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Review

Host factors against plant viruses

HERNAN GARCIA-RUIZ *

Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA

SUMMARY

Plant virus genome replication and movement is dependent on 
host resources and factors. However, plants respond to virus in-
fection through several mechanisms, such as autophagy, ubiq-
uitination, mRNA decay and gene silencing, that target viral 
components. Viral factors work in synchrony with pro-viral host 
factors during the infection cycle and are targeted by antiviral 
responses. Accordingly, establishment of virus infection is ge-
netically determined by the availability of the pro-viral factors 
necessary for genome replication and movement, and by the 
balance between plant defence and viral suppression of defence 
responses. Sequential requirement of pro-viral factors and the 
antagonistic activity of antiviral factors suggest a two-step 
model to explain plant–virus interactions. At each step of the 
infection process, host factors with antiviral activity have been 
identified. Here we review our current understanding of host fac-
tors with antiviral activity against plant viruses.

Keywords: antiviral defence, host factors, virus–host 
interactions, virus resistance.

INTRODUC TION

Infection of a plant by a virus initiates in a single cell. Viral pro-
teins are synthesized by the host cell before genome replication, 
virion formation and movement to a neighbouring cell. The cycle 
is repeated at every newly infected cell (Nelson and Citovsky, 
2005). Using the vascular system, plant viruses move long dis-
tances to infect tissues away from the initial site of infection, 
such as roots and young leaves (Heinlein, 2015; Wan et al., 2015). 
Multiple genetic analyses have shown that the entire infection 
cycle, including virus replication and movement, is genetically 
determined by viral and cellular factors that synchronize their 
activities in time and space (Fig. 1A) (Diaz et al., 2015; Hofius 
et al., 2007; Laliberte and Zheng, 2014; Li et al., 2016; Sasvari 
et al., 2018; Zhang et al., 2018).

Plant–virus combinations could result in an incompatible or 
compatible interaction. Incompatible interactions occur between 
a virus and a non-host plant, are characterized by the absence 
of virus infection and may be explained by the lack of cellular 
factors essential for the virus to replicate or move, antiviral de-
fence or a combination (Fig. 1B) (Jaubert et al., 2011; Lellis et al., 
2002). In contrast, compatible interactions occur between a virus 
and a susceptible host, are characterized by the establishment of 
virus infection and indicate the presence of pro-viral cellular fac-
tors and resources necessary for virus infection and movement. 
Infection may spread through the entire plant, parts of the plant 
or be limited to the vascular system or the initially infected organ 
(Calvo et al., 2014a, 2014b; Lv et al., 2017; Otulak-Koziel et al., 
2018).

In susceptible hosts the absence of critical pro-viral host 
factors results in the absence of infection and reduced virus 
replication, movement or both (Hofius et al., 2007; Lellis et al., 
2002; Wang and Nagy, 2008). Accordingly, the absence of 
pro-viral factors may turn a susceptible host into a non-host, 
as is the case with resistant cultivars, landraces or ecotypes 
within a susceptible species (Hashimoto et  al., 2016; Lellis 
et al., 2002). Because their presence conditions susceptibility, 
while their absence results in immunity or resistance, several 
terms have been used to describe host genes with pro-viral ac-
tivity, such as loss of susceptibility, recessive resistance or sus-
ceptibility genes (Garcia-Ruiz, 2018; Hashimoto et al., 2016).

Interestingly, susceptible hosts harbour factors with antiviral 
activity (Diaz-Pendon et al., 2007; Kushner et al., 2003; Panavas 
et al., 2005; Scholthof et al., 2011). To establish infection, viruses 
escape from or suppress antiviral defence activated by viral 
proteins or nucleic acids, particularly RNA (Fig. 1A) (Garcia and 
Pallas, 2015; Gorovits et al., 2016). With or without a hypersen-
sitive reaction, the defence response restricts essential parts of 
the infection cycle, such as viral RNA translation, virus replication 
or movement, resulting in reduced virus accumulation and/or a 
delay in the establishment of systemic infection. Symptoms may 
or may not develop (Donze et al., 2014; Garcia-Ruiz et al., 2018; 
Korner et al., 2018).
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Multiple genetic analyses have shown that the outcome of 
plant–virus interactions is genetically determined by viral fac-
tors, host factors and their interaction (Fig. 1A) (Chisholm et al., 
2001; Jaubert et al., 2011; Kushner et al., 2003; Lellis et al., 2002; 
Panavas et al., 2005). Consistent with this model, for all parts 
of the infection cycle, at least one host gene with antiviral ac-
tivity has been identified (Table 1). Here I review our current 
understanding of host factors with antiviral activity against 
plant viruses. Their antagonistic activity is presented following 
sequential parts of the infection cycle.

VIR AL DETERMINANTS OF INFEC TION

RNA translation, genome replication, and virion formation and 
movement are core parts of the infection cycle of a plant by a 
virus (Ahlquist, 2006; Nelson and Citovsky, 2005). To accomplish 
these tasks, plant viruses encode replication, capsid, movement 
and auxiliary proteins. Additionally, to condition a cellular envi-
ronment that is conducive to virus replication and movement, 
viral proteins target key components of antiviral immunity. Viral 
factors that determine the extent of infection and disease severity 
are considered pathogenicity determinants. Gene silencing sup-
pressors are remarkable pathogenicity determinants of plant vi-
ruses. Virus-encoded suppressors interfere with antiviral defence 
mechanisms mediated by gene silencing (Anandalakshmi et al., 

1998; Diaz-Pendon et al., 2007; Garcia-Ruiz et al., 2015; Jaubert 
et al., 2011). Interestingly, the activity of several gene-silencing 
suppressors promotes infection of heterologous viruses when 
expressed in cis-, trans- or synergistic co-infections (Garcia-Ruiz 
et al., 2018; Gupta et al., 2018; Maliogka et al., 2012) (Fig. 2).

HOST DETERMINANTS OF INFEC TION

Genome-wide screens of Saccharomyces cerevisiae (yeast) rep-
licating brome mosaic virus (BMV) (Kushner et al., 2003) or to-
mato bushy stunt virus (TBSV) (Panavas et al., 2005) showed that 
a compatible host contains both pro-viral and antiviral factors 
that affect virus replication at the cellular level. Mutagenesis and 
genetic analyses in Arabidopsis thaliana (Arabidopsis) allowed 
identification of pro-viral and antiviral factors that affect virus 
replication at the cellular level, cell-to-cell and systemic move-
ment (Diaz-Pendon et  al., 2007; Garcia-Ruiz et  al., 2010; Guo 
et al., 2017; Lellis et al., 2002; Zhang et al., 2019). Accordingly, 
viruses need pro-viral host factors and are targeted by antiviral 
host factors. Pro-viral host factors are necessary for essential 
steps of the infection cycle and work in synchrony with viral fac-
tors. In contrast, antiviral defence is mediated by host factors 
that target viral nucleic acids or proteins by multiple mechanisms 
such as autophagy, proteasome degradation, RNA decay and 
gene silencing (Fig. 1A).

Fig. 1  Genetic determinants of plant–virus interactions. (A) Viruses encode proteins to execute all parts of the infection cycle. Their expression is dependent 
on the host RNA translation machinery. Their activity requires host factors (pro-viral) and resources. Antiviral immunity consists of host factors that target viral 
proteins or nucleic acids to restrict virus infection. (B) A two-step model in plant–virus interactions. Compatibility is determined by the availability of pro-viral host 
factors. Susceptibility is determined by the balance between antiviral defence and suppression of antiviral defence.
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Table 1  Representative host factors with antiviral activity against plant viruses.

Host factor Cellular function Virus Viral factor Host Technique Reference

Viral RNA translation

APUM5 mRNA binding CMV, TuMV mRNA Arabidopsis 
thaliana

T-DNA mutant screen Huh et al. (2013)

NIK1 Receptor-like kinase CaLCuV NSP A. thaliana Genetic analysis Zorzatto et al. 
(2015)

Virus replication complex formation

PAH1 Phospholipid 
biosynthesis

BMV, TBSB 1a, p33 Yeast and 
Nicotiana 
benthamiana

Genetic analysis Chuang et al. 
(2014); Zhang 
et al. (2018)

Accumulation or activity of the replication proteins

Beclin1 (ATG6) Autophagy TuMV NIb N. benthamiana 
A. thaliana

Autophagosome 
marker, yeast 
two-hybrid

Li et al. (2018)

Tm-1 NA ToMV 130K Solanum 
lycopersicum

Cell fractionation and 
mass spectrometry

Ishibashi et al. 
(2007)

TARF Ubiquitination TMV 126K Nicotiana 
tabacum

Yeast two-hybrid, 
VIGS

Yamaji et al. 
(2010)

Ubiquiting-
proteosome 
system

Protein degradation TYMV RdRp A. thaliana Pulse-chase labelling Camborde et al. 
(2010)

Rsp5p Ubiquitination TBSV P92 Yeast Proteomics Barajas et al. 
(2009)

PVR4 NA PepMV, PVY NIb Capsicum annum Transient expression Kim et al. (2015)

mRNA stability

DCP1, DCP2, 
XRN4, PARN

mRNA decay TuMV mRNA N. benthamiana, 
A. thaliana

Genetic analysis Li and Wang 
(2018)

XRN4 mRNA decay TBSV mRNA Yeast and N. 
benthamiana

Genetic mutation, 
VIGS

Jaag and Nagy 
(2009)

XRN4 mRNA decay TMV mRNA N. benthamiana VIGS Peng et al. (2011)

DCP1 mRNA decay TRV mRNA A. thaliana Genetic mutation Ma et al. (2015)

Virus movement

ESC1 (AtPiezo) Mechanosensitive 
ion channel

CMV, TuMV NA A. thaliana EMS mutagenesis Zhang et al. 
(2019)

RTM1, RTM2, 
RTM3

Protein binding TEV CP A. thaliana GUS or GFP-fusion 
constructs

Chisholm 
et al. (2001); 
Decroocq et al. 
(2009)

KELP Transcription 
coactivator

ToMV p30 N. benthamiana Transient expression Sasaki et al. 
(2009)

BTR1 mRNA binding ToMV Genomic RNA A. thaliana Immunoprecipitation 
and mass 
spectrometry

Fujisaki and 
Ishikawa (2008)

Rsv3 NA SMV CI Glycine max Genetic analysis Zhang et al. 
(2009)

Rsv4 NA SMV NA G. max Genetic analysis Ma et al. (1995)

Ny-1 NA PVY NA Solanum 
tuberosum

Hybrids between 
resistant and sus-
ceptible cultivars

Lukan et al. 
(2018); Szajko 
et al. (2008)
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Host factor Cellular function Virus Viral factor Host Technique Reference

Antiviral gene silencing

DCL, AGO, 
RDR, SGS, 
DRB

gene silencing CaMV, CymRSV, 
MNSV, PMMoV, 
ORMV, TuMV, 
SCMV, MCMV, 
CMV, PVA, TCV, 
TBSV, TSWV, 
PVX, ToRSV, 
RSV, TRV, TYLCV, 
WMV

RNA A. thaliana, N. 
benthamiana 
Zea mays, Oryza 
sativa Cucumis 
melo, S. 
lycopersicum

Genetic analysis Blevins et al., 
(2006); 
Brosseau and 
Moffett (2015); 
Diaz-Pendon 
et al. (2007); 
Donaire et al. 
(2009); Garcia-
Ruiz et al. 
(2010, 2015); 
Jaubert et al. 
(2011); Karran 
and Sanfacon 
(2014); Ludman 
et al. (2017); 
Qu et al. 
(2008); Raja 
et al. (2014); 
Scholthof et al. 
(2011); Wu et al. 
(2015); Xia et al. 
(2016))

Ty-1 RNA-dependent 
RNA polymerase

ToYLCV Genomic DNA S. lycopersicum Genetic analysis Butterbach et al. 
(2014)

rgs-Cam Regulator of gene 
silencing

CMV 2b N. tabacum Yeast two-
hybrid, transgenic 
overexpression

Anandalakshmi 
et al. (2000); 
Jeon et al. 
(2017)

PhOBF1 Transcription factor TRV NA Petunia hybrida VIGS Sun et al. (2017)

Accumulation or activity of viral proteins

NBR1 Autophagy cargo 
receptor

TuMV HC-Pro A. thaliana Genetic analysis Hafren et al. 
(2018)

ATG7, ATG8 Autophagy BSMV NA N. benthamiana Yeast two-hybrid, 
VIGS

Yang et al. (2018)

ATG8 Autophagy CLCuMuV ßC1 N. benthamiana Yeast two-hybrid, 
VIGS

Haxim et al. 
(2017)

rgs-CaM Immune receptor CMV, TEV and 
TuMV

2b, HC-Pro N. benthamiana Surface plasmon 
resonance

Jeon et al. (2017); 
Nakahara et al. 
(2012)

RNA replication

GAPDH Glycolysis BaMV 3ʹ UTR N. benthamiana UV-crosslinking to 
RdRp preparations

Prasanth et al. 
(2011)

Virion formation

NBR1 Autophagy cargo 
receptor

CaMV CP, virions A. thaliana Genetic analysis Hafren et al. 
(2017)

PUS4 Pseudouridina 
synthase

BMV Genomic RNA N. benthamiana Proteome array Zhu et al. (2007)

Virus accumulation

CYR1 NA MYMIV CP Vigna mungo Natural variation Maiti et al. (2012)

Table 1  (Continued)
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COMPATIBIL IT Y AND SUSCEPTIB IL IT Y IN 
PL ANT–VIRUS INTER AC TIONS

The role of host and viral factors, and their availability in the cell 
during the establishment of infection, suggests a two-step model 
to explain plant–virus interactions (Fig. 1B). Compatibility is de-
termined by the availability of pro-viral host factors. The absence 
of one or more pro-viral factors results in incompatibility in a 
host plant (Lellis et al., 2002). Viral proteins must be translated 
by the host translational machinery before replication can occur 
(Ahlquist, 2006; Machado et al., 2017; Miller et  al., 2016). This 
feature makes viral RNA translation a critical determinant of the 
outcome in plant–virus interactions. An example is translation 

initiation factor eIF(iso)4E and potyviruses. Arabidopsis is suscep-
tible to tobacco etch virus (TEV) and turnip mosaic virus (TuMV). 
However, mutant plants lacking eIF(iso)4E are immune to TEV and 
TuMV (Lellis et al., 2002). Similarly, down-regulation of eIF(iso)4E 
in plum confers resistance to plum pox virus (PPV) (Wang et al., 
2013). The mechanism is likely mediated by the lack  of RNA 
translation to form potyviral polyproteins and possibly the lack of 
cell-to-cell movement (Contreras-Paredes et al., 2013; Lellis et al., 
2002). Similar effects have been detected for several plant species 
and their corresponding potyviruses (Sanfacon, 2015).

In compatible plant–virus combinations, susceptibility is 
determined by the balance between antiviral defence and 

Host factor Cellular function Virus Viral factor Host Technique Reference

NBR1 Autophagy cargo 
receptor

TuMV and WMV HC-Pro A. thaliana Genetic analysis Hafren et al. 
(2018)

RFP1 Ubiquitination TYLCCV BC1 N. tabacum Yeast two-hybrid Shen et al. (2016)

PSBP Kinase AMV CP N. benthamiana Yeast two-hybrid Balasubramaniam 
et al. (2014)

Cell death

N Protein phosphatase TMV Helicase N. tabacum 
'Xanthi'

Transient expression Abbink et al. 
(1998; Padgett 
et al. (1997)

RCY1 NA CMV strain Y CP A. thaliana Genetic mapping Takahashi et al. 
(2001)

Rx1, Rx2 NA PVX CP S. tuberosum Transient expression Bendahmane 
et al. (2000)

Tm-2 NA TMV MP S. lycopersicum Genetic analysis Meshi et al. 
(1989)

Tm-22 NA ToMV MP S. lycopersicum Cloning, trans-
genic expression, 
localization

Chen et al. 
(2017); 
Lanfermeijer 
et al. (2003)

RPP8 Protein binding TCV CP A. thaliana Cloning, transgenic 
expression

Cooley et al. 
(2000)

Rsv1 NA SMV P3 and HC-Pro G. max Virus mutagenesis Eggenberger 
et al. (2008)

Tsw NA TSWV NSs Capsicum 
chinense

Transient expression de Ronde et al. 
(2013)

Sw5b NA TSWV NSm S. tuberosum Transient and 
transgene 
expression

Mariana et al. 
(2014)

Virus names: alfalfa mosaic virus (AMV), bamboo mosaic virus (BaMV), barley stripe mosaic virus (BSMV), brome mosaic virus (BMV), cabbage leaf curl virus 
(CaLCuV), cauliflower mosaic virus (CaMV), cotton leaf curl multan virus (CLCuMuV), cymbidium ringspot virus (CymRSV), cucumber mosaic virus (CMV), cucumber 
necrosis virus (CNV), maize chlorotic mottle virus (MCMV), melon necrotic spot virus (MNSV), mungbean yellow mosaic india virus (MYMIV), oilseed rape mosaic 
virus (ORMV), pepper mild mottle virus (PMMoV), pepper mottle virus (PepMV), potato virus A (PVA), potato virus X (PVY), potato virus Y (PVY), rice stripe virus 
(RSV), soybean mosaic virus (SMV), sugarcane mosaic virus (SCMV), tobacco etch virus (TEV), tobacco mosaic virus (TMV), tobacco rattle virus (TRV), tomato bushy 
stunt virus (TBSV), tomato mosaic virus (ToMV), tomato ringspot virus (ToRSV), tomato yellow leaf curl virus (TYLCV), tomato spotted wilt virus (TSWV), tomato 
yellow leaf curl virus (ToYLCV), turnip crinkle virus (TCV), turnip mosaic virus (TuMV), turnip yellow mosaic virus (TYMV), watermelon mosaic virus (WMV).

Yeast: Saccharomyces cerevisiae.

Table 1  (Continued)
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suppression of antiviral defence (Fig. 1B). Defence responses may 
prevent infection from spreading to the entire plant, determining 
different levels of susceptibility to virus infection. If infection is 
stopped early, before the formation of local foci, the plant phe-
notype may be the same as that of a non-host (Garcia-Ruiz et al., 
2015; Lellis et al., 2002; Qu et al., 2008).

A genetic analysis of infection of Arabidopsis by green-fluo-
rescence protein-tagged TuMV (TuMV-GFP) illustrates a two-step 
model in plant–virus interactions (Fig. 2A). Suppressor-deficient 
(mutant helper component proteinase HC-Pro) TuMV-AS9-GFP 
cannot infect wild-type plants or dcl2-1 mutants. Infection is 
halted at the cellular level by gene silencing. However, suppres-
sor-deficient TuMV-AS9-GFP is able to infect dcl4-2 mutants, 
which lack the contribution of Dicer-like protein 4 (DCL4) to gene 
silencing. Visible infection foci form and the virus moves sys-
temically into cauline leaves without reaching the inflorescence. 
Interestingly, suppressor-deficient TuMV-AS9-GFP is able to es-
tablish local and systemic infection of cauline leaves and inflores-
cence in dcl2-1 dcl4-2 double mutants. Thus, in the absence of 
the HC-Pro silencing suppression activity, gene silencing restricts 
infection in a tissue-specific manner. In contrast, TuMV-GFP 
establishes local and systemic infection, including  the inflores-
cence, of Arabidopsis plants, wild-type or mutants. Accordingly, 
the antiviral role of gene silencing is defeated by the TuMV-
encoded silencing suppressor HC-Pro (Garcia-Ruiz et al., 2010).

A genetic analysis of infection of Nicotiana benthamiana 
by TuMV-GFP further supports the two-step model (Fig. 2B). 
Suppressor-deficient TuMV-AS9-GFP cannot infect wild-type 
N. benthamiana. In Arabidopsis and in N. benthamiana, RNA-
dependent RNA polymerase 6 (RDR6) is a core component of 
antiviral gene silencing (Garcia-Ruiz et al., 2010; Qu et al., 2005, 
2008; Yang et al., 2004). In N. benthamiana, infection of the mer-
istems by potato virus X (PVX) is prevented by RDR6 (Schwach 
et al., 2005), and infection of the Arabidopsis meristems by TuMV 
is restricted by argonaute (AGO) proteins 1, AGO2 and AGO10 
(Garcia-Ruiz et al., 2015).

Knockdown of RDR6 by RNA interference in N. benthamiana 
(rdr6i) (Schwach et al., 2005) rescued local and systemic infec-
tion by TuMV-AS9-GFP. In an alternative approach, expression 
in cis of the NSs protein from tomato spotted wilt virus (TSWV) 
(Garcia-Ruiz et  al., 2018) supported the establishment of local 
and systemic infection by TuMV-AS9-GFP (Fig. 2B). These ob-
servations show that tissue-specific restriction of virus infection 
is determined by the balance between gene silencing and gene 
silencing suppression (Garcia-Ruiz et  al., 2015, 2018; Schwach 
et al., 2005).

HOST GENES WITH ANTIVIR AL AC TIVIT Y

Host factors with antiviral activity (Fig. 2) limit virus accu-
mulation, movement or both, resulting in a virus-resistant 

or tolerant phenotype that normally displays symptoms less 
severe than susceptible plants (Diaz-Pendon et  al., 2007; 
Garcia-Ruiz et al., 2010; Huh et al., 2013). For each part of the 
infection cycle, at least one host gene with antiviral activity 
has been identified (Table 1). Representative host factors are 
described below.

Viral RNA translation

Translation of viral proteins from genomic RNA, subgenomic 
RNA or mRNA is dependent on cellular factors and the protein 
translation machinery. Being a critical step that determines the 
availability of viral proteins, both host and viral factors regu-
late translation (Ahlquist, 2006; Miller et al., 2016; Sanfacon, 
2015). In Arabidopsis, a leucine-rich repeat receptor-like ki-
nase (NIK1) is a master regulator of translation. As a defence 
mechanism, using an NIK1-dependent pathway, plants down-
regulate translation upon begomovirus infection. This effect 
results in a reduction in virus replication and accumulation. 
Remarkably, begomoviral nuclear shuttle protein (NSP) inacti-
vates NIK1 to up-regulate translation and promote susceptibil-
ity (Zorzatto et al., 2015).

Using nucleotide sequences as recognition signatures, 
Arabidopsis Pumilio RNA binding protein 5 (APUM5) binds cu-
cumber mosaic virus (CMV) and TuMV mRNA to inhibit trans-
lation. Accordingly, mutant plants lacking APUM5 accumulate 
CMV and TuMV to higher levels than plants harbouring wild-type 
APUM5 (Huh et al., 2013).

Virus replication complex formation

After reaching the nucleus of infected cells, DNA viruses 
form minichromosomes that are replicated by cellular DNA-
dependent DNA polymerases (Ceniceros-Ojeda et  al., 2016). 
In contrast, on cellular membranes, RNA viruses induce the 
formation of vesicles that contain RNA-dependent RNA poly-
merases and genomic RNA, and are the sites of replication. 
Several cellular proteins that antagonize the formation of viral 
replication compartments have been identified and character-
ized (Table 1).

Phospholipids are crucial membrane components. 
Phosphatidic acid phosphohydrolase 1 (PAH1) limits phospho-
lipid synthesis. Genetic analyses in yeast and N. benthamiana 
showed that PAH1 negatively regulates BMV and TBSV replica-
tion complex formation, resulting in reduced virus replication at 
the cellular level and reduced accumulation in plants (Chuang 
et al., 2014; Zhang et al., 2018).

Accumulation or activity of replication proteins

Virus-encoded RNA-dependent RNA polymerases replicate the 
genome of RNA viruses and, if present, transcribe subgenomic 
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RNAs that are essential for gene expression. Viral RNA-dependent 
RNA polymerases contain a conserved GDD motif (Li et al., 2018) 
and are targeted for degradation by autophagy protein 6 (ATG6 
or Beclin1). Beclin1 is a core component of autophagy, interact-
ing with and triggering degradation of the RNA-dependent RNA 
polymerase (NIb) of several potyviruses, including TuMV, PPV, 
soybean mosaic virus (SMV) and TEV. Beclin1 also triggers deg-
radation of the RNA-dependent RNA polymerases of cucumber 
green mottle mosaic virus and pepino mosaic virus (Li et  al., 
2018). Additionally, in pepper (Capsicum annum), pathogenesis-
related protein 4c (Pvr4c) interacts with NIb and triggers cell 
death upon infection by pepper mottle virus or potato virus Y 
(PVY) (Kim et al., 2015).

In tomato (Solanum lycopersicum), tobacco mosaic virus 
resistance 1 (Tm-1) confers resistance to tobacco mosaic virus 
(TMV) and to tomato mosaic virus (ToMV). Tm-1 encodes a pro-
tein that binds ToMV replication protein 103K and prevents its 

normal activity (Ishibashi and Ishikawa, 2013; Ishibashi et  al., 
2007).

RNA replication

Glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) binds the 3′ UTR of bamboo mosaic virus (BaMV) and 
satellite BaMV RNAs. This interaction down-regulates BaMV 
negative-strand RNA synthesis. Accordingly, GAPDH knockdown 
in N. benthamiana enhanced accumulation of BaMV. In contrast, 
GAPDH overexpression reduced BaMV accumulation (Prasanth 
et  al., 2011). GAPDH has the opposite effect on TBSV replica-
tion. GAPDH preferentially binds to the 3′ end of negative-strand 
TBSV RNA, retaining it in the replication complex to promote 
positive-strand RNA synthesis. This activity results in asymmetric 
RNA replication characterized by higher synthesis and accumu-
lation of positive- over negative-strand genomic RNA, which is 
normal in TBSV replication (Wang and Nagy, 2008)

Fig. 2  The balance between gene silencing and silencing suppression determines infection progression. Arabidopsis thaliana plants were mechanically 
inoculated with suppressor-deficient turnip mosaic virus (TuMV)-GFP or TuMV-GFP. In Nicotiana benthamiana plants, infection was initiated by agroinfiltration. 
Pictures were taken under UV light. (A) In A. thaliana, Dicer-like proteins 2 and 4 (DCL2 and DCL4) are core components of antiviral gene silencing and restrict 
virus infection in a tissue-specific manner. In leaves, DCL4 is sufficient and DCL2 is dispensable. In the inflorescence, both DCL2 and DCL4 are necessary to restrict 
virus infection. TuMV-encoded silencing suppressor (HC-Pro) overcomes the antiviral effect of gene silencing and promotes the establishment of infection in leaves 
and the inflorescence. (B) In N. bethamiana RDR6 is an essential component of gene silencing. Suppressor-deficient TuMV-AS9-GFP cannot infect wild-type N. 
benthamiana. Local and systemic infection occurred by knocking down RDR6 in rdr6i plants, or by providing in cis the silencing suppressor from tomato spotted 
wilt virus. In normal and rd6i plants, local and systemic infection occur and the virus accumulates to high levels. Pathogenicity is determined by TuMV HC-Pro.
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mRNA stability

Viruses express their genes through mRNA (Ahlquist, 2006). 
After translation, cellular and viral mRNAs are deadenylated, de-
capped and cleaved 5′ to 3′ by exoribonuclease 4 (XRN4) through 
the decapping-dependent RNA decay pathway (Thran et  al., 
2012; Tsuzuki et al., 2017). Recent genetic analyses showed that 
RNA decay has an antiviral role that limits virus accumulation 
and may contribute to plant recovery from virus-induced symp-
toms (Li and Wang, 2018; Ma et  al., 2015; Moon and Wilusz, 
2013; Tsuzuki et al., 2017). RNA decay and RNA silencing seem 
to act in coordination to suppress virus infection, and their activi-
ties partially overlap (Li and Wang, 2018; Peng et al., 2011).

Consistent with the antiviral role of RNA decay, potyviral 
HC-Pro and genome-linked protein (VPg) are silencing suppres-
sor proteins that interfere with both gene silencing and mRNA 
decay. Interference with mRNA decay occurs through interac-
tions with XRN4 and decapping protein 2 (DCP2), respectively, 
two core components of the 5′ to 3′ RNA decay pathway (Li and 
Wang, 2018).

Virus movement

Plant viruses move cell to cell as virions or nucleoprotein com-
plexes through plasmodesmata. As a critical component of this 
process, plant viruses encode movement proteins that increase 
the plasmodesmata size exclusion limit and/or form microtubules 
(Taliansky et al., 2008). Several host factors that antagonize virus 
movement have been identified. They target viral proteins and 
RNA, or trigger cell death (Table 1).

Plants encode mechanosensitive ion channels that regulate 
ion movement across cells. In Arabidopsis, ESC1 encodes a piezo 
protein that functions as a mechanosensitive Ca2+ permeable 
channel and limits systemic infection of CMV and TuMV (Zhang 
et al., 2019).

Systemic movement of TEV, and some isolates of PPV and let-
tuce mosaic virus (Decroocq et al., 2009), is restricted by restrict-
ed-TEV-movement (RTM) genes RTM1, RTM2 and RTM3. These 
genes are expressed in phloem sieve elements and interact with 
the viral coat protein (Chisholm et al., 2001). Interestingly, resis-
tance-breaking isolates had mutations in the N-terminus of the 
coat protein (Decroocq et al., 2009).

BTR1 is a ribonucleoprotein K-homology RNA-binding protein 
that binds ToMV genomic RNA and restricts cell-to-cell move-
ment (Fujisaki and Ishikawa, 2008). In potato (S. tuberosum) 
plants the Ny-1 gene confers resistance to PVY by triggering cell 
death at the infection sites, limiting cell-to-cell movement (Lukan 
et al., 2018).

Gene silencing

In plants, gene silencing is an essential mechanism of antiviral 
defence. Gene silencing targets viral RNA for degradation or 

translational repression. The result is restriction of virus repli-
cation and movement, and recovery from virus-induced symp-
toms (Korner et  al., 2018; Szittya and Burgyan, 2013). Gene 
silencing targets DNA and RNA viruses, satellite RNA viruses 
and viroids (Blevins et  al., 2006; Diaz-Pendon et  al., 2007; 
Minoia et al., 2014; Shimura et al., 2011). All viruses express 
their genes and/or replicate their genome through an RNA in-
termediate (Ahlquist, 2006). This feature exposes viruses to 
gene silencing.

The core components of gene silencing include Dicer-Like 
(DCL), Argonaute (AGO), double-stranded RNA binding (DRB) 
and RNA-dependent-RNA-polymerase (RDR) proteins. These 
proteins are conserved across plants (Incarbone and Dunoyer, 
2013; Szittya and Burgyan, 2013; Zvereva and Pooggin, 2012). 
A signature feature of antiviral gene silencing is the accumula-
tion of virus-derived small interfering RNAs (siRNAs) in infected 
plants. Viral RNA is processed by DCL proteins into siRNAs that 
are 21 to 24 nucleotides long. Virus-derived siRNAs are loaded 
into AGO proteins, programming them for specific slicing or 
translational repression of viral RNA (Garcia-Ruiz et  al., 2015; 
Karran and Sanfacon, 2014; Schuck et  al., 2013). Accordingly, 
viral RNA is targeted by both DCL and AGO proteins.

Antiviral gene silencing might be triggered by viral RNA rep-
lication intermediates, self-complementary sequences forming 
hairpin structures in viral single-stranded RNA, and by products 
of overlapping transcription (Pantaleo et al., 2007; Szittya and 
Burgyan, 2013). DCL proteins process double-stranded virus RNA 
into primary virus-derived siRNAs that are necessary but not suf-
ficient to prevent virus infection. Establishment of an antiviral 
state requires silencing amplification by plant RNA-dependent 
RNA polymerases that synthesize double-stranded RNA from 
single-stranded viral RNA (Diaz-Pendon et al., 2007; Garcia-Ruiz 
et al., 2010).

Virus-derived siRNA profiling has demonstrated that, in 
compatible plant–virus interactions, the entire genome of posi-
tive-strand and negative-strand RNA viruses is targeted by gene 
silencing in both monocot and dicot plants (Donaire et al., 2009; 
Garcia-Ruiz et  al., 2015; Margaria et  al., 2015; Tatineni et  al., 
2014; Wang et al., 2011; Xia et al., 2016). However, gene silenc-
ing is not enough to restrict virus infection. That is due to the 
inhibitory activity of virus-encoded gene silencing suppressors. 
Suppressors condition susceptibility, promote virus replication 
and movement, and promote symptom development by interfer-
ing with endogenous and antiviral gene silencing (Burgyan and 
Havelda, 2011; Garcia-Ruiz et al., 2018; Kasschau et al., 2003). 
The mechanisms of silencing suppression include triggering the 
degradation of core components of gene silencing such as DCL, 
AGO, RDR6 and suppressor of gene silencing 3 (SGS3) proteins, 
and binding of both virus-derived and cellular siRNAs including 
micro-RNAs (miRNAs) (Burgyan and Havelda, 2011; Garcia-Ruiz 
et  al., 2015; Del Toro et  al., 2017). These effects prevent the 
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biogenesis and/or activity of virus-derived and cellular siRNAs. 
Plant development and response to abiotic and biotic stress is 
in part regulated by miRNAs and other siRNAs. Accordingly, 
virus-encoded gene silencing suppressors are determinants of 
symptom development (Garcia-Ruiz et al., 2018; Kasschau et al., 
2003). Furthermore, viral silencing suppressors impact virus ac-
cumulation and the spatial distribution of virus infection (Garcia-
Ruiz et al., 2018), and are frequently determinants of host range 
(Garcia-Ruiz et al., 2015; Jaubert et al., 2011; Li et al., 2014).

The antiviral role of gene silencing was unambiguously 
demonstrated using viruses lacking gene silencing suppres-
sors (Diaz-Pendon et  al., 2007; Garcia-Ruiz et  al., 2010, 2015; 
Pantaleo et al., 2007; Qu et al., 2008). Turnip crinkle virus (TCV), 
TBSV, CMV and TuMV accumulate to similar levels in wild-type 
plants and in mutant plants lacking core components of the si-
lencing machinery. However, suppressor-deficient viruses cannot 
infect wild-type plants. Instead, suppressor-deficient viruses 
can only infect plants lacking core gene silencing components 
(Fig. 2). These genetic systems have been used to identify and 
characterize components of gene silencing (Diaz-Pendon et al., 
2007; Garcia-Ruiz et al., 2010, 2015; Pantaleo et al., 2007; Qu 
et al., 2008).

As illustrated by genetic analyses using suppressor-deficient 
TuMV-AS9-GFP, antiviral gene silencing restricts virus infection 
and movement in a tissue-specific manner. In Arabidopsis plants 
lacking DCL4, AGO2, RDR1 or RDR6, TuMV-AS9-GFP established 
local infection and moved systemically into non-inoculated 
leaves, without reaching the inflorescence. Systemic infection 
of the inflorescence only occurred in the absence of both DCL2 
and DCL4, or RDR1 and RDR6, or AGO1, AGO2 and AGO10 
(Garcia-Ruiz et al., 2010, 2015).

To prevent their inhibitory effect on gene silencing, several 
plant factors target virus-encoded silencing suppressors or 
regulate expression of gene silencing components (Table 1), as 
illustrated by the following examples. In Nicotiana tabacum, a 
calmodulin-like protein (rgs-CaM) binds to and, via autophagy 
directs degradation of, 2b, the silencing suppressor in CMV (Jeon 
et al., 2017). Autophagy cargo receptor NBR1 targets potyviral 
HC-Pro for degradation, thus affecting silencing suppression 
and reducing accumulation of TuMV and watermelon mosaic 
virus (WMV). Interestingly, TuMV VPg and 6K2 prevent NBR1-
dependent degradation of HC-Pro (Hafren et al., 2018).

In petunia (Petunia hybrida), PhOBF1, a leucine transcrip-
tion factor, is up-regulated by tobacco rattle virus (TRV) 
infection. PhOBF1 is a positive regulator of salicylic acid bio-
synthesis and of core components of gene silencing: DCL, 
AGO and RDRs. Thus, PhOBF1 enhances antiviral responses 
to TRV (Sun et  al., 2017). In tomato, the Ty-1 gene encodes 
an RNA-dependent RNA polymerase that confers resistance 
to geminiviruses by enhancing transcriptional gene silencing 
(Butterbach et al., 2014).

Virion assembly and disassembly

In BMV, the negative-strand RNA core promoter consists of a 
short stem with a three-nucleotide loop that forms a clamp ad-
enine motif. An array of 5000 yeast proteins was screened for 
proteins that bind the clamp adenine motif. Pseudouridine syn-
thase 4 (PUS4) was identified. Functional characterization in N. 
benthamiana showed that PUS4 binding to BMV positive-strand 
RNA prevented encapsidation, resulting in a slight reduction in 
viral RNA accumulation and a drastic reduction in BMV systemic 
movement (Zhu et al., 2007).

Host factors that condition virus resistance by 
undetermined mechanisms

For a growing number of plant–virus combinations, reduced 
virus accumulation has been observed in the presence of genes 
with antiviral activity although the part of the infection cycle 
that is affected has not been identified (Table 1). In these cases, 
virus infection triggers a hypersensitive response that results in 
the formation of necrotic lesions. Cell death might reduce virus 
movement and confine the virus to the infection sites and sur-
rounding cells, but is not sufficient to prevent virus movement 
out of the cell death zone (Lukan et al., 2018).

The following plant–virus combinations are examples of 
host factors that condition virus resistance by undetermined 
mechanisms. The N resistance gene from Nicotiana glutinosa 
was introduced into N. tabacum and confers resistance to TMV 
(Levy et al., 2004). The N resistance protein is a receptor that 
contains three essential domains: a Toll-interleukin-1 (TIR), a 
nucleotide-binding site (NBS) and a leucine-rich repeat (LRR) 
(Dinesh-Kumar et  al., 2000). Transcription and alternative 
splicing of the N gene is stimulated by TMV infection (Levy 
et al., 2004), the protein coded by the N gene recognizes the 
helicase domain in TMV replication protein 126-kD, and trig-
gers a hypersensitive response visible as local necrotic lesions. 
As a result, TMV infection is restricted to cells surrounding 
the entry site (Abbink et al., 1998; Levy et al., 2004; Padgett 
et al., 1997).

The arginine-rich cyclin 1 (RCY1) gene in Arabidopsis rec-
ognizes the coat protein in CMV strain Y and triggers local 
cell death (Takahashi et  al., 2001). Similarly, TSWV infec-
tion triggers cell death in plants carrying the Tsw and Sw5b 
genes, which recognize the NSs or NSm proteins, respectively 
(Mariana et al., 2014). Likewise, the Tm-22 gene in tomato en-
codes a leucine-rich protein that interacts with the movement 
protein and confers resistance to tobamoviruses, including 
TMV. The response is mediated by a hypersensitive response 
and localized cell death (Chen et al., 2017). In soybean (Glycine 
max), the Rsv1 gene confers resistance to SMV strain N. SMV 
strain G7 is not affected. Both P3 and HC-Pro mediate Rsv1-
dependent restriction of SMV strain N (Eggenberger et  al., 
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2008). A component of the oxygen-evolving complex patho-
system II, PSBP, interacts with alfalfa mosaic virus coat protein 
and delays activation of antiviral responses mediated by reac-
tive oxygen species (Balasubramaniam et al., 2014).

IDENTIF IC ATION OF HOST FAC TORS WITH 
ANTIVIR AL AC TIVIT Y

Host factors with antiviral activity have been identified and 
characterized using several experimental approaches (Table 1). 
For a small number of cases, natural genetic variation in plant 
populations has been used to identify, map and clone genes 
with antiviral activity (Lukan et  al., 2018; Maiti et  al., 2012; 
Szajko et  al., 2008). However, experimental model systems 
based on yeast, Arabidopsis and N. benthamiana have con-
tributed most of the genes with antiviral activity known to 
date (Table 1). These experimental systems allow systematic 
genetic analysis of virus–host interactions. Using yeast, ge-
nome-wide screens have been conducted for BMV and TBSV. 
Based on the Arabidopsis mutant collection, multiple screens 
have been done for gene families such as DCL, AGO, RDRs, 
RNA decay or autophagy mutants (Blevins et al., 2006; Diaz-
Pendon et  al., 2007; Garcia-Ruiz et  al., 2015; Jaubert et  al., 
2011; Qu et al., 2008).

Based on the concept that host and viral factors colocalize 
and may interact, yeast-two hybrid assays and cell fraction-
ation or immunoprecipitation followed by mass spectrometry 
has led to the identification of several genes with antiviral 
activity (Fujisaki and Ishikawa, 2008; Ishibashi et  al., 2007). 
These assays involved a virus natural host or an experimental 
host (Table 1).

Functional characterization of the genes identified has 
been done using loss-of-function or gain-of-function mutants 
in Arabidopsis, N. benthamiana or natural hosts. Additionally, 
virus-induced gene silencing (VIGS) has been widely used to 
down-regulate genes in N. benthamiana. In both Arabidopsis 
and N. benthamiana,  transient or transgenic expression has  
been used to validate the antiviral activity of a growing number 
of genes (Haxim et al., 2017; Jaag and Nagy, 2009; Sun et al., 
2017).

FAC TORS ESSENTIAL AND NON - ESSENTIAL 
FOR HOST SURVIVAL

Genes with antiviral activity might be essential or non-es-
sential for plant survival. Non-essential genes affect virus 
replication or movement without affecting the host (Table 1). 
However, essential genes cannot be removed from the host. 
AGO1 participates in antiviral defence (Garcia-Ruiz et al., 2015; 
Qu et al., 2008; Wang et al., 2011) and is essential for miRNA-
dependent regulation of gene expression and development. 
Accordingly, ago1 null mutants show severe developmental 

phonotypes and are sterile. Hypomorphic ago1 mutant alleles 
retain part of their activity and have been used to genetically 
characterize the role of AGO1 in antiviral defence (Morel et al., 
2002). In contrast, DCL2 and DCL4 are non-essential, are re-
dundant to each other, and single and double mutants show 
only mild leaf malformation (Diaz-Pendon et al., 2007; Garcia-
Ruiz et al., 2010).

Conditional repression of expression or temperature-sensitive 
expression were used to determine the role of yeast essential 
genes in BMV and TBSV replication (Gancarz et al., 2011; Nawaz-
ul-Rehman et al., 2013). These genetic analyses identified 19 es-
sential yeast genes that antagonized BMV (Gancarz et al., 2011) 
or TBSV replication (Nawaz-ul-Rehman et al., 2013).

CONCLUSIONS

The infection cycle of a plant by a virus is genetically determined 
by viral factors, cellular factors and their interaction. Viruses use 
cellular factors and resources to replicate and move. Viral pro-
tein or nucleic acids are targeted by antiviral immunity (Fig. 1A). 
A two-step model for plant–virus interactions explains plant 
susceptibility to viruses (Fig. 1B). Initially, establishment of in-
fection is determined by the level of plant–virus compatibility. 
Incompatibility might result from the lack of pro-viral factors, 
while compatibility is determined by the availability of pro-viral 
host factors. Subsequently, in compatible plant–virus combina-
tions susceptibility is determined by the balance between antivi-
ral defence and suppression of antiviral defence (Fig. 1B). Strong 
antiviral defence may stop infection at any point before spreading 
to the entire plant. This range results in plants with different levels 
of susceptibility. The lowest level of susceptibility, resulting from 
arrest of infection at the initially infected cell, is difficult to distin-
guish from an incompatible interaction that occurs in a non-host 
(Fig. 1B). Susceptible hosts harbour both pro-viral factors and fac-
tors with antiviral activity (Table 1). Their functional characteriza-
tion has improved our understanding of the mechanisms of virus 
pathogenicity and antiviral defence in plant–virus interactions.

FUTURE DIREC TIONS

Host genes with antiviral activity provide an interesting option to 
develop genetic resistance to viruses in crops. However, viruses 
have a remarkable ability to mutate and are rapidly evolving (Duffy, 
2018). Virus-resistant plants select for variants capable of breaking 
genetic resistance. An example is the emergence of tomato brown 
rugose fruit virus (ToBRV), described in 2016. ToBRV originated 
from a recombination event between TMV and tomato mild mottle 
virus (ToMMV) (Salem et al., 2016). Interestingly, within a year, a 
ToBRV isolate that broke the Tm-22-dependent resistance was iden-
tified (Luria et al., 2017).

A complementary or alternative approach to the deploy-
ment of genes with antiviral activity is the identification, 



© 2019 THE AUTHORS. MOLECUL AR PL ANT PATHOLOGY PUBL ISHED BY BR IT ISH SOCIET Y FOR PL ANT PATHOLOGY AND JOHN 
WILEY & SONS LTD  Molecul ar Pl ant Pathology  (2019)

Antiviral host factors    11

characterization and deployment of pro-viral factors that deter-
mine susceptibility to plant viruses (Garcia-Ruiz, 2018).

To date, genome-wide screens and genetic analysis have been 
done mainly in model viruses using heterologous hosts and/or 
model plant systems (Table 1). Current advances in genome editing 
(Zhe et al., 2018) make it possible to implement genetic analysis in 
crop plants. Genome editing in combination with epitope-tagging 
of viral proteins, either individually or in the context of an infec-
tious clone, make it currently possible to identify and characterize 
host genes with antiviral activity and pro-viral genes crop plants. 
Thus, it is safe to predict that viruses causing devastating diseases 
in staple crops will receive more attention in the near future. This 
includes orthotospoviruses, potyviruses, tobamoviruses and gem-
iniviruses. Prime examples are the causal agents of maize lethal 
necrosis, maize chlorotic mottle virus and sugarcane mosaic virus 
(Wamaitha et al., 2018), and recently described ToBRV (Luria et al., 
2017; Salem et al., 2016).
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