University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Talks and Presentations: Department of Teaching,DepartmentLearning and Teacher Education

Department of Teaching, Learning and Teacher Education

7-2019

Meeting the Vision of the NGSS: Critical Factors of Effective Science Teaching (Poster)

Elizabeth B. Lewis University of Nebraska-Lincoln, elewis3@unl.edu

Lyrica Lucas University of Nebraska - Lincoln, lyricalucas@huskers.unl.edu

Amy Tankersley University of Nebraska - Lincoln, amntank@gmail.com

Elizabeth Hasseler University of Nebraska - Lincoln, ehasseler@huskers.unl.edu

Brandon Helding Boulder Learning, Inc., b.a.helding@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/teachlearntalks Part of the <u>Science and Mathematics Education Commons</u>, and the <u>Secondary Education and</u> <u>Teaching Commons</u>

Lewis, Elizabeth B.; Lucas, Lyrica; Tankersley, Amy; Hasseler, Elizabeth; and Helding, Brandon, "Meeting the Vision of the NGSS: Critical Factors of Effective Science Teaching (Poster)" (2019). *Talks and Presentations: Department of Teaching, Learning and Teacher Education*. 11.

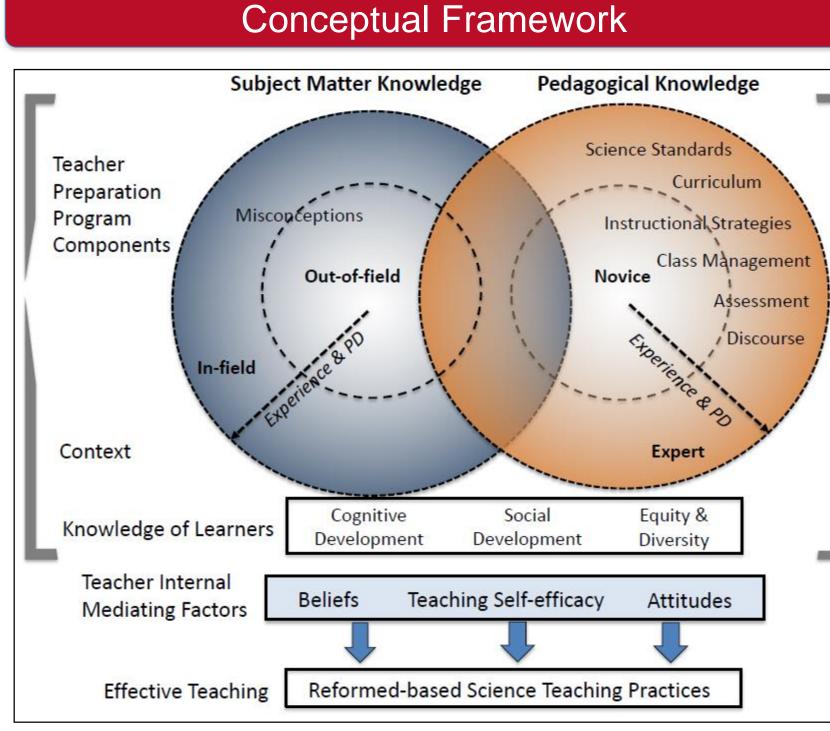
https://digitalcommons.unl.edu/teachlearntalks/11

This Article is brought to you for free and open access by the Department of Teaching, Learning and Teacher Education at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Talks and Presentations: Department of Teaching, Learning and Teacher Education by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Meeting the Vision of the NGSS: Critical Factors of Effective Science Teaching

Elizabeth Lewis, Lyrica Lucas, Amy Tankersley, Elizabeth Hasseler, & Brandon Helding* Department of Teaching, Learning, & Teacher Education, University of Nebraska-Lincoln, *Boulder Learning Inc.

Introduction & Rationale


- Becoming an effective teacher takes "good" preparation, time, and practice....but how much?
- Preservice teacher education, even robust preparation, cannot *immediately* prepare teachers to be effective teachers, but some preparation designs are better than others, but which ones?
- At some point the effects of teacher preparation programs attenuate, but when?

Thus, we need more studies that carefully describe the relationship between:

> science teachers' preservice preparation AND enacted reformed-based teaching practices.

Our study addresses this knowledge gap...by investigating: Beginning science teachers'

NGSS-aligned instructional practices with a range of in-field content knowledge and relationship to exemplary, reform-based instruction

Figure 1. Conceptual framework of teacher preparation program and reformed-based science teaching practices.

Research Approach and Data Sources

Approach & Methods

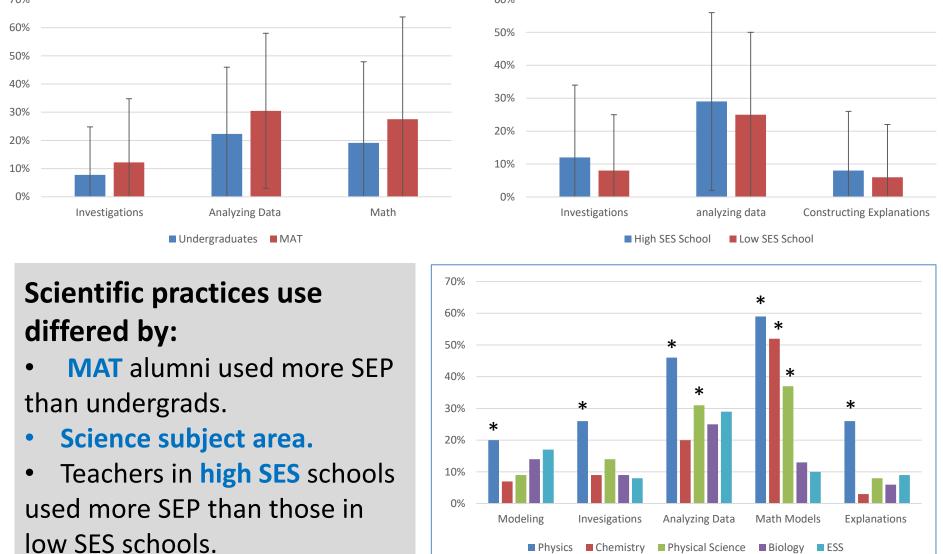
- We adopted a *multi-method approach* to investigate beginning science teachers' enacted practices.
- Longitudinal study of secondary science teacher program graduates from a large Midwestern (U.S.) 4-year state university.

Data sources

- **Transcript analysis** of all science coursework (credit hours and GPA)
- Classroom observations and student-level demographics. Coded with a validated instrument (EQUIP) and a second instrument
- (**DilSC**) to code the degree of inquiry-based science instruction.
- 5-days of instruction interviews and coding • School-level level demographics

Analytic Methods

 Used ANOVA, multiple regression, and structural equation **modelling** to investigate significant variables that contributed to effective science teaching.



Question #1A: What and how often are NGSS scientific practices used in science teachers' instruction?

- Analyzing and Inter (27%)
- Using Mathematical **Computational Thin**
- Asking Questions ar Problems (21%)

Question #1B: What is the relationship between teacher and classroom variables and use of NGSS scientific practices in the classroom?

- low SES schools.

Project 2: Factors Affecting Teachers' use of Inquiry

Question #2: What factors affect teachers' use of inquiry-based lessons?

Factors	# of items significant of remaining EQUIP items (n=14)
Diversity Index	1
Years of teaching experience	7
Student sex	8
Classroom level	12
Teacher preparation program	13

Table 2. Factors affecting Teachers' use of Inquiry

More Inquiry

- Teacher with MA Ed in science
- Middle school less
- More teaching expen
- Male-dominated clas

Predictors of Inquiry-based Instruction (EQUIP Total Score)

Project 1: Secondary Science Teachers use of *NGSS* Science Practices in the Classroom

Table 1. Teachers' use of NGSS Scientific Practices (n=514 weeks)

sed Practices	Least Used Practices
preting Data	 Planning and Carrying out Investigations (11%)
l and nking (24.5%) nd Defining	 Constructing Explanations and Designing Solutions (8%) Engaging in Argumentation from Evidence (2%)

	Less Inquiry	No Effect
		Classroom diversity
and BS	BA secondary science education	
son	High school lesson	
rience	Less teaching experience	
sroom	Female-dominated classroom	

• The predictors accounted for **10.5%** of the variance ($R^2 = 0.105$, F(5,649) = 15.18, p < 0.001) in the level of inquiry used in the science lessons. • Significant: Teaching experience ($\beta = 0.230$, p < 0.01); Teaching level (β = -0.210, p < 0.001); Teacher preparation program (β = 0.203, p < 0.001); Student sex (β = -0.122, p < 0.01) • **Non-significant**: Class diversity index ($\beta = -0.041$, p > 0.1)

Project 3: Validation of the Discourse in Inquiry Science Classroom (DiISC)

Rationale

- The DiISC was developed and validated within the context of a **specific** program.
- It requires further scrutiny and development of an external validity argument for widespread use.

Establishing a Modern Validity for the DiISC

- **Content Validity.** Test developers provided a table of specifications and a description of the domains of the instrument.
- **External Validity.** DiISC factor scores were used to predict the EQUIP factor scores (inquiry, Pillai's Trace=0.63(2,652); p<0.01 discourse, Pillai's Trace=0.04(2,652), p<0.01; learning principles, Pillai's Trace=0.23(2,652), p<0.01).
- **Generalizability.** Analyses were conducted over several subgroups of the population; issues of differential item function (DIF) were not prevalent. Structural Validity. Exploratory Factor Analysis (EFA) using 660 DiISCscored science lessons resulted to a three-factor solution with a simple structure that accounted for a reasonable amount of variance.
- Substantive Validity. The four raters who participated in a semistructured, think-aloud interview did not fundamentally differ in their scoring of a video lesson using the DiISC.

Results

- There is a strong body of evidence for the validity of the DiISC across standard aspects of a modern validity argument. The generalizability or predictive validity is currently the weakest area of
- the overall validity argument.

Project 4: Modelling Beginning Science Teachers' Inquiry-based Science Teaching

Question #4: What teacher characteristics and preparation lead to effective secondary science teaching?

Specific Research Questions

- 1. To what degree are teachers' practices **reform-based** (i.e., inquiry-based)? a. Does science teachers' inquiry-based instruction change over time?
 - change?
- Is there a difference between lessons by teachers with less or more teaching experience?
- Is there a difference between lessons that feature in-field (e.g., highly qualified certified teachers) and **out-of-field** teachers? 4. Do middle or high school teachers enact greater inquiry-based instruction?

Results

- 1. MAT program teacher alumni used higher levels of inquiry-based instruction.
 - a. Teacher program membership (in favor of the MAT program) was also associated with increased inquiry-based instruction when combined with professional development over time.
 - b. Having membership in a high-quality teacher preparation program (i.e., MAT program) coupled with ongoing professional development was important for inquiry-based instruction once teachers had been in classrooms longer.
- 2. More experienced teachers used more inquiry in their lessons. (*Pillai's Trace* (5,651) = 0.37, p < 0.01)

NSF Noyce Grant Overview

NSF Noyce Track I, Phase II Longitudinal Evaluation of Noyce Science Teachers to Determine Sources of Effective Teaching

- Four-year NSF grant (September 2015 August 2019)
- 60% of grant is required to be dedicated to the Noyce stipends (30 stipends at \$16,000 each) in MAT program.
- Supporting diverse learners. Noyce recipients must complete 2 years of teaching at high-needs school districts.
- Remainder of grant is used to investigate two models of science teacher preparation.
- Our NSF Noyce Phase II grant has enabled us to add a comparison group to our previous study of MAT graduates started with our Noyce Track I, Phase I grant.

Table 3. Study participants and Observations

2015-16	2016-17	201
40 teachers from both	38 teachers from both	42 teachers f
programs were recruited	programs were recruited	programs we
(2:1 MAst to undergrad	(2:1 MAst to undergrad	(2:1 MAst to
program)	program)	program)
234 classroom	268 classroom	241 classroo
observations (coded with	observations (coded with	observations
EQUIP and DiISC)	EQUIP and DiISC)	EQUIP and D
Note:		

Many teachers were participants for multiple years

- 23 % participated for 1 year
- 36 % participated for 2 years

41 % participated for 3 years

b. And if so, what are the **significant variables** that contribute to this

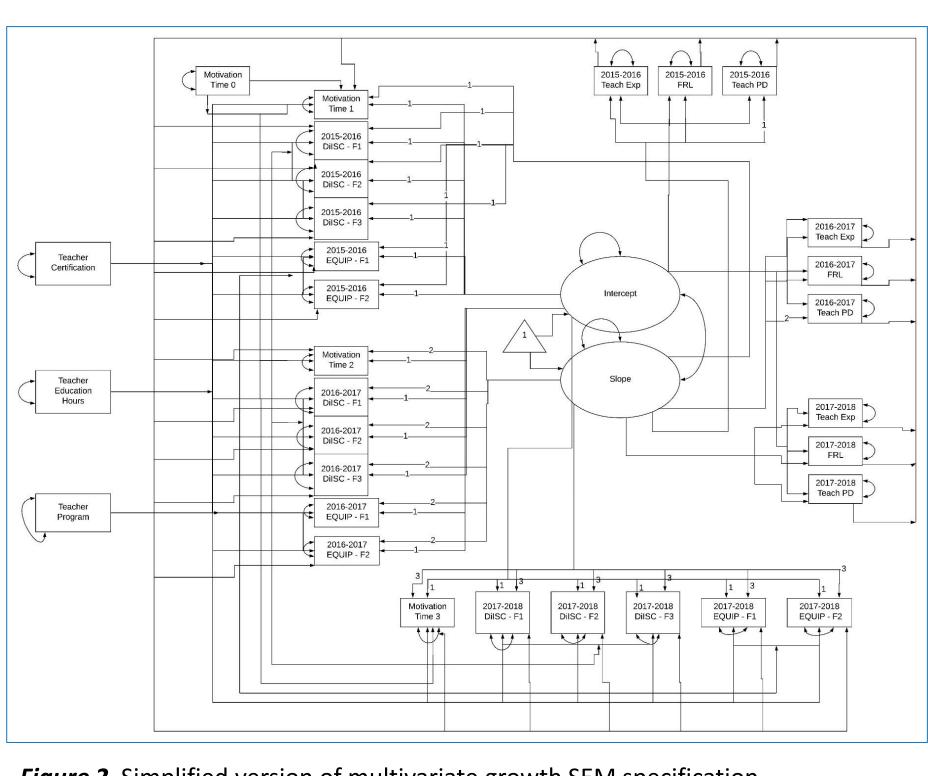


Figure 2. Simplified version of multivariate growth SEM specification.

3. In-field single-subject science teachers delivered lessons using greater inquiry. (*Pillai's Trace* (5,651) = 0.49, *p*<0.01) 4. High school teachers enacted lessons using greater levels of inquiry. (*Pillai's Trace* (15,1953) = 0.38, *p*<0.01)

17-18

- rom both ere recruited undergrad
- ns (coded with DilSC)

