br>SequencePaddingValue: 0

************************************************************************ *

Training a Faster R-CNN Object Detector for the following object classes:

* end_tower
* pyramid
* span
* tower

Step 1 of 4: Training a Region Proposal Network (RPN).
Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The following rows in trainingData have invalid bounding box data:

Invalid Rows

322
361
367
388
389
438
514
540
601
617
619
637
647
654
685
697
731

Bounding boxes must be fully contained within their associated image and must have positive width and height.
Training on single GPU.


| 2 | $800 \mid$ | 00:01:20 \| | 0.0274 | 100.00\% | 0.65 | 0.0050 \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $850 \mid$ | 00:01:25 | 0.0314 | 100.00\% | 0.42 \| | 0.0050 \| |
| 2 | $900 \mid$ | 00:01:30 \| | 0.4175 | 100.00\% | 1.40 | 0.0050 \| |
| 2 | 950 \| | 00:01:35 \| | 0.0888 | 100.00\% \| | 0.44 \| | 0.0050 \| |
| 2 | 1000 | 00:01:39 | 0.5475 \| | 100.00\% | 0.95 | 0.0050 \| |
| 2 | 1050 | 00:01:44 | 0.0390 | 100.00\% | 0.49 | 0.0050 \| |
| 2 | 1100 | 00:01:49 | 0.0161 | 100.00\% | 0.71 | 0.0050 |
| 2 | 1150 | 00:01:54 | 0.0080 | 100.00\% | 0.24 | 0.0050 |
| 2 | 1200 | 00:01:59 | 0.0345 | 100.00\% | 0.33 | 0.0050 |
| 2 | 1250 | 00:02:04 | 0.0721 | 100.00\% | 0.88 | 0.0050 |
| $2 \mid$ | 1300 | 00:02:09 | 0.0348 | 100.00\% | 0.31 | 0.0050 \| |
| 2 | 1350 | 00:02:13 | 0.0289 \| | 100.00\% | 0.51 | 0.0050 |
| 2 | 1400 | 00:02:18 | 0.6019 \| | 100.00\% | 1.93 | 0.0050 \| |
| $2 \mid$ | 1450 | 00:02:23 | 0.0507 \| | 100.00\% | 0.50 | 0.0050 |
| $2 \mid$ | 1472 | 00:02:25 | 0.1358 | 100.00\% | 0.63 | 0.0050 \| |

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 736 training images...done.

Training on single GPU.


| 2 | 750 | 00:03:09 \| | 0.1995 | 95.31\% | 0.49 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mid$ | 800 | 00:03:22 | 0.2103 \| | 95.31\% | 0.30 | 0.0050 |
| $2 \mid$ | 850 | 00:03:34 \| | 0.1183 \| | 96.88\% \| | 0.33 | 0.0050 |
| $2 \mid$ | 900 | 00:03:47 \| | 0.2664 \| | 96.09\% \| | 0.43 | 0.0050 |
| $2 \mid$ | 950 | 00:04:00 \| | 0.1525 \| | 96.09\% \| | 0.29 | 0.0050 |
| $2 \mid$ | 1000\| | 00:04:12 | 0.1741 | 97.66\% | 0.25 \| | 0.0050 \| |
| $2 \mid$ | 1050\| | 00:04:25 | 0.1611 | 95.24\% | 0.30 | 0.0050 \| |
| $2 \mid$ | 1100\| | 00:04:38 | 0.2815 | 95.31\% | 0.41 | 0.0050 |
| $2 \mid$ | 1150\| | 00:04:50 | 0.1346 | 97.66\% | 0.26 | 0.0050 |
| $2 \mid$ | 1200 \| | 00:05:03 | 0.6938 | 91.41\% | 0.58 | 0.0050 |
| $2 \mid$ | 1250\| | 00:05:15 | 0.1353 | 98.44\% | 0.33 \| | 0.0050 |
| 2 | $1300 \mid$ | 00:05:27 | 0.0605 | 100.00\% | 0.27 | 0.0050 \| |
| 2 | 1350 | 00:05:40 | 0.3171 | 92.97\% | 0.33 \| | 0.0050 \| |
| $2 \mid$ | 1400\| | 00:05:53 | 0.0782 | 98.44\% | 0.26 | 0.0050 |
| 2 | 1450 | 00:06:05 | 0.1727 | 96.09\% | 0.24 | 0.0050 |
| $2 \mid$ | 1466\| | 00:06:09 | 0.1023 | 97.66\% | 0.23 \| | 0.0050 |

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.



Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 736 training images...done.
Training on single GPU.


| $2 \mid$ | 750 | 00:02:23\| | 0.1665 | 96.88\% | 0.37 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mid$ | 800 | 00:02:32 | 0.1847 \| | 94.53\% | 0.28 | 0.0050 |
| $2 \mid$ | 850 | 00:02:41 | 0.2056 | 96.88\% | 0.24 | 0.0050 |
| $2 \mid$ | 900 | 00:02:51 \| | 0.1138 | 96.25\% | 0.24 \| | 0.0050 \| |
| $2 \mid$ | 950 | 00:03:00\| | 0.0190 \| | 100.00\% \| | 0.29 | 0.0050 |
| $2 \mid$ | 1000\| | 00:03:09 | 0.1074 | 95.70\% | 0.29 | 0.0050 |
| $2 \mid$ | 1050\| | 00:03:19 | 0.0920 | 98.44\% | 0.27 | 0.0050 |
| $2 \mid$ | 1100\| | 00:03:28 | 0.1547 | 96.09\% | 0.24 | 0.0050 |
| $2 \mid$ | 1150\| | 00:03:37 | 0.1460 | 95.31\% | 0.20 | 0.0050 |
| $2 \mid$ | 1200 \| | 00:03:47 | 0.1846 | 96.88\% | 0.27 | 0.0050 |
| 21 | 1250 \| | 00:03:56 | 0.1339 | 95.31\% | 0.23 | 0.0050 |
| $2 \mid$ | 1300 \| | 00:04:05 | 0.1927 | 93.75\% | 0.23 | 0.0050 |
| 2 | 1350 \| | 00:04:15 | 0.0730 | 99.22\% | 0.20 | 0.0050 |
| $2 \mid$ | 1400\| | 00:04:24 | 0.0994 | 94.55\% | 0.24 | 0.0050 |
| $2 \mid$ | 1450 \| | 00:04:34 | 0.1426 | 95.31\% | 0.16 | 0.0050 |
| 31 | 1500\| | 00:04:46 | 0.1497 | 94.53\% | 0.19 | 0.0050 |
| 31 | 1550\| | 00:04:55 | 0.1485 | 93.75\% | 0.27 | 0.0050 |
| 31 | 1600\| | 00:05:05 | 0.1995 | 95.31\% | 0.27 | 0.0050 |
| 31 | 1650\| | 00:05:14 | 0.0553 | 100.00\% | 0.19 | 0.0050 |
| 31 | 1700 \| | 00:05:23 | 0.1359 | 96.09\% | 0.23 \| | 0.0050 \| |
| 31 | 1750\| | 00:05:33 | 0.0795 | 97.66\% | 0.19 | 0.0050 |
| 31 | 1800\| | 00:05:42 | 0.0811 | 97.66\% | 0.18 | 0.0050 |
| 31 | 1850\| | 00:05:51 | 0.1497 | 95.31\% | 0.34 | 0.0050 |
| 31 | 1900 \| | 00:06:00 | 0.3133 | 92.19\% | 0.34 | 0.0050 |
| 31 | 1950\| | 00:06:10 | 0.1670 | 94.53\% | 0.22 | 0.0050 |
| 31 | 2000 \| | 00:06:19 | 0.1671 | 96.09\% | 0.20 | 0.0050 |
| 31 | 2050 | 00:06:29 | 0.0817 | 98.44\% | 0.21 | 0.0050 |
| 31 | 2100 | 00:06:38 | 0.0613 | 98.86\% | 0.38 | 0.0050 |
| 31 | 2150 \| | 00:06:48 | 0.0705 | 96.88\% | 0.16 | 0.0050 |
| 31 | $2200 \mid$ | 00:06:57 | 0.1243 | 96.88\% | 0.22 | 0.0050 |
| 31 | 2205 \| | 00:06:58 | 0.1876 | 94.53\% | 0.21 | 0.0050 |

Detector training complete (with warnings):
Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The following rows in trainingData have invalid bounding box data:

Invalid Rows

60
65
82
103
131
145
166
178
179
189
218
232
270
271
275
294
298
322
361
367
388
389
438
514
540
601
617
619
637
647
654
685
697
731
Bounding boxes must be fully contained within their associated image and must have positive width and height.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'end_tower'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'end_tower' 'pyramid' 'span' 'tower' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 1177.149515 seconds.

APPENDIX F.10.1.1.1 Result
Average Precision $=0.92$
end ${ }_{t}$ ower


Average Precision $\mathbf{= 0 . 9 9}$
pyramid




## APPENDIX F.10.1.1.2 Results on test pictures





APPENDIX F.10.1.2 Resnet101
>> pivotDetectorResNet101v2
optionsStage $1=$
TrainingOptionsSGDM with properties:

Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $2=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $4=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf

MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************
*
Training a Faster R-CNN Object Detector for the following object classes:

* end_tower
* pyramid
* span
* tower

Step 1 of 4: Training a Region Proposal Network (RPN).
Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The following rows in trainingData have invalid
bounding box data:
Invalid Rows

20
49

## 60

65
82
103
131

189
218
232
270
271
275

## 294

298
322
361
367

## 388

## 389

438
514
540
601
617
619
637
647
654
685
697
731

Bounding boxes must be fully contained within their associated image and must have positive width and height.
Training on single GPU.


| $1 \mid$ | 400 \| | 00:02:38 \| | 0.0257 | 100.00\% | 0.61 \| | 0.0050 \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 450 \| | 00:02:58\| | 0.0997 | 100.00\% | 0.74 \| | 0.0050 \| |
| $1 \mid$ | $500 \mid$ | 00:03:17 | 0.0700 | 100.00\% | 0.90 \| | 0.0050 \| |
| 1 | $550 \mid$ | 00:03:37 | 0.1365 | 100.00\% | 0.59 \| | 0.0050 \| |
| $1 \mid$ | $600 \mid$ | 00:03:57 | 0.0115 | 100.00\% | 0.33 \| | 0.0050 \| |
| 1 | $650 \mid$ | 00:04:17 | 0.1751 | 100.00\% | 1.13 \| | 0.0050 \| |
| $1 \mid$ | $700 \mid$ | 00:04:36 \| | 0.0624 | 100.00\% | 0.46 | 0.0050 \| |
| 21 | 750 \| | 00:05:11 \| | 0.0868 | 100.00\% | 0.44 \| | 0.0050 \| |
| 21 | $800 \mid$ | 00:05:31 \| | 0.0143 \| | 100.00\% | 0.47 \| | 0.0050 \| |
| 2 | $850 \mid$ | 00:05:51 \| | 0.0745 | 100.00\% | 0.38 \| | 0.0050 \| |
| 2 | 900 \| | 00:06:10 \| | 0.1022 \| | 100.00\% | 0.51 \| | 0.0050 \| |
| 2 | 950 \| | 00:06:30 \| | 0.1577 \| | 100.00\% | 0.60 \| | 0.0050 \| |
| 2 | $1000 \mid$ | 00:06:50\| | 0.0795 | 100.00\% \| | 0.53 | 0.0050 \| |
| 2 | 1050 | 00:07:10 | 0.2771 \| | 100.00\% \| | 1.14 | 0.0050 \| |
| 2 | 1100 | 00:07:29 | 0.1340 \| | 100.00\% \| | 0.94 | 0.0050 \| |
| 2 | 1150 | 00:07:49 | 0.0729 | 100.00\% \| | 0.40 | 0.0050 \| |
| 2 | $1200 \mid$ | 00:08:09 | 0.0753 | 100.00\% \| | 0.39 | 0.0050 \| |
| 2 | 1250 | 00:08:29 | 0.0658 | 100.00\% \| | 0.50 | 0.0050 \| |
| 2 | $1300 \mid$ | 00:08:48 | 0.0416 | 100.00\% \| | 0.90 | 0.0050 \| |
| 2 | 1350 | 00:09:08 | 0.1429 | 100.00\% \| | 0.53 | 0.0050 \| |
| 2 | 1400 | 00:09:28 | 0.0033 | 100.00\% | 0.18 | 0.0050 |
| 21 | 1450 | 00:09:48 | 0.0075 | 100.00\% | 0.341 | 0.0050 |
| 21 | 1472 \| | 00:09:57\| | 0.0538 \| | 100.00\% \| | 0.37 \| | 0.0050 \| |

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.
--> Extracting region proposals from 736 training images...done.
Training on single GPU.

| \| Epoch \| Iteration \| Time Elapsed \| Mini-batch \| Mini-batch \| Mini-batch \| Ba |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Learning \| |  |  |  |  |  |  |  |  |  |
|  | \| (h) | h:mm:ss) | Loss | S | Accuracy | RMSE |  | Rate |  |
| $====================================1$ |  |  |  |  |  |  |  |  |  |
| 1 | 1 \| | 00:00:01 \| |  |  | 15.38\% | 0.52 \| |  | 0.0050 \| |  |
| 1 | $50 \mid$ | 00:00:41 |  | NaN | 0.00\% \| | NaN |  | 0.0050 |  |
| 1 | 100 | 00:01:22 |  | NaN | 0.00\% | NaN |  | 0.0050 |  |
| 1 | 150 | 00:02:03 |  | NaN | 1.56\% | NaN |  | 0.0050 |  |
| 1 | 200 | 00:02:44 |  | NaN | 0.00\% | NaN |  | 0.0050 |  |
| 1 | 250 | 00:03:25 |  | NaN | 0.00\% | NaN |  | 0.0050 |  |
| 1 | 300 | 00:04:07 |  | NaN \| | 4.65\% | NaN |  | 0.0050 |  |


| 1\| | $350 \mid$ | 00:04:48 \| | NaN | 0.00\% \| | NaN | 0.0050 \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \mid$ | $400 \mid$ | 00:05:29 | NaN \| | 0.00\% \| | NaN \| | 0.0050 \| |
| $1 \mid$ | 450 | 00:06:11 \| | NaN \| | 0.00\% \| | NaN \| | 0.0050 \| |
| $1 \mid$ | 500 | 00:06:52 \| | NaN \| | 0.00\% \| | NaN \| | 0.0050 \| |
| $1 \mid$ | 550 | 00:07:33 \| | NaN \| | 0.00\% \| | NaN \| | 0.0050 \| |
| 1 \| | 600 | 00:08:14 | NaN \| | 0.00\% \| | NaN \| | 0.0050 \| |
| $1 \mid$ | 650 | 00:08:56\| | NaN \| | 0.00\% \| | NaN | 0.0050 \| |
| 1 \| | 700 | 00:09:37 | NaN \| | 0.00\% \| | NaN \| | 0.0050 \| |
| 21 | 750 | 00:10:34 | NaN \| | 0.00\% \| | NaN | 0.0050 \| |
| 21 | 800 | 00:11:15 | NaN | 0.00\% | NaN | 0.0050 |
| 21 | $850 \mid$ | 00:11:56\| | NaN \| | 1.56\% | NaN | 0.0050 \| |
| 21 | 900 | 00:12:37 | NaN | 0.00\% | NaN | 0.0050 \| |
| 21 | $950 \mid$ | 00:13:19 | NaN | 1.56\% \| | NaN \| | 0.0050 \| |
| 21 | 1000\| | 00:14:00 | NaN \| | 0.00\% \| | NaN | 0.0050 |
| 21 | 1050\| | 00:14:42 | NaN \| | 0.00\% \| | NaN | 0.0050 |
| 21 | $1100 \mid$ | 00:15:23 | NaN \| | 0.00\% \| | NaN | 0.0050 |
| 21 | 1150\| | 00:16:04 | NaN | 0.00\% | NaN | 0.0050 |
| 21 | $1200 \mid$ | 00:16:45 | NaN | 0.00\% | NaN | 0.0050 |
| 21 | 1250\| | 00:17:27 | NaN | 0.00\% | NaN | 0.0050 |
| 21 | $1300 \mid$ | 00:18:08 | NaN | 0.00\% | NaN | 0.0050 |
| 21 | 1350\| | 00:18:49 | NaN | 0.00\% \| | NaN | 0.0050 |
| 21 | $1400 \mid$ | 00:19:31 | NaN | 0.00\% \| | NaN | 0.0050 |
| 21 | $1450 \mid$ | 00:20:12 | NaN | 0.00\% \| | NaN | 0.0050 |
| 21 | 1470\| | 00:20:28 | NaN \| | 6.31\% \| | NaN | 0.0050 \| |

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN. Training on single GPU.


| 1 \| | 400 | 00:01:29 \| | 0.1006 \| | 100.00\% | 0.93 | 0.0050 \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 450 | 00:01:40 \| | 0.0643 \| | 100.00\% | 0.83 | 0.0050 |
| 1 \| | 500 | 00:01:51 | 0.1859 \| | 100.00\% | 0.82 | 0.0050 \| |
| 1 | 550 | 00:02:02 \| | 0.0540 \| | 100.00\% | 0.67 | 0.0050 \| |
| 1 | 600 | 00:02:13 \| | 0.0811 \| | 100.00\% | 0.95 | 0.0050 \| |
| $1 \mid$ | 650 | 00:02:24 \| | 0.0446 | 100.00\% | 0.93 | 0.0050 \| |
| 1 | 700 | 00:02:35 | 0.2030 \| | 100.00\% | 0.71 | 0.0050 \| |
| 2 | 750 | 00:02:59 | 0.2437 \| | 100.00\% | 1.11 | 0.0050 \| |
| 2 | 800 | 00:03:10 | 0.1709 \| | 100.00\% | 0.73 | 0.0050 \| |
| 2 | 850 | 00:03:21 \| | 1.0493 \| | 100.00\% | 2.20 | 0.0050 |
| 2 | 900 | 00:03:32 \| | 0.4017 \| | 100.00\% | 0.73 \| | 0.0050 \| |
| 2 | 950 | 00:03:43 \| | 0.1087 \| | 100.00\% \| | 0.59 \| | 0.0050 \| |
| 2 | 1000\| | 00:03:54 | 0.1086 | 100.00\% | 0.81 | 0.0050 \| |
| 2 | 1050 | 00:04:05 | 0.0155 | 100.00\% | 0.94 | 0.0050 |
| 2 | 1100\| | 00:04:16 | 0.5464 | 100.00\% | 1.66 | 0.0050 |
| 2 | 1150\| | 00:04:27 | 0.0582 | 100.00\% | 0.85 | 0.0050 |
| 2 | $1200 \mid$ | 00:04:38 | 0.2967 | 100.00\% | 0.66 | 0.0050 |
| 2 | 1250\| | 00:04:49 | 0.1426 | 100.00\% | 0.85 | 0.0050 |
| 2 | $1300 \mid$ | 00:05:00 | 0.0708 | 100.00\% | 0.88 | 0.0050 |
| 2 | 1350\| | 00:05:11 | 0.0531 | 100.00\% | 0.92 | 0.0050 |
| 2 | 1400 \| | 00:05:22 | 0.1185 | 100.00\% | 1.28 | 0.0050 |
| 2 | 1450\| | 00:05:33 | 0.0608 | 100.00\% | 0.67 | 0.0050 |
| 2 | 1472 \| | 00:05:37 | 0.0950 | 100.00\% | 0.91 | 0.0050 |

Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 736 training images...done.
Training on single GPU.


| $1 \mid$ | 350 | 00:02:57 | NaN | 0.00\% | NaN | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 \| | 400 | 00:03:22 | NaN \| | 5.47\% | NaN | 0.0050 |
| 1 \| | 450 | 00:03:48 | NaN \| | 5.69\% | NaN | 0.0050 |
| 1 \| | 500 | 00:04:13 | NaN \| | 0.00\% | NaN | 0.0050 |
| 1 \| | 550 | 00:04:38 \| | NaN \| | 0.00\% | NaN | 0.0050 |
| 1 \| | 600 | 00:05:03 | NaN \| | 0.00\% | NaN | 0.0050 |
| 1 \| | 650 | 00:05:29 | NaN \| | 1.56\% | NaN | 0.0050 |
| $2 \mid$ | 700 | 00:06:09 | NaN \| | 0.00\% | NaN | 0.0050 |
| $2 \mid$ | 750 | 00:06:33 | NaN | 0.00\% | NaN | 0.0050 |
| $2 \mid$ | 800 | 00:06:59 | NaN | 0.00\% | NaN | 0.0050 |
| 2 | 850 | 00:07:24 \| | NaN \| | 1.57\% | NaN | 0.0050 |
| $2 \mid$ | 900 | 00:07:50\| | NaN | 0.00\% | NaN | 0.0050 |
| $2 \mid$ | 950 | 00:08:16\| | NaN \| | 0.00\% | NaN | 0.0050 |
| $2 \mid$ | 1000\| | 00:08:41 | NaN | 0.00\% | NaN | 0.0050 \| |
| $2 \mid$ | 1050\| | 00:09:06 | NaN | 4.48\% | NaN | 0.0050 |
| $2 \mid$ | 1100\| | 00:09:32 | NaN | 0.00\% | NaN | 0.0050 |
| $2 \mid$ | 1150\| | 00:09:57 | NaN | 0.00\% | NaN | 0.0050 |
| 2 | 1200\| | 00:10:22 | NaN | 0.00\% | NaN | 0.0050 |
| $2 \mid$ | 1250 \| | 00:10:48 | NaN | 0.00\% | NaN | 0.0050 |
| $2 \mid$ | 1300 \| | 00:11:13 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1350 | 00:11:53 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1400\| | 00:12:18 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1450 \| | 00:12:44 | NaN | 1.56\% | NaN | 0.0050 |
| 31 | 1500\| | 00:13:09 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1550\| | 00:13:35 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1600\| | 00:14:01 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1650\| | 00:14:26 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1700 \| | 00:14:51 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1750 \| | 00:15:16 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1800\| | 00:15:42 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1850\| | 00:16:07 | NaN | 0.00\% | NaN | 0.0050 |
| 31 | 1900\| | 00:16:32 | NaN | 0.78\% | NaN | 0.0050 |
| 31 | 1950\| | 00:16:58 | NaN | 10.98\% | NaN | 0.0050 \| |
| 31 | 1986\| | 00:17:16 | NaN | 0.00\% | NaN \| | 0.0050 \| |

Detector training complete (with warnings):
Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The following rows in trainingData have invalid
bounding box data:
Invalid Rows

20

Bounding boxes must be fully contained within their associated image and must have positive width and height.
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'end_tower'
Network: [ $1 \times 1$ DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'end_tower' 'pyramid' 'span' 'tower' 'Background'\} MinObjectSize: [16 16]

Elapsed time is 3622.019200 seconds.





## APPENDIX F.10.2 Run 2

## APPENDIX F.10.2.1 GoogLeNet

>> pivotDetectorGoogLeNetv3
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: 'l2norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage2 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: 'l2norm'
GradientThreshold: Inf
MaxEpochs: 2

MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage $4=$

TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Temp\'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
$* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$
*
Training a Faster R-CNN Object Detector for the following object classes:

* end_tower
* pyramid
* span
* tower

Step 1 of 4: Training a Region Proposal Network (RPN).
Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The following rows in trainingData have invalid bounding box data:

Invalid Rows

60
65
82
103
131
145
166
178
179
189
218
232
270
271
275
294
298
322
361
367
388
389
438
514
540
601
617
619
637
647
654
685
697
731
Bounding boxes must be fully contained within their associated image and must have positive width and height.
Training on single GPU.



Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 736 training images...done.

Training on single GPU.
 Learning |


Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.
 Learning |


Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 736 training images...done.
Training on single GPU.



| 31 | 1950 | 00:06:12 | 0.2008 | 95.31\% | 0.32 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | 2000 | 00:06:21 | 0.0934 | 98.44\% | 0.19 | 0.0050 |
| $3 \mid$ | 2050 | 00:06:30 | 0.1384 | 97.66\% | 0.20 | 0.0050 |
| $3 \mid$ | 2100 | 00:06:40 | 0.1627 | 96.88\% | 0.23 | 0.0050 |
| $3 \mid$ | 2150 | 00:06:49 | 0.2234 | 92.19\% | 0.20 | 0.0050 |
| 31 | 2196 | 00:06:58 | 0.0872 | 99.22\% | 0.19 | 0.0050 |

Detector training complete (with warnings):
Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The following rows in trainingData have invalid bounding box data:

Invalid Rows

20
49
60
65
82
103
131
145
166

## 178

179
189
218
232
270
271
275
294

## 298

322
361
367
388

## 389

438
514
540

601
617
619
637
647
654
685
697
731
Bounding boxes must be fully contained within their associated image and must have positive width and height.
*******************************************************************
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'end_tower'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'end_tower' 'pyramid' 'span' 'tower' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 1169.963024 seconds.




APPENDIX F.10.2.1.2 Results on test pictures





APPENDIX F.10.2.2 Resnet101
N/A
APPENDIX F.10.2.2.1 Result
N/A
APPENDIX F. 11 Combined Detector

Image 1 - (beefmagazine.com, 2014)
Image 2 - (Keeping It Dutch, 2015)
Image 3 - (AuctionTime Blog, 2018)
Image 4 - (Vishal Agro Industries, 2019)
Image 5 - (New Holland, 2017)
Image 6 - (Wiring Schematic Design, 2019)
Image 7 - (Vodar Co., Ltd., 2019)
Image 8 - (Lindsay Europe, 2019)

Image 9 - (Denise O’Sullivan, 2019)
Image 10 - (Tracey Media, 2013)

## APPENDIX F.11.1 GoogLeNet Run 1

>> combinedMergedDetectorv1
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage2 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]

L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'

SequencePaddingValue: 0
optionsStage4 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************
*
Training a Faster R-CNN Object Detector for the following object classes:

* tractors
* roundbale
* end_tower
* pyramid
* span
* tower

Step 1 of 4: Training a Region Proposal Network (RPN).
Warning: Invalid bounding boxes from 31 out of 1014 training images were removed.
The following rows in trainingData have invalid
bounding box data:

Invalid Rows

17
75
194
199
202
249
253
261
290
309
369
395
399
498
617
652
678

## 679

703
717
731
752

## 767

806
808
811
816
864
897
920
937

Bounding boxes must be fully contained within their associated image and must have positive width and height.
Training on single GPU.




Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 1013 training images...done.

Training on single GPU.


| $2 \mid$ | 1500 | 00:06:17 | 0.0956 | 98.44\% | 0.29 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mid$ | 1550 | 00:06:29 | 0.2340 | 92.19\% | 0.26 | 0.0050 |
| $2 \mid$ | 1600 | 00:06:42 | 0.2327 | 93.75\% | 0.32 | 0.0050 |
| $2 \mid$ | 1650 | 00:06:54 | 0.1548 | 96.09\% | 0.16 | 0.0050 |
| $2 \mid$ | 1700 | 00:07:06 | 0.1122 | 97.40\% | 0.22 | 0.0050 |
| $2 \mid$ | 1750 | 00:07:19 | 0.1166 | 96.88\% | 0.21 | 0.0050 |
| 2 | 1800 | 00:07:31 | 0.2449 | 96.09\% | 0.26 | 0.0050 |
| $2 \mid$ | 1850 | 00:07:44 | 0.1168 | 98.44\% | 0.23 | 0.0050 |
| 21 | 1900 | 00:07:56 | 0.2255 | 95.31\% | 0.26 | 0.0050 |
| 21 | 1950 | 00:08:09 | 0.1614 | 97.66\% | 0.28 | 0.0050 |
| 2 | 1984 | 00:08:17 | 0.0614 | 99.00\% | 0.23 | 0.0050 |

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN. Training on single GPU.
|======================================================================1


| 2 | 1050 | 00:01:02 | 0.1515 | 100.00\% | 0.69 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1100 | 00:01:05 | 0.1542 | 100.00\% | 0.76 | 0.0050 |
| 2 | 1150 | 00:01:08 | 0.3080 | 100.00\% | 1.01 | 0.0050 |
| 2 | 1200 | 00:01:11 | 0.3184 | 100.00\% | 0.77 | 0.0050 |
| 2 | 1250 | 00:01:14 | 0.5464 | 100.00\% | 1.74 | 0.0050 |
| 2 | 1300 | 00:01:17 | 0.2412 | 100.00\% | 0.62 | 0.0050 |
| 2 | 1350 | 00:01:20 | 0.0729 | 100.00\% | 1.04 | 0.0050 |
| 2 | 1400 | 00:01:23 | 0.2458 | 100.00\% | 0.73 | 0.0050 |
| 2 | 1450 | 00:01:25 | 1.0584 | 100.00\% | 1.10 | 0.0050 |
| 2 | 1500 | 00:01:28 | 0.2303 | 100.00\% | 1.00 | 0.0050 |
| 2 | 1550 | 00:01:31 | 0.3323 | 100.00\% | 0.76 | 0.0050 |
| 2 | 1600 | 00:01:34 | 0.0361 | 100.00\% | 0.74 | 0.0050 |
| 2 | 1650 | 00:01:37 | 0.2501 | 100.00\% | 1.44 | 0.0050 |
| 2 | 1700 | 00:01:40 | 0.0802 | 100.00\% | 0.79 | 0.0050 |
| 2 | 1750 | 00:01:43 | 0.0907 | 100.00\% | 0.45 | 0.0050 |
| 2 | 1800 | 00:01:46 | 0.2056 | 100.00\% | 0.71 | 0.0050 |
| 2 | 1850 | 00:01:49 | 0.0794 | 100.00\% | 0.74 | 0.0050 |
| 2 | 1900 | 00:01:52 | 0.4074 | 100.00\% | 1.14 | 0.0050 |
| $2 \mid$ | 1950 | 00:01:54 | 0.1408 | 100.00\% | 0.61 | 0.0050 |
| $2 \mid$ | 2000 | 00:01:57 | 0.1751 | 100.00\% | 0.70 | 0.0050 |
| $2 \mid$ | 2026 | 00:01:59 | 0.0958 | 100.00\% | 1.11 | 0.0050 |

Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 1013 training images...done.
Training on single GPU.


| 1 | 450 \| |
| :---: | :---: |
| 1 | 500 |
| 1 | 550 |
| 1 | $600 \mid$ |
| 1 | 650 |
| 1 | $700 \mid$ |
| 1 | 750 |
| 1 | $800 \mid$ |
| 1 | 850 |
| 1 | $900 \mid$ |
| 1 | 950 |
| 1 | 1000 |
| 2 | 1050 |
| 2 | 1100 |
| 2 | 1150 |
| 2 | 1200 |
| 2 | 1250 |
| 2 | 1300 |
| 2 | 1350 |
| 2 | 1400 |
| 2 | 1450 |
| 2 | 1500 |
| 2 | 1550 |
| 2 | 1600 |
| 2 | 1650 |
| 2 | 1700 |
| 2 | 1750 |
| 2 | 1800 |
| 2 | 1850 |
| 2 | 1900 |
| 2 | 1950 |
| 2 | 2000 |
| 3 | 2050 |
| 3 | 2100 |
| 3 | 2150 |
| 3 | 2200 |
| 3 | 2250 |
| 3 | 2300 |
| 3 | 2350 |
| 3 | 2400 |
| 3 | 2450 |
| 3 | 2500 |
| 3 | 2550 |
| 3 | 2600 |


|  |
| :---: |
|  |
| 0:01:46 |
|  |
| 00:02:06 |
| 0:02:16 |
| 0:02:26 |
|  |
| 00:02:45 |
| :02:55 |
|  |
| 0:03:14 |
| :03:27 |
| 37 |
| 47 |
| 0:03:57 |
| 07 |
| 00.04.17 |
| 26 |
| 0:04:36 |
| 0:04:46 |
| 5 |
| 05:05 |
| 0:05:15 |
| 0:05:24 |
| 34 |
| :05:44 |
| 0:05:53 |
| 0:06:03 |
| 00:06:13 |
| 0:06:22 |
| :06:32 |
| 06:45 |
| :06:55 |
| 0:07:05 |
| 15 |
| 0:07:25 |
| 0:07:35 |
| 0:07:45 |
| 00:07:55 |
| 0:08:04 |
| 0:08:14 |
| 00:08:23 |
| 0:0 |


| 0.1186 |
| :---: |
| 0.1598 |
| 0.2355 |
| 0.0976 |
| 0.1219 |
| 0.1710 |
| 0.1559 |
| 0.4363 |
| 0.1032 |
| 0.2146 |
| 0.1770 |
| 0.2259 |
| 0.0832 |
| 0.1890 |
| 0.1726 |
| 0.0610 |
| 0.1008 |
| 0.2197 |
| 0.1101 |
| 0.2595 |
| 0.1765 |
| 0.1538 |
| 0.0641 |
| 0.0688 |
| 0.0733 |
| 0.1644 |
| 0.0881 |
| 0.1818 |
| 0.1707 |
| 0.0810 |
| 0.1863 |
| 0.1433 |
| 0.0917 |
| 0.1345 |
| 0.2048 |
| 0.0945 |
| 0.1451 |
| 0.2916 |
| 0.1857 |
| 0.1002 |
| 0.0806 |
| 0.1388 |
| 0.1218 |
| 0.1599 |


| 96.88\% | 0.20 | 0.0050 |
| :---: | :---: | :---: |
| 96.88\% | 0.24 | 0.0050 |
| 94.38\% | 0.28 | 0.0050 |
| 96.88\% \| | 0.19 | 0.0050 |
| 96.09\% | 0.21 | 0.0050 |
| 94.53\% | 0.19 | 0.0050 |
| 93.88\% \| | 0.25 | 0.0050 |
| 88.28\% | 0.32 | 0.0050 |
| 96.88\% | 0.20 | 0.0050 |
| 92.97\% | 0.25 | 0.0050 |
| 96.09\% \| | 0.29 | 0.0050 |
| 92.97\% | 0.21 | 0.0050 |
| 99.22\% | 0.15 | 0.0050 |
| 94.53\% | 0.31 | 0.0050 |
| 95.31\% | 0.19 | 0.0050 |
| 98.44\% | 0.12 | 0.0050 |
| 96.88\% | 0.17 | 0.0050 |
| 96.09\% | 0.28 | 0.0050 |
| 98.44\% | 0.23 | 0.0050 |
| 91.41\% | 0.31 | 0.0050 |
| 93.75\% | 0.19 | 0.0050 |
| 96.09\% | 0.20 | 0.0050 |
| 99.21\% | 0.14 | 0.0050 |
| 97.66\% | 0.19 | 0.0050 |
| 97.66\% | 0.21 | 0.0050 |
| 96.88\% | 0.17 | 0.0050 |
| 97.66\% | 0.21 | 0.0050 |
| 96.09\% | 0.18 | 0.0050 |
| 96.49\% | 0.29 | 0.0050 |
| 97.30\% | 0.16 | 0.0050 |
| 94.53\% | 0.18 | 0.0050 |
| 96.09\% | 0.20 | 0.0050 |
| 98.44\% | 0.14 | 0.0050 |
| 96.09\% | 0.17 | 0.0050 |
| 96.30\% | 0.34 | 0.0050 |
| 99.22\% | 0.19 | 0.0050 |
| 96.09\% | 0.17 | 0.0050 |
| 94.53\% | 0.31 | 0.0050 |
| 94.53\% | 0.19 | 0.0050 |
| 97.66\% | 0.18 | 0.0050 |
| 96.88\% | 0.23 | 0.0050 |
| 96.88\% | 0.16 | 0.0050 |
| 97.52\% | 0.30 | 0.0050 |
| 96.09\% | 0.18 | 0.0050 |


| 31 | 2650 | 00:08:43 | 0.1578 | 96.09\% \| | 0.26 | 0.0050 \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | 2700 | 00:08:53 | 0.0484 | 100.00\% | 0.24 | 0.0050 \| |
| 3 | 2750 | 00:09:03 | 0.0740 | 97.30\% \| | 0.15 | 0.0050 \| |
| 3 | 2800 | 00:09:13 | 0.0688 | 97.39\% | 0.17 | 0.0050 \| |
| $3 \mid$ | 2850 | 00:09:23 | 0.1298 | 96.88\% | 0.16 | 0.0050 |
| $3 \mid$ | 2900 | 00:09:32 | 0.1085 | 96.88\% | 0.18 | 0.0050 |
| $3 \mid$ | 2950 | 00:09:42 | 0.2133 | 96.88\% | 0.18 | 0.0050 |
| $3 \mid$ | 3000 | 00:09:52 | 0.1166 | 94.53\% | 0.15 | 0.0050 |
| 31 | 3018 | 00:09:55 | 0.0571 | 99.15\% \| | 0.12 | 0.0050 |

Detector training complete (with warnings):
Warning: Invalid bounding boxes from 31 out of 1014 training images were removed.
The following rows in trainingData have invalid bounding box data:

Invalid Rows

17
75
194
199
202
249
253
261
290
309
369
395
399
498
617
652
678
679
703
717
731
752
767
806

Bounding boxes must be fully contained within their associated image and must have positive width and height.
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'tractors'
Network: [ $1 \times 1$ DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'tractors' 'roundbale' 'end_tower' 'pyramid' 'span' 'tower' 'Background'\}

MinObjectSize: [16 16]
Elapsed time is 1605.589488 seconds.





Average Precision $=0.94$ tractors


APPENDIX F.11.1.2 Results on test pictures






APPENDIX F.11.2 GoogLeNet Run 2
>> combinedMergedDetectorv2
optionsStage1 $=$

TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppDatalLocal\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage2 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'

CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'<br>ExecutionEnvironment: 'auto'<br>WorkerLoad: []<br>OutputFen: []<br>Plots: 'none'<br>SequenceLength: 'longest'<br>SequencePaddingValue: 0

optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage4 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$

```
GradientThresholdMethod: '12norm'
 GradientThreshold: Inf
 MaxEpochs: }
 MiniBatchSize: 1
 Verbose: 1
 VerboseFrequency: 50
 ValidationData: []
 ValidationFrequency: 50
 ValidationPatience: Inf
 Shuffle: 'once'
 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'
ExecutionEnvironment: 'auto'
 WorkerLoad: []
 OutputFen: []
 Plots: 'none'
 SequenceLength: 'longest'
SequencePaddingValue: 0
```

************************************************************************ *
Training a Faster R-CNN Object Detector for the following object classes:

* tractors
* roundbale
* end_tower
* pyramid
* span
* tower

Step 1 of 4: Training a Region Proposal Network (RPN).
Warning: Invalid bounding boxes from 31 out of 1014 training images were removed.
The following rows in trainingData have invalid bounding box data:

Invalid Rows

Bounding boxes must be fully contained within their associated image and must have positive width and height.
Training on single GPU.

| \| Epoch | Iteration \| Time Elapsed \| Mini-batch \| Mini-batch \| Mini-batch \| Base |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Learning |  |  |  |  |  |  |  |  |
|  | (hh | :mm:ss) \| | Loss | Accuracy \| | RMSE |  | Rate |  |
| =======================================1\| |  |  |  |  |  |  |  |  |
| $1 \mid$ | 1 \| | 00:00:00\| | 0.6249 \| | 88.28\% \| | 1.45 |  | 0.0050 |  |
| 1 \| | 50\| | 00:00:05 \| | 0.1310 \| | 100.00\% \| | 0.60 |  | 0.0050 |  |
| 1 | 100 | 00:00:10 \| | 0.4711 | 100.00\% | 0.92 |  | 0.0050 |  |
| 1 \| | 150 | 00:00:15 | 0.1454 | 100.00\% | 0.78 |  | 0.0050 |  |
| 1 \| | 200 | 00:00:19 | 0.1230 | 100.00\% | 0.79 |  | 0.0050 |  |
| 1 \| | 250 | 00:00:24 | 0.3991 | 100.00\% | 1.82 |  | 0.0050 |  |
| 1 \| | 300 | 00:00:29 | 0.4517 | 100.00\% | 1.43 |  | 0.0050 |  |
| $1 \mid$ | 350 | 00:00:34\| | 0.2469 | 100.00\% | 0.64 |  | 0.0050 |  |
| $1 \mid$ | 400 | 00:00:39 | 1.1272 | 100.00\% | 1.69 |  | 0.0050 |  |


| 1 \| | 450 \| | 00:00:44\| | 0.2508 \| | 100.00\% | 0.98 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 \| | 500 | 00:00:49 \| | 0.1379 \| | 100.00\% | 0.92 | 0.0050 |
| 1 | 550 | 00:00:54\| | 0.0881 \| | 100.00\% | 0.74 | 0.0050 |
| 1 | 600 | 00:00:59 \| | 0.5188 \| | 100.00\% | 0.95 | 0.0050 |
| 1 | 650 | 00:01:04\| | 0.2294 \| | 100.00\% | 0.83 | 0.0050 |
| 1 \| | 700 | 00:01:09 \| | $0.2506 \mid$ | 100.00\% | 0.66 | 0.0050 |
| 1 | 750 | 00:01:14\| | 0.3604 \| | 100.00\% | 0.99 | 0.0050 |
| 1 | 800 | 00:01:19 | 0.1320 \| | 100.00\% | 0.74 | 0.0050 |
| 1 | 850 | 00:01:24\| | 0.1032 \| | 100.00\% | 1.13 | 0.0050 |
| 1 | 900 | 00:01:29 \| | 0.3944 \| | 100.00\% | 0.76 | 0.0050 |
| 1 \| | 950 | 00:01:33\| | 0.2899 \| | 100.00\% | 1.06 | 0.0050 |
| 1 | 1000 | 00:01:38 | 0.2820 | 100.00\% | 0.90 | 0.0050 |
| 2 | 1050 | 00:01:46 | 0.1721 | 100.00\% | 1.84 | 0.0050 |
| $2 \mid$ | 1100 | 00:01:52 | 0.3402 | 100.00\% | 1.07 | 0.0050 |
| $2 \mid$ | 1150 | 00:01:57 | 0.1391 | 100.00\% | 1.11 | 0.0050 |
| $2 \mid$ | 1200 | 00:02:01 | 0.2053 | 100.00\% | 0.60 | 0.0050 |
| 2 | 1250 | 00:02:06 | 0.3389 | 100.00\% | 0.83 | 0.0050 |
| $2 \mid$ | 1300 | 00:02:12 | 0.4458 | 100.00\% | 0.88 | 0.0050 |
| $2 \mid$ | 1350 | 00:02:17 | 0.2158 | 100.00\% | 0.76 | 0.0050 |
| $2 \mid$ | 1400 | 00:02:21 | 0.2399 | 100.00\% | 0.96 | 0.0050 |
| $2 \mid$ | 1450 | 00:02:26 | 0.6801 | 100.00\% | 1.84 | 0.0050 |
| $2 \mid$ | 1500 | 00:02:31 | 0.0795 | 100.00\% | 0.53 | 0.0050 |
| $2 \mid$ | 1550 | 00:02:36 | 0.3180 | 100.00\% | 0.76 | 0.0050 |
| $2 \mid$ | 1600 | 00:02:41 | 0.2726 | 100.00\% | 1.09 | 0.0050 |
| $2 \mid$ | 1650 | 00:02:46 | 1.5224 | 100.00\% | 2.05 | 0.0050 |
| $2 \mid$ | 1700 | 00:02:51 | 0.1518 | 100.00\% | 0.79 | 0.0050 |
| $2 \mid$ | 1750 | 00:02:56 | 0.3028 | 100.00\% | 0.96 | 0.0050 |
| $2 \mid$ | 1800 | 00:03:01 | 0.2267 | 100.00\% | 0.72 | 0.0050 |
| $2 \mid$ | 1850 | 00:03:06 | 0.2464 | 100.00\% | 0.74 | 0.0050 |
| $2 \mid$ | 1900 | 00:03:11 | 0.1739 | 100.00\% | 0.76 | 0.0050 |
| $2 \mid$ | 1950 | 00:03:16 | 0.0853 | 100.00\% | 0.83 | 0.0050 |
| $2 \mid$ | 2000 | 00:03:21 | 0.2062 | 100.00\% | 0.61 | 0.0050 |
| 21 | 2026 | 00:03:23 | 0.4706 | 100.00\% | 0.88 | 0.0050 |

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 1013 training images...done.

Training on single GPU.
 Learning |



Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN. Training on single GPU.



Step 4 of 4: Re-training Fast R-CNN using updated RPN. --> Extracting region proposals from 1013 training images...done.

Training on single GPU.


| $2 \mid$ | 1000 \| | 00:03:14 | 0.3532 | 91.41\% \| | 0.25 \| | 0.0050 \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mid$ | 1050 | 00:03:23 | 0.1486 | 97.66\% \| | 0.24 \| | 0.0050 \| |
| $2 \mid$ | 1100 \| | 00:03:33 | 0.1374 | 96.88\% \| | 0.22 \| | 0.0050 \| |
| $2 \mid$ | 1150 | 00:03:43 | 0.0293 | 100.00\% | 0.17 | 0.0050 \| |
| $2 \mid$ | 1200 \| | 00:03:52 | 0.1027 | 96.88\% \| | 0.17 \| | 0.0050 \| |
| $2 \mid$ | 1250 | 00:04:02 | 0.2351 | 93.75\% | 0.29 | 0.0050 \| |
| $2 \mid$ | 1300 \| | 00:04:11 | 0.0390 | 98.86\% | 0.17 | 0.0050 \| |
| 21 | 1350 | 00:04:21 | 0.3175 | 90.63\% \| | 0.20 I | 0.0050 \| |
| $2 \mid$ | 1400 \| | 00:04:31 | 0.1470 | 95.31\% \| | 0.23 \| | 0.0050 \| |
| 2 | 1450 | 00:04:40 | 0.0741 | 97.66\% | 0.18 | 0.0050 \| |
| 21 | $1500 \mid$ | 00:04:50 | 0.1185 | 97.66\% \| | 0.20 \| | 0.0050 \| |
| 2 | 1550 \| | 00:05:00 | 0.0037 | 100.00\% | 0.11 | 0.0050 \| |
| 21 | $1600 \mid$ | 00:05:09 | 0.2169 | 93.75\% | 0.25 \| | 0.0050 \| |
| 2 | 1650\| | 00:05:19 | 0.2676 | 94.53\% | 0.19 | 0.0050 |
| 21 | 1700\| | 00:05:29 | 0.1196 | 95.31\% | 0.18 | 0.0050 |
| 21 | 1750\| | 00:05:39 | 0.0215 | 99.22\% | 0.16 | 0.0050 |
| 21 | 1800\| | 00:05:48 | 0.3551 | 91.41\% | 0.21 | 0.0050 |
| 21 | 1850\| | 00:05:57 | 0.1678 | 98.44\% | 0.22 \| | 0.0050 |
| 21 | 1900\| | 00:06:07 | 0.1888 | 92.19\% | 0.17 | 0.0050 |
| 21 | 1950\| | 00:06:16 | 0.2389 | 93.75\% | 0.26 | 0.0050 |
| 31 | $2000 \mid$ | 00:06:29 | 0.0860 | 97.66\% | $0.17 \mid$ | 0.0050 |
| 31 | $2050 \mid$ | 00:06:39 | 0.1149 | 98.44\% | 0.19 | 0.0050 |
| 31 | $2100 \mid$ | 00:06:48 | 0.2092 | 94.53\% \| | 0.28 | 0.0050 \| |
| 31 | 2150 | 00:06:58 | 0.0137 | 100.00\% | 0.12 | 0.0050 \| |
| 31 | 2200 | 00:07:07 | 0.1156 | 96.88\% \| | 0.18 | 0.0050 \| |
| 31 | 2250 \| | 00:07:17 | 0.0583 | 98.32\% \| | 0.22 \| | 0.0050 \| |
| 31 | 2300 \| | 00:07:27 | 0.1172 | 95.31\% | 0.23 \| | 0.0050 \| |
| 31 | 2350 \| | 00:07:36 | 0.0689 | 96.88\% | 0.16 | 0.0050 \| |
| 31 | 2400 \| | 00:07:45 | 0.0226 | 98.94\% | 0.15 | 0.0050 |
| 31 | 2450 \| | 00:07:55 | 0.2406 | 94.53\% | 0.24 | 0.0050 |
| 31 | 2500 \| | 00:08:05 | 0.0751 | 98.44\% | 0.22 \| | 0.0050 |
| 31 | 2550 | 00:08:14 | 0.1048 | 96.88\% | 0.18 | 0.0050 |
| 31 | $2600 \mid$ | 00:08:24 | 0.1909 | 94.53\% | 0.32 | 0.0050 |
| 31 | 2650 \| | 00:08:34 | 0.1899 | 96.09\% | 0.25 | 0.0050 |
| 31 | 2700 \| | 00:08:44 | 0.2912 | 92.19\% | 0.19 | 0.0050 |
| 31 | 2750 | 00:08:53 | 0.0770 | 99.22\% | 0.161 | 0.0050 \| |
| 31 | 2800 \| | 00:09:02 | 0.0789 | 97.27\% | 0.25 \| | 0.0050 \| |
| 31 | 2850 \| | 00:09:12 | 0.2126 | 96.88\% \| | 0.24 | 0.0050 |
| $3 \mid$ | 2900 \| | 00:09:21 | 0.0332 | 98.90\% | 0.14 | 0.0050 \| |
| 31 | 2937 | 00:09:28 | 0.0553 | 98.44\% \| | 0.14 | 0.0050 \| |



Detector training complete (with warnings):

Warning: Invalid bounding boxes from 31 out of 1014 training images were removed. The following rows in trainingData have invalid bounding box data:

Invalid Rows

## 17

75
194
199
202
249
253
261
290
309
369
395
399
498

## 617

652
678
679
703

## 717

## 731

752
767
806
808
811
816
864
897
920
937
Bounding boxes must be fully contained within their associated image and must have positive width and height.
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'tractors'
Network: [1×1 DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'tractors' 'roundbale' 'end_tower' 'pyramid' 'span' 'tower' 'Background'\}

MinObjectSize: [16 16]
Elapsed time is 1583.434285 seconds.






APPENDIX F.11.2.2 Results on test pictures
Average Precision $\mathbf{=} 0.91$
tractors







## APPENDIX F. 12 Pivotv2

## APPENDIX F.12.1 GoogLeNet

>> pivotDetectorGoogLeNetv3v2
optionsStage $1=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: 'l2norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []

ValidationFrequency: 50
ValidationPatience: Inf Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Templ' ExecutionEnvironment: 'auto'

WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage2 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage3 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000

InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 2
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Users\clindhorst2\AppDatalLocal\Temp\'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []
Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
optionsStage4 $=$
TrainingOptionsSGDM with properties:
Momentum: 0.9000
InitialLearnRate: 0.0050
LearnRateScheduleSettings: [ $1 \times 1$ struct]
L2Regularization: $1.0000 \mathrm{e}-04$
GradientThresholdMethod: '12norm'
GradientThreshold: Inf
MaxEpochs: 3
MiniBatchSize: 1
Verbose: 1
VerboseFrequency: 50
ValidationData: []
ValidationFrequency: 50
ValidationPatience: Inf
Shuffle: 'once'
CheckpointPath: 'C:\Userslclindhorst2\AppData\Local\Templ'
ExecutionEnvironment: 'auto'
WorkerLoad: []
OutputFen: []

Plots: 'none'
SequenceLength: 'longest'
SequencePaddingValue: 0
************************************************************************
*
Training a Faster R-CNN Object Detector for the following object classes:

* end_tower
* pyramid
* span
* tower

Step 1 of 4: Training a Region Proposal Network (RPN).
Warning: Invalid bounding boxes from 143 out of 3688 training images were removed.
The following rows in trainingData have invalid bounding box data:

Invalid Rows

## 39

55
61
62
82

1592
1698
1709
1716
1773
1792
1830
1864
1875
1917
1960
1965
1972
1979
1986
2103
2116
2148
2171
2177
2211
2232
2258
2297
2342
2386
2388
2473
2477
2482
2521
2556
2561
2563
2579
2628
2638
2674
2707
2752
2759
2772
2813
2847

2851
2881
2882
2896
2916
2921
2960
2963
2986
3025
3039
3109
3157
3210
3272
3320
3328
3340
3354
3406
3433
3442
3444
3563
3568
3594
3597
3624
3627
3636
3642
3648
Bounding boxes must be fully contained within their associated image and must have positive width and height.
Training on single GPU.
|========================================================================1


| 1 | 50 | 00:00:08 | 0.4384 | 100.00\% \| | 1.09 \| | 0.0050 \| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $100 \mid$ | 00:00:14\| | 0.0189 \| | 100.00\% | 0.54 \| | 0.0050 \| |
| 1 | $150 \mid$ | 00:00:20 \| | 0.9844 \| | 100.00\% | 2.14 \| | 0.0050 \| |
| 1 | $200 \mid$ | 00:00:25 \| | 0.1836 \| | 100.00\% | 0.61 | 0.0050 |
| 1 | 250 | 00:00:31 \| | 0.1525 | 100.00\% | 0.68 | 0.0050 \| |
| 1 | $300 \mid$ | 00:00:37 | 0.1284 | 100.00\% | 0.51 | 0.0050 |
| 1 | 350 \| | 00:00:43 \| | 0.0992 | 100.00\% | 1.05 | 0.0050 |
| 1 | 400 \| | 00:00:49 | 0.0189 | 100.00\% | 0.55 | 0.0050 |
| 1 | 450 | 00:00:54\| | 0.2021 | 100.00\% | 0.67 | 0.0050 |
| 1 | $500 \mid$ | 00:01:00 \| | 0.1805 | 100.00\% | 1.18 | 0.0050 |
| 1 | 550 | 00:01:06 | 0.0941 | 100.00\% | 0.89 | 0.0050 |
| 1 | $600 \mid$ | 00:01:12 | 0.1239 | 100.00\% | 0.64 | 0.0050 \| |
| 1 | 650 | 00:01:18 | 0.0505 | 100.00\% | 0.43 | 0.0050 |
| 1 | $700 \mid$ | 00:01:24 \| | 0.0728 | 100.00\% | 0.64 | 0.0050 \| |
| 1 | 750 | 00:01:30 \| | 0.1458 | 100.00\% | 0.71 | 0.0050 |
| 1 | $800 \mid$ | 00:01:35 | 0.1788 | 100.00\% | 0.56 | 0.0050 |
| 1 | $850 \mid$ | 00:01:41 \| | 0.1477 | 100.00\% | 0.56 | 0.0050 \| |
| 1 | $900 \mid$ | 00:01:47 | 0.0787 | 100.00\% | 0.41 | 0.0050 \| |
| 1 | 950 \| | 00:01:53 \| | 0.0404 \| | 100.00\% | 0.48 | 0.0050 \| |
| 1 | 1000 | 00:01:59 | 0.0558 | 100.00\% | 0.37 | 0.0050 |
| 1 | 1050 | 00:02:05 | 0.0673 | 100.00\% | 0.55 | 0.0050 |
| 1 | 1100 | 00:02:11 | 0.0103 | 100.00\% | 0.45 | 0.0050 |
| 1 | 1150 | 00:02:17 | 0.0045 | 100.00\% | 0.27 | 0.0050 |
| 1 | 1200 | 00:02:23 | 0.0412 | 100.00\% | 0.42 | 0.0050 |
| 1 | 1250 | 00:02:29 | 0.0417 | 100.00\% | 0.63 | 0.0050 |
| 1 | 1300 | 00:02:35 | 0.0122 | 100.00\% | 0.20 | 0.0050 |
| 1 | 1350 | 00:02:40 | 0.0459 | 100.00\% | 0.48 | 0.0050 |
| 1 | 1400 | 00:02:46 | 0.0934 | 100.00\% | 0.61 | 0.0050 |
| 1 | 1450 | 00:02:52 | 0.0058 | 100.00\% | 0.43 | 0.0050 |
| 1 | 1500 | 00:02:58 | 0.0128 | 100.00\% | 0.35 | 0.0050 |
| 1 | 1550 | 00:03:04 | 0.0711 | 100.00\% | 0.41 | 0.0050 |
| 1 | 1600 | 00:03:10 | 0.0507 | 100.00\% | 0.36 | 0.0050 |
| 1 | 1650 | 00:03:16 | 0.0422 | 100.00\% | 0.35 | 0.0050 |
| 1 | 1700 | 00:03:22 | 0.0244 | 100.00\% | 0.36 | 0.0050 |
| 1 | 1750 | 00:03:28 | 0.0156 | 100.00\% | 0.27 | 0.0050 |
| 1 | 1800 | 00:03:34 | 0.0976 | 100.00\% | 0.78 | 0.0050 |
| 1 | 1850 | 00:03:39 | 0.0026 | 100.00\% | 0.29 | 0.0050 |
| 1 | 1900 | 00:03:45 | 0.0437 | 100.00\% | 0.31 | 0.0050 |
| 1 | 1950 | 00:03:51 | 0.0578 | 100.00\% | 0.62 | 0.0050 |
| 1 | 2000 | 00:03:57 | 0.0112 | 100.00\% | 0.21 | 0.0050 |
| 1 | 2050 | 00:04:03 | 0.0450 | 100.00\% | 0.35 | 0.0050 |
| 1 | 2100 | 00:04:09 | 0.0819 | 100.00\% | 0.68 | 0.0050 |
| 1 | 2150 | 00:04:15 | 0.0377 | 100.00\% | 0.59 | 0.0050 |
| 1 | 2200 | 00:04:21 | 0.0650 | 100.00\% | 0.53 | 0.0050 |


| $1 \mid$ | 2250 | 00:04:27 | 0.0582 | 100.00\% | 0.66 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 \| | $2300 \mid$ | 00:04:32 | 0.0517 | 100.00\% | 0.36 | 0.0050 |
| 1 | 2350 | 00:04:38 | 0.0491 | 100.00\% | 0.35 | 0.0050 |
| $1 \mid$ | 2400 \| | 00:04:44 | 0.0115 | 100.00\% | 0.24 | 0.0050 |
| 1 | 2450 \| | 00:04:50 | 0.1720 | 100.00\% | 0.75 | 0.0050 |
| 1 | 2500 \| | 00:04:56 | 0.0566 | 100.00\% | 0.39 | 0.0050 |
| 1 \| | 2550 | 00:05:01 | 0.0078 | 100.00\% | 0.40 | 0.0050 |
| 1 | $2600 \mid$ | 00:05:07 | 0.0423 | 100.00\% | 0.26 | 0.0050 |
| 1 | 2650 \| | 00:05:13 | 0.0042 | 100.00\% | 0.16 | 0.0050 |
| 1 | 2700 | 00:05:19 | 0.0234 | 100.00\% | 0.30 | 0.0050 |
| 1 | 2750 \| | 00:05:25 | 0.0229 | 100.00\% | 0.23 | 0.0050 |
| 1 | 2800 \| | 00:05:30 | 0.0435 | 100.00\% | 0.37 | 0.0050 |
| 1 | 2850 \| | 00:05:36 | 0.1025 | 100.00\% | 0.58 | 0.0050 |
| $1 \mid$ | 2900 \| | 00:05:42 | 0.0480 | 100.00\% | 0.34 | 0.0050 |
| $1 \mid$ | 2950 \| | 00:05:48 | 0.0110 | 100.00\% | 0.23 | 0.0050 |
| 1 \| | 3000 \| | 00:05:54 | 0.0185 | 100.00\% | 0.23 | 0.0050 |
| 1 \| | 3050 \| | 00:05:59 | 0.0463 | 100.00\% | 0.46 | 0.0050 |
| 1 | $3100 \mid$ | 00:06:05 | 0.5121 | 100.00\% | 1.72 | 0.0050 |
| 1 | 3150 | 00:06:11 | 0.0571 | 100.00\% | 0.54 | 0.0050 |
| 1 \| | 3200 \| | 00:06:17 | 0.0388 | 100.00\% | 0.45 | 0.0050 |
| 1 | 3250 \| | 00:06:22 | 0.0533 | 100.00\% | 0.44 | 0.0050 |
| 1 | $3300 \mid$ | 00:06:28 | 0.0421 | 100.00\% | 0.33 | 0.0050 |
| $1 \mid$ | 3350 \| | 00:06:34 | 0.0231 | 100.00\% | 0.32 | 0.0050 |
| $1 \mid$ | 3400 \| | 00:06:40 | 0.0829 | 100.00\% | 1.37 | 0.0050 |
| 1 | 3450 | 00:06:46 | 0.0679 | 100.00\% | 0.61 | 0.0050 |
| 1 \| | $3500 \mid$ | 00:06:51 | 0.0488 | 100.00\% | 0.28 | 0.0050 |
| $1 \mid$ | 3550 \| | 00:06:57 | 0.0118 | 100.00\% | 0.22 | 0.0050 |
| 1 | $3600 \mid$ | 00:07:03 | 0.1608 | 100.00\% | 0.56 | 0.0050 |
| 1 | 3650 \| | 00:07:09 | 0.0245 | 100.00\% | 0.20 | 0.0050 |
| 2 | $3700 \mid$ | 00:07:18 | 0.0253 | 100.00\% | 0.37 | 0.0050 |
| $2 \mid$ | 3750 \| | 00:07:23 | 0.0314 | 100.00\% | 0.30 | 0.0050 |
| $2 \mid$ | 3800 \| | 00:07:29 | 0.0122 | 100.00\% | 0.24 | 0.0050 |
| $2 \mid$ | 3850 | 00:07:35 | 0.0716 | 100.00\% | 0.50 | 0.0050 |
| 2 | 3900 \| | 00:07:41 | 0.0137 | 100.00\% | 0.23 | 0.0050 |
| 2 | 3950 \| | 00:07:47 | 0.0023 | 100.00\% | 0.22 | 0.0050 |
| $2 \mid$ | 4000 \| | 00:07:53 | 0.0275 | 100.00\% | 0.36 | 0.0050 |
| 2 | 4050 | 00:07:58 | 0.0220 | 100.00\% | 0.23 | 0.0050 |
| 2 | 4100 \| | 00:08:04 | 0.2807 | 100.00\% | 0.56 | 0.0050 |
| $2 \mid$ | 4150 | 00:08:10 | 0.0030 | 100.00\% | 0.14 | 0.0050 |
| $2 \mid$ | 4200 \| | 00:08:16 | 0.0835 | 100.00\% | 0.50 | 0.0050 |
| 2 | 4250 \| | 00:08:22 | 0.0226 | 100.00\% | 0.21 | 0.0050 |
| $2 \mid$ | 4300 \| | 00:08:27 | 0.0025 | 100.00\% | 0.23 | 0.0050 |
| $2 \mid$ | 4350 | 00:08:33 | 0.1059 | 100.00\% | 0.55 | 0.0050 |
| $2 \mid$ | 4400 \| | 00:08:39 | 0.0133 | 100.00\% | 0.18 | 0.0050 |


| 2 | 4450 \| | 00:08:45 | 0.0404 | 100.00\% | 0.41 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4500 \| | 00:08:51 | 0.0089 | 100.00\% | 0.19 | 0.0050 |
| $2 \mid$ | 4550 | 00:08:56 | 0.0406 | 100.00\% | 0.26 | 0.0050 |
| 2 | 4600 \| | 00:09:02 | 0.0027 | 100.00\% | 0.41 | 0.0050 |
| 2 | 4650 \| | 00:09:08 | 0.0404 | 100.00\% | 0.28 | 0.0050 |
| 2 | 4700 | 00:09:14 | 0.0456 | 100.00\% | 0.28 | 0.0050 |
| 2 | 4750 | 00:09:20 | 0.0105 | 100.00\% | 0.23 | 0.0050 |
| $2 \mid$ | 4800 \| | 00:09:25 | 0.0029 | 100.00\% | 0.09 | 0.0050 |
| 2 | 4850 | 00:09:31 | 0.0078 | 100.00\% | 0.26 | 0.0050 |
| 2 | 4900 | 00:09:37 | 0.0082 | 100.00\% | 0.15 | 0.0050 |
| 2 | 4950 | 00:09:43 | 0.0102 | 100.00\% | 0.17 | 0.0050 |
| 2 | 5000 | 00:09:49 | 0.0129 | 100.00\% | 0.45 | 0.0050 |
| 2 | 5050 | 00:09:54 | 0.0332 | 100.00\% | 0.32 | 0.0050 |
| 2 | $5100 \mid$ | 00:10:00 | 0.0372 | 100.00\% | 0.39 | 0.0050 |
| 2 | 5150 | 00:10:06 | 0.0007 | 100.00\% | 0.14 | 0.0050 |
| 2 | 5200 | 00:10:12 | 0.0961 | 100.00\% | 0.56 | 0.0050 |
| 2 | 5250 | 00:10:17 | 0.0502 | 100.00\% | 0.51 | 0.0050 |
| 2 | $5300 \mid$ | 00:10:23 | 0.0203 | 100.00\% | 0.22 | 0.0050 |
| 2 | 5350 | 00:10:29 | 0.0285 | 100.00\% | 0.41 | 0.0050 |
| 2 | 5400 \| | 00:10:35 | 0.0337 | 100.00\% | 0.29 | 0.0050 |
| 2 | 5450 | 00:10:41 | 0.0246 | 100.00\% | 0.29 | 0.0050 |
| $2 \mid$ | $5500 \mid$ | 00:10:47 | 0.0461 | 100.00\% | 0.50 | 0.0050 |
| 2 | 5550 | 00:10:52 | 0.0209 | 100.00\% | 0.23 | 0.0050 |
| 2 | $5600 \mid$ | 00:10:58 | 0.0319 | 100.00\% | 0.48 | 0.0050 |
| 2 | 5650 | 00:11:04 | 0.0231 | 100.00\% | 0.24 | 0.0050 |
| $2 \mid$ | 5700 | 00:11:10 | 0.0297 | 100.00\% | 0.31 | 0.0050 |
| $2 \mid$ | 5750 | 00:11:16 | 0.0069 | 100.00\% | 0.33 | 0.0050 |
| 2 | 5800 | 00:11:21 | 0.0931 | 100.00\% | 0.58 | 0.0050 |
| 2 | 5850 | 00:11:27 | 0.0158 | 100.00\% | 0.41 | 0.0050 |
| 2 | $5900 \mid$ | 00:11:33 | 0.0135 | 100.00\% | 0.19 | 0.0050 |
| 2 | 5950 | 00:11:39 | 0.0334 | 100.00\% | 0.29 | 0.0050 |
| $2 \mid$ | $6000 \mid$ | 00:11:44 | 0.0232 | 100.00\% | 0.31 | 0.0050 |
| 2 | 6050 \| | 00:11:50 | 0.0205 | 100.00\% | 0.21 | 0.0050 |
| 2 | $6100 \mid$ | 00:11:56 | 0.0254 | 100.00\% | 0.21 | 0.0050 |
| 2 | 6150 | 00:12:02 | 0.0240 | 100.00\% | 0.35 | 0.0050 |
| 2 | 6200 | 00:12:08 | 0.0132 | 100.00\% | 0.23 | 0.0050 |
| 2 | 6250 | 00:12:13 | 0.0595 | 100.00\% | 0.35 | 0.0050 |
| 2 | 6300 | 00:12:19 | 0.0252 | 100.00\% | 0.30 | 0.0050 |
| 2 | 6350 | 00:12:25 | 0.0126 | 100.00\% | 0.23 | 0.0050 |
| 2 | 6400 \| | 00:12:31 | 0.0551 | 100.00\% | 0.40 | 0.0050 |
| 2 | 6450 | 00:12:37 | 0.0077 | 100.00\% | 0.14 | 0.0050 |
| 2 | 6500 | 00:12:42 | 0.0210 | 100.00\% | 0.28 | 0.0050 |
| 2 | 6550 | 00:12:48 | 0.0209 | 100.00\% | 0.26 | 0.0050 |
| $2 \mid$ | $6600 \mid$ | 00:12:54 | 0.0147 | 100.00\% | 0.29 | 0.0050 |


| $2 \mid$ | 6650 \| | 00:13:00 | 0.0082 | 100.00\% | 0.18 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mid$ | $6700 \mid$ | 00:13:06 | 0.0267 | 100.00\% | 0.22 | 0.0050 |
| $2 \mid$ | 6750 \| | 00:13:11 | 0.0086 | 100.00\% | 0.16 | 0.0050 |
| $2 \mid$ | 6800 \| | 00:13:17 | 0.0058 | 100.00\% | 0.17 | 0.0050 |
| $2 \mid$ | 6850 \| | 00:13:23 | 0.0120 | 100.00\% | 0.19 | 0.0050 |
| $2 \mid$ | 6900 \| | 00:13:29 | 0.0586 | 100.00\% | 0.47 | 0.0050 |
| $2 \mid$ | 6950 \| | 00:13:35 | 0.0055 | 100.00\% | 0.12 | 0.0050 |
| $2 \mid$ | $7000 \mid$ | 00:13:40 | 0.0091 | 100.00\% | 0.22 | 0.0050 |
| $2 \mid$ | $7050 \mid$ | 00:13:46 | 0.0273 | 100.00\% | 0.46 | 0.0050 |
| $2 \mid$ | 7100\| | 00:13:52 | 0.0121 | 100.00\% | 0.18 | 0.0050 |
| $2 \mid$ | $7150 \mid$ | 00:13:58 | 0.0058 | 100.00\% | 0.16 | 0.0050 |
| 2 | $7200 \mid$ | 00:14:04 | 0.0368 | 100.00\% | 0.23 | 0.0050 |
| $2 \mid$ | 7250 \| | 00:14:09 | 0.0297 | 100.00\% | 0.28 | 0.0050 |
| $2 \mid$ | $7300 \mid$ | 00:14:15 | 0.0279 | 100.00\% | 0.37 | 0.0050 |
| $2 \mid$ | 7348 \| | 00:14:21 | 0.0187 | 100.00\% | 0.25 | 0.0050 |

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1. --> Extracting region proposals from 3674 training images...done.

Training on single GPU.


| $1 \mid$ | 750 |
| :---: | :---: |
| 1 | 800 |
| 1 | 850 |
| 1 | 900 |
| 1 | 950 |
| 1 | 1000 |
| 1 | 1050 |
| 1 | 1100 |
| 1 | 1150 |
| 1 | 1200 |
| 1 | 1250 |
| 1 | 1300 |
| 1 | 1350 |
| 1 | 1400 |
| 1 | 1450 |
| 1 | 1500 |
| 1 | 1550 |
| 1 | 1600 |
| 1 | 1650 |
| 1 | 1700 |
| 1 | 1750 |
| 1 | 1800 |
| 1 | 1850 |
| 1 | 1900 |
| 1 | 1950 |
| 1 | 2000 |
| 1 | 2050 |
| 1 | 2100 |
| 1 | 2150 |
| 1 | 2200 |
| 1 | 2250 |
| 1 | 2300 |
| 1 | 2350 |
| 1 | 2400 |
| 1 | 2450 |
| 1 | 2500 |
| 1 | 2550 |
| 1 | 2600 |
| 1 | 2650 |
| 1 | 2700 |
| 1 | 2750 |
| 1 | 2800 |
| 1 | 2850 |
| 1 | 2900 |


| 00:03:13 \| | 0.3603 |
| :---: | :---: |
| 00:03:26\| | 0.2874 |
| 00:03:39 | 0.2166 |
| 00:03:51 \| | 0.2064 |
| 00:04:04 \| | 0.2284 |
| 00:04:18 | 0.1408 |
| 00:04:30 | 0.2315 |
| 00:04:43 | 0.2026 |
| 00:04:56 | 0.1959 |
| 00:05:09 | 0.4171 |
| 00:05:22 | 0.2345 |
| 00:05:35 | 0.1849 |
| 00:05:48 | 0.1774 |
| 00:06:01 | 0.1883 |
| 00:06:14 | 0.2603 |
| 00:06:27 | 0.2524 |
| 00:06:40 | 0.1213 |
| 00:06:53 | 0.1842 |
| 00:07:06 | 0.1759 |
| 00:07:18 | 0.3942 |
| 00:07:31 | 0.1626 |
| 00:07:44 | 0.0945 |
| 00:07:57 | 0.1850 |
| 00:08:10 | 0.1374 |
| 00:08:23 | 0.1204 |
| 00:08:35 | 0.2484 |
| 00:08:49 | 0.1048 |
| 00:09:02 | 0.5840 |
| 00:09:15 | 0.0661 |
| 00:09:27 | 0.0668 |
| 00:09:40 | 0.2263 |
| 00:09:53 | 0.2199 |
| 00:10:06 | 0.1563 |
| 00:10:19 | 0.0979 |
| 00:10:32 | 0.1708 |
| 00:10:45 | 0.1309 |
| 00:10:58 | 0.0875 |
| 00:11:11 | 0.0774 |
| 00:11:24 | 0.1037 |
| 00:11:37 | 0.2142 |
| 00:11:50 | 0.0719 |
| 00:12:03 | 0.3317 |
| 00:12:16 | 0.1402 |
| 00:12:29 | 0.1100 |


| 92.19\% | 0.45 | 0.0050 |
| :---: | :---: | :---: |
| 91.41\% | 0.45 | 0.0050 |
| 94.53\% | 0.32 | 0.0050 |
| 94.53\% | 0.32 | 0.0050 |
| 96.09\% | 0.29 | 0.0050\| |
| 97.66\% | 0.25 \| | 0.0050 |
| 93.75\% | 0.27 | 0.0050 |
| 92.97\% | 0.30 | 0.0050 |
| 96.09\% | 0.36 | 0.0050 |
| 89.06\% | 0.40 | 0.0050 |
| 95.31\% | 0.28 | 0.0050 |
| 94.53\% | 0.27 | 0.0050 |
| 96.09\% | 0.32 | 0.0050 |
| 94.53\% | 0.34 | 0.0050 |
| 92.97\% | 0.27 | 0.0050 |
| 93.75\% | 0.30 | 0.0050 |
| 96.88\% | 0.25 | 0.0050 |
| 95.31\% | 0.30 | 0.0050 |
| 94.83\% | 0.36 | 0.0050 |
| 92.19\% | 0.41 | 0.0050 |
| 97.66\% | 0.29 | 0.0050 |
| 98.06\% | 0.39 | 0.0050 |
| 97.66\% | 0.35 | 0.0050 |
| 95.31\% | 0.20 | 0.0050 |
| 98.44\% | 0.26 | 0.0050 |
| 91.58\% | 0.26 | 0.0050 |
| 99.22\% | 0.23 | 0.0050 |
| 89.06\% | 0.37 | 0.0050 |
| 97.66\% | 0.16 | 0.0050 |
| 100.00\% | 0.50\| | 0.0050 |
| 94.53\% | 0.22 | 0.0050 |
| 94.74\% | 0.42 | 0.0050 |
| 94.53\% | 0.24 | 0.0050 |
| 98.44\% | 0.24 | 0.0050 |
| 96.09\% | 0.25 | 0.0050 |
| 96.09\% | 0.20 | 0.0050 |
| 97.66\% | 0.18 | 0.0050 |
| 97.66\% | 0.20 | 0.0050 |
| 96.88\% | 0.20 | 0.0050 |
| 94.21\% | 0.28 | 0.0050 |
| 98.44\% | 0.19 | 0.0050 |
| 92.19\% | 0.38 | 0.0050 |
| 96.81\% | 0.42 | 0.0050 |
| 96.88\% | 0.23 | 0.0050 |


| $1 \mid$ | 2950 | 00:12:42 | 0.0988 | 96.88\% | 0.22 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $3000 \mid$ | 00:12:55 | 0.1094 | 98.44\% | 0.26 | 0.0050 |
| 1 | 3050 | 00:13:08 | 0.0526 | 99.22\% | 0.32 | 0.0050 |
| 1 | 3100 | 00:13:21 | 0.1174 | 97.66\% | 0.40 | 0.0050 |
| 1 | 3150 | 00:13:34 | 0.1505 | 96.88\% | 0.28 | 0.0050 |
| 1 | 3200 \| | 00:13:47 | 0.0201 | 100.00\% \| | 0.24 \| | 0.0050 |
| 1 | 3250 \| | 00:14:00 | 0.2310 | 94.53\% | 0.26 | 0.0050 |
| 1 | 3300 \| | 00:14:14 | 0.1280 | 97.66\% | 0.27 | 0.0050 |
| 1 | 3350 | 00:14:26 | 0.1744 | 94.53\% | 0.21 | 0.0050 |
| 1 | 3400 \| | 00:14:39 | 0.1453 | 96.88\% | 0.23 | 0.0050 |
| 1 | 3450 | 00:14:52 | 0.2402 | 93.75\% | 0.26 | 0.0050 |
| 1 | $3500 \mid$ | 00:15:05 | 0.0459 | 98.91\% | 0.17 | 0.0050 |
| 1 | 3550 | 00:15:18 | 0.0559 | 100.00\% | 0.21 \| | 0.0050 |
| 1 | $3600 \mid$ | 00:15:31 | 0.0960 | 98.44\% | 0.26 \| | 0.0050 |
| 1 | 3650 | 00:15:43 | 0.0423 | 100.00\% \| | 0.28 \| | 0.0050 |
| 2 | 3700 \| | 00:16:00 | 0.1062 | 97.66\% | 0.19 \| | 0.0050 |
| 2 | 3750 | 00:16:12 | 0.1444 | 96.09\% | 0.21 | 0.0050 |
| 2 | 3800 \| | 00:16:25 | 0.2578 | 96.88\% | 0.44 | 0.0050 |
| $2 \mid$ | 3850 | 00:16:38 | 0.0905 | 98.44\% | 0.22 | 0.0050 |
| 2 | 3900 \| | 00:16:51 | 0.1811 | 93.75\% | 0.19 | 0.0050 |
| 2 | 3950 | 00:17:04 | 0.1853 | 94.53\% | 0.23 | 0.0050 |
| 2 | 4000 | 00:17:16 | 0.0431 | 99.22\% | 0.28 | 0.0050 |
| 2 | 4050 | 00:17:29 | 0.0399 | 98.44\% | 0.15 | 0.0050 |
| 2 | 4100 | 00:17:42 | 0.0620 | 97.66\% | 0.16 | 0.0050 |
| 2 | 4150 | 00:17:55 | 0.1807 | 93.75\% | 0.30 | 0.0050 |
| 2 | 4200 \| | 00:18:08 | 0.3190 | 92.97\% | 0.24 | 0.0050 |
| 2 | 4250 \| | 00:18:20 | 0.1161 | 96.88\% | 0.28 | 0.0050 |
| 2 | 4300 | 00:18:33 | 0.1033 | 96.70\% | 0.27 | 0.0050 |
| 2 | 4350 | 00:18:46 | 0.1572 | 96.09\% | 0.28 | 0.0050 |
| 2 | 4400 \| | 00:18:59 | 0.2067 | 96.88\% | 0.36 | 0.0050 |
| 2 | 4450 \| | 00:19:12 | 0.1092 | 97.66\% | 0.27 | 0.0050 |
| 2 | 4500 \| | 00:19:25 | 0.1781 | 94.53\% | 0.27 | 0.0050 |
| $2 \mid$ | 4550 | 00:19:38 | 0.1294 | 96.88\% | 0.22 | 0.0050 |
| $2 \mid$ | 4600 \| | 00:19:51 | 0.1313 | 95.31\% | 0.30 | 0.0050 |
| 2 | 4650 | 00:20:04 | 0.0831 | 97.66\% | 0.29 | 0.0050 |
| 2 | 4700 | 00:20:17 | 0.0624 | 97.30\% | 0.26 | 0.0050 |
| 2 | 4750 | 00:20:30 | 0.0397 | 99.15\% | 0.18 | 0.0050 |
| 2 | 4800 \| | 00:20:43 | 0.0689 | 98.28\% | 0.30 | 0.0050 |
| 2 | 4850 | 00:20:56 | 0.1399 | 97.66\% | 0.26 | 0.0050 |
| 2 | 4900 | 00:21:09 | 0.0483 | 98.82\% | 0.31 | 0.0050 |
| 2 | 4950 | 00:21:22 | 0.1046 | 96.88\% | 0.21 | 0.0050 |
| 2 | 5000 | 00:21:35 | 0.2406 | 94.53\% | 0.30 | 0.0050 \| |
| $2 \mid$ | 5050 | 00:21:48 | 0.0581 | 100.00\% \| | 0.30\| | 0.0050 |
| $2 \mid$ | $5100 \mid$ | 00:22:01 | 0.2954 | 93.75\% | 0.34 \| | 0.0050 \| |


| 2 | 5150 |
| :---: | :---: |
| 2 | 5200 |
| 2 | 5250 |
| 2 | 5300 |
| 2 | 5350 |
| 2 | 5400 |
| 2 | 5450 |
| 2 | 5500 |
| 2 | 5550 |
| 2 | 5600 |
| 2 | 5650 |
| 2 | 5700 |
| 2 | 5750 |
| 2 | 5800 |
| 2 | 5850 |
| 2 | 5900 |
| 2 | 5950 |
| 2 | 6000 |
| 2 | 6050 |
| 2 | 6100 |
| 2 | 6150 |
| 2 | 6200 |
| 2 | 6250 |
| 2 | 6300 |
| 2 | 6350 |
| 2 | 6400 |
| 2 | 6450 |
| 2 | 6500 |
| 2 | 6550 |
| 2 | 6600 |
| 2 | 6650 |
| 2 | 6700 |
| 2 | 6750 |
| 2 | 6800 |
| 2 | 6850 |
| 2 | 6900 |
| 2 | 6950 |
| 2 | 7000 |
| 2 | 7050 |
| 2 | 7100 |
| 2 | 7150 |
| 2 | 7200 |
| 2 | 7250 |
| 2 | 7300 |


| 00:22:14 | 0.0943 |
| :---: | :---: |
| 00:22:27 | 0.1456 |
| 00:22:40 | 0.0963 |
| 00:22:52 | 0.0962 |
| 00:23:05 | 0.0327 |
| 00:23:18 | 0.1401 |
| 00:23:31 | 0.1569 |
| 00:23:44 | 0.0935 |
| 00:23:57 | 0.0858 |
| 00:24:09 | 0.0578 |
| 00:24:22 | 0.1674 |
| 00:24:35 | 0.0609 |
| 00:24:48 | 0.0489 |
| 00:25:01 | 0.1556 |
| 00:25:14 | 0.0894 |
| 00:25:27 | 0.0399 |
| 00:25:40 | 0.1169 |
| 00:25:53 | 0.1732 |
| 00:26:06 | 0.0997 |
| 00:26:19 | 0.0563 |
| 00:26:32 | 0.1805 |
| 00:26:45 | 0.1075 |
| 00:26:58 | 0.1217 |
| 00:27:12 | 0.1718 |
| 00:27:25 | 0.1219 |
| 00:27:38 | 0.0787 |
| 00:27:51 | 0.1024 |
| 00:28:04 | 0.0294 |
| 00:28:17 | 0.1316 |
| 00:28:30 | 0.1200 |
| 00:28:43 | 0.1656 |
| 00:28:56 | 0.0623 |
| 00:29:09 | 0.1640 |
| 00:29:22 | 0.0789 |
| 00:29:36 | 0.1039 |
| 00:29:49 | 0.0954 |
| 00:30:02 | 0.0396 |
| 00:30:16 | 0.1187 |
| 00:30:29 | 0.3400 |
| 00:30:42 | 0.0948 |
| 00:30:55 | 0.0812 |
| 00:31:08 | 0.1291 |
| 00:31:21 | 0.0705 |
| 00:31:34 | 0.1372 |


| 98.57\% | 0.24 | 0.0050 |
| :---: | :---: | :---: |
| 96.67\% | 0.20 | 0.0050 |
| 98.44\% | 0.20 | 0.0050 |
| 99.22\% | 0.20 | 0.0050 |
| 98.44\% | 0.21 | 0.0050 |
| 96.09\% | 0.20 | 0.0050 |
| 96.88\% | 0.25 | 0.0050 |
| 98.44\% | 0.18 | 0.0050 |
| 98.44\% | 0.22 | 0.0050 |
| 98.44\% | 0.16 | 0.0050 |
| 95.31\% | 0.26 | 0.0050 |
| 98.44\% | 0.26 | 0.0050 |
| 97.66\% | 0.24 | 0.0050 |
| 95.56\% | 0.22 | 0.0050 |
| 98.44\% | 0.33 | 0.0050 |
| 100.00\% \| | 0.24 \| | 0.0050 |
| 97.66\% | 0.21 \| | 0.0050 |
| 93.75\% | 0.20 | 0.0050 |
| 96.88\% | 0.16 | 0.0050 |
| 100.00\% \| | 0.17\| | 0.0050 |
| 95.31\% | 0.22 | 0.0050 |
| 96.51\% | 0.34 | 0.0050 |
| 98.44\% | 0.19 | 0.0050 |
| 96.09\% | 0.26 | 0.0050 |
| 97.66\% | 0.23 | 0.0050 |
| 99.22\% | 0.18 | 0.0050 |
| 98.44\% | 0.27 | 0.0050 |
| 100.00\% \| | 0.34 \| | 0.0050 |
| 95.31\% | 0.17 \| | 0.0050 |
| 96.09\% | 0.17 | 0.0050 |
| 95.31\% | 0.25 | 0.0050 |
| 98.44\% | 0.18 | 0.0050 |
| 95.31\% | 0.26 | 0.0050 |
| 98.44\% | 0.17 | 0.0050 |
| 97.66\% | 0.18 | 0.0050 |
| 97.66\% | 0.19 | 0.0050 |
| 98.96\% | 0.20 | 0.0050 |
| 96.09\% | 0.14 | 0.0050 |
| 92.97\% | 0.33 | 0.0050 |
| 96.09\% | 0.19 | 0.0050 |
| 97.66\% | 0.20 | 0.0050 |
| 98.44\% | 0.26 | 0.0050 |
| 99.22\% | 0.16 | 0.0050 |
| 96.88\% | 0.21 \| | 0.0050 |



Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.
Training on single GPU.


| 1 | 1550 | 00:01:50 | 0.0286 | 100.00\% | 0.43 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1600 | 00:01:54 | 0.0228 | 100.00\% | 0.71 | 0.0050 |
| 1 | 1650 | 00:01:57 | 0.0489 | 100.00\% | 1.11 | 0.0050 |
| 1 | 1700 | 00:02:01 | 0.0577 | 100.00\% | 0.46 | 0.0050 |
| 1 | 1750 | 00:02:04 | 0.0222 | 100.00\% | 0.30 | 0.0050 |
| 1 | $1800 \mid$ | 00:02:08 | 0.0136 | 100.00\% | 0.24 | 0.0050 |
| 1 | 1850 \| | 00:02:11 | 0.1187 | 100.00\% | 0.48 | 0.0050 |
| 1 | $1900 \mid$ | 00:02:15 | 0.0570 | 100.00\% | 0.37 | 0.0050 |
| 1 | 1950\| | 00:02:18 | 0.0024 | 100.00\% | 0.35 | 0.0050 |
| 1 | 2000 | 00:02:22 | 0.0049 | 100.00\% | 0.22 | 0.0050 |
| 1 | 2050 \| | 00:02:26 | 0.0204 | 100.00\% | 0.25 | 0.0050 |
| 1 | 2100 | 00:02:29 | 0.0831 | 100.00\% | 0.58 | 0.0050 |
| 1 | 2150 | 00:02:33 | 0.0744 | 100.00\% | 1.48 | 0.0050 |
| 1 | $2200 \mid$ | 00:02:36 | 0.1439 | 100.00\% | 0.60 | 0.0050 |
| 1 | 2250 | 00:02:40 | 0.0156 | 100.00\% | 0.27 | 0.0050 |
| 1 | $2300 \mid$ | 00:02:43 | 0.0342 | 100.00\% | 0.37 | 0.0050 |
| 1 | 2350 | 00:02:47 | 0.0870 | 100.00\% | 0.67 | 0.0050 |
| 1 | 2400 \| | 00:02:51 | 0.0494 | 100.00\% | 0.40 | 0.0050 |
| 1 | 2450 | 00:02:54 | 0.0714 | 100.00\% | 0.44 | 0.0050 |
| 1 | $2500 \mid$ | 00:02:58 | 0.0841 | 100.00\% | 1.01 | 0.0050 |
| 1 | 2550 \| | 00:03:01 | 0.0509 | 100.00\% | 0.44 | 0.0050 |
| 1 | 2600 \| | 00:03:05 | 0.0636 | 100.00\% | 0.40 | 0.0050 |
| 1 | 2650 | 00:03:08 | 0.0704 | 100.00\% | 0.65 | 0.0050 |
| 1 | 2700 | 00:03:12 | 0.0104 | 100.00\% | 0.23 | 0.0050 |
| 1 | 2750 | 00:03:15 | 0.0839 | 100.00\% | 0.42 | 0.0050 |
| 1 | 2800 \| | 00:03:19 | 0.1825 | 100.00\% | 0.50 | 0.0050 |
| 1 | 2850 \| | 00:03:23 | 0.0466 | 100.00\% | 0.45 | 0.0050 |
| 1 | $2900 \mid$ | 00:03:26 | 0.0668 | 100.00\% | 0.35 | 0.0050 |
| 1 | 2950 | 00:03:30 | 0.0540 | 100.00\% | 0.40 | 0.0050 |
| 1 | $3000 \mid$ | 00:03:33 | 0.0307 | 100.00\% | 0.37 | 0.0050 |
| 1 | 3050 \| | 00:03:37 | 0.6474 | 100.00\% | 1.66 | 0.0050 |
| 1 | $3100 \mid$ | 00:03:40 | 0.1222 | 100.00\% | 0.66 | 0.0050 |
| 1 | 3150 | 00:03:44 | 0.0341 | 100.00\% | 0.37 | 0.0050 |
| 1 | $3200 \mid$ | 00:03:48 | 0.0328 | 100.00\% | 0.80 | 0.0050 |
| 1 | 3250 \| | 00:03:51 | 0.0247 | 100.00\% | 0.33 | 0.0050 |
| 1 | $3300 \mid$ | 00:03:55 | 0.0478 | 100.00\% | 0.52 | 0.0050 |
| 1 | 3350 \| | 00:03:58 | 0.0108 | 100.00\% | 0.36 | 0.0050 |
| 1 | 3400 \| | 00:04:02 | 0.0520 | 100.00\% | 0.38 | 0.0050 |
| 1 | 3450 | 00:04:05 | 0.0681 | 100.00\% | 0.42 | 0.0050 |
| 1 | $3500 \mid$ | 00:04:09 | 0.0277 | 100.00\% | 0.32 | 0.0050 |
| 1 | 3550 \| | 00:04:12 | 0.0561 | 100.00\% | 0.52 | 0.0050 |
| 1 | $3600 \mid$ | 00:04:16 | 0.0096 | 100.00\% | 0.22 | 0.0050 |
| 1 | $3650 \mid$ | 00:04:20 | 0.0103 | 100.00\% | 0.38 | 0.0050 |
| 2 | 3700 \| | 00:04:26 | 0.0192 | 100.00\% | 0.26 | 0.0050 |


| 2 | 3750 | 00:04:29 | 0.0212 | 100.00\% | 0.32 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2 \mid$ | $3800 \mid$ | 00:04:33 | 0.0531 | 100.00\% | 0.36 | 0.0050 |
| $2 \mid$ | 3850 | 00:04:36 | 0.0688 | 100.00\% | 0.61 | 0.0050 |
| $2 \mid$ | $3900 \mid$ | 00:04:40 | 0.0932 | 100.00\% | 0.49 | 0.0050 |
| $2 \mid$ | 3950 | 00:04:43 | 0.0627 | 100.00\% | 0.37 | 0.0050 |
| $2 \mid$ | 4000 \| | 00:04:47 | 0.0628 | 100.00\% | 0.37 | 0.0050 |
| $2 \mid$ | 4050 | 00:04:50 | 0.0461 | 100.00\% | 0.37 | 0.0050 |
| $2 \mid$ | $4100 \mid$ | 00:04:54 | 0.0525 | 100.00\% | 0.47 | 0.0050 |
| $2 \mid$ | 4150 | 00:04:58 | 0.0209 | 100.00\% | 0.47 | 0.0050 |
| $2 \mid$ | 4200 \| | 00:05:01 | 0.0399 | 100.00\% | 0.43 | 0.0050 |
| $2 \mid$ | 4250 \| | 00:05:05 | 0.0385 | 100.00\% | 0.28 | 0.0050 |
| $2 \mid$ | 4300 \| | 00:05:08 | 0.1238 | 100.00\% | 0.55 | 0.0050 |
| $2 \mid$ | 4350 | 00:05:12 | 0.0420 | 100.00\% | 0.30 | 0.0050 |
| $2 \mid$ | 4400 \| | 00:05:16 | 0.0313 | 100.00\% | 0.57 | 0.0050 |
| $2 \mid$ | 4450 \| | 00:05:19 | 0.1315 | 100.00\% | 0.57 | 0.0050 |
| $2 \mid$ | 4500 \| | 00:05:23 | 0.0023 | 100.00\% | 0.24 | 0.0050 |
| $2 \mid$ | 4550 | 00:05:26 | 0.0537 | 100.00\% | 0.37 | 0.0050 |
| $2 \mid$ | 4600 \| | 00:05:30 | 0.0881 | 100.00\% | 0.49 | 0.0050 |
| $2 \mid$ | 4650 | 00:05:33 | 0.1195 | 100.00\% | 1.05 | 0.0050 |
| $2 \mid$ | 4700 \| | 00:05:37 | 0.0435 | 100.00\% | 0.33 | 0.0050 |
| $2 \mid$ | 4750 \| | 00:05:41 | 0.0756 | 100.00\% | 0.65 | 0.0050 |
| $2 \mid$ | 4800 \| | 00:05:44 | 0.0458 | 100.00\% | 0.34 | 0.0050 |
| $2 \mid$ | 4850 | 00:05:48 | 0.0512 | 100.00\% | 0.73 | 0.0050 |
| 2 | 4900 | 00:05:51 | 0.1453 | 100.00\% | 0.99 | 0.0050 |
| $2 \mid$ | 4950 | 00:05:55 | 0.0482 | 100.00\% | 0.57 | 0.0050 |
| $2 \mid$ | 5000 | 00:05:58 | 0.2906 | 100.00\% | 0.89 | 0.0050 |
| $2 \mid$ | 5050 | 00:06:02 | 0.0277 | 100.00\% | 0.34 | 0.0050 |
| $2 \mid$ | 5100 | 00:06:06 | 0.0089 | 100.00\% | 0.16 | 0.0050 |
| $2 \mid$ | 5150 | 00:06:09 | 0.0164 | 100.00\% | 0.22 | 0.0050 |
| $2 \mid$ | $5200 \mid$ | 00:06:13 | 0.0128 | 100.00\% | 0.25 | 0.0050 |
| $2 \mid$ | 5250 | 00:06:16 | 0.0389 | 100.00\% | 0.45 | 0.0050 |
| $2 \mid$ | 5300 | 00:06:20 | 0.0515 | 100.00\% | 0.52 | 0.0050 |
| $2 \mid$ | 5350 | 00:06:23 | 0.0109 | 100.00\% | 0.27 | 0.0050 |
| $2 \mid$ | 5400 | 00:06:27 | 0.0801 | 100.00\% | 0.46 | 0.0050 |
| $2 \mid$ | 5450 | 00:06:31 | 0.4282 | 100.00\% | 1.41 | 0.0050 |
| 2 | 5500 | 00:06:34 | 0.0099 | 100.00\% | 0.23 | 0.0050 |
| $2 \mid$ | 5550 | 00:06:38 | 0.0335 | 100.00\% | 0.26 | 0.0050 |
| 2 | $5600 \mid$ | 00:06:41 | 0.0899 | 100.00\% | 0.47 | 0.0050 |
| $2 \mid$ | 5650 | 00:06:45 | 0.0137 | 100.00\% | 0.32 | 0.0050 |
| $2 \mid$ | $5700 \mid$ | 00:06:48 | 0.0360 | 100.00\% | 0.46 | 0.0050 |
| $2 \mid$ | 5750 | 00:06:52 | 0.0600 | 100.00\% | 0.50 | 0.0050 |
| $2 \mid$ | 5800 \| | 00:06:55 | 0.0035 | 100.00\% | 0.27 | 0.0050 |
| $2 \mid$ | 5850 | 00:06:59 | 0.0142 | 100.00\% | 0.25 | 0.0050 |
| $2 \mid$ | 5900\| | 00:07:03 | 0.0144 | 100.00\% | 0.28 | 0.0050 |


| 21 | 5950 \| | 00:07:06\| | 0.0116 | 100.00\% | 0.29 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | 6000 \| | 00:07:10 | 0.0868 \| | 100.00\% | 0.77 | 0.0050 |
| 21 | 6050 \| | 00:07:13 | 0.0479 \| | 100.00\% | 0.44 | 0.0050 |
| 21 | $6100 \mid$ | 00:07:17 | 0.0523 \| | 100.00\% | 0.58 | 0.0050 |
| 21 | 6150 | 00:07:20 | 0.7442 \| | 100.00\% | 0.94 | 0.0050 |
| 21 | $6200 \mid$ | 00:07:24 | 0.0337 | 100.00\% | 0.36 | 0.0050 |
| 21 | 6250 \| | 00:07:28 | 0.0131 | 100.00\% | 0.30 | 0.0050 |
| 21 | $6300 \mid$ | 00:07:31 | 0.0322 \| | 100.00\% | 0.34 | 0.0050 |
| 21 | 6350 \| | 00:07:35 | 0.0119 \| | 100.00\% | 0.27 | 0.0050 |
| 2 | $6400 \mid$ | 00:07:38 | 0.0267 \| | 100.00\% | 0.24 | 0.0050 |
| 2 | 6450 | 00:07:42 | 0.0375 | 100.00\% | 0.56 | 0.0050 |
| 2 | $6500 \mid$ | 00:07:45 | 0.0385 | 100.00\% | 0.39 | 0.0050 |
| 2 | 6550 | 00:07:49 | 0.0817 | 100.00\% | 0.46 | 0.0050 |
| 2 | $6600 \mid$ | 00:07:52 | 0.0243 \| | 100.00\% | 0.41 | 0.0050 |
| 2 | 6650 | 00:07:56\| | 0.0382 \| | 100.00\% | 0.39 | 0.0050 |
| 2 | $6700 \mid$ | 00:08:00 | 0.0331 \| | 100.00\% | 0.34 | 0.0050 |
| 2 | 6750 | 00:08:03\| | 0.0223 \| | 100.00\% | 0.57 | 0.0050 |
| 2 | $6800 \mid$ | 00:08:07\| | 0.0565 | 100.00\% | 0.36 | 0.0050 |
| 2 | 6850 | 00:08:10 | 0.0691 | 100.00\% | 0.58 | 0.0050 |
| 2 | $6900 \mid$ | 00:08:14 | 0.0332 \| | 100.00\% | 0.33 | 0.0050 |
| 2 | 6950 | 00:08:17 | 0.1619 \| | 100.00\% | 0.62 | 0.0050 |
| 2 | $7000 \mid$ | 00:08:21 | 0.0906 | 100.00\% | 0.41 | 0.0050 |
| 2 | 7050 | 00:08:24 | 0.0235 | 100.00\% | 0.39 | 0.0050 |
| 2 | 7100 | 00:08:28 | 0.0263 \| | 100.00\% | 0.30 | 0.0050 |
| 2 | 7150 | 00:08:32 | 0.0160 | 100.00\% | 0.27 | 0.0050 |
| 2 | $7200 \mid$ | 00:08:35 | 0.0130 | 100.00\% | 0.53 | 0.0050 |
| 2 | $7250 \mid$ | 00:08:39 | 0.1554 | 100.00\% | 0.65 | 0.0050 |
| 2 | $7300 \mid$ | 00:08:42 | 0.0331 \| | 100.00\% | 0.27 | 0.0050 |
| 21 | 7348 \| | 00:08:46\| | 0.0217 \| | 100.00\% | 0.35 | 0.0050 |

Step 4 of 4: Re-training Fast R-CNN using updated RPN.
--> Extracting region proposals from 3674 training images...done.
Training on single GPU.


| 1 \| | 50 | 00:00:10 | 0.3983 | 79.17\% | 0.97 \| | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 \| | 100 | 00:00:20 \| | 0.1143 \| | 96.09\% | 0.22 | 0.0050 \| |
| 1 | 150 | 00:00:30 | 0.1340 \| | 96.88\% | 0.23 | 0.0050 |
| 1 \| | 200 | 00:00:40 \| | 0.1632 \| | 97.70\% | 0.37 | 0.0050 |
| 1 \| | 250 | 00:00:51 | 0.0579 | 98.28\% | 0.20 | 0.0050 |
| 1 \| | 300 | 00:01:01 \| | 0.0863 | 98.44\% | 0.21 | 0.0050 |
| 1 \| | 350 | 00:01:11\| | 0.1928 \| | 96.88\% | 0.32 | 0.0050 |
| 1 \| | 400 | 00:01:21 | $0.2507 \mid$ | 94.53\% | 0.30 | 0.0050 |
| $1 \mid$ | 450 | 00:01:32 | 0.3113 | 91.41\% | 0.30 | 0.0050 |
| 1 \| | 500 | 00:01:42 \| | 0.1999 \| | 97.32\% | 0.41 | 0.0050 |
| 1 \| | 550 | 00:01:53 | 0.0861 | 97.66\% | 0.18 | 0.0050 |
| $1 \mid$ | 600 | 00:02:03 \| | 0.1939 \| | 94.53\% | 0.31 | 0.0050 |
| 1 \| | 650 | 00:02:13 | 0.0990 \| | 98.77\% | 0.36 | 0.0050 |
| 1 | 700 | 00:02:23 | 0.0727 | 98.44\% | 0.25 | 0.0050 |
| 1 \| | 750 | 00:02:33 \| | 0.0523 \| | 97.66\% | 0.16 | 0.0050 |
| 1 \| | 800 | 00:02:43 \| | 0.3887 | 89.84\% | 0.35 | 0.0050 |
| 1 \| | 850 | 00:02:54 \| | 0.0562 \| | 99.22\% | 0.16\| | 0.0050 |
| 1 \| | 900 | 00:03:04 \| | 0.1458 \| | 100.00\% \| | 0.24 \| | 0.0050\| |
| 1 \| | 950 | 00:03:15 | 0.1734 \| | 96.09\% \| | 0.21\| | 0.0050 \| |
| 1 \| | 1000\| | 00:03:25 | 0.0537 | 99.22\% \| | 0.18 | 0.0050 \| |
| 1 \| | 1050\| | 00:03:35 | 0.0797 | 96.88\% | 0.17 \| | 0.0050 \| |
| 1 \| | 1100\| | 00:03:45 | 0.1300 | 96.09\% | 0.19 | 0.0050 |
| 1 \| | 1150 \| | 00:03:55 | 0.1516 | 96.88\% | 0.24 \| | 0.0050 |
| $1 \mid$ | 1200 \| | 00:04:06 | 0.0372 | 100.00\% | 0.20 | 0.0050 |
| 1 | 1250 \| | 00:04:16 | 0.0851 | 98.44\% | 0.19 \| | 0.0050 \| |
| 1 \| | $1300 \mid$ | 00:04:26 | 0.2603 | 94.53\% | 0.29 | 0.0050 \| |
| $1 \mid$ | 1350 \| | 00:04:37 | 0.0950 | 97.94\% | 0.28 | 0.0050 \| |
| 1 \| | 1400 \| | 00:04:47 | 0.0619 | 99.05\% | 0.22 \| | 0.0050 \| |
| 1 \| | 1450 \| | 00:04:57 | 0.1629 | 96.88\% | 0.23 \| | 0.0050 \| |
| 1 \| | $1500 \mid$ | 00:05:08 | 0.0337 | 97.66\% | 0.20 \| | 0.0050 \| |
| 1 \| | 1550 \| | 00:05:18 | 0.0910 | 97.14\% | 0.23 \| | 0.0050 \| |
| 1 \| | 1600\| | 00:05:28 | 0.0626 | 100.00\% | 0.19 | 0.0050 |
| 1 \| | 1650 \| | 00:05:38 | 0.1079 | 94.53\% \| | 0.18 \| | 0.0050 \| |
| 1 \| | $1700 \mid$ | 00:05:49 | 0.1106 | 96.88\% | 0.18 \| | 0.0050 \| |
| 1 \| | 1750 \| | 00:06:00 | 0.0824 | 97.66\% | 0.19 \| | 0.0050 \| |
| 1 \| | 1800\| | 00:06:10 | 0.0910 | 95.88\% | 0.18 | 0.0050 \| |
| 1 \| | 1850\| | 00:06:20 | 0.0639 | 97.66\% | 0.15 | 0.0050 \| |
| $1 \mid$ | 1900\| | 00:06:30 | 0.1214 | 97.66\% | 0.25 | 0.0050 |
| 1 \| | 1950\| | 00:06:41 | 0.1118 | 95.59\% | 0.23 \| | 0.0050 \| |
| 1 \| | $2000 \mid$ | 00:06:51 | 0.1406 | 96.88\% | 0.18 | 0.0050 \| |
| 1 \| | 2050 \| | 00:07:01 | 0.2906 | 92.97\% | 0.29 \| | 0.0050 \| |
| 1 \| | 2100\| | 00:07:11 | 0.1259 | 98.37\% | 0.30 \| | 0.0050 \| |
| 1 \| | 2150 | 00:07:22 | 0.0652 | 98.44\% | 0.36 | 0.0050 \| |
| 1 \| | $2200 \mid$ | 00:07:32 | 0.1152 | 97.66\% \| | 0.23 \| | 0.0050 \| |


| 1 | 2250 | 00:07:42 | 0.3570 | 91.41\% | 0.29 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2300 \| | 00:07:52 | 0.0807 | 98.44\% | 0.19 | 0.0050 \| |
| 1 | 2350 | 00:08:02 | 0.1162 | 95.31\% | 0.18 | 0.0050 \| |
| 1 | 2400 | 00:08:12 | 0.1225 | 96.88\% | 0.21 | 0.0050 |
| 1 | 2450 | 00:08:23 | 0.0755 | 97.66\% | 0.18 | 0.0050 |
| 1 | 2500 | 00:08:33 | 0.1407 | 96.09\% | 0.24 | 0.0050 |
| 1 | 2550 | 00:08:43 | 0.2317 | 96.88\% | 0.34 | 0.0050 |
| 1 | $2600 \mid$ | 00:08:53 | 0.1937 | 92.97\% | 0.26 | 0.0050 \| |
| 1 | 2650 | 00:09:03 | 0.0845 | 97.56\% | 0.32 | 0.0050 |
| 1 | 2700 | 00:09:13 | 0.1349 | 97.66\% | 0.21 | 0.0050 |
| 1 | 2750 | 00:09:23 | 0.0897 | 96.09\% | 0.15 | 0.0050 |
| 1 | 2800 \| | 00:09:34 | 0.2610 | 95.31\% | 0.36 | 0.0050 |
| 1 | 2850 \| | 00:09:44 | 0.0500 | 98.44\% | 0.16 | 0.0050 |
| 1 | 2900 \| | 00:09:54 | 0.1528 | 96.09\% | 0.26 | 0.0050 |
| 1 | 2950 \| | 00:10:04 | 0.0920 | 97.66\% | 0.17 | 0.0050 |
| 1 | 3000 \| | 00:10:15 | 0.1996 | 95.31\% | 0.27 | 0.0050 |
| 1 | 3050 \| | 00:10:25 | 0.1602 | 95.31\% | 0.21 | 0.0050 \| |
| 1 | $3100 \mid$ | 00:10:35 | 0.1267 | 96.09\% | 0.19 | 0.0050 |
| 1 | 3150 \| | 00:10:46 | 0.0858 | 96.88\% | 0.23 | 0.0050 |
| 1 | $3200 \mid$ | 00:10:56 | 0.1734 | 95.31\% | 0.24 | 0.0050 |
| 1 | 3250 \| | 00:11:06 | 0.0921 | 99.22\% | 0.21 | 0.0050 |
| 1 | $3300 \mid$ | 00:11:16 | 0.0859 | 96.88\% | 0.22 | 0.0050 |
| 1 | 3350 \| | 00:11:26 | 0.1762 | 94.53\% | 0.27 | 0.0050 |
| 1 | 3400 \| | 00:11:36 | 0.0716 | 98.80\% | 0.19 | 0.0050 |
| 1 | 3450 \| | 00:11:46 | 0.2367 | 95.31\% | 0.21 | 0.0050 \| |
| 1 | 3500 \| | 00:11:56 | 0.0746 | 97.52\% | 0.19 | 0.0050 \| |
| 1 | 3550 \| | 00:12:07 | 0.1649 | 94.53\% | 0.18 | 0.0050 |
| 1 | $3600 \mid$ | 00:12:17 | 0.0706 | 98.44\% | 0.17 | 0.0050 |
| 1 | 3650 \| | 00:12:27 | 0.1098 | 96.88\% | 0.18 | 0.0050 |
| 2 | $3700 \mid$ | 00:12:41 | 0.0640 | 99.22\% | 0.13 | 0.0050 \| |
| 2 | 3750 \| | 00:12:51 | 0.0413 | 100.00\% \| | 0.14 | 0.0050 |
| 2 | 3800 \| | 00:13:01 | 0.0748 | 96.88\% | 0.15 | 0.0050 \| |
| 2 | 3850 \| | 00:13:11 | 0.1156 | 96.09\% | 0.20 | 0.0050 |
| 2 | $3900 \mid$ | 00:13:22 | 0.3913 | 89.84\% | 0.32 | 0.0050 |
| 2 | 3950 \| | 00:13:32 | 0.0645 | 99.22\% | 0.17 | 0.0050 |
| 2 | 4000 \| | 00:13:42 | 0.0822 | 98.44\% | 0.17 | 0.0050 \| |
| 2 | 4050 \| | 00:13:53 | 0.0597 | 98.44\% \| | 0.17 | 0.0050 \| |
| 2 | $4100 \mid$ | 00:14:03 | 0.0269 | 100.00\% \| | 0.13\| | 0.0050 |
| 2 | 4150 | 00:14:14 | 0.0491 | 99.22\% \| | 0.15 \| | 0.0050 \| |
| 2 | 4200 \| | 00:14:24 | 0.0952 | 96.88\% | 0.19 | 0.0050 \| |
| 2 | 4250 \| | 00:14:34 | 0.0805 | 98.44\% | 0.17 | 0.0050 \| |
| 2 | 4300 \| | 00:14:44 | 0.1091 | 96.88\% | 0.18 | 0.0050 |
| 2 | 4350 \| | 00:14:55 | 0.0739 | 98.44\% \| | 0.20 | 0.0050 \| |
| 2 | 4400 \| | 00:15:05 | 0.0337 | 100.00\% \| | 0.20\| | 0.0050 |


| 2 | 4450 |
| :---: | :---: |
| 2 | 4500 |
| 2 | 4550 |
| 2 | 4600 |
| 2 | 4650 |
| 2 | 4700 |
| 2 | 4750 |
| 2 | 4800 |
| 2 | 4850 |
| 2 | 4900 |
| 2 | 4950 |
| 2 | 5000 |
| 2 | 5050 |
| 2 | 5100 |
| 2 | 5150 |
| 2 | 5200 |
| 2 | 5250 |
| 2 | 5300 |
| 2 | 5350 |
| 2 | 5400 |
| 2 | 5450 |
| 2 | 5500 |
| 2 | 5550 |
| 2 | 5600 |
| 2 | 5650 |
| 2 | 5700 |
| 2 | 5750 |
| 2 | 5800 |
| 2 | 5850 |
| 2 | 5900 |
| 2 | 5950 |
| 2 | 6000 |
| 2 | 6050 |
| 2 | 6100 |
| 2 | 6150 |
| 2 | 6200 |
| 2 | 6250 |
| 2 | 6300 |
| 2 | 6350 |
| 2 | 6400 |
| 2 | 6450 |
| 2 | 6500 |
| 2 | 6550 |
| 2 | 6600 |


| 00:15:15 | 0.2852 |
| :---: | :---: |
| 00:15:25 | 0.1971 |
| 00:15:36 | 0.0739 |
| 00:15:46 | 0.0753 |
| 00:15:56 | 0.1167 |
| 00:16:07 | 0.1833 |
| 00:16:17 | 0.1365 |
| 00:16:27 | 0.2083 |
| 00:16:37 | 0.1105 |
| 00:16:48 | 0.0864 |
| 00:16:58 | 0.3063 |
| 00:17:08 | 0.1612 |
| 00:17:19 | 0.2151 |
| 00:17:29 | 0.0839 |
| 00:17:39 | 0.0543 |
| 00:17:50 | 0.0196 |
| 00:18:00 | 0.0755 |
| 00:18:10 | 0.0379 |
| 00:18:21 | 0.0538 |
| 00:18:31 | 0.1053 |
| 00:18:41 | 0.0801 |
| 00:18:52 | 0.0489 |
| 00:19:02 | 0.0706 |
| 00:19:12 | 0.1564 |
| 00:19:22 | 0.1613 |
| 00:19:33 | 0.1070 |
| 00:19:43 | 0.1335 |
| 00:19:53 | 0.1165 |
| 00:20:04 | 0.0945 |
| 00:20:14 | 0.0936 |
| 00:20:24 | 0.0669 |
| 00:20:34 | 0.0663 |
| 00:20:44 | 0.2671 |
| 00:20:54 | 0.0979 |
| 00:21:04 | 0.0987 |
| 00:21:14 | 0.1157 |
| 00:21:25 | 0.1950 |
| 00:21:35 | 0.0768 |
| 00:21:45 | 0.0804 |
| 00:21:55 | 0.1543 |
| 00:22:05 | 0.1118 |
| 00:22:15 | 0.0967 |
| 00:22:26 | 0.1044 |
| 00:22:36 | 0.0423 |


| 92.97\% | 0.28 | 0.0050 |
| :---: | :---: | :---: |
| 94.53\% | 0.28 | 0.0050 |
| 98.44\% | 0.20 | 0.0050 |
| 98.44\% | 0.16 | 0.0050 |
| 95.31\% | 0.19 | 0.0050 |
| 94.53\% | 0.23 | 0.0050 |
| 96.88\% | 0.31 | 0.0050 |
| 94.53\% | 0.23 | 0.0050 |
| 97.66\% | 0.17 | 0.0050 |
| 96.88\% | 0.13 | 0.0050 |
| 92.19\% | 0.30 | 0.0050 |
| 96.88\% | 0.21 | 0.0050 |
| 94.53\% | 0.21 | 0.0050 |
| 96.88\% | 0.36 | 0.0050 |
| 98.44\% | 0.15 | 0.0050 \| |
| 100.00\% \| | 0.13 \| | 0.0050 |
| 98.44\% \| | 0.16 \| | 0.0050 |
| 100.00\% \| | 0.14 \| | 0.0050 |
| 100.00\% \| | 0.29 \| | 0.0050 |
| 96.88\% | 0.19 | 0.0050 |
| 99.07\% \| | 0.30 | 0.0050 |
| 100.00\% | 0.24 \| | 0.0050 |
| 96.88\% | 0.15 \| | 0.0050 |
| 97.66\% | 0.31 | 0.0050 |
| 97.66\% | 0.19 | 0.0050 |
| 97.66\% | 0.17 | 0.0050 |
| 97.87\% | 0.37 | 0.0050 |
| 96.88\% | 0.23 | 0.0050 |
| 96.88\% | 0.20 | 0.0050 |
| 97.66\% | 0.18 | 0.0050 |
| 97.66\% | 0.18 | 0.0050 |
| 98.44\% | 0.13 | 0.0050 |
| 92.97\% | 0.30 | 0.0050 |
| 97.66\% | 0.18 | 0.0050 |
| 97.66\% | 0.28 | 0.0050 |
| 96.88\% | 0.18 | 0.0050 |
| 97.66\% | 0.32 | 0.0050 |
| 97.66\% | 0.20 | 0.0050 |
| 97.66\% | 0.24 | 0.0050 |
| 94.53\% | 0.22 | 0.0050 |
| 95.31\% | 0.19 | 0.0050 |
| 97.66\% | 0.19 | 0.0050 |
| 96.09\% | 0.20 | 0.0050 |
| 99.22\% \| | 0.15 | 0.0050 \| |


| $2 \mid$ | 6650 |
| :---: | :---: |
| 2 | 6700 |
| $2 \mid$ | 6750 |
| 2 | 6800 |
| $2 \mid$ | 6850 |
| 2 | 6900 |
| $2 \mid$ | 6950 |
| 21 | 7000 |
| 2 | 7050 |
| 2 | 7100 |
| 2 | 7150 |
| 2 | 7200 |
| $2 \mid$ | 7250 |
| 2 | 7300 |
| $3 \mid$ | 7350 |
| 3 | 7400 |
| 31 | 7450 |
| 31 | 7500 |
| 3 | 7550 |
| 3 | 7600 |
| 3 | 7650 |
| 3 | 7700 |
| 31 | 7750 |
| 3 \| | 7800 |
| 3 | 7850 |
| 3 | 7900 |
| 31 | 7950 |
| 31 | 8000 |
| 3 | 8050 |
| 31 | 8100 |
| 31 | 8150 |
| 3 | 8200 |
| 31 | 8250 |
| 31 | 8300 |
| 31 | 8350 |
| 31 | 8400 |
| 31 | 8450 |
| 31 | 8500 |
| 31 | 8550 |
| 31 | 8600 |
| 31 | 8650 |
| 31 | 8700 |
| 31 | 8750 |
| $3 \mid$ | 8800 |


| 00:22:46 | 0.1042 |
| :---: | :---: |
| 00:22:56 | 0.1070 |
| 00:23:07 | 0.0543 |
| 00:23:17 | 0.0571 |
| 00:23:27 | 0.1729 |
| 00:23:37 | 0.0331 |
| 00:23:48 | 0.0889 |
| 00:23:58 | 0.1037 |
| 00:24:08 | 0.1070 |
| 00:24:18 | 0.1114 |
| 00:24:28 | 0.0332 |
| 00:24:38 | 0.1217 |
| 00:24:48 | 0.1275 |
| 00:24:59 | 0.0750 |
| 00:25:12 | 0.0417 |
| 00:25:22 | 0.1276 |
| 00:25:33 | 0.1187 |
| 00:25:43 | 0.0595 |
| 00:25:53 | 0.0745 |
| 00:26:04 | 0.1040 |
| 00:26:14 | 0.1008 |
| 00:26:24 | 0.1734 |
| 00:26:34 | 0.0522 |
| 00:26:45 | 0.2330 |
| 00:26:55 | 0.0496 |
| 00:27:05 | 0.0956 |
| 00:27:15 | 0.0820 |
| 00:27:26 | 0.0660 |
| 00:27:36 | 0.1123 |
| 00:27:46 | 0.0541 |
| 00:27:57 | 0.1026 |
| 00:28:07 | 0.0778 |
| 00:28:17 | 0.1023 |
| 00:28:27 | 0.1394 |
| 00:28:38 | 0.1324 |
| 00:28:48 | 0.0827 |
| 00:28:58 | 0.1425 |
| 00:29:08 | 0.3084 |
| 00:29:19 | 0.0689 |
| 00:29:29 | 0.0783 |
| 00:29:39 | 0.1003 |
| 00:29:50 | 0.0863 |
| 00:30:00 | 0.1329 |
| 00:30:10 | 0.0614 |


| 96.88\% | 0.14 | 0.0050 |
| :---: | :---: | :---: |
| 98.97\% | 0.24 | 0.0050 |
| 99.22\% | 0.16 | 0.0050 |
| 98.13\% | 0.18 | 0.0050 |
| 95.31\% | 0.23 | 0.0050 |
| 99.22\% | 0.16 | 0.0050 |
| 98.44\% | 0.17 | 0.0050 |
| 95.24\% | 0.16 | 0.0050 |
| 97.66\% | 0.22 | 0.0050 |
| 94.53\% | 0.18 | 0.0050 |
| 100.00\% \| | 0.25 | 0.0050 |
| 96.09\% | 0.18 | 0.0050 |
| 97.66\% | 0.23 | 0.0050 |
| 96.88\% | 0.13 | 0.0050 |
| 97.96\% | 0.12 | 0.0050 |
| 96.09\% | 0.23 | 0.0050 |
| 97.66\% | 0.23 | 0.0050 |
| 98.44\% | 0.20 | 0.0050 |
| 98.44\% | 0.17 | 0.0050 |
| 95.31\% | 0.13 | 0.0050 |
| 97.70\% | 0.28 | 0.0050 |
| 93.75\% | 0.15 | 0.0050 |
| 100.00\% | 0.15 | 0.0050 |
| 92.97\% | 0.29 | 0.0050 |
| 99.22\% | 0.14 | 0.0050 |
| 97.66\% | 0.16 | 0.0050 |
| 98.46\% | 0.27 | 0.0050 |
| 98.10\% | 0.16 | 0.0050 |
| 98.44\% | 0.19 | 0.0050 |
| 100.00\% \| | 0.21 | 0.0050 |
| 96.09\% | 0.17 | 0.0050 |
| 98.44\% | 0.21 | 0.0050 |
| 96.25\% | 0.22 | 0.0050 |
| 96.09\% | 0.20 | 0.0050 |
| 95.31\% | 0.16 | 0.0050 |
| 95.31\% | 0.15 | 0.0050 |
| 96.09\% | 0.25 | 0.0050 |
| 92.19\% | 0.31 | 0.0050 |
| 99.03\% | 0.27 | 0.0050 |
| 96.09\% | 0.15 | 0.0050 |
| 97.66\% | 0.18 | 0.0050 |
| 96.88\% | 0.17 | 0.0050 |
| 96.09\% | 0.16 | 0.0050 |
| 99.22\% \| | 0.16 | 0.0050 |


| 31 | 8850 | 00:30:21\| | 0.0981 | 98.77\% | 0.27 | 0.0050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31 | $8900 \mid$ | 00:30:31 \| | 0.1037 | 96.09\% | 0.20 | 0.0050 |
| 31 | 8950 | 00:30:41 \| | 0.1056 | 96.88\% | 0.17 | 0.0050 |
| 31 | 9000 | 00:30:52 | 0.1330 | 96.09\% | 0.17 | 0.0050 |
| 31 | 9050 | 00:31:02\| | 0.1641 \| | 94.53\% | 0.20 | 0.0050 |
| 31 | $9100 \mid$ | 00:31:12\| | 0.0530 | 97.75\% \| | 0.21 | 0.0050 |
| 31 | 9150 | 00:31:23 \| | 0.0967 | 97.66\% \| | 0.16 | 0.0050 |
| 31 | $9200 \mid$ | 00:31:33 \| | 0.1435 | 95.31\% | 0.21 | 0.0050 |
| 31 | 9250 | 00:31:43 | 0.0510 | 98.44\% | 0.17 | 0.0050 |
| 31 | $9300 \mid$ | 00:31:53\| | 0.1272 | 96.09\% | 0.17 | 0.0050 |
| 31 | 9350 \| | 00:32:04 \| | 0.0924 | 98.44\% \| | 0.20 | 0.0050 |
| 31 | $9400 \mid$ | 00:32:14\| | 0.0632 | 97.66\% \| | 0.14 | 0.0050 |
| 31 | 9450 \| | 00:32:24 \| | 0.0685 | 99.22\% | 0.16 | 0.0050 |
| 31 | $9500 \mid$ | 00:32:35 | 0.0734 | 96.88\% \| | 0.17 | 0.0050 |
| 31 | $9550 \mid$ | 00:32:45 | 0.0255 | 100.00\% | 0.21 | 0.0050 \| |
| 31 | $9600 \mid$ | 00:32:55 | 0.0562 | 97.96\% \| | 0.14 \| | 0.0050 \| |
| 31 | 9650 | 00:33:05 | 0.1928 | 91.15\% | 0.20 | 0.0050 |
| 31 | $9700 \mid$ | 00:33:15 | 0.0629 | 99.22\% | 0.17 | 0.0050 |
| 31 | 9750 \| | 00:33:25 | 0.1940 | 93.75\% | 0.20 | 0.0050 |
| 31 | $9800 \mid$ | 00:33:35 | 0.0795 | 99.22\% | 0.20 | 0.0050 |
| 31 | 9850 | 00:33:46\| | 0.1094 | 94.53\% | 0.15 | 0.0050 |
| 31 | $9900 \mid$ | 00:33:56\| | 0.1037 | 96.88\% \| | 0.18 | 0.0050 |
| 31 | 9950 \| | 00:34:06\| | 0.0497 | 99.22\% \| | 0.12 | 0.0050 |
| 31 | 10000 | 00:34:16 | 0.0721 | 97.66\% | 0.17 | 0.0050 |
| 31 | 10050 | 00:34:26 | 0.0346 | 98.89\% | 0.24 | 0.0050 |
| 31 | 10100 | 00:34:36 | 0.1197 | 94.53\% | 0.19 | 0.0050 |
| 31 | 10150 | 00:34:47 | 0.0988 | 96.88\% | 0.15 | 0.0050 |
| 31 | 10200 | 00:34:57 | 0.0949 | 96.88\% | 0.12 | 0.0050 |
| 31 | 10250 | 00:35:07 | 0.0881 | 97.66\% | 0.16 | 0.0050 |
| 31 | 10300 | 00:35:18 | 0.0792 | 98.70\% | 0.26 | 0.0050 |
| 31 | 10350 | 00:35:28 | 0.1643 | 95.31\% | 0.17 | 0.0050 |
| 31 | 10400 | 00:35:38 | 0.1457 | 96.88\% | 0.24 | 0.0050 |
| 31 | 10450 | 00:35:48 | 0.2173 | 92.97\% | 0.28 | 0.0050 |
| 31 | 10500 | 00:35:59 | 0.0726 | 98.44\% | 0.13 | 0.0050 |
| 31 | 10550 | 00:36:09 | 0.0953 | 98.44\% | 0.25 | 0.0050 |
| 31 | 10600 | 00:36:19 | 0.0441 | 98.44\% | 0.12 | 0.0050 |
| 31 | 10650 | 00:36:29 | 0.2321 | 95.31\% | 0.33 | 0.0050 |
| 31 | 10700 | 00:36:39 | 0.1261 | 98.44\% | 0.22 | 0.0050 |
| 31 | 10750 | 00:36:50 | 0.1120 | 97.66\% | 0.19 | 0.0050 |
| 31 | 10800 | 00:36:59 | 0.0891 | 96.88\% | 0.13 | 0.0050 |
| 31 | 10850 | 00:37:10 | 0.2532 | 92.97\% | 0.25 | 0.0050 |
| 31 | 10900 | 00:37:20 | 0.0905 | 97.66\% | 0.18 | 0.0050 |
| 31 | 10950 | 00:37:30 | 0.2776 | 92.97\% | 0.27 | 0.0050 |
| 31 | 10989 | 00:37:38 | 0.0657 | 97.66\% | 0.15 | 0.0050 \| |



Detector training complete (with warnings):
Warning: Invalid bounding boxes from 143 out of 3688 training images were removed.
The following rows in trainingData have invalid bounding box data:

Invalid Rows

39
55
61
62
82
99
101
108
113
127

## 145

156
199
222
260
311
316
323
328
399
431
452
472
474

## 525

538
546
551
575

## 604

607
646
696

698
739
744
763
766
775
804
815
827
844
893
903
1018
1029
1030
1035
1044
1066
1131
1139
1142
1146
1156
1218
1315
1351
1361
1430
1479
1488
1518
1527
1530
1567
1592
1698
1709
1716
1773
1792
1830
1864
1875
1917

1960
1965
1972
1979
1986
2103
2116
2148
2171
2177
2211
2232
2258
2297
2342
2386
2388
2473
2477
2482
2521
2556
2561
2563
2579
2628
2638
2674
2707
2752
2759
2772
2813
2847
2851
2881
2882
2896
2916
2921
2960
2963
2986
3025

3039
3109
3157
3210
3272
3320
3328
3340
3354
3406
3433
3442
3444
3563
3568
3594
3597
3624
3627
3636
3642
3648
Bounding boxes must be fully contained within their associated image and must have positive width and height.
trainedDetector $=$
fasterRCNNObjectDetector with properties:
ModelName: 'end_tower'
Network: [ $1 \times 1$ DAGNetwork]
AnchorBoxes: [ $6 \times 2$ double]
ClassNames: \{'end_tower' 'pyramid' 'span' 'tower' 'Background'\}
MinObjectSize: [16 16]
Elapsed time is 6092.868297 seconds.



Average Precision $=0.96$


APPENDIX F.12.1.2 Results on test pictures




