
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Biological Systems Engineering--Dissertations,
Theses, and Student Research Biological Systems Engineering

4-2019

Field Obstacle Identification for Autonomous
Tractor Applications
Caleb Lindhorst
University of Nebraska-Lincoln, clindhorst2@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/biosysengdiss

Part of the Bioresource and Agricultural Engineering Commons

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Biological Systems Engineering--Dissertations, Theses, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Lindhorst, Caleb, "Field Obstacle Identification for Autonomous Tractor Applications" (2019). Biological Systems Engineering--
Dissertations, Theses, and Student Research. 94.
https://digitalcommons.unl.edu/biosysengdiss/94

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengdiss?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengdiss?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/agbiosyseng?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengdiss?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/biosysengdiss/94?utm_source=digitalcommons.unl.edu%2Fbiosysengdiss%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages

FIELD OBSTACLE IDENTIFICATION FOR AUTONOMOUS TRACTOR

APPLICATIONS

by

Caleb Lindhorst

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Agricultural and Biological Systems Engineering

Under the Supervision of Professor Santosh Pitla

Lincoln, Nebraska

April 2019

FIELD OBSTACLE IDENTIFICATION USING MACHINE LEARNING

TECHNIQUES FOR AUTONOMOUS TRACTOR APPLICATIONS

Caleb Lindhorst, M.S.

University of Nebraska, 2019

Advisor: Santosh Pitla

New technologies are being developed to meet the growing demand for agricultural

products. Autonomous tractors are one of the many solutions to address this demand.

Obstacle detection and avoidance is an important consideration for safe operation of any

autonomous machine. Three field obstacles were chosen to be identified in this thesis

work: tractors, round bales, and center pivots. Limited research work was found on the

identification of center pivot detection.

Feasibility of using low cost LIDARs was considered for the detection of tractors, bales,

and agricultural center pivots. Performance of LIDARs in different lighting conditions,

different colors of obstacles, accuracy and angular resolution was evaluated. It was found

that low cost LIDARs do not have a small enough angular resolution to detect pivots at a

distance to avoid the obstacle. Formulas were derived to help find the distance between

steps of the LIDAR.

Obstacle identification is also important so that proper corrective actions can be taken to

avoid the obstacle. RGB cameras were used to aid in the detection of center pivots. SURF

Feature Extraction and Matching, Viola-Jones algorithm and edge detection with a shape

identification algorithm were tried but none of the algorithms could adapt to more than

one orientation or class of object.

Obstacle identification using Convolutional Neural Networks (CNNs) for obstacle

detection was pursued. Each obstacle was individually trained first and then all classes

were combined to create one object detector. Faster Region based CNN (R-CNN) was

used with GoogLeNet to give high mean Average Precision (mAP).

iii

Acknowledgements

I want to first thank God for all the blessings in my life even the life-changing accident I

was in. If it wasn’t for the accident, I probably would not have even thought about

pursuing a graduate degree.

Mom and Dad thank you for all your support and love. You always told me that you

believed in me even when I didn’t. You helped in more ways than I can even count.

Thank you for all the things you did.

My entire family including those not technically a part of the family yet. You have been

through it all. Thank you for encouraging and helping me get through things that were not

going good at that moment.

My advisor for giving me this opportunity and committee members for always giving me

enough constructive criticism to keep pushing and improving my research. You all had a

significant part in helping me finish my research.

Dr. Santosh Pitla, Dr. Roger Hoy, Dr. Yufeng Ge, Dr. Joe Luck

Thank you to all the undergraduate students that helped me with my research even if it

was the most boring task you have ever done.

Brian Hurst, Robert Goldsworthy, Isaac Hanson

For all my office mates. Thank you for helping me on trips and making grad school

bearable.

Chandler Folkerts, Gabe Stoll, Rodney Rohrer, Abbas Atefi

Josh Murman, John Evans, Aaron Shearer, Rachel Stevens

 iv

Table of Contents

Chapter 1 Introduction and Background ... 1

Chapter 2 Sensors and Methodologies to Detect Agricultural Obstacles 6

2.1 Obstacle Definitions ... 6

2.2 Obstacle Detection Sensors .. 7

 Ultrasonic sensors ... 7

 LIDAR/LADAR ... 7

 Cameras... 9

 Sensor Fusion .. 12

Chapter 3 Off-the-Shelf Inexpensive LIDAR Evaluation in Controlled Settings 13

3.1 Introduction .. 13

3.2 Objectives ... 15

3.3 Materials and Methods ... 15

3.4 Results and discussion .. 24

 SCANSE Results and Discussion ... 24

 RPLIDAR Results and Discussion ... 25

 Hokuyo URG-04LX-UG01 Results and Discussion 33

3.5 LIDAR Conclusions ... 33

 SCANSE Conclusion .. 34

 v

 RPLIDAR Test Conclusions ... 34

 Hokuyo URG-04LX-UG01 conclusions... 34

Chapter 4 Obstacle Detection and Identification Algorithms for Camera Images 35

4.1 Introduction and Objectives ... 35

4.2 SURF Feature Extraction and Matching .. 35

4.3 Edge Detection ... 36

4.4 Combination of SURF Feature Extraction and Matching and Edge Detection

Algorithms .. 38

4.5 Conclusions from SURF Feature Extraction and Matching and Edge Detection

 39

4.6 Object Identification ... 40

 Cascade Object Detector and the Viola-Jones Algorithm 41

 Convolutional neural networks (CNN) ... 42

4.7 Conclusions ... 54

Chapter 5 Convolutional Neural Networks for Tractor, Round Bale, and Center-Pivot

Identification 55

5.1 Intoduction and Objectives... 55

5.2 R-CNN ... 56

5.3 Faster R-CNN ... 57

5.4 Training Faster R-CNN .. 57

 vi

5.5 Results of Faster R-CNN training .. 61

 Tractor ... 61

 Round Bale.. 64

 Pivot .. 66

 Combined .. 69

 Pivotv2 .. 71

5.6 Conclusions of Faster R-CNN Training ... 76

Chapter 6 Conclusions and Future Work .. 77

6.1 Conclusions .. 77

6.2 Future Work ... 78

References ... 80

APPENDIX A SCANSE... 94

APPENDIX A.1 Test Setup .. 94

APPENDIX A.2 Data Collection code (Arduino) .. 94

APPENDIX A.3 Plotting Data code (MATLAB)... 101

APPENDIX A.4 Sample Data .. 102

APPENDIX A.5 Sensor Calculations ... 105

APPENDIX A.6 Sample Data Plot ... 108

APPENDIX B RPLIDAR ... 109

APPENDIX B.1 Test Setup .. 111

 vii

APPENDIX B.1.1 Occupancy Map Setup .. 111

APPENDIX B.1.2 Straight Line Setup ... 112

APPENDIX B.1.3 Final RPLIDAR Test Setup .. 113

APPENDIX B.2 Data Collection code (Arduino) .. 114

APPENDIX B.3 Plotting Data code (MATLAB) ... 121

APPENDIX B.4 Sample Data... 122

APPENDIX B.5 Sensor Calculations ... 125

APPENDIX B.6 Occupancy Map Generation Code (MATLAB) 127

APPENDIX B.7 Sample Point Summaries (no false positives) 128

APPENDIX C Hokuyo URG-04LX-UG01 .. 134

APPENDIX C.1 Test Setup .. 134

APPENDIX C.2 Data Collection code (C) ... 135

APPENDIX C.3 Plotting Data code (MATLAB) ... 137

APPENDIX C.4 Sample Data... 138

APPENDIX D SURF Feature Extraction and Matching and Edge Detection................ 140

APPENDIX D.1 SURF Feature Extraction and Matching Script (MATLAB) 140

APPENDIX D.2 Edge Detection Script (MATLAB) ... 141

APPENDIX D.3 Shape Identification algorithm (MATLAB) 142

APPENDIX D.4 Edge detection and Shape Identification Algorithm (MATLAB) ... 145

 viii

APPENDIX D.5 SURF Feature Extraction and Matching and Edge Detection

(MATLAB) ... 147

APPENDIX D.6 approxcanny .. 148

APPENDIX D.7 Canny .. 149

APPENDIX D.8 log .. 149

APPENDIX D.9 Prewitts .. 150

APPENDIX D.10 Roberts .. 150

APPENDIX D.11 Sobel .. 151

APPENDIX D.12 zerocross .. 151

APPENDIX E Viola-Jones Algorithm Script (MATLAB) .. 152

APPENDIX F Faster R-CNN Training .. 152

APPENDIX F.1 Code used to extract images out of video (MATLAB) 152

APPENDIX F.2 Augmentation Code (MATLAB) ... 153

APPENDIX F.3 Training detector Code (MATLAB) .. 153

APPENDIX F.4 Code for detecting objects using a trained detector for a single image

(MATLAB) ... 156

APPENDIX F.5 Code for detecting objects using a trained detector for a multiple

images (MATLAB) ... 156

APPENDIX F.6 Shuffling code (MATLAB) ... 157

APPENDIX F.7 Padding code (MATLAB) ... 157

 ix

APPENDIX F.8 Tractor images ... 157

APPENDIX F.8.1 Run 1 ... 158

APPENDIX F.8.2 Run 2 ... 183

APPENDIX F.9 Round Bale... 204

APPENDIX F.9.1 Run 1 ... 205

APPENDIX F.9.2 Run 2 ... 224

APPENDIX F.10 Pivot ... 243

APPENDIX F.10.1 Run 1 ... 243

APPENDIX F.10.2 Run 2 ... 271

APPENDIX F.11 Combined Detector .. 286

APPENDIX F.11.1 GoogLeNet Run 1 ... 287

APPENDIX F.11.2 GoogLeNet Run 2 ... 305

APPENDIX F.12 Pivotv2 ... 324

APPENDIX F.12.1 GoogLeNet .. 324

 x

List of Figures

Figure 2.1 From top to bottom: tractor (dynamic, John Deere, 2019), round bales (static

temporary, Pixabay 2019), barn (static permanent, 95oldcolonyrd.com, 2019) 6

Figure 2.2 Outdoor experimental results. Green is traversable red is non-traversable

(Bellone et al., 2013). .. 10

Figure 2.3 Occupancy grid created by a LIDAR (Green box).Red lines are LIDAR beams

being generated by the sensor. Black boxes are obstacle or edge of the sensor edge.

White boxes are clear areas. Gray boxes are unknown. ... 11

Figure 2.4 DEM vision processing. To represent the road (blue), traffic isles (yellow) and

obstacles (red). (Oniga & Nedevschi, 2010) ... 11

Figure 3.3 Arduino Mega 2560 board... 16

Figure 3.1 The SCANSE test stand with the spinning LIDAR mounted on the top........ 16

Figure 3.2 The RPLIDAR test stand merged with an Arduino Mega 2560 on the right and

a breadboard on the left... 16

Figure 3.4 (a) Layout of a Run (b) Three runs are equal to one run 17

Figure 3.5 Red, Green, Blue obstacle configurations. Orange diamond is location of the

sensor. ... 18

Figure 3.6 Obstacle used in the SCANSE Sweep test .. 19

Figure 3.7 Obstacle used in the RPLIDAR and Hokuyo tests .. 19

Figure 3.8 Setup for the Final Test. Obstacle in the sun RPLIDAR in the shade and vice

versa .. 20

Figure 3.9 Location of variables ... 22

https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470426
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470426
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470427
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470427
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470428
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470428
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470428
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470429
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470429
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470430
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470431
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470432
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470432
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470433
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470434
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470434
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470435
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470436
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470437
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470437
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470438

 xi

Figure 3.10 SCANSE Sweep plotted results for one data gathering session of the green

obstacle location.. 24

Figure 3.11 Plotted RPLIDAR data .. 25

Figure 3.12 Occupancy Maps and two different path planning algorithms. 26

Figure 3.13 Obstacle setup on the brown backside in the Straight Line Test. 27

Figure 3.14 The proportion of false positives as distance increases and in both lighting

positions. The 95% confidence interval bounds are shown. ... 28

Figure 3.15 The proportion of false positives between distances and obstacle colors with

a range of 95% confidence interval bounds for the number of false positives 29

Figure 3.16 The average amount of data points collected and 95% confidence interval

bounds with the color and distance being the set variables. ... 30

Figure 3.17 A graph showing the LS-Means and 95% confidence interval bounds

between the two color obstacles at each distance. It is noticed that at distances < six

meters away the brown/black obstacles are more accurate and distances > six white

obstacles are more ... 31

Figure 3.18 A graph showing the LS-Means for accuracy when the RPLIDAR in the sun

and both color obstacles. A glance at the graph shows accuracy staying under 100 mm

untl it reaches 9000 mm .. 32

Figure 3.19 Plotted data from Test 6 .. 33

Figure 4.1(a) Extracted features out of the grayscale reference image. (b) Extracted

features out of the grayscale test image. (c) Matching the extracted features in reference

photo to features in the test photo. Only ouliers are displayed because no inliers were

preent... 36

https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470439
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470439
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470440
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470441
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470442
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470443
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470443
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470444
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470444
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470445
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470445
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470446
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470446
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470446
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470446
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470447
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470447
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470447
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470448
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470449
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470449
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470449
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470449

 xii

Figure 4.2 Sobel edge detection with the "Shape Recognition" algorithm. The initial

image can be seen in the top left picture. The bottom left picture is the result of using the

Sobel edge detection method. The top right depicts the objects the algorithm detected

based on the input binary image. This image is flipped compared to the input image. The

bottom right gives scores on what the shape of the object is . .. 38

Figure 4.3 Positively matched points (Inliers only) .. 39

Figure 4.4 Positively matched SURF Points (Including Outliers) 39

Figure 4.5 Viola-Jones algorithm detecting a tractor with no clutter. Yellow bounding

box does not surround the entire tractor. .. 42

Figure 4.6 Viola-Jones algorithm detecting a pivot in the middle of a soybean field.

Yellow bounding boxes do not surround the entire pivot but, false positives. 42

Figure 4.7 Layout of the entirety of a CNN with a pivot as the input image 43

Figure 4.8 Layers in convolutional neural network .. 44

Figure 4.9 Layout of a single neuron in a CNN .. 45

Figure 4.10 Example of a convolution. A simple picture of a straight line. With a straight

line filter. The input image with [1 1 1 1] is in (a) resulting matrix (b) and stride [1 1]. . 46

Figure 4.11 Illustration of an image [9 9], filter size [3 3] and a stride of [1 1]. 47

Figure 4.12 The result of convolution between the test image and the chosen filter 48

Figure 4.13 The resulting matrix after a bias of -4 is implemented. 48

Figure 4.14 Graphical representation of the activation functions 49

Figure 4.15 Result of ReLu on Example 1 ... 50

Figure 4.16 Examples of the 2 methods "VALID" and "SAME" filter width= 3 stride = 3

... 52

https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470450
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470450
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470450
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470450
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470450
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470451
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470452
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470453
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470453
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470454
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470454
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470455
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470456
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470457
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470458
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470458
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470459
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470460
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470461
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470462
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470463
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470464
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470464

 xiii

Figure 4.17 Result of "VALID" max pooling in the example .. 52

Figure 4.18 Result of "SAME" max pooling .. 52

Figure 4.19 flattening of the "VALID" max pooling (Figure 4.17) 53

Figure 4.20 SoftMax equation and example ... 53

Figure 4.21 The Final Layers of a CNN. Flattening, two fully connected layers and

SoftMax to give the probability of that object in the picture .. 54

Figure 5.1 Steps of an R-CNN (Lee, 2017) .. 56

Figure 5.2 Two network layout of a Faster CNN network. The CNN can be replaced with

any CNN to best fit the application applied to. (Sinhal & Sachan, 2017) 57

Figure 5.3 Tractor image 448 x 448 after padding to keep the same aspect ratio. The

black part of the image is padding. ... 58

Figure 5.4 (a) A 1920 x 1080 pivot picture (b) pivot picture resized to 448 x 448 with no

padding. ... 59

Figure 5.5 Components of a pivot (a) span (b) pyramid (c) tower (d) end tower 59

Figure 5.6 Accuracy vs time, the marker shape indicates the meta-architecture and color

indficates feature extractor used. (Huang et al., 2016) ... 60

Figure 5.7 Tractor Faster R-CNN training graphed results .. 62

Figure 5.8 Tractor training results .. 63

Figure 5.9 Graphical representation of the training results from the round bale Faster R-

CNN training. .. 65

Figure 5.10 Bale detector testing images. ... 65

Figure 5.11 Results of pivot training graphed .. 67

https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470465
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470466
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470467
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470468
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470469
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470469
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470470
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470471
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470471
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470472
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470472
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470473
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470473
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470474
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470475
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470475
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470476
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470477
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470478
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470478
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470479
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470480

 xiv

Figure 5.12 Pivot detectorv1 labeling: (a) two spans and a tower, (b) pyramid and span,

(c) span and end tower .. 68

Figure 5.13 Accuracy vs time of combined dedectors. ... 70

Figure 5.14 Results from running the Run 1 combined detector on pictures from the

internet. (a) A tractor and multiple bales and (b) multiple bales in a field. 70

Figure 5.15 Collage of the six classes the combined detector is suppose to be able to

identify. ... 71

Figure 5.16 Pivot detectorv2 labeling: (a) two spans and a tower, (b) pyramid and span,

(c) span and end tower .. 73

Figure 5.17 A graph comparing all trained detectors ... 74

Figure 5.18 A graphical representation of the detector testing times along with the

accuracy in detection... 75

https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470481
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470481
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470482
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470483
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470483
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470484
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470484
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470485
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470485
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470486
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470487
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15470487

 xv

List of Tables

Table 2.1 Examples of field obstacles and classes they are assigned to. 7

Table 3.1 Required sensor and tested LIDAR specifications (*calculated from other

specifications **priced on roboshop.com priced 7/11/18) ... 13

Table 3.2 Data gathered during testing in the shade at a 2 meter distance red rows were

eliminated and green rows were kept .. 25

Table 3.3 Sample point data summary Obstacle in the shade obstacle color is black at a

distance of 1 meter .. 29

Table 5.1 Tractor Faster R-CNN training results .. 62

Table 5.2 Round Bale Faster R-CNN training result(b) ... 63

Table 5.3 Results from pivot training(b) ... 65

Table 5.4 Results from pivot training ... 66

Table 5.5 mAP scores for each component of the pivot(c)... 68

Table 5.6 Results of training with more pivot image data .. 72

Table 5.7 Summary statistics for each feature extractor and object class in Faster R-CNN

... 74

Table 5.8 Detector speed and accuracy... 75

https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471101
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471102
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471102
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471103
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471103
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471105
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471106
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471107
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471108
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471109
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471110
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471111
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471111
https://d.docs.live.net/3f1e01dc5bc132eb/Documents/Final%20Thesis%20Caleb%20Lindhorst.docx#_Toc15471112

 xvi

List of Equations

Equation 1...Angular Resolution

... 20
Equation 2..Arc Length

... 21

Equation 3 ..Law of Cosines

... 22
Equation 4………………………….Linear Distance between two consecutive data points

... 22
Equation 5..Number of data points per one foot

... 23

Equation 6...Mathematical Representation of a Neuron

... 45

Equation 7...Sigmoid Function

... 49
Equation 8……………………………………………………………..Hyperbolic Tangent

... 50

Equation 9…………………………………………………………………………….ReLu

... 50

Equation 10……………………………………………………….…………..Leaky ReLu

... 50
Equation 11…………………………..…………………………………...Parametric ReLu

... 51
Equation 12…………………………..……………..……Exponential Linear Units (ELU)

... 51

1

Food production has significantly improved in the past 300 years. Humans have applied

the knowledge developed in math and sciences during the renaissance era to improve the

lives of humans around the world. The industrial revolution was the beginning of a

population boom that is expected to continue growing at an exponential rate. Presently

there is an estimated 7 billion people on the planet and by 2050 there will be an

estimated 9.6 billion people inhabiting the earth (Kochhar, 2014). New methods and

technologies have been and will be developed to satisfy the growing demand for food.

The expected population increase requires increasing the overall food production by

nearly 70% (FAO Director’s office, 2009). Cereal grains for both human and animal

consumption are projected to increase by one billion metric tons.

Food production advancements started in the late 1700’s with the threshing machine

(Spielmaker, 2018). Farmers went from feeding an estimated 10.7 people per farmer in

the 1940’s to farmers in Iowa being able to produce enough food to feed 155 people per

farmer in 2010 (Sullivan, 2014). A timeline of farm mechanization advancements is

shown in the list below (Spielmaker, 2018):

 1788 – Invention of the threshing machine in by Andrew Meikle (a Scottish

engineer)

 1830’s – invention of the steel plow

 1868 – Steam tractors are tested

 1892 – John Froelich produced the first gasoline tractor

 1918 – First combine with auxiliary engine introduced

 2

 1930s – Rubber tires first introduced

 1945-1970s – Farmers change from horses to tractors

 1980s – Introduction of GPS

 2010s – Introduction of the autonomous tractor concept

Current applications of electronics in agriculture could be the current Global Positioning

Systems (GPS), monitors and displays, or computers and sensors on the future

autonomous equipment. GPS was first introduced in the 1980’s which significantly

contributed to the progress of precision farming. The idea of an autonomous tractor has

been around since the introduction of precision farming in the 1980’s (Big Ag, 2018).

Today’s technology has advanced far enough that equipment manufacturers such as Case

IH, New Holland (Case IH, 2016) and AGCO are promising autonomous tractors for

commercial in the coming years (Bedord, 2018)

An autonomous tractor may have three substantial benefits for farmers and farm workers

(Big Ag, 2018). The first benefit is that autonomous tractors could have significantly

better accuracy in field applications by increasing fertilizer and chemical application rate

uniformity and reducing planting population inaccuracies. The second way that an

autonomous tractor could benefit farmers is by collecting information on soil conditions

and plant health during the growing season with minimal human supervision. The third

benefit is that it could reduce stress and workload of farmers and farm workers during the

growing season.

 3

The five levels of autonomy as defined by Case IH ((Case IH, 2018, Vogt, 2018) are

listed as follows:

1. Guidance – In Guidance, a tractor can be controlled by a GPS while driving and

an operator is inside the tractor, like many tractors today. An operator is always

present.

2. Coordinate and optimization – This level of autonomy is like a tractor and grain

cart linked to the combine. The tractor and grain cart try to match the speed of the

combine.

3. Operator Assisted Automation – This style of autonomy is much like a

leader/follower architecture. One machine is fully autonomous while another

machine has an operator present. The autonomous machine follows the operator

through the field.

4. Supervised autonomy – This level of autonomy allows all machines to run on

their own with a supervisor managing the machines nearby.

5. Full autonomy – The highest level of autonomy is full autonomy and no local

supervision. However, there can be remote supervision.

An area of interest for any autonomous robot is obstacle detection. The objects that need

to be detected depend on the environment of the robot. A household robot may have to

detect floor obstacles like shoes or stairs; however, agricultural robots need to detect

obstacles that are unique to agriculture – such as other tractors, bales, and agricultural

center pivots in irrigated agricultural fields.

 4

A center pivot is a unique obstacle to agricultural robots. A center pivot is an agricultural

machine that is used to water crops during dry weather patterns and drought. These

machines are found on farms throughout the world.

In this research, different sensors, cameras, and methodologies were explored to detect

and identify agricultural obstacles such as tractors, bales, and center pivots.

Chapter 2: Sensors and Methodologies to Detect Agricultural Obstacles

1. Determine which sensors are used for obstacle detection

2. Methods used in Obstacle detection

Chapter 3: Off-the-Shelf Inexpensive LIDAR Evaluation in Controlled Settings

1. Test selected off-the-self sensors

2. Determine if off-the-self sensors meet performance needs

Chapter 4: Obstacle Detection and Identification Algorithms for Camera Images

1. Explore different machine vision algorithms for obstacle identification

2. Preview of a Convolutional Neural Networks (CNN)

Chapter 5: Convolutional Neural Networks for Tractor, Round Bale, and Center-

Pivot Identification

1. Identify an obstacle identification algorithm that has over 85% mean

Average Precision (mAP) at 5 Hz or greater for real time obstacle

detection.

2. Train an object detector for tractors, round bales and center-pivots

Chapter 6:

 5

Conclusions and Future Work

 6

An obstacle is an obstruction in the

tractor’s path. Obstacles can be classified

into three categories based on the

obstacle’s movement. The first category is

a dynamic obstacle, which is moving or

self-powered in nature such as a tractor,

pivot, or an animal. The second category

obstacle is static temporary and requires

outside power to be moved. Examples of

static temporary obstacles are a round

bale, implement, or a temporary snow

fence. The final category is static

permanent. Obstacles that cannot be

moved like barns, trees, or fence lines are

considered static permanent. Pictures of

these obstacles are shown in Figure 2.1

and examples are given in Table 2.1.

Figure 2.1 From top to bottom: tractor (dynamic,

John Deere, 2019), round bales (static temporary,

Pixabay 2019), barn (static permanent,

95oldcolonyrd.com, 2019)

 7

 Ultrasonic sensors

Ultrasonic sensors use soundwaves to detect

obstacles. These types of sensors measure distance

by measuring the time it takes the sound waves to

rebound off the obstacle. Ultrasonic sensors use

higher frequency sound waves (20-100 kHz) to

overcome most noise pollution that occurs at lower

wave frequencies (20-200 Hz).

Benefits from using an ultrasonic sensor are that

they can be used in dark environment and are

unaffected by color of the object or dust (Gillespie,

2018). Some of the disadvantages to an ultrasonic

sensor include no location of objects in 3-D space, no orientation information of the

object to the sensor and surface temperatures may impact wave speeds (Jo & Jung, 2014;

Senix Corporation, 2018).

 LIDAR/LADAR

The terms LIDAR and LADAR come from LIght Detection And Ranging (LIDAR) and

LAser Detection And Ranging (LADAR) sensors. LIDAR and LADAR are similar,

which for the scope of this review and thesis, will be technically equivalent and

referenced as LIDAR.

Table 2.1 Examples of field obstacles and

classes they are assigned to.

 8

Two styles of LIDAR are currently found off-the shelf, spinning LIDARs and solid state

LIDARs (Mokey, 2018). Both styles of LIDAR used for navigation and obstacle

detection can be 2-D or 3-D LIDARs. Spinning LIDAR sensors that are 2-D have a single

LIDAR that spins in a circle collecting distance data on a single plane. 3-D LIDARs have

a mechanism that spins an array of LIDARs stacked on top of each other, gathering a 3-D

point cloud or multiple 2-D planes, one for each LIDAR beam. The Velodyne HDL-64E

has an electromechanical system that spins a small housing at a very high speed

collecting up to 300,000 data points per second. These sensors can cost upwards of

$75,000 and have a life span of 1,000 to 2,000 hours (Mapanauta, 2018).

Unlike spinning LIDARs, Solid State LIDARs have no moving mechanical parts

(Dubois, 2018). Quanergy’s S3 solid state LIDAR uses silicon to “steer” the light.

Currently a solid-state LIDAR can be purchased for around $900, but through making

several chips one solid chip, Louay Eldada the CEO of Quanergy, foresees “At that point,

our sales price will become under $100.”

LIDARs are also shown to work well in agriculture. In a study by Freitas et al. (2012), an

autonomous vehicle traveled between apple tree rows of an apple orchard that used wheel

and steering encoders, one SICK LMS 291 laser scanner (LIDAR), and one Inertial

Measurement Unit (IMU). Using a push – broom method, the researchers in this study

implemented a 3-D point cloud strategy to avoid obstacles that were within 4 meters of

the vehicle. Experiments were conducted in a lab setting in Pittsburg and then at an apple

orchard in Washington state. The conclusions of this research showed that this method

 9

was able to detect people moving across the row at walking speed and objects at least 15

cm tall and not covered by grass.

 Cameras

All cameras can be either Red, Green and, Blue (RGB) or black and white, to gather

image information about an object. A camera produces an image that is 2-D with no

depth data. These captured images can be used in image processing. Cameras become 3-

D by implementing stereo vision. Stereo vision extracts 3-D information from two

different camera angles and calculates distance using triangulation. Human vision is a

good example of stereo vision.

2.2.3.1 RGB

RGB cameras give a matrix of three-color values for Red, Green and Blue. The color

intensity of the pixel is given in the form of a three-layer matrix the size of the image.

The combination of these three primary colors can provide any color that is needed. A

digital camera is an example of an RGB camera.

Pictures from RGB cameras be can used in various algorithms to identify obstacles.

MATLAB includes various obstacle detection algorithms using RGB cameras. The

Algorithms include SURF Feature Extraction and Matching, edge detection methods,

Viola-Jones Algorithm and CNNs.

2.2.3.2 RGB-D

An RGB-D camera is a RGB camera that can output the distance of an object it is

capturing; hence the D in RGB-D. A low cost RGB-D camera is the Microsoft Kinect,

which is a popular consumer RGB-D camera. This device uses a per-pixel depth sensing

 10

technology developed by PrimeSense (Litomisky, 2012). The Microsoft Kinect’s distance

is found using an infrared camera with an infrared projector/emitter. Stereo vision from

the infrared systems is used to obtain a 3-D image.

A study by Sabale and Vaidya (2016) found the accuracy of the measured distance of the

Microsoft Kinect sensor. Kinect has a range from about 800 millimeters to about 4,000

millimeters. In this experiment, measurements were taken every 100 mm from 800-3500

mm using the manufacture’s calibrations for the camera. It was found that the percentage

error with respect to the actual distance to be approximately 3.6%. The Microsoft Kinect

had an increasing difference the further the object was from the camera, but the mean

percentage error slightly decreased. Bellone et al. (2013), used an RGB-D camera to

create an Unevenness Point Descriptor (UPD), a combination of the roughness and the

inclination indices (Reina, 2013). Vectors normal to the terrain were calculated and could

be classified into two categories: traversable surfaces (green vectors) and non-traversable

objects (red vectors) (Figure 2.2). Experiments were performed in indoor and outdoor

settings. The Microsoft Kinect was used for indoor experiments, while the Point Grey

Bumblebee XB3 stereo system was used for the outdoor experiments. A different camera

was used outdoors due to inability of the

Microsoft Kinect to collect data in bright outdoor

conditions. The results were successful in both

the outdoor and indoor conditions, even when

detecting dynamic obstacles.

Figure 2.2 Outdoor experimental results.

Green is traversable red is non-traversable

(Bellone et al., 2013).

 11

2.2.3.3 Obstacle detection algorithms for RGB-D, RGB cameras and

stereovision

Obstacle detection systems using stereo vision implement tessellation or clustering

strategies, that can be categorized into 4 possible models: (Bernini et al., 2014)

 Probabilistic occupancy maps

 Digital elevation maps

 Scene flow segmentation

 Geometry-based cluster

The probabilistic occupancy map was proposed by

Elfes in 1989 (Elfes, 1989). This method breaks the

field of vision into a grid system. Grid blocks are then

given one of three possible states: occupied, free, or

unknown (Figure 2.3). The computer tells the machine

which necessary actions need to be taken to avoid the

obstacle. Processing time is not given for this visual

processing method nor the accuracy of the system.

Digital elevation maps plot the heights of

objects onto a Cartesian plane like the

occupancy grid map (Oniga & Nedevschi,

2010). The grid cells are often identified into

three different classes, road, traffic isles, and

obstacles (Figure 2.4).

Figure 2.3 Occupancy grid created by

a LIDAR (Green box).Red lines are

LIDAR beams being generated by the

sensor. Black boxes are obstacle or

edge of the sensor edge. White boxes

are clear areas. Gray boxes are

unknown.

Figure 2.4 DEM vision processing. To

represent the road (blue), traffic isles (yellow)

and obstacles (red). (Oniga & Nedevschi,

2010)

 12

Scene flow segmentation uses temporal correlation between two frames captured by a

camera at two different times using stereo vision. (Lenz et al., 2011). To accommodate

the slow processing speed, a rural traffic setting was considered for validation of the

proposed obstacle detection algorithm. The study concluded that the algorithm worked

well in rural settings and it detected objects up to 60 meters away. However, in urban

settings it was only able to detect obstacles up to 50 meters away. Geometry based

clustering will not be discussed.

 Sensor Fusion

Many sensors are needed to avoid obstacles. Sensor fusion is the process of combining

the outputs of multiple sensors to accomplish a complex task such as obstacle detection.

The RGB camera and LIDARs may be used in sensor fusion. These sensors can provide

information to the machine to help identify and classify obstacles. There are methods to

detect obstacles using images. LIDARs can help determine distance to an obstacle

detected by an RGB camera.

The Extended Kalman Filter (EKF) is an algorithm that can be applied to sensor fusion

and fuse sensor information together (Barbosa et al., 2016). In this study GPS and IMU

data is fused together to track the yaw rate, lateral velocity and longitudinal velocity of a

car. The first obstacle detection sensors used in this study were inexpensive off-the-self

sensors (Chapter 3). Obstacle detection and identification using camera images is

discussed in Chapter 4 and Chapter 5.

 13

This chapter characterizes the performance of three off-the-shelf LIDAR sensors and

proposes equations when selecting a LIDAR. The LIDARs were selected on 5

specifications:

 Price

 Range

 angular resolution

 sampling rate

 sunlight resistance

The driving factors were initially price and range. As more testing was completed the

angular resolution, sampling rate and sunlight resistance became important

characteristics. Table 3.1 list specifications of the three sensors tested. The first LIDAR

explored was the SCANSE Sweep, second was the RPLIDAR and finally the HOKUYO

URG-04LX-UG-01. All three sensors output 2-D polar coordinates.

Table 3.1 Required sensor and tested LIDAR specifications (*calculated from other

specifications **priced on roboshop.com priced 7/11/18)

 14

Information regarding these sensors can be found in APPENDIX A SCANSE,

APPENDIX B RPLIDAR, and APPENDIX C Hokuyo URG-04LX-UG01.

The SCANSE was the first LIDAR purchased for testing. Only one test was done with

the SCANSE Sweep before it malfunctioned. This sensor is no longer available in the

market because the company that produces them went out of business on May 10th, 2018

(Magneon, 2018).

The RPLIDAR is a low cost sensor ($319), that had acceptable angular resolution based

on evaluations using equations developed from SCANSE testing. As shown in Table 3.1

the angular resolution was found to be between 0.45° and 1.35°, depending on the

spinning frequency. The equations developed to calculate these specifications can be

found in 3.4.1. The RPLIDAR did not have the range of the SCANSE Sweep.

The Hokuyo was the most expensive LIDAR tested and the only solid-state LIDAR

tested ($1,080). This sensor offered a high sampling rate and a high angular resolution

but, only had a 4 meter range and was tested just once.

Both SCANSE and RPLIDAR outputs were distance, azimuth and signal strength. The

SCANSE measured distance to the obstacle in centimeters, the azimuth was measured in

degrees and the signal strength was 0 – 255. 255 was the best signal strength and 0 was

the worst. The data produced by the RPLIDAR were the distance in millimeters, azimuth

in degrees, and the signal strength as an integer from 0 – 15. 15 was the highest signal

strength and 0 was the weakest signal strength. The Hokuyo outputted X and Y

coordinates in millimeters, azimuth measured in radians, radial distance in millimeters,

 15

and a timestamp but does not give signal strength. All three sensors used serial

communication.

The objectives for LIDAR testing were:

 Test selected low cost off-the-self sensors (SCANSE, RPLIDAR, Hokuyo URG-

04LX-UG01) to observe if low cost sensors have the capabilities of detecting

bales, tractors and center pivots.

 Determine the statistical effect that distance, color of obstacle and lighting

condition have on the ability of being detected by LIDAR.

If the first objective could not be met, develop equations that would aid in the sizing of

LIDARs to detect obstacles. Data points would be collected to create a binary occupancy

grid and see the possibility of creating probabilistic road maps. Statistical comparisons

would be made on accuracy, number of data points and number of false positives

between different distances, lighting conditions and color of obstacle.

The two parameters that could be set on the SCANSE were sampling rate and the

spinning frequency. The sample rate of this sensor could be set to 500 Hz, 750 Hz or

1,000 Hz. The spinning frequency of the head of the sensor could be set from 0 Hz to 10

Hz. The defaults of 500 Hz sampling rate and 5 Hz spinning speed were used for the

SCANSE Sweep. The RPLIDAR had a set sampling rate of 4,000 Hz and a range of

spinning frequency from 5 Hz to 15 Hz. The default settings of 4,000 Hz sampling rate

and a spinning rate of 10 Hz were used for RPLIDAR. Solid State LIDARs do not have a

 16

spinning head. Therefore, no spinning rate settings were adjusted on the Hokuyo. The

sampling rate could not be adjusted as well.

The SCANSE and RPLIDAR were mounted on a test stand as shown in Figure 3.2 and

Figure 3.3. Both sensors were connected to an Arduino Mega 2560 (Figure 3.1).

Arduino hardware and software were used to collect data from the SCANSE Sweep and

the RPLIDAR. There was no trouble with

data collection with the SCANSE, using the

default settings so, a similar approach

was attempted with the RPLIDAR

using the default parameters.

However, the dynamic memory of

the Arduino could not write and save

data points fast enough during RPLIDAR data collection.

Figure 3.1 Arduino Mega 2560 board

Figure 3.3 The RPLIDAR test stand merged with

an Arduino Mega 2560 on the right and a

breadboard on the left

Figure 3.2 The SCANSE test stand with the

spinning LIDAR mounted on the top

 17

To work around this problem, the Arduino accumulated one scan’s worth of data points

three times then stored the data to an SD card for a collection point. Then three collection

points constituted one run and three runs were gathered for each test (Figure 3.4).

 A Raspberry Pi using C code was used instead of the Arduino for interfacing and data

collection with the Hokuyo LIDAR because the Arduino could not handle the amount of

data coming from the Hokuyo.

Example code and wiring diagram for the SCANSE Sweep wired to an Arduino MEGA

2560 was found on GitHub (sweep-arduino, 2017/2017). Example code for the

RPLIDAR was also found for Arduino on

GitHub (Repos, 2014/2019). Example code

for the Hokuyo was found on Sourceforge

(Satofumi Kamimura, 2013). All code used

in LIDAR data collection can be found in

SCANSE APPENDIX A.2 Data Collection

code (Arduino), RPLIDAR APPENDIX B.2

Data Collection code (Arduino) and Hokuyo

APPENDIX C.2 Data Collection code (C).

In the SCANSE and RPLIDAR tests, three

sets of four obstacles were placed for the

sensor to detect. An obstacle was located on

each positive and negative X and Y axis and

two obstacles in each quadrant of the X and Y graph. Figure 3.5 shows a typical obstacle

Figure 3.4 (a) Layout of a Run (b) Three runs are

equal to one run

(a)

(b)

 18

layout. The three generated configurations were called Red, Green and Blue

configurations. The distances to the obstacles were randomly generated by a computer.

The obstacle layouts for tests can be found APPENDIX A.1 Test Setup, APPENDIX

B.1.1 Occupancy Map Setup, APPENDIX B.1.2 Straight Line Setup, APPENDIX B.1.3

Final RPLIDAR Test Setup and APPENDIX C.1 Test Setup.

Obstacles were created from a piece of cardboard that was white on the front side and

black/brown on the back.

Figure 3.5 Red, Green, Blue obstacle configurations. Orange diamond is location of the sensor.

 19

The SCANSE obstacle measured one foot tall by three feet wide and clamped to a frame

as depicted in Figure 3.6. The cardboard backing was rotated 90° for the RPLIDAR and

Hokuyo as seen in Figure 3.7. Both sides were used in test to see if color of the obstacle

would affect detection by the LIDARs.

In the Straight Line Test for the RPLIDAR, all of the obstacles were randomized and

placed within the range of 802 – 777 cm in the Y direction, the obstacles would form a

line along a wall in the X direction to document the smallest change that the LIDAR

would be able to detect. Obstacles were three feet from a wall to allow room for the

obstacle stands. The obstacles were placed three feet apart from each other in the X

direction. Obstacles 4 – 12 were placed out of range of the sensor to test the true range of

the sensor.

For The Final RPLIDAR Test, the test started at one meter and moved back in one meter

steps, after collecting data two times on the white side and two times on the black/brown

side, until 10 meters were reached. Obstacles were placed in the sun and shade

Figure 3.6 Obstacle used in the

SCANSE Sweep test

Figure 3.7 Obstacle used in the

RPLIDAR and Hokuyo tests

 20

(Figure 3.8). For this test obstacles were only placed in the Y axis. Preprocessing the

collected data was done manually to filter out unwanted data.

A BeagleBone microcontroller was programmed in C to collect data from the Hokuyo

LIDAR. The code can be seen in APPENDIX

C.2 Data Collection code (C) . To simulate fence

posts, the poles of the obstacle stands were used

which are similar in size and cross section to a

steel fence post. The obstacles were place from 0

- 180° relative to the Hokuyo. Like the previous

LIDAR tests, three sets of four obstacles were

used.

An Excel Worksheet was created to evaluate the angular resolution of the SCANSE,

based on the given parameters of the sensor. It became apparent that this sensor did not

have a high enough angular resolution. The angular resolution was calculated using the

following equation.

Equation 1...Angular Resolution

𝜑 =
360𝜔

𝑓𝑠

Where: φ = angular resolution (degrees)

 fs = sampling frequency (Hz)

 ω = spinning frequency (Hz)

Figure 3.8 Setup for the Final Test.

Obstacle in the sun RPLIDAR in the

shade and vice versa

 21

Angular resolution varied with sensor settings. Values were spread between 0.36 and

7.20 degrees respectively. The results from these calculations on the SCANSE Sweep can

be seen in APPENDIX A.5 Sensor Calculations. The data collected had an angular

resolution of 3.60 degrees. The lowest angular resolution occurred at 500 Hz sampling

rate and spinning frequency of 10 Hz, whereas the highest resolutions occurred at 1000

Hz sampling rate and 1 Hz spinning frequency. The arc length and the linear length were

calculated using the arc length equation for arc length (Equation 2) and law of cosines for

linear length (Equation 3). Figure 3.9 shows the locations of the variables.

Equation 2..Arc Length

𝑎 𝑙 =
2𝜋𝑟𝜔

𝑓𝑠

Where: 𝑎 𝑙 = arc length (cm)

r = distance to obstacle (cm)

 22

Equation 3 ..Law of Cosines

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 ∗ 𝑐𝑜𝑠 (𝐴)

Where: a = desired side’s unknown

length (cm)

A = angle opposite side of

length a (degrees)

b = side length (cm)

c = side length (cm)

The Law of Cosines (Equation 3) was

simplified to the following equation to find the

linear distance between two data points:

Equation 4………………………….Linear Distance between two consecutive data points

𝐷𝑃𝑙 = √2𝑟2(1 − 𝑐𝑜𝑠 (𝜑))

Where: DPl = linear distance (cm)

 The best average number of points per obstacle was 9.7 data points per foot. The settings

for this calculation was for an obstacle that was 500 cm away at a 1 Hz rotating speed and

1000 Hz sampling rate. This was calculated using the following formula.

Figure 3.9 Location of variables

 23

Equation 5..Number of data points per one foot

𝐷𝑃𝑛 =
𝑓𝑐

𝐷𝑃𝑙

Where: DPn = average number of data points per one foot

 fc = conversion factor from foot to cm

The results from all calculations on the SCANSE Sweep can be seen in APPENDIX A.5

Sensor Calculations. The highest angular resolution occurred at 1 Hz spinning frequency

and 1000 Hz sampling rate. The SCANSE Sweep’s lowest angular resolution of 7.20°

occurred at 10 Hz spinning frequency and at 500 Hz sampling rate. The average distance

between data points at this settings, 20 meters away would be 251.33 cm or about 8 ¼

feet between data points.

Using Equation 1 to find the angular resolution and Equation 2 and Equation

4………………………….Linear Distance between two consecutive data points

 to find arc length and linear distance between two consecutive points. In a calculation

using the highest angular resolution of 0.36° for the SCANSE Sweep, and 20 meters

away for the obstacle. The arc length between two consecutive data points would be

12.57 cm or about five inches between each data point and the linear distance would be

12.57 cm. Therefore, the arc length and linear distance between two points will

technically be equivalent.

 24

 SCANSE Results and Discussion

The SCANSE Sweep completed only one run during the data gathering session. It

malfunctioned during the second test of the SCANSE. More data was needed to be

collected in order to draw complete

conclusions. Figure 3.10 shows the raw

data plotted using MATLAB code. The

blue circles are data points, green circles

indicate the placed obstacles, and the

orange circle shows the ground

interference and red arrows point to

some of the false positives. The center of the graph is the sensor. The plotting code can

be seen in APPENDIX A.3 Plotting Data code (MATLAB). Two of the four obstacles

that were placed were detected, along with false positives by the sensor. Obstacles 5 and

11 were detected, 7 and 12 were not detected in the green configuration.

From this one test and plotting the data points, two possible sources of error could have

been:

 1) The obstacles were not in the Field of Vision (FOV) of the sensor

 2) The sensor missed obstacles because of the angular resolution of the sensor

Figure 3.10 SCANSE Sweep plotted results for one data

gathering session of the green obstacle location.

 25

 RPLIDAR Results and Discussion

The unsorted data was first plotted

using the code in APPENDIX B.3

Plotting Data code (MATLAB).

An example of the plotted

RPLIDAR data can be seen in

Figure 3.11. Data was manually

sorted to contain only detected

obstacle data to use for data

analysis. When preprocessing the data it was noticed that data contained false positives in

between two positive data points (Table 3.2). When the data was used for statistical

analysis the false positives were omitted to give a better reflection of how the sensor

performed. The data in the green rows

are positive data points and were used

in the statistical analysis of the data.

Rows in red were omitted. It was

noticed that the signal strength was zero

when no distance data was available.

Table 3.2 Data gathered during testing in the shade at a 2

meter distance red rows were eliminated and green rows

were kept

Figure 3.11 Plotted RPLIDAR data

 26

It was assumed that the sensor reported a 0 distance when a false positive occurred.

The Final RPLIDAR Test had statistics done with and without false positives to

determine the statistical difference between data that included false positives and the data

that did not include false positives.

The beginning runs with the RPLIDAR were successful and occupancy maps could be

made (Mathworks, 2019). The path planning algorithm would choose a different path

every time it ran (Figure 3.12). On the left side, data points captured by the LIDAR are

inserted into a binary occupancy grid to show where obstacles were located. In the

middle and right pictures, the red dots are gathered data points or objects detected and the

objects are increased in size and a path was planned around the obstacles creating a

probabilistic roadmap. The blue lines are possible paths a robot could take to avoid the

obstacles. The orange line was the route chosen to get around the obstacles. The path

planning algorithm did not choose the same path every time so, it was thought that a

minimization algorithm, like the genetic algorithm, could be tried to find the shortest path

but it was out of the scope of this research so that was not pursued. Obstacle locations

and distances can be seen in APPENDIX B.1.1 Occupancy Map Setup.

Figure 3.12 Occupancy Maps and two different path planning algorithms.

 27

In the Straight Line RPLIDAR Test, the sensor was able to detect obstacles 1 – 9 and 11

on the white side and obstacles 1 – 7 on the brown/black side indicating that the sensor

had more than an eight meter range in the shade Figure 3.13. This supported the

hypothesis that white obstacles were more likely to return sensor light packets than the

brown/black obstacles. This test also showed that the RPLIDAR was inaccurate to

reliably detect small obstacles. The average error was -12.56 cm on the brown/black side

and -16.29 cm on the white side. Locations and obstacles can be seen in APPENDIX

B.1.2 Straight Line Setup.

In the Final RPLIDAR Test, the

statistical analyses were completed by

the UNL Statistics Help Desk.

When obstacles were in the sun 42.10%

or 570 data points were false positive

readings. When the obstacles were in the

shade 41.65% or 1,251 data points were

false positive readings.

When comparing the number of data points collected, analysis combines both the front

and back sides and lighting positions (Figure 3.14). Statistical analysis found that the

proportion of false positives increases from 1 – 4 meters and then plateaus around a

proportion of .5 at distances over 5 meters

Figure 3.13 Obstacle setup on the brown backside in the

Straight Line Test.

 28

It was found that of the data points gathered on the back side and 45.59% of the data

points recorded on the white side would be false positives. With a p-value of 0.4579,

there is no significant interaction between the number of false positives and the color of

the obstacle (Figure 3.15).

This analysis showed there was only a statistically significant difference in the number of

false positives collected when one meter results were compared to every other distance

(all p-values were <.0001). It was concluded that false positives would be removed as to

not skew statistics.

There were 40 sample points gathered and a summary table was created for each point.

The summary tables provide the mean, standard deviation, minimum and maximum

values for accuracy and measured distance. This table also gives the number of data

Figure 3.14 The proportion of false positives as distance increases and in both lighting positions. The 95%

confidence interval bounds are shown.

 29

points collected. The highlighted words above the table gives information on the lighting

condition of the obstacle in “weather”. The color of the obstacle and the distance in

meters the obstacle is away. An example of sample point data summary can be seen in

Table 3.3. These summary tables can be seen in APPENDIX B.7 Sample Point

Summaries.

Table 3.3 Sample point data summary Obstacle in the shade obstacle color is black at a distance of 1 meter

Weather=Shade Color=black Dist=1

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

283

283

-39.64

1039.64

12.14

12.14

-75.00

1015.50

-15.50

1075.00

Figure 3.15 The proportion of false positives between distances and obstacle colors with a range of 95%

confidence interval bounds for the number of false positives

 30

Analysis was done on the number of data points collected for each color and distance.

There was a significant difference also found between the number of data points collected

and the distances the obstacles were from the sensor (Figure 3.16). Obstacles closer to the

sensor had more data points than those further away. There was a statistically significant

difference in the number of data points collected between the front and back sides when

the distances were one (p-value of 0.0205), three (p-value of 0.0322) and four (p-value of

0.0445) meters away.

The accuracy of the RPLIDAR was found by taking the actual distance in millimeters

then subtracting the distance measured by the RPLIDAR. The closer the number is to

Figure 3.16 The average amount of data points collected and 95% confidence interval bounds with the

color and distance being the set variables.

 31

zero the better the accuracy. While the RPLIDAR was in the shade and obstacles in the

sun, black/brown obstacles at six meters or less were within -100 mm. But, when

obstacles were six meters or further, the black/brown side had a lower accuracy than -200

mm (Figure 3.17). The white obstacles were between -100 mm and -200 mm throughout

the test.

When the same comparison is made for the obstacles that were in the shade and

RPLIDAR was in sun, it was noticed that the accuracy was improved. For both the white

and brown/black obstacle colors, the accuracy is less than 100 mm at obstacles less than

nine meters away. Much like the previous analysis the brown/black color obstacle is more

accurate at closer distances. Brown/black obstacles less than 8 meters give a more

accurate reading than white obstacles. A graph comparing the accuracy at each distance

Figure 3.17 A graph showing the LS-Means and 95% confidence interval bounds between the two

color obstacles at each distance. It is noticed that at distances < six meters away the brown/black

obstacles are more accurate and distances > six white obstacles are more

 32

and lighting condition when the RPLIDAR is in sun can be seen in Figure 3.18. The

accuracy is only greater than 100 mm at distances greater than eight meters.

Analysis was done to see if there was a factor that affected the accuracy of the sensor.

When distance and color were held constant and the lighting condition was changed

between shade and sun, a statistically significant difference was found between every

color and distance (all p-values <.0043).

Figure 3.18 A graph showing the LS-Means for accuracy when the RPLIDAR in the sun and both color

obstacles. A glance at the graph shows accuracy staying under 100 mm untl it reaches 9000 mm

 33

 Hokuyo URG-04LX-UG01 Results and Discussion

The result of the test was

unsatisfactory for detecting fence

posts. The Hokuyo URG-04LX-UG01

was unable to detect even the closest

obstacle at 141.455 cm away. The

calculations from Equation

4………………………….Linear

Distance between two consecutive

data points

 showed that this sensor could detect obstacles less than .89 mm wide at 141.455 cm

away. It was noted in the manual that it was not sunlight resistant, but it was unknown if

ambient sunlight was a factor even in the shade. An example dataset from the test can be

seen in Figure 3.19. The sensor detected a wall past its range.

It was found that LIDARs could possibly be a capable sensor for detecting large solid

objects like round bales or tractors but would not be able to detect large truss structures

like pivots. Calculations from developed equations from the data, showed that angular

resolutions would not be small enough to detect a pivot’s truss structure at a distance far

enough away to avoid it with off-the-self LIDARs. High Resolution LIDARs do have a

small enough angular resolution to detect pivots at 20 meters however, they were out of

Figure 3.19 Plotted data from Test 6

 34

the scope of this project to pursue because they were too expensive to obtain. Use of

cameras to detect and identify field obstacles was pursued next.

 SCANSE Conclusion

After performing the calculations to find the angular resolution and analyzing the limited

data collected, SCANSE could have been used for obstacle detection but, with

limitations. It would only be able to detect large obstacles at closer distances and hence

using SCANSE in field condition is not recommended.

 RPLIDAR Test Conclusions

 A total of three unique tests were performed for this sensor. In the Occupancy Map Tests

an occupancy map with a path planned around the obstacles was successfully created.

This was not in the scope of the study, so it was not pursued further. In the Straight Line

Test, the RPLIDAR was not able to identify small changes with error of 12 cm or greater,

depending on the color of the obstacle. In the Final RPLIDAR Test the sensor had a

proportion of 0.5 in the number of false positives collected to total points collected. This

test also revealed that the lighting of obstacles had an impact on how well the sensor

detects obstacles.

 Hokuyo URG-04LX-UG01 conclusions

The sensor had the specifications desired to detect small obstacles at short distances.

However, it was evident from the data that it would not work for the requirements needed

in the outdoor conditions. It is confirmed that this would only work indoors.

 35

It was shown in the previous chapters that low cost LIDARs had challenges because of

the low angular resolution between data points. RGB cameras were explored next for

being able to detect agricultural obstacles. This chapter:

1. Explores different image processing algorithms and techniques using RGB

images for agricultural obstacle detection

2. Evaluates multiple object edge detection algorithms for suitability of identifying

obstacles common to agricultural fields based on images (RBG and RGB-D)

3. Discusses the applicability of convolutional neural networks for detecting in-field

obstacles based on RGB or RBG-D image processing techniques.

The first approach to detecting objects in camera images was the Speed Up Robust

Features (SURF) Extraction and Matching algorithm. This algorithm is designed to detect

close similarities between pictures of the same scene or object (Bay et al., 2006). A

grayscale image is loaded initially into SURF. Figure 4.1a shows a reference image and

the feature points detected in the reference image. These feature points needed to be

detected in the test image. Figure 4.1b is the test image in which the feature points

detected are displayed. Figure 4.1c depicts both matched outlier and inlier feature points

between the images in Figure 4.1a and Figure 4.1b. Inlier points are positive matches

 36

between the two images and outliers are points that match but are not identical to the

points in the reference photo. It is assumed that no inlier points existed between the two

photos because no image could be produced of matching inlier points.

SURF Feature Extraction and

Matching was able to detect a

few similar feature points in both

images. It was later learned

that an almost exact copy

of the test image had to be

matched with the input

image in order to be

detected.

Even though this method

looked promising, it was

quickly eliminated

because it did not adapt

well to new images. Script can be seen in APPENDIX D.1 SURF Feature Extraction and

Matching Script (MATLAB).

Edge detection of the structural components and identifying shapes was recognized as

another approach to identifying a pivot. Seven unique edge detection algorithms found in

MATLAB were tested to find which method gave the most useful image data. The seven

(c)

(a)

(b)

Figure 4.1(a) Extracted features out of the grayscale reference image.

(b) Extracted features out of the grayscale test image. (c) Matching the

extracted features in reference photo to features in the test photo. Only

ouliers are displayed because no inliers were preent

 37

methods were approxcanny, Canny, log, Prewitt, Roberts, Sobel, and zerocross

(MATLAB, 2018c). Each method gives a unique result of edge detection. (Script can be

seen in APPENDIX D.2 Edge Detection Script (MATLAB))

An algorithm found on MathWorks File Exchange called “Shape Recognition” (Samieh,

2016) was used to identify shapes. Shapes could be identified as a circle, square or other

shape. This Script can be seen in APPENDIX D.3 Shape Identification algorithm

(MATLAB).

 It was forewarned in the documentation that this algorithm would have difficulties

recognizing shapes with differing aspect ratios of the object (Samieh, 2016). Many of the

shapes found could not be identified as either a circle or square because of the variability

of camera angles and how the edge recognition algorithms extracted shapes. Figure 4.2

shows the results from the Sobel edge detection algorithm with the shape recognition

algorithm. Outputs from the other edge detection methods can be seen in APPENDIX D

SURF Feature Extraction and Matching and Edge Detection. The code for this algorithm

can be seen in APPENDIX D.4 Edge detection and Shape Identification Algorithm

(MATLAB).

 38

The idea of merging SURF Feature Matching and Extraction and Edge Detection with

shape identification algorithm seemed appropriate as a method to help in the

identification of obstacles. The idea was to use Edge Detection with SURF Feature

Extraction and Matching, by matching edges in pictures. The concern about merging of

these two methods was that features extracted would be hard to differentiate in the two

images because of the lack of grayscale in the image.

In the first run of merging of the two different algorithms, the volume of positively

matched points including outliers suggested that the grayscale concern was not a factor

Figure 4.2 Sobel edge detection with the "Shape Recognition" algorithm. The initial image can be seen in

the top left picture. The bottom left picture is the result of using the Sobel edge detection method. The top

right depicts the objects the algorithm detected based on the input binary image. This image is flipped

compared to the input image. The bottom right gives scores on what the shape of the object is .

 39

Figure 4.4). However, the number on inlier points was significantly less. Every inlier

point found one feature point that matched (Figure 4.3).

Only having one inlier point proved that the combination of the two algorithms was not

an effective way to detect and identify obstacles. The MATLAB script can be seen in

APPENDIX D.5 SURF Feature Extraction and Matching and Edge Detection

(MATLAB).

It was concluded that SURF Feature Extraction and Matching, edge detection with a

shape identification algorithm would not suffice for pivot obstacle detection. The

algorithms could not adjust to the different orientations and aspect ratios of the objects.

Object identification using the Viola – Jones algorithm and a Convolutional Neural

Figure 4.3 Positively matched points (Inliers only)

Figure 4.4 Positively matched SURF Points (Including Outliers)

 40

Network (CNN) were identified as possible object identification algorithms using

machine vision.

The cascade object detector uses the Viola-Jones algorithm to detect people’s mouth,

ears, nose, face or upper body (David & Viola, 2001). This algorithm can be trained to

identify other things but, the objects cannot have substantial aspect ratio changes. A

single detector cannot handle every orientation and cannot handle more than one class of

objects so more than one detector has to be used (Mathworks, 2018b).

Tractors and pivots were trained through the cascade object detector that uses the Viola –

Jones algorithm. Code for the cascade object detector that uses the Viola – Jones

algorithm can be seen in

 41

APPENDIX E Viola-Jones Algorithm Script (MATLAB).

 Cascade Object Detector and the Viola-Jones Algorithm

4.6.1.1 Tractors

The first obstacle to be trained was a tractor. The picture quality of the training image and

quantity of tractor images were unknown. Forty-two pictures of tractors were used. Each

image had to be labeled. Labeling is the process of drawing a region of interest (ROI) box

around the object to be identified.

4.6.1.2 Pivots

The pivot was trained using video labeling and extracting the images from the video. The

video used was recorded in a field located near Lindsay, Nebraska. Picture quality and

quantity needed for training was unknown. 67 pictures of pivots were used.

4.6.1.3 Results and Discussion

The Viola – Jones algorithm could identify a tractor. However, the bounding box could

not encompass the entire tractor and could not detect a tractor in clutter. The best

detection found of a tractor is shown in Figure 4.5 Viola-Jones algorithm detecting a

tractor with no clutter. Yellow bounding box does not surround the entire tractor. This image

features a single tractor with no clutter around it.

 42

A separate detector was trained on the image

data of a pivot. After training, the detector

was not able to clearly identify a pivot.

There was a significant number of false

positives in the test image (Figure 4.6).

The Viola-Jones research and experimental

training objects confirmed that the Viola-

Jones algorithm would not be pursued due to its performance and inadaptability to

classify an array of objects.

Another possible solution to object

detection and identification is with a

CNN.

 Convolutional

neural networks

(CNN)

CNNs are Deep Learning algorithms that can be used for object detection and

classification. CNNs were pioneered in 1994 by Yann LeCun (Yann Lecun & Bengio,

1994). LeCun’s paper based the neural network on three features that were found in the

mammalian visual cortex: local connections, hierarchy of different clusters of neurons,

and spatial invariance. LeCun named his network LeNet5 (Lecun et al., 1998). LeNet5

uses a sequence of 3 layers: convolution, pooling and non-linearity

Figure 4.5 Viola-Jones algorithm detecting a

tractor with no clutter. Yellow bounding box does

not surround the entire tractor.

Figure 4.6 Viola-Jones algorithm detecting a pivot in the

middle of a soybean field. Yellow bounding boxes do not

surround the entire pivot but, false positives.

 43

From 1994 to 2012, work with CNNs was non-existent (Ujjwalkarn, 2016). During this

time data became increasingly easier to obtain and computing power increased. In 2012,

Alex Krizhevsky designed a neural network that won the difficult ImageNet Competition

by designing a deeper and wider version of LeNet. In this CNN there are 25 layers

compared to three in LeNet (Mathworks, 2018e).

AlexNet is the cause for the widespread application of CNNs today. The layers are a

combination of convolution, nonlinearity function and pooling. The number of layers in a

network can be as small as tens or as many as hundreds of layers deep (Mathworks,

2018a).

Major companies use neural networks. Facebook uses them in photo recognition

algorithms, Google uses neural networks for photo search, and Amazon uses them for

product recommendations (Deshpande, 2016). Figure 4.7 illustrates the general flow of a

CNN.

4.6.2.1 Beginning layer in a CNN

A CNN is made of layers that are stacked on top of each other. Each layer’s output is the

next layer’s input. The first layer is the input layer and followed by the hidden layers

(aka: feature learning layers). The hidden layers are composed of three layers:

Figure 4.7 Layout of the entirety of a CNN with a pivot as the input image

 44

convolution, an activation function and pooling. (The convolution layer is always

followed by an activation function layer so, sometimes they are considered one layer.)

The last layers of the convolutional network are called the final layers. The final layers

consist of flattening, fully connected and SoftMax (classification). These layers are like

parts of a sandwich (Figure 4.8). The input layer is the top bun, hidden layers are the

meat, cheese and toppings that you can put into any order and the final layers are the

bottom bun.

4.6.2.1.1 Input

The input layer is the image coming into

the neural network needing to be

classified. The input layer has dimensions

[width x height x depth]. If the example

was an RGB image the width of 32 pixels, the height of 32 pixels and the depth might be

3 for the three matrices of color. The dimensions would be [32 x 32 x 3]. The input layer

needs to be divisible by two, many times (Doukkali, 2017). Different CNNs require

different sized inputs. After the input layer, the feature learning layers begin. Each layer

consists of neurons, weights and biases.

4.6.2.1.2 Neurons

Neurons are cells in a matrix. Neurons take in values and the weight assigned to them

from the previous layer, sum the values, performs an activation function (discussed later)

then outputs the data to the next layer.

The mathematical representation for a neuron is:

Figure 4.8 Layers in convolutional neural

network

 45

Equation 6...Mathematical Representation of a Neuron

∑((𝑥𝑛 ∗ 𝑤𝑛) + 𝑏)

𝑟

𝑛=1

Where: xn = incoming value

 wn = weight

 b = bias

An illustration of a neuron can be

seen in Figure 4.9

4.6.2.2 Hidden Layers (Feature Learning)

These layers can be put in specific sequences to extract certain features. The layers are

convolution, an activation function layer or regularization layer, and pooling. These

layers can be repeated as many times as the designer of the CNN would like.

4.6.2.2.1 Convolution

Convolution is the first layer after the input layer and does most of the heavy

computation in a CNN. Convolution uses filters to pull out important features in an

image. The number of filters adds depth to the convolution layer.

In convolution, a dot product is taken of the filter and every pixel value. Depending on

the CNN, the dot product is divided by either the size of the filter for an average value or

the product is left untouched. The dot product is the new value after convolution.

Figure 4.9 Layout of a single neuron in a CNN

 46

An example of convolution is given in Figure 4.10. Convolution starts by comparing the

first pixel in the image to the top left value in the filter or kernel (yellow box in filter and

yellow box in the image). In the example, the pixel value is not averaged for each

convolution, the stride is set to [1 1] ([horizontal vertical]) and padding of [1 1 1 1] [top

bottom left right] (Mathworks, 2018d).

 The output size of a convolution is:

𝑊2 =
𝑊1 − 𝐹 + 2𝑃

𝑆
+ 1

Figure 4.10 Example of a convolution. A simple picture of a straight line. With a straight line filter. The

input image with [1 1 1 1] is in (a) resulting matrix (b) and stride [1 1].

 47

𝐻2 =
𝐻1 − 𝐹 + 2𝑃

𝑆
+ 1

𝐷2 = 𝐾

Where: [W1 X H1 X D1] = are input volume size

[W2 X H2 X D2] = are output volume size

F = Width of the filter

S = Stride

P = Amount of padding used

K = Depth (number of filters)

The stride is how many pixels the filter is moved between convolutions. (Stanford, 2018).

The filter size used during convolution is a hyperparameter or, a parameter that can be

controlled by the designer. Strides are commonly 1 or 2 in magnitude (Figure 4.11).

Filters can be as small as [1 1] or larger size filters are [7 7] or bigger.

Figure 4.11 Illustration of an image [9 9], filter size

[3 3] and a stride of [1 1].

 48

The result of convolution from the example can be

seen in Figure 4.12. A color gradient is added to help

see the gradients in the numbers. Weights and biases

are also a part of the network. For this example,

weight is a consistent 1 and bias was -4. For every

neuron a weight is assigned to its output for the next

layer. These weights and biases are computed during

training. Figure 4.13 is the result after weights and

biases are added to convolution. The color gradients remain the same, but this bias will

help in the next layer.

4.6.2.2.2 Activation function

There are multiple activation functions to normalize

convolutional data and are nonlinear in nature. The

activation function takes the previous layers output,

applies a mathematical function to normalize the data,

then outputs it to the next layer as an input. The

activation functions and corresponding graphed

equations are in Figure 4.14. Activation functions can

be classified into two types of functions: ReLu and non-ReLu.

0 2 0 4 0 2 0

0 3 -1 7 -1 3 0

0 3 -3 9 -3 3 0

0 3 -3 9 -3 3 0

0 3 -3 9 -3 3 0

0 3 -1 7 -1 3 0

0 2 0 4 0 2 0

Figure 4.12 The result of convolution

between the test image and the chosen

filter

-4 -2 -4 0 -4 -2 -4

-4 -1 -5 3 -5 -1 -4

-4 -1 -7 5 -7 -1 -4

-4 -1 -7 5 -7 -1 -4

-4 -1 -7 5 -7 -1 -4

-4 -1 -5 3 -5 -1 -4

-4 -2 -4 0 -4 -2 -4

Figure 4.13 The resulting matrix after a

bias of -4 is implemented.

 49

4.6.2.2.2.1 Non-ReLu functions

The Sigmoid function is an example of a non-ReLu activation function. The sigmoid

function keeps the number always between 0 and 1. However the Sigmoid can be

computationally expensive because of the exponential function (Jadon, 2018). Sigmoid

functions have saturated gradients, a vanishing gradient problem and have slow

convergence (V, 2017) . Vanishing gradients can cause the algorithm to stop training by

not being able to learn or becomes slow. The sigmoid function is defined as:

Equation 7...Sigmoid Function

𝜎(𝑥) =
1

1 + 𝑒−𝑥

The hyperbolic tangent function has a range between -1 and 1 and is centered on zero.

Like the Sigmoid function the hyperbolic tangent can develop saturated gradients and

vanishing gradients. The hyperbolic tangent is defined:

Figure 4.14 Graphical representation of the activation functions

 50

Equation 8……………………………………………………………..Hyperbolic Tangent

tanh (𝑥)

The Sigmoid and tanh should not be used because of the vanishing gradient problem; that

causes the network to have a lower accuracy and poorer performance.

4.6.2.2.2.2 Rectified Linear Units (ReLu)

ReLu is the most used activation function because of its simplicity during

backpropagation and is not computationally expensive. The main formula for ReLu is:

Equation 9…………………………………………………………………………….ReLu

𝑚𝑎𝑥(0, 𝑥)

In ReLu a comparison between the neuron value and 0 is made and the higher value is the

new neuron value. Figure 4.15 shows what ReLu does to the example convolution.

When a neuron gets a zero value from the previous layer

that neuron becomes “dead”. This problem is known as

the “dying ReLu” problem, meaning no information is

passed through that neuron to the next layer. The zeros in

Figure 4.15 are considered dead neurons. Alternative

equations are proposed to fix the dead neuron problem

(Liu, 2017). The first equation is leaky ReLu:

Equation 10…………………………………………………………………..Leaky ReLu

𝑚𝑎𝑥(0.01𝑥, 𝑥)

In Leaky ReLu the max value between 0.01x and x is the value given to that neuron.

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.6 0.0 0.0 0.0

0.0 0.0 0.0 0.6 0.0 0.0 0.0

0.0 0.0 0.0 0.6 0.0 0.0 0.0

0.0 0.0 0.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 4.15 Result of ReLu on

Example 1

 51

Parametric ReLu (PReLu) is like leaky ReLu but it does not have a predetermined slope

(Liu, 2017). Instead the slope is a parameter (𝑎) that is set by the CNN during training.

The formula for parametric ReLu is the following:

Equation 11…………………………..…………………………………...Parametric ReLu

{
𝑥 𝑥 ≥ 0
 𝑎𝑥 𝑥 < 0

}

Another variation to counter the “dying ReLu” problem is Exponential Linear Units

(ELU). However, ELU is computationally expensive because of an exponential function

in its formula. The equation is:

Equation 12…………………………..…………………Exponential Linear Units (ELU)

{
𝑥 𝑥 ≥ 0
𝑎(𝑒𝑥 − 1) 𝑥 < 0

}

4.6.2.2.3 Pooling

The Pooling layer is inserted into a CNN to reduce the spatial size of the data in the

network. A 3 x 3 filter with a stride of 3 is an example of pooling parameters in this

process. Max pooling uses the maximum value in the filter to use the replacement value.

Other pooling methods like average pooling and L2-norm pooling are used less often. L2-

norm pooling is a vector norm of the filtered values (Weisstein, 2018).

In the example found in Figure 4.10, the image size is not devisable by the size of the

filter. When this occurs “SAME” and “VALID” methods are used in pooling

(MiniQuark, 2018).

 52

In the “SAME” method, there is “0” padding added

to the image. In this option “SAME” tries to pad the

matrix evenly on all sides.

 The method called “VALID” is without padding,

the right-most columns or the bottom-most rows are

dropped and are not used in pooling. Figure 4.16

shows examples of both “SAME” and “VALID”

methods.

When max pooling of the output image from Figure 4.10, “VALID” and

“SAME” methods are performed on the output of the convolution layer.

“VALID” method results can be seen in Figure 4.17 and the “SAME”

method results can be seen in Figure 4.18.

These are the three sub-layers that can be found in the hidden

layers: convolution, activation function layers, and pooling. The last

layers are the final layers.

4.6.2.3 Final Layers

The final layers are how the CNN relates the hidden layer data to

the classification of the image. Several layers can be stacked on top of each other.

4.6.2.3.1 Flattening

This layer only happens once because in this layer it takes the matrices from the last

convolution and “flattens” them (Kirill Eremenko, 2018). Figure 4.19 shows an example

of flattening. In the example the “VALID” max pooling shown previously was used.

Figure 4.16 Examples of the 2

methods "VALID" and "SAME" filter

width= 3 stride = 3

Figure 4.17

Result of

"VALID" max

pooling in the

example

0.0 3.0 0.0

0.0 5.0 0.0

0.0 5.0 0.0

0.0 3.0 0.0 0.0

0.0 5.0 0.0 0.0

0.0 5.0 0.0 0.0

0.0 0.0 0.0 0.0

Figure 4.18 Result of

"SAME" max pooling

 53

4.6.2.3.2 Fully Connected

The fully connected layer connects the flattening layer to the SoftMax

function or to another fully connected layer. Each neuron in a layer is

connected to every neuron in the next layer including weights and biases. This

is the layer that helps connect numerical data into classification of objects.

4.6.2.3.3 SoftMax function

The SoftMax Function is the last step in a CNN and calculates the probability

of the object to each class. The highest probability class is then given to

the identified object. The sum of all probabilities is equal to one. An

example and the SoftMax equation are in Figure 4.20

Figure 4.21 shows an example of the final layers of a CNN. Values from the last

convolution are first flattened then two additional fully connected layers followed by

SoftMax equation to classify the object.

0.0

3.0

0.0

0.0

5.0

0.0

0.0

5.0

0.0

Figure 4.19

flattening of the

"VALID" max

pooling (Figure

4.17)

Figure 4.20 SoftMax equation and example

 54

In this chapter several object detection algorithms were explored but were unsuccessful in

clearly detecting the obstacle. This research led to obstacle identification algorithms. The

Viola – Jones algorithm was the first algorithm to be used to help identify obstacles. This

algorithm was unable to handle different orientations because the algorithm required

keeping the aspect ratio the same as the training images. Convolutional Neural Networks

were discussed and explained in detail. In the next Chapter, CNNs are trained and used to

identify tractors, bales and pivots.

Figure 4.21 The Final Layers of a CNN. Flattening, two fully

connected layers and SoftMax to give the probability of that object in

the picture

 55

Previous chapters experimented with LIDARs and other obstacle identification

algorithms. Tractors and bales can possibly be detected by off-the-shelf LIDARs but, are

unable to detect pivots because of pivots’ truss structure. The angular resolution needed

to detect an object the size of the truss was less than provided by the LIDAR sensors

tested. Obstacle detection algorithms using machine vision were explored before CNNs

because they were less complex. The previously explored machine vision algorithms

could detect pivots only under certain conditions. A CNN was previously explained and

will be pursued as a method to detect a pivot.

CNNs are used for image classification without localizing where the object is. Object

detection is finding the location of objects in an image. In this chapter several CNNs are

chosen to act as a feature extractor in the Region based-CNN (R-CNN) architecture to

detect and identify a pivot, tractors and bales

The objectives for this chapter are:

1. Compare CNN, R-CNN, and Faster R-CNN architectures for suitability to detect

objects common to an agricultural field (e.g., tractors, round bales, and center

pivots).

2. Evaluate promising architectures for mean Average Precision and detection time

with the goal of real-time obstacle detection using image processing techniques

 56

CNNs are used for image

classification whereas

Region based

Convolutional Neural

Networks (R-CNN) are

used for object

identification (Girshick et al., 2013). The R-CNN uses a selective search algorithm that

proposes 2000 bounding box regions at random and a CNN is performed on each

bounding box area (Figure 5.1). The CNN acts like a feature extractor and feeds a support

vector machine (SVM) to predict if the object is in that bounding box. The SVM returns

four offset values that predict where a better bounding box location may be. It takes

roughly 49 seconds for this algorithm to process.

Figure 5.1 Steps of an R-CNN (Lee, 2017)

 57

The Faster R-CNN is an improvement of R-CNN. It takes about 0.2 seconds per image.

This speed is fast enough for real-time object detection. Faster R-CNN contains two

networks (Figure 5.2), a region proposal network (RPN) that generates region proposals

and a CNN that uses these region proposals to identify objects (Ren et al., 2015). The

RPN is used instead of the

selective search algorithm

which speeds up the

processing time (Gao, 2017).

The CNN in Figure 5.2, can

be any network most

appropriate for the

application.

All training and evaluations were done on a NVIDIA GeForce GTX 1060 6GB GPU in

MATLAB 2018b update 2. All code, training outputs and mean Average Precision

(mAP) graphs from training are in APPENDIX F Faster R-CNN Training. mAP is a

metric used to measure the accuracy of object detectors (Hui, 2018). Values are between

zero and one.

Figure 5.2 Two network layout of a Faster CNN network. The CNN

can be replaced with any CNN to best fit the application applied to.

(Sinhal & Sachan, 2017)

 58

Images for tractors and bales were resized to 448 x 448 from various resolution pictures

and padded to keep aspect ratios the same (Figure 5.3). After resizing, the images were

labeled and augmented. Tractor and bale images were

brightened, darkened, sharpened and blurred to create

more images for training. After augmentation, 210

images of tractors and 250 images of round bales were

available for training.

Pivot images used for training were taken from three

minutes and 24 seconds of pivot videos. MATLAB was

able to extract 1,231 images from the pivot videos

initially. Pivot images were not augmented to create more images because a satisfactory

number of images were already collected.

These pivot videos had an original resolution of 1920 x 1080 but were resized to 448 x

448 pixels and labeled without padding because it was unknown at the time of labeling

that keeping the aspect ratio the same was important (Figure 5.4). The four main

identifiable components of a pivot are pyramids, towers, spans and end towers (Figure

5.5).

Figure 5.3 Tractor image 448 x 448

after padding to keep the same aspect

ratio. The black part of the image is

padding.

 59

Components of the pivot were labeled

because each component is treated as an

individual obstacle to be identified.

Four CNNs were tested as feature extractors

for the Faster R-CNN: InceptionResNetv2,

ResNet 101, Inceptionv3 and GoogLeNet.

InceptionResNetv2, ResNet 101 and

Inceptionv3 were shown to be the top

performing CNNs in Faster R-CNN (Huang

et al., 2016, Figure 5.6) and GoogLeNet was

chosen at random. The hyperparameters and

settings used in Huang’s study were not

followed because it was unknown how to

(a)

(b)

Figure 5.4 (a) A 1920 x 1080 pivot picture (b)

pivot picture resized to 448 x 448 with no

padding.

Figure 5.5 Components of a pivot (a) span (b) pyramid (c) tower (d) end tower

(d) (c)

(b)

(a)

 60

change them which may have made the results unfairly reflect the true capabilities of the

networks.

ResNet 101, Inception V3 and GoogLeNet were trained twice in the Faster R-CNN. The

best average hyperparameter settings found after experimentation were used for the pivot

and combined trainings.

Max Epochs and Initial Learn Rate were the two hyperparameters changed for tractor and

round bale training only, Run 1 had Max Epochs set to 1 and the Initial Learn Rate was

.01 and Run 2 had Max Epochs set to 2 and the Initial Learn Rate was .005. Max Epochs

is how many times the model trains on a set of images (Anirudh Sharma, 2018). Initial

Learn Rate is how fast the algorithm can make changes in weight. Initial Learn Rate will

increase both training time and accuracy (Zulkifli, 2018).

The best performing set of hyperparameters from the round bale and tractor training were

used in the pivot training. Pivot images were trained twice. Run 1 was the first-time

training and Run 2 was the second time training.

Figure 5.6 Accuracy vs time, the marker shape indicates the meta-architecture and

color indficates feature extractor used. (Huang et al., 2016)

 61

The highest mAP hyperparameter settings and CNN were used for the combined image’s

Faster R-CNN training. The mAP of training was determined to be a higher priority than

training time. During training it was noted that 30 pivot images had bounding boxes that

extended past the image boundaries. These images were omitted from the training data.

It was found through analysis of the original code and output that every fifth image was

extracted out of the pivot videos. A small adjustment to the code allowed each video

frame to be extracted and used for training for a total of 6,148 or 5x Pivot training data

(APPENDIX F.1 Code used to extract images out of video (MATLAB)). Pivotv2 was

trained with five times the number of images compared to Pivot Run 1 & Run 2 to

observe if more images improved training results. GoogLeNet was used with the

hyperparameters used in Run 2 in the round bale and tractor training. Only one detector

was trained using the newly extracted images. The goal was to get a mAP of at least 80%

on all obstacles, then combined for the final Faster R-CNN training.

 Tractor

Tractor training used GoogLeNet, ResNet 101, Inception ResNet V2 and Inception V3

feature extractors. Each feature extractor was tried with both sets of hyperparameters

except that Inception ResNet V2 was only ran once.

Training time and the mAP results for tractor training can be seen in Table 5.1.

GoogLeNet and ResNet 101 averaged a mAP of 90% and 49.5%, respectively between

the two runs. Inception V3 was able to complete training but, outputted an average mAP

 62

of 0 %. Inception ResNet V2 required more memory than was available and couldn’t be

run (APPENDIX F.8.1.4 Inception ResNet V2).

GoogLeNet was both the most accurate and fastest to train. ResNet 101 had mixed

accuracy results by having mAPs of 9% in Run 1 and 90% in Run 2, Inception V3

training had a mAP of 0% in both runs. It was determined that only GoogLeNet, ResNet

101 and Inception V3 would be tried for round bale training. A graphical representation

of training time vs. mAP percentage is shown in Figure 5.7.

Run 2 was identified as the set of hyperparameters that worked the best for tractor

detection. These hyperparameters returned a 93% in Run 2 compared to an 87% in Run 1

for GoogLeNet and a 90% in Run 2

compared to 9% in Run 1 for ResNet

101.

The training times of the feature

extractor from slowest to fastest was

Inception V3 at 4.34 seconds/image,

ResNet 101 was 3.26 seconds/image
Figure 5.7 Tractor Faster R-CNN training graphed

results

Table 5.1 Tractor Faster R-CNN training results

 63

and GoogLeNet was the fastest in tractor training at 1.31 seconds/image.

A trained detector “tdgooglenetv2”, was tested on tractor images found on the internet

and the results can be seen in APPENDIX F.8.1.1 GoogLeNet.

. In Figure 5.8 (a) the detector labeled the image of the tractor and planter eight different

times instead of labeling the tractor once. This showed that more data was needed to

clearly define the tractor from other equipment. The tractor in Figure 5.8 (b) is correctly

labeled but the bounding box does not enclose the tractor tightly. More results from

testing detectors on test tractor images can be seen in APPENDIX F Faster R-CNN

Training.

GoogLeNet as the feature extractor in Faster R-CNN was able to identify tractors at about

644 milliseconds per image. When ResNet 101 was used as the feature extractor it took

roughly 966 milliseconds to identify the tractor. Both feature extractors worked well but

are still not fast enough for real time obstacle detection. More training test images are in

APPENDIX F.8 Tractor images.

(a)

Figure 5.8 Tractor training results

(b)

 64

 Round Bale

A round bale detector was trained using GoogLeNet, ResNet 101 and Inception V3 using

the same hyperparameters as Run 1 and Run 2. GoogLeNet was the only network to

return mAP for round bales. The mAPs for round bale training on GoogLeNet were 77%

for Run 1 and 94% on Run 2. Run 2 hyperparameters had a 17% higher mAP compared

to Run 1 for training done in GoogLeNet (Figure 5.9). Inception V3 completed training

for the first run but was unable to complete the second run because it could not find

region proposals to use as positive training samples causing the error.

ResNet 101 was able to complete both training runs but unable to give a mAP. The

results can be seen in Table 5.2 Round Bale Faster R-CNN training result

. It was determined that Inception V3 would not be used and Run 2 hyperparameters

with GoogleNet would be used for pivot training.

Inception V3 had the longest training time of 4.29 seconds/image followed by ResNet

101 at 4.21 seconds/image. The fastest training time was GoogLeNet at 1.50

seconds/image.

Table 5.2 Round Bale Faster R-CNN training result

 65

ResNet 101 was not able to

identify round bales for the

calculation of mAP. Test

images were tried on

GoogLeNet.

In Figure 5.10(a) the detector

labeled both bounding boxes

correctly but, mislabeled

Figure 5.10(b), labeling the

tractor as a round bale. In this detector the tractor was not a class during training. It is fair

to assume that the detector mistook the tire as a bale. It was determined that only Run 2

hyperparameters would be used and only ResNet 101 and GoogLeNet would be used for

pivot detection. More training test images can be found in APPENDIX F.9 Round Bale.

Round bale detection using GoogLeNet averaged 990 milliseconds per image.

Figure 5.9 Graphical representation of the training results from the

round bale Faster R-CNN training.

(a) (b)

Figure 5.10 Bale detector testing images.

 66

 Pivot

A mAP was created for each component of the pivot when it was trained using

GoogLeNet but was unable to produce a mAP for the components when ResNet 101 was

used. Two pivot detectors were trained for both GoogLeNet and ResNet 101. When

training was done using GoogLeNet, Run 1 had an average mAP for the components of

95% and Run 2 had a mAP of 92%, respectively. ResNet 101 was able to complete the

first run of training but unable to complete the second training.

The highest component mAP was the

pyramid at 99% for Run 1 and the

tower at 98% for Run 2. The lowest

was the end tower and span at 92% for

Run 1 and the end tower was the

lowest 81% for Run 2. Table 5.4

Results from pivot training

shows a breakdown of component

mAPs for both runs of GoogLeNet

and ResNet 101.

The average training time per image was 0.95 seconds/image in GoogLeNet. The

training time for the one run of ResNet 101 was 2.94 seconds/image.

Table 5.4 Results from pivot training

 67

Figure 5.11 plots the times and mAPs of training for the GoogLeNet and ResNet 101

against each other. It was determined that GoogLeNet will be selected for the final

combined training given the reduced average training time and superior mAP values.

In Figure 5.12 (a) is identified

correctly with the two spans

and tower. In Figure 5.12(b),

the span was broken into two

pieces to fully bind the span

and part of the pyramid was

wrongly labeled as a span. In

Figure 5.12c the end tower is

incorrectly identified as a

Figure 5.11 Results of pivot training graphed

 68

tower but, the entire span is correctly bound. Only GoogLeNet would be used as a feature

extractor. GoogLeNet took approximately 1.125 seconds per image for identification.

More training test images are in APPENDIX F.10 Pivot.

Figure 5.12 Pivot detectorv1 labeling: (a) two spans and a tower, (b) pyramid and span, (c) span and

end tower

(a)

(b)

(c)

 69

 Combined

The combined detector used Faster R-CNN with GoogLeNet as the feature extractor. Run

1 is the first time the algorithm was trained and Run 2 is the second time the algorithm

was ran with the same hyperparameters in both runs. All the image data were randomized

and hyperparameters were the same as Run 2 of tractor and round bale training for both

combined detector trainings. The average mAP for the combined pictures was 89% for

the Run 1 and 91% for Run 2 (Figure 5.13).

The pyramid class had the highest mAP in both Run 1 and Run 2 at 97% and 99%

respectively. The lowest mAPs occurred in end tower class in both Run 1 and Run 2 at

65% and 82%.

A total of 1691 images were used to train GoogLeNet for the combined detector. The

time and accuracy are plotted in Figure 5.13.

 70

The detectors were tested by

pictures found on the internet.

Test results for Run 1 can be

seen in Figure 5.14. The results

for more images can be seen in

APPENDIX F.11 Combined

Detector. When examining

these images, it was found that

some images were labeled

incorrectly despite the high

mAP. In Figure 5.14 (a) the

tractor is identified correctly but

labels the round bales as

tractors. In Figure 5.14 (b), the

detector correctly identifies all

three images.

The detector when pictures

were collaged together (Figure

5.15), was able to correctly

identify round bales, a tractor,

the span and tower of a pivot. It

incorrectly labeled the end

Figure 5.13 Accuracy vs time of combined dedectors.

(a)

(b)

Figure 5.14 Results from running the Run 1 combined detector on

pictures from the internet. (a) A tractor and multiple bales and (b)

multiple bales in a field.

 71

tower as a tower. It was noticed that the bounding boxes were not tightly bounding the

images. The detector was unable to notice an image of a pyramid though it was 99%

mAP.

For the combined detector it roughly takes 1.67 seconds per image which is not fast

enough for real time detection. More combined test images can be seen APPENDIX F.11

Combined Detector.

 Pivotv2

It was not known that every 5th image of video was being extracted, for the previous

training data. The code can be seen APPENDIX F.1 Code used to extract images out of

video (MATLAB). Pivotv2 training data had extracted every image extracted out of the

video for a total of 6,148 images. Pivotv2 was the last training and used the same

hyperparameters and CNN as the combined training.

Having the new data improved the mAP results over the first detector of pivots. The end

tower mAP improved by 18%, the span 5%, pyramid 3% and tower stayed the same

Figure 5.15 Collage of the six classes the combined detector is suppose to be able to

identify.

 72

(Table 5.6). Results on test images can be seen in Figure 5.16. More test images can be

seen APPENDIX F.12 Pivotv. With more training data it was still unable to identify the

end tower correctly. The increase in number of training pictures did not affect the speed

Faster R-CNN with GoogLeNet detected

pictures. With the additional training

images detection was roughly 1.08 seconds

per image.

A summary of the feature extractors and training statistics can be found in Table 5.7 and

Figure 5.17. GoogLeNet had the fastest training times out of all trained detectors.

GoogLeNet had the fastest detection time in all instances those times are in Table 5.8 and

can be seen in Figure 5.18. It can be noted that a 0% mAP cannot detect objects.

Padded pivot images could have improved pivot detector accuracy. Both training and test

images were skewed for the pivot which may have taught the detector wrong.

Table 5.8

Figure 5.18

Table 5.6 Results of training with more pivot

image data

 73

(c)

(b)

(a)

Figure 5.16 Pivot detectorv2 labeling: (a) two spans and a tower, (b) pyramid and span, (c) span and

end tower

 74

Figure 5.17 A graph comparing all trained detectors

Table 5.7 Summary statistics for each feature extractor and object class in Faster R-CNN

 75

Table 5.8 Detector speed and accuracy

Figure 5.18 A graphical representation of the detector testing times along with the accuracy in detection

 76

It was determined that Faster R-CNN architecture would work best for obstacle detection.

A larger data set made up of round bales and tractors may have resulted in better

detection because a larger amount of data increased mAP in pivot detection. It was

determined that GoogLeNet would work well for agricultural obstacles achieving over an

85% mAP and an increase in the number of images (5x the original amount) increased

the mAP of pivots 6%. A drawback to using GoogLeNet as the feature extractor was it

did not perform fast enough to reach the 5 Hz processing time needed for real time

obstacle detection. Even though no feature extractor could be identified for real-time

detection this proves that CNNs can work for pivot and other truss like object detection.

It was determined that the size of hardware may have been a limiting factor during

training and evaluation of the trained detectors.

 77

Different sensors and methodologies were experimented and tested for practical use in

agricultural object detection. The main objective of detecting obstacles was successful

after many different algorithms and methodologies were tried.

Off the shelf LIDARs were thoroughly tested for obstacle detection. The biggest factor in

LIDAR obstacle detection was angular resolution. Range, effectiveness in sunlight and

sampling rate were also important factors for obstacle detection. It was proven that

LIDARs work for obstacle detection for large objects like tractors or bales but, proved

ineffective in detecting small truss like structures found in pivots.

The width between two data points would be too large in detecting a pivot at a

respectable distance required for obstacle avoidance. Another limitation of LIDARs is

identifying the obstacles they detect. Algorithms do exist that are able to tell you what

shape the object is by comparing neighboring LIDAR data points but are unable to

determine what the obstacle is. Computer vision was tested next to identify truss like

structures such as pivots.

Methods in computer vision were tested first. Feature Extracting and Matching was

experimented first trying to match a reference image features to an input image. The

algorithm was unable to clearly identify the reference pivot image in the input image of a

pivot. The algorithm was found not to be adaptable to the incoming image orientations.

 78

Edge detection was the next methodology tried. A shape identifying algorithm was

implemented that used the circularity of the identified shape to determine the class of

shape. This method proved to be unreliable and could be dependent on camera angles.

A combination of edge detection and SURF Feature Matching and Extracting was tried

next but, quickly proved to be ineffective when all matching points in the reference

image consolidated to one single point in the test image.

A Convolutional Neural Network was determined to be the most effective algorithm for

pivot detection and other obstacle identification. It was determined that GoogLeNet with

Faster R-CNN would be the algorithms of choice to clearly identify obstacles such as

tractors, bales and pivots. It must be noted that even though GoogLeNet used in R-CNN

was the most accurate, the time needed to identify the object was unrealistic for real time

detection at 1.17 seconds average per image during testing of the detectors.

RGB cameras with CNNs can identify objects a far distance away. Which will help with

obstacle avoidance by warning the computer that an obstacle exists, but it would need the

help of other sensors to clearly detect the obstacles.

In this study more images are needed to make the CNN more robust. Only a small

amount images were collected and used in this study.

A task that can be done is collecting and labeling thousands of more pictures of many

farm obstacles. This study focused on tractors, round bales and pivots and laid the

foundation for others to build upon. Another challenge would be learning how to use

sensor fusion and SLAM to clearly identify where the obstacle is relative to the

 79

autonomous tractor. Future work would be finding and implementing a faster feature

detector for the Faster R-CNN than GoogLeNet or a different object detector algorithm

such as the Single-Shot Detector (SSD) or the “You Only Look Once” (YOLO) network.

The hope of this study was to shed light on what is possible for obstacle detection for

autonomous tractors.

 80

Agricar. (2019). New Holland T7.210 Tractor at Agricar. Retrieved March 13, 2019,

from Agricar website: https://www.agricar.co.uk/item/11525/agricar/New-

Holland-T7210-Tractor.html

Anirudh Sharma. (2018, July 20). What is an epoch in deep learning? Retrieved March

12, 2019, from https://www.quora.com/What-is-an-epoch-in-deep-learning

Arduino Library for Scanse Sweep LiDAR [Arduino]. (2017). Retrieved from

https://github.com/scanse/sweep-arduino (Original work published 2017)

AuctionTime Blog. (2018). Case IH Autonomous Concept Tractor Wins GOOD

DESIGN Award. Retrieved March 15, 2019, from AuctionTime.com website:

https://www.auctiontime.com/blog/fun-stuff/2018/01/case-ih-autonomous-

concept-tractor-wins-good-design-award

Barbosa, D., Lopes, A., & Araújo, R. E. (2016). Sensor fusion algorithm based on

Extended Kalman Filter for estimation of ground vehicle dynamics. IECON 2016

- 42nd Annual Conference of the IEEE Industrial Electronics Society, 1049–1054.

https://doi.org/10.1109/IECON.2016.7793145

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded Up Robust Features. In

A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer Vision – ECCV 2006 (Vol.

3951, pp. 404–417). https://doi.org/10.1007/11744023_32

Bedord, L. (2018, February 14). Case IH Moves Autonomous Concept Tractor Forward.

Successful Farming. Retrieved from

 81

https://www.agriculture.com/news/technology/case-ih-moves-autonomy-project-

forward

beefmagazine.com. (2014, October 6). Why You Must Remove Net Wrap On Round

Bales Before Feeding To Cattle. Retrieved March 15, 2019, from Beef Magazine

website: https://www.beefmagazine.com/beef-cattle-feed/why-you-must-remove-

net-wrap-round-bales-feeding-cattle

Bellone, M., Messina, A., & Reina, G. (2013). A new approach for terrain analysis in

mobile robot applications. 2013 IEEE International Conference on Mechatronics

(ICM), 225–230. https://doi.org/10.1109/ICMECH.2013.6518540

Bernini, N., Bertozzi, M., Castangia, L., Patander, M., & Sabbatelli, M. (2014). Real-time

obstacle detection using stereo vision for autonomous ground vehicles: A survey.

17th International IEEE Conference on Intelligent Transportation Systems

(ITSC), 873–878. https://doi.org/10.1109/ITSC.2014.6957799

Big Ag. (2018, January 18). Autonomous Tractors- The Future of Farming? Retrieved

August 21, 2018, from Big Ag website:

http://www.bigag.com/topics/equipment/autonomous-tractors-future-farming/

Case IH. (2016, August 30). CNH Industrial brands reveal concept autonomous tractor

development. Retrieved August 21, 2018, from http://www.cnhindustrial.com/en-

US/media/press_releases/2016/august/pages/CNH_Industrial_brands_reveal_conc

ept_autonomous_tractor_development_Announcement.aspx

Case IH. (2018, February 14). Case IH Defines Categories of Autonomy and Announces

Pilot Program. Retrieved October 9, 2018, from

 82

https://cloudfront.cdn.caseih.com:4495/emea/en-za/News/Pages/2018-02-14-

Case-IH-Defines-Categories-of-Autonomy-and-Announces-Pilot-Program.aspx

Chicot Irrigation. (2019). Valley Center Pivots. Retrieved March 15, 2019, from

https://www.chicotirrigation.com/valley-center-pivots

David, L., & Viola, P. (2001, April). The Viola/Jones Face Detector. Lecture

Presentations presented at the University of California-Berkley. Retrieved from

https://www.cs.ubc.ca/~lowe/425/slides/13-ViolaJones.pdf

Denise O’Sullivan. (2019). Awesome! Tractor Loader Transformer. Mega Bale Spear

and Bale Fork. Retrieved March 15, 2019, from Pinterest website:

https://www.pinterest.com/pin/759489924632642728/

Deshpande, A. (2016, July 20). A Beginner’s Guide To Understanding Convolutional

Neural Networks. Retrieved October 11, 2018, from

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-

Understanding-Convolutional-Neural-Networks/

Doukkali, F. (2017, September 28). Convolutional Neural Networks (CNN, or

ConvNets). Retrieved October 15, 2018, from Firdaouss Doukkali website:

https://medium.com/@phidaouss/convolutional-neural-networks-cnn-or-convnets-

d7c688b0a207

Dubois, C. (2018). What Is Solid State LiDAR and Is It Faster, Cheaper, Better? All

About Circuits. Retrieved from https://www.allaboutcircuits.com/news/solid-

state-lidar-faster-cheaper-better/

 83

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation.

Computer, 22(6), 46–57. https://doi.org/10.1109/2.30720

everythingattachments.com. (2019). Bale Spears for Skid Steers. Retrieved March 15,

2019, from https://www.everythingattachments.com/Skid-Steer-Bale-Spear-

s/109.htm

FAO Director’s office. (2009, October). High Level Export Forum- How to Feed the

World in 2050. Retrieved August 21, 2018, from

http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Glo

bal_Agriculture.pdf

Freitas, G., Hamner, B., Bergerman, M., & Singh, S. (2012). A practical obstacle

detection system for autonomous orchard vehicles. 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 3391–3398.

https://doi.org/10.1109/IROS.2012.6385638

Gao, H. (2017, September 27). Faster R-CNN Explained. Retrieved January 18, 2019,

from Hao Gao website: https://medium.com/@smallfishbigsea/faster-r-cnn-

explained-864d4fb7e3f8

Gillespie, K. (2018, February 19). Ultrasonic Sensors: Advantages and Limitations.

Retrieved September 27, 2018, from MaxBotix Inc. website:

https://www.maxbotix.com/articles/articlesadvantages-limitations-ultrasonic-

sensors-htm.htm

 84

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2013). Rich feature hierarchies for

accurate object detection and semantic segmentation. ArXiv:1311.2524 [Cs].

Retrieved from http://arxiv.org/abs/1311.2524

Global Auction Guide. (2019). Image Viewer. Retrieved March 15, 2019, from

https://www.globalauctionguide.com/image-viewer/54692238

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., … Murphy, K.

(2016). Speed/accuracy trade-offs for modern convolutional object detectors.

ArXiv:1611.10012 [Cs]. Retrieved from http://arxiv.org/abs/1611.10012

Hui, J. (2018, March 27). Object detection: speed and accuracy comparison (Faster R-

CNN, R-FCN, SSD, FPN, RetinaNet and…. Retrieved October 2, 2018, from

Medium website: https://medium.com/@jonathan_hui/object-detection-speed-

and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359

Jadon, S. (2018, March 16). Introduction to Different Activation Functions for Deep

Learning. Retrieved November 1, 2018, from Medium website:

https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-

deep-learning-9689331ba092

Jo, Youngtae., & Jung, Inbum. (2014). Analysis of Vehicle Detection with WSN-Based

Ultrasonic Sensors. Sensors (Basel, Switzerland), 14(8), 14050–14069.

https://doi.org/10.3390/s140814050

John Deere. (2019). Tractors | John Deere US. Retrieved March 13, 2019, from

https://www.deere.com/en/tractors/

 85

Keeping It Dutch. (2015). How to move a round bale of hay without a tractor. Retrieved

from https://www.youtube.com/watch?v=KSAovFiLO7s

Kirill Eremenko. (2018, August). Deep Learning A-ZTM: Convolutional Neural Networks

(CNN) - Step 3: Fla…. Education. Retrieved from

https://www.slideshare.net/KirillEremenko/deep-learning-az-convolutional-

neural-networks-cnn-step-3-

flattening?ref=https://www.superdatascience.com/convolutional-neural-networks-

cnn-step-3-flattening-presentation/

Kochhar, R. (2014, February 3). 10 projections for the global population in 2050.

Retrieved July 3, 2018, from Pew Research Center website:

http://www.pewresearch.org/fact-tank/2014/02/03/10-projections-for-the-global-

population-in-2050/

Kubota. (2019). Tractor | Products. Retrieved March 13, 2019, from

https://www.kubota.com/products/tractor/

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

https://doi.org/10.1109/5.726791

Lecun, Yann, & Bengio, Y. (1994). Word-level training of a handwritten word recognizer

based on convolutional neural networks. Proceedings of the International

Conference on Pattern Recognition, Jerusalem, October 1994, 88–92.

 86

Lenz, P., Ziegler, J., Geiger, A., & Roser, M. (2011). Sparse scene flow segmentation for

moving object detection in urban environments. 2011 IEEE Intelligent Vehicles

Symposium (IV), 926–932. https://doi.org/10.1109/IVS.2011.5940558

Lindsay Europe. (2019). 9500P - Center irrigation pivot by LINDSAY. Retrieved March

15, 2019, from http://www.agriexpo.online/prod/lindsay-europe-sa/product-

179304-85640.html

Litomisky, K. (2012, Spring). Consumer RGB-D Cameras and their Applications.

Retrieved November 29, 2017, from

http://alumni.cs.ucr.edu/~klitomis/files/RGBD-intro.pdf

Liu, D.-C. (2017, November 30). A Practical Guide to ReLU. Retrieved October 22,

2018, from TinyMind website: https://medium.com/tinymind/a-practical-guide-to-

relu-b83ca804f1f7

Magneon. (2018, May 11). Robotics [Www.reddit.com]. Retrieved August 29, 2018,

from What happen to Scanse LIDAR website:

https://www.reddit.com/r/robotics/comments/8fjpql/what_happen_to_the_scanse_

lidar/

Mahindra. (2019). 2019 Mahindra 1526 4WD Shuttle. Retrieved March 13, 2019, from

https://www.esuperbike.com/Tractors-Mahindra-1526-4WD-Shuttle-2019-

Evansville-IN-e6eea2b1-cb2a-4781-aa06-a9d60085c059

Mapanauta. (2018, May 24). Why Solid-State Lidar Is Key to the Future of Self-Driving

Cars. Retrieved August 20, 2018, from Medium website:

 87

https://medium.com/@mapanauta/why-solid-state-lidar-is-key-to-the-future-of-

self-driving-cars-5e90ea906608

Marybeth Feutz. (2010, October 2). Farm Equipment Friday: Bale spear. Retrieved

March 15, 2019, from My Fearless Kitchen website:

https://www.myfearlesskitchen.com/farm-equipment-friday-bale-spear/

Mathworks. (2018a). Convolutional Neural Network. Retrieved October 12, 2018, from

https://www.mathworks.com/solutions/deep-learning/convolutional-neural-

network.html

Mathworks. (2018b). Detect objects using the Viola-Jones algorithm. Retrieved

December 28, 2018, from

https://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-system-

object.html?s_tid=doc_ta

Mathworks. (2018c). Find edges in intensity image. Retrieved December 29, 2018, from

https://www.mathworks.com/help/images/ref/edge.html?s_tid=srchtitle

Mathworks. (2018d). Max pooling layer. Retrieved October 22, 2018, from

https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.maxpooling2dl

ayer.html

Mathworks. (2018e). Pretrained AlexNet convolutional neural network - MATLAB

alexnet. Retrieved October 10, 2018, from

https://www.mathworks.com/help/deeplearning/ref/alexnet.html

Mathworks. (2019). Path Planning in Environments of Different Complexity. Retrieved

March 21, 2019, from https://www.mathworks.com/help/robotics/examples/path-

 88

planning-in-environments-of-difference-

complexity.html;jsessionid=1b8c1fda0df72f1490d9e739d50d

Mesa Irrigation Co in Lamesa , TX. (2019). Mesa Irrigation Co in Lamesa , TX.

Retrieved March 15, 2019, from YP.com website:

http://www.yellowpages.com/lamesa-tx/mip/mesa-irrigation-co-

448942?lid=448942&from=SocSh_Facebook

MiniQuark. (2018, September 7). python - What is the difference between “SAME” and

“VALID” padding in tf.nn.max_pool of tensorflow? Retrieved October 23, 2018,

from Stack Overflow website:

https://stackoverflow.com/questions/37674306/what-is-the-difference-between-

same-and-valid-padding-in-tf-nn-max-pool-of-t

Mokey, N. (2018, March 15). A self-driving car in every driveway? Solid-state lidar is

the key. Retrieved August 20, 2018, from Digital Trends website:

https://www.digitaltrends.com/cars/solid-state-lidar-for-self-driving-cars/

New Holland. (2017). NEW HOLLAND AGRICULTURE UNVEILS METHANE

POWERED CONCEPT TRACTOR AND ITS VISION FOR THE

SUSTAINABLE FUTURE OF FARMING. Retrieved March 15, 2019, from

https://agriculture.newholland.com/apac/en-nz/about-us/whats-up/news-

events/2017/new-holland-unveils-methane-powered-concept

newwayirrigation.com. (2019). Pivots. Retrieved March 15, 2019, from New Way

Irrigation website: https://newwayirrigation.com/pivots/

 89

Ohio’s Country Journal. (2019). Alternative Uses for Round Bales. Retrieved March 15,

2019, from https://www.ocj.com/2010/09/alternative-uses-for-round-bales/

Oniga, F., & Nedevschi, S. (2010). Processing Dense Stereo Data Using Elevation Maps:

Road Surface, Traffic Isle, and Obstacle Detection. IEEE Transactions on

Vehicular Technology, 59(3), 1172–1182.

https://doi.org/10.1109/TVT.2009.2039718

pivotsplus.com. (2019). Image: Used Zimmatic Pivot 0148. Retrieved March 15, 2019,

from

https://www.google.com/imgres?imgurl=http://www.pivotsplus.com/Images/listin

gs/pivots/zim148/083.jpg&imgrefurl=http://www.pivotsplus.com/pivots/used-

zimmatic-pivot-

0148&h=612&w=816&tbnid=2rj2b6IxxjhJ3M&tbnh=194&tbnw=259&usg=K_n

m34EtP1JKrxtGHQAjKdgK_mTfo=&hl=en&docid=boSJoNxUOwABcM

RainFine Irrigation Solution. (2019). CENTER PIVOT FIXED. Retrieved March 15,

2019, from http://www.rainfineaustralia.com/?page_id=8873

Reina, G. (2013, February). Unevenness Point Descriptor for Terrain Analysis in Mobile

Robot Applications. Retrieved March 19, 2019, from ResearchGate website:

https://www.researchgate.net/publication/260024583_Unevenness_Point_Descrip

tor_for_Terrain_Analysis_in_Mobile_Robot_Applications

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks. In C. Cortes, N. D. Lawrence,

D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in Neural Information

 90

Processing Systems 28 (pp. 91–99). Retrieved from

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-

with-region-proposal-networks.pdf

Repos, R. P. (2019). RoboPeak RPLIDAR driver for Arduino and Arduino-compatible

devices: robopeak/rplidar_arduino [C++]. Retrieved from

https://github.com/robopeak/rplidar_arduino (Original work published 2014)

Ritchie Bros. (2019). New and used tractors for sale. Retrieved March 13, 2019, from

https://www.rbauction.com/agriculture-tractors?cid=23572767093

Sabale, A. S., & Vaidya, Y. M. (2016). Accuracy measurement of depth using Kinect

sensor. 2016 Conference on Advances in Signal Processing (CASP), 155–159.

https://doi.org/10.1109/CASP.2016.7746156

Samieh, A. (2016, March 31). Shape Recognition [File Exchange - MATLAB Central].

Retrieved December 28, 2018, from

https://www.mathworks.com/matlabcentral/fileexchange/15491

Satofumi Kamimura. (2013, January 31). URG Helper. Retrieved May 31, 2019, from

SourceForge website: https://sourceforge.net/projects/urgwidget/

Senix Corporation. (2018). Ultrasonic Sensors - Object Detection. Retrieved March 18,

2019, from https://senix.com/object-detection/

Sheridan Reality & Auction Co. (2017). 2016 Zimmatic Center Pivot, 8- tower. Retrieved

March 18, 2019, from https://bid.sheridanauctionservice.com/m/lot-

details/index/catalog/15357/lot/2085832/Zimmatic-7-tower-Center-Pivot-1-

center-section-is-damaged

 91

Southern Plains Photography. (2019). Hay Bale and Storm Photography Print. Retrieved

March 15, 2019, from https://www.amazon.com/Hay-Bale-Storm-Photography-

Print/dp/B01E7VGGRS

Spielmaker, D. M. (2018, March 21). Growing a Nation Historical Timeline. Retrieved

June 22, 2018, from https://www.agclassroom.org/gan/timeline/index.htm

Stanford. (2018, October 5). CS231n Convolutional Neural Networks for Visual

Recognition. Retrieved October 5, 2018, from

http://cs231n.github.io/convolutional-networks/#conv

Sullivan, A. (2014, May 24). Fact Check: Reynolds says one Iowa farmer feeds 155

people worldwide. Retrieved June 22, 2018, from The Gazette website:

http://thegazette.com/subject/news/government/fact-check/fact-check-reynolds-

says-one-iowa-farmer-feeds-155-people-worldwide-20140524

Tracey Media. (2013). Tractor Making Hay Bales. Retrieved from

https://www.youtube.com/watch?v=B2dmW2MWfGw

Ujjwalkarn. (2016, August 11). An Intuitive Explanation of Convolutional Neural

Networks. Retrieved October 16, 2018, from the data science blog website:

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

V, A. S. (2017, March 30). Understanding Activation Functions in Neural Networks.

Retrieved November 2, 2018, from Medium website: https://medium.com/the-

theory-of-everything/understanding-activation-functions-in-neural-networks-

9491262884e0

 92

Vishal Agro Industries. (2019). Vishal Agro Industries. Retrieved March 15, 2019, from

https://www.vishalagroindustries.com/

Vodar Co., Ltd. (2019). Vodar Center Pivot Irrigation System For Alfalfa Irrigation.

Retrieved March 15, 2019, from www.alibaba.com website:

//www.alibaba.com/product-detail/VODAR-Center-Pivot-Irrigation-System-

for_60675652116.html

Vogt, W. (2018, March 7). Defining the levels of automation. Retrieved October 9, 2018,

from Wallaces Farmer website:

https://www.wallacesfarmer.com/technology/defining-levels-automation

Weisstein, E. W. (2018, October 22). L^2-Norm [Text]. Retrieved October 23, 2018,

from http://mathworld.wolfram.com/L2-Norm.html

Wiring Schematic Design. (2019). Valley Center Pivot Irrigation Systems. Retrieved

March 15, 2019, from Wiring Schematic Diagram website: http://157.twizer.co

WorldAgNetwork. (2016, February 15). 50-plus Years of Center-pivot Irrigation.

Retrieved March 15, 2019, from World Agriculture Network website:

https://worldagnetwork.com/50-plus-years-of-center-pivot-irrigation/

Zulkifli, H. (2018, January 21). Understanding Learning Rates and How It Improves

Performance in Deep Learning. Retrieved March 13, 2019, from Towards Data

Science website: https://towardsdatascience.com/understanding-learning-rates-

and-how-it-improves-performance-in-deep-learning-d0d4059c1c10

 93

 94

/*
 Scanse Sweep Arduino Library Examples

 MegaSerialPrinter:
 - Example sketch for using the Scanse Sweep with the Arduino Mega 2560.
 Collects 3 complete scans, and then prints the sensor readings
 - Assumes Sweep sensor is physically connected to Serial #1 (RX1 & TX1)
 - For the sweep's power, ground, RX & TX pins, follow the connector

X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate radial distance radial distance azimuth

columns rows feet feet cm cm feet cm degrees

1 3 0 36 0 1097.28 0 36 1097.28 0.00

2 6 9 72 18 2194.56 548.64 74.21590126 2262.10067 14.04

3 5 13 60 26 1828.8 792.48 65.3911309 1993.12167 23.43

4 0 12 0 24 0 731.52 24 731.52 90.00

5 4 10 48 20 -1463.04 609.6 52 1584.96 157.38

6 8 7 96 14 -2926.08 426.72 97.01546269 2957.031303 171.70

7 10 0 120 0 -3657.6 0 120 3657.6 180.00

8 4 5 48 10 -1463.04 -304.8 49.03060269 1494.45277 191.77

9 7 15 84 30 -2560.32 -914.4 89.19641248 2718.706653 199.65

10 0 19 0 38 0 -1158.24 38 1158.24 270.00

11 3 12 36 24 1097.28 -731.52 43.26661531 1318.766435 326.31

12 10 9 120 18 3657.6 -548.64 121.3424905 3698.51911 351.47

Obstacle

number

 95

 pinouts in the sweep user manual located here:
 http://scanse.io/downloads
 - Be sure to connect RX_device -> TX_arduino & TX_device -> RX_arduino
 - For best results, you should provide dedicated external 5V power to the Sweep
 rather than using power from the Arduino. Just be sure to connect the ground
 from the power source and the arduino. If you are just experimenting, you can
 run the sweep off the 5V power from the Arduino with the Arduino receiving power
 over USB. However this has only been tested with an external powered USB hub.
 It is possible that using a low power USB port (ex: laptop) to power the
 arduino & sweep together will result in unexpected behavior.
 - Note that running off of USB power is not entirely adequate for the sweep,
 so the quantity and quality of sensor readings will drop. This is OK for
 this example, as it is only meant to provide some visual feedback over
 the serial monitor.
 - In your own projects, be sure to use dedicated power instead of the USB.

 Created by Scanse LLC, February 21, 2017.
 Released into the public domain.
*/

#include <Sweep.h>
#include "SD.h"
#include <Wire.h>
#include "RTClib.h"

int record = 39;
int recLED = 52;

// Create a Sweep device using Serial #1 (RX1 & TX1)
Sweep device(Serial1);
// Scan packet struct, used to store info for a single reading
ScanPacket reading;

// keeps track of how many scans have been collected
uint8_t scanCount = 0;
// keeps track of how many samples have been collected
uint16_t sampleCount = 0;

// Arrays to store attributes of collected scans
bool syncValues[500]; // 1 -> first reading of new scan, 0 otherwise
float angles[500]; // in degrees (accurate to the millidegree)
uint16_t distances[500]; // in cm
uint8_t signalStrengths[500]; // 0:255, higher is better

// Finite States for the program sequence
const uint8_t STATE_WAIT_FOR_USER_INPUT = 0;

http://scanse.io/downloads

 96

const uint8_t STATE_ADJUST_DEVICE_SETTINGS = 1;
const uint8_t STATE_VERIFY_CURRENT_DEVICE_SETTINGS = 2;
const uint8_t STATE_BEGIN_DATA_ACQUISITION = 3;
const uint8_t STATE_GATHER_DATA = 4;
const uint8_t STATE_STOP_DATA_ACQUISITION = 5;
const uint8_t STATE_REPORT_COLLECTED_DATA = 6;
const uint8_t STATE_RESET = 7;
const uint8_t STATE_ERROR = 8;

// Current state in the program sequence
uint8_t currentState;

// String to collect user input over serial
String userInput = "";

// A simple data logger for the Arduino analog pins
#define LOG_INTERVAL 1000 // mills between entries
#define ECHO_TO_SERIAL 1 // echo data to serial port
#define WAIT_TO_START 0 // Wait for serial input in setup()

// the digital pins that connect to the LEDs
#define redLEDpin 3
#define greenLEDpin 4

RTC_DS1307 RTC; // define the Real Time Clock object

// for the data logging shield, we use digital pin 10 for the SD cs line
const int chipSelect = 10;

// the logging file
File logfile;

void error(char *str)
{
 Serial.print("error: ");
 Serial.println(str);

 // red LED indicates error
 digitalWrite(redLEDpin, HIGH);

 while(1);
}

void setup()

 97

{
 pinMode(record, INPUT);
 pinMode(recLED, OUTPUT);
 digitalWrite(recLED, LOW);

 // Initialize serial
 Serial1.begin(115200); // sweep device

 // reserve space to accumulate user message
 userInput.reserve(50);

 // initialize counter variables and reset the current state
 reset();

 Serial.begin(9600);
 Serial.println();

#if WAIT_TO_START
 Serial.println("Type any character to start");
 while (!Serial.available());
#endif //WAIT_TO_START
}

// Loop functions as an FSM (finite state machine)
void loop()
{
 switch (currentState)
 {
 case STATE_WAIT_FOR_USER_INPUT:
 if (listenForUserInput())
 currentState = STATE_ADJUST_DEVICE_SETTINGS;
 break;
 case STATE_ADJUST_DEVICE_SETTINGS:
 currentState = adjustDeviceSettings() ? STATE_VERIFY_CURRENT_DEVICE_SETTINGS :
STATE_ERROR;
 break;
 case STATE_VERIFY_CURRENT_DEVICE_SETTINGS:
 currentState = verifyCurrentDeviceSettings() ? STATE_BEGIN_DATA_ACQUISITION :
STATE_ERROR;
 break;
 case STATE_BEGIN_DATA_ACQUISITION:
 currentState = beginDataCollectionPhase() ? STATE_GATHER_DATA : STATE_ERROR;
 break;
 case STATE_GATHER_DATA:
 gatherSensorReading();
 if (scanCount > 3)

 98

 currentState = STATE_STOP_DATA_ACQUISITION;
 break;
 case STATE_STOP_DATA_ACQUISITION:
 currentState = stopDataCollectionPhase() ? STATE_REPORT_COLLECTED_DATA :
STATE_ERROR;
 break;
 case STATE_REPORT_COLLECTED_DATA:
 printCollectedData();
 currentState = STATE_RESET;
 break;
 case STATE_RESET:
 Serial.println("\n\nAttempting to reset and run the program again...");
 reset();
 currentState = STATE_WAIT_FOR_USER_INPUT;
 break;
 default: // there was some error
 Serial.println("\n\nAn error occured. Attempting to reset and run program again...");
 reset();
 currentState = STATE_WAIT_FOR_USER_INPUT;
 break;
 }
}

// checks if the user has communicated anything over serial
// looks for the user to send "start"
bool listenForUserInput()
{
 while (Serial.available())
 {
 userInput += (char)Serial.read();
 }
 if (userInput.indexOf("start") != -1)
 {
 Serial.println("Registered user start.");
 return true;
 }
 return false;
}

// Adjusts the device settings
bool adjustDeviceSettings()
{
 // Set the motor speed to 5HZ (codes available from 1->10 HZ)
 bool bSuccess = device.setMotorSpeed(MOTOR_SPEED_CODE_5_HZ);
 Serial.println(bSuccess ? "\nSuccessfully set motor speed." : "\nFailed to set motor speed");

 99

 /*
 // Device will always default to 500HZ scan rate when it is powered on.
 // Snippet below is left for reference.
 // Set the sample rate to 500HZ (codes available for 500, 750 and 1000 HZ)
 bool bSuccess = device.setSampleRate(SAMPLE_RATE_CODE_500_HZ);
 Serial.println(bSuccess ? "\nSuccessfully set sample rate." : "\nFailed to set sample rate.");
*/
 return bSuccess;
}

// Querries the current device settings (motor speed and sample rate)
// and prints them to the console
bool verifyCurrentDeviceSettings()
{
 // Read the current motor speed and sample rate
 int32_t currentMotorSpeed = device.getMotorSpeed();
 if (currentMotorSpeed < 0)
 {
 Serial.println("\nFailed to get current motor speed");
 return false;
 }
 int32_t currentSampleRate = device.getSampleRate();
 if (currentSampleRate < 0)
 {
 Serial.println("\nFailed to get current sample rate");
 return false;
 }

 // Report the motor speed and sample rate to the computer terminal
 Serial.println("\nMotor Speed Setting: " + String(currentMotorSpeed) + " HZ");
 Serial.println("Sample Rate Setting: " + String(currentSampleRate) + " HZ");

 return true;
}

// Initiates the data collection phase (begins scanning)
bool beginDataCollectionPhase()
{
 // Attempt to start scanning
 Serial.println("\nWaiting for motor speed to stabilize and calibration routine to complete...");
 bool bSuccess = device.startScanning();
 Serial.println(bSuccess ? "\nSuccessfully initiated scanning..." : "\nFailed to start scanning.");
 if (bSuccess)
 Serial.println("\nGathering 3 scans...");
 return bSuccess;
}

 100

// Gathers individual sensor readings until 3 complete scans have been collected
void gatherSensorReading()
{
 // attempt to get the next scan packet
 // Note: getReading() will write values into the "reading" variable
 if (device.getReading(reading))
 {
 // check if this reading was the very first reading of a new 360 degree scan
 if (reading.bIsSync)
 scanCount++;

 // don't collect more than 3 scans
 if (scanCount > 3)
 return;

 // store the info for this sample
 syncValues[sampleCount] = reading.bIsSync;
 angles[sampleCount] = reading.angle;
 distances[sampleCount] = reading.distance;
 signalStrengths[sampleCount] = reading.signalStrength;

 // increment sample count
 sampleCount++;
 }
}

// Terminates the data collection phase (stops scanning)
bool stopDataCollectionPhase()
{
 // Attempt to stop scanning
 bool bSuccess = device.stopScanning();

 Serial.println(bSuccess ? "\nSuccessfully stopped scanning." : "\nFailed to stop scanning.");
 return bSuccess;
}

// Prints the collected data to the console
// (only prints the complete scans, ignores the first partial)
void printCollectedData()
{
 Serial.println("\nPrinting info for the collected scans (NOT REAL-TIME):");

 int indexOfFirstSyncReading = 0;
 // don't print the trailing readings from the first partial scan
 while (!syncValues[indexOfFirstSyncReading])

 101

 {
 indexOfFirstSyncReading++;
 }
 // print the readings for all the complete scans
 for (int i = indexOfFirstSyncReading; i < sampleCount; i++)
 {
 if (syncValues[i])
 {
 Serial.println("\n----------------------NEW SCAN----------------------");
 }
 Serial.println("Angle: " + String(angles[i], 3) + ", Distance: " + String(distances[i]) + ", Signal
Strength: " + String(signalStrengths[i]));
 }
}

// Resets the variables and state so the sequence can be repeated
void reset()
{
 scanCount = 0;
 sampleCount = 0;
 // reset the sensor
 device.reset();
 delay(50);
 Serial.flush();
 userInput = "";
 Serial.println("\n\nWhenever you are ready, type \"start\" to to begin the sequence...");
 currentState = 0;
}

filename = 'SCANSE12.CSV';
ScanseData = xlsread(filename);

wdist = 0; %distance threshold for an obstacle---furthest distance that

it will detect an obstacle
lowangle = 0;% lowest angle that you want to see in FOV
highangle = 360; % highest angle that you want to see in FOV

num = length(ScanseData); %measures the length of the Scanse data
thetad = ScanseData(:,1); %pulls the azimuth data from the Scanse data
r = ScanseData(:,3); %pulls the distance data from the Scanse data

wtheta=[];
wr=[];

%--

----------------------%

 102

for k=1:num % compares the measured angle to see if ots the FOV it was

given
 if (thetad(k) >= lowangle) && (thetad(k) <= highangle)
 thetad(k) = thetad(k);
 end
 if r(k)> 4000
 r(k) = 0;
 end
end

xdist=r.*cosd(thetad);%produces the x axis distance
ydist=r.*sind(thetad);%produces the y axis distance

thetar = deg2rad(thetad); %converts scanse theta to radians from

degrees

for k =1:num %compares every data point to the warning distance

 if r(k) < wdist && r(k) ~= -1
 wtheta(k) = thetar(k);
 wr(k) = r(k);
 end
end
[pathstr,name,ext] = fileparts (filename); %added these next two lines

for sure. (25 & 26)
figure ('name', name, 'numbertitle', 'off');
polarscatter(thetar, r, 'bo') %plots the Scanse data in a polar graph
hold on
polarscatter(wtheta, wr, 'r*')
hold off
polarscatter(thetar, r, 'bo') %plots the Scanse data in a polar graph
hold on
polarscatter(wtheta, wr, 'r*')
hold off

legend('data points','obstacle')

----------------------NEW SCAN----------------------
Angle 3 Distance 1089 Signal Strength 45

Angle 4 Distance 1096 Signal Strength 183

Angle 12 Distance 1105 Signal Strength 40

Angle 19 Distance 1 Signal Strength 20

Angle 26 Distance 1 Signal Strength 20

Angle 34 Distance 1 Signal Strength 25

Angle 41 Distance 1 Signal Strength 20

 103

Angle 48 Distance 1 Signal Strength 30

Angle 56 Distance 1 Signal Strength 20

Angle 63 Distance 1 Signal Strength 25

Angle 71 Distance 1 Signal Strength 20

Angle 78 Distance 1 Signal Strength 45

Angle 86 Distance 3247 Signal Strength 45

Angle 90 Distance 717 Signal Strength 98

Angle 92 Distance 722 Signal Strength 191

Angle 93 Distance 724 Signal Strength 191

Angle 95 Distance 721 Signal Strength 191

Angle 102 Distance 1 Signal Strength 35

Angle 110 Distance 1 Signal Strength 40

Angle 117 Distance 134 Signal Strength 55

Angle 119 Distance 128 Signal Strength 199

Angle 120 Distance 127 Signal Strength 199

Angle 122 Distance 134 Signal Strength 199

Angle 129 Distance 1 Signal Strength 35

Angle 136 Distance 1 Signal Strength 30

Angle 144 Distance 1 Signal Strength 25

Angle 151 Distance 1 Signal Strength 15

Angle 159 Distance 1 Signal Strength 20

Angle 166 Distance 1 Signal Strength 25

Angle 173 Distance 1 Signal Strength 20

Angle 181 Distance 1 Signal Strength 25

Angle 188 Distance 1 Signal Strength 20

Angle 196 Distance 1487 Signal Strength 40

Angle 203 Distance 1 Signal Strength 30

Angle 210 Distance 1 Signal Strength 25

Angle 218 Distance 1 Signal Strength 20

Angle 226 Distance 1 Signal Strength 25

Angle 233 Distance 1 Signal Strength 20

Angle 240 Distance 1 Signal Strength 20

Angle 248 Distance 1 Signal Strength 20

Angle 255 Distance 1 Signal Strength 30

Angle 263 Distance 1 Signal Strength 25

Angle 270 Distance 5 Signal Strength 25

Angle 277 Distance 1 Signal Strength 25

Angle 285 Distance 1 Signal Strength 20

Angle 292 Distance 1 Signal Strength 25

Angle 300 Distance 1 Signal Strength 30

Angle 307 Distance 1 Signal Strength 25

 104

Angle 314 Distance 1 Signal Strength 35

Angle 322 Distance 1 Signal Strength 20

Angle 329 Distance 1 Signal Strength 20

Angle 337 Distance 1 Signal Strength 25

Angle 344 Distance 3294 Signal Strength 20

Angle 351 Distance 1 Signal Strength 20

Angle 359 Distance 1 Signal Strength 20

----------------------NEW SCAN----------------------
Angle 4 Distance 1091 Signal Strength 84

Angle 11 Distance 1087 Signal Strength 30

Angle 19 Distance 1 Signal Strength 25

Angle 26 Distance 1 Signal Strength 25

Angle 34 Distance 1 Signal Strength 40

Angle 41 Distance 1 Signal Strength 25

Angle 48 Distance 1 Signal Strength 40

Angle 56 Distance 579 Signal Strength 15

Angle 63 Distance 1 Signal Strength 25

Angle 71 Distance 1 Signal Strength 35

Angle 78 Distance 1 Signal Strength 40

Angle 86 Distance 3244 Signal Strength 50

Angle 90 Distance 716 Signal Strength 98

Angle 92 Distance 723 Signal Strength 191

Angle 93 Distance 721 Signal Strength 191

Angle 101 Distance 719 Signal Strength 45

Angle 108 Distance 1 Signal Strength 20

Angle 116 Distance 143 Signal Strength 60

Angle 117 Distance 129 Signal Strength 199

Angle 118 Distance 128 Signal Strength 199

Angle 120 Distance 126 Signal Strength 199

Angle 121 Distance 135 Signal Strength 199

Angle 129 Distance 1 Signal Strength 25

Angle 136 Distance 1 Signal Strength 30

Angle 144 Distance 1 Signal Strength 25

Angle 151 Distance 1 Signal Strength 35

Angle 159 Distance 1 Signal Strength 25

Angle 166 Distance 6681 Signal Strength 25

Angle 173 Distance 1 Signal Strength 25

Angle 181 Distance 1 Signal Strength 35

Angle 188 Distance 1 Signal Strength 20

Angle 195 Distance 1493 Signal Strength 35

 105

Angle 203 Distance 1 Signal Strength 45

Angle 210 Distance 1 Signal Strength 40

Angle 218 Distance 1 Signal Strength 20

Angle 225 Distance 1 Signal Strength 15

Angle 233 Distance 1 Signal Strength 20

Angle 240 Distance 172 Signal Strength 20

Angle 247 Distance 1 Signal Strength 20

Angle 255 Distance 1 Signal Strength 35

Angle 262 Distance 1 Signal Strength 20

Angle 270 Distance 1 Signal Strength 20

Angle 277 Distance 1 Signal Strength 20

Angle 284 Distance 1 Signal Strength 20

Angle 292 Distance 1 Signal Strength 25

Angle 299 Distance 1 Signal Strength 25

Angle 307 Distance 1 Signal Strength 20

Angle 314 Distance 5348 Signal Strength 20

Angle 321 Distance 1 Signal Strength 25

Angle 329 Distance 1 Signal Strength 30

Angle 336 Distance 1 Signal Strength 25

Angle 344 Distance 1 Signal Strength 20

Angle 351 Distance 1 Signal Strength 25

Angle 358 Distance 1 Signal Strength 20

Motor speed (Hz)

DATA POINTS PER REVOLUTION

1 2 3 4 5 6 7 8 9 10

samples (n)

 500 500.00 250.00 166.67 125.00 100.00 83.33 71.43 62.50 55.56 50.00

 750 750.00 375.00
250.00

187.50 150.00 125.00 107.14 93.75 83.33 75.00

 1000 1000.00 500.00 333.33 250.00 200.00 166.67 142.86 125.00 111.11 100.00

 AVERAGE DEGREES PER REVOLUTION

 500 0.72 1.44 2.16 2.88 3.60 4.32 5.04 5.76 6.48 7.20

 750 0.48 0.96 1.44 1.92 2.40 2.88 3.36 3.84 4.32 4.80

 1000 0.36 0.72 1.08 1.44 1.80 2.16 2.52 2.88 3.24 3.60

 Spinning frequency of the LIDAR (Hz)

distance to obstacle (cm) 1 2 3 4 5 6 7 8 9 10

ARCH LENGTH (CENTIMETERS) BETWEEN TWO DATA POINTS (500 Hz)

 500 6.28 12.57 18.85 25.13 31.42 37.70 43.98 50.27 56.55 62.83

 106

 1000 12.57 25.13 37.70 50.27 62.83 75.40 87.96 100.53 113.10 125.66

 1500 18.85 37.70 56.55 75.40 94.25 113.10 131.95 150.80 169.65 188.50

 2000 25.13 50.27 75.40 100.53 125.66 150.80 175.93 201.06 226.19 251.33

 2500 31.42 62.83 94.25 125.66 157.08 188.50 219.91 251.33 282.74 314.16

 3000 37.70 75.40 113.10 150.80 188.50 226.19 263.89 301.59 339.29 376.99

 3500 43.98 87.96 131.95 175.93 219.91 263.89 307.88 351.86 395.84 439.82

 4000 50.27 100.53 150.80 201.06 251.33 301.59 351.86 402.12 452.39 502.65

 ARCH LENGTH (CENTIMETERS) BETWEEN TWO DATA POINTS (750 Hz)

 500 4.19 8.38 12.57 16.76 20.94 25.13 29.32 33.51 37.70 41.89

 1000 8.38 16.76 25.13 33.51 41.89 50.27 58.64 67.02 75.40 83.78

 1500 12.57 25.13 37.70 50.27 62.83 75.40 87.96 100.53 113.10 125.66

 2000 16.76 33.51 50.27 67.02 83.78 100.53 117.29 134.04 150.80 167.55

 2500 20.94 41.89 62.83 83.78 104.72 125.66 146.61 167.55 188.50 209.44

 3000 25.13 50.27 75.40 100.53 125.66 150.80 175.93 201.06 226.19 251.33

 3500 29.32 58.64 87.96 117.29 146.61 175.93 205.25 234.57 263.89 293.22

 4000 33.51 67.02 100.53 134.04 167.55 201.06 234.57 268.08 301.59 335.10

 ARCH LENGTH (CENTIMETERS) BETWEEN TWO DATA POINTS (1000 Hz)

 500 3.14 6.28 9.42 12.57 15.71 18.85 21.99 25.13 28.27 31.42

 1000 6.28 12.57 18.85 25.13 31.42 37.70 43.98 50.27 56.55 62.83

 1500 9.42 18.85 28.27 37.70 47.12 56.55 65.97 75.40 84.82 94.25

 2000 12.57 25.13 37.70 50.27 62.83 75.40 87.96 100.53 113.10 125.66

 2500 15.71 31.42 47.12 62.83 78.54 94.25 109.96 125.66 141.37 157.08

 3000 18.85 37.70 56.55 75.40 94.25 113.10 131.95 150.80 169.65 188.50

 3500 21.99 43.98 65.97 87.96 109.96 131.95 153.94 175.93 197.92 219.91

 4000 25.13 50.27 75.40 100.53 125.66 150.80 175.93 201.06 226.19 251.33

 Spinning frequency of the LIDAR (Hz)

distance to obstacle (cm) 1 2 3 4 5 6 7 8 9 10

LINEAR DISTANCE (CENTIMETERS) BETWEEN TWO DATA POINTS (500 Hz)

 500 6.28 12.57 18.85 25.13 31.41 37.69 43.97 50.24 56.52 62.79

 1000 12.57 25.13 37.70 50.26 62.82 75.38 87.94 100.49 113.04 125.58

 1500 18.85 37.70 56.55 75.39 94.23 113.07 131.90 150.73 169.56 188.37

 2000 25.13 50.26 75.39 100.52 125.64 150.76 175.87 200.98 226.07 251.16

 2500 31.42 62.83 94.24 125.65 157.05 188.45 219.84 251.22 282.59 313.95

 3000 37.70 75.40 113.09 150.78 188.46 226.14 263.81 301.47 339.11 376.74

 3500 43.98 87.96 131.94 175.91 219.88 263.83 307.78 351.71 395.63 439.53

 4000 50.27 100.53 150.79 201.04 251.29 301.52 351.74 401.95 452.15 502.32

 LINEAR DISTANCE (CENTIMETERS) BETWEEN TWO DATA POINTS (750 Hz)

 500 4.19 8.38 12.57 16.75 20.94 25.13 29.32 33.50 37.69 41.88

 1000 8.38 16.75 25.13 33.51 41.88 50.26 58.63 67.01 75.38 83.75

 107

 1500 12.57 25.13 37.70 50.26 62.83 75.39 87.95 100.51 113.07 125.63

 2000 16.76 33.51 50.26 67.02 83.77 100.52 117.27 134.02 150.76 167.50

 2500 20.94 41.89 62.83 83.77 104.71 125.65 146.59 167.52 188.45 209.38

 3000 25.13 50.26 75.40 100.53 125.65 150.78 175.90 201.02 226.14 251.25

 3500 29.32 58.64 87.96 117.28 146.60 175.91 205.22 234.53 263.83 293.13

 4000 33.51 67.02 100.53 134.04 167.54 201.04 234.54 268.03 301.52 335.01

 LINEAR DISTANCE (CENTIMETERS) BETWEEN TWO DATA POINTS (1000 Hz)

 500 3.14 6.28 9.42 12.57 15.71 18.85 21.99 25.13 28.27 31.41

 1000 6.28 12.57 18.85 25.13 31.41 37.70 43.98 50.26 56.54 62.82

 1500 9.42 18.85 28.27 37.70 47.12 56.55 65.97 75.39 84.81 94.23

 2000 12.57 25.13 37.70 50.26 62.83 75.39 87.96 100.52 113.08 125.64

 2500 15.71 31.42 47.12 62.83 78.54 94.24 109.95 125.65 141.35 157.05

 3000 18.85 37.70 56.55 75.40 94.24 113.09 131.94 150.78 169.62 188.46

 3500 21.99 43.98 65.97 87.96 109.95 131.94 153.93 175.91 197.89 219.88

 4000 25.13 50.27 75.40 100.53 125.66 150.79 175.92 201.04 226.16 251.29

 AVERAGE DATA POINTS FOR OBSTACLES (RPLIDAR)

Motor speed (Hz)

DATA POINTS PER REVOLUTION

1 2 3 4 5 6 7 8 9 10

samples (n)

 1000 1000.00 500.00 333.33 250.00 200.00 166.67 142.86 125.00 111.11 100.00

 750 750.00 375.00 250.00 187.50 150.00 125.00 107.14 93.75 83.33 75.00

 500 500.00 250.00 166.67 125.00 100.00 83.33 71.43 62.50 55.56 50.00

 CM TO FEET 30.48

 AVERAGE NUMBER OF DATA POINTS PER FOOT 1

distance to
obstacle (cm)

Spinning frequency of the LIDAR (500Hz)

1 2 3 4 5 6 7 8 9 10

 500 4.8511 2.4256 1.6171 1.2129 0.9704 0.8087 0.6932 0.6066 0.5393 0.4854

 1000 2.4255 1.2128 0.8086 0.6064 0.4852 0.4043 0.3466 0.3033 0.2696 0.2427

 1500 1.617 0.8085 0.539 0.4043 0.3235 0.2696 0.2311 0.2022 0.1798 0.1618

 2000 1.2128 0.6064 0.4043 0.3032 0.2426 0.2022 0.1733 0.1517 0.1348 0.1214

 2500 0.9702 0.4851 0.3234 0.2426 0.1941 0.1617 0.1386 0.1213 0.1079 0.0971

 3000 0.8085 0.4043 0.2695 0.2021 0.1617 0.1348 0.1155 0.1011 0.0899 0.0809

 3500 0.693 0.3465 0.231 0.1733 0.1386 0.1155 0.099 0.0867 0.077 0.0693

 4000 0.6064 0.3032 0.2021 0.1516 0.1213 0.1011 0.0867 0.0758 0.0674 0.0607

 Spinning frequency of the LIDAR (750Hz)

 500 7.2766 3.6383 2.4256 1.8192 1.4554 1.2129 1.0397 0.9097 0.8087 0.7279

 1000 3.6383 1.8192 1.2128 0.9096 0.7277 0.6064 0.5198 0.4549 0.4043 0.3639

 1500 2.4255 1.2128 0.8085 0.6064 0.4851 0.4043 0.3466 0.3032 0.2696 0.2426

 108

 2000 1.8191 0.9096 0.6064 0.4548 0.3639 0.3032 0.2599 0.2274 0.2022 0.182

 2500 1.4553 0.7277 0.4851 0.3638 0.2911 0.2426 0.2079 0.1819 0.1617 0.1456

 3000 1.2128 0.6064 0.4043 0.3032 0.2426 0.2021 0.1733 0.1516 0.1348 0.1213

 3500 1.0395 0.5198 0.3465 0.2599 0.2079 0.1733 0.1485 0.13 0.1155 0.104

 4000 0.9096 0.4548 0.3032 0.2274 0.1819 0.1516 0.13 0.1137 0.1011 0.091

 Spinning frequency of the LIDAR (1000Hz)

 500 9.7021 4.8511 3.2341 2.4256 1.9405 1.6171 1.3861 1.2129 1.0782 0.9704

 1000 4.8511 2.4255 1.617 1.2128 0.9702 0.8086 0.6931 0.6064 0.5391 0.4852

 1500 3.234 1.617 1.078 0.8085 0.6468 0.539 0.462 0.4043 0.3594 0.3235

 2000 2.4255 1.2128 0.8085 0.6064 0.4851 0.4043 0.3465 0.3032 0.2695 0.2426

 2500 1.9404 0.9702 0.6468 0.4851 0.3881 0.3234 0.2772 0.2426 0.2156 0.1941

 3000 1.617 0.8085 0.539 0.4043 0.3234 0.2695 0.231 0.2021 0.1797 0.1617

 3500 1.386 0.693 0.462 0.3465 0.2772 0.231 0.198 0.1733 0.154 0.1386

 4000 1.2128 0.6064 0.4043 0.3032 0.2426 0.2021 0.1733 0.1516 0.1348 0.1213

 109

 RPLIDAR

Motor
speed (Hz)

DATA POINTS PER REVOLUTION

5 6 7 8 9 10 11 12 13 14 15

samples (n)

 4000 800.00 666.67 571.43 500.00 444.44 400.00 363.64 333.33 307.69 285.71 266.67

 AVERAGE DEGREES PER REVOLUTION

 4000 0.45 0.54 0.63 0.72 0.81 0.90 0.99 1.08 1.17 1.26 1.35

 Spinning frequency of the LIDAR (Hz)
distance to

obstacle
(mm)

5 6 7 8 9 10 11 12 13 14 15

ARCH LENGTH (MILLIMETERS) BETWEEN TWO DATA POINTS (4000 Hz)

 1000 7.85 9.42 11.00 12.57 14.14 15.71 17.28 18.85 20.42 21.99 23.56

 2000 15.71 18.85 21.99 25.13 28.27 31.42 34.56 37.70 40.84 43.98 47.12

 3000 23.56 28.27 32.99 37.70 42.41 47.12 51.84 56.55 61.26 65.97 70.69

 4000 31.42 37.70 43.98 50.27 56.55 62.83 69.12 75.40 81.68 87.96 94.25

 5000 39.27 47.12 54.98 62.83 70.69 78.54 86.39 94.25 102.10 109.96 117.81

 6000 47.12 56.55 65.97 75.40 84.82 94.25 103.67 113.10 122.52 131.95 141.37

 7000 54.98 65.97 76.97 87.96 98.96 109.96 120.95 131.95 142.94 153.94 164.93

 8000 62.83 75.40 87.96 100.53 113.10 125.66 138.23 150.80 163.36 175.93 188.50

 Spinning frequency of the LIDAR (Hz)
distance to

obstacle
(cm)

5 6 7 8 9 10 11 12 13 14 15

LINEAR DISTANCE (MILLIMETERS) BETWEEN TWO DATA POINTS (4000 Hz)

 1000 7.85 9.42 11.00 12.57 14.14 15.71 17.28 18.85 20.42 21.99 23.56

 2000 15.71 18.85 21.99 25.13 28.27 31.42 34.56 37.70 40.84 43.98 47.12

 3000 23.56 28.27 32.99 37.70 42.41 47.12 51.84 56.55 61.26 65.97 70.68

 4000 31.42 37.70 43.98 50.27 56.55 62.83 69.11 75.40 81.68 87.96 94.25

 5000 39.27 47.12 54.98 62.83 70.69 78.54 86.39 94.25 102.10 109.95 117.81

 6000 47.12 56.55 65.97 75.40 84.82 94.25 103.67 113.10 122.52 131.94 141.37

 7000 54.98 65.97 76.97 87.96 98.96 109.95 120.95 131.94 142.94 153.93 164.93

 8000 62.83 75.40 87.96 100.53 113.10 125.66 138.23 150.79 163.36 175.93 188.49

 110

 Spinning frequency of the LIDAR (Hz)
distance to

obstacle
(cm)

1 2 3 4 5 6 7 8 9 10 11

DIFFERENCE (MILLIMETERS) IN THE TWO DIFFERENT METHODS (4000 Hz)

 1000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0004 0.0005

 2000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 0.0007 0.0009 0.0011

 3000 0.0001 0.0001 0.0002 0.0002 0.0004 0.0005 0.0006 0.0008 0.0011 0.0013 0.0016

 4000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0006 0.0009 0.0011 0.0014 0.0018 0.0022

 5000 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 0.0011 0.0014 0.0018 0.0022 0.0027

 6000 0.0001 0.0002 0.0003 0.0005 0.0007 0.0010 0.0013 0.0017 0.0021 0.0027 0.0033

 7000 0.0001 0.0002 0.0004 0.0006 0.0008 0.0011 0.0015 0.0020 0.0025 0.0031 0.0038

 8000 0.0002 0.0003 0.0004 0.0007 0.0009 0.0013 0.0017 0.0022 0.0028 0.0035 0.0044

 AVERAGE DATA POINTS FOR OBSTACLES (RPLIDAR)

Motor
speed (Hz)

DATA POINTS PER REVOLUTION

5 6 7 8 9 10 11 12 13 14 15

samples (n)

 4000 800.00 666.67 571.43 500.00 444.44 400.00 363.64 333.33 307.69 285.71 266.67

 MM TO FEET 304.8

 AVERAGE NUMBER OF DATA POINTS PER FOOT 1
distance to

obstacle
(mm)

Spinning frequency of the LIDAR (Hz)

5 6 7 8 9 10 11 12 13 14 15

 1000 38.808 32.34 27.72 24.255 21.56 19.404 17.64 16.17 14.927 13.86 12.936

 2000 19.404 16.17 13.86 12.128 10.78 9.7022 8.8202 8.0852 7.4633 6.9302 6.4682

 3000 12.936 10.78 9.2401 8.0851 7.1868 6.4681 5.8801 5.3901 4.9755 4.6201 4.3121

 4000 9.7021 8.0851 6.9301 6.0638 5.3901 4.8511 4.4101 4.0426 3.7316 3.4651 3.2341

 5000 7.7617 6.4681 5.5441 4.8511 4.3121 3.8809 3.5281 3.2341 2.9853 2.7721 2.5873

 6000 6.4681 5.3901 4.6201 4.0426 3.5934 3.2341 2.9401 2.6951 2.4878 2.3101 2.1561

 7000 5.5441 4.6201 3.9601 3.4651 3.0801 2.7721 2.5201 2.3101 2.1324 1.9801 1.8481

 8000 4.8511 4.0426 3.465 3.0319 2.695 2.4255 2.205 2.0213 1.8658 1.7326 1.6171

 111

APPENDIX B.1.1 Occupancy Map Setup

X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate radial distance radial distance azimuth

columns rows feet feet cm cm feet cm degrees

12 8 0 24 0 731.52 0 24 731.52 0.00 19.4

11 4 2 12 3 365.76 91.44 12.36931688 377.0167784 14.04 14.6

10 3 16 9 24 274.32 731.52 25.63201124 781.2637025 69.44 25.4

9 0 17 0 25.5 0 777.24 25.5 777.24 90.00 17.6

8 3 10 9 15 -274.32 457.2 17.49285568 533.1822413 120.96 26.1

7 5 4 15 6 -457.2 182.88 16.15549442 492.41947 158.20 6

6 2 0 6 0 -182.88 0 6 182.88 180.00 16.1

5 8.25 5 24.75 7.5 -754.38 -228.6 25.86140947 788.2557608 196.86 17.3

4 3 10 9 15 -274.32 -457.2 17.49285568 533.1822413 239.04 25.6

3 0 17 0 25.5 0 -777.24 25.5 777.24 270.00 26.1

2 3 8 9 12 274.32 -365.76 15 457.2 306.87 12.4

1 6 5 18 7.5 548.64 -228.6 19.5 594.36 337.38 24

Obstacle

number

Measure

d

 112

APPENDIX B.1.2 Straight Line Setup

X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate radial distance radial distance azimuth

columns rows feet feet cm cm feet cm degrees

12 11 17.3 33 25.95 1005.84 790.956 41.98097784 1279.580204 38.18 25.87

11 10 17 30 25.5 914.4 777.24 39.37321425 1200.09557 40.36 25.83

10 9 17.12 27 25.68 822.96 782.7264 37.26207724 1135.748114 43.56 26.22

9 8 17.16 24 25.74 731.52 784.5552 35.19300499 1072.682792 47.00 27.55

8 7 17.23 21 25.845 -640.08 787.7556 33.30111147 1015.017878 129.10 28.97

7 6 17.3 18 25.95 -548.64 790.956 31.58167982 962.6096008 124.75 29.9

6 5 17.17 15 25.755 -457.2 785.0124 29.80469804 908.4471961 120.22 31.65

5 4 17.56 12 26.34 -365.76 802.8432 28.944699 882.2344254 114.49 33.45

4 3 17.32 9 25.98 -274.32 791.8704 27.49473404 838.0394936 109.11 35.18

3 2 17 6 25.5 182.88 777.24 26.19637379 798.4654733 76.76 37.18

2 1 17.08 3 25.62 91.44 780.8976 25.79504604 786.2330032 83.32 39.34

1 0 17.25 0 25.875 0 788.67 25.875 788.67 90.00 41.92

Obstacle

number

Measure

d

 113

APPENDIX B.1.3 Final RPLIDAR Test Setup

X Coordinate Y Coordinate radial distance azimuth

m m m degrees

1 0 1 1 90.00

2 0 2 2 90.00

3 0 3 3 90.00

4 0 4 4 90.00

5 0 5 5 90.00

6 0 6 6 90.00

7 0 7 7 90.00

8 0 8 8 90.00

9 0 9 9 90.00

10 0 10 10 90.00

Obstacle

number

 114

/*
 *
 * USAGE:
 * ---------------------------------
 * 1. Download this sketch code to your Arduino board
 * 2. Connect the RPLIDAR's serial port (RX/TX/GND) to your Arduino Com port 2
 * Yellow -----------------> pin 17
 * Green -----------------> pin 16
 * GND -----------------> GND
 * 3. Connect the RPLIDAR's motor ctrl pin to the Arduino board pin 3
 * Blue ------------------> Pin 3
 *
 * 4. Connect Leds to pins 24, 26, 28
 * 5. connect Button to pin 22
 * 6. Plug in SD card Shield
 */

/*
 * Copyright (c) 2014, RoboPeak
 * All rights reserved.
 * RoboPeak.com
 */

// This sketch code is based on the RPLIDAR driver library provided by RoboPeak
#include <RPLidar.h>
#include <SD.h>

// create an driver instance
RPLidar RPlidar;

#define RPLIDAR_MOTOR 3 // The PWM pin for control the speed of RPLIDAR's motor.
 // This pin should connected with the RPLIDAR's MOTOCTRL signal

// LED and button pin convigurations
const byte red_LED = 24;
const byte clear_LED = 28;
const byte button = 22;

uint16_t sampleCount = 0; // keeps track of how many samples have been collected
bool firstRun = true;

//Timing variables
unsigned long sampleTime = 10000; // time to sample in milliseconds

 115

unsigned long startTime;

// Arrays to store attributes of collected scans
#define numberOfSamples 600 // = (sample rate / motor speed) * number pf scans
float distances[numberOfSamples]; // in mm
float angles[numberOfSamples]; // in degrees
bool startBit[numberOfSamples]; // 1 -> first reading of new scan, 0 otherwise (syncValues)
uint8_t quality[numberOfSamples]; // 0:255, higher is better (signal Strength)

// Finite States for the program sequence
const byte STATE_WAIT_FOR_USER_INPUT = 0;
const byte STATE_BEGIN_DATA_ACQUISITION = 1;
const byte STATE_GATHER_DATA = 2;
const byte STATE_STOP_DATA_ACQUISITION = 3;
const byte STATE_REPORT_COLLECTED_DATA = 4;
const byte STATE_RESET = 5;
const byte STATE_ERROR = 6;

// Current state in the program sequence
byte currentState;

// String to collect user input over serial
String userInput = "";

//SD stuff
File logfile;
const byte chipSelect = 10;

void setup() {
 // bind the RPLIDAR driver to the arduino hardware serial
 RPlidar.begin(Serial2);

 Serial.begin(250000);

 // set pin modes
 pinMode(RPLIDAR_MOTOR, OUTPUT);

 //------------ SD setup ---------------------
// initialize the SD card
 // make sure that the default chip select pin is set to
 // output, even if you don't use it:
 pinMode(chipSelect, OUTPUT);

 Serial.print("Initializing SD card.... ");

 116

 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect)) {
 Serial.println("Card failed, or not present");
 // don't do anything more:
 }
 else{
 Serial.println("Card initialized");
 // don't do anything more:
 }

 // initialize counter variables and reset the current state
 reset();
}

void loop() {
 switch (currentState)
 {
 case STATE_WAIT_FOR_USER_INPUT:
 while (Serial.available()){
 userInput += (char)Serial.read();
 }
 // create a new file with an original name (include date first)
 char filename[] = "529RPL00.CSV";
 if (userInput.indexOf("start") != -1){
 Serial.println(F("Registered user start."));

 Serial.print("Attempting to create logFile... ");
 for (uint8_t i = 0; i < 100; i++) {
 filename[6] = i/10 + '0';
 filename[7] = i%10 + '0';
 if (! SD.exists(filename)) {
 // only open a new file if it doesn't exist
 logfile = SD.open(filename, FILE_WRITE);
 break; // leave the loop!
 }
 }

 if (! logfile) {
 Serial.println("Couldn't initialize logfile");
 // don't do anything more:
 }
 else{
 Serial.println("Scucessfully created " + String(filename));
 // don't do anything more:
 }
 currentState = STATE_BEGIN_DATA_ACQUISITION;

 117

 startTime = millis();
 }
 if (digitalRead(button) == HIGH){
 Serial.println(F("Registered user start."));

 // blink LED to confirm
 digitalWrite(red_LED, HIGH);

 Serial.print("Attempting to create logFile... ");
 for (uint8_t i = 0; i < 100; i++) {
 filename[6] = i/10 + '0';
 filename[7] = i%10 + '0';
 if (! SD.exists(filename)) {
 // only open a new file if it doesn't exist
 logfile = SD.open(filename, FILE_WRITE);
 break; // leave the loop!
 }
 }

 if (! logfile) {
 Serial.println("Couldn't initialize logfile");
 // don't do anything more:
 }
 else{
 Serial.println("Successfully created " + String(filename));
 // don't do anything more:
 }
 currentState = STATE_BEGIN_DATA_ACQUISITION;
 startTime = millis();
 }

 break;
 case STATE_BEGIN_DATA_ACQUISITION:
 currentState = beginDataCollectionPhase() ? STATE_GATHER_DATA : STATE_ERROR;
 break;

 case STATE_GATHER_DATA:
 gatherSensorReading();
 if (sampleCount >= numberOfSamples)
 currentState = STATE_STOP_DATA_ACQUISITION;
 break;

 case STATE_STOP_DATA_ACQUISITION:
 currentState = stopDataCollectionPhase() ? STATE_REPORT_COLLECTED_DATA :
STATE_ERROR;

 118

 break;

 case STATE_REPORT_COLLECTED_DATA:
 printCollectedData();
 if(startTime <= millis()- sampleTime){
 currentState = STATE_RESET;
 }
 else{
 // Serial.println(F("\nGathering more data\n"));
 sampleCount = 0;
 currentState = STATE_BEGIN_DATA_ACQUISITION;
 }
 break;

 case STATE_RESET:
 Serial.println(F("\n\nAttempting to reset and run the program again..."));
 reset();
 currentState = STATE_WAIT_FOR_USER_INPUT;
 break;

 default: // there was some error
 Serial.println(F("\n\nAn error occured. Attempting to reset and run program again..."));
 reset();
 currentState = STATE_WAIT_FOR_USER_INPUT;
 break;
 }

}

// checks if the user has communicated anything over serial
// looks for the user to send "start"
bool listenForUserInput(){
 while (Serial.available())
 {
 userInput += (char)Serial.read();
 }
 if (userInput.indexOf("start") != -1){
 Serial.println(F("Registered user start."));

 return true;
 }
 return false;
}

 119

// Initiates the data collection phase (begins scanning)
bool beginDataCollectionPhase(){

 if(firstRun)
 Serial.println(F("Attempting to start the motor."));

 // start motor rotating at max allowed speed
 analogWrite(RPLIDAR_MOTOR, 255);
 if(firstRun == true){
 delay(10000);
 firstRun = false;
 Serial.println(F("firstRun = false."));
 }
 else {
 Serial.println(F("Failed to start motor."));
 }
 delay(50);

 // Attempt to start scanning
 // try to detect RPLIDAR...
 rplidar_response_device_info_t info;
 if (IS_OK(RPlidar.getDeviceInfo(info, 100))) {
 // detected...
 if(firstRun)
 Serial.println(F("Motor successfully started.\n\n Starting data collection.\n"));
 RPlidar.startScan();
 return true;
 }
 else {
 analogWrite(RPLIDAR_MOTOR, 0); //stop the rplidar motor

 // try to detect RPLIDAR...
 rplidar_response_device_info_t info;
 if (IS_OK(RPlidar.getDeviceInfo(info, 100))) {
 // detected...
 RPlidar.startScan();

 // start motor rotating at max speed
 analogWrite(RPLIDAR_MOTOR, 255);
 delay(1000);
 }
 }

 120

}

// Gathers individual sensor readings until 3 complete scans have been collected
void gatherSensorReading(){
 digitalWrite(red_LED, LOW);
 if (IS_OK(RPlidar.waitPoint())) {
 //if(RPlidar.getCurrentPoint().quality != 0){
 if(0 == 0){
 // store the info for this sample
 startBit[sampleCount] = RPlidar.getCurrentPoint().startBit; //whether this point is belong to a
new scan
 angles[sampleCount] = RPlidar.getCurrentPoint().angle; //anglue value in degree
 distances[sampleCount] = RPlidar.getCurrentPoint().distance; //distance value in mm unit
 quality[sampleCount] = RPlidar.getCurrentPoint().quality; //quality of the current
measurement

 // Serial.println(sampleCount);

 //Serial.println("A:" + String(angles[sampleCount]) + ":D:" + String(distances[sampleCount]));
//Uncomment to see data real time

 // increment sample count
 if(sampleCount < numberOfSamples){
 sampleCount++;
 }
 }
 }
}

// Terminates the data collection phase (stops scanning)
bool stopDataCollectionPhase(){
 // Attempt to stop scanning
 bool bSuccess = true;
 RPlidar.stop();

 if(firstRun)
 Serial.println(bSuccess ? F("\nSuccessfully stopped scanning.") : F("\nFailed to stop
scanning."));

 digitalWrite(clear_LED, HIGH);
 delay(250);
 digitalWrite(clear_LED, LOW);

 return bSuccess;
}

 121

// Prints the collected data to the console
// (only prints the complete scans, ignores the first partial)
void printCollectedData(){
 Serial.println(F("\nPrinting info for the collected scans (NOT REAL-TIME):"));

 digitalWrite(red_LED, HIGH);

 int indexOfFirstSyncReading = 0;
 // don't print the trailing readings from the first partial scan
 while (!startBit[indexOfFirstSyncReading])
 {
 indexOfFirstSyncReading++;
 }
 // print the readings for all the complete scans
 for (int i = indexOfFirstSyncReading; i < sampleCount; i++)
 {
 Serial.println("Angle: " + String(angles[i], 3) + ", Distance: " + String(distances[i]) + ", Signal
Strength: " + String(quality[i]));
 logfile.println("Angle," + String(angles[i], 3) + ",Distance," + String(distances[i]) + ",Signal
Strength," + String(quality[i]));

 digitalWrite(red_LED, !digitalRead(red_LED)); //blink the red led while writing data
 }
 logfile.flush();
 digitalWrite(red_LED, LOW);
}

// Resets the variables and state so the sequence can be repeated
void reset(){
 sampleCount = 0;
 // reset the sensor
// RPlidar.reset();
 delay(50);
 Serial.flush();
 //logfile.close();
 userInput = "";
 Serial.println(F("\n\nWhenever you are ready, type \"start\" to to begin the sequence..."));
 currentState = 0;
}

RPLIDARdata = xlsread('RLIDAR05.CSV');%reads in all Scanse data

wdist = 100; %distance threshold for an obstacle---furthest distance

that it will detect an obstacle
lowangle = 90;% lowest angle that you want to see in FOV

 122

highangle = 270; % highest angle that you want to see in FOV

num = length(RPLIDARdata); %measures the length of the Scanse data
thetad = RPLIDARdata(:,1); %pulls the azimuth data from the Scanse data
r = RPLIDARdata(:,3); %pulls the distance data from the Scanse data

wtheta=[];
wr=[];

%--

--%

for k=1:num % compares the measured angle to see if ots the FOV it was

given
 if (thetad(k) >= lowangle) && (thetad(k) <= highangle)
 thetad(k) = thetad(k);
 end
 if r(k)> 15000
 r(k) = 0;
 end
end

xdist=r.*cosd(thetad);%produces the x axis distance
ydist=r.*sind(thetad);%produces the y axis distance

thetar = deg2rad(thetad); %converts scanse theta to radians from

degrees

for k =1:num %compares every data point to the warning distance

 if r(k) < wdist && r(k) ~= -1
 wtheta(k) = thetar(k);
 wr(k) = r(k);
 end
end

polarscatter(thetar, r, 'bo') %plots the Scanse data in a polar graph
hold on
polarscatter(wtheta, wr, 'r*')
hold off

legend('data points','possible obstacle')

Angle: 357.484 Distance: 0 Signal Strength: 0

Angle: 1.438 Distance: 0 Signal Strength: 0

Angle: 5.391 Distance: 0 Signal Strength: 0

 123

Angle: 9.328 Distance: 0 Signal Strength: 0

Angle: 5.844 Distance: 2569.25 Signal Strength: 8

Angle: 17.234 Distance: 0 Signal Strength: 0

Angle: 21.094 Distance: 0 Signal Strength: 0

Angle: 25.031 Distance: 0 Signal Strength: 0

Angle: 28.969 Distance: 0 Signal Strength: 0

Angle: 32.891 Distance: 0 Signal Strength: 0

Angle: 36.844 Distance: 0 Signal Strength: 0

Angle: 40.766 Distance: 0 Signal Strength: 0

Angle: 44.766 Distance: 0 Signal Strength: 0

Angle: 48.688 Distance: 0 Signal Strength: 0

Angle: 52.641 Distance: 0 Signal Strength: 0

Angle: 56.563 Distance: 0 Signal Strength: 0

Angle: 60.531 Distance: 0 Signal Strength: 0

Angle: 64.469 Distance: 0 Signal Strength: 0

Angle: 68.313 Distance: 0 Signal Strength: 0

Angle: 72.234 Distance: 0 Signal Strength: 0

Angle: 76.188 Distance: 0 Signal Strength: 0

Angle: 80.109 Distance: 0 Signal Strength: 0

Angle: 84.047 Distance: 0 Signal Strength: 0

Angle: 87.969 Distance: 0 Signal Strength: 0

Angle: 91.984 Distance: 0 Signal Strength: 0

Angle: 95.938 Distance: 0 Signal Strength: 0

Angle: 99.891 Distance: 0 Signal Strength: 0

Angle: 103.844 Distance: 0 Signal Strength: 0

Angle: 107.766 Distance: 0 Signal Strength: 0

Angle: 111.703 Distance: 0 Signal Strength: 0

Angle: 115.594 Distance: 0 Signal Strength: 0

Angle: 119.531 Distance: 0 Signal Strength: 0

Angle: 123.453 Distance: 0 Signal Strength: 0

Angle: 127.391 Distance: 0 Signal Strength: 0

Angle: 131.328 Distance: 0 Signal Strength: 0

Angle: 128.109 Distance: 1834.5 Signal Strength: 15

Angle: 139.156 Distance: 0 Signal Strength: 0

Angle: 143.078 Distance: 0 Signal Strength: 0

Angle: 146.984 Distance: 0 Signal Strength: 0

Angle: 150.922 Distance: 0 Signal Strength: 0

Angle: 147.156 Distance: 5032.5 Signal Strength: 14

Angle: 158.766 Distance: 0 Signal Strength: 0

Angle: 162.766 Distance: 0 Signal Strength: 0

Angle: 159.063 Distance: 4003.5 Signal Strength: 12

 124

Angle: 163.141 Distance: 2852.5 Signal Strength: 9

Angle: 174.563 Distance: 0 Signal Strength: 0

Angle: 178.484 Distance: 0 Signal Strength: 0

Angle: 182.438 Distance: 0 Signal Strength: 0

Angle: 186.375 Distance: 0 Signal Strength: 0

Angle: 182.422 Distance: 11001.5 Signal Strength: 8

Angle: 186.375 Distance: 10990.5 Signal Strength: 9

Angle: 190.297 Distance: 11023.75 Signal Strength: 10

Angle: 194.234 Distance: 11388.5 Signal Strength: 9

Angle: 206.031 Distance: 0 Signal Strength: 0

Angle: 202.156 Distance: 11879.75 Signal Strength: 9

Angle: 213.906 Distance: 0 Signal Strength: 0

Angle: 217.875 Distance: 0 Signal Strength: 0

Angle: 221.781 Distance: 0 Signal Strength: 0

Angle: 225.734 Distance: 0 Signal Strength: 0

Angle: 229.656 Distance: 0 Signal Strength: 0

Angle: 233.625 Distance: 0 Signal Strength: 0

Angle: 237.609 Distance: 0 Signal Strength: 0

Angle: 241.563 Distance: 0 Signal Strength: 0

Angle: 245.516 Distance: 0 Signal Strength: 0

Angle: 249.453 Distance: 0 Signal Strength: 0

Angle: 253.375 Distance: 0 Signal Strength: 0

Angle: 257.344 Distance: 0 Signal Strength: 0

Angle: 261.125 Distance: 0 Signal Strength: 0

Angle: 265.047 Distance: 0 Signal Strength: 0

Angle: 269 Distance: 0 Signal Strength: 0

Angle: 265.453 Distance: 2799.25 Signal Strength: 7

Angle: 269.328 Distance: 2818.25 Signal Strength: 6

Angle: 280.75 Distance: 0 Signal Strength: 0

Angle: 284.859 Distance: 0 Signal Strength: 0

Angle: 288.828 Distance: 0 Signal Strength: 0

Angle: 292.797 Distance: 0 Signal Strength: 0

Angle: 296.719 Distance: 0 Signal Strength: 0

Angle: 300.672 Distance: 0 Signal Strength: 0

Angle: 304.641 Distance: 0 Signal Strength: 0

Angle: 308.422 Distance: 0 Signal Strength: 0

Angle: 312.359 Distance: 0 Signal Strength: 0

Angle: 316.281 Distance: 0 Signal Strength: 0

Angle: 320.219 Distance: 0 Signal Strength: 0

Angle: 324.172 Distance: 0 Signal Strength: 0

Angle: 328.094 Distance: 0 Signal Strength: 0

 125

Angle: 332.078 Distance: 0 Signal Strength: 0

Angle: 336.031 Distance: 0 Signal Strength: 0

Angle: 339.953 Distance: 0 Signal Strength: 0

Angle: 343.891 Distance: 0 Signal Strength: 0

Angle: 347.828 Distance: 0 Signal Strength: 0

Angle: 351.781 Distance: 0 Signal Strength: 0

Angle: 355.766 Distance: 0 Signal Strength: 0

Angle: 359.719 Distance: 0 Signal Strength: 0

Angle: 3.672 Distance: 0 Signal Strength: 0

Angle: 7.625 Distance: 0 Signal Strength: 0

Angle: 11.578 Distance: 0 Signal Strength: 0

Angle: 15.516 Distance: 0 Signal Strength: 0

Angle: 19.375 Distance: 0 Signal Strength: 0

Angle: 23.328 Distance: 0 Signal Strength: 0

Angle: 27.266 Distance: 0 Signal Strength: 0

Motor speed
(Hz)

DATA POINTS PER REVOLUTION

5 6 7 8 9 10 11 12 13 14 15

samples (n)

 4000 800.00 666.67 571.43 500.00 444.44 400.00 363.64 333.33 307.69 285.71 266.67

 AVERAGE DEGREES PER REVOLUTION

 4000 0.45 0.54 0.63 0.72 0.81 0.90 0.99 1.08 1.17 1.26 1.35

 Spinning frequency of the LIDAR (Hz)
distance to

obstacle
(mm)

5 6 7 8 9 10 11 12 13 14 15

ARCH LENGTH (MILLIMETERS) BETWEEN TWO DATA POINTS (4000 Hz)

 1000 7.85 9.42 11.00 12.57 14.14 15.71 17.28 18.85 20.42 21.99 23.56

 2000 15.71 18.85 21.99 25.13 28.27 31.42 34.56 37.70 40.84 43.98 47.12

 3000 23.56 28.27 32.99 37.70 42.41 47.12 51.84 56.55 61.26 65.97 70.69

 4000 31.42 37.70 43.98 50.27 56.55 62.83 69.12 75.40 81.68 87.96 94.25

 5000 39.27 47.12 54.98 62.83 70.69 78.54 86.39 94.25 102.10 109.96 117.81

 6000 47.12 56.55 65.97 75.40 84.82 94.25 103.67 113.10 122.52 131.95 141.37

 7000 54.98 65.97 76.97 87.96 98.96 109.96 120.95 131.95 142.94 153.94 164.93

 8000 62.83 75.40 87.96 100.53 113.10 125.66 138.23 150.80 163.36 175.93 188.50

 Spinning frequency of the LIDAR (Hz)
distance to

obstacle
(cm)

5 6 7 8 9 10 11 12 13 14 15

LINEAR DISTANCE (MILLIMETERS) BETWEEN TWO DATA POINTS (4000 Hz)

 1000 7.85 9.42 11.00 12.57 14.14 15.71 17.28 18.85 20.42 21.99 23.56

 126

 2000 15.71 18.85 21.99 25.13 28.27 31.42 34.56 37.70 40.84 43.98 47.12

 3000 23.56 28.27 32.99 37.70 42.41 47.12 51.84 56.55 61.26 65.97 70.68

 4000 31.42 37.70 43.98 50.27 56.55 62.83 69.11 75.40 81.68 87.96 94.25

 5000 39.27 47.12 54.98 62.83 70.69 78.54 86.39 94.25 102.10 109.95 117.81

 6000 47.12 56.55 65.97 75.40 84.82 94.25 103.67 113.10 122.52 131.94 141.37

 7000 54.98 65.97 76.97 87.96 98.96 109.95 120.95 131.94 142.94 153.93 164.93

 8000 62.83 75.40 87.96 100.53 113.10 125.66 138.23 150.79 163.36 175.93 188.49

 Spinning frequency of the LIDAR (Hz)
distance to

obstacle
(cm)

1 2 3 4 5 6 7 8 9 10 11

DIFFERENCE (MILLIMETERS) IN THE TWO DIFFERENT METHODS (4000 Hz)

 1000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0004 0.0005

 2000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 0.0007 0.0009 0.0011

 3000 0.0001 0.0001 0.0002 0.0002 0.0004 0.0005 0.0006 0.0008 0.0011 0.0013 0.0016

 4000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0006 0.0009 0.0011 0.0014 0.0018 0.0022

 5000 0.0001 0.0002 0.0003 0.0004 0.0006 0.0008 0.0011 0.0014 0.0018 0.0022 0.0027

 6000 0.0001 0.0002 0.0003 0.0005 0.0007 0.0010 0.0013 0.0017 0.0021 0.0027 0.0033

 7000 0.0001 0.0002 0.0004 0.0006 0.0008 0.0011 0.0015 0.0020 0.0025 0.0031 0.0038

 8000 0.0002 0.0003 0.0004 0.0007 0.0009 0.0013 0.0017 0.0022 0.0028 0.0035 0.0044

 AVERAGE DATA POINTS FOR OBSTACLES (RPLIDAR)

Motor speed
(Hz)

DATA POINTS PER REVOLUTION

5 6 7 8 9 10 11 12 13 14 15

samples (n)

 4000 800.00 666.67 571.43 500.00 444.44 400.00 363.64 333.33 307.69 285.71 266.67

 MM TO FEET 304.8

 AVERAGE NUMBER OF DATA POINTS PER FOOT 1
distance to

obstacle
(mm)

Spinning frequency of the LIDAR (Hz)

5 6 7 8 9 10 11 12 13 14 15

 1000 38.808 32.34 27.72 24.255 21.56 19.404 17.64 16.17 14.927 13.86 12.936

 2000 19.404 16.17 13.86 12.128 10.78 9.7022 8.8202 8.0852 7.4633 6.9302 6.4682

 3000 12.936 10.78 9.2401 8.0851 7.1868 6.4681 5.8801 5.3901 4.9755 4.6201 4.3121

 4000 9.7021 8.0851 6.9301 6.0638 5.3901 4.8511 4.4101 4.0426 3.7316 3.4651 3.2341

 5000 7.7617 6.4681 5.5441 4.8511 4.3121 3.8809 3.5281 3.2341 2.9853 2.7721 2.5873

 6000 6.4681 5.3901 4.6201 4.0426 3.5934 3.2341 2.9401 2.6951 2.4878 2.3101 2.1561

 7000 5.5441 4.6201 3.9601 3.4651 3.0801 2.7721 2.5201 2.3101 2.1324 1.9801 1.8481

 8000 4.8511 4.0426 3.465 3.0319 2.695 2.4255 2.205 2.0213 1.8658 1.7326 1.6171

 127

tic
filename = 'RPLIDAR17.CSV';
RPLIDARdata = xlsread(filename);
numclust = 15; %leave at twelve to identify little changes in

elevation.
options = [2 10 1e-4 false];
maxwidth=3;
robotRadius = 2; %sets width of the Robot

num = length(RPLIDARdata); %measures the length of the Scanse data
thetad = RPLIDARdata(:,1); %pulls the azimuth data from the Scanse data
sgnlStrngth = RPLIDARdata(:,5);

r = RPLIDARdata(:,3);
bob = RPLIDARdata(r > 1, :);
toc
%% remove NaN from the angle and distance columns and delete zero rows
tic
for i= 1:num
 if thetad(isnan(thetad(i)))
 thetad(i) = (thetad(i-1));
 end
 if r(isnan(r(i)))
 r(i) = 1;
 end
end

bobangler = deg2rad(bob(:,1));
bobr = bob(:,3);

%% convert the polar coordinates to rectangular
xdist=bobr.*cos(bobangler);%produces the x axis distance
ydist=bobr.*sin(bobangler);%produces the y axis distance

scandata = [xdist ydist];
occenters=((scandata+15000)/1000);%scale the points to match the grid
%%
map = robotics.BinaryOccupancyGrid(30,30,1);
setOccupancy(map,occenters,1); %replace scandata with occenters

show(map);

mapInflated = copy(map);

 128

inflate(mapInflated,robotRadius);%inflates objects to allow the robot

to pass

% prm = robotics.PRM(mapInflated);
planner = robotics.PRM(mapInflated); %creates a path planner object for

the occupancy map

xy= findpath(planner, [15 0], [15 30]); %developes a path connecting

given datapoints

[pathstr,name,ext] = fileparts (filename); %pulls apart the filename
figure ('name', name, 'numbertitle', 'off');%I cannot find how to

calculate the total pixels

show(map); %shows the binary occupancy map
hold on
show(planner)
plot(occenters(:,1),occenters(:,2),'or','LineWidth',3)%plots the

obstacles on the occupancy grid
plot(15,15,'+g','MarkerSize',10,'LineWidth',3)
grid on%creates grid on the binary occupancy grid
set(gca,'XTick',0:1:30,'YTick',0:1:30)

plot(xy(:,1),xy(:,2),'-x')%plot path found
toc

Weather=Shade Color=black Dist=1

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

283

283

-39.64

1039.64

12.14

12.14

-75.00

1015.50

-15.50

1075.00

Weather=Shade Color=black Dist=2

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

148

148

-48.16

2048.16

19.54

19.54

-97.00

1948.00

52.00

2097.00

 129

Weather=Shade Color=black Dist=3

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

102

102

-61.96

3061.96

26.50

26.50

-201.75

2999.75

0.25

3201.75

Weather=Shade Color=black Dist=4

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

73

73

-61.26

4061.26

26.71

26.71

-116.25

3994.75

5.25

4116.25

Weather=Shade Color=black Dist=5

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

24

24

-63.89

5063.89

61.25

61.25

-140.25

4915.50

84.50

5140.25

Weather=Shade Color=black Dist=6

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

34

34

-86.99

6086.99

84.44

84.44

-318.00

5890.50

109.50

6318.00

Weather=Shade Color=black Dist=7

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

17

17

-202.79

7202.79

127.86

127.86

-362.50

6976.50

23.50

7362.50

Weather=Shade Color=black Dist=8

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

3

3

-326.50

8326.50

102.62

102.62

-445.00

8267.25

-267.25

8445.00

 130

Weather=Shade Color=black Dist=9

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

5

5

-411.75

9411.75

388.83

388.83

-1084.75

9146.50

-146.50

10084.75

Weather=Shade Color=white Dist=1

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

32

32

-130.22

1130.22

18.97

18.97

-189.25

1096.75

-96.75

1189.25

Weather=Shade Color=white Dist=3

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

13

13

-153.48

3153.48

31.72

31.72

-195.25

3105.00

-105.00

3195.25

Weather=Shade Color=white Dist=4

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

9

9

-103.81

4103.81

184.02

184.02

-430.75

3748.25

251.75

4430.75

Weather=Shade Color=white Dist=6

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

5

5

-149.15

6149.15

187.46

187.46

-310.75

5837.50

162.50

6310.75

Weather=Shade Color=white Dist=7

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

10

10

-162.48

7162.48

299.85

299.85

-854.75

6872.25

127.75

7854.75

Weather=Shade Color=white Dist=8

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

9

9

-222.89

8222.89

180.05

180.05

-490.50

7945.25

54.75

8490.50

 131

Weather=Shade Color=white Dist=9

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

8

8

-192.09

9192.09

133.36

133.36

-364.25

8967.75

32.25

9364.25

Weather=Shade Color=white Dist=10

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

9

9

-80.31

10080.31

177.18

177.18

-389.25

9876.75

123.25

10389.25

Weather=Sun Color=black Dist=1

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

311

311

13.20

986.79

9.1181527

9.1181527

-8.25

966.25

33.75

1008.25

Weather=Sun Color=black Dist=2

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

143

143

-14.63

2014.63

11.35

11.35

-49.25

1961.50

38.50

2049.25

Weather=Sun Color=black Dist=3

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

107

107

5.67

2994.33

32.21

32.21

-179.00

2927.25

72.75

3179.00

Weather=Sun Color=black Dist=4

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

84

84

14.07

3985.93

34.96

34.96

-97.50

3909.50

90.50

4097.50

Weather=Sun Color=black Dist=5

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

60

60

-13.02

5013.02

41.55

41.55

-102.25

4869.50

130.50

5102.25

 132

Weather=Sun Color=black Dist=6

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

46

46

-16.79

6016.79

60.53

60.53

-128.75

5874.75

125.25

6128.75

Weather=Sun Color=black Dist=7

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

35

35

-28.06

7028.06

68.65

68.65

-171.25

6872.25

127.75

7171.25

Weather=Sun Color=black Dist=8

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

26

26

-72.14

8072.14

110.87

110.87

-311.00

7911.25

88.75

8311.00

Weather=Sun Color=black Dist=9

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

14

14

-206.21

9206.21

134.03

134.03

-501.75

8967.75

32.25

9501.75

Weather=Sun Color=white Dist=1

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

296

296

-12.51

1012.51

13.91

13.91

-78.75

990.25

9.75

1078.75

Weather=Sun Color=white Dist=2

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

158

158

-28.88

2028.88

9.96

9.96

-85.00

2012.50

-12.50

2085.00

 133

Weather=Sun Color=white Dist=3

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

106

106

-20.14

3020.14

17.92

17.92

-91.50

2971.25

28.75

3091.50

Weather=Sun Color=white Dist=4

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

84

84

5.24

3994.76

39.54

39.54

-233.50

3920.75

79.25

4233.50

Weather=Sun Color=white Dist=5

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

56

56

-22.63

5022.63

41.83

41.83

-104.50

4922.25

77.75

5104.50

Weather=Sun Color=white Dist=6

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

52

52

-38.81

6038.81

75.70

75.70

-339.75

5890.50

109.50

6339.75

Weather=Sun Color=white Dist=7

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

55

55

-101.12

7101.12

59.65

59.65

-241.75

6859.50

140.50

7241.75

Weather=Sun Color=white Dist=8

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

51

51

-51.09

8051.09

162.30

162.30

-698.50

7816.00

184.00

8698.50

 134

Weather=Sun Color=white Dist=9

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

37

37

-127.80

9127.80

221.95

221.95

-711.25

8637.00

363.00

9711.25

Weather=Sun Color=white Dist=10

Variable Label N Mean Std Dev Minimum Maximum

Accuracy

MeasuredDistance

Accuracy

MeasuredDistance

31

31

-243.69

10243.69

213.71

213.71

-744.00

9668.50

331.50

10744.00

X Coordinate Y Coordinate X Coordinate Y Coordinate X Coordinate Y Coordinate radial distance radial distance azimuth

columns rows feet feet cm cm feet cm degrees

12 3.5 0.736266314 10.5 1.104399471 320.04 33.66209587 10.55792111 321.8054355 6.004345

11 3 0.951008892 9 1.426513338 274.32 43.48012653 9.112350976 277.7444577 9.006542

10 2.5 1.477913982 7.5 2.216870973 228.6 67.57022724 7.8207747 238.3772129 16.46677

9 2 0.926921941 6 1.390382912 182.88 42.37887114 6.158990554 187.7260321 13.0469

8 3.5 0.932531414 10.5 1.398797121 -320.04 42.63533624 10.59276326 322.867424 172.4118

7 3 1.185282266 9 1.777923399 -274.32 54.19110519 9.173931088 279.6214196 168.8253

6 2.5 1.678478045 7.5 2.517717067 -228.6 76.74001621 7.911314633 241.13687 161.4433

5 2 2.666694823 6 4.000042235 -182.88 121.9212873 7.211125979 219.7951198 146.3097

4 1.5 0.756618095 4.5 1.134927142 -137.16 34.5925793 4.640911507 141.4549827 165.8449

3 1 2.496225428 3 3.744338141 91.44 114.1274265 4.797923313 146.2407026 51.29795

2 0.5 0.997409338 1.5 1.496114008 45.72 45.60155495 2.118574314 64.57414509 44.92569

1 0 1.841387998 0 2.762081997 0 84.18825928 2.762081997 84.18825928 90

Obstacle

number

 135

/*!
 \example calculate_xy.c Calculates X-Y coordinates

 Having the X axis aligned to the front step of the sensor, calculates the
coordinates for measurement data
 \author Satofumi KAMIMURA

 Id
*/

#include "urg_sensor.h"
#include "urg_utils.h"
#include "open_urg_sensor.h"
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
//Makes a file to write to and opens it. Will eventually be replaced with code to
speak to other devices.
 char filename[50];
 sprintf(filename, "/media/sf_Hokuyo_Data/%s.csv", argv[1]);
 FILE *fp = NULL;
 fp = fopen (filename, "w");

 136

 if (fp == NULL) {
 printf ("File not created okay");
 return 1;
 }
 else {
 printf ("File created okay.\n");
 }
//set Variables
 urg_t urg;
 long *data;
 long max_distance;
 long min_distance;
 long time_stamp;
 int i;
 int n;
 int count;
 int scantime = atoi(argv[2]);

//Create a timer to run the program for a specified time period
 time_t start,end;
 double elapsed;
 time(&start); //starts the timer

 if (open_urg_sensor(&urg, argc, argv) < 0) {
 return 1;
 }
while (elapsed <= scantime) {
 data = (long *)malloc(urg_max_data_size(&urg) * sizeof(data[0]));
 if (!data) {
 perror("urg_max_index()");
 return 1;
 }

 // Gets measurement data
 urg_start_measurement(&urg, URG_DISTANCE, 1, 0);
 n = urg_get_distance(&urg, data, &time_stamp);
 if (n < 0) {
 printf("urg_get_distance: %s\n", urg_error(&urg));
 urg_close(&urg);
 return 1;
 }

 // Outputs X-Y coordinates
 urg_distance_min_max(&urg, &min_distance, &max_distance);
 for (i = 0; i < n; ++i) {
 long distance = data[i];
 double radian;
 long x;
 long y;

 if ((distance < min_distance) || (distance > max_distance)) {
 continue;
 }

 radian = urg_index2rad(&urg, i);

 137

 x = (long)(distance * cos(radian));
 y = (long)(distance * sin(radian));

 printf("X: %ld Y: %ld radian: %lf distance(r): %ld \n", x, y,radian,
distance);
 fprintf(fp, "X: %ld Y: %ld radian: %lf distance(r): %ld \n", x, y,radian,
distance);

 }
 printf("\n");

 //Change the time elapsed
 time(&end);
 elapsed = difftime(end,start); //use difftime() for time_t structs
}

 fclose(fp);

 // Disconnects
 free(data);
 urg_close(&urg);

#if defined(URG_MSC)
 getchar();
#endif
 return 0;
}

filename = 'hokR03.CSV';
hokuyo = xlsread(filename);

wdist =0; %distance threshold for an obstacle---furthest distance that

it will detect an obstacle
lowangle = 30;% lowest angle that you want to get rid of in FOV
highangle = 3; % highest angle that you want to get rid in FOV

num = length(hokuyo); %measures the length of the Scanse data
thetar = hokuyo(:,3); %pulls the azimuth data from the Scanse data
r = hokuyo(:,4); %pulls the distance data from the Scanse data

wtheta=[];
wr=[];

%--

--%

xdist=r.*cos(thetar);%produces the x axis distance
ydist=r.*sin(thetar);%produces the y axis distance

 138

[pathstr,name,ext] = fileparts (filename); %added these next two lines

for sure. (25 & 26)
figure ('name', name, 'numbertitle', 'off');
polarscatter(thetar, r, 'bo') %plots the Scanse data in a polar graph

legend('data points')

X: Y: Radian: Distance: Timestamp:

-203 -359 -2.08621 413 392329

-204 -365 -2.08008 419 392329

-199 -361 -2.07394 413 392329

-196 -363 -2.06781 413 392329

-189 -353 -2.06167 401 392329

-186 -353 -2.05553 400 392329

-179 -346 -2.0494 390 392329

-177 -347 -2.04326 390 392329

-178 -354 -2.03713 397 392329

-177 -358 -2.03099 400 392329

-174 -356 -2.02486 397 392329

-173 -360 -2.01872 400 392329

-171 -361 -2.01258 400 392329

-169 -364 -2.00645 402 392329

-169 -369 -2.00031 406 392329

-166 -370 -1.99418 406 392329

-162 -367 -1.98804 402 392329

-160 -368 -1.9819 402 392329

-158 -369 -1.97577 402 392329

-156 -370 -1.96963 402 392329

-153 -371 -1.9635 402 392329

-151 -372 -1.95736 402 392329

-152 -381 -1.95122 411 392329

-150 -382 -1.94509 411 392329

-144 -375 -1.93895 402 392329

-146 -386 -1.93282 413 392329

-144 -389 -1.92668 416 392329

-142 -390 -1.92054 416 392329

-140 -393 -1.91441 418 392329

-140 -399 -1.90827 423 392329

 139

-137 -399 -1.90214 423 392329

-138 -411 -1.896 434 392329

-137 -416 -1.88986 439 392329

-181 -560 -1.88373 589 392329

-179 -567 -1.87759 595 392329

-318 -4312 -1.64443 4324 392329

-291 -4314 -1.63829 4324 392329

-49 -4029 -1.58307 4030 392329

-24 -4029 -1.57693 4030 392329

0 -4030 -1.5708 4030 392329

27 -4480 -1.56466 4481 392329

17 -473 -1.53398 474 392329

20 -473 -1.52785 474 392329

337 -4218 -1.49103 4232 392329

363 -4216 -1.48489 4232 392329

739 -4595 -1.41126 4655 392329

599 -3588 -1.40513 3638 392329

621 -3584 -1.39899 3638 392329

597 -3322 -1.39286 3376 392329

665 -3576 -1.38672 3638 392329

1149 -4977 -1.34377 5109 392329

563 -2373 -1.33763 2440 392329

578 -2370 -1.3315 2440 392329

459 -1835 -1.32536 1892 392329

607 -2363 -1.31922 2440 392329

1228 -4662 -1.31309 4822 392329

3014 -4452 -0.97561 5377 392329

3041 -4433 -0.96948 5377 392329

2977 -4282 -0.96334 5216 392329

3003 -4264 -0.9572 5216 392329

3028 -4244 -0.95107 5214 392329

3052 -4223 -0.94493 5211 392329

2962 -4045 -0.9388 5014 392329

2986 -4027 -0.93266 5014 392329

3011 -4008 -0.92652 5014 392329

3055 -4015 -0.92039 5046 392329

3079 -3996 -0.91425 5046 392329

3104 -3977 -0.90812 5046 392329

3076 -3892 -0.90198 4962 392329

2970 -3711 -0.89585 4754 392329

2969 -3663 -0.88971 4716 392329

 140

2988 -3641 -0.88357 4711 392329

2993 -3602 -0.87744 4684 392329

3011 -3578 -0.8713 4677 392329

3022 -3547 -0.86517 4660 392329

3001 -3480 -0.85903 4596 392329

2993 -3427 -0.85289 4551 392329

2988 -3380 -0.84676 4512 392329

2954 -3299 -0.84062 4429 392329

2972 -3280 -0.83449 4427 392329

2941 -3205 -0.82835 4350 392329

2946 -3171 -0.82221 4329 392329

2899 -3083 -0.81608 4233 392329

2917 -3064 -0.80994 4231 392329

2936 -3046 -0.80381 4231 392329

2938 -3011 -0.79767 4208 392329

2933 -2969 -0.79153 4174 392329

2931 -2931 -0.7854 4146 392329

2905 -2870 -0.77926 4084 392329

2915 -2845 -0.77313 4074 392329

2933 -2827 -0.76699 4074 392329

2920 -2780 -0.76085 4033 392329

2924 -2749 -0.75472 4014 392329

2880 -2675 -0.74858 3931 392329

2896 -2657 -0.74245 3931 392329

2888 -2618 -0.73631 3899 392329

2898 -2594 -0.73018 3890 392329

% learning image
pivotImage = rgb2gray(imread(%image name));
figure ('name', 'Learning Image');
imshow(pivotImage);
title('Learning Image');

 141

%trying to identify this image
sceneImage = rgb2gray(imread(%image name));
figure ('name', 'Image to be Classified');
imshow(sceneImage);
title('Image to be Classified');

%detect points in the images
pivotPoints = detectSURFFeatures(pivotImage);
scenePoints = detectSURFFeatures(sceneImage);

%Extract feature descriptors at the interest points in both images.
[pivotFeatures, pivotPoints] = extractFeatures(pivotImage,

pivotPoints);
[sceneFeatures, scenePoints] = extractFeatures(sceneImage,

scenePoints);

%match the features
pivotPairs = matchFeatures(pivotFeatures, sceneFeatures);

%display positively matched features
matchedPivotPoints = pivotPoints(pivotPairs(:, 1), :);
matchedScenePoints = scenePoints(pivotPairs(:, 2), :);
figure ('name','Outlier');
showMatchedFeatures(pivotImage, sceneImage, matchedPivotPoints, ...
 matchedScenePoints, 'montage');
title('Putatively Matched Points (Including Outliers)');

%locate and show the object in the scene
[tform, inlierPivotPoints, inlierScenePoints] = ...
 estimateGeometricTransform(matchedPivotPoints, matchedScenePoints,

'affine');
figure;
showMatchedFeatures(pivotImage, sceneImage, inlierPivotPoints, ...
 inlierScenePoints, 'montage');
title('Matched Points (Inliers Only)');

img = %File location
method = %edge detection method

%reads in an image
pivotImage =imread(img);
gray = rgb2gray(pivotImage);
figure
% ('name', method);
% subplot(1,2,1)
imshow(pivotImage);
title('Image of a Pivot');

%finds the edges in the picture and filters out noise

 142

BW = wiener2(edge(gray,method));
% subplot(1,2,2)
imshow(BW);
title (method)

% Demo to find certain shapes in an image based on their shape.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures.
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.
fontSize = 20;

% Read in a standard MATLAB gray scale demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'pillsetc.png';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
 % File doesn't exist -- didn't find it there. Check the search

path for it.
 fullFileName = baseFileName; % No path this time.
 if ~exist(fullFileName, 'file')
 % Still didn't find it. Alert user.
 errorMessage = sprintf('Error: %s does not exist in the search

path folders.', fullFileName);
 uiwait(warndlg(errorMessage));
 return;
 end
end

% Read in image into an array.
rgbImage = imread(fullFileName);
[rows, columns, numberOfColorBands] = size(rgbImage);
% Display it.
subplot(2, 2, 1);
imshow(rgbImage, []);
title('Input Image', 'FontSize', fontSize);
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Give a name to the title bar.
set(gcf,'name','Shape Recognition Demo','numbertitle','off')

% If it's monochrome (indexed), convert it to color.
if numberOfColorBands > 1
 grayImage = rgbImage(:,:,2);
else
 % It's already a gray scale image.

 143

 grayImage = rgbImage;
end

% Make a triangle on it.
triangleXCoordinates = [360 420 480];
triangleYCoordinates = [350 252 350];
traiangleBinaryImage = poly2mask(triangleXCoordinates,

triangleYCoordinates, rows, columns);
% Burn it into the gray scale image.
grayImage(traiangleBinaryImage) = 255;

% Display it.
subplot(2, 2, 2);
imshow(grayImage, []);
title('Grayscale Image', 'FontSize', fontSize);

% Binarize the image.
binaryImage = grayImage > 120;
% Display it.
subplot(2, 2, 3);
imshow(binaryImage, []);
title('Initial (Noisy) Binary Image', 'FontSize', fontSize);

% Remove small objects.
binaryImage = bwareaopen(binaryImage, 300);
% Display it.
subplot(2, 2, 4);
imshow(binaryImage, []);
title('Cleaned Binary Image', 'FontSize', fontSize);

[labeledImage numberOfObjects] = bwlabel(binaryImage);
blobMeasurements = regionprops(labeledImage,...
 'Perimeter', 'Area', 'FilledArea', 'Solidity', 'Centroid');

% Get the outermost boundaries of the objects, just for fun.
filledImage = imfill(binaryImage, 'holes');
boundaries = bwboundaries(filledImage);

% Collect some of the measurements into individual arrays.
perimeters = [blobMeasurements.Perimeter];
areas = [blobMeasurements.Area];
filledAreas = [blobMeasurements.FilledArea];
solidities = [blobMeasurements.Solidity];
% Calculate circularities:
circularities = perimeters .^2 ./ (4 * pi * filledAreas);
% Print to command window.
fprintf('#, Perimeter, Area, Filled Area, Solidity,

Circularity\n');
for blobNumber = 1 : numberOfObjects
 fprintf('%d, %9.3f, %11.3f, %11.3f, %8.3f, %11.3f\n', ...
 blobNumber, perimeters(blobNumber), areas(blobNumber), ...
 filledAreas(blobNumber), solidities(blobNumber),

circularities(blobNumber));

 144

end

% Say what they are.
% IMPORTANT NOTE: depending on the aspect ratio of the rectangel or

triangle
for blobNumber = 1 : numberOfObjects
 % Outline the object so the user can see it.
 thisBoundary = boundaries{blobNumber};
 subplot(2, 2, 2); % Switch to upper right image.
 hold on;
 % Display prior boundaries in blue
 for k = 1 : blobNumber-1
 thisBoundary = boundaries{k};
 plot(thisBoundary(:,2), thisBoundary(:,1), 'b', 'LineWidth',

3);
 end
 % Display this bounary in red.
 thisBoundary = boundaries{blobNumber};
 plot(thisBoundary(:,2), thisBoundary(:,1), 'r', 'LineWidth', 3);
 subplot(2, 2, 4); % Switch to lower right image.

 % Determine the shape.
 if circularities(blobNumber) < 1.2
 message = sprintf('The circularity of object #%d is %.3f,\nso

the object is a circle',...
 blobNumber, circularities(blobNumber));
 shape = 'circle';
 elseif circularities(blobNumber) < 1.6
 message = sprintf('The circularity of object #%d is %.3f,\nso

the object is a square',...
 blobNumber, circularities(blobNumber));
 shape = 'square';
 elseif circularities(blobNumber) > 1.6 && circularities(blobNumber)

< 1.8
 message = sprintf('The circularity of object #%d is %.3f,\nso

the object is an isocoles triangle',...
 blobNumber, circularities(blobNumber));
 shape = 'triangle';
 else
 message = sprintf('The circularity of object #%d is %.3f,\nso

the object is something else.',...
 blobNumber, circularities(blobNumber));
 shape = 'something else';
 end
 % Display in overlay above the object
 overlayMessage = sprintf('Object #%d = %s\ncirc = %.2f, s = %.2f',

...
 blobNumber, shape, circularities(blobNumber),

solidities(blobNumber));
 text(blobMeasurements(blobNumber).Centroid(1),

blobMeasurements(blobNumber).Centroid(2), ...
 overlayMessage, 'Color', 'r');
 button = questdlg(message, 'Continue', 'Continue', 'Cancel',

'Continue');

 145

 if strcmp(button, 'Cancel')
 break;
 end
end

clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures.
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.
fontSize = 18;

img = %image name
method = % =edge detection method

 %reads in an image
pivotImage =imread(img);
gray = rgb2gray(pivotImage);
figure ('name', method);

%finds the edges in the picture and filters out noise
BW = wiener2(edge(gray,method));

subplot(2, 2, 1);
imshow(pivotImage, []);
title('Input Image', 'FontSize', fontSize);

 % Display it.
 subplot(2, 2, 2);
% imshow(grayImage, []);
 title('Objects Detected', 'FontSize', fontSize);

subplot(2, 2, 3);
%imshow(binaryImage, []);
imshow(BW, [])
title('Initial Edge Detection Image', 'FontSize', fontSize);

binaryImage = bwareaopen(BW, 300);
% Display it.
subplot(2, 2, 4);
imshow(binaryImage, []);
title('Cleaned Binary Image', 'FontSize', fontSize);

[labeledImage numberOfObjects] = bwlabel(binaryImage);
blobMeasurements = regionprops(labeledImage,...
 'Perimeter', 'Area', 'FilledArea', 'Solidity', 'Centroid');

 146

% Get the outermost boundaries of the objects, just for fun.
filledImage = imfill(binaryImage, 'holes');
boundaries = bwboundaries(filledImage);

% Collect some of the measurements into individual arrays.
perimeters = [blobMeasurements.Perimeter];
areas = [blobMeasurements.Area];
filledAreas = [blobMeasurements.FilledArea];
solidities = [blobMeasurements.Solidity];
% Calculate circularities:
circularities = perimeters .^2 ./ (4 * pi * filledAreas);
% Print to command window.
fprintf('#, Perimeter, Area, Filled Area, Solidity,

Circularity\n');
for blobNumber = 1 : numberOfObjects
 fprintf('%d, %9.3f, %11.3f, %11.3f, %8.3f, %11.3f\n', ...
 blobNumber, perimeters(blobNumber), areas(blobNumber), ...
 filledAreas(blobNumber), solidities(blobNumber),

circularities(blobNumber));
end

% Say what they are.
for blobNumber = 1 : numberOfObjects
 % Outline the object so the user can see it.
 thisBoundary = boundaries{blobNumber};
 subplot(2, 2, 2); % Switch to upper right image.
 hold on;
 % Display prior boundaries in blue
 for k = 1 : blobNumber-1
 thisBoundary = boundaries{k};
 plot(thisBoundary(:,2), thisBoundary(:,1), 'b', 'LineWidth',

3);
 end
 % Display this bounary in red.
 thisBoundary = boundaries{blobNumber};
 plot(thisBoundary(:,2), thisBoundary(:,1), 'r', 'LineWidth', 3);
 subplot(2, 2, 4); % Switch to lower right image.

 % Determine the shape.
 if circularities(blobNumber) < 1.2
 message = sprintf('The circularity of object #%d is %.3f,\nso

the object is a circle',...
 blobNumber, circularities(blobNumber));
 shape = 'circle';
 elseif circularities(blobNumber) < 1.6
 message = sprintf('The circularity of object #%d is %.3f,\nso

the object is a square',...
 blobNumber, circularities(blobNumber));
 shape = 'square';
 elseif circularities(blobNumber) > 1.6 && circularities(blobNumber)

< 1.8

 147

 message = sprintf('The circularity of object #%d is %.3f,\nso

the object is an isocoles triangle',...
 blobNumber, circularities(blobNumber));
 shape = 'triangle';
 else
 message = sprintf('The circularity of object #%d is %.3f,\nso

the object is something else.',...
 blobNumber, circularities(blobNumber));
 shape = 'something else';
 end
 % Display in overlay above the object
 overlayMessage = sprintf('Object #%d = %s\ncirc = %.2f, s = %.2f',

...
 blobNumber, shape, circularities(blobNumber),

solidities(blobNumber));
 text(blobMeasurements(blobNumber).Centroid(1),

blobMeasurements(blobNumber).Centroid(2), ...
 overlayMessage, 'Color', 'r');
 button = questdlg(message, 'Continue', 'Continue', 'Cancel',

'Continue');
 if strcmp(button, 'Cancel')
 break;
 end
end

img1 = reference image
img2 = test image

% reference image (img1)
pivotImage = edge_detection_method_3(img1);
figure;
imshow(pivotImage);
title('Image of a known obstacle');

%test image (img2)
sceneImage = edge_detection_method_3 (img2);
figure;
imshow(sceneImage);
title('Image of a Cluttered Scene');

%detect points in the images
pivotPoints = detectSURFFeatures(pivotImage);
scenePoints = detectSURFFeatures(sceneImage);

%Extract feature descriptors at the interest points in both images.

 148

[pivotFeatures, pivotPoints] = extractFeatures(pivotImage,

pivotPoints);
[sceneFeatures, scenePoints] = extractFeatures(sceneImage,

scenePoints);

%match the features
pivotPairs = matchFeatures(pivotFeatures, sceneFeatures);

%display positively matched features
matchedPivotPoints = pivotPoints(pivotPairs(:, 1), :);
matchedScenePoints = scenePoints(pivotPairs(:, 2), :);
figure;
showMatchedFeatures(pivotImage, sceneImage, matchedPivotPoints, ...
 matchedScenePoints, 'montage');
title('Putatively Matched Points (Including Outliers)');

%locate and show the object in the scene
[tform, inlierPivotPoints, inlierScenePoints] = ...
 estimateGeometricTransform(matchedPivotPoints, matchedScenePoints,

'affine');
figure;
showMatchedFeatures(pivotImage, sceneImage, inlierPivotPoints, ...
 inlierScenePoints, 'montage');
title('Matched Points (Inliers Only)');

 149

 150

 151

 152

gTruth = load(%ground Truth data);

trainingData = objectDetectorTrainingData(gTruth);

positiveInstances = trainingData(:,1:2);

negativeFolder = fullfile(%location of negative images) ;

negativeImages = imageDatastore(negativeFolder);

trainCascadeObjectDetector(%name of trained detector positiveInstances,

negativeFolder,...
 'FalseAlarmRate',0.025,'NumCascadeStages',3);

detector = vision.CascadeObjectDetector(%name of trained detector);

img = imread(%name of test image);

bbox = step(detector,img);

detectedImg = insertObjectAnnotation(img,'rectangle',bbox, %name of

bounding box);

figure; imshow(detectedImg);

gTruth = load(%ground truth data fom video);
trainingData = objectDetectorTrainingData(gTruth.gTruth);

%Default ‘SamplingFactor’ is set to 5 to sample every 5th image

%This extracts evey single image

%('SamplingFactor',1) at end of gTruth video data to sample every

picture

 153

tic
%% blurring, sharpening, and change the brightness of the color images
srcFiles = dir(%location of original photos);
for K= 1:50
cd(srcFiles(1).folder)
filename = strcat(srcFiles(K).name);
image = imread(filename);
Blurred_Image= imgaussfilt(image);
Sharped_Image=imsharpen(image);
Brighter_Image=image+50;
Darker_image=image-50;
cd(%location for blurred images)
imwrite(Blurred_Image,filename)
cd(%location for sharpened images)
imwrite(Sharped_Image,filename)
cd(%location for brighter images)
imwrite(Brighter_Image,filename)
cd(%location for darker images)
imwrite(Darker_image,filename)
end
toc

tic
% Load vehicle data set
data = load(%load groundtruth data);
vehicleDataset = %location of the data inside the data variable;
label = %label locations inside the data variable
net = 'googlenet'; % load in any pretrained network
% can replace 'googlenet' with any of the pretrained networks. must

download the support package...
% home-> addons->search
% 'alexnet'
% 'vgg16'
% 'vgg19'
% 'resnet50'
% 'resnet101'
% 'inceptionv3'
% 'googlenet'
% 'inceptionresnetv2'
% 'squeezenet'

%%
% Split data into a training and test set.
idx = floor(0.6 * height(vehicleDataset));
trainingData = vehicleDataset(1:idx,:);
testData = vehicleDataset(idx:end,:);

 154

%% Change hyperparameters
% Options for step 1.
optionsStage1 = trainingOptions('sgdm', ...
 'MaxEpochs', 2, ... %How many time does your model train on usually

range f% from 1 -> 5. First, usaually use 1 at first.
 'MiniBatchSize', 1, ...
 'InitialLearnRate', .005, ... %% 1 -> 1e-3. Boost this up %% tune

this to increase accuracy + trianing time
 'CheckpointPath', tempdir)

% Options for step 2.
optionsStage2 = trainingOptions('sgdm', ...
 'MaxEpochs', 2, ... %How many time does your model train on usually

range f% from 1 -> 5. First, usaually use 1 at first.
 'MiniBatchSize', 1, ...
 'InitialLearnRate', .005, ... %% 1 -> 1e-3. Boost this up %% tune

this to increase accuracy + trianing time
 'CheckpointPath', tempdir)

% Options for step 3.
optionsStage3 = trainingOptions('sgdm', ...
 'MaxEpochs', 2, ... %How many time does your model train on usually

range f% from 1 -> 5. First, usaually use 1 at first.
 'MiniBatchSize', 1, ...
 'InitialLearnRate', .005, ... %% 1 -> 1e-3. Boost this up %% tune

this to increase accuracy + trianing time
 'CheckpointPath', tempdir)

% Options for step 4.
optionsStage4 = trainingOptions('sgdm', ...
 'MaxEpochs', 3, ... %How many time does your model train on usually

range f% from 1 -> 5. First, usaually use 1 at first.
 'MiniBatchSize', 1, ...
 'InitialLearnRate', .005, ... %% 1 -> 1e-3. Boost this up %% tune

this to increase accuracy + trianing time
 'CheckpointPath', tempdir)

options = [
 optionsStage1
 optionsStage2
 optionsStage3
 optionsStage4
];
%%
% train Faster R-CNN object detector
trainedDetector = trainFasterRCNNObjectDetector(trainingData,

net,options)

doTrainingAndEval = true;

toc
tic

 155

%%
if doTrainingAndEval
 % Run detector on each image in the test set and collect results.
 resultsStruct = struct([]);
 for i = 1:height(testData)

 % Read the image.
 I = imread(testData.imageFilename{i});

 % Run the detector.
 [bboxes, scores, labels] = detect(trainedDetector, I);

 % Collect the results.
 resultsStruct(i).Boxes = bboxes;
 resultsStruct(i).Scores = scores;
 resultsStruct(i).Labels = labels;
 end

 % Convert the results into a table.
 results = struct2table(resultsStruct);
else
 % Load results from disk.
 results = data.results;
end

% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);

% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results,

expectedResults);
%%

% Plot precision/recall curve
for k = 1:length(label)
figure(k)
plot(recall{k},precision{k})
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f\n%s', ap(k), label{k}))
end
toc

 156

%load detector

detector = load(detectorFile);

% Read a test image.
I = imread(testImage);

% Run the detector.
 [bboxes,scores,labels] = detect(detector.trainedDetector,I);

% Annotate detections in the image.
I = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));
figure
imshow(I)

srcFiles = dir(%image file directory);%load images
detector = load(%detector file); %load detector

for n= 1:length(srcFiles)
 cd (srcFiles(1).folder)
 filename = strcat(srcFiles(n).name);
 image = imread(filename);
 % Read a test image.
 I = imread(filename);

 % Run the detector.
 [bboxes,scores,labels] = detect(detector.trainedDetector,I);
 bob{n} = [scores];

 % Annotate detections in the image.
 I = insertObjectAnnotation(I,'rectangle',bboxes,cellstr(labels));
 figure ('name', filename);
 imshow(I)
end

 157

load %load a ground truth table of your image files

shuffledArray = orderedArray(randperm(size(orderedArray,1)),:);
%this line sfuffles the images

srcFiles = dir(%directory image files are located);

for n=1:length(srcFiles)
 cd (srcFiles(1).folder)
 filename = strcat(srcFiles(n).name);
 YourImage = imread(filename);
if isinteger(YourImage)
 pad = intmax(class(YourImage));
else
 pad = 1; %white for floating point is 1.0
end
%figure out which dimension is longer and rescale that to be the 256
%and pad the shorter one to 256
[r, c, ~] = size(YourImage);
if r > c
 NewImage = imresize(YourImage, 'new image height' / r);
 NewImage(:, end+1 : 'new image height', :) = pad;
elseif c > r
 NewImage = imresize(YourImage, 'new image width' / c);
 NewImage(end+1 : 'new image width', :, :) = pad;
else
 NewImage = imresize(YourImage, ['new image width' 'new image

height']);
end
 cd (%new image file location)
 imwrite (NewImage, filename)
end

Image 1 – (John Deere, 2019)

Image 2 – (Mahindra, 2019)

Image 3 – (Agricar, 2019)

 158

Image 4 – (Ritchie Bros., 2019)

Image 5 – (Kubota, 2019)

APPENDIX F.8.1 Run 1

 'MaxEpochs', 1,

 'MiniBatchSize', 1,

 'InitialLearnRate', .01,

 'CheckpointPath', tempdir)

APPENDIX F.8.1.1 GoogLeNet

>> TractorDetectorgooglenetv2

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

 159

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 160

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

 161

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.9906 | 35.16% | 1.56 | 0.0100 |

| 1 | 50 | 00:00:04 | 0.9211 | 100.00% | 0.88 | 0.0100 |

| 1 | 100 | 00:00:09 | 0.9586 | 97.64% | 1.05 | 0.0100 |

| 1 | 126 | 00:00:12 | 0.5319 | 100.00% | 0.83 | 0.0100 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.0248 | 17.97% | 1.86 | 0.0100 |

| 1 | 50 | 00:00:12 | 0.1775 | 95.70% | 0.72 | 0.0100 |

| 1 | 100 | 00:00:25 | 0.1493 | 96.92% | 0.90 | 0.0100 |

| 1 | 126 | 00:00:31 | 0.0726 | 96.10% | 0.48 | 0.0100 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.6817 | 100.00% | 0.85 | 0.0100 |

 162

| 1 | 50 | 00:00:02 | 0.5786 | 100.00% | 0.86 | 0.0100 |

| 1 | 100 | 00:00:05 | 0.6043 | 100.00% | 0.83 | 0.0100 |

| 1 | 126 | 00:00:06 | 0.6100 | 100.00% | 0.83 | 0.0100 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.0916 | 100.00% | 0.81 | 0.0050 |

| 1 | 50 | 00:00:09 | 0.0969 | 95.70% | 0.59 | 0.0050 |

| 1 | 100 | 00:00:18 | 0.1413 | 98.96% | 1.05 | 0.0050 |

| 2 | 150 | 00:00:30 | 0.0313 | 100.00% | 0.43 | 0.0050 |

| 2 | 200 | 00:00:40 | 0.0283 | 100.00% | 0.46 | 0.0050 |

| 2 | 250 | 00:00:49 | 0.0685 | 97.73% | 0.56 | 0.0050 |

| 3 | 300 | 00:01:02 | 0.0355 | 100.00% | 1.11 | 0.0050 |

| 3 | 350 | 00:01:11 | 0.0261 | 100.00% | 0.45 | 0.0050 |

| 3 | 378 | 00:01:16 | 0.0316 | 98.86% | 0.39 | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'tractors'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [4×2 double]

 ClassNames: {'tractors' 'Background'}

 MinObjectSize: [16 16]

 163

Elapsed time is 241.028839 seconds.

Elapsed time is 26.416004 seconds.

APPENDIX F.8.1.1.1 Result

 164

APPENDIX F.8.1.1.2 Results on test pictures

 165

APPENDIX F.8.1.2 ResNet 101

>> TractorDetectorresnet101v3

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 166

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 167

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

 168

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.4758 | 73.23% | 1.14 | 0.0100 |

| 1 | 50 | 00:00:20 | 0.5206 | 100.00% | 0.69 | 0.0100 |

| 1 | 100 | 00:00:40 | 1.3325 | 100.00% | 1.32 | 0.0100 |

| 1 | 126 | 00:00:50 | 0.4061 | 100.00% | 0.74 | 0.0100 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.6645 | 72.73% | 0.73 | 0.0100 |

| 1 | 50 | 00:00:38 | 0.2433 | 95.45% | 0.79 | 0.0100 |

| 1 | 100 | 00:01:17 | 0.1771 | 96.91% | 0.93 | 0.0100 |

| 1 | 123 | 00:01:35 | 0.1694 | 95.45% | 0.51 | 0.0100 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

 169

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.4140 | 100.00% | 0.74 | 0.0100 |

| 1 | 50 | 00:00:11 | 0.4995 | 100.00% | 0.80 | 0.0100 |

| 1 | 100 | 00:00:22 | 0.6177 | 100.00% | 0.84 | 0.0100 |

| 1 | 126 | 00:00:27 | 0.5852 | 100.00% | 0.82 | 0.0100 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.1196 | 96.10% | 0.60 | 0.0050 |

| 1 | 50 | 00:00:24 | 0.0572 | 97.73% | 0.49 | 0.0050 |

| 1 | 100 | 00:00:47 | 0.0373 | 100.00% | 0.51 | 0.0050 |

| 2 | 150 | 00:01:28 | 0.1439 | 98.10% | 1.29 | 0.0050 |

| 2 | 200 | 00:01:52 | 0.0696 | 100.00% | 1.01 | 0.0050 |

| 2 | 250 | 00:02:15 | 0.3809 | 96.19% | 1.01 | 0.0050 |

| 3 | 300 | 00:02:56 | 0.0937 | 100.00% | 1.36 | 0.0050 |

| 3 | 350 | 00:03:20 | 0.1092 | 98.85% | 1.08 | 0.0050 |

| 3 | 378 | 00:03:33 | 0.0527 | 98.86% | 0.64 | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 170

 ModelName: 'tractors'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [4×2 double]

 ClassNames: {'tractors' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 749.969774 seconds.

Elapsed time is 45.415633 seconds.

APPENDIX F.8.1.2.1 Result

APPENDIX F.8.1.2.2 Results on test pictures

 171

 172

APPENDIX F.8.1.3 Inception V3

>> TractorDetectorinceptionv3v4

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 173

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 174

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

 175

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:01 | 1.1939 | 61.72% | 0.90 | 0.0100 |

| 1 | 50 | 00:00:13 | 1.0419 | 100.00% | 1.21 | 0.0100 |

| 1 | 100 | 00:00:26 | 0.4007 | 100.00% | 0.75 | 0.0100 |

| 1 | 126 | 00:00:32 | 0.4841 | 100.00% | 0.78 | 0.0100 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:01 | 0.8771 | 2.97% | 0.71 | 0.0100 |

| 1 | 50 | 00:00:48 | NaN | 2.94% | NaN | 0.0100 |

| 1 | 100 | 00:01:38 | NaN | 1.56% | NaN | 0.0100 |

| 1 | 126 | 00:02:03 | NaN | 2.56% | NaN | 0.0100 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

 176

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.5095 | 100.00% | 0.80 | 0.0100 |

| 1 | 50 | 00:00:09 | 0.5382 | 100.00% | 0.85 | 0.0100 |

| 1 | 100 | 00:00:18 | 0.3757 | 100.00% | 0.78 | 0.0100 |

| 1 | 126 | 00:00:23 | 0.5029 | 100.00% | 0.95 | 0.0100 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | NaN | 1.56% | NaN | 0.0050 |

| 1 | 50 | 00:00:37 | NaN | 0.78% | NaN | 0.0050 |

| 1 | 100 | 00:01:15 | NaN | 1.71% | NaN | 0.0050 |

| 2 | 150 | 00:02:06 | NaN | 1.19% | NaN | 0.0050 |

| 2 | 200 | 00:02:43 | NaN | 2.44% | NaN | 0.0050 |

| 2 | 250 | 00:03:21 | NaN | 1.96% | NaN | 0.0050 |

| 3 | 300 | 00:04:10 | NaN | 9.38% | NaN | 0.0050 |

| 3 | 350 | 00:04:47 | NaN | 1.19% | NaN | 0.0050 |

| 3 | 378 | 00:05:09 | NaN | 1.56% | NaN | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 177

 ModelName: 'tractors'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [4×2 double]

 ClassNames: {'tractors' 'Background'}

 MinObjectSize: [18 18]

Elapsed time is 827.975924 seconds.

Elapsed time is 91.680995 seconds.

APPENDIX F.8.1.3.1 Result

APPENDIX F.8.1.4 Inception ResNet V2

>> TractorDetectorinceptionvresnetv2v8

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 178

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 179

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 180

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:01 | 1.1699 | 95.31% | 0.89 | 0.0050 |

| 1 | 50 | 00:00:53 | 0.3512 | 100.00% | 0.83 | 0.0050 |

| 1 | 100 | 00:01:46 | 0.7950 | 100.00% | 1.25 | 0.0050 |

| 2 | 150 | 00:03:11 | 0.2683 | 100.00% | 0.82 | 0.0050 |

| 2 | 200 | 00:04:04 | 0.3442 | 100.00% | 0.86 | 0.0050 |

| 2 | 250 | 00:04:56 | 0.3262 | 100.00% | 1.09 | 0.0050 |

| 2 | 252 | 00:04:58 | 0.3461 | 100.00% | 0.82 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

 181

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

Warning: GPU is low on memory, which can slow performance due to additional data

transfers with main memory. Try reducing the

'MiniBatchSize' training option. This warning will not appear again unless you run the

command:

warning('on','nnet_cnn:warning:GPULowOnMemory').

| 1 | 1 | 00:00:10 | 0.9738 | 14.06% | 1.20 | 0.0050 |

Warning: While copying object of class 'gpuArray':

'Out of memory on device. To view more detail about available memory on the GPU, use

'gpuDevice()'. If the problem persists, reset

the GPU by calling 'gpuDevice(1)'.'

> In nnet.internal.cnn.DAGNetwork/forwardPropagationWithMemory (line 330)

 In nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 562)

 In nnet.internal.cnn.Trainer/computeGradients (line 184)

 In nnet.internal.cnn.Trainer/train (line 85)

 In vision.internal.cnn.trainNetwork (line 47)

 In fastRCNNObjectDetector.train (line 190)

 In trainFasterRCNNObjectDetector (line 410)

 In TractorDetectorinceptionvresnetv2v8 (line 61)

Warning: While copying object of class 'gpuArray':

'Out of memory on device. To view more detail about available memory on the GPU, use

'gpuDevice()'. If the problem persists, reset

the GPU by calling 'gpuDevice(1)'.'

> In nnet.internal.cnn.DAGNetwork/forwardPropagationWithMemory (line 286)

 In nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 562)

 In nnet.internal.cnn.Trainer/computeGradients (line 184)

 In nnet.internal.cnn.Trainer/train (line 85)

 In vision.internal.cnn.trainNetwork (line 47)

 In fastRCNNObjectDetector.train (line 190)

 In trainFasterRCNNObjectDetector (line 410)

 In TractorDetectorinceptionvresnetv2v8 (line 61)

Warning: While copying object of class 'gpuArray':

'Out of memory on device. To view more detail about available memory on the GPU, use

'gpuDevice()'. If the problem persists, reset

the GPU by calling 'gpuDevice(1)'.'

> In nnet.internal.cnn.DAGNetwork/forwardPropagationWithMemory (line 286)

 In nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 562)

 In nnet.internal.cnn.Trainer/computeGradients (line 184)

 In nnet.internal.cnn.Trainer/train (line 85)

 In vision.internal.cnn.trainNetwork (line 47)

 182

 In fastRCNNObjectDetector.train (line 190)

 In trainFasterRCNNObjectDetector (line 410)

 In TractorDetectorinceptionvresnetv2v8 (line 61)

Error using nnet.internal.cnn.layer.CustomLayer/forward (line 103)

Error using 'predict' in Layer nnet.inceptionresnetv2.layer.ScalingFactorLayer. The

function threw an error and could not be

executed.

Error in nnet.internal.cnn.DAGNetwork>@()this.Layers{i}.forward(XForThisLayer)

(line 330)

 @() this.Layers{i}.forward(XForThisLayer), ...

Error in nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery (line 11)

 [varargout{1:nOutputs}] = computeFun();

Error in nnet.internal.cnn.DAGNetwork>iExecuteWithStagedGPUOOMRecovery (line

1195)

[varargout{1:nargout}] =

nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery(varargin{:});

Error in nnet.internal.cnn.DAGNetwork/forwardPropagationWithMemory (line 329)

 [outputActivations, memory] = iExecuteWithStagedGPUOOMRecovery(...

Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 562)

 [activationsBuffer, memoryBuffer, layerIsLearning] =

this.forwardPropagationWithMemory(X);

Error in nnet.internal.cnn.Trainer/computeGradients (line 184)

 [gradients, predictions, states] = net.computeGradientsForTraining(X, Y,

needsStatefulTraining, propagateState);

Error in nnet.internal.cnn.Trainer/train (line 85)

 [gradients, predictions, states] = this.computeGradients(net, X, response,

needsStatefulTraining,

 propagateState);

Error in vision.internal.cnn.trainNetwork (line 47)

trainedNet = trainer.train(trainedNet, trainingDispatcher);

Error in fastRCNNObjectDetector.train (line 190)

 [network, info] = vision.internal.cnn.trainNetwork(ds, lgraph, opts, mapping,

checkpointSaver);

Error in trainFasterRCNNObjectDetector (line 410)

 183

 [stage2Detector, fastRCNN, ~, info(2)] = fastRCNNObjectDetector.train(trainingData,

fastRCNN, options(2),

 iStageTwoParams(params), checkpointSaver);

Error in TractorDetectorinceptionvresnetv2v8 (line 61)

trainedDetector = trainFasterRCNNObjectDetector(trainingData, net,options)

Caused by:

 Error using *

 The data no longer exists on the device.

>>

APPENDIX F.8.2 Run 2

 'MaxEpochs', 2,

 'MiniBatchSize', 1,

 'InitialLearnRate', .005,

 'CheckpointPath', tempdir

APPENDIX F.8.2.1 GoogLeNet

>> TractorDetectorgooglenetv5

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 184

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 185

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

 186

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.9025 | 57.81% | 1.80 | 0.0050 |

| 1 | 50 | 00:00:05 | 1.0249 | 100.00% | 1.10 | 0.0050 |

| 1 | 100 | 00:00:10 | 0.6775 | 100.00% | 0.88 | 0.0050 |

| 2 | 150 | 00:00:17 | 1.0044 | 100.00% | 1.35 | 0.0050 |

| 2 | 200 | 00:00:22 | 0.6509 | 100.00% | 0.88 | 0.0050 |

| 2 | 250 | 00:00:27 | 0.6383 | 100.00% | 0.89 | 0.0050 |

| 2 | 252 | 00:00:27 | 0.5738 | 100.00% | 0.83 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.7994 | 33.33% | 0.59 | 0.0050 |

| 1 | 50 | 00:00:12 | 0.0503 | 99.22% | 1.76 | 0.0050 |

| 1 | 100 | 00:00:24 | 0.0575 | 99.22% | 1.03 | 0.0050 |

| 2 | 150 | 00:00:40 | 0.0431 | 98.85% | 0.46 | 0.0050 |

| 2 | 200 | 00:00:52 | 0.0616 | 97.44% | 0.60 | 0.0050 |

| 2 | 244 | 00:01:03 | 0.0468 | 100.00% | 0.77 | 0.0050 |

|===

==|

 187

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 3.7144 | 100.00% | 3.84 | 0.0050 |

| 1 | 50 | 00:00:02 | 0.4621 | 100.00% | 0.74 | 0.0050 |

| 1 | 100 | 00:00:05 | 0.6576 | 100.00% | 1.18 | 0.0050 |

| 2 | 150 | 00:00:10 | 0.6290 | 100.00% | 0.86 | 0.0050 |

| 2 | 200 | 00:00:13 | 0.2639 | 99.22% | 1.16 | 0.0050 |

| 2 | 250 | 00:00:15 | 1.3167 | 100.00% | 1.63 | 0.0050 |

| 2 | 252 | 00:00:15 | 1.7197 | 100.00% | 1.99 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.0421 | 97.30% | 0.56 | 0.0050 |

| 1 | 50 | 00:00:09 | 0.0167 | 100.00% | 0.41 | 0.0050 |

| 1 | 100 | 00:00:18 | 0.0096 | 100.00% | 0.47 | 0.0050 |

| 2 | 150 | 00:00:31 | 0.1151 | 100.00% | 1.45 | 0.0050 |

| 2 | 200 | 00:00:40 | 0.1554 | 96.88% | 0.82 | 0.0050 |

| 2 | 250 | 00:00:49 | 0.0536 | 100.00% | 0.95 | 0.0050 |

| 3 | 300 | 00:01:02 | 0.0105 | 100.00% | 0.48 | 0.0050 |

| 3 | 350 | 00:01:11 | 0.0658 | 97.37% | 0.32 | 0.0050 |

| 3 | 378 | 00:01:16 | 0.0110 | 100.00% | 0.37 | 0.0050 |

|===

==|

Detector training complete.

 188

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'tractors'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [4×2 double]

 ClassNames: {'tractors' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 309.450047 seconds.

Elapsed time is 30.981631 seconds.

APPENDIX F.8.2.1.1 Result

 189

APPENDIX F.8.2.1.2 Results on test pictures

 190

 191

APPENDIX F.8.2.2 ResNet 101

>> TractorDetectorresnet101v6

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

 192

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 193

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

 194

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.4758 | 73.23% | 1.14 | 0.0050 |

| 1 | 50 | 00:00:19 | 0.5570 | 100.00% | 0.96 | 0.0050 |

| 1 | 100 | 00:00:39 | 1.0036 | 100.00% | 1.16 | 0.0050 |

| 2 | 150 | 00:01:13 | 0.3985 | 100.00% | 0.72 | 0.0050 |

| 2 | 200 | 00:01:33 | 0.6009 | 100.00% | 0.86 | 0.0050 |

| 2 | 250 | 00:01:53 | 0.1861 | 100.00% | 1.03 | 0.0050 |

| 2 | 252 | 00:01:54 | 0.2884 | 100.00% | 0.68 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.7019 | 79.69% | 1.66 | 0.0050 |

| 1 | 50 | 00:00:36 | 0.4044 | 95.31% | 1.09 | 0.0050 |

| 1 | 100 | 00:01:12 | 0.3798 | 92.96% | 0.63 | 0.0050 |

| 2 | 150 | 00:02:04 | 0.3179 | 93.24% | 0.83 | 0.0050 |

| 2 | 200 | 00:02:41 | 0.1131 | 98.25% | 0.60 | 0.0050 |

| 2 | 250 | 00:03:17 | 0.1955 | 97.25% | 1.05 | 0.0050 |

| 2 | 252 | 00:03:18 | 0.2595 | 97.33% | 1.28 | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

 195

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.6969 | 100.00% | 1.83 | 0.0050 |

| 1 | 50 | 00:00:10 | 0.4697 | 100.00% | 0.76 | 0.0050 |

| 1 | 100 | 00:00:21 | 0.6912 | 100.00% | 1.13 | 0.0050 |

| 2 | 150 | 00:00:47 | 0.3111 | 100.00% | 0.65 | 0.0050 |

| 2 | 200 | 00:00:58 | 0.3705 | 100.00% | 0.68 | 0.0050 |

| 2 | 250 | 00:01:09 | 0.3554 | 100.00% | 0.64 | 0.0050 |

| 2 | 252 | 00:01:09 | 0.2847 | 100.00% | 0.57 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.0755 | 99.22% | 1.18 | 0.0050 |

| 1 | 50 | 00:00:22 | 0.0366 | 99.22% | 1.32 | 0.0050 |

| 1 | 100 | 00:00:45 | 0.1023 | 97.53% | 0.46 | 0.0050 |

| 2 | 150 | 00:01:23 | 0.0066 | 100.00% | 0.27 | 0.0050 |

| 2 | 200 | 00:01:46 | 0.2911 | 92.19% | 1.03 | 0.0050 |

| 3 | 250 | 00:02:25 | 0.0050 | 100.00% | 0.33 | 0.0050 |

| 3 | 300 | 00:02:48 | 0.0245 | 100.00% | 0.38 | 0.0050 |

| 3 | 350 | 00:03:11 | 0.0172 | 100.00% | 0.70 | 0.0050 |

| 3 | 372 | 00:03:20 | 0.0098 | 100.00% | 0.27 | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 196

 fasterRCNNObjectDetector with properties:

 ModelName: 'tractors'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [4×2 double]

 ClassNames: {'tractors' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 921.760705 seconds.

Elapsed time is 49.185925 seconds.

APPENDIX F.8.2.2.1 Result

 197

APPENDIX F.8.2.2.2 Results on test pictures

 198

 199

APPENDIX F.8.2.3 Inception V3

>> TractorDetectorinceptionv3v7

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

 200

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 201

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

 202

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.1914 | 78.13% | 0.91 | 0.0050 |

| 1 | 50 | 00:00:12 | 0.7551 | 100.00% | 0.90 | 0.0050 |

| 1 | 100 | 00:00:25 | 0.5370 | 100.00% | 0.73 | 0.0050 |

| 2 | 150 | 00:00:46 | 0.7253 | 97.64% | 0.99 | 0.0050 |

| 2 | 200 | 00:00:59 | 0.9790 | 100.00% | 1.36 | 0.0050 |

| 2 | 250 | 00:01:11 | 0.5327 | 100.00% | 0.84 | 0.0050 |

| 2 | 252 | 00:01:12 | 0.4809 | 100.00% | 0.89 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.7994 | 2.13% | 0.72 | 0.0050 |

| 1 | 50 | 00:00:47 | 0.1704 | 97.65% | 1.03 | 0.0050 |

| 1 | 100 | 00:01:34 | NaN | 1.56% | NaN | 0.0050 |

| 2 | 150 | 00:02:34 | NaN | 2.53% | NaN | 0.0050 |

| 2 | 200 | 00:03:21 | NaN | 3.19% | NaN | 0.0050 |

| 2 | 250 | 00:04:09 | NaN | 2.56% | NaN | 0.0050 |

| 2 | 252 | 00:04:11 | NaN | 0.78% | NaN | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

 203

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.6811 | 100.00% | 1.01 | 0.0050 |

| 1 | 50 | 00:00:09 | 0.5409 | 100.00% | 0.86 | 0.0050 |

| 1 | 100 | 00:00:18 | 0.3212 | 100.00% | 0.71 | 0.0050 |

| 2 | 150 | 00:00:35 | 0.4968 | 100.00% | 0.94 | 0.0050 |

| 2 | 200 | 00:00:44 | 0.7720 | 100.00% | 1.35 | 0.0050 |

| 2 | 250 | 00:00:53 | 0.4652 | 100.00% | 0.82 | 0.0050 |

| 2 | 252 | 00:00:54 | 0.2684 | 100.00% | 0.74 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 126 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | NaN | 2.53% | NaN | 0.0050 |

| 1 | 50 | 00:00:36 | NaN | 2.44% | NaN | 0.0050 |

| 1 | 100 | 00:01:12 | NaN | 2.56% | NaN | 0.0050 |

| 2 | 150 | 00:02:01 | NaN | 2.56% | NaN | 0.0050 |

| 2 | 200 | 00:02:38 | NaN | 2.56% | NaN | 0.0050 |

| 3 | 250 | 00:03:26 | NaN | 2.75% | NaN | 0.0050 |

| 3 | 300 | 00:04:03 | NaN | 1.56% | NaN | 0.0050 |

| 3 | 350 | 00:04:40 | NaN | 2.56% | NaN | 0.0050 |

| 3 | 369 | 00:04:54 | NaN | 2.56% | NaN | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 204

 fasterRCNNObjectDetector with properties:

 ModelName: 'tractors'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [4×2 double]

 ClassNames: {'tractors' 'Background'}

 MinObjectSize: [18 18]

Elapsed time is 994.296007 seconds.

Elapsed time is 88.889685 seconds.

APPENDIX F.8.2.3.1 Result

Image 1 – (everythingattachments.com, 2019)

Image 2 – (Southern Plains Photography, 2019)

Image 3 – (Global Auction Guide, 2019)

 205

Image 4 – (Ohio’s Country Journal, 2019)

Image 5 – (Marybeth Feutz, 2010)

APPENDIX F.9.1 Run 1

 'MaxEpochs', 1,

 'MiniBatchSize', 1,

 'InitialLearnRate', .01,

 'CheckpointPath', tempdir)

APPENDIX F.9.1.1 GoogLeNet

RBDetectorgooglenetv2

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 206

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 207

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

Starting parallel pool (parpool) using the 'local' profile ...

connected to 6 workers.

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).

 208

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:02 | 0.9764 | 85.94% | 1.37 | 0.0100 |

| 1 | 50 | 00:00:06 | 0.4098 | 100.00% | 0.91 | 0.0100 |

| 1 | 100 | 00:00:11 | 0.4329 | 100.00% | 0.75 | 0.0100 |

| 1 | 150 | 00:00:15 | 0.4199 | 100.00% | 0.71 | 0.0100 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.2682 | 17.19% | 0.94 | 0.0100 |

| 1 | 50 | 00:00:12 | 0.4803 | 89.06% | 1.00 | 0.0100 |

| 1 | 100 | 00:00:24 | 0.2796 | 94.83% | 0.93 | 0.0100 |

| 1 | 138 | 00:00:33 | 0.2329 | 96.09% | 0.97 | 0.0100 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.4178 | 100.00% | 0.73 | 0.0100 |

| 1 | 50 | 00:00:02 | 0.4448 | 100.00% | 0.77 | 0.0100 |

 209

| 1 | 100 | 00:00:04 | 0.3046 | 100.00% | 0.79 | 0.0100 |

| 1 | 150 | 00:00:07 | 0.1029 | 100.00% | 0.88 | 0.0100 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.2399 | 92.97% | 0.69 | 0.0050 |

| 1 | 50 | 00:00:09 | 0.1202 | 98.44% | 1.08 | 0.0050 |

| 1 | 100 | 00:00:18 | 0.1023 | 99.22% | 0.61 | 0.0050 |

| 2 | 150 | 00:00:31 | 0.1301 | 96.09% | 0.67 | 0.0050 |

| 2 | 200 | 00:00:40 | 0.2102 | 96.09% | 0.79 | 0.0050 |

| 2 | 250 | 00:00:49 | 0.2343 | 95.31% | 0.81 | 0.0050 |

| 3 | 300 | 00:01:01 | 0.1169 | 97.66% | 0.83 | 0.0050 |

| 3 | 350 | 00:01:11 | 0.0729 | 97.66% | 0.67 | 0.0050 |

| 3 | 400 | 00:01:20 | 0.1662 | 99.22% | 0.75 | 0.0050 |

| 3 | 414 | 00:01:23 | 0.1650 | 95.31% | 0.74 | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'roundbale'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'roundbale' 'Background'}

 MinObjectSize: [16 16]

 210

Elapsed time is 347.412311 seconds.

Elapsed time is 92.124512 seconds.

APPENDIX F.9.1.1.1 Result

 211

APPENDIX F.9.1.1.2 Results on test pictures

 212

 213

APPENDIX F.9.1.2 ResNet 101

>> RBDetectorresnet101v3

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 214

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 215

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 216

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.8881 | 85.94% | 0.72 | 0.0100 |

| 1 | 50 | 00:00:19 | 0.6631 | 100.00% | 0.80 | 0.0100 |

| 1 | 100 | 00:00:39 | 0.4379 | 100.00% | 0.84 | 0.0100 |

| 1 | 150 | 00:00:59 | 0.5513 | 100.00% | 0.94 | 0.0100 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:01 | 0.9438 | 35.94% | 1.16 | 0.0100 |

| 1 | 50 | 00:00:41 | NaN | 10.94% | NaN | 0.0100 |

| 1 | 100 | 00:01:23 | NaN | 6.96% | NaN | 0.0100 |

| 1 | 144 | 00:01:59 | NaN | 3.91% | NaN | 0.0100 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

 217

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.3600 | 100.00% | 0.87 | 0.0100 |

| 1 | 50 | 00:00:10 | 0.2833 | 100.00% | 1.21 | 0.0100 |

| 1 | 100 | 00:00:21 | 0.2528 | 100.00% | 0.91 | 0.0100 |

| 1 | 150 | 00:00:32 | 2.2767 | 100.00% | 1.69 | 0.0100 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | NaN | 12.50% | NaN | 0.0050 |

| 1 | 50 | 00:00:25 | NaN | 9.38% | NaN | 0.0050 |

| 1 | 100 | 00:00:50 | NaN | 4.69% | NaN | 0.0050 |

| 2 | 150 | 00:01:29 | NaN | 3.91% | NaN | 0.0050 |

| 2 | 200 | 00:01:54 | NaN | 5.47% | NaN | 0.0050 |

| 2 | 250 | 00:02:20 | NaN | 7.03% | NaN | 0.0050 |

| 3 | 300 | 00:02:58 | NaN | 2.34% | NaN | 0.0050 |

| 3 | 350 | 00:03:24 | NaN | 11.72% | NaN | 0.0050 |

| 3 | 400 | 00:03:49 | NaN | 5.47% | NaN | 0.0050 |

| 3 | 432 | 00:04:05 | NaN | 3.91% | NaN | 0.0050 |

|===

==|

Detector training complete.

 218

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'roundbale'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'roundbale' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 920.846822 seconds.

Elapsed time is 168.548623 seconds.

APPENDIX F.9.1.2.1 Result

APPENDIX F.9.1.3 Inception V3

>> RBDetectorinceptionv3v4

optionsStage1 =

 219

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 220

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0100

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 1

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 221

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.1171 | 92.19% | 1.09 | 0.0100 |

| 1 | 50 | 00:00:12 | 0.6419 | 100.00% | 0.78 | 0.0100 |

| 1 | 100 | 00:00:24 | 0.1943 | 100.00% | 0.96 | 0.0100 |

| 1 | 150 | 00:00:37 | 0.3896 | 100.00% | 0.90 | 0.0100 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

 222

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:01 | 0.8499 | 10.16% | 1.03 | 0.0100 |

| 1 | 50 | 00:00:48 | NaN | 7.81% | NaN | 0.0100 |

| 1 | 100 | 00:01:36 | NaN | 3.91% | NaN | 0.0100 |

| 1 | 144 | 00:02:19 | NaN | 7.14% | NaN | 0.0100 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.0801 | 100.00% | 0.86 | 0.0100 |

| 1 | 50 | 00:00:09 | 0.3153 | 100.00% | 1.01 | 0.0100 |

| 1 | 100 | 00:00:18 | 0.2837 | 100.00% | 0.85 | 0.0100 |

| 1 | 150 | 00:00:27 | 0.5945 | 100.00% | 1.00 | 0.0100 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | NaN | 6.25% | NaN | 0.0050 |

| 1 | 50 | 00:00:36 | NaN | 3.13% | NaN | 0.0050 |

| 1 | 100 | 00:01:13 | NaN | 3.60% | NaN | 0.0050 |

 223

| 2 | 150 | 00:02:02 | NaN | 3.91% | NaN | 0.0050 |

| 2 | 200 | 00:02:39 | NaN | 6.25% | NaN | 0.0050 |

| 2 | 250 | 00:03:17 | NaN | 2.42% | NaN | 0.0050 |

| 3 | 300 | 00:04:06 | NaN | 3.91% | NaN | 0.0050 |

| 3 | 350 | 00:04:43 | NaN | 3.91% | NaN | 0.0050 |

| 3 | 400 | 00:05:21 | NaN | 7.81% | NaN | 0.0050 |

| 3 | 432 | 00:05:45 | NaN | 2.36% | NaN | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'roundbale'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'roundbale' 'Background'}

 MinObjectSize: [18 18]

Elapsed time is 1073.125178 seconds.

Elapsed time is 278.413001 seconds.

 224

APPENDIX F.9.1.3.1 Result

APPENDIX F.9.2 Run 2

 'MaxEpochs', 2,

 'MiniBatchSize', 1,

 'InitialLearnRate', .005,

 'CheckpointPath', tempdir

APPENDIX F.9.2.1 GoogLeNet

>> RBDetectorgooglenetv5

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 225

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 226

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 227

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.9764 | 85.94% | 1.37 | 0.0050 |

| 1 | 50 | 00:00:04 | 0.0788 | 100.00% | 0.78 | 0.0050 |

| 1 | 100 | 00:00:09 | 0.3363 | 100.00% | 0.80 | 0.0050 |

| 1 | 150 | 00:00:14 | 0.3335 | 100.00% | 0.72 | 0.0050 |

| 2 | 200 | 00:00:21 | 0.1540 | 100.00% | 1.15 | 0.0050 |

| 2 | 250 | 00:00:26 | 0.4405 | 100.00% | 0.95 | 0.0050 |

| 2 | 300 | 00:00:30 | 0.2091 | 100.00% | 0.55 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

 228

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.2814 | 13.28% | 0.96 | 0.0050 |

| 1 | 50 | 00:00:12 | 0.2622 | 95.50% | 0.98 | 0.0050 |

| 1 | 100 | 00:00:26 | 0.3400 | 95.90% | 1.05 | 0.0050 |

| 1 | 150 | 00:00:39 | 0.3979 | 89.84% | 1.00 | 0.0050 |

| 2 | 200 | 00:00:55 | 0.1793 | 95.50% | 0.91 | 0.0050 |

| 2 | 250 | 00:01:08 | 0.1960 | 95.90% | 1.05 | 0.0050 |

| 2 | 300 | 00:01:21 | 0.3175 | 96.09% | 1.08 | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 2.5358 | 100.00% | 2.34 | 0.0050 |

| 1 | 50 | 00:00:02 | 0.0533 | 100.00% | 0.80 | 0.0050 |

| 1 | 100 | 00:00:05 | 0.7800 | 100.00% | 1.12 | 0.0050 |

| 1 | 150 | 00:00:07 | 0.5989 | 100.00% | 0.99 | 0.0050 |

| 2 | 200 | 00:00:12 | 0.0752 | 100.00% | 0.85 | 0.0050 |

| 2 | 250 | 00:00:15 | 0.3513 | 100.00% | 0.68 | 0.0050 |

| 2 | 300 | 00:00:17 | 0.6784 | 100.00% | 1.01 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

 229

|===

==|

| 1 | 1 | 00:00:00 | 0.5144 | 85.94% | 0.93 | 0.0050 |

| 1 | 50 | 00:00:08 | 0.5818 | 85.16% | 0.81 | 0.0050 |

| 1 | 100 | 00:00:17 | 0.1804 | 94.90% | 0.73 | 0.0050 |

| 1 | 150 | 00:00:27 | 0.3859 | 93.75% | 0.83 | 0.0050 |

| 2 | 200 | 00:00:39 | 0.4119 | 89.06% | 0.69 | 0.0050 |

| 2 | 250 | 00:00:48 | 0.1163 | 96.94% | 0.57 | 0.0050 |

| 2 | 300 | 00:00:57 | 0.3409 | 92.97% | 0.71 | 0.0050 |

| 3 | 350 | 00:01:09 | 0.3053 | 95.31% | 0.63 | 0.0050 |

| 3 | 400 | 00:01:18 | 0.1272 | 94.90% | 0.48 | 0.0050 |

| 3 | 450 | 00:01:27 | 0.2393 | 96.09% | 0.61 | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'roundbale'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'roundbale' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 404.969511 seconds.

Elapsed time is 95.141504 seconds.

 230

APPENDIX F.9.2.1.1 Result

 231

APPENDIX F.9.2.1.2 Results on test pictures

 232

 233

APPENDIX F.9.2.2 ResNet 101

>> RBDetectorresnet101v6

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 234

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 235

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 236

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.8881 | 85.94% | 0.72 | 0.0050 |

| 1 | 50 | 00:00:20 | 0.3295 | 100.00% | 0.77 | 0.0050 |

| 1 | 100 | 00:00:40 | 0.4481 | 100.00% | 1.02 | 0.0050 |

| 1 | 150 | 00:01:00 | 0.8593 | 100.00% | 1.40 | 0.0050 |

| 2 | 200 | 00:01:35 | 0.9569 | 100.00% | 1.33 | 0.0050 |

| 2 | 250 | 00:01:55 | 0.5256 | 100.00% | 1.10 | 0.0050 |

| 2 | 300 | 00:02:15 | 0.2866 | 100.00% | 0.69 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:01 | 1.0823 | 42.19% | 1.13 | 0.0050 |

| 1 | 50 | 00:00:41 | NaN | 10.16% | NaN | 0.0050 |

| 1 | 100 | 00:01:22 | NaN | 2.34% | NaN | 0.0050 |

| 1 | 150 | 00:02:04 | NaN | 6.03% | NaN | 0.0050 |

| 2 | 200 | 00:03:01 | NaN | 10.16% | NaN | 0.0050 |

 237

| 2 | 250 | 00:03:42 | NaN | 2.34% | NaN | 0.0050 |

| 2 | 300 | 00:04:25 | NaN | 6.03% | NaN | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.4161 | 100.00% | 1.14 | 0.0050 |

| 1 | 50 | 00:00:10 | 0.5600 | 100.00% | 0.74 | 0.0050 |

| 1 | 100 | 00:00:21 | 0.4805 | 100.00% | 0.80 | 0.0050 |

| 1 | 150 | 00:00:32 | 0.5961 | 100.00% | 1.05 | 0.0050 |

| 2 | 200 | 00:00:56 | 0.3635 | 100.00% | 0.72 | 0.0050 |

| 2 | 250 | 00:01:07 | 0.3745 | 100.00% | 0.77 | 0.0050 |

| 2 | 300 | 00:01:18 | 0.5419 | 100.00% | 1.03 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 150 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | NaN | 10.16% | NaN | 0.0050 |

| 1 | 50 | 00:00:25 | NaN | 10.16% | NaN | 0.0050 |

| 1 | 100 | 00:00:50 | NaN | 3.13% | NaN | 0.0050 |

| 2 | 150 | 00:01:31 | NaN | 11.72% | NaN | 0.0050 |

| 2 | 200 | 00:01:56 | NaN | 7.81% | NaN | 0.0050 |

| 2 | 250 | 00:02:21 | NaN | 5.36% | NaN | 0.0050 |

| 3 | 300 | 00:03:02 | NaN | 5.47% | NaN | 0.0050 |

| 3 | 350 | 00:03:28 | NaN | 3.06% | NaN | 0.0050 |

| 3 | 400 | 00:03:53 | NaN | 10.16% | NaN | 0.0050 |

 238

| 3 | 432 | 00:04:10 | NaN | 10.16% | NaN | 0.0050 |

|===

==|

Detector training complete.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'roundbale'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'roundbale' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 1183.976877 seconds.

Elapsed time is 159.679516 seconds.

 239

APPENDIX F.9.2.2.1 Result

APPENDIX F.9.2.3 Inception V3

>> RBDetectorinceptionv3v7

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 240

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 241

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 242

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* roundbale

Step 1 of 4: Training a Region Proposal Network (RPN).

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.8979 | 39.84% | 0.99 | 0.0050 |

| 1 | 50 | 00:00:12 | 0.6468 | 100.00% | 1.30 | 0.0050 |

| 1 | 100 | 00:00:24 | NaN | 32.03% | NaN | 0.0050 |

| 1 | 150 | 00:00:37 | NaN | 8.59% | NaN | 0.0050 |

| 2 | 200 | 00:00:57 | NaN | 21.09% | NaN | 0.0050 |

| 2 | 250 | 00:01:09 | NaN | 32.03% | NaN | 0.0050 |

| 2 | 300 | 00:01:22 | NaN | 8.59% | NaN | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 150 training images...done.

Error using vision.internal.cnn.fastrcnn.imageCentricRegionDatastore (line 153)

Unable to find any region proposals to use as positive training samples. Lower the first

value of PositiveOverlapRange to increase

the number of positive region proposals.

Error in fastRCNNObjectDetector/createTrainingDatastore (line 1212)

 ds = vision.internal.cnn.fastrcnn.imageCentricRegionDatastore(...

Error in fastRCNNObjectDetector.train (line 174)

 ds = fastRCNNObjectDetector.createTrainingDatastore(...

 243

Error in trainFasterRCNNObjectDetector (line 410)

 [stage2Detector, fastRCNN, ~, info(2)] = fastRCNNObjectDetector.train(trainingData,

fastRCNN, options(2),

 iStageTwoParams(params), checkpointSaver);

Error in RBDetectorinceptionv3v7 (line 61)

trainedDetector = trainFasterRCNNObjectDetector(trainingData, net,options)

APPENDIX F.9.2.3.1 Result

Error caused no training to take place

Image 1 – (Mesa Irrigation Co in Lamesa , TX, 2019)

Image 2 – (WorldAgNetwork, 2016)

Image 3 – (Sheridan Reality & Auction Co., 2017)

Image 4 – (newwayirrigation.com, 2019)

Image 5 – (pivotsplus.com, 2019)

Image 6 – (Chicot Irrigation, 2019)

Image 7 – (RainFine Irrigation Solution, 2019)

APPENDIX F.10.1 Run 1

APPENDIX F.10.1.1 GoogLeNet

>> pivotDetectorGoogLeNetv1

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 244

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 245

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 246

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* end_tower

* pyramid

* span

* tower

Step 1 of 4: Training a Region Proposal Network (RPN).

Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The

following rows in trainingData have invalid

bounding box data:

Invalid Rows

20

49

60

65

82

103

131

145

166

178

179

189

218

232

270

271

275

294

298

 247

322

361

367

388

389

438

514

540

601

617

619

637

647

654

685

697

731

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.1908 | 31.25% | 1.60 | 0.0050 |

| 1 | 50 | 00:00:05 | 0.2303 | 100.00% | 0.84 | 0.0050 |

| 1 | 100 | 00:00:10 | 0.0889 | 100.00% | 0.72 | 0.0050 |

| 1 | 150 | 00:00:14 | 0.0823 | 100.00% | 1.17 | 0.0050 |

| 1 | 200 | 00:00:19 | 0.5794 | 100.00% | 1.07 | 0.0050 |

| 1 | 250 | 00:00:24 | 0.1718 | 100.00% | 0.61 | 0.0050 |

| 1 | 300 | 00:00:29 | 0.0431 | 100.00% | 0.58 | 0.0050 |

| 1 | 350 | 00:00:34 | 0.1655 | 100.00% | 0.76 | 0.0050 |

| 1 | 400 | 00:00:39 | 0.1071 | 100.00% | 0.72 | 0.0050 |

| 1 | 450 | 00:00:43 | 0.0809 | 100.00% | 0.75 | 0.0050 |

| 1 | 500 | 00:00:48 | 0.1267 | 100.00% | 0.65 | 0.0050 |

| 1 | 550 | 00:00:53 | 0.0911 | 100.00% | 0.78 | 0.0050 |

| 1 | 600 | 00:00:58 | 0.0666 | 100.00% | 0.57 | 0.0050 |

| 1 | 650 | 00:01:03 | 0.0693 | 100.00% | 0.44 | 0.0050 |

| 1 | 700 | 00:01:08 | 0.0312 | 100.00% | 0.31 | 0.0050 |

| 2 | 750 | 00:01:15 | 0.0035 | 100.00% | 0.30 | 0.0050 |

 248

| 2 | 800 | 00:01:20 | 0.0274 | 100.00% | 0.65 | 0.0050 |

| 2 | 850 | 00:01:25 | 0.0314 | 100.00% | 0.42 | 0.0050 |

| 2 | 900 | 00:01:30 | 0.4175 | 100.00% | 1.40 | 0.0050 |

| 2 | 950 | 00:01:35 | 0.0888 | 100.00% | 0.44 | 0.0050 |

| 2 | 1000 | 00:01:39 | 0.5475 | 100.00% | 0.95 | 0.0050 |

| 2 | 1050 | 00:01:44 | 0.0390 | 100.00% | 0.49 | 0.0050 |

| 2 | 1100 | 00:01:49 | 0.0161 | 100.00% | 0.71 | 0.0050 |

| 2 | 1150 | 00:01:54 | 0.0080 | 100.00% | 0.24 | 0.0050 |

| 2 | 1200 | 00:01:59 | 0.0345 | 100.00% | 0.33 | 0.0050 |

| 2 | 1250 | 00:02:04 | 0.0721 | 100.00% | 0.88 | 0.0050 |

| 2 | 1300 | 00:02:09 | 0.0348 | 100.00% | 0.31 | 0.0050 |

| 2 | 1350 | 00:02:13 | 0.0289 | 100.00% | 0.51 | 0.0050 |

| 2 | 1400 | 00:02:18 | 0.6019 | 100.00% | 1.93 | 0.0050 |

| 2 | 1450 | 00:02:23 | 0.0507 | 100.00% | 0.50 | 0.0050 |

| 2 | 1472 | 00:02:25 | 0.1358 | 100.00% | 0.63 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 736 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.9079 | 8.59% | 0.44 | 0.0050 |

| 1 | 50 | 00:00:12 | 0.3323 | 92.97% | 0.48 | 0.0050 |

| 1 | 100 | 00:00:25 | 0.6256 | 84.38% | 0.43 | 0.0050 |

| 1 | 150 | 00:00:37 | 0.1128 | 98.51% | 0.38 | 0.0050 |

| 1 | 200 | 00:00:50 | 0.2967 | 92.16% | 0.32 | 0.0050 |

| 1 | 250 | 00:01:02 | 0.1984 | 95.24% | 0.36 | 0.0050 |

| 1 | 300 | 00:01:15 | 0.2357 | 94.53% | 0.37 | 0.0050 |

| 1 | 350 | 00:01:27 | 0.2655 | 93.75% | 0.35 | 0.0050 |

| 1 | 400 | 00:01:40 | 0.3230 | 90.63% | 0.43 | 0.0050 |

| 1 | 450 | 00:01:52 | 0.4677 | 86.72% | 0.44 | 0.0050 |

| 1 | 500 | 00:02:05 | 0.3455 | 93.97% | 0.45 | 0.0050 |

| 1 | 550 | 00:02:17 | 0.2663 | 93.75% | 0.49 | 0.0050 |

| 1 | 600 | 00:02:29 | 0.3608 | 90.63% | 0.39 | 0.0050 |

| 1 | 650 | 00:02:42 | 0.2770 | 92.19% | 0.39 | 0.0050 |

| 1 | 700 | 00:02:54 | 0.1447 | 95.31% | 0.26 | 0.0050 |

 249

| 2 | 750 | 00:03:09 | 0.1995 | 95.31% | 0.49 | 0.0050 |

| 2 | 800 | 00:03:22 | 0.2103 | 95.31% | 0.30 | 0.0050 |

| 2 | 850 | 00:03:34 | 0.1183 | 96.88% | 0.33 | 0.0050 |

| 2 | 900 | 00:03:47 | 0.2664 | 96.09% | 0.43 | 0.0050 |

| 2 | 950 | 00:04:00 | 0.1525 | 96.09% | 0.29 | 0.0050 |

| 2 | 1000 | 00:04:12 | 0.1741 | 97.66% | 0.25 | 0.0050 |

| 2 | 1050 | 00:04:25 | 0.1611 | 95.24% | 0.30 | 0.0050 |

| 2 | 1100 | 00:04:38 | 0.2815 | 95.31% | 0.41 | 0.0050 |

| 2 | 1150 | 00:04:50 | 0.1346 | 97.66% | 0.26 | 0.0050 |

| 2 | 1200 | 00:05:03 | 0.6938 | 91.41% | 0.58 | 0.0050 |

| 2 | 1250 | 00:05:15 | 0.1353 | 98.44% | 0.33 | 0.0050 |

| 2 | 1300 | 00:05:27 | 0.0605 | 100.00% | 0.27 | 0.0050 |

| 2 | 1350 | 00:05:40 | 0.3171 | 92.97% | 0.33 | 0.0050 |

| 2 | 1400 | 00:05:53 | 0.0782 | 98.44% | 0.26 | 0.0050 |

| 2 | 1450 | 00:06:05 | 0.1727 | 96.09% | 0.24 | 0.0050 |

| 2 | 1466 | 00:06:09 | 0.1023 | 97.66% | 0.23 | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.5346 | 100.00% | 1.48 | 0.0050 |

| 1 | 50 | 00:00:02 | 0.9156 | 100.00% | 1.27 | 0.0050 |

| 1 | 100 | 00:00:05 | 0.0186 | 100.00% | 0.41 | 0.0050 |

| 1 | 150 | 00:00:08 | 0.1738 | 100.00% | 0.83 | 0.0050 |

| 1 | 200 | 00:00:11 | 0.3531 | 100.00% | 0.88 | 0.0050 |

| 1 | 250 | 00:00:13 | 0.3582 | 100.00% | 0.95 | 0.0050 |

| 1 | 300 | 00:00:16 | 0.1939 | 100.00% | 0.65 | 0.0050 |

| 1 | 350 | 00:00:19 | 0.8208 | 100.00% | 1.71 | 0.0050 |

| 1 | 400 | 00:00:22 | 0.1159 | 100.00% | 0.61 | 0.0050 |

| 1 | 450 | 00:00:24 | 0.0247 | 100.00% | 0.59 | 0.0050 |

| 1 | 500 | 00:00:27 | 0.0197 | 100.00% | 0.49 | 0.0050 |

| 1 | 550 | 00:00:30 | 0.0161 | 100.00% | 0.49 | 0.0050 |

| 1 | 600 | 00:00:33 | 1.0538 | 100.00% | 2.17 | 0.0050 |

| 1 | 650 | 00:00:35 | 0.0939 | 100.00% | 0.74 | 0.0050 |

| 1 | 700 | 00:00:38 | 0.0100 | 100.00% | 0.38 | 0.0050 |

| 2 | 750 | 00:00:43 | 0.2990 | 100.00% | 0.90 | 0.0050 |

 250

| 2 | 800 | 00:00:46 | 0.1959 | 100.00% | 0.70 | 0.0050 |

| 2 | 850 | 00:00:49 | 0.0095 | 100.00% | 0.42 | 0.0050 |

| 2 | 900 | 00:00:52 | 0.1408 | 100.00% | 0.58 | 0.0050 |

| 2 | 950 | 00:00:54 | 0.0808 | 100.00% | 0.47 | 0.0050 |

| 2 | 1000 | 00:00:57 | 0.0103 | 100.00% | 0.52 | 0.0050 |

| 2 | 1050 | 00:01:00 | 0.0460 | 100.00% | 0.56 | 0.0050 |

| 2 | 1100 | 00:01:03 | 0.1228 | 100.00% | 0.73 | 0.0050 |

| 2 | 1150 | 00:01:06 | 0.2649 | 100.00% | 1.06 | 0.0050 |

| 2 | 1200 | 00:01:08 | 0.0144 | 100.00% | 0.41 | 0.0050 |

| 2 | 1250 | 00:01:11 | 0.1458 | 100.00% | 0.54 | 0.0050 |

| 2 | 1300 | 00:01:14 | 0.1317 | 100.00% | 0.59 | 0.0050 |

| 2 | 1350 | 00:01:17 | 0.2456 | 100.00% | 0.65 | 0.0050 |

| 2 | 1400 | 00:01:19 | 0.2157 | 100.00% | 0.92 | 0.0050 |

| 2 | 1450 | 00:01:22 | 0.0945 | 100.00% | 0.60 | 0.0050 |

| 2 | 1472 | 00:01:23 | 0.0854 | 100.00% | 0.45 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 736 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.3201 | 92.19% | 0.48 | 0.0050 |

| 1 | 50 | 00:00:09 | 0.2732 | 92.97% | 0.30 | 0.0050 |

| 1 | 100 | 00:00:18 | 0.1906 | 96.09% | 0.36 | 0.0050 |

| 1 | 150 | 00:00:27 | 0.2854 | 87.50% | 0.32 | 0.0050 |

| 1 | 200 | 00:00:36 | 0.2149 | 96.88% | 0.37 | 0.0050 |

| 1 | 250 | 00:00:46 | 0.1117 | 95.83% | 0.30 | 0.0050 |

| 1 | 300 | 00:00:55 | 0.1404 | 96.09% | 0.24 | 0.0050 |

| 1 | 350 | 00:01:05 | 0.1555 | 95.73% | 0.36 | 0.0050 |

| 1 | 400 | 00:01:14 | 0.1542 | 96.88% | 0.31 | 0.0050 |

| 1 | 450 | 00:01:23 | 0.2406 | 96.09% | 0.23 | 0.0050 |

| 1 | 500 | 00:01:33 | 0.2164 | 92.97% | 0.26 | 0.0050 |

| 1 | 550 | 00:01:42 | 0.1667 | 96.09% | 0.24 | 0.0050 |

| 1 | 600 | 00:01:52 | 0.1604 | 94.53% | 0.26 | 0.0050 |

| 1 | 650 | 00:02:01 | 0.2190 | 94.53% | 0.30 | 0.0050 |

| 1 | 700 | 00:02:11 | 0.2615 | 94.29% | 0.53 | 0.0050 |

 251

| 2 | 750 | 00:02:23 | 0.1665 | 96.88% | 0.37 | 0.0050 |

| 2 | 800 | 00:02:32 | 0.1847 | 94.53% | 0.28 | 0.0050 |

| 2 | 850 | 00:02:41 | 0.2056 | 96.88% | 0.24 | 0.0050 |

| 2 | 900 | 00:02:51 | 0.1138 | 96.25% | 0.24 | 0.0050 |

| 2 | 950 | 00:03:00 | 0.0190 | 100.00% | 0.29 | 0.0050 |

| 2 | 1000 | 00:03:09 | 0.1074 | 95.70% | 0.29 | 0.0050 |

| 2 | 1050 | 00:03:19 | 0.0920 | 98.44% | 0.27 | 0.0050 |

| 2 | 1100 | 00:03:28 | 0.1547 | 96.09% | 0.24 | 0.0050 |

| 2 | 1150 | 00:03:37 | 0.1460 | 95.31% | 0.20 | 0.0050 |

| 2 | 1200 | 00:03:47 | 0.1846 | 96.88% | 0.27 | 0.0050 |

| 2 | 1250 | 00:03:56 | 0.1339 | 95.31% | 0.23 | 0.0050 |

| 2 | 1300 | 00:04:05 | 0.1927 | 93.75% | 0.23 | 0.0050 |

| 2 | 1350 | 00:04:15 | 0.0730 | 99.22% | 0.20 | 0.0050 |

| 2 | 1400 | 00:04:24 | 0.0994 | 94.55% | 0.24 | 0.0050 |

| 2 | 1450 | 00:04:34 | 0.1426 | 95.31% | 0.16 | 0.0050 |

| 3 | 1500 | 00:04:46 | 0.1497 | 94.53% | 0.19 | 0.0050 |

| 3 | 1550 | 00:04:55 | 0.1485 | 93.75% | 0.27 | 0.0050 |

| 3 | 1600 | 00:05:05 | 0.1995 | 95.31% | 0.27 | 0.0050 |

| 3 | 1650 | 00:05:14 | 0.0553 | 100.00% | 0.19 | 0.0050 |

| 3 | 1700 | 00:05:23 | 0.1359 | 96.09% | 0.23 | 0.0050 |

| 3 | 1750 | 00:05:33 | 0.0795 | 97.66% | 0.19 | 0.0050 |

| 3 | 1800 | 00:05:42 | 0.0811 | 97.66% | 0.18 | 0.0050 |

| 3 | 1850 | 00:05:51 | 0.1497 | 95.31% | 0.34 | 0.0050 |

| 3 | 1900 | 00:06:00 | 0.3133 | 92.19% | 0.34 | 0.0050 |

| 3 | 1950 | 00:06:10 | 0.1670 | 94.53% | 0.22 | 0.0050 |

| 3 | 2000 | 00:06:19 | 0.1671 | 96.09% | 0.20 | 0.0050 |

| 3 | 2050 | 00:06:29 | 0.0817 | 98.44% | 0.21 | 0.0050 |

| 3 | 2100 | 00:06:38 | 0.0613 | 98.86% | 0.38 | 0.0050 |

| 3 | 2150 | 00:06:48 | 0.0705 | 96.88% | 0.16 | 0.0050 |

| 3 | 2200 | 00:06:57 | 0.1243 | 96.88% | 0.22 | 0.0050 |

| 3 | 2205 | 00:06:58 | 0.1876 | 94.53% | 0.21 | 0.0050 |

|===

==|

Detector training complete (with warnings):

Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The

following rows in trainingData have invalid

bounding box data:

Invalid Rows

20

49

 252

60

65

82

103

131

145

166

178

179

189

218

232

270

271

275

294

298

322

361

367

388

389

438

514

540

601

617

619

637

647

654

685

697

731

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

trainedDetector =

 253

 fasterRCNNObjectDetector with properties:

 ModelName: 'end_tower'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'end_tower' 'pyramid' 'span' 'tower' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 1177.149515 seconds.

 254

APPENDIX F.10.1.1.1 Result

 255

 256

APPENDIX F.10.1.1.2 Results on test pictures

 257

 258

APPENDIX F.10.1.2 Resnet101

>> pivotDetectorResNet101v2

optionsStage1 =

 TrainingOptionsSGDM with properties:

 259

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 260

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 261

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* end_tower

* pyramid

* span

* tower

Step 1 of 4: Training a Region Proposal Network (RPN).

Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The

following rows in trainingData have invalid

bounding box data:

Invalid Rows

20

49

60

65

82

103

131

145

166

178

179

 262

189

218

232

270

271

275

294

298

322

361

367

388

389

438

514

540

601

617

619

637

647

654

685

697

731

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.2775 | 19.53% | 0.86 | 0.0050 |

| 1 | 50 | 00:00:20 | 0.2552 | 100.00% | 0.91 | 0.0050 |

| 1 | 100 | 00:00:39 | 0.1866 | 100.00% | 0.64 | 0.0050 |

| 1 | 150 | 00:00:59 | 0.0626 | 100.00% | 0.66 | 0.0050 |

| 1 | 200 | 00:01:19 | 0.0674 | 100.00% | 1.02 | 0.0050 |

| 1 | 250 | 00:01:39 | 0.0211 | 100.00% | 0.45 | 0.0050 |

| 1 | 300 | 00:01:58 | 0.2734 | 100.00% | 0.90 | 0.0050 |

| 1 | 350 | 00:02:18 | 0.0318 | 100.00% | 1.74 | 0.0050 |

 263

| 1 | 400 | 00:02:38 | 0.0257 | 100.00% | 0.61 | 0.0050 |

| 1 | 450 | 00:02:58 | 0.0997 | 100.00% | 0.74 | 0.0050 |

| 1 | 500 | 00:03:17 | 0.0700 | 100.00% | 0.90 | 0.0050 |

| 1 | 550 | 00:03:37 | 0.1365 | 100.00% | 0.59 | 0.0050 |

| 1 | 600 | 00:03:57 | 0.0115 | 100.00% | 0.33 | 0.0050 |

| 1 | 650 | 00:04:17 | 0.1751 | 100.00% | 1.13 | 0.0050 |

| 1 | 700 | 00:04:36 | 0.0624 | 100.00% | 0.46 | 0.0050 |

| 2 | 750 | 00:05:11 | 0.0868 | 100.00% | 0.44 | 0.0050 |

| 2 | 800 | 00:05:31 | 0.0143 | 100.00% | 0.47 | 0.0050 |

| 2 | 850 | 00:05:51 | 0.0745 | 100.00% | 0.38 | 0.0050 |

| 2 | 900 | 00:06:10 | 0.1022 | 100.00% | 0.51 | 0.0050 |

| 2 | 950 | 00:06:30 | 0.1577 | 100.00% | 0.60 | 0.0050 |

| 2 | 1000 | 00:06:50 | 0.0795 | 100.00% | 0.53 | 0.0050 |

| 2 | 1050 | 00:07:10 | 0.2771 | 100.00% | 1.14 | 0.0050 |

| 2 | 1100 | 00:07:29 | 0.1340 | 100.00% | 0.94 | 0.0050 |

| 2 | 1150 | 00:07:49 | 0.0729 | 100.00% | 0.40 | 0.0050 |

| 2 | 1200 | 00:08:09 | 0.0753 | 100.00% | 0.39 | 0.0050 |

| 2 | 1250 | 00:08:29 | 0.0658 | 100.00% | 0.50 | 0.0050 |

| 2 | 1300 | 00:08:48 | 0.0416 | 100.00% | 0.90 | 0.0050 |

| 2 | 1350 | 00:09:08 | 0.1429 | 100.00% | 0.53 | 0.0050 |

| 2 | 1400 | 00:09:28 | 0.0033 | 100.00% | 0.18 | 0.0050 |

| 2 | 1450 | 00:09:48 | 0.0075 | 100.00% | 0.34 | 0.0050 |

| 2 | 1472 | 00:09:57 | 0.0538 | 100.00% | 0.37 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 736 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:01 | 1.7373 | 15.38% | 0.52 | 0.0050 |

| 1 | 50 | 00:00:41 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 100 | 00:01:22 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 150 | 00:02:03 | NaN | 1.56% | NaN | 0.0050 |

| 1 | 200 | 00:02:44 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 250 | 00:03:25 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 300 | 00:04:07 | NaN | 4.65% | NaN | 0.0050 |

 264

| 1 | 350 | 00:04:48 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 400 | 00:05:29 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 450 | 00:06:11 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 500 | 00:06:52 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 550 | 00:07:33 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 600 | 00:08:14 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 650 | 00:08:56 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 700 | 00:09:37 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 750 | 00:10:34 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 800 | 00:11:15 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 850 | 00:11:56 | NaN | 1.56% | NaN | 0.0050 |

| 2 | 900 | 00:12:37 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 950 | 00:13:19 | NaN | 1.56% | NaN | 0.0050 |

| 2 | 1000 | 00:14:00 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1050 | 00:14:42 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1100 | 00:15:23 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1150 | 00:16:04 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1200 | 00:16:45 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1250 | 00:17:27 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1300 | 00:18:08 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1350 | 00:18:49 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1400 | 00:19:31 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1450 | 00:20:12 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1470 | 00:20:28 | NaN | 6.31% | NaN | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.7405 | 100.00% | 0.71 | 0.0050 |

| 1 | 50 | 00:00:11 | 0.3752 | 100.00% | 0.69 | 0.0050 |

| 1 | 100 | 00:00:21 | 0.2460 | 100.00% | 0.69 | 0.0050 |

| 1 | 150 | 00:00:33 | 0.5888 | 100.00% | 1.47 | 0.0050 |

| 1 | 200 | 00:00:44 | 0.1934 | 100.00% | 0.80 | 0.0050 |

| 1 | 250 | 00:00:55 | 0.1820 | 100.00% | 0.70 | 0.0050 |

| 1 | 300 | 00:01:07 | 0.0672 | 100.00% | 0.88 | 0.0050 |

| 1 | 350 | 00:01:18 | 0.2913 | 100.00% | 0.80 | 0.0050 |

 265

| 1 | 400 | 00:01:29 | 0.1006 | 100.00% | 0.93 | 0.0050 |

| 1 | 450 | 00:01:40 | 0.0643 | 100.00% | 0.83 | 0.0050 |

| 1 | 500 | 00:01:51 | 0.1859 | 100.00% | 0.82 | 0.0050 |

| 1 | 550 | 00:02:02 | 0.0540 | 100.00% | 0.67 | 0.0050 |

| 1 | 600 | 00:02:13 | 0.0811 | 100.00% | 0.95 | 0.0050 |

| 1 | 650 | 00:02:24 | 0.0446 | 100.00% | 0.93 | 0.0050 |

| 1 | 700 | 00:02:35 | 0.2030 | 100.00% | 0.71 | 0.0050 |

| 2 | 750 | 00:02:59 | 0.2437 | 100.00% | 1.11 | 0.0050 |

| 2 | 800 | 00:03:10 | 0.1709 | 100.00% | 0.73 | 0.0050 |

| 2 | 850 | 00:03:21 | 1.0493 | 100.00% | 2.20 | 0.0050 |

| 2 | 900 | 00:03:32 | 0.4017 | 100.00% | 0.73 | 0.0050 |

| 2 | 950 | 00:03:43 | 0.1087 | 100.00% | 0.59 | 0.0050 |

| 2 | 1000 | 00:03:54 | 0.1086 | 100.00% | 0.81 | 0.0050 |

| 2 | 1050 | 00:04:05 | 0.0155 | 100.00% | 0.94 | 0.0050 |

| 2 | 1100 | 00:04:16 | 0.5464 | 100.00% | 1.66 | 0.0050 |

| 2 | 1150 | 00:04:27 | 0.0582 | 100.00% | 0.85 | 0.0050 |

| 2 | 1200 | 00:04:38 | 0.2967 | 100.00% | 0.66 | 0.0050 |

| 2 | 1250 | 00:04:49 | 0.1426 | 100.00% | 0.85 | 0.0050 |

| 2 | 1300 | 00:05:00 | 0.0708 | 100.00% | 0.88 | 0.0050 |

| 2 | 1350 | 00:05:11 | 0.0531 | 100.00% | 0.92 | 0.0050 |

| 2 | 1400 | 00:05:22 | 0.1185 | 100.00% | 1.28 | 0.0050 |

| 2 | 1450 | 00:05:33 | 0.0608 | 100.00% | 0.67 | 0.0050 |

| 2 | 1472 | 00:05:37 | 0.0950 | 100.00% | 0.91 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 736 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | NaN | 1.56% | NaN | 0.0050 |

| 1 | 50 | 00:00:25 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 100 | 00:00:50 | NaN | 1.56% | NaN | 0.0050 |

| 1 | 150 | 00:01:15 | NaN | 3.13% | NaN | 0.0050 |

| 1 | 200 | 00:01:40 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 250 | 00:02:06 | NaN | 1.61% | NaN | 0.0050 |

| 1 | 300 | 00:02:32 | NaN | 1.56% | NaN | 0.0050 |

 266

| 1 | 350 | 00:02:57 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 400 | 00:03:22 | NaN | 5.47% | NaN | 0.0050 |

| 1 | 450 | 00:03:48 | NaN | 5.69% | NaN | 0.0050 |

| 1 | 500 | 00:04:13 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 550 | 00:04:38 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 600 | 00:05:03 | NaN | 0.00% | NaN | 0.0050 |

| 1 | 650 | 00:05:29 | NaN | 1.56% | NaN | 0.0050 |

| 2 | 700 | 00:06:09 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 750 | 00:06:33 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 800 | 00:06:59 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 850 | 00:07:24 | NaN | 1.57% | NaN | 0.0050 |

| 2 | 900 | 00:07:50 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 950 | 00:08:16 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1000 | 00:08:41 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1050 | 00:09:06 | NaN | 4.48% | NaN | 0.0050 |

| 2 | 1100 | 00:09:32 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1150 | 00:09:57 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1200 | 00:10:22 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1250 | 00:10:48 | NaN | 0.00% | NaN | 0.0050 |

| 2 | 1300 | 00:11:13 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1350 | 00:11:53 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1400 | 00:12:18 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1450 | 00:12:44 | NaN | 1.56% | NaN | 0.0050 |

| 3 | 1500 | 00:13:09 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1550 | 00:13:35 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1600 | 00:14:01 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1650 | 00:14:26 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1700 | 00:14:51 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1750 | 00:15:16 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1800 | 00:15:42 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1850 | 00:16:07 | NaN | 0.00% | NaN | 0.0050 |

| 3 | 1900 | 00:16:32 | NaN | 0.78% | NaN | 0.0050 |

| 3 | 1950 | 00:16:58 | NaN | 10.98% | NaN | 0.0050 |

| 3 | 1986 | 00:17:16 | NaN | 0.00% | NaN | 0.0050 |

|===

==|

Detector training complete (with warnings):

Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The

following rows in trainingData have invalid

bounding box data:

Invalid Rows

 267

20

49

60

65

82

103

131

145

166

178

179

189

218

232

270

271

275

294

298

322

361

367

388

389

438

514

540

601

617

619

637

647

654

685

697

731

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

 268

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'end_tower'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'end_tower' 'pyramid' 'span' 'tower' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 3622.019200 seconds.

 269

APPENDIX F.10.1.2.1 Result

 270

 271

APPENDIX F.10.2 Run 2

APPENDIX F.10.2.1 GoogLeNet

>> pivotDetectorGoogLeNetv3

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 272

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 273

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* end_tower

* pyramid

* span

* tower

Step 1 of 4: Training a Region Proposal Network (RPN).

Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The

following rows in trainingData have invalid

bounding box data:

Invalid Rows

20

49

 274

60

65

82

103

131

145

166

178

179

189

218

232

270

271

275

294

298

322

361

367

388

389

438

514

540

601

617

619

637

647

654

685

697

731

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

 275

|===

==|

| 1 | 1 | 00:00:00 | 1.1823 | 23.44% | 2.38 | 0.0050 |

| 1 | 50 | 00:00:04 | 0.3574 | 100.00% | 0.92 | 0.0050 |

| 1 | 100 | 00:00:09 | 0.1485 | 100.00% | 0.99 | 0.0050 |

| 1 | 150 | 00:00:14 | 0.2256 | 100.00% | 0.68 | 0.0050 |

| 1 | 200 | 00:00:19 | 0.4887 | 100.00% | 1.87 | 0.0050 |

| 1 | 250 | 00:00:24 | 0.1242 | 100.00% | 0.63 | 0.0050 |

| 1 | 300 | 00:00:29 | 0.1256 | 100.00% | 0.63 | 0.0050 |

| 1 | 350 | 00:00:34 | 0.2036 | 100.00% | 0.89 | 0.0050 |

| 1 | 400 | 00:00:39 | 0.0728 | 100.00% | 0.89 | 0.0050 |

| 1 | 450 | 00:00:44 | 0.1027 | 100.00% | 0.62 | 0.0050 |

| 1 | 500 | 00:00:48 | 0.1459 | 100.00% | 0.61 | 0.0050 |

| 1 | 550 | 00:00:53 | 0.0594 | 100.00% | 0.42 | 0.0050 |

| 1 | 600 | 00:00:58 | 0.0295 | 100.00% | 0.39 | 0.0050 |

| 1 | 650 | 00:01:03 | 0.1691 | 100.00% | 0.69 | 0.0050 |

| 1 | 700 | 00:01:08 | 0.1186 | 100.00% | 0.54 | 0.0050 |

| 2 | 750 | 00:01:15 | 0.0840 | 100.00% | 0.61 | 0.0050 |

| 2 | 800 | 00:01:20 | 0.0100 | 100.00% | 0.24 | 0.0050 |

| 2 | 850 | 00:01:25 | 0.1041 | 100.00% | 0.75 | 0.0050 |

| 2 | 900 | 00:01:30 | 0.0658 | 100.00% | 0.59 | 0.0050 |

| 2 | 950 | 00:01:35 | 0.2962 | 100.00% | 1.13 | 0.0050 |

| 2 | 1000 | 00:01:40 | 0.1418 | 100.00% | 0.56 | 0.0050 |

| 2 | 1050 | 00:01:45 | 0.0117 | 100.00% | 0.49 | 0.0050 |

| 2 | 1100 | 00:01:50 | 0.0128 | 100.00% | 0.28 | 0.0050 |

| 2 | 1150 | 00:01:55 | 0.0977 | 100.00% | 0.84 | 0.0050 |

| 2 | 1200 | 00:02:00 | 0.0242 | 100.00% | 0.88 | 0.0050 |

| 2 | 1250 | 00:02:04 | 0.0064 | 100.00% | 0.29 | 0.0050 |

| 2 | 1300 | 00:02:09 | 0.0501 | 100.00% | 0.40 | 0.0050 |

| 2 | 1350 | 00:02:14 | 0.0741 | 100.00% | 0.38 | 0.0050 |

| 2 | 1400 | 00:02:19 | 0.0353 | 100.00% | 0.28 | 0.0050 |

| 2 | 1450 | 00:02:24 | 0.0500 | 100.00% | 0.65 | 0.0050 |

| 2 | 1472 | 00:02:26 | 0.0068 | 100.00% | 0.21 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 736 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

 276

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 1.7669 | 14.84% | 0.54 | 0.0050 |

| 1 | 50 | 00:00:12 | 0.1832 | 97.66% | 0.60 | 0.0050 |

| 1 | 100 | 00:00:24 | 0.7543 | 83.59% | 0.46 | 0.0050 |

| 1 | 150 | 00:00:36 | 0.2363 | 95.69% | 0.48 | 0.0050 |

| 1 | 200 | 00:00:48 | 0.2684 | 94.53% | 0.40 | 0.0050 |

| 1 | 250 | 00:01:01 | 0.3447 | 92.11% | 0.54 | 0.0050 |

| 1 | 300 | 00:01:13 | 0.2733 | 90.63% | 0.27 | 0.0050 |

| 1 | 350 | 00:01:25 | 0.3854 | 91.41% | 0.40 | 0.0050 |

| 1 | 400 | 00:01:37 | 0.2960 | 92.19% | 0.39 | 0.0050 |

| 1 | 450 | 00:01:50 | 0.2223 | 93.75% | 0.39 | 0.0050 |

| 1 | 500 | 00:02:02 | 0.1925 | 95.31% | 0.35 | 0.0050 |

| 1 | 550 | 00:02:15 | 0.1724 | 96.09% | 0.30 | 0.0050 |

| 1 | 600 | 00:02:27 | 0.1915 | 93.75% | 0.26 | 0.0050 |

| 1 | 650 | 00:02:39 | 0.1623 | 94.53% | 0.36 | 0.0050 |

| 1 | 700 | 00:02:52 | 0.1298 | 96.43% | 0.34 | 0.0050 |

| 2 | 750 | 00:03:08 | 0.1871 | 97.26% | 0.49 | 0.0050 |

| 2 | 800 | 00:03:20 | 0.3179 | 93.64% | 0.59 | 0.0050 |

| 2 | 850 | 00:03:32 | 0.1845 | 93.69% | 0.37 | 0.0050 |

| 2 | 900 | 00:03:45 | 0.1539 | 95.31% | 0.28 | 0.0050 |

| 2 | 950 | 00:03:57 | 0.1061 | 96.88% | 0.26 | 0.0050 |

| 2 | 1000 | 00:04:10 | 0.2084 | 96.88% | 0.28 | 0.0050 |

| 2 | 1050 | 00:04:22 | 0.1239 | 97.66% | 0.23 | 0.0050 |

| 2 | 1100 | 00:04:34 | 0.1504 | 96.88% | 0.27 | 0.0050 |

| 2 | 1150 | 00:04:47 | 0.1735 | 96.09% | 0.34 | 0.0050 |

| 2 | 1200 | 00:04:59 | 0.0720 | 98.44% | 0.23 | 0.0050 |

| 2 | 1250 | 00:05:12 | 0.1345 | 97.56% | 0.38 | 0.0050 |

| 2 | 1300 | 00:05:25 | 0.0682 | 99.21% | 0.24 | 0.0050 |

load('E:\MERGED DETECTOR\shuffleMergedLabels.mat')

| 2 | 1350 | 00:05:37 | 0.3480 | 88.28% | 0.31 | 0.0050 |

| 2 | 1400 | 00:05:50 | 0.2593 | 95.56% | 0.59 | 0.0050 |

| 2 | 1450 | 00:06:03 | 0.1586 | 96.88% | 0.30 | 0.0050 |

| 2 | 1466 | 00:06:07 | 0.1684 | 92.19% | 0.21 | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

 277

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.3273 | 100.00% | 0.95 | 0.0050 |

| 1 | 50 | 00:00:02 | 0.3519 | 100.00% | 1.07 | 0.0050 |

| 1 | 100 | 00:00:05 | 0.1038 | 100.00% | 0.50 | 0.0050 |

| 1 | 150 | 00:00:08 | 0.2377 | 100.00% | 0.84 | 0.0050 |

| 1 | 200 | 00:00:11 | 0.1271 | 100.00% | 0.57 | 0.0050 |

| 1 | 250 | 00:00:14 | 0.0782 | 100.00% | 0.48 | 0.0050 |

| 1 | 300 | 00:00:16 | 0.0791 | 100.00% | 0.51 | 0.0050 |

| 1 | 350 | 00:00:19 | 0.3088 | 100.00% | 0.85 | 0.0050 |

| 1 | 400 | 00:00:22 | 0.0160 | 100.00% | 1.00 | 0.0050 |

| 1 | 450 | 00:00:25 | 0.0605 | 100.00% | 1.40 | 0.0050 |

| 1 | 500 | 00:00:28 | 0.1742 | 100.00% | 1.23 | 0.0050 |

| 1 | 550 | 00:00:30 | 0.2190 | 100.00% | 0.61 | 0.0050 |

| 1 | 600 | 00:00:33 | 0.1348 | 100.00% | 0.80 | 0.0050 |

| 1 | 650 | 00:00:36 | 0.1170 | 100.00% | 0.49 | 0.0050 |

| 1 | 700 | 00:00:39 | 0.1860 | 100.00% | 0.75 | 0.0050 |

| 2 | 750 | 00:00:44 | 0.4218 | 100.00% | 1.31 | 0.0050 |

| 2 | 800 | 00:00:47 | 0.0065 | 100.00% | 0.26 | 0.0050 |

| 2 | 850 | 00:00:50 | 0.0292 | 100.00% | 0.35 | 0.0050 |

| 2 | 900 | 00:00:52 | 0.0523 | 100.00% | 0.44 | 0.0050 |

| 2 | 950 | 00:00:55 | 0.0158 | 100.00% | 0.48 | 0.0050 |

| 2 | 1000 | 00:00:58 | 0.2794 | 100.00% | 0.69 | 0.0050 |

| 2 | 1050 | 00:01:01 | 0.0849 | 100.00% | 0.50 | 0.0050 |

| 2 | 1100 | 00:01:04 | 0.0805 | 100.00% | 0.50 | 0.0050 |

| 2 | 1150 | 00:01:06 | 0.0076 | 100.00% | 0.38 | 0.0050 |

| 2 | 1200 | 00:01:09 | 0.0091 | 100.00% | 0.36 | 0.0050 |

| 2 | 1250 | 00:01:12 | 0.0872 | 100.00% | 0.69 | 0.0050 |

| 2 | 1300 | 00:01:15 | 0.1124 | 100.00% | 0.53 | 0.0050 |

| 2 | 1350 | 00:01:18 | 0.0277 | 100.00% | 0.39 | 0.0050 |

| 2 | 1400 | 00:01:20 | 0.0788 | 100.00% | 0.51 | 0.0050 |

| 2 | 1450 | 00:01:23 | 0.0956 | 100.00% | 0.50 | 0.0050 |

| 2 | 1472 | 00:01:24 | 0.0073 | 100.00% | 0.45 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 736 training images...done.

Training on single GPU.

|===

==|

 278

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.4129 | 88.28% | 0.30 | 0.0050 |

| 1 | 50 | 00:00:09 | 0.1602 | 96.09% | 0.24 | 0.0050 |

| 1 | 100 | 00:00:18 | 0.2589 | 92.19% | 0.33 | 0.0050 |

| 1 | 150 | 00:00:27 | 0.2009 | 96.77% | 0.30 | 0.0050 |

| 1 | 200 | 00:00:37 | 0.0439 | 99.22% | 0.30 | 0.0050 |

| 1 | 250 | 00:00:46 | 0.1498 | 97.66% | 0.21 | 0.0050 |

| 1 | 300 | 00:00:55 | 0.3130 | 92.19% | 0.27 | 0.0050 |

| 1 | 350 | 00:01:05 | 0.3609 | 93.75% | 0.47 | 0.0050 |

| 1 | 400 | 00:01:14 | 0.0831 | 98.44% | 0.37 | 0.0050 |

| 1 | 450 | 00:01:23 | 0.1504 | 94.53% | 0.22 | 0.0050 |

| 1 | 500 | 00:01:33 | 0.0795 | 98.44% | 0.25 | 0.0050 |

| 1 | 550 | 00:01:42 | 0.2080 | 92.97% | 0.22 | 0.0050 |

| 1 | 600 | 00:01:51 | 0.0682 | 98.44% | 0.26 | 0.0050 |

| 1 | 650 | 00:02:00 | 0.2193 | 92.97% | 0.24 | 0.0050 |

| 1 | 700 | 00:02:10 | 0.1804 | 92.97% | 0.31 | 0.0050 |

| 2 | 750 | 00:02:23 | 0.2360 | 94.53% | 0.29 | 0.0050 |

| 2 | 800 | 00:02:32 | 0.1425 | 97.66% | 0.50 | 0.0050 |

| 2 | 850 | 00:02:41 | 0.1540 | 96.09% | 0.21 | 0.0050 |

| 2 | 900 | 00:02:51 | 0.0908 | 99.22% | 0.25 | 0.0050 |

| 2 | 950 | 00:03:00 | 0.3021 | 90.63% | 0.25 | 0.0050 |

| 2 | 1000 | 00:03:10 | 0.1644 | 96.88% | 0.26 | 0.0050 |

| 2 | 1050 | 00:03:19 | 0.2113 | 92.97% | 0.27 | 0.0050 |

| 2 | 1100 | 00:03:28 | 0.0690 | 98.44% | 0.29 | 0.0050 |

| 2 | 1150 | 00:03:38 | 0.2397 | 95.31% | 0.37 | 0.0050 |

| 2 | 1200 | 00:03:47 | 0.0985 | 98.44% | 0.34 | 0.0050 |

| 2 | 1250 | 00:03:57 | 0.1410 | 96.09% | 0.22 | 0.0050 |

| 2 | 1300 | 00:04:06 | 0.3255 | 89.84% | 0.22 | 0.0050 |

| 2 | 1350 | 00:04:16 | 0.0885 | 97.66% | 0.21 | 0.0050 |

| 2 | 1400 | 00:04:25 | 0.1506 | 94.53% | 0.22 | 0.0050 |

| 2 | 1450 | 00:04:35 | 0.1794 | 95.31% | 0.34 | 0.0050 |

| 3 | 1500 | 00:04:47 | 0.2395 | 94.53% | 0.36 | 0.0050 |

| 3 | 1550 | 00:04:56 | 0.1395 | 96.88% | 0.29 | 0.0050 |

| 3 | 1600 | 00:05:06 | 0.0794 | 97.66% | 0.19 | 0.0050 |

| 3 | 1650 | 00:05:15 | 0.1622 | 96.09% | 0.24 | 0.0050 |

| 3 | 1700 | 00:05:25 | 0.0919 | 98.44% | 0.23 | 0.0050 |

| 3 | 1750 | 00:05:34 | 0.1105 | 96.55% | 0.35 | 0.0050 |

| 3 | 1800 | 00:05:43 | 0.1625 | 96.09% | 0.29 | 0.0050 |

| 3 | 1850 | 00:05:53 | 0.0967 | 98.44% | 0.22 | 0.0050 |

| 3 | 1900 | 00:06:02 | 0.1704 | 96.09% | 0.25 | 0.0050 |

 279

| 3 | 1950 | 00:06:12 | 0.2008 | 95.31% | 0.32 | 0.0050 |

| 3 | 2000 | 00:06:21 | 0.0934 | 98.44% | 0.19 | 0.0050 |

| 3 | 2050 | 00:06:30 | 0.1384 | 97.66% | 0.20 | 0.0050 |

| 3 | 2100 | 00:06:40 | 0.1627 | 96.88% | 0.23 | 0.0050 |

| 3 | 2150 | 00:06:49 | 0.2234 | 92.19% | 0.20 | 0.0050 |

| 3 | 2196 | 00:06:58 | 0.0872 | 99.22% | 0.19 | 0.0050 |

|===

==|

Detector training complete (with warnings):

Warning: Invalid bounding boxes from 36 out of 738 training images were removed. The

following rows in trainingData have invalid

bounding box data:

Invalid Rows

20

49

60

65

82

103

131

145

166

178

179

189

218

232

270

271

275

294

298

322

361

367

388

389

438

514

540

 280

601

617

619

637

647

654

685

697

731

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'end_tower'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'end_tower' 'pyramid' 'span' 'tower' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 1169.963024 seconds.

 281

APPENDIX F.10.2.1.1 Result

 282

 283

APPENDIX F.10.2.1.2 Results on test pictures

 284

 285

 286

APPENDIX F.10.2.2 Resnet101

N/A

APPENDIX F.10.2.2.1 Result

N/A

Image 1 – (beefmagazine.com, 2014)

Image 2 – (Keeping It Dutch, 2015)

Image 3 – (AuctionTime Blog, 2018)

Image 4 – (Vishal Agro Industries, 2019)

Image 5 – (New Holland, 2017)

Image 6 – (Wiring Schematic Design, 2019)

Image 7 – (Vodar Co., Ltd., 2019)

Image 8 – (Lindsay Europe, 2019)

 287

Image 9 – (Denise O’Sullivan, 2019)

Image 10 – (Tracey Media, 2013)

APPENDIX F.11.1 GoogLeNet Run 1

>> combinedMergedDetectorv1

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 288

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 289

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

* roundbale

* end_tower

* pyramid

* span

* tower

Step 1 of 4: Training a Region Proposal Network (RPN).

Warning: Invalid bounding boxes from 31 out of 1014 training images were removed.

The following rows in trainingData have invalid

bounding box data:

 290

Invalid Rows

17

75

194

199

202

249

253

261

290

309

369

395

399

498

617

652

678

679

703

717

731

752

767

806

808

811

816

864

897

920

937

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

 291

|===

==|

| 1 | 1 | 00:00:00 | 0.9553 | 41.41% | 1.89 | 0.0050 |

| 1 | 50 | 00:00:05 | 0.4520 | 100.00% | 1.02 | 0.0050 |

| 1 | 100 | 00:00:10 | 1.4376 | 100.00% | 2.92 | 0.0050 |

| 1 | 150 | 00:00:15 | 0.4824 | 100.00% | 0.89 | 0.0050 |

| 1 | 200 | 00:00:20 | 0.2288 | 100.00% | 0.64 | 0.0050 |

| 1 | 250 | 00:00:25 | 0.2079 | 100.00% | 0.93 | 0.0050 |

| 1 | 300 | 00:00:30 | 1.3049 | 100.00% | 1.69 | 0.0050 |

| 1 | 350 | 00:00:34 | 0.3130 | 100.00% | 0.90 | 0.0050 |

| 1 | 400 | 00:00:39 | 0.2351 | 100.00% | 0.86 | 0.0050 |

| 1 | 450 | 00:00:44 | 0.5138 | 100.00% | 0.99 | 0.0050 |

| 1 | 500 | 00:00:49 | 0.1985 | 100.00% | 1.05 | 0.0050 |

| 1 | 550 | 00:00:54 | 0.2089 | 100.00% | 0.76 | 0.0050 |

| 1 | 600 | 00:00:59 | 0.2479 | 100.00% | 0.68 | 0.0050 |

| 1 | 650 | 00:01:04 | 0.1962 | 100.00% | 0.77 | 0.0050 |

| 1 | 700 | 00:01:09 | 0.1659 | 100.00% | 0.96 | 0.0050 |

| 1 | 750 | 00:01:14 | 0.1880 | 100.00% | 0.75 | 0.0050 |

| 1 | 800 | 00:01:19 | 0.3588 | 100.00% | 0.84 | 0.0050 |

| 1 | 850 | 00:01:24 | 0.0255 | 100.00% | 0.73 | 0.0050 |

| 1 | 900 | 00:01:29 | 0.1324 | 100.00% | 1.08 | 0.0050 |

| 1 | 950 | 00:01:34 | 0.0371 | 100.00% | 0.57 | 0.0050 |

| 1 | 1000 | 00:01:39 | 0.0568 | 100.00% | 0.78 | 0.0050 |

| 2 | 1050 | 00:01:46 | 0.1751 | 100.00% | 0.68 | 0.0050 |

| 2 | 1100 | 00:01:51 | 0.2776 | 100.00% | 0.88 | 0.0050 |

| 2 | 1150 | 00:01:56 | 0.0521 | 100.00% | 1.51 | 0.0050 |

| 2 | 1200 | 00:02:01 | 0.1173 | 100.00% | 0.66 | 0.0050 |

| 2 | 1250 | 00:02:06 | 0.1220 | 100.00% | 1.28 | 0.0050 |

| 2 | 1300 | 00:02:11 | 0.4237 | 100.00% | 0.91 | 0.0050 |

| 2 | 1350 | 00:02:16 | 0.2722 | 100.00% | 0.92 | 0.0050 |

| 2 | 1400 | 00:02:21 | 0.2793 | 100.00% | 0.73 | 0.0050 |

| 2 | 1450 | 00:02:26 | 0.3051 | 100.00% | 1.03 | 0.0050 |

| 2 | 1500 | 00:02:31 | 0.0788 | 100.00% | 0.69 | 0.0050 |

| 2 | 1550 | 00:02:36 | 0.2064 | 100.00% | 0.76 | 0.0050 |

| 2 | 1600 | 00:02:41 | 0.2232 | 100.00% | 0.81 | 0.0050 |

| 2 | 1650 | 00:02:46 | 0.1025 | 100.00% | 1.55 | 0.0050 |

| 2 | 1700 | 00:02:51 | 0.2365 | 100.00% | 0.66 | 0.0050 |

| 2 | 1750 | 00:02:56 | 0.0383 | 100.00% | 0.77 | 0.0050 |

| 2 | 1800 | 00:03:01 | 0.0436 | 100.00% | 0.64 | 0.0050 |

| 2 | 1850 | 00:03:07 | 0.1933 | 100.00% | 0.59 | 0.0050 |

| 2 | 1900 | 00:03:11 | 0.0207 | 100.00% | 0.24 | 0.0050 |

| 2 | 1950 | 00:03:16 | 0.0202 | 100.00% | 0.35 | 0.0050 |

| 2 | 2000 | 00:03:21 | 0.0393 | 100.00% | 0.34 | 0.0050 |

| 2 | 2026 | 00:03:24 | 0.0039 | 100.00% | 0.28 | 0.0050 |

 292

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 1013 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 2.2811 | 1.56% | 0.37 | 0.0050 |

| 1 | 50 | 00:00:12 | 0.3599 | 94.12% | 0.38 | 0.0050 |

| 1 | 100 | 00:00:24 | 0.3928 | 89.84% | 0.30 | 0.0050 |

| 1 | 150 | 00:00:37 | 0.6176 | 85.94% | 0.34 | 0.0050 |

| 1 | 200 | 00:00:49 | 0.5539 | 93.42% | 0.28 | 0.0050 |

| 1 | 250 | 00:01:01 | 0.4922 | 88.28% | 0.39 | 0.0050 |

| 1 | 300 | 00:01:14 | 0.6570 | 82.81% | 0.40 | 0.0050 |

| 1 | 350 | 00:01:26 | 0.3510 | 93.90% | 0.34 | 0.0050 |

| 1 | 400 | 00:01:39 | 0.3814 | 89.84% | 0.39 | 0.0050 |

| 1 | 450 | 00:01:51 | 0.5450 | 87.50% | 0.41 | 0.0050 |

| 1 | 500 | 00:02:04 | 0.1987 | 98.44% | 0.34 | 0.0050 |

| 1 | 550 | 00:02:17 | 0.3008 | 92.17% | 0.33 | 0.0050 |

| 1 | 600 | 00:02:29 | 0.1535 | 96.88% | 0.32 | 0.0050 |

| 1 | 650 | 00:02:41 | 0.1445 | 96.25% | 0.24 | 0.0050 |

| 1 | 700 | 00:02:54 | 0.2625 | 95.00% | 0.38 | 0.0050 |

| 1 | 750 | 00:03:06 | 0.4782 | 87.50% | 0.37 | 0.0050 |

| 1 | 800 | 00:03:19 | 0.1638 | 98.39% | 0.67 | 0.0050 |

| 1 | 850 | 00:03:31 | 0.2185 | 98.44% | 0.34 | 0.0050 |

| 1 | 900 | 00:03:43 | 0.2123 | 95.31% | 0.29 | 0.0050 |

| 1 | 950 | 00:03:56 | 0.1388 | 97.66% | 0.26 | 0.0050 |

| 2 | 1000 | 00:04:11 | 0.2203 | 95.31% | 0.27 | 0.0050 |

| 2 | 1050 | 00:04:23 | 0.0634 | 98.48% | 0.37 | 0.0050 |

| 2 | 1100 | 00:04:36 | 0.1564 | 97.66% | 0.20 | 0.0050 |

| 2 | 1150 | 00:04:49 | 0.2041 | 96.88% | 0.30 | 0.0050 |

| 2 | 1200 | 00:05:01 | 0.0347 | 98.95% | 0.18 | 0.0050 |

| 2 | 1250 | 00:05:14 | 0.0961 | 96.88% | 0.24 | 0.0050 |

| 2 | 1300 | 00:05:26 | 0.1745 | 97.65% | 0.31 | 0.0050 |

| 2 | 1350 | 00:05:39 | 0.1954 | 92.97% | 0.25 | 0.0050 |

| 2 | 1400 | 00:05:51 | 0.2461 | 94.53% | 0.24 | 0.0050 |

| 2 | 1450 | 00:06:04 | 0.1449 | 95.79% | 0.23 | 0.0050 |

 293

| 2 | 1500 | 00:06:17 | 0.0956 | 98.44% | 0.29 | 0.0050 |

| 2 | 1550 | 00:06:29 | 0.2340 | 92.19% | 0.26 | 0.0050 |

| 2 | 1600 | 00:06:42 | 0.2327 | 93.75% | 0.32 | 0.0050 |

| 2 | 1650 | 00:06:54 | 0.1548 | 96.09% | 0.16 | 0.0050 |

| 2 | 1700 | 00:07:06 | 0.1122 | 97.40% | 0.22 | 0.0050 |

| 2 | 1750 | 00:07:19 | 0.1166 | 96.88% | 0.21 | 0.0050 |

| 2 | 1800 | 00:07:31 | 0.2449 | 96.09% | 0.26 | 0.0050 |

| 2 | 1850 | 00:07:44 | 0.1168 | 98.44% | 0.23 | 0.0050 |

| 2 | 1900 | 00:07:56 | 0.2255 | 95.31% | 0.26 | 0.0050 |

| 2 | 1950 | 00:08:09 | 0.1614 | 97.66% | 0.28 | 0.0050 |

| 2 | 1984 | 00:08:17 | 0.0614 | 99.00% | 0.23 | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 2.8235 | 100.00% | 5.92 | 0.0050 |

| 1 | 50 | 00:00:02 | 0.2037 | 100.00% | 0.49 | 0.0050 |

| 1 | 100 | 00:00:05 | 0.4355 | 100.00% | 1.13 | 0.0050 |

| 1 | 150 | 00:00:08 | 0.1561 | 100.00% | 0.67 | 0.0050 |

| 1 | 200 | 00:00:11 | 0.1234 | 100.00% | 0.72 | 0.0050 |

| 1 | 250 | 00:00:14 | 0.5472 | 100.00% | 1.19 | 0.0050 |

| 1 | 300 | 00:00:17 | 0.2664 | 100.00% | 0.77 | 0.0050 |

| 1 | 350 | 00:00:20 | 0.0437 | 100.00% | 0.37 | 0.0050 |

| 1 | 400 | 00:00:23 | 0.0773 | 100.00% | 0.87 | 0.0050 |

| 1 | 450 | 00:00:25 | 0.0897 | 100.00% | 1.01 | 0.0050 |

| 1 | 500 | 00:00:28 | 0.1214 | 100.00% | 0.53 | 0.0050 |

| 1 | 550 | 00:00:31 | 0.2012 | 100.00% | 0.72 | 0.0050 |

| 1 | 600 | 00:00:34 | 0.2193 | 100.00% | 0.53 | 0.0050 |

| 1 | 650 | 00:00:37 | 0.3145 | 100.00% | 1.08 | 0.0050 |

| 1 | 700 | 00:00:40 | 0.2762 | 100.00% | 1.10 | 0.0050 |

| 1 | 750 | 00:00:43 | 0.3912 | 100.00% | 0.83 | 0.0050 |

| 1 | 800 | 00:00:46 | 0.1742 | 100.00% | 0.64 | 0.0050 |

| 1 | 850 | 00:00:48 | 0.4859 | 100.00% | 0.92 | 0.0050 |

| 1 | 900 | 00:00:51 | 0.1617 | 100.00% | 0.52 | 0.0050 |

| 1 | 950 | 00:00:54 | 0.1874 | 100.00% | 1.24 | 0.0050 |

| 1 | 1000 | 00:00:57 | 0.2255 | 100.00% | 0.60 | 0.0050 |

 294

| 2 | 1050 | 00:01:02 | 0.1515 | 100.00% | 0.69 | 0.0050 |

| 2 | 1100 | 00:01:05 | 0.1542 | 100.00% | 0.76 | 0.0050 |

| 2 | 1150 | 00:01:08 | 0.3080 | 100.00% | 1.01 | 0.0050 |

| 2 | 1200 | 00:01:11 | 0.3184 | 100.00% | 0.77 | 0.0050 |

| 2 | 1250 | 00:01:14 | 0.5464 | 100.00% | 1.74 | 0.0050 |

| 2 | 1300 | 00:01:17 | 0.2412 | 100.00% | 0.62 | 0.0050 |

| 2 | 1350 | 00:01:20 | 0.0729 | 100.00% | 1.04 | 0.0050 |

| 2 | 1400 | 00:01:23 | 0.2458 | 100.00% | 0.73 | 0.0050 |

| 2 | 1450 | 00:01:25 | 1.0584 | 100.00% | 1.10 | 0.0050 |

| 2 | 1500 | 00:01:28 | 0.2303 | 100.00% | 1.00 | 0.0050 |

| 2 | 1550 | 00:01:31 | 0.3323 | 100.00% | 0.76 | 0.0050 |

| 2 | 1600 | 00:01:34 | 0.0361 | 100.00% | 0.74 | 0.0050 |

| 2 | 1650 | 00:01:37 | 0.2501 | 100.00% | 1.44 | 0.0050 |

| 2 | 1700 | 00:01:40 | 0.0802 | 100.00% | 0.79 | 0.0050 |

| 2 | 1750 | 00:01:43 | 0.0907 | 100.00% | 0.45 | 0.0050 |

| 2 | 1800 | 00:01:46 | 0.2056 | 100.00% | 0.71 | 0.0050 |

| 2 | 1850 | 00:01:49 | 0.0794 | 100.00% | 0.74 | 0.0050 |

| 2 | 1900 | 00:01:52 | 0.4074 | 100.00% | 1.14 | 0.0050 |

| 2 | 1950 | 00:01:54 | 0.1408 | 100.00% | 0.61 | 0.0050 |

| 2 | 2000 | 00:01:57 | 0.1751 | 100.00% | 0.70 | 0.0050 |

| 2 | 2026 | 00:01:59 | 0.0958 | 100.00% | 1.11 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 1013 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.2051 | 93.75% | 0.29 | 0.0050 |

| 1 | 50 | 00:00:09 | 0.1371 | 95.31% | 0.27 | 0.0050 |

| 1 | 100 | 00:00:19 | 0.1721 | 96.09% | 0.19 | 0.0050 |

| 1 | 150 | 00:00:29 | 0.2006 | 94.53% | 0.21 | 0.0050 |

| 1 | 200 | 00:00:39 | 0.2563 | 93.20% | 0.48 | 0.0050 |

| 1 | 250 | 00:00:49 | 0.2309 | 94.53% | 0.34 | 0.0050 |

| 1 | 300 | 00:00:58 | 0.2219 | 94.53% | 0.20 | 0.0050 |

| 1 | 350 | 00:01:08 | 0.1334 | 95.00% | 0.20 | 0.0050 |

| 1 | 400 | 00:01:18 | 0.0856 | 98.44% | 0.27 | 0.0050 |

 295

| 1 | 450 | 00:01:27 | 0.1186 | 96.88% | 0.20 | 0.0050 |

| 1 | 500 | 00:01:37 | 0.1598 | 96.88% | 0.24 | 0.0050 |

| 1 | 550 | 00:01:46 | 0.2355 | 94.38% | 0.28 | 0.0050 |

| 1 | 600 | 00:01:56 | 0.0976 | 96.88% | 0.19 | 0.0050 |

| 1 | 650 | 00:02:06 | 0.1219 | 96.09% | 0.21 | 0.0050 |

| 1 | 700 | 00:02:16 | 0.1710 | 94.53% | 0.19 | 0.0050 |

| 1 | 750 | 00:02:26 | 0.1559 | 93.88% | 0.25 | 0.0050 |

| 1 | 800 | 00:02:35 | 0.4363 | 88.28% | 0.32 | 0.0050 |

| 1 | 850 | 00:02:45 | 0.1032 | 96.88% | 0.20 | 0.0050 |

| 1 | 900 | 00:02:55 | 0.2146 | 92.97% | 0.25 | 0.0050 |

| 1 | 950 | 00:03:05 | 0.1770 | 96.09% | 0.29 | 0.0050 |

| 1 | 1000 | 00:03:14 | 0.2259 | 92.97% | 0.21 | 0.0050 |

| 2 | 1050 | 00:03:27 | 0.0832 | 99.22% | 0.15 | 0.0050 |

| 2 | 1100 | 00:03:37 | 0.1890 | 94.53% | 0.31 | 0.0050 |

| 2 | 1150 | 00:03:47 | 0.1726 | 95.31% | 0.19 | 0.0050 |

| 2 | 1200 | 00:03:57 | 0.0610 | 98.44% | 0.12 | 0.0050 |

| 2 | 1250 | 00:04:07 | 0.1008 | 96.88% | 0.17 | 0.0050 |

| 2 | 1300 | 00:04:17 | 0.2197 | 96.09% | 0.28 | 0.0050 |

| 2 | 1350 | 00:04:26 | 0.1101 | 98.44% | 0.23 | 0.0050 |

| 2 | 1400 | 00:04:36 | 0.2595 | 91.41% | 0.31 | 0.0050 |

| 2 | 1450 | 00:04:46 | 0.1765 | 93.75% | 0.19 | 0.0050 |

| 2 | 1500 | 00:04:55 | 0.1538 | 96.09% | 0.20 | 0.0050 |

| 2 | 1550 | 00:05:05 | 0.0641 | 99.21% | 0.14 | 0.0050 |

| 2 | 1600 | 00:05:15 | 0.0688 | 97.66% | 0.19 | 0.0050 |

| 2 | 1650 | 00:05:24 | 0.0733 | 97.66% | 0.21 | 0.0050 |

| 2 | 1700 | 00:05:34 | 0.1644 | 96.88% | 0.17 | 0.0050 |

| 2 | 1750 | 00:05:44 | 0.0881 | 97.66% | 0.21 | 0.0050 |

| 2 | 1800 | 00:05:53 | 0.1818 | 96.09% | 0.18 | 0.0050 |

| 2 | 1850 | 00:06:03 | 0.1707 | 96.49% | 0.29 | 0.0050 |

| 2 | 1900 | 00:06:13 | 0.0810 | 97.30% | 0.16 | 0.0050 |

| 2 | 1950 | 00:06:22 | 0.1863 | 94.53% | 0.18 | 0.0050 |

| 2 | 2000 | 00:06:32 | 0.1433 | 96.09% | 0.20 | 0.0050 |

| 3 | 2050 | 00:06:45 | 0.0917 | 98.44% | 0.14 | 0.0050 |

| 3 | 2100 | 00:06:55 | 0.1345 | 96.09% | 0.17 | 0.0050 |

| 3 | 2150 | 00:07:05 | 0.2048 | 96.30% | 0.34 | 0.0050 |

| 3 | 2200 | 00:07:15 | 0.0945 | 99.22% | 0.19 | 0.0050 |

| 3 | 2250 | 00:07:25 | 0.1451 | 96.09% | 0.17 | 0.0050 |

| 3 | 2300 | 00:07:35 | 0.2916 | 94.53% | 0.31 | 0.0050 |

| 3 | 2350 | 00:07:45 | 0.1857 | 94.53% | 0.19 | 0.0050 |

| 3 | 2400 | 00:07:55 | 0.1002 | 97.66% | 0.18 | 0.0050 |

| 3 | 2450 | 00:08:04 | 0.0806 | 96.88% | 0.23 | 0.0050 |

| 3 | 2500 | 00:08:14 | 0.1388 | 96.88% | 0.16 | 0.0050 |

| 3 | 2550 | 00:08:23 | 0.1218 | 97.52% | 0.30 | 0.0050 |

| 3 | 2600 | 00:08:33 | 0.1599 | 96.09% | 0.18 | 0.0050 |

 296

| 3 | 2650 | 00:08:43 | 0.1578 | 96.09% | 0.26 | 0.0050 |

| 3 | 2700 | 00:08:53 | 0.0484 | 100.00% | 0.24 | 0.0050 |

| 3 | 2750 | 00:09:03 | 0.0740 | 97.30% | 0.15 | 0.0050 |

| 3 | 2800 | 00:09:13 | 0.0688 | 97.39% | 0.17 | 0.0050 |

| 3 | 2850 | 00:09:23 | 0.1298 | 96.88% | 0.16 | 0.0050 |

| 3 | 2900 | 00:09:32 | 0.1085 | 96.88% | 0.18 | 0.0050 |

| 3 | 2950 | 00:09:42 | 0.2133 | 96.88% | 0.18 | 0.0050 |

| 3 | 3000 | 00:09:52 | 0.1166 | 94.53% | 0.15 | 0.0050 |

| 3 | 3018 | 00:09:55 | 0.0571 | 99.15% | 0.12 | 0.0050 |

|===

==|

Detector training complete (with warnings):

Warning: Invalid bounding boxes from 31 out of 1014 training images were removed.

The following rows in trainingData have invalid

bounding box data:

Invalid Rows

17

75

194

199

202

249

253

261

290

309

369

395

399

498

617

652

678

679

703

717

731

752

767

806

 297

808

811

816

864

897

920

937

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'tractors'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'tractors' 'roundbale' 'end_tower' 'pyramid' 'span' 'tower'

'Background'}

 MinObjectSize: [16 16]

Elapsed time is 1605.589488 seconds.

 298

APPENDIX F.11.1.1 Result

 299

 300

 301

APPENDIX F.11.1.2 Results on test pictures

 302

 303

 304

 305

APPENDIX F.11.2 GoogLeNet Run 2

>> combinedMergedDetectorv2

optionsStage1 =

 306

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 307

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 308

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* tractors

* roundbale

* end_tower

* pyramid

* span

* tower

Step 1 of 4: Training a Region Proposal Network (RPN).

Warning: Invalid bounding boxes from 31 out of 1014 training images were removed.

The following rows in trainingData have invalid

bounding box data:

Invalid Rows

17

75

194

199

202

249

253

 309

261

290

309

369

395

399

498

617

652

678

679

703

717

731

752

767

806

808

811

816

864

897

920

937

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.6249 | 88.28% | 1.45 | 0.0050 |

| 1 | 50 | 00:00:05 | 0.1310 | 100.00% | 0.60 | 0.0050 |

| 1 | 100 | 00:00:10 | 0.4711 | 100.00% | 0.92 | 0.0050 |

| 1 | 150 | 00:00:15 | 0.1454 | 100.00% | 0.78 | 0.0050 |

| 1 | 200 | 00:00:19 | 0.1230 | 100.00% | 0.79 | 0.0050 |

| 1 | 250 | 00:00:24 | 0.3991 | 100.00% | 1.82 | 0.0050 |

| 1 | 300 | 00:00:29 | 0.4517 | 100.00% | 1.43 | 0.0050 |

| 1 | 350 | 00:00:34 | 0.2469 | 100.00% | 0.64 | 0.0050 |

| 1 | 400 | 00:00:39 | 1.1272 | 100.00% | 1.69 | 0.0050 |

 310

| 1 | 450 | 00:00:44 | 0.2508 | 100.00% | 0.98 | 0.0050 |

| 1 | 500 | 00:00:49 | 0.1379 | 100.00% | 0.92 | 0.0050 |

| 1 | 550 | 00:00:54 | 0.0881 | 100.00% | 0.74 | 0.0050 |

| 1 | 600 | 00:00:59 | 0.5188 | 100.00% | 0.95 | 0.0050 |

| 1 | 650 | 00:01:04 | 0.2294 | 100.00% | 0.83 | 0.0050 |

| 1 | 700 | 00:01:09 | 0.2506 | 100.00% | 0.66 | 0.0050 |

| 1 | 750 | 00:01:14 | 0.3604 | 100.00% | 0.99 | 0.0050 |

| 1 | 800 | 00:01:19 | 0.1320 | 100.00% | 0.74 | 0.0050 |

| 1 | 850 | 00:01:24 | 0.1032 | 100.00% | 1.13 | 0.0050 |

| 1 | 900 | 00:01:29 | 0.3944 | 100.00% | 0.76 | 0.0050 |

| 1 | 950 | 00:01:33 | 0.2899 | 100.00% | 1.06 | 0.0050 |

| 1 | 1000 | 00:01:38 | 0.2820 | 100.00% | 0.90 | 0.0050 |

| 2 | 1050 | 00:01:46 | 0.1721 | 100.00% | 1.84 | 0.0050 |

| 2 | 1100 | 00:01:52 | 0.3402 | 100.00% | 1.07 | 0.0050 |

| 2 | 1150 | 00:01:57 | 0.1391 | 100.00% | 1.11 | 0.0050 |

| 2 | 1200 | 00:02:01 | 0.2053 | 100.00% | 0.60 | 0.0050 |

| 2 | 1250 | 00:02:06 | 0.3389 | 100.00% | 0.83 | 0.0050 |

| 2 | 1300 | 00:02:12 | 0.4458 | 100.00% | 0.88 | 0.0050 |

| 2 | 1350 | 00:02:17 | 0.2158 | 100.00% | 0.76 | 0.0050 |

| 2 | 1400 | 00:02:21 | 0.2399 | 100.00% | 0.96 | 0.0050 |

| 2 | 1450 | 00:02:26 | 0.6801 | 100.00% | 1.84 | 0.0050 |

| 2 | 1500 | 00:02:31 | 0.0795 | 100.00% | 0.53 | 0.0050 |

| 2 | 1550 | 00:02:36 | 0.3180 | 100.00% | 0.76 | 0.0050 |

| 2 | 1600 | 00:02:41 | 0.2726 | 100.00% | 1.09 | 0.0050 |

| 2 | 1650 | 00:02:46 | 1.5224 | 100.00% | 2.05 | 0.0050 |

| 2 | 1700 | 00:02:51 | 0.1518 | 100.00% | 0.79 | 0.0050 |

| 2 | 1750 | 00:02:56 | 0.3028 | 100.00% | 0.96 | 0.0050 |

| 2 | 1800 | 00:03:01 | 0.2267 | 100.00% | 0.72 | 0.0050 |

| 2 | 1850 | 00:03:06 | 0.2464 | 100.00% | 0.74 | 0.0050 |

| 2 | 1900 | 00:03:11 | 0.1739 | 100.00% | 0.76 | 0.0050 |

| 2 | 1950 | 00:03:16 | 0.0853 | 100.00% | 0.83 | 0.0050 |

| 2 | 2000 | 00:03:21 | 0.2062 | 100.00% | 0.61 | 0.0050 |

| 2 | 2026 | 00:03:23 | 0.4706 | 100.00% | 0.88 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 1013 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

 311

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 2.2772 | 8.59% | 0.37 | 0.0050 |

| 1 | 50 | 00:00:12 | 0.0789 | 99.22% | 0.42 | 0.0050 |

| 1 | 100 | 00:00:25 | 0.3636 | 92.19% | 0.40 | 0.0050 |

| 1 | 150 | 00:00:37 | 0.3624 | 93.75% | 0.37 | 0.0050 |

| 1 | 200 | 00:00:50 | 0.3553 | 94.53% | 0.45 | 0.0050 |

| 1 | 250 | 00:01:03 | 0.1770 | 96.77% | 0.27 | 0.0050 |

| 1 | 300 | 00:01:15 | 0.3383 | 94.53% | 0.51 | 0.0050 |

| 1 | 350 | 00:01:28 | 0.3494 | 95.31% | 0.41 | 0.0050 |

| 1 | 400 | 00:01:41 | 0.1126 | 96.91% | 0.19 | 0.0050 |

| 1 | 450 | 00:01:54 | 0.4382 | 89.84% | 0.30 | 0.0050 |

| 1 | 500 | 00:02:06 | 0.3788 | 92.19% | 0.36 | 0.0050 |

| 1 | 550 | 00:02:19 | 0.2647 | 93.75% | 0.35 | 0.0050 |

| 1 | 600 | 00:02:31 | 0.1062 | 96.09% | 0.23 | 0.0050 |

| 1 | 650 | 00:02:44 | 0.2024 | 93.75% | 0.22 | 0.0050 |

| 1 | 700 | 00:02:56 | 0.0739 | 98.44% | 0.46 | 0.0050 |

| 1 | 750 | 00:03:09 | 0.1603 | 92.97% | 0.22 | 0.0050 |

| 1 | 800 | 00:03:22 | 0.1049 | 97.53% | 0.27 | 0.0050 |

| 1 | 850 | 00:03:34 | 0.3344 | 89.84% | 0.25 | 0.0050 |

| 1 | 900 | 00:03:46 | 0.1894 | 92.97% | 0.26 | 0.0050 |

| 1 | 950 | 00:03:59 | 0.0682 | 100.00% | 0.30 | 0.0050 |

| 2 | 1000 | 00:04:15 | 0.2079 | 95.15% | 0.24 | 0.0050 |

| 2 | 1050 | 00:04:27 | 0.4733 | 94.69% | 0.45 | 0.0050 |

| 2 | 1100 | 00:04:40 | 0.3033 | 92.97% | 0.33 | 0.0050 |

| 2 | 1150 | 00:04:52 | 0.1191 | 96.09% | 0.26 | 0.0050 |

| 2 | 1200 | 00:05:05 | 0.0523 | 99.22% | 0.32 | 0.0050 |

| 2 | 1250 | 00:05:18 | 0.4926 | 92.19% | 0.35 | 0.0050 |

| 2 | 1300 | 00:05:31 | 0.3772 | 89.84% | 0.39 | 0.0050 |

| 2 | 1350 | 00:05:44 | 0.1663 | 96.88% | 0.28 | 0.0050 |

| 2 | 1400 | 00:05:56 | 0.2909 | 91.41% | 0.20 | 0.0050 |

| 2 | 1450 | 00:06:09 | 0.1409 | 96.09% | 0.19 | 0.0050 |

| 2 | 1500 | 00:06:21 | 0.1754 | 94.53% | 0.29 | 0.0050 |

| 2 | 1550 | 00:06:34 | 0.2258 | 96.09% | 0.31 | 0.0050 |

| 2 | 1600 | 00:06:46 | 0.0838 | 96.09% | 0.24 | 0.0050 |

| 2 | 1650 | 00:06:59 | 0.0497 | 98.90% | 0.27 | 0.0050 |

| 2 | 1700 | 00:07:11 | 0.1205 | 96.88% | 0.16 | 0.0050 |

| 2 | 1750 | 00:07:24 | 0.1551 | 96.88% | 0.27 | 0.0050 |

| 2 | 1800 | 00:07:36 | 0.0929 | 96.88% | 0.19 | 0.0050 |

| 2 | 1850 | 00:07:49 | 0.1133 | 96.88% | 0.22 | 0.0050 |

| 2 | 1900 | 00:08:02 | 0.0980 | 97.40% | 0.36 | 0.0050 |

| 2 | 1912 | 00:08:05 | 0.1720 | 96.09% | 0.20 | 0.0050 |

 312

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.0676 | 100.00% | 1.11 | 0.0050 |

| 1 | 50 | 00:00:02 | 0.7910 | 100.00% | 1.44 | 0.0050 |

| 1 | 100 | 00:00:05 | 0.1167 | 100.00% | 0.57 | 0.0050 |

| 1 | 150 | 00:00:08 | 0.1519 | 100.00% | 0.73 | 0.0050 |

| 1 | 200 | 00:00:11 | 0.3640 | 100.00% | 1.05 | 0.0050 |

| 1 | 250 | 00:00:14 | 0.3126 | 100.00% | 0.77 | 0.0050 |

| 1 | 300 | 00:00:17 | 0.1675 | 100.00% | 0.56 | 0.0050 |

| 1 | 350 | 00:00:20 | 0.3435 | 100.00% | 0.74 | 0.0050 |

| 1 | 400 | 00:00:23 | 0.2712 | 100.00% | 0.99 | 0.0050 |

| 1 | 450 | 00:00:26 | 0.1314 | 100.00% | 0.60 | 0.0050 |

| 1 | 500 | 00:00:28 | 0.1576 | 100.00% | 0.70 | 0.0050 |

| 1 | 550 | 00:00:31 | 0.4529 | 100.00% | 0.91 | 0.0050 |

| 1 | 600 | 00:00:34 | 0.3069 | 100.00% | 0.99 | 0.0050 |

| 1 | 650 | 00:00:37 | 0.5441 | 100.00% | 1.35 | 0.0050 |

| 1 | 700 | 00:00:40 | 0.1994 | 100.00% | 0.52 | 0.0050 |

| 1 | 750 | 00:00:43 | 0.4377 | 100.00% | 0.95 | 0.0050 |

| 1 | 800 | 00:00:45 | 0.2146 | 100.00% | 0.71 | 0.0050 |

| 1 | 850 | 00:00:48 | 0.0893 | 100.00% | 0.54 | 0.0050 |

| 1 | 900 | 00:00:51 | 0.2969 | 100.00% | 0.90 | 0.0050 |

| 1 | 950 | 00:00:54 | 0.2539 | 100.00% | 0.97 | 0.0050 |

| 1 | 1000 | 00:00:57 | 0.0979 | 100.00% | 0.51 | 0.0050 |

| 2 | 1050 | 00:01:02 | 0.0985 | 100.00% | 1.71 | 0.0050 |

| 2 | 1100 | 00:01:05 | 0.0849 | 100.00% | 0.60 | 0.0050 |

| 2 | 1150 | 00:01:08 | 0.1217 | 100.00% | 0.68 | 0.0050 |

| 2 | 1200 | 00:01:11 | 0.1436 | 100.00% | 0.75 | 0.0050 |

| 2 | 1250 | 00:01:14 | 0.5591 | 100.00% | 1.09 | 0.0050 |

| 2 | 1300 | 00:01:16 | 0.1609 | 100.00% | 0.57 | 0.0050 |

| 2 | 1350 | 00:01:19 | 0.1188 | 100.00% | 0.57 | 0.0050 |

| 2 | 1400 | 00:01:22 | 0.2047 | 100.00% | 0.71 | 0.0050 |

| 2 | 1450 | 00:01:25 | 0.2465 | 100.00% | 1.00 | 0.0050 |

| 2 | 1500 | 00:01:28 | 0.1634 | 100.00% | 0.62 | 0.0050 |

| 2 | 1550 | 00:01:31 | 0.1807 | 100.00% | 0.76 | 0.0050 |

 313

| 2 | 1600 | 00:01:33 | 0.0471 | 100.00% | 0.48 | 0.0050 |

| 2 | 1650 | 00:01:36 | 0.2842 | 100.00% | 0.69 | 0.0050 |

| 2 | 1700 | 00:01:39 | 0.0994 | 100.00% | 1.09 | 0.0050 |

| 2 | 1750 | 00:01:42 | 2.5899 | 100.00% | 1.99 | 0.0050 |

| 2 | 1800 | 00:01:45 | 0.0407 | 100.00% | 0.76 | 0.0050 |

| 2 | 1850 | 00:01:47 | 0.1287 | 100.00% | 0.61 | 0.0050 |

| 2 | 1900 | 00:01:50 | 0.3404 | 100.00% | 0.72 | 0.0050 |

| 2 | 1950 | 00:01:53 | 0.7236 | 100.00% | 1.46 | 0.0050 |

| 2 | 2000 | 00:01:56 | 0.2315 | 100.00% | 0.58 | 0.0050 |

| 2 | 2026 | 00:01:57 | 0.2857 | 100.00% | 1.27 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 1013 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.1005 | 97.39% | 0.23 | 0.0050 |

| 1 | 50 | 00:00:09 | 0.4831 | 89.84% | 0.29 | 0.0050 |

| 1 | 100 | 00:00:18 | 0.2010 | 95.31% | 0.24 | 0.0050 |

| 1 | 150 | 00:00:28 | 0.2692 | 93.48% | 0.27 | 0.0050 |

| 1 | 200 | 00:00:38 | 0.0941 | 99.03% | 0.25 | 0.0050 |

| 1 | 250 | 00:00:47 | 0.1704 | 96.09% | 0.22 | 0.0050 |

| 1 | 300 | 00:00:57 | 0.0185 | 100.00% | 0.15 | 0.0050 |

| 1 | 350 | 00:01:06 | 0.1110 | 98.44% | 0.24 | 0.0050 |

| 1 | 400 | 00:01:16 | 0.2149 | 96.09% | 0.21 | 0.0050 |

| 1 | 450 | 00:01:25 | 0.1369 | 97.66% | 0.28 | 0.0050 |

| 1 | 500 | 00:01:35 | 0.0626 | 98.15% | 0.22 | 0.0050 |

| 1 | 550 | 00:01:45 | 0.2462 | 95.31% | 0.27 | 0.0050 |

| 1 | 600 | 00:01:54 | 0.2644 | 94.53% | 0.33 | 0.0050 |

| 1 | 650 | 00:02:04 | 0.0704 | 99.22% | 0.15 | 0.0050 |

| 1 | 700 | 00:02:13 | 0.0947 | 97.22% | 0.25 | 0.0050 |

| 1 | 750 | 00:02:23 | 0.0540 | 98.44% | 0.25 | 0.0050 |

| 1 | 800 | 00:02:33 | 0.3255 | 92.19% | 0.35 | 0.0050 |

| 1 | 850 | 00:02:42 | 0.4601 | 86.72% | 0.23 | 0.0050 |

| 1 | 900 | 00:02:52 | 0.1347 | 97.66% | 0.17 | 0.0050 |

| 1 | 950 | 00:03:01 | 0.1491 | 96.09% | 0.21 | 0.0050 |

 314

| 2 | 1000 | 00:03:14 | 0.3532 | 91.41% | 0.25 | 0.0050 |

| 2 | 1050 | 00:03:23 | 0.1486 | 97.66% | 0.24 | 0.0050 |

| 2 | 1100 | 00:03:33 | 0.1374 | 96.88% | 0.22 | 0.0050 |

| 2 | 1150 | 00:03:43 | 0.0293 | 100.00% | 0.17 | 0.0050 |

| 2 | 1200 | 00:03:52 | 0.1027 | 96.88% | 0.17 | 0.0050 |

| 2 | 1250 | 00:04:02 | 0.2351 | 93.75% | 0.29 | 0.0050 |

| 2 | 1300 | 00:04:11 | 0.0390 | 98.86% | 0.17 | 0.0050 |

| 2 | 1350 | 00:04:21 | 0.3175 | 90.63% | 0.20 | 0.0050 |

| 2 | 1400 | 00:04:31 | 0.1470 | 95.31% | 0.23 | 0.0050 |

| 2 | 1450 | 00:04:40 | 0.0741 | 97.66% | 0.18 | 0.0050 |

| 2 | 1500 | 00:04:50 | 0.1185 | 97.66% | 0.20 | 0.0050 |

| 2 | 1550 | 00:05:00 | 0.0037 | 100.00% | 0.11 | 0.0050 |

| 2 | 1600 | 00:05:09 | 0.2169 | 93.75% | 0.25 | 0.0050 |

| 2 | 1650 | 00:05:19 | 0.2676 | 94.53% | 0.19 | 0.0050 |

| 2 | 1700 | 00:05:29 | 0.1196 | 95.31% | 0.18 | 0.0050 |

| 2 | 1750 | 00:05:39 | 0.0215 | 99.22% | 0.16 | 0.0050 |

| 2 | 1800 | 00:05:48 | 0.3551 | 91.41% | 0.21 | 0.0050 |

| 2 | 1850 | 00:05:57 | 0.1678 | 98.44% | 0.22 | 0.0050 |

| 2 | 1900 | 00:06:07 | 0.1888 | 92.19% | 0.17 | 0.0050 |

| 2 | 1950 | 00:06:16 | 0.2389 | 93.75% | 0.26 | 0.0050 |

| 3 | 2000 | 00:06:29 | 0.0860 | 97.66% | 0.17 | 0.0050 |

| 3 | 2050 | 00:06:39 | 0.1149 | 98.44% | 0.19 | 0.0050 |

| 3 | 2100 | 00:06:48 | 0.2092 | 94.53% | 0.28 | 0.0050 |

| 3 | 2150 | 00:06:58 | 0.0137 | 100.00% | 0.12 | 0.0050 |

| 3 | 2200 | 00:07:07 | 0.1156 | 96.88% | 0.18 | 0.0050 |

| 3 | 2250 | 00:07:17 | 0.0583 | 98.32% | 0.22 | 0.0050 |

| 3 | 2300 | 00:07:27 | 0.1172 | 95.31% | 0.23 | 0.0050 |

| 3 | 2350 | 00:07:36 | 0.0689 | 96.88% | 0.16 | 0.0050 |

| 3 | 2400 | 00:07:45 | 0.0226 | 98.94% | 0.15 | 0.0050 |

| 3 | 2450 | 00:07:55 | 0.2406 | 94.53% | 0.24 | 0.0050 |

| 3 | 2500 | 00:08:05 | 0.0751 | 98.44% | 0.22 | 0.0050 |

| 3 | 2550 | 00:08:14 | 0.1048 | 96.88% | 0.18 | 0.0050 |

| 3 | 2600 | 00:08:24 | 0.1909 | 94.53% | 0.32 | 0.0050 |

| 3 | 2650 | 00:08:34 | 0.1899 | 96.09% | 0.25 | 0.0050 |

| 3 | 2700 | 00:08:44 | 0.2912 | 92.19% | 0.19 | 0.0050 |

| 3 | 2750 | 00:08:53 | 0.0770 | 99.22% | 0.16 | 0.0050 |

| 3 | 2800 | 00:09:02 | 0.0789 | 97.27% | 0.25 | 0.0050 |

| 3 | 2850 | 00:09:12 | 0.2126 | 96.88% | 0.24 | 0.0050 |

| 3 | 2900 | 00:09:21 | 0.0332 | 98.90% | 0.14 | 0.0050 |

| 3 | 2937 | 00:09:28 | 0.0553 | 98.44% | 0.14 | 0.0050 |

|===

==|

Detector training complete (with warnings):

 315

Warning: Invalid bounding boxes from 31 out of 1014 training images were removed.

The following rows in trainingData have invalid

bounding box data:

Invalid Rows

17

75

194

199

202

249

253

261

290

309

369

395

399

498

617

652

678

679

703

717

731

752

767

806

808

811

816

864

897

920

937

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

 316

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'tractors'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'tractors' 'roundbale' 'end_tower' 'pyramid' 'span' 'tower'

'Background'}

 MinObjectSize: [16 16]

Elapsed time is 1583.434285 seconds.

 317

APPENDIX F.11.2.1 Result

 318

 319

 APPENDIX F.11.2.2 Results on test pictures

 320

 321

 322

 323

 324

APPENDIX F.12.1 GoogLeNet

>> pivotDetectorGoogLeNetv3v2

optionsStage1 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 325

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage2 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage3 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 326

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 2

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

optionsStage4 =

 TrainingOptionsSGDM with properties:

 Momentum: 0.9000

 InitialLearnRate: 0.0050

 LearnRateScheduleSettings: [1×1 struct]

 L2Regularization: 1.0000e-04

 GradientThresholdMethod: 'l2norm'

 GradientThreshold: Inf

 MaxEpochs: 3

 MiniBatchSize: 1

 Verbose: 1

 VerboseFrequency: 50

 ValidationData: []

 ValidationFrequency: 50

 ValidationPatience: Inf

 Shuffle: 'once'

 CheckpointPath: 'C:\Users\clindhorst2\AppData\Local\Temp\'

 ExecutionEnvironment: 'auto'

 WorkerLoad: []

 OutputFcn: []

 327

 Plots: 'none'

 SequenceLength: 'longest'

 SequencePaddingValue: 0

**

*

Training a Faster R-CNN Object Detector for the following object classes:

* end_tower

* pyramid

* span

* tower

Step 1 of 4: Training a Region Proposal Network (RPN).

Warning: Invalid bounding boxes from 143 out of 3688 training images were removed.

The following rows in trainingData have invalid

bounding box data:

Invalid Rows

39

55

61

62

82

99

101

108

113

127

145

156

199

222

260

311

316

323

328

399

431

452

472

 328

474

525

538

546

551

575

604

607

646

696

698

739

744

763

766

775

804

815

827

844

893

903

1018

1029

1030

1035

1044

1066

1131

1139

1142

1146

1156

1218

1315

1351

1361

1430

1479

1488

1518

1527

1530

1567

 329

1592

1698

1709

1716

1773

1792

1830

1864

1875

1917

1960

1965

1972

1979

1986

2103

2116

2148

2171

2177

2211

2232

2258

2297

2342

2386

2388

2473

2477

2482

2521

2556

2561

2563

2579

2628

2638

2674

2707

2752

2759

2772

2813

2847

 330

2851

2881

2882

2896

2916

2921

2960

2963

2986

3025

3039

3109

3157

3210

3272

3320

3328

3340

3354

3406

3433

3442

3444

3563

3568

3594

3597

3624

3627

3636

3642

3648

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:02 | 1.2349 | 51.56% | 1.34 | 0.0050 |

 331

| 1 | 50 | 00:00:08 | 0.4384 | 100.00% | 1.09 | 0.0050 |

| 1 | 100 | 00:00:14 | 0.0189 | 100.00% | 0.54 | 0.0050 |

| 1 | 150 | 00:00:20 | 0.9844 | 100.00% | 2.14 | 0.0050 |

| 1 | 200 | 00:00:25 | 0.1836 | 100.00% | 0.61 | 0.0050 |

| 1 | 250 | 00:00:31 | 0.1525 | 100.00% | 0.68 | 0.0050 |

| 1 | 300 | 00:00:37 | 0.1284 | 100.00% | 0.51 | 0.0050 |

| 1 | 350 | 00:00:43 | 0.0992 | 100.00% | 1.05 | 0.0050 |

| 1 | 400 | 00:00:49 | 0.0189 | 100.00% | 0.55 | 0.0050 |

| 1 | 450 | 00:00:54 | 0.2021 | 100.00% | 0.67 | 0.0050 |

| 1 | 500 | 00:01:00 | 0.1805 | 100.00% | 1.18 | 0.0050 |

| 1 | 550 | 00:01:06 | 0.0941 | 100.00% | 0.89 | 0.0050 |

| 1 | 600 | 00:01:12 | 0.1239 | 100.00% | 0.64 | 0.0050 |

| 1 | 650 | 00:01:18 | 0.0505 | 100.00% | 0.43 | 0.0050 |

| 1 | 700 | 00:01:24 | 0.0728 | 100.00% | 0.64 | 0.0050 |

| 1 | 750 | 00:01:30 | 0.1458 | 100.00% | 0.71 | 0.0050 |

| 1 | 800 | 00:01:35 | 0.1788 | 100.00% | 0.56 | 0.0050 |

| 1 | 850 | 00:01:41 | 0.1477 | 100.00% | 0.56 | 0.0050 |

| 1 | 900 | 00:01:47 | 0.0787 | 100.00% | 0.41 | 0.0050 |

| 1 | 950 | 00:01:53 | 0.0404 | 100.00% | 0.48 | 0.0050 |

| 1 | 1000 | 00:01:59 | 0.0558 | 100.00% | 0.37 | 0.0050 |

| 1 | 1050 | 00:02:05 | 0.0673 | 100.00% | 0.55 | 0.0050 |

| 1 | 1100 | 00:02:11 | 0.0103 | 100.00% | 0.45 | 0.0050 |

| 1 | 1150 | 00:02:17 | 0.0045 | 100.00% | 0.27 | 0.0050 |

| 1 | 1200 | 00:02:23 | 0.0412 | 100.00% | 0.42 | 0.0050 |

| 1 | 1250 | 00:02:29 | 0.0417 | 100.00% | 0.63 | 0.0050 |

| 1 | 1300 | 00:02:35 | 0.0122 | 100.00% | 0.20 | 0.0050 |

| 1 | 1350 | 00:02:40 | 0.0459 | 100.00% | 0.48 | 0.0050 |

| 1 | 1400 | 00:02:46 | 0.0934 | 100.00% | 0.61 | 0.0050 |

| 1 | 1450 | 00:02:52 | 0.0058 | 100.00% | 0.43 | 0.0050 |

| 1 | 1500 | 00:02:58 | 0.0128 | 100.00% | 0.35 | 0.0050 |

| 1 | 1550 | 00:03:04 | 0.0711 | 100.00% | 0.41 | 0.0050 |

| 1 | 1600 | 00:03:10 | 0.0507 | 100.00% | 0.36 | 0.0050 |

| 1 | 1650 | 00:03:16 | 0.0422 | 100.00% | 0.35 | 0.0050 |

| 1 | 1700 | 00:03:22 | 0.0244 | 100.00% | 0.36 | 0.0050 |

| 1 | 1750 | 00:03:28 | 0.0156 | 100.00% | 0.27 | 0.0050 |

| 1 | 1800 | 00:03:34 | 0.0976 | 100.00% | 0.78 | 0.0050 |

| 1 | 1850 | 00:03:39 | 0.0026 | 100.00% | 0.29 | 0.0050 |

| 1 | 1900 | 00:03:45 | 0.0437 | 100.00% | 0.31 | 0.0050 |

| 1 | 1950 | 00:03:51 | 0.0578 | 100.00% | 0.62 | 0.0050 |

| 1 | 2000 | 00:03:57 | 0.0112 | 100.00% | 0.21 | 0.0050 |

| 1 | 2050 | 00:04:03 | 0.0450 | 100.00% | 0.35 | 0.0050 |

| 1 | 2100 | 00:04:09 | 0.0819 | 100.00% | 0.68 | 0.0050 |

| 1 | 2150 | 00:04:15 | 0.0377 | 100.00% | 0.59 | 0.0050 |

| 1 | 2200 | 00:04:21 | 0.0650 | 100.00% | 0.53 | 0.0050 |

 332

| 1 | 2250 | 00:04:27 | 0.0582 | 100.00% | 0.66 | 0.0050 |

| 1 | 2300 | 00:04:32 | 0.0517 | 100.00% | 0.36 | 0.0050 |

| 1 | 2350 | 00:04:38 | 0.0491 | 100.00% | 0.35 | 0.0050 |

| 1 | 2400 | 00:04:44 | 0.0115 | 100.00% | 0.24 | 0.0050 |

| 1 | 2450 | 00:04:50 | 0.1720 | 100.00% | 0.75 | 0.0050 |

| 1 | 2500 | 00:04:56 | 0.0566 | 100.00% | 0.39 | 0.0050 |

| 1 | 2550 | 00:05:01 | 0.0078 | 100.00% | 0.40 | 0.0050 |

| 1 | 2600 | 00:05:07 | 0.0423 | 100.00% | 0.26 | 0.0050 |

| 1 | 2650 | 00:05:13 | 0.0042 | 100.00% | 0.16 | 0.0050 |

| 1 | 2700 | 00:05:19 | 0.0234 | 100.00% | 0.30 | 0.0050 |

| 1 | 2750 | 00:05:25 | 0.0229 | 100.00% | 0.23 | 0.0050 |

| 1 | 2800 | 00:05:30 | 0.0435 | 100.00% | 0.37 | 0.0050 |

| 1 | 2850 | 00:05:36 | 0.1025 | 100.00% | 0.58 | 0.0050 |

| 1 | 2900 | 00:05:42 | 0.0480 | 100.00% | 0.34 | 0.0050 |

| 1 | 2950 | 00:05:48 | 0.0110 | 100.00% | 0.23 | 0.0050 |

| 1 | 3000 | 00:05:54 | 0.0185 | 100.00% | 0.23 | 0.0050 |

| 1 | 3050 | 00:05:59 | 0.0463 | 100.00% | 0.46 | 0.0050 |

| 1 | 3100 | 00:06:05 | 0.5121 | 100.00% | 1.72 | 0.0050 |

| 1 | 3150 | 00:06:11 | 0.0571 | 100.00% | 0.54 | 0.0050 |

| 1 | 3200 | 00:06:17 | 0.0388 | 100.00% | 0.45 | 0.0050 |

| 1 | 3250 | 00:06:22 | 0.0533 | 100.00% | 0.44 | 0.0050 |

| 1 | 3300 | 00:06:28 | 0.0421 | 100.00% | 0.33 | 0.0050 |

| 1 | 3350 | 00:06:34 | 0.0231 | 100.00% | 0.32 | 0.0050 |

| 1 | 3400 | 00:06:40 | 0.0829 | 100.00% | 1.37 | 0.0050 |

| 1 | 3450 | 00:06:46 | 0.0679 | 100.00% | 0.61 | 0.0050 |

| 1 | 3500 | 00:06:51 | 0.0488 | 100.00% | 0.28 | 0.0050 |

| 1 | 3550 | 00:06:57 | 0.0118 | 100.00% | 0.22 | 0.0050 |

| 1 | 3600 | 00:07:03 | 0.1608 | 100.00% | 0.56 | 0.0050 |

| 1 | 3650 | 00:07:09 | 0.0245 | 100.00% | 0.20 | 0.0050 |

| 2 | 3700 | 00:07:18 | 0.0253 | 100.00% | 0.37 | 0.0050 |

| 2 | 3750 | 00:07:23 | 0.0314 | 100.00% | 0.30 | 0.0050 |

| 2 | 3800 | 00:07:29 | 0.0122 | 100.00% | 0.24 | 0.0050 |

| 2 | 3850 | 00:07:35 | 0.0716 | 100.00% | 0.50 | 0.0050 |

| 2 | 3900 | 00:07:41 | 0.0137 | 100.00% | 0.23 | 0.0050 |

| 2 | 3950 | 00:07:47 | 0.0023 | 100.00% | 0.22 | 0.0050 |

| 2 | 4000 | 00:07:53 | 0.0275 | 100.00% | 0.36 | 0.0050 |

| 2 | 4050 | 00:07:58 | 0.0220 | 100.00% | 0.23 | 0.0050 |

| 2 | 4100 | 00:08:04 | 0.2807 | 100.00% | 0.56 | 0.0050 |

| 2 | 4150 | 00:08:10 | 0.0030 | 100.00% | 0.14 | 0.0050 |

| 2 | 4200 | 00:08:16 | 0.0835 | 100.00% | 0.50 | 0.0050 |

| 2 | 4250 | 00:08:22 | 0.0226 | 100.00% | 0.21 | 0.0050 |

| 2 | 4300 | 00:08:27 | 0.0025 | 100.00% | 0.23 | 0.0050 |

| 2 | 4350 | 00:08:33 | 0.1059 | 100.00% | 0.55 | 0.0050 |

| 2 | 4400 | 00:08:39 | 0.0133 | 100.00% | 0.18 | 0.0050 |

 333

| 2 | 4450 | 00:08:45 | 0.0404 | 100.00% | 0.41 | 0.0050 |

| 2 | 4500 | 00:08:51 | 0.0089 | 100.00% | 0.19 | 0.0050 |

| 2 | 4550 | 00:08:56 | 0.0406 | 100.00% | 0.26 | 0.0050 |

| 2 | 4600 | 00:09:02 | 0.0027 | 100.00% | 0.41 | 0.0050 |

| 2 | 4650 | 00:09:08 | 0.0404 | 100.00% | 0.28 | 0.0050 |

| 2 | 4700 | 00:09:14 | 0.0456 | 100.00% | 0.28 | 0.0050 |

| 2 | 4750 | 00:09:20 | 0.0105 | 100.00% | 0.23 | 0.0050 |

| 2 | 4800 | 00:09:25 | 0.0029 | 100.00% | 0.09 | 0.0050 |

| 2 | 4850 | 00:09:31 | 0.0078 | 100.00% | 0.26 | 0.0050 |

| 2 | 4900 | 00:09:37 | 0.0082 | 100.00% | 0.15 | 0.0050 |

| 2 | 4950 | 00:09:43 | 0.0102 | 100.00% | 0.17 | 0.0050 |

| 2 | 5000 | 00:09:49 | 0.0129 | 100.00% | 0.45 | 0.0050 |

| 2 | 5050 | 00:09:54 | 0.0332 | 100.00% | 0.32 | 0.0050 |

| 2 | 5100 | 00:10:00 | 0.0372 | 100.00% | 0.39 | 0.0050 |

| 2 | 5150 | 00:10:06 | 0.0007 | 100.00% | 0.14 | 0.0050 |

| 2 | 5200 | 00:10:12 | 0.0961 | 100.00% | 0.56 | 0.0050 |

| 2 | 5250 | 00:10:17 | 0.0502 | 100.00% | 0.51 | 0.0050 |

| 2 | 5300 | 00:10:23 | 0.0203 | 100.00% | 0.22 | 0.0050 |

| 2 | 5350 | 00:10:29 | 0.0285 | 100.00% | 0.41 | 0.0050 |

| 2 | 5400 | 00:10:35 | 0.0337 | 100.00% | 0.29 | 0.0050 |

| 2 | 5450 | 00:10:41 | 0.0246 | 100.00% | 0.29 | 0.0050 |

| 2 | 5500 | 00:10:47 | 0.0461 | 100.00% | 0.50 | 0.0050 |

| 2 | 5550 | 00:10:52 | 0.0209 | 100.00% | 0.23 | 0.0050 |

| 2 | 5600 | 00:10:58 | 0.0319 | 100.00% | 0.48 | 0.0050 |

| 2 | 5650 | 00:11:04 | 0.0231 | 100.00% | 0.24 | 0.0050 |

| 2 | 5700 | 00:11:10 | 0.0297 | 100.00% | 0.31 | 0.0050 |

| 2 | 5750 | 00:11:16 | 0.0069 | 100.00% | 0.33 | 0.0050 |

| 2 | 5800 | 00:11:21 | 0.0931 | 100.00% | 0.58 | 0.0050 |

| 2 | 5850 | 00:11:27 | 0.0158 | 100.00% | 0.41 | 0.0050 |

| 2 | 5900 | 00:11:33 | 0.0135 | 100.00% | 0.19 | 0.0050 |

| 2 | 5950 | 00:11:39 | 0.0334 | 100.00% | 0.29 | 0.0050 |

| 2 | 6000 | 00:11:44 | 0.0232 | 100.00% | 0.31 | 0.0050 |

| 2 | 6050 | 00:11:50 | 0.0205 | 100.00% | 0.21 | 0.0050 |

| 2 | 6100 | 00:11:56 | 0.0254 | 100.00% | 0.21 | 0.0050 |

| 2 | 6150 | 00:12:02 | 0.0240 | 100.00% | 0.35 | 0.0050 |

| 2 | 6200 | 00:12:08 | 0.0132 | 100.00% | 0.23 | 0.0050 |

| 2 | 6250 | 00:12:13 | 0.0595 | 100.00% | 0.35 | 0.0050 |

| 2 | 6300 | 00:12:19 | 0.0252 | 100.00% | 0.30 | 0.0050 |

| 2 | 6350 | 00:12:25 | 0.0126 | 100.00% | 0.23 | 0.0050 |

| 2 | 6400 | 00:12:31 | 0.0551 | 100.00% | 0.40 | 0.0050 |

| 2 | 6450 | 00:12:37 | 0.0077 | 100.00% | 0.14 | 0.0050 |

| 2 | 6500 | 00:12:42 | 0.0210 | 100.00% | 0.28 | 0.0050 |

| 2 | 6550 | 00:12:48 | 0.0209 | 100.00% | 0.26 | 0.0050 |

| 2 | 6600 | 00:12:54 | 0.0147 | 100.00% | 0.29 | 0.0050 |

 334

| 2 | 6650 | 00:13:00 | 0.0082 | 100.00% | 0.18 | 0.0050 |

| 2 | 6700 | 00:13:06 | 0.0267 | 100.00% | 0.22 | 0.0050 |

| 2 | 6750 | 00:13:11 | 0.0086 | 100.00% | 0.16 | 0.0050 |

| 2 | 6800 | 00:13:17 | 0.0058 | 100.00% | 0.17 | 0.0050 |

| 2 | 6850 | 00:13:23 | 0.0120 | 100.00% | 0.19 | 0.0050 |

| 2 | 6900 | 00:13:29 | 0.0586 | 100.00% | 0.47 | 0.0050 |

| 2 | 6950 | 00:13:35 | 0.0055 | 100.00% | 0.12 | 0.0050 |

| 2 | 7000 | 00:13:40 | 0.0091 | 100.00% | 0.22 | 0.0050 |

| 2 | 7050 | 00:13:46 | 0.0273 | 100.00% | 0.46 | 0.0050 |

| 2 | 7100 | 00:13:52 | 0.0121 | 100.00% | 0.18 | 0.0050 |

| 2 | 7150 | 00:13:58 | 0.0058 | 100.00% | 0.16 | 0.0050 |

| 2 | 7200 | 00:14:04 | 0.0368 | 100.00% | 0.23 | 0.0050 |

| 2 | 7250 | 00:14:09 | 0.0297 | 100.00% | 0.28 | 0.0050 |

| 2 | 7300 | 00:14:15 | 0.0279 | 100.00% | 0.37 | 0.0050 |

| 2 | 7348 | 00:14:21 | 0.0187 | 100.00% | 0.25 | 0.0050 |

|===

==|

Step 2 of 4: Training a Fast R-CNN Network using the RPN from step 1.

--> Extracting region proposals from 3674 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 2.1942 | 0.00% | 0.37 | 0.0050 |

| 1 | 50 | 00:00:13 | 0.5455 | 89.06% | 0.52 | 0.0050 |

| 1 | 100 | 00:00:26 | 0.7003 | 83.59% | 0.50 | 0.0050 |

| 1 | 150 | 00:00:39 | 0.6194 | 86.72% | 0.48 | 0.0050 |

| 1 | 200 | 00:00:52 | 0.5615 | 85.94% | 0.46 | 0.0050 |

| 1 | 250 | 00:01:04 | 0.6985 | 85.94% | 0.50 | 0.0050 |

| 1 | 300 | 00:01:17 | 0.1527 | 96.09% | 0.58 | 0.0050 |

| 1 | 350 | 00:01:30 | 0.5843 | 89.84% | 0.52 | 0.0050 |

| 1 | 400 | 00:01:43 | 0.1478 | 97.66% | 0.40 | 0.0050 |

| 1 | 450 | 00:01:55 | 0.4044 | 90.38% | 0.53 | 0.0050 |

| 1 | 500 | 00:02:08 | 0.3228 | 92.97% | 0.41 | 0.0050 |

| 1 | 550 | 00:02:21 | 0.2865 | 97.66% | 0.32 | 0.0050 |

| 1 | 600 | 00:02:34 | 0.2557 | 93.16% | 0.48 | 0.0050 |

| 1 | 650 | 00:02:47 | 0.2103 | 95.31% | 0.33 | 0.0050 |

| 1 | 700 | 00:03:00 | 0.3787 | 89.84% | 0.43 | 0.0050 |

 335

| 1 | 750 | 00:03:13 | 0.3603 | 92.19% | 0.45 | 0.0050 |

| 1 | 800 | 00:03:26 | 0.2874 | 91.41% | 0.45 | 0.0050 |

| 1 | 850 | 00:03:39 | 0.2166 | 94.53% | 0.32 | 0.0050 |

| 1 | 900 | 00:03:51 | 0.2064 | 94.53% | 0.32 | 0.0050 |

| 1 | 950 | 00:04:04 | 0.2284 | 96.09% | 0.29 | 0.0050 |

| 1 | 1000 | 00:04:18 | 0.1408 | 97.66% | 0.25 | 0.0050 |

| 1 | 1050 | 00:04:30 | 0.2315 | 93.75% | 0.27 | 0.0050 |

| 1 | 1100 | 00:04:43 | 0.2026 | 92.97% | 0.30 | 0.0050 |

| 1 | 1150 | 00:04:56 | 0.1959 | 96.09% | 0.36 | 0.0050 |

| 1 | 1200 | 00:05:09 | 0.4171 | 89.06% | 0.40 | 0.0050 |

| 1 | 1250 | 00:05:22 | 0.2345 | 95.31% | 0.28 | 0.0050 |

| 1 | 1300 | 00:05:35 | 0.1849 | 94.53% | 0.27 | 0.0050 |

| 1 | 1350 | 00:05:48 | 0.1774 | 96.09% | 0.32 | 0.0050 |

| 1 | 1400 | 00:06:01 | 0.1883 | 94.53% | 0.34 | 0.0050 |

| 1 | 1450 | 00:06:14 | 0.2603 | 92.97% | 0.27 | 0.0050 |

| 1 | 1500 | 00:06:27 | 0.2524 | 93.75% | 0.30 | 0.0050 |

| 1 | 1550 | 00:06:40 | 0.1213 | 96.88% | 0.25 | 0.0050 |

| 1 | 1600 | 00:06:53 | 0.1842 | 95.31% | 0.30 | 0.0050 |

| 1 | 1650 | 00:07:06 | 0.1759 | 94.83% | 0.36 | 0.0050 |

| 1 | 1700 | 00:07:18 | 0.3942 | 92.19% | 0.41 | 0.0050 |

| 1 | 1750 | 00:07:31 | 0.1626 | 97.66% | 0.29 | 0.0050 |

| 1 | 1800 | 00:07:44 | 0.0945 | 98.06% | 0.39 | 0.0050 |

| 1 | 1850 | 00:07:57 | 0.1850 | 97.66% | 0.35 | 0.0050 |

| 1 | 1900 | 00:08:10 | 0.1374 | 95.31% | 0.20 | 0.0050 |

| 1 | 1950 | 00:08:23 | 0.1204 | 98.44% | 0.26 | 0.0050 |

| 1 | 2000 | 00:08:35 | 0.2484 | 91.58% | 0.26 | 0.0050 |

| 1 | 2050 | 00:08:49 | 0.1048 | 99.22% | 0.23 | 0.0050 |

| 1 | 2100 | 00:09:02 | 0.5840 | 89.06% | 0.37 | 0.0050 |

| 1 | 2150 | 00:09:15 | 0.0661 | 97.66% | 0.16 | 0.0050 |

| 1 | 2200 | 00:09:27 | 0.0668 | 100.00% | 0.50 | 0.0050 |

| 1 | 2250 | 00:09:40 | 0.2263 | 94.53% | 0.22 | 0.0050 |

| 1 | 2300 | 00:09:53 | 0.2199 | 94.74% | 0.42 | 0.0050 |

| 1 | 2350 | 00:10:06 | 0.1563 | 94.53% | 0.24 | 0.0050 |

| 1 | 2400 | 00:10:19 | 0.0979 | 98.44% | 0.24 | 0.0050 |

| 1 | 2450 | 00:10:32 | 0.1708 | 96.09% | 0.25 | 0.0050 |

| 1 | 2500 | 00:10:45 | 0.1309 | 96.09% | 0.20 | 0.0050 |

| 1 | 2550 | 00:10:58 | 0.0875 | 97.66% | 0.18 | 0.0050 |

| 1 | 2600 | 00:11:11 | 0.0774 | 97.66% | 0.20 | 0.0050 |

| 1 | 2650 | 00:11:24 | 0.1037 | 96.88% | 0.20 | 0.0050 |

| 1 | 2700 | 00:11:37 | 0.2142 | 94.21% | 0.28 | 0.0050 |

| 1 | 2750 | 00:11:50 | 0.0719 | 98.44% | 0.19 | 0.0050 |

| 1 | 2800 | 00:12:03 | 0.3317 | 92.19% | 0.38 | 0.0050 |

| 1 | 2850 | 00:12:16 | 0.1402 | 96.81% | 0.42 | 0.0050 |

| 1 | 2900 | 00:12:29 | 0.1100 | 96.88% | 0.23 | 0.0050 |

 336

| 1 | 2950 | 00:12:42 | 0.0988 | 96.88% | 0.22 | 0.0050 |

| 1 | 3000 | 00:12:55 | 0.1094 | 98.44% | 0.26 | 0.0050 |

| 1 | 3050 | 00:13:08 | 0.0526 | 99.22% | 0.32 | 0.0050 |

| 1 | 3100 | 00:13:21 | 0.1174 | 97.66% | 0.40 | 0.0050 |

| 1 | 3150 | 00:13:34 | 0.1505 | 96.88% | 0.28 | 0.0050 |

| 1 | 3200 | 00:13:47 | 0.0201 | 100.00% | 0.24 | 0.0050 |

| 1 | 3250 | 00:14:00 | 0.2310 | 94.53% | 0.26 | 0.0050 |

| 1 | 3300 | 00:14:14 | 0.1280 | 97.66% | 0.27 | 0.0050 |

| 1 | 3350 | 00:14:26 | 0.1744 | 94.53% | 0.21 | 0.0050 |

| 1 | 3400 | 00:14:39 | 0.1453 | 96.88% | 0.23 | 0.0050 |

| 1 | 3450 | 00:14:52 | 0.2402 | 93.75% | 0.26 | 0.0050 |

| 1 | 3500 | 00:15:05 | 0.0459 | 98.91% | 0.17 | 0.0050 |

| 1 | 3550 | 00:15:18 | 0.0559 | 100.00% | 0.21 | 0.0050 |

| 1 | 3600 | 00:15:31 | 0.0960 | 98.44% | 0.26 | 0.0050 |

| 1 | 3650 | 00:15:43 | 0.0423 | 100.00% | 0.28 | 0.0050 |

| 2 | 3700 | 00:16:00 | 0.1062 | 97.66% | 0.19 | 0.0050 |

| 2 | 3750 | 00:16:12 | 0.1444 | 96.09% | 0.21 | 0.0050 |

| 2 | 3800 | 00:16:25 | 0.2578 | 96.88% | 0.44 | 0.0050 |

| 2 | 3850 | 00:16:38 | 0.0905 | 98.44% | 0.22 | 0.0050 |

| 2 | 3900 | 00:16:51 | 0.1811 | 93.75% | 0.19 | 0.0050 |

| 2 | 3950 | 00:17:04 | 0.1853 | 94.53% | 0.23 | 0.0050 |

| 2 | 4000 | 00:17:16 | 0.0431 | 99.22% | 0.28 | 0.0050 |

| 2 | 4050 | 00:17:29 | 0.0399 | 98.44% | 0.15 | 0.0050 |

| 2 | 4100 | 00:17:42 | 0.0620 | 97.66% | 0.16 | 0.0050 |

| 2 | 4150 | 00:17:55 | 0.1807 | 93.75% | 0.30 | 0.0050 |

| 2 | 4200 | 00:18:08 | 0.3190 | 92.97% | 0.24 | 0.0050 |

| 2 | 4250 | 00:18:20 | 0.1161 | 96.88% | 0.28 | 0.0050 |

| 2 | 4300 | 00:18:33 | 0.1033 | 96.70% | 0.27 | 0.0050 |

| 2 | 4350 | 00:18:46 | 0.1572 | 96.09% | 0.28 | 0.0050 |

| 2 | 4400 | 00:18:59 | 0.2067 | 96.88% | 0.36 | 0.0050 |

| 2 | 4450 | 00:19:12 | 0.1092 | 97.66% | 0.27 | 0.0050 |

| 2 | 4500 | 00:19:25 | 0.1781 | 94.53% | 0.27 | 0.0050 |

| 2 | 4550 | 00:19:38 | 0.1294 | 96.88% | 0.22 | 0.0050 |

| 2 | 4600 | 00:19:51 | 0.1313 | 95.31% | 0.30 | 0.0050 |

| 2 | 4650 | 00:20:04 | 0.0831 | 97.66% | 0.29 | 0.0050 |

| 2 | 4700 | 00:20:17 | 0.0624 | 97.30% | 0.26 | 0.0050 |

| 2 | 4750 | 00:20:30 | 0.0397 | 99.15% | 0.18 | 0.0050 |

| 2 | 4800 | 00:20:43 | 0.0689 | 98.28% | 0.30 | 0.0050 |

| 2 | 4850 | 00:20:56 | 0.1399 | 97.66% | 0.26 | 0.0050 |

| 2 | 4900 | 00:21:09 | 0.0483 | 98.82% | 0.31 | 0.0050 |

| 2 | 4950 | 00:21:22 | 0.1046 | 96.88% | 0.21 | 0.0050 |

| 2 | 5000 | 00:21:35 | 0.2406 | 94.53% | 0.30 | 0.0050 |

| 2 | 5050 | 00:21:48 | 0.0581 | 100.00% | 0.30 | 0.0050 |

| 2 | 5100 | 00:22:01 | 0.2954 | 93.75% | 0.34 | 0.0050 |

 337

| 2 | 5150 | 00:22:14 | 0.0943 | 98.57% | 0.24 | 0.0050 |

| 2 | 5200 | 00:22:27 | 0.1456 | 96.67% | 0.20 | 0.0050 |

| 2 | 5250 | 00:22:40 | 0.0963 | 98.44% | 0.20 | 0.0050 |

| 2 | 5300 | 00:22:52 | 0.0962 | 99.22% | 0.20 | 0.0050 |

| 2 | 5350 | 00:23:05 | 0.0327 | 98.44% | 0.21 | 0.0050 |

| 2 | 5400 | 00:23:18 | 0.1401 | 96.09% | 0.20 | 0.0050 |

| 2 | 5450 | 00:23:31 | 0.1569 | 96.88% | 0.25 | 0.0050 |

| 2 | 5500 | 00:23:44 | 0.0935 | 98.44% | 0.18 | 0.0050 |

| 2 | 5550 | 00:23:57 | 0.0858 | 98.44% | 0.22 | 0.0050 |

| 2 | 5600 | 00:24:09 | 0.0578 | 98.44% | 0.16 | 0.0050 |

| 2 | 5650 | 00:24:22 | 0.1674 | 95.31% | 0.26 | 0.0050 |

| 2 | 5700 | 00:24:35 | 0.0609 | 98.44% | 0.26 | 0.0050 |

| 2 | 5750 | 00:24:48 | 0.0489 | 97.66% | 0.24 | 0.0050 |

| 2 | 5800 | 00:25:01 | 0.1556 | 95.56% | 0.22 | 0.0050 |

| 2 | 5850 | 00:25:14 | 0.0894 | 98.44% | 0.33 | 0.0050 |

| 2 | 5900 | 00:25:27 | 0.0399 | 100.00% | 0.24 | 0.0050 |

| 2 | 5950 | 00:25:40 | 0.1169 | 97.66% | 0.21 | 0.0050 |

| 2 | 6000 | 00:25:53 | 0.1732 | 93.75% | 0.20 | 0.0050 |

| 2 | 6050 | 00:26:06 | 0.0997 | 96.88% | 0.16 | 0.0050 |

| 2 | 6100 | 00:26:19 | 0.0563 | 100.00% | 0.17 | 0.0050 |

| 2 | 6150 | 00:26:32 | 0.1805 | 95.31% | 0.22 | 0.0050 |

| 2 | 6200 | 00:26:45 | 0.1075 | 96.51% | 0.34 | 0.0050 |

| 2 | 6250 | 00:26:58 | 0.1217 | 98.44% | 0.19 | 0.0050 |

| 2 | 6300 | 00:27:12 | 0.1718 | 96.09% | 0.26 | 0.0050 |

| 2 | 6350 | 00:27:25 | 0.1219 | 97.66% | 0.23 | 0.0050 |

| 2 | 6400 | 00:27:38 | 0.0787 | 99.22% | 0.18 | 0.0050 |

| 2 | 6450 | 00:27:51 | 0.1024 | 98.44% | 0.27 | 0.0050 |

| 2 | 6500 | 00:28:04 | 0.0294 | 100.00% | 0.34 | 0.0050 |

| 2 | 6550 | 00:28:17 | 0.1316 | 95.31% | 0.17 | 0.0050 |

| 2 | 6600 | 00:28:30 | 0.1200 | 96.09% | 0.17 | 0.0050 |

| 2 | 6650 | 00:28:43 | 0.1656 | 95.31% | 0.25 | 0.0050 |

| 2 | 6700 | 00:28:56 | 0.0623 | 98.44% | 0.18 | 0.0050 |

| 2 | 6750 | 00:29:09 | 0.1640 | 95.31% | 0.26 | 0.0050 |

| 2 | 6800 | 00:29:22 | 0.0789 | 98.44% | 0.17 | 0.0050 |

| 2 | 6850 | 00:29:36 | 0.1039 | 97.66% | 0.18 | 0.0050 |

| 2 | 6900 | 00:29:49 | 0.0954 | 97.66% | 0.19 | 0.0050 |

| 2 | 6950 | 00:30:02 | 0.0396 | 98.96% | 0.20 | 0.0050 |

| 2 | 7000 | 00:30:16 | 0.1187 | 96.09% | 0.14 | 0.0050 |

| 2 | 7050 | 00:30:29 | 0.3400 | 92.97% | 0.33 | 0.0050 |

| 2 | 7100 | 00:30:42 | 0.0948 | 96.09% | 0.19 | 0.0050 |

| 2 | 7150 | 00:30:55 | 0.0812 | 97.66% | 0.20 | 0.0050 |

| 2 | 7200 | 00:31:08 | 0.1291 | 98.44% | 0.26 | 0.0050 |

| 2 | 7250 | 00:31:21 | 0.0705 | 99.22% | 0.16 | 0.0050 |

| 2 | 7300 | 00:31:34 | 0.1372 | 96.88% | 0.21 | 0.0050 |

 338

| 2 | 7330 | 00:31:42 | 0.1820 | 94.53% | 0.22 | 0.0050 |

|===

==|

Step 3 of 4: Re-training RPN using weight sharing with Fast R-CNN.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 2.1770 | 100.00% | 3.86 | 0.0050 |

| 1 | 50 | 00:00:03 | 0.1195 | 100.00% | 0.75 | 0.0050 |

| 1 | 100 | 00:00:07 | 0.0270 | 100.00% | 0.41 | 0.0050 |

| 1 | 150 | 00:00:10 | 0.1698 | 100.00% | 0.65 | 0.0050 |

| 1 | 200 | 00:00:14 | 0.1117 | 100.00% | 0.50 | 0.0050 |

| 1 | 250 | 00:00:17 | 0.0578 | 100.00% | 0.52 | 0.0050 |

| 1 | 300 | 00:00:21 | 0.0572 | 100.00% | 0.43 | 0.0050 |

| 1 | 350 | 00:00:25 | 0.0564 | 100.00% | 0.40 | 0.0050 |

| 1 | 400 | 00:00:28 | 0.1285 | 100.00% | 0.41 | 0.0050 |

| 1 | 450 | 00:00:32 | 0.1136 | 100.00% | 0.53 | 0.0050 |

| 1 | 500 | 00:00:35 | 0.0470 | 100.00% | 0.43 | 0.0050 |

| 1 | 550 | 00:00:39 | 0.0097 | 100.00% | 0.37 | 0.0050 |

| 1 | 600 | 00:00:42 | 0.0224 | 100.00% | 0.25 | 0.0050 |

| 1 | 650 | 00:00:46 | 0.0381 | 100.00% | 0.39 | 0.0050 |

| 1 | 700 | 00:00:49 | 0.0160 | 100.00% | 0.24 | 0.0050 |

| 1 | 750 | 00:00:53 | 0.0093 | 100.00% | 0.31 | 0.0050 |

| 1 | 800 | 00:00:57 | 0.0781 | 100.00% | 0.61 | 0.0050 |

| 1 | 850 | 00:01:00 | 0.0554 | 100.00% | 0.38 | 0.0050 |

| 1 | 900 | 00:01:04 | 0.0842 | 100.00% | 0.50 | 0.0050 |

| 1 | 950 | 00:01:07 | 0.1288 | 100.00% | 0.56 | 0.0050 |

| 1 | 1000 | 00:01:11 | 0.0256 | 100.00% | 0.75 | 0.0050 |

| 1 | 1050 | 00:01:14 | 0.0170 | 100.00% | 0.28 | 0.0050 |

| 1 | 1100 | 00:01:18 | 0.0294 | 100.00% | 0.50 | 0.0050 |

| 1 | 1150 | 00:01:21 | 0.0220 | 100.00% | 0.30 | 0.0050 |

| 1 | 1200 | 00:01:25 | 0.0561 | 100.00% | 0.56 | 0.0050 |

| 1 | 1250 | 00:01:29 | 0.1359 | 100.00% | 0.66 | 0.0050 |

| 1 | 1300 | 00:01:32 | 0.0222 | 100.00% | 0.32 | 0.0050 |

| 1 | 1350 | 00:01:36 | 0.0987 | 100.00% | 0.45 | 0.0050 |

| 1 | 1400 | 00:01:39 | 0.0514 | 100.00% | 0.40 | 0.0050 |

| 1 | 1450 | 00:01:43 | 0.0645 | 100.00% | 0.48 | 0.0050 |

| 1 | 1500 | 00:01:46 | 0.0109 | 100.00% | 0.21 | 0.0050 |

 339

| 1 | 1550 | 00:01:50 | 0.0286 | 100.00% | 0.43 | 0.0050 |

| 1 | 1600 | 00:01:54 | 0.0228 | 100.00% | 0.71 | 0.0050 |

| 1 | 1650 | 00:01:57 | 0.0489 | 100.00% | 1.11 | 0.0050 |

| 1 | 1700 | 00:02:01 | 0.0577 | 100.00% | 0.46 | 0.0050 |

| 1 | 1750 | 00:02:04 | 0.0222 | 100.00% | 0.30 | 0.0050 |

| 1 | 1800 | 00:02:08 | 0.0136 | 100.00% | 0.24 | 0.0050 |

| 1 | 1850 | 00:02:11 | 0.1187 | 100.00% | 0.48 | 0.0050 |

| 1 | 1900 | 00:02:15 | 0.0570 | 100.00% | 0.37 | 0.0050 |

| 1 | 1950 | 00:02:18 | 0.0024 | 100.00% | 0.35 | 0.0050 |

| 1 | 2000 | 00:02:22 | 0.0049 | 100.00% | 0.22 | 0.0050 |

| 1 | 2050 | 00:02:26 | 0.0204 | 100.00% | 0.25 | 0.0050 |

| 1 | 2100 | 00:02:29 | 0.0831 | 100.00% | 0.58 | 0.0050 |

| 1 | 2150 | 00:02:33 | 0.0744 | 100.00% | 1.48 | 0.0050 |

| 1 | 2200 | 00:02:36 | 0.1439 | 100.00% | 0.60 | 0.0050 |

| 1 | 2250 | 00:02:40 | 0.0156 | 100.00% | 0.27 | 0.0050 |

| 1 | 2300 | 00:02:43 | 0.0342 | 100.00% | 0.37 | 0.0050 |

| 1 | 2350 | 00:02:47 | 0.0870 | 100.00% | 0.67 | 0.0050 |

| 1 | 2400 | 00:02:51 | 0.0494 | 100.00% | 0.40 | 0.0050 |

| 1 | 2450 | 00:02:54 | 0.0714 | 100.00% | 0.44 | 0.0050 |

| 1 | 2500 | 00:02:58 | 0.0841 | 100.00% | 1.01 | 0.0050 |

| 1 | 2550 | 00:03:01 | 0.0509 | 100.00% | 0.44 | 0.0050 |

| 1 | 2600 | 00:03:05 | 0.0636 | 100.00% | 0.40 | 0.0050 |

| 1 | 2650 | 00:03:08 | 0.0704 | 100.00% | 0.65 | 0.0050 |

| 1 | 2700 | 00:03:12 | 0.0104 | 100.00% | 0.23 | 0.0050 |

| 1 | 2750 | 00:03:15 | 0.0839 | 100.00% | 0.42 | 0.0050 |

| 1 | 2800 | 00:03:19 | 0.1825 | 100.00% | 0.50 | 0.0050 |

| 1 | 2850 | 00:03:23 | 0.0466 | 100.00% | 0.45 | 0.0050 |

| 1 | 2900 | 00:03:26 | 0.0668 | 100.00% | 0.35 | 0.0050 |

| 1 | 2950 | 00:03:30 | 0.0540 | 100.00% | 0.40 | 0.0050 |

| 1 | 3000 | 00:03:33 | 0.0307 | 100.00% | 0.37 | 0.0050 |

| 1 | 3050 | 00:03:37 | 0.6474 | 100.00% | 1.66 | 0.0050 |

| 1 | 3100 | 00:03:40 | 0.1222 | 100.00% | 0.66 | 0.0050 |

| 1 | 3150 | 00:03:44 | 0.0341 | 100.00% | 0.37 | 0.0050 |

| 1 | 3200 | 00:03:48 | 0.0328 | 100.00% | 0.80 | 0.0050 |

| 1 | 3250 | 00:03:51 | 0.0247 | 100.00% | 0.33 | 0.0050 |

| 1 | 3300 | 00:03:55 | 0.0478 | 100.00% | 0.52 | 0.0050 |

| 1 | 3350 | 00:03:58 | 0.0108 | 100.00% | 0.36 | 0.0050 |

| 1 | 3400 | 00:04:02 | 0.0520 | 100.00% | 0.38 | 0.0050 |

| 1 | 3450 | 00:04:05 | 0.0681 | 100.00% | 0.42 | 0.0050 |

| 1 | 3500 | 00:04:09 | 0.0277 | 100.00% | 0.32 | 0.0050 |

| 1 | 3550 | 00:04:12 | 0.0561 | 100.00% | 0.52 | 0.0050 |

| 1 | 3600 | 00:04:16 | 0.0096 | 100.00% | 0.22 | 0.0050 |

| 1 | 3650 | 00:04:20 | 0.0103 | 100.00% | 0.38 | 0.0050 |

| 2 | 3700 | 00:04:26 | 0.0192 | 100.00% | 0.26 | 0.0050 |

 340

| 2 | 3750 | 00:04:29 | 0.0212 | 100.00% | 0.32 | 0.0050 |

| 2 | 3800 | 00:04:33 | 0.0531 | 100.00% | 0.36 | 0.0050 |

| 2 | 3850 | 00:04:36 | 0.0688 | 100.00% | 0.61 | 0.0050 |

| 2 | 3900 | 00:04:40 | 0.0932 | 100.00% | 0.49 | 0.0050 |

| 2 | 3950 | 00:04:43 | 0.0627 | 100.00% | 0.37 | 0.0050 |

| 2 | 4000 | 00:04:47 | 0.0628 | 100.00% | 0.37 | 0.0050 |

| 2 | 4050 | 00:04:50 | 0.0461 | 100.00% | 0.37 | 0.0050 |

| 2 | 4100 | 00:04:54 | 0.0525 | 100.00% | 0.47 | 0.0050 |

| 2 | 4150 | 00:04:58 | 0.0209 | 100.00% | 0.47 | 0.0050 |

| 2 | 4200 | 00:05:01 | 0.0399 | 100.00% | 0.43 | 0.0050 |

| 2 | 4250 | 00:05:05 | 0.0385 | 100.00% | 0.28 | 0.0050 |

| 2 | 4300 | 00:05:08 | 0.1238 | 100.00% | 0.55 | 0.0050 |

| 2 | 4350 | 00:05:12 | 0.0420 | 100.00% | 0.30 | 0.0050 |

| 2 | 4400 | 00:05:16 | 0.0313 | 100.00% | 0.57 | 0.0050 |

| 2 | 4450 | 00:05:19 | 0.1315 | 100.00% | 0.57 | 0.0050 |

| 2 | 4500 | 00:05:23 | 0.0023 | 100.00% | 0.24 | 0.0050 |

| 2 | 4550 | 00:05:26 | 0.0537 | 100.00% | 0.37 | 0.0050 |

| 2 | 4600 | 00:05:30 | 0.0881 | 100.00% | 0.49 | 0.0050 |

| 2 | 4650 | 00:05:33 | 0.1195 | 100.00% | 1.05 | 0.0050 |

| 2 | 4700 | 00:05:37 | 0.0435 | 100.00% | 0.33 | 0.0050 |

| 2 | 4750 | 00:05:41 | 0.0756 | 100.00% | 0.65 | 0.0050 |

| 2 | 4800 | 00:05:44 | 0.0458 | 100.00% | 0.34 | 0.0050 |

| 2 | 4850 | 00:05:48 | 0.0512 | 100.00% | 0.73 | 0.0050 |

| 2 | 4900 | 00:05:51 | 0.1453 | 100.00% | 0.99 | 0.0050 |

| 2 | 4950 | 00:05:55 | 0.0482 | 100.00% | 0.57 | 0.0050 |

| 2 | 5000 | 00:05:58 | 0.2906 | 100.00% | 0.89 | 0.0050 |

| 2 | 5050 | 00:06:02 | 0.0277 | 100.00% | 0.34 | 0.0050 |

| 2 | 5100 | 00:06:06 | 0.0089 | 100.00% | 0.16 | 0.0050 |

| 2 | 5150 | 00:06:09 | 0.0164 | 100.00% | 0.22 | 0.0050 |

| 2 | 5200 | 00:06:13 | 0.0128 | 100.00% | 0.25 | 0.0050 |

| 2 | 5250 | 00:06:16 | 0.0389 | 100.00% | 0.45 | 0.0050 |

| 2 | 5300 | 00:06:20 | 0.0515 | 100.00% | 0.52 | 0.0050 |

| 2 | 5350 | 00:06:23 | 0.0109 | 100.00% | 0.27 | 0.0050 |

| 2 | 5400 | 00:06:27 | 0.0801 | 100.00% | 0.46 | 0.0050 |

| 2 | 5450 | 00:06:31 | 0.4282 | 100.00% | 1.41 | 0.0050 |

| 2 | 5500 | 00:06:34 | 0.0099 | 100.00% | 0.23 | 0.0050 |

| 2 | 5550 | 00:06:38 | 0.0335 | 100.00% | 0.26 | 0.0050 |

| 2 | 5600 | 00:06:41 | 0.0899 | 100.00% | 0.47 | 0.0050 |

| 2 | 5650 | 00:06:45 | 0.0137 | 100.00% | 0.32 | 0.0050 |

| 2 | 5700 | 00:06:48 | 0.0360 | 100.00% | 0.46 | 0.0050 |

| 2 | 5750 | 00:06:52 | 0.0600 | 100.00% | 0.50 | 0.0050 |

| 2 | 5800 | 00:06:55 | 0.0035 | 100.00% | 0.27 | 0.0050 |

| 2 | 5850 | 00:06:59 | 0.0142 | 100.00% | 0.25 | 0.0050 |

| 2 | 5900 | 00:07:03 | 0.0144 | 100.00% | 0.28 | 0.0050 |

 341

| 2 | 5950 | 00:07:06 | 0.0116 | 100.00% | 0.29 | 0.0050 |

| 2 | 6000 | 00:07:10 | 0.0868 | 100.00% | 0.77 | 0.0050 |

| 2 | 6050 | 00:07:13 | 0.0479 | 100.00% | 0.44 | 0.0050 |

| 2 | 6100 | 00:07:17 | 0.0523 | 100.00% | 0.58 | 0.0050 |

| 2 | 6150 | 00:07:20 | 0.7442 | 100.00% | 0.94 | 0.0050 |

| 2 | 6200 | 00:07:24 | 0.0337 | 100.00% | 0.36 | 0.0050 |

| 2 | 6250 | 00:07:28 | 0.0131 | 100.00% | 0.30 | 0.0050 |

| 2 | 6300 | 00:07:31 | 0.0322 | 100.00% | 0.34 | 0.0050 |

| 2 | 6350 | 00:07:35 | 0.0119 | 100.00% | 0.27 | 0.0050 |

| 2 | 6400 | 00:07:38 | 0.0267 | 100.00% | 0.24 | 0.0050 |

| 2 | 6450 | 00:07:42 | 0.0375 | 100.00% | 0.56 | 0.0050 |

| 2 | 6500 | 00:07:45 | 0.0385 | 100.00% | 0.39 | 0.0050 |

| 2 | 6550 | 00:07:49 | 0.0817 | 100.00% | 0.46 | 0.0050 |

| 2 | 6600 | 00:07:52 | 0.0243 | 100.00% | 0.41 | 0.0050 |

| 2 | 6650 | 00:07:56 | 0.0382 | 100.00% | 0.39 | 0.0050 |

| 2 | 6700 | 00:08:00 | 0.0331 | 100.00% | 0.34 | 0.0050 |

| 2 | 6750 | 00:08:03 | 0.0223 | 100.00% | 0.57 | 0.0050 |

| 2 | 6800 | 00:08:07 | 0.0565 | 100.00% | 0.36 | 0.0050 |

| 2 | 6850 | 00:08:10 | 0.0691 | 100.00% | 0.58 | 0.0050 |

| 2 | 6900 | 00:08:14 | 0.0332 | 100.00% | 0.33 | 0.0050 |

| 2 | 6950 | 00:08:17 | 0.1619 | 100.00% | 0.62 | 0.0050 |

| 2 | 7000 | 00:08:21 | 0.0906 | 100.00% | 0.41 | 0.0050 |

| 2 | 7050 | 00:08:24 | 0.0235 | 100.00% | 0.39 | 0.0050 |

| 2 | 7100 | 00:08:28 | 0.0263 | 100.00% | 0.30 | 0.0050 |

| 2 | 7150 | 00:08:32 | 0.0160 | 100.00% | 0.27 | 0.0050 |

| 2 | 7200 | 00:08:35 | 0.0130 | 100.00% | 0.53 | 0.0050 |

| 2 | 7250 | 00:08:39 | 0.1554 | 100.00% | 0.65 | 0.0050 |

| 2 | 7300 | 00:08:42 | 0.0331 | 100.00% | 0.27 | 0.0050 |

| 2 | 7348 | 00:08:46 | 0.0217 | 100.00% | 0.35 | 0.0050 |

|===

==|

Step 4 of 4: Re-training Fast R-CNN using updated RPN.

--> Extracting region proposals from 3674 training images...done.

Training on single GPU.

|===

==|

| Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Mini-batch | Base

Learning |

| | | (hh:mm:ss) | Loss | Accuracy | RMSE | Rate |

|===

==|

| 1 | 1 | 00:00:00 | 0.1084 | 96.30% | 0.31 | 0.0050 |

 342

| 1 | 50 | 00:00:10 | 0.3983 | 79.17% | 0.97 | 0.0050 |

| 1 | 100 | 00:00:20 | 0.1143 | 96.09% | 0.22 | 0.0050 |

| 1 | 150 | 00:00:30 | 0.1340 | 96.88% | 0.23 | 0.0050 |

| 1 | 200 | 00:00:40 | 0.1632 | 97.70% | 0.37 | 0.0050 |

| 1 | 250 | 00:00:51 | 0.0579 | 98.28% | 0.20 | 0.0050 |

| 1 | 300 | 00:01:01 | 0.0863 | 98.44% | 0.21 | 0.0050 |

| 1 | 350 | 00:01:11 | 0.1928 | 96.88% | 0.32 | 0.0050 |

| 1 | 400 | 00:01:21 | 0.2507 | 94.53% | 0.30 | 0.0050 |

| 1 | 450 | 00:01:32 | 0.3113 | 91.41% | 0.30 | 0.0050 |

| 1 | 500 | 00:01:42 | 0.1999 | 97.32% | 0.41 | 0.0050 |

| 1 | 550 | 00:01:53 | 0.0861 | 97.66% | 0.18 | 0.0050 |

| 1 | 600 | 00:02:03 | 0.1939 | 94.53% | 0.31 | 0.0050 |

| 1 | 650 | 00:02:13 | 0.0990 | 98.77% | 0.36 | 0.0050 |

| 1 | 700 | 00:02:23 | 0.0727 | 98.44% | 0.25 | 0.0050 |

| 1 | 750 | 00:02:33 | 0.0523 | 97.66% | 0.16 | 0.0050 |

| 1 | 800 | 00:02:43 | 0.3887 | 89.84% | 0.35 | 0.0050 |

| 1 | 850 | 00:02:54 | 0.0562 | 99.22% | 0.16 | 0.0050 |

| 1 | 900 | 00:03:04 | 0.1458 | 100.00% | 0.24 | 0.0050 |

| 1 | 950 | 00:03:15 | 0.1734 | 96.09% | 0.21 | 0.0050 |

| 1 | 1000 | 00:03:25 | 0.0537 | 99.22% | 0.18 | 0.0050 |

| 1 | 1050 | 00:03:35 | 0.0797 | 96.88% | 0.17 | 0.0050 |

| 1 | 1100 | 00:03:45 | 0.1300 | 96.09% | 0.19 | 0.0050 |

| 1 | 1150 | 00:03:55 | 0.1516 | 96.88% | 0.24 | 0.0050 |

| 1 | 1200 | 00:04:06 | 0.0372 | 100.00% | 0.20 | 0.0050 |

| 1 | 1250 | 00:04:16 | 0.0851 | 98.44% | 0.19 | 0.0050 |

| 1 | 1300 | 00:04:26 | 0.2603 | 94.53% | 0.29 | 0.0050 |

| 1 | 1350 | 00:04:37 | 0.0950 | 97.94% | 0.28 | 0.0050 |

| 1 | 1400 | 00:04:47 | 0.0619 | 99.05% | 0.22 | 0.0050 |

| 1 | 1450 | 00:04:57 | 0.1629 | 96.88% | 0.23 | 0.0050 |

| 1 | 1500 | 00:05:08 | 0.0337 | 97.66% | 0.20 | 0.0050 |

| 1 | 1550 | 00:05:18 | 0.0910 | 97.14% | 0.23 | 0.0050 |

| 1 | 1600 | 00:05:28 | 0.0626 | 100.00% | 0.19 | 0.0050 |

| 1 | 1650 | 00:05:38 | 0.1079 | 94.53% | 0.18 | 0.0050 |

| 1 | 1700 | 00:05:49 | 0.1106 | 96.88% | 0.18 | 0.0050 |

| 1 | 1750 | 00:06:00 | 0.0824 | 97.66% | 0.19 | 0.0050 |

| 1 | 1800 | 00:06:10 | 0.0910 | 95.88% | 0.18 | 0.0050 |

| 1 | 1850 | 00:06:20 | 0.0639 | 97.66% | 0.15 | 0.0050 |

| 1 | 1900 | 00:06:30 | 0.1214 | 97.66% | 0.25 | 0.0050 |

| 1 | 1950 | 00:06:41 | 0.1118 | 95.59% | 0.23 | 0.0050 |

| 1 | 2000 | 00:06:51 | 0.1406 | 96.88% | 0.18 | 0.0050 |

| 1 | 2050 | 00:07:01 | 0.2906 | 92.97% | 0.29 | 0.0050 |

| 1 | 2100 | 00:07:11 | 0.1259 | 98.37% | 0.30 | 0.0050 |

| 1 | 2150 | 00:07:22 | 0.0652 | 98.44% | 0.36 | 0.0050 |

| 1 | 2200 | 00:07:32 | 0.1152 | 97.66% | 0.23 | 0.0050 |

 343

| 1 | 2250 | 00:07:42 | 0.3570 | 91.41% | 0.29 | 0.0050 |

| 1 | 2300 | 00:07:52 | 0.0807 | 98.44% | 0.19 | 0.0050 |

| 1 | 2350 | 00:08:02 | 0.1162 | 95.31% | 0.18 | 0.0050 |

| 1 | 2400 | 00:08:12 | 0.1225 | 96.88% | 0.21 | 0.0050 |

| 1 | 2450 | 00:08:23 | 0.0755 | 97.66% | 0.18 | 0.0050 |

| 1 | 2500 | 00:08:33 | 0.1407 | 96.09% | 0.24 | 0.0050 |

| 1 | 2550 | 00:08:43 | 0.2317 | 96.88% | 0.34 | 0.0050 |

| 1 | 2600 | 00:08:53 | 0.1937 | 92.97% | 0.26 | 0.0050 |

| 1 | 2650 | 00:09:03 | 0.0845 | 97.56% | 0.32 | 0.0050 |

| 1 | 2700 | 00:09:13 | 0.1349 | 97.66% | 0.21 | 0.0050 |

| 1 | 2750 | 00:09:23 | 0.0897 | 96.09% | 0.15 | 0.0050 |

| 1 | 2800 | 00:09:34 | 0.2610 | 95.31% | 0.36 | 0.0050 |

| 1 | 2850 | 00:09:44 | 0.0500 | 98.44% | 0.16 | 0.0050 |

| 1 | 2900 | 00:09:54 | 0.1528 | 96.09% | 0.26 | 0.0050 |

| 1 | 2950 | 00:10:04 | 0.0920 | 97.66% | 0.17 | 0.0050 |

| 1 | 3000 | 00:10:15 | 0.1996 | 95.31% | 0.27 | 0.0050 |

| 1 | 3050 | 00:10:25 | 0.1602 | 95.31% | 0.21 | 0.0050 |

| 1 | 3100 | 00:10:35 | 0.1267 | 96.09% | 0.19 | 0.0050 |

| 1 | 3150 | 00:10:46 | 0.0858 | 96.88% | 0.23 | 0.0050 |

| 1 | 3200 | 00:10:56 | 0.1734 | 95.31% | 0.24 | 0.0050 |

| 1 | 3250 | 00:11:06 | 0.0921 | 99.22% | 0.21 | 0.0050 |

| 1 | 3300 | 00:11:16 | 0.0859 | 96.88% | 0.22 | 0.0050 |

| 1 | 3350 | 00:11:26 | 0.1762 | 94.53% | 0.27 | 0.0050 |

| 1 | 3400 | 00:11:36 | 0.0716 | 98.80% | 0.19 | 0.0050 |

| 1 | 3450 | 00:11:46 | 0.2367 | 95.31% | 0.21 | 0.0050 |

| 1 | 3500 | 00:11:56 | 0.0746 | 97.52% | 0.19 | 0.0050 |

| 1 | 3550 | 00:12:07 | 0.1649 | 94.53% | 0.18 | 0.0050 |

| 1 | 3600 | 00:12:17 | 0.0706 | 98.44% | 0.17 | 0.0050 |

| 1 | 3650 | 00:12:27 | 0.1098 | 96.88% | 0.18 | 0.0050 |

| 2 | 3700 | 00:12:41 | 0.0640 | 99.22% | 0.13 | 0.0050 |

| 2 | 3750 | 00:12:51 | 0.0413 | 100.00% | 0.14 | 0.0050 |

| 2 | 3800 | 00:13:01 | 0.0748 | 96.88% | 0.15 | 0.0050 |

| 2 | 3850 | 00:13:11 | 0.1156 | 96.09% | 0.20 | 0.0050 |

| 2 | 3900 | 00:13:22 | 0.3913 | 89.84% | 0.32 | 0.0050 |

| 2 | 3950 | 00:13:32 | 0.0645 | 99.22% | 0.17 | 0.0050 |

| 2 | 4000 | 00:13:42 | 0.0822 | 98.44% | 0.17 | 0.0050 |

| 2 | 4050 | 00:13:53 | 0.0597 | 98.44% | 0.17 | 0.0050 |

| 2 | 4100 | 00:14:03 | 0.0269 | 100.00% | 0.13 | 0.0050 |

| 2 | 4150 | 00:14:14 | 0.0491 | 99.22% | 0.15 | 0.0050 |

| 2 | 4200 | 00:14:24 | 0.0952 | 96.88% | 0.19 | 0.0050 |

| 2 | 4250 | 00:14:34 | 0.0805 | 98.44% | 0.17 | 0.0050 |

| 2 | 4300 | 00:14:44 | 0.1091 | 96.88% | 0.18 | 0.0050 |

| 2 | 4350 | 00:14:55 | 0.0739 | 98.44% | 0.20 | 0.0050 |

| 2 | 4400 | 00:15:05 | 0.0337 | 100.00% | 0.20 | 0.0050 |

 344

| 2 | 4450 | 00:15:15 | 0.2852 | 92.97% | 0.28 | 0.0050 |

| 2 | 4500 | 00:15:25 | 0.1971 | 94.53% | 0.28 | 0.0050 |

| 2 | 4550 | 00:15:36 | 0.0739 | 98.44% | 0.20 | 0.0050 |

| 2 | 4600 | 00:15:46 | 0.0753 | 98.44% | 0.16 | 0.0050 |

| 2 | 4650 | 00:15:56 | 0.1167 | 95.31% | 0.19 | 0.0050 |

| 2 | 4700 | 00:16:07 | 0.1833 | 94.53% | 0.23 | 0.0050 |

| 2 | 4750 | 00:16:17 | 0.1365 | 96.88% | 0.31 | 0.0050 |

| 2 | 4800 | 00:16:27 | 0.2083 | 94.53% | 0.23 | 0.0050 |

| 2 | 4850 | 00:16:37 | 0.1105 | 97.66% | 0.17 | 0.0050 |

| 2 | 4900 | 00:16:48 | 0.0864 | 96.88% | 0.13 | 0.0050 |

| 2 | 4950 | 00:16:58 | 0.3063 | 92.19% | 0.30 | 0.0050 |

| 2 | 5000 | 00:17:08 | 0.1612 | 96.88% | 0.21 | 0.0050 |

| 2 | 5050 | 00:17:19 | 0.2151 | 94.53% | 0.21 | 0.0050 |

| 2 | 5100 | 00:17:29 | 0.0839 | 96.88% | 0.36 | 0.0050 |

| 2 | 5150 | 00:17:39 | 0.0543 | 98.44% | 0.15 | 0.0050 |

| 2 | 5200 | 00:17:50 | 0.0196 | 100.00% | 0.13 | 0.0050 |

| 2 | 5250 | 00:18:00 | 0.0755 | 98.44% | 0.16 | 0.0050 |

| 2 | 5300 | 00:18:10 | 0.0379 | 100.00% | 0.14 | 0.0050 |

| 2 | 5350 | 00:18:21 | 0.0538 | 100.00% | 0.29 | 0.0050 |

| 2 | 5400 | 00:18:31 | 0.1053 | 96.88% | 0.19 | 0.0050 |

| 2 | 5450 | 00:18:41 | 0.0801 | 99.07% | 0.30 | 0.0050 |

| 2 | 5500 | 00:18:52 | 0.0489 | 100.00% | 0.24 | 0.0050 |

| 2 | 5550 | 00:19:02 | 0.0706 | 96.88% | 0.15 | 0.0050 |

| 2 | 5600 | 00:19:12 | 0.1564 | 97.66% | 0.31 | 0.0050 |

| 2 | 5650 | 00:19:22 | 0.1613 | 97.66% | 0.19 | 0.0050 |

| 2 | 5700 | 00:19:33 | 0.1070 | 97.66% | 0.17 | 0.0050 |

| 2 | 5750 | 00:19:43 | 0.1335 | 97.87% | 0.37 | 0.0050 |

| 2 | 5800 | 00:19:53 | 0.1165 | 96.88% | 0.23 | 0.0050 |

| 2 | 5850 | 00:20:04 | 0.0945 | 96.88% | 0.20 | 0.0050 |

| 2 | 5900 | 00:20:14 | 0.0936 | 97.66% | 0.18 | 0.0050 |

| 2 | 5950 | 00:20:24 | 0.0669 | 97.66% | 0.18 | 0.0050 |

| 2 | 6000 | 00:20:34 | 0.0663 | 98.44% | 0.13 | 0.0050 |

| 2 | 6050 | 00:20:44 | 0.2671 | 92.97% | 0.30 | 0.0050 |

| 2 | 6100 | 00:20:54 | 0.0979 | 97.66% | 0.18 | 0.0050 |

| 2 | 6150 | 00:21:04 | 0.0987 | 97.66% | 0.28 | 0.0050 |

| 2 | 6200 | 00:21:14 | 0.1157 | 96.88% | 0.18 | 0.0050 |

| 2 | 6250 | 00:21:25 | 0.1950 | 97.66% | 0.32 | 0.0050 |

| 2 | 6300 | 00:21:35 | 0.0768 | 97.66% | 0.20 | 0.0050 |

| 2 | 6350 | 00:21:45 | 0.0804 | 97.66% | 0.24 | 0.0050 |

| 2 | 6400 | 00:21:55 | 0.1543 | 94.53% | 0.22 | 0.0050 |

| 2 | 6450 | 00:22:05 | 0.1118 | 95.31% | 0.19 | 0.0050 |

| 2 | 6500 | 00:22:15 | 0.0967 | 97.66% | 0.19 | 0.0050 |

| 2 | 6550 | 00:22:26 | 0.1044 | 96.09% | 0.20 | 0.0050 |

| 2 | 6600 | 00:22:36 | 0.0423 | 99.22% | 0.15 | 0.0050 |

 345

| 2 | 6650 | 00:22:46 | 0.1042 | 96.88% | 0.14 | 0.0050 |

| 2 | 6700 | 00:22:56 | 0.1070 | 98.97% | 0.24 | 0.0050 |

| 2 | 6750 | 00:23:07 | 0.0543 | 99.22% | 0.16 | 0.0050 |

| 2 | 6800 | 00:23:17 | 0.0571 | 98.13% | 0.18 | 0.0050 |

| 2 | 6850 | 00:23:27 | 0.1729 | 95.31% | 0.23 | 0.0050 |

| 2 | 6900 | 00:23:37 | 0.0331 | 99.22% | 0.16 | 0.0050 |

| 2 | 6950 | 00:23:48 | 0.0889 | 98.44% | 0.17 | 0.0050 |

| 2 | 7000 | 00:23:58 | 0.1037 | 95.24% | 0.16 | 0.0050 |

| 2 | 7050 | 00:24:08 | 0.1070 | 97.66% | 0.22 | 0.0050 |

| 2 | 7100 | 00:24:18 | 0.1114 | 94.53% | 0.18 | 0.0050 |

| 2 | 7150 | 00:24:28 | 0.0332 | 100.00% | 0.25 | 0.0050 |

| 2 | 7200 | 00:24:38 | 0.1217 | 96.09% | 0.18 | 0.0050 |

| 2 | 7250 | 00:24:48 | 0.1275 | 97.66% | 0.23 | 0.0050 |

| 2 | 7300 | 00:24:59 | 0.0750 | 96.88% | 0.13 | 0.0050 |

| 3 | 7350 | 00:25:12 | 0.0417 | 97.96% | 0.12 | 0.0050 |

| 3 | 7400 | 00:25:22 | 0.1276 | 96.09% | 0.23 | 0.0050 |

| 3 | 7450 | 00:25:33 | 0.1187 | 97.66% | 0.23 | 0.0050 |

| 3 | 7500 | 00:25:43 | 0.0595 | 98.44% | 0.20 | 0.0050 |

| 3 | 7550 | 00:25:53 | 0.0745 | 98.44% | 0.17 | 0.0050 |

| 3 | 7600 | 00:26:04 | 0.1040 | 95.31% | 0.13 | 0.0050 |

| 3 | 7650 | 00:26:14 | 0.1008 | 97.70% | 0.28 | 0.0050 |

| 3 | 7700 | 00:26:24 | 0.1734 | 93.75% | 0.15 | 0.0050 |

| 3 | 7750 | 00:26:34 | 0.0522 | 100.00% | 0.15 | 0.0050 |

| 3 | 7800 | 00:26:45 | 0.2330 | 92.97% | 0.29 | 0.0050 |

| 3 | 7850 | 00:26:55 | 0.0496 | 99.22% | 0.14 | 0.0050 |

| 3 | 7900 | 00:27:05 | 0.0956 | 97.66% | 0.16 | 0.0050 |

| 3 | 7950 | 00:27:15 | 0.0820 | 98.46% | 0.27 | 0.0050 |

| 3 | 8000 | 00:27:26 | 0.0660 | 98.10% | 0.16 | 0.0050 |

| 3 | 8050 | 00:27:36 | 0.1123 | 98.44% | 0.19 | 0.0050 |

| 3 | 8100 | 00:27:46 | 0.0541 | 100.00% | 0.21 | 0.0050 |

| 3 | 8150 | 00:27:57 | 0.1026 | 96.09% | 0.17 | 0.0050 |

| 3 | 8200 | 00:28:07 | 0.0778 | 98.44% | 0.21 | 0.0050 |

| 3 | 8250 | 00:28:17 | 0.1023 | 96.25% | 0.22 | 0.0050 |

| 3 | 8300 | 00:28:27 | 0.1394 | 96.09% | 0.20 | 0.0050 |

| 3 | 8350 | 00:28:38 | 0.1324 | 95.31% | 0.16 | 0.0050 |

| 3 | 8400 | 00:28:48 | 0.0827 | 95.31% | 0.15 | 0.0050 |

| 3 | 8450 | 00:28:58 | 0.1425 | 96.09% | 0.25 | 0.0050 |

| 3 | 8500 | 00:29:08 | 0.3084 | 92.19% | 0.31 | 0.0050 |

| 3 | 8550 | 00:29:19 | 0.0689 | 99.03% | 0.27 | 0.0050 |

| 3 | 8600 | 00:29:29 | 0.0783 | 96.09% | 0.15 | 0.0050 |

| 3 | 8650 | 00:29:39 | 0.1003 | 97.66% | 0.18 | 0.0050 |

| 3 | 8700 | 00:29:50 | 0.0863 | 96.88% | 0.17 | 0.0050 |

| 3 | 8750 | 00:30:00 | 0.1329 | 96.09% | 0.16 | 0.0050 |

| 3 | 8800 | 00:30:10 | 0.0614 | 99.22% | 0.16 | 0.0050 |

 346

| 3 | 8850 | 00:30:21 | 0.0981 | 98.77% | 0.27 | 0.0050 |

| 3 | 8900 | 00:30:31 | 0.1037 | 96.09% | 0.20 | 0.0050 |

| 3 | 8950 | 00:30:41 | 0.1056 | 96.88% | 0.17 | 0.0050 |

| 3 | 9000 | 00:30:52 | 0.1330 | 96.09% | 0.17 | 0.0050 |

| 3 | 9050 | 00:31:02 | 0.1641 | 94.53% | 0.20 | 0.0050 |

| 3 | 9100 | 00:31:12 | 0.0530 | 97.75% | 0.21 | 0.0050 |

| 3 | 9150 | 00:31:23 | 0.0967 | 97.66% | 0.16 | 0.0050 |

| 3 | 9200 | 00:31:33 | 0.1435 | 95.31% | 0.21 | 0.0050 |

| 3 | 9250 | 00:31:43 | 0.0510 | 98.44% | 0.17 | 0.0050 |

| 3 | 9300 | 00:31:53 | 0.1272 | 96.09% | 0.17 | 0.0050 |

| 3 | 9350 | 00:32:04 | 0.0924 | 98.44% | 0.20 | 0.0050 |

| 3 | 9400 | 00:32:14 | 0.0632 | 97.66% | 0.14 | 0.0050 |

| 3 | 9450 | 00:32:24 | 0.0685 | 99.22% | 0.16 | 0.0050 |

| 3 | 9500 | 00:32:35 | 0.0734 | 96.88% | 0.17 | 0.0050 |

| 3 | 9550 | 00:32:45 | 0.0255 | 100.00% | 0.21 | 0.0050 |

| 3 | 9600 | 00:32:55 | 0.0562 | 97.96% | 0.14 | 0.0050 |

| 3 | 9650 | 00:33:05 | 0.1928 | 91.15% | 0.20 | 0.0050 |

| 3 | 9700 | 00:33:15 | 0.0629 | 99.22% | 0.17 | 0.0050 |

| 3 | 9750 | 00:33:25 | 0.1940 | 93.75% | 0.20 | 0.0050 |

| 3 | 9800 | 00:33:35 | 0.0795 | 99.22% | 0.20 | 0.0050 |

| 3 | 9850 | 00:33:46 | 0.1094 | 94.53% | 0.15 | 0.0050 |

| 3 | 9900 | 00:33:56 | 0.1037 | 96.88% | 0.18 | 0.0050 |

| 3 | 9950 | 00:34:06 | 0.0497 | 99.22% | 0.12 | 0.0050 |

| 3 | 10000 | 00:34:16 | 0.0721 | 97.66% | 0.17 | 0.0050 |

| 3 | 10050 | 00:34:26 | 0.0346 | 98.89% | 0.24 | 0.0050 |

| 3 | 10100 | 00:34:36 | 0.1197 | 94.53% | 0.19 | 0.0050 |

| 3 | 10150 | 00:34:47 | 0.0988 | 96.88% | 0.15 | 0.0050 |

| 3 | 10200 | 00:34:57 | 0.0949 | 96.88% | 0.12 | 0.0050 |

| 3 | 10250 | 00:35:07 | 0.0881 | 97.66% | 0.16 | 0.0050 |

| 3 | 10300 | 00:35:18 | 0.0792 | 98.70% | 0.26 | 0.0050 |

| 3 | 10350 | 00:35:28 | 0.1643 | 95.31% | 0.17 | 0.0050 |

| 3 | 10400 | 00:35:38 | 0.1457 | 96.88% | 0.24 | 0.0050 |

| 3 | 10450 | 00:35:48 | 0.2173 | 92.97% | 0.28 | 0.0050 |

| 3 | 10500 | 00:35:59 | 0.0726 | 98.44% | 0.13 | 0.0050 |

| 3 | 10550 | 00:36:09 | 0.0953 | 98.44% | 0.25 | 0.0050 |

| 3 | 10600 | 00:36:19 | 0.0441 | 98.44% | 0.12 | 0.0050 |

| 3 | 10650 | 00:36:29 | 0.2321 | 95.31% | 0.33 | 0.0050 |

| 3 | 10700 | 00:36:39 | 0.1261 | 98.44% | 0.22 | 0.0050 |

| 3 | 10750 | 00:36:50 | 0.1120 | 97.66% | 0.19 | 0.0050 |

| 3 | 10800 | 00:36:59 | 0.0891 | 96.88% | 0.13 | 0.0050 |

| 3 | 10850 | 00:37:10 | 0.2532 | 92.97% | 0.25 | 0.0050 |

| 3 | 10900 | 00:37:20 | 0.0905 | 97.66% | 0.18 | 0.0050 |

| 3 | 10950 | 00:37:30 | 0.2776 | 92.97% | 0.27 | 0.0050 |

| 3 | 10989 | 00:37:38 | 0.0657 | 97.66% | 0.15 | 0.0050 |

 347

|===

==|

Detector training complete (with warnings):

Warning: Invalid bounding boxes from 143 out of 3688 training images were removed.

The following rows in trainingData have invalid

bounding box data:

Invalid Rows

39

55

61

62

82

99

101

108

113

127

145

156

199

222

260

311

316

323

328

399

431

452

472

474

525

538

546

551

575

604

607

646

696

 348

698

739

744

763

766

775

804

815

827

844

893

903

1018

1029

1030

1035

1044

1066

1131

1139

1142

1146

1156

1218

1315

1351

1361

1430

1479

1488

1518

1527

1530

1567

1592

1698

1709

1716

1773

1792

1830

1864

1875

1917

 349

1960

1965

1972

1979

1986

2103

2116

2148

2171

2177

2211

2232

2258

2297

2342

2386

2388

2473

2477

2482

2521

2556

2561

2563

2579

2628

2638

2674

2707

2752

2759

2772

2813

2847

2851

2881

2882

2896

2916

2921

2960

2963

2986

3025

 350

3039

3109

3157

3210

3272

3320

3328

3340

3354

3406

3433

3442

3444

3563

3568

3594

3597

3624

3627

3636

3642

3648

Bounding boxes must be fully contained within their associated image and must have

positive width and height.

trainedDetector =

 fasterRCNNObjectDetector with properties:

 ModelName: 'end_tower'

 Network: [1×1 DAGNetwork]

 AnchorBoxes: [6×2 double]

 ClassNames: {'end_tower' 'pyramid' 'span' 'tower' 'Background'}

 MinObjectSize: [16 16]

Elapsed time is 6092.868297 seconds.

 351

APPENDIX F.12.1.1 Results

 352

 353

APPENDIX F.12.1.2 Results on test pictures

 354

 355

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	4-2019

	Field Obstacle Identification for Autonomous Tractor Applications
	Caleb Lindhorst

	tmp.1564761558.pdf.epONE

