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In plant phenotyping, the measurement of morphological, physiological and chemical 

traits of leaves and stems is needed to investigate and monitor the condition of plants. 

The manual measurement of these properties is time consuming, tedious, error prone, and 

laborious. The use of robots is a new approach to accomplish such endeavors, which 

enables automatic monitoring with minimal human intervention. In this study, two plant 

phenotyping robotic systems were developed to realize automated measurement of plant 

leaf properties and stem diameter which could reduce the tediousness of data collection 

compare to manual measurements. The robotic systems comprised of a four degree of 

freedom (DOF) robotic manipulator and a Time-of-Flight (TOF) camera. Robotic 

grippers were developed to integrate an optical fiber cable (coupled to a portable 

spectrometer) for leaf spectral reflectance measurement, a thermistor for leaf temperature 

measurement, and a linear potentiometer for stem diameter measurement. An Image 

processing technique and deep learning method were used to identify grasping points on 

leaves and stems, respectively. The systems were tested in a greenhouse using maize and 

sorghum plants. The results from the leaf phenotyping robot experiment showed that leaf 

temperature measurements by the phenotyping robot were correlated with those measured 

manually by a human researcher (R2 = 0.58 for maize and 0.63 for sorghum).



 The leaf spectral measurements by the phenotyping robot predicted leaf chlorophyll, 

water content and potassium with moderate success (R2 ranged from 0.52 to 0.61), 

whereas the prediction for leaf nitrogen and phosphorus were poor. The total execution 

time to grasp and take measurements from one leaf was 35.5±4.4 s for maize and 

38.5±5.7 s for sorghum. Furthermore, the test showed that the grasping success rate was 

78% for maize and 48% for sorghum. The experimental results from the stem 

phenotyping robot demonstrated a high correlation between the manual and automated 

stem diameter measurements (R2 > 0.98). The execution time for stem diameter 

measurement was 45.3 s. The system could successfully detect and localize, and also 

grasp the stem for all plants during the experiment. Both robots could decrease the 

tediousness of collecting phenotypes compare to manual measurements. The phenotyping 

robots can be useful to complement the traditional image-based high-throughput plant 

phenotyping in greenhouses by collecting in vivo morphological, physiological, and 

biochemical trait measurements for plant leaves and stems. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 PLANT BREEDING  

Plant breeding is the science of changing the traits of plants in order to improve their 

genetic potential and produce desired characteristics. The goal of plant breeding is to 

improve the performance of the plant. The breeders try to improve the productivity of 

crops by increasing their yield and quality. Higher yield of crops helps to supply more 

food, increases the profit of agricultural products, and reduces the cost of food for the 

consumers. Improved quality may contribute to produce more nutritious food and 

decrease the presence of toxic compounds. The yield and quality of crops can be 

increased by breeding the plants for disease or insect resistance, which leads to improving 

the health of plants and also an environmentally practice as fewer protective chemicals 

will be utilized in the cultivation of the resistant plants. Plant breeders develop new 

varieties which are adapted to a wide range of production areas and tolerant to adverse 

environmental production hazards such as drought, extremes of temperature, and salinity 

(Poehlman, 2013).  

Plant breeding methods change over time. The breeders just relied on their skill to 

visually judge about the appearance, or phenotype, of a plant in order to select the most 

desirable plants in the beginning of plant selection (Fehr, 1991). However, it is now 

possible for breeders to use advanced techniques in genetics such as next generation 
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DNA sequencing for genetic improvement which has accelerated traditional methods by 

molecular breeding (Fahlgren et al., 2015a).  

Population increases, climate change, degradation and loss of arable land, and the 

increasing appearance of new pests and diseases are expected to threaten global food 

security over the next century (Fischer, 2009). However, the increase of average rate of 

crop production using the traditional breeding is no longer sufficient to meet the 

projected demand (Phillips, 2010). Although molecular breeding methods use genotypic 

information for selection process, they still need to quantify plant traits (phenotypes) 

(Jannink et al., 2010). On the other hand, the lack of access to plant phenotyping data 

causes limitation to dissect the genetics of quantitative traits which are related to growth, 

yield and adaptation to stress (McMullen et al., 2009).  

Understanding how plants respond to environmental and genetic perturbations is 

essential to accelerating the improvement of crop yield for food, feed, and fuel using 

fewer input resources (Chaves et al., 2003).  Fig.1.1 indicates the relationship between 

plant genotype, phenotype, and environment. 
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Fig. 1.1. Relationship between plant genotype, phenotype, and environment (source: 

Walter et al., 2015) 

1.2 PLANT PHENOTYPING 

Plant phenotyping is the quantitative and qualitative assessment of structural, 

physiological, bio-chemical, and performance-related traits of plant at any organizational 

level (ranging from the field and canopy, to the whole-plant, organ, tissue, and cellular 

level) of a given genotype in a given environment (Dhondt et al., 2013). Plant phenotype 

is the set of these complex traits. Parameters such as biomass, leaf characteristics, stem 

characteristics, photosynthetic efficiency, yield-related traits, and stress response are the 

direct examples of these traits (Li et al., 2014) (Fig.1.2).  
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Fig. 1.2. The structural and physiological, and performance-related traits of plant 

(source: Dhondt et al., 2013) 

Plant phenotyping studies the interaction between the environmental factors and  

plant phenotypes (Foix et al., 2015). This interaction between the phenotypes and the 

environment influences the developmental program and growth of plants (structural 

traits) and also plant functioning (physiological traits). Eventually the plant performance 

(biomass and yield) will be determined by both structural and physiological traits 

(Granier and Tardieu, 2009). Today, plant phenotyping became an applicable tool for 

plant breeders to select desirable genotypes and identify the best genetic variation (Walter 

et al., 2015).  

It is important to extract data and perform quantitative assessment of the plant 

phenotypes from a series of long-term monitoring experiments over a large number of 

plants under multiple environmental conditions (Foix et al., 2018). Currently, the 

destructive sampling methods at fixed times or at particular phenological stages have 

been used to collect and investigate plant phenotypes (Furbank and Tester, 2011). The 

destructive methods do not permit temporal examination of traits in individual plants, 
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accordingly the number of plants needed to be examined will be increased (Fahlgren et 

al., 2015a). Moreover, because this method is labor-intensive and costly, many plant 

breeders solely make a single measurement of final yield of crop for replicated plots 

(Furbank and Tester, 2011). Yield itself is one of the most poorly inherited traits in crop 

breeding (Richards et al., 2010). 

Conventional plant phenotyping relies largely on visual scoring by experts, which is  

labor-intensive, costly, time-consuming and prone to error (Vijayarangan et al., 2018). 

Plant breeders want to increase breeding efficiency by collecting the phenotypic data of 

large numbers of lines rapidly and accurately (McMullen et al., 2009). The plant traits 

can be examined temporally using non-invasive and non-destructive techniques which 

reduce the number of plants needed and allow the examination of larger populations. In 

recent years, automated workflows have been used to process and monitor several 

hundreds of plants daily with minimal human intervention by combining novel 

technologies such as non-invasive and non-destructive image-based phenotyping 

techniques, machine learning (deep learning), spectroscopy, image analysis, and robotics 

to address the aforementioned phenotyping bottleneck (Furbank and Tester, 2011). 

1.3 AUTOMATED PHENOTYPING PLATFORMS  

The scale of phenotyping platforms is varied from proximal to remote sensing. These 

platforms allow to monitor single leaves/plant organs, individual plants, field plots and 

full fields precisely and consistently (Fig. 1.3). Different types of architectures including 

unmanned aerial vehicles (UAV)/drones, autonomous ground vehicles/rovers, 

phenotyping towers, field scanning platforms, image-based phenotyping platforms, and 

robotic manipulators are used as automated phenotyping platforms (Shakoor et al., 2017). 
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Fig. 1.3. Scales of automated phenotyping platforms (source: Shakoor et al., 2017) 

 



7 

 

 

 

Unmanned Aerial Vehicle (UAV): UAV (drone) refers to a type of aircraft which 

operates with no pilot on board. A wide range of sensors such as fluorescence sensors, 

digital cameras (red-green-blue (RGB)), multispectral or color-infrared cameras, and 

thermal sensors can be integrated to UAVs to collect aerial imagery with very high 

spatial and temporal resolutions (Holman et al., 2016). Agricultural drones are used as 

data acquisition systems for field phenotyping. They capture plant characteristics by 

acquiring images over large landscape which can be used to evaluate plant performance 

(yield prediction) and detect plant stress and diseases during breeding (Chapman et al., 

2014).  

Zaman-Allah et al. (2015) proposed the use of UAV equipped with a multi-spectral 

sensor for field phenotyping of maize. The aerial platform was used to investigate the 

low‑nitrogen stress tolerance in maize. Overall, the results showed that the Normalized 

Difference Vegetation Index (NDVI) data which were derived from the aerial imagery 

had a high correlation with ground-truth NDVI and grain yield. Furthermore, the aerial 

sensing platform has an effective contribution to assess the crop performance under the 

stress. Holman et al. (2016) utilized a UAV with RGB camera to derive the height and 

growth rate of wheat plants. The aerial imagery collected by the UAV was used to 

reconstruct 3D digital surface models of crop field via Structure from Motion (SfM) 

photogrammetry. The comparison between UAV derived and manual measurement of 

crop heights showed that the two sets of measurements were highly correlated with R2 ≥ 

0.92 and Root Mean Squared Error (RMSE) ≤ 0.07 m. The results proved that UAV 

based SfM had the potential to monitor plant height throughout the season and collected 

rapid and accurate measurement of crop height as well as growth rate calculation.  
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Berni et al. (2009) used a helicopter-based UAV with thermal and narrowband multi-

spectral imaging sensors to obtain surface reflectance and temperature for vegetation 

monitoring purpose. Several vegetation indices such as NDVI, transformed chlorophyll 

absorption in reflectance index/optimized soil-adjusted vegetation index, and 

photochemical reflectance index (PRI) were calculated based on the data of the multi-

spectral sensors for a corn field. The validation results showed successful estimation for 

Leaf Area Index (LAI), and chlorophyll concentration of canopy. It also demonstrated a 

high correlation between the PRI and canopy temperature which is a good indicator for 

water stress detection. Yue et al. (2017) estimated above-ground biomass (AGB) of 

winter wheat using the images of a hyperspectral sensor which was mounted on a UAV. 

The crop height and canopy reflectance were obtained from the data of a hyperspectral 

sensor. They constructed a model based on crop height combined with specific bands and 

vegetation indices to predict crop AGB. Comparison with experimental results indicated 

that their method had promising accuracy for winter wheat AGB estimation. Li et al. 

(2018) used a UAV equipped with a true-color RGB camera and a 5-band multi-spectral 

camera to elucidate biomass, nitrogen and chlorophyll content of sorghum under nitrogen 

stress treatments. Morphological and spectral traits including plant height, canopy cover 

and various vegetation indices were derived from the data which were collected at 

different growth stages during the growing season. The result showed that UAV-derived 

canopy height, biomass, nitrogen content, and chlorophyll content were strongly 

correlated with the manual measurements.  
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Image-based phenotyping: Image-based approach in plant phenotyping is a growing 

application area of computer vision in agriculture to measure plant morphological and 

chemical traits rapidly and nondestructively. This approach is used to accelerate high-

throughput plant phenotyping that would eventually enable effective use of genomic data 

to bridge the genotype-to-phenotype gap for crop improvement (Furbank and Tester, 

2011; Fahlgren et al., 2015b) (Fig. 1.4). 

 

Fig. 1.4. High-throughput phenotyping platform collect images, environmental and 

physical data to measure plant phenotypes (source: Fahlgren et al., 2015b) 

Hairmansis et al. (2014) developed a non-destructive image-based phenotyping 

protocol to investigate the response of two rice cultivars to different levels of salt stress. 
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Visible (RGB) and fluorescence images were used to quantify total shoot area and 

senescent shoot area. The reduced increase of shoot area was a good indicator to 

distinguish the stressed plants from the control and it made the technique as a useful tool 

to assess salinity tolerance traits in rice. Pandey et al. (2017) established a high-

throughput method which could quantify the chemical properties of maize and soybean 

plants. For this purpose, they utilized hyperspectral images of the plants to estimate leaf 

water content, as well as concentrations of macronutrients such as nitrogen (N), 

phosphorus (P), potassium (K) and micronutrients such as sodium (Na), iron (Fe), 

manganese (Mn). A model based on Partial Least Square Regression (PLSR) was 

developed to correlate the spectral data with the chemical properties of leaf. They 

reported that water content was predicted with the highest accuracy and macronutrients 

were quantified satisfactorily such that their prediction accuracy was higher than the 

micronutrients. Gage et al. (2017) presented a tassel image-based phenotyping system 

(TIPS) which provided a platform to quantify the morphological features of maize tassels 

automatically. They used digital camera to acquire the images form freshly harvested 

tassels for different lines of maize in field. The correlation between manual 

measurements of tassel traits (tassel weight, tassel length, spike length, and branch 

number) with automated measurements ranged from 0.66 to 0.89. The image-based 

phenotyping system also could quantify additional tassel characteristics (curvature, 

compactness, fractal dimension, skeleton length, and perimeter) which can not be 

measured manually. Thapa et al. (2018) developed a LiDAR (light detection and 

ranging)-based phenotyping for 3D measurement of morphological traits in maize and 

sorghum. Plant leaf surface was reconstructed using 3D point clouds of plant, and plant 
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morphological traits including individual and total leaf area, leaf inclination angle, and 

leaf angular distribution were derived. The results showed a high correlation between 

LiDAR-based and reference methods for leaf area measurements. Choudhury et al. 

(2016) used visible light images (from publicly available Panicoid Phenomap-1 dataset) 

to facilitate vegetative stage phenotyping analysis of maize. They developed two 

automated software packages to compute two new holistic phenotypes, namely, bi-

angular convex-hull area ratio and plant aspect ratio which explain phyllotaxy and 

canopy architecture of different genotypes of maize plants respectively. An algorithm 

also was introduced to compute component-based phenotypes, i.e., total number of leaves 

and size of each leaf of a plant. 

Since the image processing pipelines have limited flexibility and poor performance 

for complex phenotyping tasks, machine learning techniques are expected to take a 

prominent role in the future of image-based phenotyping (Tsaftaris et al., 2016). Deep 

learning is an emerging area of machine learning which is applied for large data analytics 

problems (Ubbens and Stavness, 2017). Convolutional neural network (CNN) is a class 

of deep learning methods which is most commonly used for image-based plant 

phenotyping tasks (Pound et al., 2017). CNN typically uses raw images directly and 

actively learn a variety of filter parameters during training of a model (Fig. 1.5). CNN 

and its variants significantly outperforms for different tasks such as regression, image 

classification, and object detection and segmentation (Ubbens and Stavness, 2017). 
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Fig. 1.5. A CNN architecture which operates on image of part of an ear of wheat 

(source: Pound et al., 2017) 

Zhang et al. (2018) proposed two methods using improved GoogLeNet and Cifar10 

models based on deep learning for leaf disease identification. The images of eight kinds 

of maize leaf diseases were used to train and test the modified models. Both models 

showed high average accuracy (> 98%) for leaf disease recognition. Ghosal et al. (2018) 

built a deep learning model to identify and classify a large set of foliar stresses in soybean 

using RGB images of soybean leaves. The deep learning framework could identify and 

classify several biotic (bacterial and fungal diseases) and abiotic (chemical injury and 

nutrient deficiency) stresses rapidly with remarkable accuracy. Pound et al. (2017) 

demonstrated the use of deep learning approach to identify and localize root and shoot 

features of wheat plant. The technique was used to localize root tip, leaf tip, leaf base, ear 

tip, and ear base of plant. Deep learning–based phenotyping method showed high 

detection and localization accuracy in validation and testing image sets.  

Ground-based phenotyping: Since phenotypic responses of interest for crop 

improvement, especially those related to yield potential and abiotic stress tolerance, 

involve suites of traits that are best measured as expressed among communities of plants 

that grow under real world conditions which is agronomically relevant edaphic and 

climatic conditions, accordingly field-based systems are more readily incorporated into 
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applied plant breeding programs. Thus, there is growing interest in adapting agricultural 

machinery and electronic sensors to build systems that can collect multi-modal, multi-

character data for phenotyping plants real-time in the field (Montes et al., 2007; White et 

al., 2012). Consequently, various vehicle-based systems were used or proposed for field-

based high-throughput plant phenotyping. Andrade-Sanchez et al. (2013) developed a 

high-throughput phenotyping platform to measure the dynamic traits of cotton in the 

field. Four sets of sensors were carried by the system to measure canopy height, NDVI, 

and temperature simultaneously on four adjacent rows. The high-throughput 

measurements of canopy height, NDVI, and temperature indicated a strong agreement 

with the manual measurements of the plant phenotypes. The results confirmed that 

multiple traits can be measured by the system rapidly and accurately. Busemeyer et al. 

(2013) established a tractor-pulled multi-sensor platform for non-destructive field-based 

phenotyping. Several sensors such as light curtain imaging, 3D TOF cameras, laser 

distance sensors, hyperspectral imaging, and color imaging were integrated into the 

system to collect spectral and morphological information of small grain cereals. High 

technical repeatability of measurement results from all different sensors illustrated high 

suitability and robustness of the developed platform for field-phenotyping in plant 

breeding trials. Barker et al. (2016) developed a field-based high-throughput mobile 

phenotyping platform to measure the characteristics of wheat and soybean. Three sets of 

sensors were mounted on a high-clearance vehicle, thus three plots were measured 

simultaneously in a single pass. Each set of sensors compromised of two infrared 

thermometers (IRT), one ultrasonic sensor, one Crop Circle multi-spectral crop canopy 

sensor, and one GreenSeeker crop sensing system to measure canopy temperature, crop 
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height, and canopy spectral reflectance of a plant plot. The system verification test 

indicted great potential of the platform for broad application to address a range of 

questions regarding crop canopy characteristics. Bai et al., (2016) reported a high-

throughput multi-sensor system to phenotype soybean and wheat plants. Five sensor 

modules (ultrasonic distance sensors, thermal infrared radiometers, NDVI sensors, 

portable spectrometers, and RGB web cameras) were used to measure crop canopy traits 

from field plots. The experimental results showed that the system had satisfactorily and 

robust performance to collect field-based, high-throughput plant phenotyping data. Yuan 

et al. (2018) proposed a ground-based multi-sensor phenotyping system which equipped 

with ultrasonic sensors and LiDAR to estimate canopy heights of wheat plots. The 

experimental results demonstrated that the proposed LiDAR-based method could provide 

precise and accurate plant height estimates. Bao et al. (2019) presented a high‐throughput 

field‐based robotic phenotyping system which included multilevel side‐viewing stereo 

camera heads installed on an auto-steer tractor to measure architectural traits of sorghum 

plants. They developed an automated feature extraction pipeline which could quantify 

plot‐based plant height, plot‐based plant width, convex hull volume, plant surface area, 

and stem diameter (semiautomated). The experimental results showed a high correlation 

between the image‐derived measurements and in‐field manual measurements. 

Shafiekhani et al. (2017) introduced two robotic platforms for high-throughput field-

phenotyping. The robotic architecture consisted of two robotic platforms: an autonomous 

ground vehicle (Vinobot) and a mobile observation tower (Vinoculer) which could 

collect data from individual plants and oversee an entire field, identifying specific plants 

for further inspection respectively. The comparison results between the phenotypes which 
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was taken by the robotic platforms and phenotype data which was collected by hand 

demonstrated that the proposed architecture was reliable, versatile, and extendable.  

Robotic manipulator/arm: Robotic manipulators perform best when they are used in 

structured environments where their desired tasks are known before their execution. 

However, the field of robotics is expanding into broader applications and the demand of 

using robotic manipulators to accomplish unstructured tasks which have elements that 

can not be known ahead of time (such as acquiring plant phenotypes) is increasing. 

Alenyà et al. (2011) developed a method for modeling and monitoring plant leaves using 

fused depth/color images. They mounted TOF and color cameras, and a probing tool on 

the end-effector of a robotic manipulator. Quadratic surface fitting was applied to 

segment plant images using TOF depth data. The results showed that the obtained surface 

fit well with the target leaves and the candidate leaves could be reached by the probing 

tool.  

1.4 GOAL AND OBJECTIVES OF THE STUDY 

The goal of this study was to develop a robotic system for in vivo, human-like 

phenotyping of maize and sorghum plants in the greenhouse which could reduce the 

tediousness of phenotypes measurements compare to manual measurements. There were 

two objectives to achieve this goal. The first objective was to develop an automated 

robotic system which could measure leaf traits such as leaf VisNIR (visible and near 

infrared) and leaf temperature simultaneously; and the second objective was to build a 

robotic system which could measure the stem diameter of plants automatically.  
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CHAPTER 2 

IN VIVO HUMAN-LIKE ROBOTIC PHENOTYPING FOR LEAF TRAITS IN 

MAIZE AND SORGHUM IN GREENHOUSE 

  

2.1 INTRODUCTION 

With the increasing world population, agricultural production must increase to meet 

the demands of food, feed and fuel in the future (Rahaman et al., 2015). Climate change 

and lack of sufficient land to grow crops are the two major challenges that need to be 

addressed to produce more food (Fischer, 2009). To ensure global food security, it is 

necessary to monitor the interactions between plant genotype, phenotype, and 

environment to breed high-yielding and stress-tolerant plants (Shah et al., 2016).  Plant 

phenotyping studies the interaction between the complex plant traits and the environment 

(Foix et al., 2015). It is important to perform quantitative assessment of the plant 

phenotypes during growing seasons (Dengyu et al., 2016), which entails regular sampling 

and measurement of hundreds or even thousands of plants (Van Henten et al., 2006; 

Fourcaud et al., 2008). Traditional plant phenotyping, where data collection is largely 

manually, is therefore laborious and prone to error (Vijayarangan et al., 2018).  

Automated monitor and measurement with agricultural robotics represents a new 

approach to collect plant phenotypic data (Alenyà Ribas et al., 2012). In the fields, 

modular phenotyping systems with various degree of automation (from manually 

operated carts to fully automated field robots) are developed to collect a number of 

diverse crop traits during growing seasons (Andrade-Sanchez et al., 2014; Bai et al., 

2016; Shafiekhani et al., 2017). More recently, gantry and cable-suspended integrated 
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sensing and robotic systems for large-scale plant phenotype data collection were 

developed (Virlet et al. 2017; Kirchgessner et al., 2017; Bai et al., 2019). 

Robotic systems are also developed in controlled environments (e.g., greenhouse) to 

realize automated phenotyping at the single plant level. These systems often characterize 

a vision system and a robotic manipulator/gripper for automated plant and leaf detection, 

localization, and measurement. Chaudhury et al. (2017) attached a laser scanner to a 

robotic manipulator to reconstruct the 3D model of the plant and to compute its surface 

area and volume. A collision free robotic system was developed to probe plant leaves for 

indoor phenotyping (Bao et al., 2017). The system could probe all leaves of artificial 

plants and the average time for motion planning was 0.4 s. Ahlin et al. (2016) used an 

eye-in-hand camera with a six DOF robotic manipulator to grasp the leaves of artificial 

plants. The system used deep learning and visual-servoing to identify and grasp the 

leaves successfully. 

Alenyà Ribas et al. (2012) attached a PMD CamBoard TOF camera to a robotic 

manipulator for probing the leaves of Epipremnum Aureum and Anthurium Andreanum 

plants. They also integrated a SPAD chlorophyll meter to the end effector of the robotic 

manipulator to measure the chlorophyll content of the leaves. The authors reported a 

success rate of 82% for leaf probing. Inaccurate estimation of the probing point due to 

poor model fitting or segmentation errors of the leaves was the main reason for the failure 

of the robotic system. 

In this research, a robotic system was reported for in vivo, human-like phenotyping of 

leaf traits in maize and sorghum plants in the greenhouse which could collect data less 

tediously than manual measurements. Two sensing modules were integrated into the 



18 

 

 

 

robotic gripper: (1) an optical fiber cable to measure leaf VisNIR (visible and near 

infrared) reflectance spectra; and (2) a thermistor to measure leaf temperature. Leaf 

VisNIR spectra can further be used to infer an array of leaf chemical properties such as 

chlorophyll, water content and nitrogen contents (REF). To the best of knowledge, such a 

robotic system was not previously reported. Finally, an experiment was conducted to 

evaluate the performance of this robotic system. 

2.2 MATERIALS AND METHODS 

2.2.1 HARDWARE OF THE ROBOTIC SYSTEM 

Vision system: A TOF camera (Model: SR4500, Mesa Imaging Inc., 

Zürich, Switzerland) was used as the vision system for the robot (Fig. 2.1). This camera 

has a pixel array of 176×144 and a field of view of 69°×55°. The accuracy of this camera 

is ±2 cm in the measurement range of 0.5-5 m. The camera provides XYZ coordinates 

(e.g., three channels) of each pixel of the scene in camera’s coordinate system. Each 

channel can be used to create a grayscale image of the scene. The TOF camera was 

chosen because the 3D coordinates of grasping points on leaves can be directly extracted 

from the XYZ data of the camera.  

 

Fig. 2.1.SR4500 TOF camera and its components (source: MESA Imaging, 2016) 
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In Time of Flight systems, the distance between the sensor and an object is directly 

determined by measuring the time taken for light to travel from an active illumination 

source to the object and back to the sensor, given the speed of light. To achieve the time 

of fight measurement, the phase shift between the emmited light from the camera and the 

reflected light from the object is measured by a sensor of the camera. Fig. 2.2 illustrates 

the principle of the TOF cmera. An IR wave with 850 nm wavelength (which is indicted 

in red) is emmitted from an active illumination source (TOF camera) to the target object, 

and the reflected IR component (which is shown in blue) is detected by the sensor. The 

distance between the camera’s coordinate system and the object is calculated using the 

speed of light c, modulation frequency f, and by measuring the phase difference between 

the radiated and reflected IR waves (Δφ). 

 

Fig. 2.2. The principle of TOF camera (source: Hansard et al., 2012) 

Robotic manipulator: A four DOF robotic manipulator (Model: MICO2, KINOVA 

Inc., Boisbriand, Quebec, Canada) was used for this system (Fig. 2.3).  
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Fig. 2.3. The four degree of freedom robotic manipulator used in this study and its 

kinematic parameters (source: KINOVA, 2018) 

The Denavit–Hartenberg (DH) parameters frame position for all joints of the robotic 

manipulator is shown in Fig. 2.4. Table 2.1 shows the DH parameters of the robotic 

manipulator. 
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Fig. 2.4. DH parameters frame position for all joints of the robotic manipulator 

(source: KINOVA, 2018) 

Table 2.1. DH parameters of the robotic manipulator (source: KINOVA, 2018) 
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SOLIDWORK (version 2016, DASSUALT SYSTEMS) was used to design a robotic 

gripper (Fig. 2.5).  

 

 

Fig. 2.5. 3D-sketch of the gripper and its dimension 

The gripper was printed using a 3D printer to integrate a bifurcated optical fiber cable 

(for leaf VisNIR reflectance measurement) and a thermistor (for leaf temperature 

measurement). The gripper was printed from black plastic material to reduce the weight 

and minimize light scattering (Fig. 2.6).  The bifurcated optical fiber cable was attached 

to the gripper using an adjusting set screw. A small piece of neoprene rubber with low 

heat conductivity was attached to the gripper in order to reduce heat transfer for leaf 

temperature measurement. The gripper was then attached to the end effector of the 

KINOVA robotic manipulator. 
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Fig. 2.6. The gripper and its integration to the robotic manipulator 

Sensors: Fig. 2.7 shows all sensors which were used for the robotic system. The 

optical assembly that enabled measurement of leaf VisNIR reflectance via the bifurcated 

optical fiber cable (RP25, Thorlabs Inc., Newton, NJ, USA) consisted of (1) a stabilized 

tungsten-halogen light source (Model: SLS201, THORLABS Inc., Newton, NJ, USA) 

and (2) a portable spectrometer (Model: Flame, OceanOptics Inc., Dunedin, FL, USA). 

The output of the light source had a spectral range from 300 to 2600 nm, and the spectral 

range of the portable spectrometer was 350 to 1000 nm. The thermistor for leaf 

temperature measurement (Model: ST 200: Fine-Wire Thermistor, Apogee Instruments 

Inc., Logan, UT, USA) had a measurement accuracy of 0.2 °C between 0 to 70 °C and a 

response time of less than 1 s. The thermistor resistance is calculated using Eq. 2.1. 

𝑅𝑇 = 24900 (
𝑉𝐸𝑋

𝑉𝑂𝑈𝑇
− 1)                                                    (2.1) 
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Where: 

𝑅𝑇 is the thermistor resistance in Ω which is measured by a half-bridge measurement, 

24900 is the resistance of the bridge resistor in Ω, 𝑉𝐸𝑋 is the excitation input voltage (2.5 

V), 𝑉𝑂𝑈𝑇 is the output voltage of the senor in V. 

From the thermistor resistance, the object temperature (𝑇𝐾) in K is calculated using 

Steinhart-Hart equation and thermistor specific coefficients (Eq. 2.2).   

𝑇𝐾 =  
1

𝐴+𝐵𝑙𝑛(𝑅𝑇)+𝐶(ln(𝑅𝑇))3
                                                         (2.2) 

Where:  

𝐴 = 1.129241 × 10−3 , 𝐵 = 2.341077 × 10−4 , and 𝐶 = 8.775468 × 10−8 

(Steinhart-Hart coefficients). 

The object temperature in K (𝑇𝐾) can be converted to the temperature in °C (𝑇𝐶) using 

Eq. 2.3. 

𝑇𝐶 =  𝑇𝐾 − 273.15                                                      (2.3) 
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Fig. 2.7. (a) Light source (source: THORLABS, 2016), (b) Bifurcated optical fiber cable 

(source: THORLABS, 2014), (c) Portable spectrometer (source: OceanOptics, 2015), (d) 

Thermistor (Apogee Instruments, 2019) 

A data logger (Model: LabJack U6, LabJack Corporation, Lakewood, CO, USA) was 

used to record data from the temperature sensor (Fig. 2.8). Three terminals of the data 

logger were used as an analog input which reads the output voltage from the thermistor, a 

terminal for excitation input voltage, and also another terminal for ground. A laptop with 

Intel Core i7 Processor (2.5 GHz) and 8 GB RAM was used to control the robotic system, 

measure and save data. 

 

Fig. 2.8. LabJack U6 data logger (source: LabJack, 2016) 

Integration of hardware for the phenotyping robotic system: The robotic system was 

mounted on the top of a height adjustable desk. This enabled the robotic system to adjust 
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its height relative to the height of plants. The camera was placed near to the robotic 

manipulator. The bifurcated optical fiber and the temperature sensor were integrated with 

the robotic manipulator by attaching them to the gripper (Fig. 2.9).  Other system 

components including the portable spectrometer, the light source, and the data logger 

were also placed on the desk (Fig. 2.9). 

 

Fig. 2.9. The robotic system and its components 

2.2.2 SOFTWARE OF THE ROBOTIC SYSTEM 

Image processing for plant segmentation, leaf identification, and grasping point 

localization: After taking the image using the TOF camera, the Z channel of the scene 

(plant) was extracted as a grayscale image (Fig. 2.10a). A threshold based on the distance 



27 

 

 

 

between the camera and the plant in Z direction was determined to segment the plant 

from the background, and to create a binary image (Fig. 2.10b).  

The even columns of pixels were removed from the binary image. The remaining odd 

columns appeared as vertical lines in the image as shown in Fig. 2.10c. All vertical lines 

were labeled. For each vertical line, the coordinates of its center point and its length were 

determined. Then the length of each line was plotted against its label (Fig. 2.10d).  Since 

the edges of stem have the largest length and cause abrupt changes in the plot, the two 

abrupt changes and their indices were determined. The indices were used to find the 

center point of the edges of the stem. The stem was detected using the coordinates of the 

edges (Fig. 2.10e).  
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Fig. 2.10. (a) Grayscale image of the plant, (b) Binary image after segmentation, (c) 

Binary image after removing the even columns of pixels, (d) Major axis length versus the 

index of the vertical lines, and (e) Stem detection. 

The center point of a leaf was chosen to avoid hitting the stem by the robotic 

manipulator, and also to grasp the leaf properly. After detecting the stem in the image, the 
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stem was removed and the remaining leaves were labeled. The center point of each leaf 

along with its 3D coordinates in the camera coordinate system was determined in the 

binary image as a potential grasping point. A flowchart describing the process of finding 

the grasping point of the leaves is presented in Fig. 2.11.  

 

Fig. 2.11. Flowchart for finding the grasping point on the leaves 

The leaves were ranked to select the best 3 leaves for measurement (Fig. 2.12). Two 

criteria were considered to rank the leaves. A leaf having a larger major axis length was 
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given higher rank because it had greater chance to be grasped by the gripper. Second, a 

leaf which had shorter distance to the origin of the robotic manipulator’s coordinate 

system was ranked higher in order to reduce the total execution time for the 

measurement.  

The angle of the ranked leaves relative to the horizontal line were determined which 

in turn was used to calculate the angle of the last joint of the robotic manipulator (fourth 

joint) to have an appropriate angle for leaf grasping (Fig. 2.12).  

The ‘regionprops’ function in MATLAB returns the sets of properties of connected 

objects in a binary image. The ‘MajorAxisLength’ and ‘Orientation’ properties in 

‘regionprops’ function were used to calculate the length of major axis of each ranked leaf 

(in pixels) and to compute the angle of the ranked leaves relative to the horizontal line (in 

degrees). 
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Fig. 2.12. Three best candidate leaves ranked and their angles relative to the 

horizontal line. 

3D plant point cloud: To visualize a 3D model of plant, the 3D point clouds of plant 

was generated by creating a 3D plot of the plant pixels XYZ coordinates which are 

provided by the TOF camera (Fig. 2.13). 
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Fig. 2.13. 3D plant point cloud of plant 

2.2.3 INVERSE KINEMATICS OF THE ROBOTIC MANIPULATOR 

The inverse kinematics was used to compute the set of joint angles of the robotic 

manipulator given the position and orientation of the end-effector (the position of the 

grasping point) relative to the base of the robotic manipulator. To reach this purpose, the 

position of the grasping point in camera’s coordinate system was transformed to the 

robotic manipulator’s coordinate system. Then the joint angles were computed using the 

inverse kinematics in order to grasp the leaf. 

The translation from the robotic manipulator’s coordinate system to the camera’s 

coordinate system was 10.5 cm, -4 cm, and 41.2 cm in X, Y, and Z directions (Fig. 2.14).  
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Fig. 2.14. Position of the camera’s coordinate system and the robot’s coordinate system. 

A transformation matrix was determined based on the rotation and the translation of 

the camera’s coordinate system relative to the robotic manipulator’s coordinate system 

(Eq. 2.4).  

                                                                                              RP = 𝑇𝐶
𝑅   × CP                                                  (2.4) 

Where: 

𝑇 = [

1 0 0 𝑃𝑥

0 cos(90) − sin(90) 𝑃𝑦

0 sin(90) cos(90) 𝑃𝑧

0 0 0 1

]𝐶
𝑅  

RP  is the 3D coordinates of the center point of the leaf relative to the robotic 

manipulator’s coordinate system, 𝑇𝐶
𝑅  is the transformation matrix between the camera’s 
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coordinate system and the robotic manipulator’s coordinate system, CP  is the 3D 

coordinates of the center point of the leaf relative to the camera’s coordinate system. 𝑃𝑥, 

𝑃𝑦, and 𝑃𝑧 are the translation from the robotic manipulator’s coordinate system to the 

camera’s coordinate system in X, Y, and Z directions. The transformation matrix was 

used to convert the 3D coordinates of the leaf’s center point from the camera’s coordinate 

system to the robotic manipulator’s coordinate system (Eq. 2.5-2.7).  

                                                  𝑋𝑅 = 𝑋𝐶 + 𝑃𝑥                                                               (2.5) 

                                                 𝑌𝑅 = −𝑍𝐶 + 𝑃𝑦                                                              (2.6) 

                                                 𝑍𝑅 = 𝑌𝐶 + 𝑃𝑧                                                                 (2.7) 

Where: 

𝑋𝐶, 𝑌𝐶, and 𝑍𝐶  are the x, y, and z coordinates of the center point of the leaf relative to 

the camera’s coordinate system. 𝑋𝑅, 𝑌𝑅, and 𝑍𝑅 are the x, y, and z coordinates of the 

center point of the leaf relative to the robotic manipulator’s coordinate system. 

The geometric approach was applied to calculate the joint angles of the robotic 

manipulator. In geometric approach, the spatial geometry of the robotic manipulator is 

decomposed into several plane-geometry problems. Joint angles are computed using the 

tools of plane geometry. Two different paths were found based on the inverse kinematics 

solutions. The path that gave a lower probability of hitting leaves by the robotic 

manipulator during grasping was chosen (path 1 in Fig. 2.15). 
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Fig. 2.15. The chosen path (path 1) to grasp the leaf (source: Craig, 2009) 

All equations for the inverse kinematics of the robotic manipulator were then derived 

for the chosen path. The angle of the joints 1 through 4 was calculated using the 

equations (2.8), (2.10), (2.9), and (2.11), respectively.  

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑋𝑅 , 𝑌𝑅)                                                          (2.8) 

𝜃3 = 𝑎𝑡𝑎𝑛2(sin 𝜃3 , cos 𝜃3)                                               (2.9) 

Where: 

cos 𝜃3 = (𝑋𝑅
2 + 𝑌𝑅

2 +  (𝑍𝑅 − 𝐷1)2 − 𝐷2
2 −  𝐿2)/(2 × 𝐷2 × 𝐿) 

sin 𝜃3 = √1 − (cos 𝜃3)2  

𝜃2 = 𝑎𝑡𝑎𝑛2(𝑍𝑅 − 𝐷1, √(𝑋𝑅
2 + 𝑌𝑅

2) ) − 𝑎𝑡𝑎𝑛2(𝐿 × sin 𝜃3 , 𝐷2 + 𝐿 × cos 𝜃3)      (2.10) 

𝜃4 = (𝑇ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑎𝑓) + 90                                 (2.11) 
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Where: 

𝐿 = 𝐷3 + 𝐷4 + 𝐷5 

The robotic manipulator grasps the ranked leaves in two steps. First, it moves toward 

the leaf and then stops in an arbitrary distance about 5 cm close to the leaf. Second, it 

moves horizontally to grasp the leaf (Fig. 2.16). After measuring the leaf reflectance and 

leaf temperature, the robotic manipulator follows the same path back as in grasping 

process.  

 

Fig. 2.16. The robotic manipulator grasps the leaf to take measurements 
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A Graphic User Interface (GUI) was developed in MATLAB (version 2017, 

MathWorks) to control the portable spectrometer and the thermistor in order to measure 

leaf reflectance and leaf temperature. The GUI displayed and stored 3D point clouds of 

the plants (from the TOF camera), the VisNIR reflectance of the leaves, and leaf 

temperature readings (Fig. 2.17). The GUI also integrated the image processing algorithm 

and inverse kinematics calculation as described above. It stored the times for image 

processing, inverse kinematics calculation, leaf approaching and grasping, sensing 

process, and the total execution time which was the time that the robotic system 

accomplished the entire task. 

 

Fig. 2.17. The graphic user interface developed in MATLAB to control the plant 

phenotyping robot and display the robotic measurements. 

2.2.4 TESTING AND DATA ANALYSIS 

To test the function and performance of the phenotyping robot, an experiment was 

conducted in the Greenhouse Innovation Center of the University of Nebraska-Lincoln. 
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This greenhouse was equipped with a high-throughput plant phenotyping system 

(Scannalyzer3D, LemnaTec GmbH, Aachen, Germany). During test, the robotic system 

was emplaced alongside the system’s conveyor belt. Plants were loaded onto the 

conveyor belt and transported to the system for robotic phenotyping (Fig. 2.18). The 

distance between the camera and the plants was 20~30 cm.  

 

Fig. 2.18. The emplacement of the robotic system in the greenhouse 

Sixty maize (B73) and sixty sorghum plants (TX430) were grown in the pots and 

used to evaluate the robotic system (Fig. 2.19). The experiment included two levels of 

water treatment (well-water versus water-limitation) and two levels of applied nutrients 

(high versus low). Each plant was randomly assigned to one of the four treatment 

combinations, and the goal was to create a large variation in plant leaf properties 
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(reflectance spectra and temperature) to validate automated robotic measurements. The 

well-water treatment was achieved by watering pots to 80% of field capacity on a daily 

basis, while the water-limitation treatment 40% of field capacity. The high-nutrient 

treatment was achieved by adding 0.122 kg of Osmocote Plus fertilizer (15-9-12 (N-P-K) 

with micronutrients, 3-4 months nutrient release) into pot mix (5.67 L) at the time of 

planting. For low nutrient level, fertilizer liquid with 100 ppm concentration of 20-10-20 

(N-P-K) fertilizer with micronutrients were added. 

 

Fig. 2.19. Maize B73 (left) and sorghum TX430 (right) 

Data collection started when the plants were at nine leaf stage and lasted until the 

plants were at 13 leaf stage. The experiment was done in six weeks. Five days were 

chosen in each week for data collection; and in each day, data were collected from four 

plants with different combination of water and nutrient treatments. 

Immediately after robotic phenotyping, ground-truth measurements (manual 

measurements by a researcher) were taken to compare with automated robotic 

measurements (automated measurements). A spectroradiometer (Model: FieldSpec4, 

Analytical Spectral Devices Inc., Longmont, CO, USA), a thermistor (Model: ST 200: 
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Fine-Wire Thermistor, Apogee Instruments Inc., Logan, UT, USA), and a handheld 

chlorophyll meter (Model: MC-100 Chlorophyll Concentration Meter, Apogee 

Instruments Inc., Logan, UT, USA) were used to measure leaf reflectance, leaf 

temperature, and leaf chlorophyll content at the grasping points (Fig. 2.20). For each 

plant, up to three ground-truth and automated robotic measurements (from three grasping 

points identified by the robots) were made. They were averaged to represent the 

measurements for that plant.   

 

Fig. 2.20. Ground-truth measurements by a researcher: leaf reflectance spectrum (left), 

leaf temperature (middle), and leaf chlorophyll content (right). 

After the automated and ground-truth measurements, the plant was harvested and the 

fresh weight of aboveground biomass was recorded. After drying the plant for 72 hours at 

50 °C to constant dry weight, leaf water content was calculated. The dried leaves of the 

plant were sent to a commercial lab (Midwest Laboratories, Omaha, NE, USA) and leaf 

Nitrogen (N), Phosphorus (P), and Potassium (K) concentrations were measured. 

For the VisNIR spectra from the Ocean Optics spectrometer (robotic measurements), 

a range from 450 to 950 nm was used (to avoid high noise regions at the two ends of 

spectra) for modeling and predicting leaf chemical properties. Spectra were smoothed 

with a moving average window (of size 30) to further reduce the noise of spectra. 
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Similarly, spectra from the ASD spectrometer were also truncated between 450 and 950 

nm for modeling and prediction. Partial least squares regression (PLSR) models of 

different leaf properties were calibrated using the spectra with six random segment cross-

validation (60% for cross-validation and 40% for validation). Data analysis was 

performed in R Statistical Software (R Core Team, 2017) with the following packages: 

pls (Mevik et al., 2016), caret (Kuhn et al., 2017), and zoo (Zeileis and Grothendieck, 

2005). 

Two different success rates were defined and calculated for the robotic system in 

order to assess its performance to grasp leaves and collect data in the greenhouse. 

1) The integration success rate: It was defined as grasping at least one leaf per plant 

and record the measurements successfully before releasing the plants from the 

robotic station. 

2) The grasping success rate: It was defined as the ratio between the number of the 

leaves which were successfully grasped and the total number of the leaves 

identified as the candidate grasping leaves. 

2.3 RESULTS AND DISCUSSIONS  

2.3.1 THE PERFORMANCE OF THE ROBOTIC SYSTEM 

Table 2.2. Summary statistics for the execution time of different steps in automated 

robotic measurement of one leaf. 

Time (s) Statistic Maize plant Sorghum plant 

Image processing 

Maximum 3.86 4.30 

Minimum 2.32 1.89 

Average 3.05 2.64 
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Standard deviation 0.412 0.470 

Inverse kinematics 

Maximum 0.049 0.060 

Minimum 0.016 0.013 

Average 0.026 0.026 

Standard deviation 0.009 0.009 

Leaf grasping 

Maximum 45.5 45.1 

Minimum 22.5 22.2 

Average 31.5 33.6 

Standard deviation 5.17 5.79 

Sensing process 

Maximum 2.44 1.75 

Minimum 0.845 0.858 

Average 1.19 1.24 

Standard deviation 0.356 0.344 

Total execution  

Maximum 47.2 52.9 

Minimum 30.3 29.2 

Average 35.5 38.5 

Standard deviation 4.39 5.68 

 

Table 2.2 gives summary statistics of the execution time for image processing, 

inverse kinematics, leaf grasping, sensing process, and total execution time to measure 

one leaf for maize and sorghum plants. Leaf grasping, which involved bringing the 

robotic gripper and sensors into contact with the leaves, took the longest time to execute. 

Image processing was computationally more intensive than inverse kinematics and thus 

took longer to execute.   

The execution times for different steps and total execution time were comparable for 

maize and sorghum plants, and it was approximately 30 s to take one robotized 

measurement. This was significantly longer than human based measurement, which only 

took 5-6 s in our case.  
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The image processing to segment the leaves from the stem worked well for maize 

plants. However, the specific variety of sorghum we chose to work with (TX430) 

exhibited more vertically distributed leaves than maize. This sorghum morphology made 

it more challenging to remove stem pixels while retaining leaf pixels for leaf 

identification and grasping point localization (Fig. 2.19). For this reason, the integration 

success rate was only 48% for sorghum plants, much lower than 78% for maize plants. 

The grasping success rate for maize plants was 50% and that for sorghum plants was 

similar (~50%). The experiment also showed that the phenotyping robot could grasp on 

average two leaves per plant and collect data successfully. It failed to grasp a leaf for 

three main reasons. First, if the 3D coordinates of the grasping point were out of the 

workspace of the robotic manipulator, the robotic manipulator was not driven to grasp the 

leaf. Second, since the camera had uncertainty to measure the z coordinate of the scene 

(±2 cm), it could cause an error in the calculation of the joint angles of the robotic 

manipulator and only grasped the target leaf partially at the edge of the leaf. Third, if the 

leaf was vertical (i.e. approximately 90° angle from the horizontal plane), the manipulator 

could not grasp the leaf due to the lack of needed dexterity and degree of freedom. 

Fig. 2.21 compares the leaf temperature of maize and sorghum plants measured by 

the human operator (ground-truth) with that measured by the phenotyping robot. It can be 

seen that two sets were linearly correlated (R2 = 0.58 for maize plants, R2 = 0.63 for 

sorghum, and R2 = 0.62 for maize and sorghum plants together). However, there was also 

significant bias between them. Robotized temperature measurement was 0.71 °C lower 

than the manual measurement in maize, 0.81 °C lower in sorghum, and 0.76 °C in both 

species together. Three factors could be attributed to the bias between the two 



44 

 

 

 

temperature measurements. Firstly, when the human operator took the temperature 

measurement, she always ensured good contacts between the leaf and the sensor. This 

was quite challenging for our phenotyping robot, which lacked the needed dexterity, 

degree of freedom, and the sense of pressure to orient its manipulator and gripper 

perfectly with the leaf surface to have a good contact. This could explain the negative 

bias of the robotized measurements. The second factor could be due to the fast change of 

leaf temperature relative to ambient temperature. There were large temperature 

differences between the greenhouse (where the plants were grown) and the head house 

(where the measurements were taken). Leaf temperature was likely not in a steady state 

during measurement. There was a slight time difference between the manual and robotic 

measurement, which would lead to small bias between the two sets of temperature 

measurements. Thirdly, the two temperature sensors used by the human operator and the 

phenotyping robot were not cross calibrated. They could indicate a temperature different 

as large as 0.5 °C even when they were to measure the same object; and the sensor used 

by the human operator were known to indicate slightly higher temperature. 
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Fig. 2.21. Scatterplot of leaf temperature measured by the human operator versus the 

phenotyping robot for maize and sorghum plants. The linear regression and the statistics 

were reported for maize, sorghum, and the two species together. 

We further conducted a Welsh’s two-sample t-test to compare leaf temperature of the 

plants under the two water treatments. The rationale for this comparison was that the 

plants under the water limitation treatment should exhibit higher leaf temperature due to 

the drought effect of reduced leaf-level transpiration (Fig. 2.22). The results showed that, 

for maize plants, leaf temperature was significantly higher (p-value = 0.018) when 

measured manually by the human operator.  However, such difference was not significant 

(p-value = 0.111) for the automated robotic measurements, even though the mean 

temperature for the water limitation group was slightly higher. For sorghum, neither 

manual measurements nor robotic measurements exhibited significant difference between 

the two water treatment groups (p-values = 0.245 and 0.068, respectively). Sorghum is 
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more drought tolerant than maize, which could explain although there is still 

improvement to make robotized leaf temperature measurements more accurate, this 

comparison suggested one potential use of our phenotyping robot to distinguish drought-

tolerant lines from drought-sensitive lines.  

 

Fig. 2.22. The box plots of average manual and automated leaf temperatures for maize 

and sorghum with two water treatments 

2.3.2 CHEMOMETRIC PREDICTION OF LEAF CHEMICAL PROPERTIES 

FROM LEAF REFLECTANCE DATA  

Table 2.3 gives results of PLSR modeling of leaf chemical properties using leaf 

reflectance spectra measured by the phenotyping robot in comparison to manual 

measurements. Among the five leaf properties studied, leaf chlorophyll content was 

predicted most successfully, followed by fresh-based water content and K. Prediction of 

N and P exhibited poorer performance.  Fig. 2.23 shows the scatterplots of predicted 

versus measured leaf properties in maize and sorghum for both manual and robotic 

measurements. 

The predictions with spectra data from the ASD spectrometer were substantially 

better than with those from the OceanOptics spectrometer. Note that ASD spectra were 
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acquired with a human operator, whereas OceanOptics spectra were acquire 

automatically with the phenotyping robot. During spectral data collection, the human 

operator always ensured that the leaf clip was in close contact with the leaf. In many 

occasions, she was using the other hand to guide the orientation of the leaf blade such 

that no light was leaked out of the measurement point. This was very difficult to achieve 

with our phenotyping robot due to poor contact between the gripper and leaf reducing the 

light throughput of the signal. This resulted light leakage and thus lower spectral quality 

in leaf reflectance measurement. 

Table 2.3. Results of partial least squares modeling to predict leaf chemical properties 

using leaf reflectance spectra measured by the phenotyping robot in comparison to 

manual measurements. 

Property 

Manual Robotic 

Cross-validation Validation Cross-validation Validation 

R
2
 RMSE Bias R

2
 RMSE Bias R

2
 RMSE Bias R

2
 RMSE Bias 

CHL 

(μmol/m
2
) 

0.907 57.9 0 0.865 69.0 -11.0 0.664 119 0 0.525 112 -1.12 

FBWC 

(%) 
0.891 1.97 0 0.861 2.25 0.517 0.637 3.46 0 0.614 3.75 1.12 

N (%) 0.602 0.271 0 0.384 0.333 
-

0.078 
0.421 0.331 0 0.139 0.374 -0.036 

P (%) 0.567 0.112 0 0.565 0.114 
-

0.003 
0.406 0.139 0 0.112 0.230 -0.063 

K (%) 0.870 0.500 0 0.788 0.667 
-

0.027 
0.693 0.835 0 0.519 1.00 0.020 

CHL= Chlorophyll content, FBWC = Fresh-based water content, N = Nitrogen, P = 

Phosphorus, K = Potassium, RMSE = Root mean squared error 
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Fig. 2.23. Scatterplots of lab-measured versus predicted leaf properties of maize and 

sorghum plants for manual measurement (left column) and robotic measurement (right 

column). 
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2.4 POTENTIAL IMPROVEMENTS AND FUTURE DIRECTIONS  

We developed and demonstrated a robotic system that can realize in vivo, human-like 

measurements of plant leaf traits in the greenhouse. This approach is different from the 

traditional image-based phenotyping, where plant images are used as a nondestructive 

means to acquire predominantly morphological traits such as height, width and projected 

leaf area. Even though some imaging modules such as NIR and hyperspectral imaging 

can probe leaf biochemical traits (Pandey et al., 2017), they still need manual 

measurements to establish correlations with image data. In this sense, the phenotyping 

robot would be useful to complement image-based phenotyping by obtaining 

physiological or chemical measurements at the plant leaf level. 

We integrated to the robotic gripper a fiber optical cable to measure leaf-level 

reflectance and a thermistor to measure leaf temperature. With some mechanical 

modifications, sensors to measure other leaf properties (such as stomatal conductance, 

gas exchange, chlorophyll content, etc.) can be integrated. It is also possible to integrate a 

mechanical sampler to cut and collect leaf disks with the robotic gripper. While the 

measurement speed of the phenotyping robot is slower than that of a human operator, 

many of these robots (equipped with different plant sensors) can be launched in the 

greenhouse, which would substantially enhance the speed and capacity of the 

phenotyping robot. Furthermore, many modern greenhouses already have conveyor 

systems to move the plants around, which would make the integration of the phenotyping 

robots with the existing greenhouse infrastructure straightforward.   

The phenotyping robot realized its designed functions of automated leaf probing and 

leaf-level trait measurement. Its performance, nevertheless, could be further improved. 
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Firstly, a robotic manipulator with more degree of freedom would make the robot more 

dexterous and flexible to probe the leaves. This measure would ensure good contact 

between the gripper/sensors and plant leaves, which is critical to improve quality of 

sensor measurements. Secondly, a collision free path planning algorithm would be 

designed and implemented. This technique finds the optimal path for the robotic 

manipulator’s movements between two grasping points without hitting the leaves or stem 

and potentially reduces execution time. Thirdly, the TOF camera we used is low in spatial 

resolution and introduces large uncertainties in determining the XYZ coordinates of grasp 

points. Using a range camera with higher accuracy can improve grasp point localization, 

and therefore improve the overall success rate of leaf probing and robotic measurements. 

Finally, the test plants were all placed with their symmetrical plane facing the TOF 

camera. In this position, leaf occlusion was minimized which was instrumental to 

subsequent image processing and robotic measurements. In real applications, plants 

would be randomly oriented and presented to the imaging system, therefore causing a 

number of problems regarding leaf segmentation and robotic measurements. These 

challenges need to be sufficiently tested and addressed for real life applications.   

2.5 CONCLUSIONS 

In this research, we designed and developed a plant phenotyping robotic system to 

realize in vivo, human-like leaf trait measurement. The system comprised of a 3D TOF 

camera, a four DOF robotic manipulator, and a custom-made gripper that integrated a 

bifurcated fiber optic cable and a thermistor. This robotic system was tested in the 

greenhouse using maize and sorghum plants. The test result showed moderate accuracy 

for measuring several leaf traits including temperature, chlorophyll content, fresh-based 
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water content, and potassium (R2 ranged from 0.52 to 0.62) by the phenotyping robot in 

comparison to the ground-truth measurement. The leaf grasping success rate was ~50% 

for both maize and sorghum, and the average execution time to take measurements from 

one leaf was 35.5 s for maize and 38.5 s for sorghum. To collect leaf properties data 

using the robotic system, the researcher does not need to hold different sensors for data 

collection. The researcher just needs to run the program and the system automatically 

gathers the phenotypes. Therefore, the robotic system no longer needs a human for 

collecting phenotypic data and consequently the system could remarkably decrease the 

tedious nature of data collection. This phenotyping robot has a potential to complement 

image-based high throughput plant phenotyping by measuring leaf physiological and 

chemical traits directly and automatically.  
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CHAPTER 3 

AN AUTOMATED ROBOTIC SYSTEM TO MEASURE STEM DIAMETER OF 

MAIZE AND SORGHUM PLANTS IN GREENHOUSE 

 

3.1 INTRODUCTION 

Plant phenotyping is a key technology for the crop breeders to produce plants with 

desirable traits such as higher yield, disease resistance, and drought tolerance (Mueller-

Sim et al., 2017). It assesses the quantitative measurements of crop phenotypes such as 

leaf area, leaf angle, and stem diameter (Schepers et al., 2017). The stem diameter of a 

plant is a good indicator to judge about the plant’s health and predict the crop yield. A 

plant which has a thicker stem diameter is usually considered as healthier plant with 

higher yield potential than other plants at the same growth stage (Shi, 2014). However, 

the manual measurements of this phenotype (stem diameter) is laborious, time 

consuming, tedious, and error prone (Baweja et al., 2018). Robotic phenotyping will be 

able to help geneticists to investigate the interaction between genotype and phenotype 

more easily in order to improve the crop yields (Mueller-Sim et al., 2017).  

A prototype-sensing device which consisted of a laser light source and detector, and 

also simulation apparatus was developed for automated measurement of maize stem 

diameter (Schepers et al., 2017). The system enabled to measure the stem diameter 

accurately in the laboratory.  Shi (2014) developed two on-the-go approaches based on 

machine vision technique to measure stem diameter of maize. Both approaches had an 

acceptable performance to measure the stem diameter. Vázquez-Arellano et al. (2018) 



53 

 

 

 

developed a method to estimate the position and height of the maize stem from 3D 

reconstruction of the plant using the point cloud data of a TOF camera. The experimental 

results showed that their method could determine the position and height of the stem with 

an average mean error of 24 and 30 mm. Chaivivatrakul et al. (2014) developed an 

automated plant phenotyping system which could measure morphological trait 

characterization for maize plants via 3D holographic reconstruction. A TOF camera and a 

rotating table were used to acquire point cloud image data. Their proposed method could 

able to create accurate 3D holographic reconstruction of maize, and also showed 

promising results to segment leaf and stem, and measure the plant phenotypic data such 

as stem major axis, stem minor axis, and stem height. Jin et al. (2019) proposed a median 

normalized-vector growth (MNVG) algorithm which could segment leaf and stem, and 

also extract phenotypic traits of leaf, stem, and individual maize plant such as leaf area, 

stem diameter, and plant height using terrestrial LiDAR data. They tested their algorithm 

for maize plants with different height and leaf numbers with three growing stages. The 

experimental results showed that MNVG method had high accuracy for phenotypic traits 

extraction at individual level (R2 could be up to 0.96), following by at leaf and stem 

levels. Das Choudhury et al. (2017) developed an algorithm to automatically compute the 

angel of maize stem which is a potential measure for plant’s susceptibility to lodging. A 

graph theoretic approach was applied to recognize leaf-tips and leaf-junctions from 

visible light image. A regression line curve was fitted to the leaf junctions to form the 

stem axis, and the angle between the stem axis and the vertical axis was determined as 

stem angle. Their method was tested on Panicoid Phenomap-1 dataset and an accuracy of 

84% was achieved. 
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Deep learning is an emerging area of machine learning which has been proposed as a 

future trend in image-based plant phenotyping (Tsaftaris et al., 2016). Jin et al. (2018) 

used deep learning and regional growth algorithms for individual maize segmentation 

from terrestrial LiDAR data. They used Faster R-CNN model (deep learning) to detect 

the maize stem. The detected stem seed points were used by the regional growth 

algorithm to segment the individual maize. The experimental results showed that the 

method had promising results for maize segmentation from LiDAR data. Baweja et al. 

(2018) developed a method based on deep learning technique (Faster R-CNN and 

semantic segmentation) to extract stem count and stem diameter of maize in the field. 

They compared the automated measurement with manual measurement (ground-truth) in 

order to validate the accuracy and efficiency of their method. The results showed that the 

automated measurement for stem count had correlation with manual measurement with 

R2=0.88 and the mean absolute error to measure stem diameter was 2.77 mm where 

average stalk width is 14.354 mm. The automated measurement was 30 and 270 times 

faster than manual measurement for stem count and stem diameter measurement. 

Lu et al. (2017) developed an automated robotic phenotyping platform for corn 

seedling morphological traits characterization. A TOF camera was attached to the end-

effector of a robotic manipulator. The camera was positioned in different views by the 

robotic arm in order to obtaining 3D point cloud data of the plant. The robotic system 

could satisfactorily segment the stem and leaves and also measure the stem height and 

leaf length of corn seedlings. Mueller-Sim et al. (2017) developed a high-throughput 

ground based agricultural robot which could able to navigate between sorghum rows in 

the field and collect plant phenotypic data autonomously. The robot used a mobile 
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platform, a three DOF manipulator, a customized gripper consisted of a digital force 

gauge and a needle at the end of its probe to measure the stem strength, and non-contact 

sensors such as a stereo camera to gather phenotypic data. The results of outdoor 

experiments showed that the algorithm for stem detection worked well and all identified 

stems were grasped by the gripper successfully.  

The objective of this study was to develop an automated plant phenotyping robotic 

system which could measure the stem diameter of maize and sorghum plants in 

greenhouse less tediously compare to manual measurements. The performance of the 

robotic system was evaluated by conducting a validation experiment in the greenhouse.  

To the best of our knowledge, this research proposed the first contact-based and non-

destructive plant phenotyping robotic system which could automatically measure the 

stem diameter in real-time. This system could be a complement for image-based high-

throughput plant phenotyping. Moreover, contact-based sensors could be later added to 

this system to measure other physiological and chemical attributes of the stems.  

3.2 MATERIALS AND METHODS 

3.2.1 HARDWARE OF THE ROBOTIC SYSTEM 

Vision system: A TOF camera (Model: SR4500, Mesa Imaging Inc., 

Zürich, Switzerland) was used to take image from plant. The camera has 176×144 

resolution with 69°×55° field of view. XYZ (three channels) coordinates of each pixel in 

the image relative to the center of camera coordinate system are provided by the camera. 

A grayscale image can be created using each channel of the image. 
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Robotic manipulator: A four DOF robotic manipulator (Model: MICO2, KINOVA 

Inc., Boisbriand, Quebec, Canada) was used in the robotic system.  

Gripper: A gripper was designed to attach a linear potentiometer (LP) for stem 

diameter measurement. Fig. 3.1 shows the 3D sketch of the gripper. The design of the 

gripper prepares linear and parallel movement for the claws which allows the LP sensor 

for linear displacement measurement. The gripper was made of plastic to reduce its 

weight and printed by a 3D-printer.  

 

Fig. 3.1. The 3D sketch of the robotic gripper 

Sensing system: A linear potentiometer (Model: LP804-03, OMEGA Engineering 

Inc., Norwalk, CT, USA) was attached to the gripper to measure the stem diameter (Fig. 

3.2). The linear potentiometer has 28 g weight and it can measure linear displacement up 

to 76 mm with resolution of 0.00127 mm. A data logger (Model: LabJack U6, LabJack 

Corporation, Lakewood, CO, USA) was used to collect the data taken by the linear 

potentiometer. 
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The linear potentiometer was calibrated using a digital caliper to convert the output 

voltage of the linear potentiometer to linear displacement (stem diameter). Eq. 3.1 shows 

the calibration equation of the linear potentiometer. 

𝑑 = 0.5817 × 𝑉𝑂𝑈𝑇                                                   (3.1) 

Where: 

𝑑 is the linear displacement (stem diameter) in inch and 𝑉𝑂𝑈𝑇 is the output voltage of 

the linear potentiometer in V. 

The linear displacement in inch (𝑑) can be converted to linear displacement in cm (𝐷) 

using Eq. 3.2. 

𝐷 = 2.54 × 𝑑                                                              (3.2) 

 

Fig. 3.2. The linear potentiometer and its schematic diagram (source: OMEGA 

Engineering, 2018) 

A microcontroller (Model: Arduino UNO ATmega328 board) together with a dual H-

bridge motor driver (Model: Qunqi L298N) was used to control a low-power DC motor 

(Fig. 3.3). The brushed gear DC motor (Model: 47:1 Metal Gearmotor, Pololu 

Corporation, Las Vegas, NV, USA) with a 47:1 gearbox and a 48 CPR (counts per 
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revolution) quadrature encoder was used to open and close the gripper’s claws for stem 

grasping process (Fig. 3.4). Fig. 3.5 shows the schematic diagram to control the DC 

motor using the microcontroller and motor driver.  

 

Fig. 3.3. The microcontroller Arduino UNO and motor driver Qunqi L298N 

 

Fig. 3.4. Gripper, Linear potentiometer, and DC motor 
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Fig. 3.5. Schematic diagram to control the DC motor 
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Integration of the robotic system: The camera was installed near the robotic 

manipulator. The linear potentiometer and the DC motor were attached to the gripper. To 

adjust the robotic system with the height of the plants, all components were mounted on 

the top of a height adjustable desk (Fig. 3.6). 

 

Fig. 3.6. The robotic system and its components 

3.2.2 SOFTWARE OF THE ROBOTIC SYSTEM 

Stem detection using deep learning technique (Faster R-CNN): Sixty gray-scale 

images (the images from the TOF camera) were used as the raw data set. The images 

were labeled using ImageLabeler toolbox in MATLAB (version 2018, MathWorks). 

Image augmentation technique was used to produce more images for training the 

network. To reach this goal, the images were sharpened, blurred, darkened, and 
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brightened (Fig. 3.7). 240 images were produced after applying the augmentation 

technique and in total 300 images were used as data set. Since the size of data set was 

small even after applying image augmentation, the data set was split to two subsets: 80% 

(240 images) as the training set and 20% (60 images) as the testing set. The training 

dataset was used to train the model and find the weights and biases of the network, and 

the testing dataset was used to evaluate the performance of the network. 

 

Fig. 3.7. The images before and after using augmentation technique (a) raw image (b) 

Blurred image (c) Sharpened image (d) Darkened image (e) Brightened image 

Faster R-CNN technique was used for stem detection in the images. In this method, 

the image was provided as an input to a convolutional network which provided a 

convolutional feature map. Then a separate network was used to predict the region 

proposals. The predicted region proposals are then reshaped using a Region of Interest 
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(RoI) pooling layer which is then used to classify the image within the proposed region 

and predict the offset values for the bounding boxes. In this research, the network 

consisted of two convolutional layers, Region Proposal Network (RPN), RoI max 

pooling, and two fully-connected layers. The convolutional layers had 32 filters with size 

of 3×3, padding of 1, and ReLu (Rectifier Linear Unit) activation function. The output of 

the convolutional layers was fed to RPN, and then RoI max pooling with the size of 3 and 

stride of 2. The first fully connected-layer had 64 neurons with ReLu, and the second 

(last) layer had 2 classes (background and stem) with Softmax as loss layer (cross-

entropy). Stochastic Gradient Descent with Momentum (SGDM) of 0.9, 100 epochs, 

batch size of 32, and initial learning rate of 0.001 was used as the optimizer for the 

network. The network was trained using 240 training images and its output was a detector 

which could detect the stem in the image (bounding box) and also to predict the class 

object (background or stem). Fig. 3.8 illustrates the architecture of the network. The 

average loss, and accuracy for training set were 0.434, and 97.6 % respectively. The 

detector was used to find a bounding box as stem region in a testing image. Several 

bounding boxes were found as stems by the detector. The bounding box which had the 

highest score was determined as the stem (Fig. 3.9). Sixty testing images were used to 

evaluate the performance of the network. The results showed that the accuracy and 

average precision of the network were 93%, and 0.81. A laptop with Intel Core i7 

Processor (2.5 GHz) and 8 GB RAM was used to accomplish the training process of the 

network. 
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Fig. 3.8. The architecture of Faster R-CNN 

 

Fig. 3.9. Several bounding boxes were found after applying the detector (left), and stem 

was detected with the bounding box having the highest score (right) 

Determine the grasping point on stem: Image processing toolbox in MATLAB 

(version 2018, MathWorks) was used to segment the plant from the background in the 

image and to determine the grasping point on the stem. A gray-scale image was created 

using a threshold for Z channel (the distance of the plant to the camera in Z direction) of 

the scene (Fig. 3.10a). Then the gray-scale image was converted to binary image (Fig. 

3.10b). Deep learning technique (Faster R-CNN) was applied to detect the stem in the 
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image. The vertical lines of the bounding box were determined as stem’s vertical edges 

(Fig. 3.10c).  

The stem was removed from the binary image (after finding the vertical edges of the 

stem) and the most bottom leaf was labeled as the first leaf. The most bottom pixel of the 

first leaf which is connected to the stem was found.  A horizontal line was drawn from 

the pixel which is used to find the proper grasping region of stem. The robotic system can 

grasp the stem from its grasping region without hitting the leaves (Fig. 3.10c). Thus, to 

detect the stem grasping area, all pixels in the binary image of the plant were removed 

except the pixels which was located between the stem’s vertical edges and under the 

horizontal line (Fig. 3.10e). The coordinates of the center point of the stem grasping area 

in the image was determined as the grasping point (Fig. 3.10f). Then the XYZ 

coordinates (3D coordinates) of the grasping point relative to the center of the camera’s 

coordinate system were found using XYZ channels of the scene, which was provided by 

the TOF camera. 
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Fig. 3.10. Find the grasping point on the stem (a) Plant segmentation from the 

background (gray-scale image) (b) Binary image of the plant (c) Deep learning stem 

detection (determine stem vertical edges) (d) Find the horizontal line which is used to 

find stem grasping area (e) Stem grasping area (f) Stem grasping point 

Inverse kinematics of the robotic manipulator: A transformation matrix was created 

based on the translation and rotation of the camera’s coordinate system and robotic 

manipulator’s coordinate system to find the 3D coordinates of the grasping point relative 

to the robotics manipulator’s coordinate system (Eq. 3.3).  

                                                                                              RP = 𝑇𝐶
𝑅   × CP                                                  (3.3) 

Where: 
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𝑇 = [

1 0 0 𝑃𝑥

0 cos(90) − sin(90) 𝑃𝑦

0 sin(90) cos(90) 𝑃𝑧

0 0 0 1

]𝐶
𝑅  

RP, 𝑇𝐶
𝑅 , and CP are the 3D coordinate of the grasping point relative to the center of 

robotic manipulator’s system, the transformation matrix, and the 3D coordinates of the 

grasping point relative to the center of camera’s coordinate system. 𝑃𝑥, 𝑃𝑦, and 𝑃𝑧 are the 

distance between the coordinate system of the camera and robotic manipulator in X, Y, 

and Z directions. 

The geometric approach in inverse kinematics was used to calculate the angle of the 

first three joints of the robotic manipulator for grasping process of the stem. The angle of 

the forth joint was a constant value such that the end-effector of the robotic manipulator 

was parallel relative to horizontal plane at the beginning and the forth joint angle was not 

changed during grasping process (Fig. 3.11).  

 

Fig. 3.11. The robotic manipulator grasped the stem to take its diameter measurement 
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Control the movement of the gripper’s claws: An Arduino program was developed to 

control (open and close) the claws of the gripper. The output of the DC motor’s encoder 

which shows the position of the motor was used to stop the linear movement of the claws 

at the end of the opening process when the claws are fully opened, and also at the end of 

the closing (grasping) process to avoid pressing and damage the stem. For this purpose, 

the program compares two consecutive readings of the encoder. If the readings are equal, 

then it can be identified that the motor is stalling as the resistance force exerted when the 

grippers are in contact with the stem or it is fully opened, as such it will be stopped. To 

open and close the claws using MATLAB, serial communication was used for 

MATLAB-Arduino communication. MATLAB Support Package for Arduino was used to 

communicate between MATLAB and Arduino.  

3.2.3 GREENHOUSE EXPERIMENT AND DATA COLLECTION 

A validation experiment was conducted in the Greenhouse Innovation Center of the 

University of Nebraska-Lincoln to assess the robotic system. For this purpose, two 

different lines of maize (B73 and Oh47) and two different lines of sorghum (Simon and 

Grassl) were selected (Fig. 3.12). Eight plants for each line of maize and sorghum were 

grown and 32 plants in total were used for the experiment. 
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Fig. 3.12. Two different lines of sorghum (first column) and two different lines of maize 

(right column) which were used in the experiment 

 The experiment was done in six weeks (three weeks for maize and three weeks for 

sorghum) to create more variability for stem diameter measurement. One day per week 

was chosen to measure the stem diameter of sixteen plants. In total, the stem diameter of 

96 samples were measured during the experiment. To take the automated measurements, 

two or three leaves of the plant from its down side were pruned to avoid hitting the pot by 

the robotic manipulator. For each plant, after taking the robotic measurement, the ground-

truth (manual) measurement of stem diameter on the grasping point was taken by a digital 

caliper (Model: Brown & Sharpe 00590091, Hexagon Manufacturing Inc., TESA USA, 
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North Kingstown, RI, USA). The ground-truth measurement was used to evaluate the 

performance of the robotic system for measuring the stem diameter (Fig. 3.13). 

 

Fig. 3.13. The manual measurement of stem diameter using a digital caliper 

3.3 RESULTS AND DISCUSSION  

Table 3.1 shows the time statistic for stem detection using deep learning, image 

processing to determine the grasping point on the stem, Inverse kinematics, stem 

grasping, sensing process, and total execution time. 

Table 3.1. The time statistic for different steps of the automated stem measurement 

Time (s) Statistic Maize Sorghum Overall 

Stem detection 

(Deep learning) 

Maximum 1.63 1.77 1.77 

Minimum 1.22 1.25 1.22 

Average 1.31 1.33 1.32 

Standard 

deviation 0.089 0.108 0.099 

Determine grasping 

point on the stem 

(Image processing) 
 

Maximum 3.09 3.18 3.18 

Minimum 2.51 2.62 2.51 

Average 2.74 2.77 2.76 
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Standard 

deviation 0.105 0.109 0.108 

Inverse kinematics 

Maximum 0.004 0.004 0.004 

Minimum 0.002 0.002 0.002 

Average 0.003 0.003 0.003 

Standard 

deviation 0 0 0 

Stem grasping 

Maximum 45.1 45.2 45.2 

Minimum 41.7 40.9 40.9 

Average 42.5 42.5 42.5 

Standard 

deviation 0.785 0.950 0.867 

Sensing process 

Maximum 0.045 0.040 0.045 

Minimum 0.030 0.031 0.030 

Average 0.034 0.033 0.033 

Standard 

deviation 0.003 0.002 0.003 

Total execution time 

Maximum 47.6 48.0 48.0 

Minimum 44.4 43.7 43.7 

Average 45.3 45.3 45.3 

Standard 

deviation 0.797 0.946 0.871 

 

It can be seen that the stem grasping, which the robotic manipulator was moved to 

grasp the stem and back to its first position after taking the measurement, has the longest 

time. The reason for that is the movement speed of the robotic manipulator for grasping 

process was reduced in order to avoid hitting and damage the plant by the robotic 

manipulator. The stem detection, determine grasping point on the stem, and sensing 

process took short times which illustrates the potential of the system for real-time stem 

detection and localization, and also stem diameter measurement.   
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The automated measurement takes more time (total execution time) compare to a 

manual measurement (less than 10 s). From the table above, it can be found that the long 

time for stem grasping step leads to long total execution time. The path planning 

technique can be used to find the optimal grasping path without hitting the plant to 

minimize the time for stem grasping process. Moreover, the time for stem detection using 

deep learning is short enough to have real-time measurements, however it can be reduced 

by using more training dataset with a deeper network or using transfer learning technique 

to train the network. 

Faster R-CNN method successfully detect the stem (either vertical or tilted) for all 

plants. Furthermore, the robotic system could grasp the stem of all plants successfully.  

Fig. 3.14 shows the correlation between the automated and manual measurement for 

maize, sorghum, and overall maize and sorghum plants. 
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Fig. 3.14. The scatterplots of manual and automated measurements of stem diameter for 

maize (left), sorghum (right), and overall maize and sorghum (bottom) 

It can be seen that the automated and manual measurements were highly linearly 

correlated (R2=0.983 for maize, R2=0.992 for sorghum, and R2=0.990 for maize and 

sorghum together). Moreover, it can be found that RMSE (Root Mean Square Error) 

between two sets of measurements was very small value (0.102, 0.118, 0.112 cm for 

maize, sorghum, and maize and sorghum together). Furthermore, there was also a very 

small bias between the robotized and manual measurement (-0.096, -0.106, -0.102 cm for 

maize, sorghum, and overall maize and sorghum). It can be concluded that the robotic 

system could accurately measure the stem diameter for all plants during the experiment. 
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3.4 CONCLUSIONS 

In this research, a plant phenotyping robotic system was developed to automatically  

measure stem diameter of plant. The robotic system consisted of a 4 DOF robotic 

manipulator, a TOF camera for vision system, a linear potentiometer (LP) sensor to 

measure the stem diameter, a custom designed gripper to integrate the LP sensor to the 

robotic manipulator, and an Arduino UNO to control the gripper. A deep learning 

algorithm (based on Faster R-CNN) was developed to detect the stem in the image and 

find the grasping point on the stem. An experiment was conducted in the greenhouse 

using maize and sorghum plants to compare the robotic and manual (ground-truth) 

measurements of stem diameter and evaluate the performance of the system. The results 

showed a very high linear correlation with very small bias and RMSE between the 

automated and manual measurements. The system could successfully detect and localize, 

and also grasp the stem for all plants during the experiment. The average times for stem 

detection (using deep learning technique), sensing process (measure stem diameter using 

LP sensor), and total execution time (grasp the stem and measure its diameter) for overall 

maize and sorghum plants were 1.32, 0.033, 45.3 s respectively. The times for stem 

detection and sensing process were very short which is important for real-time stem 

detection and localization, and also stem diameter measurement. Since the need of a 

laborer to measure stem diameter manually was removed using the robotic system which 

could automatically gathers data, the tediousness of collecting data was significantly 

reduced. This robotic system shows a potential to complement image-based high-

throughput plant phenotyping by real-time measurement of stem diameter automatically 

and accurately. 
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CHAPTER 4 

CONCLUSION 

The goal of the discussed study was to develop a robotic system for in vivo, human-

like phenotyping of maize and sorghum plants in the greenhouse which could collect 

phenotypic data less tediously compared to manual measurements. The goal was 

achieved by accomplishing two different objectives. The first objective was to develop an 

automated robotic system which was able to measure leaf attributes such as leaf VisNIR 

(visible and near infrared) and leaf temperature simultaneously; and the second objective 

was to develop a robotic system which could measure the stem diameter of plants 

automatically.  

For the first objective, a 4 DOF robotic manipulator, a TOF camera for vision, a 

portable spectrometer with a bifurcated optical fiber cable for leaf reflectance 

measurement, a thermistor for leaf temperature measurement, and a customized gripper 

to integrate the sensors to the end effector of the robotic manipulator were used in the 

robotic system. An algorithm based on image processing technique was developed to find 

the 3D coordinates of the grasping point on leaves. The robotic system acquired leaf 

reflectance and leaf temperature simultaneously. The performance of the phenotyping 

robot was tested in the greenhouse using maize and sorghum plants. The comparison 

results for leaf temperature showed a significant correlation between the automated and 

ground-truth measurements. The PLSR method was used to predict several leaf properties 

such as chlorophyll, water content, nitrogen, phosphorus, and potassium concentrations 

from the leaf reflectance by the phenotyping robot. The chlorophyll, water content and 
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potassium were estimated with moderate success, whereas the nitrogen and phosphorus 

estimations were poor.  

For the second objective, the phenotyping robot compromised of a 4 DOF robotic 

manipulator, a 3D TOF camera, a linear potentiometer (LP) sensor to measure the stem 

diameter, a custom designed gripper to integrate the LP sensor to the robotic manipulator, 

and an Arduino Uno to control the gripper. A deep learning algorithm (based on Faster R-

CNN) was developed to detect the stem in the image and find the grasping point on the 

stem. An experiment was conducted in the greenhouse using maize and sorghum plants to 

compare the robotic and manual (ground-truth) measurements of stem diameter to 

evaluate the system performance. The experimental results demonstrated that the deep 

learning algorithm could detect the stem of all plants successfully. Moreover, a high 

correlation between the automated and manual measurements was achieved and it 

illustrated that the robotic system could measure the stem diameter accurately.  

Since both robotic systems no longer needed a laborer for collecting data and 

phenotypes were automatically collected by the systems, the tediousness was 

significantly decreased compared to manual measurements. 

The phenotyping robots showed a potential to complement the traditional image-

based high-throughput plant phenotyping in greenhouses by measuring the physiological 

and biochemical traits of leaf and stem directly and automatically.  
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