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We introduce the Fresnel type classF𝑎,𝑏
𝐴1 ,𝐴2

. We also establish the existence of the generalized analytic Fourier-Feynman transform
for functionals in the Banach algebraF𝑎,𝑏

𝐴1 ,𝐴2

.

1. Introduction

Let𝐻 be a separable Hilbert space and letM(𝐻) be the space
of all complex-valued Borel measures on 𝐻. The Fourier
transform of 𝜎 inM(𝐻) is defined by

𝑓 (𝜎) (ℎ


) ≡ �̂� (ℎ


) = ∫

𝐻

exp {𝑖 ⟨ℎ, ℎ⟩} 𝑑𝜎 (ℎ) , ℎ ∈ 𝐻.

(1)

The set of all functions of the form (1) is denoted byF(𝐻) and
is called the Fresnel class of 𝐻. Let (𝐻, 𝐵, ]) be an abstract
Wiener space. It is known [1, 2] that each functional of the
form (1) can be extended to 𝐵 uniquely by

�̂� (𝑥) = ∫

𝐻

exp {𝑖(ℎ, 𝑥)∼} 𝑑𝜎 (ℎ) , 𝑥 ∈ 𝐵, (2)

where (⋅, ⋅)∼ is a stochastic inner product between 𝐻 and
𝐵. The Fresnel class F(𝐵) of 𝐵 is the space of (equivalence
classes of) all functionals of the form (2). There has been
a tremendous amount of papers and books in the literature
on the Fresnel integral theory and Fresnel classes F(𝐵)
and F(𝐻) on abstract Wiener and Hilbert spaces. For an
elementary introduction see [3, Chapter 20].

Furthermore, in [1], Kallianpur and Bromley introduced
a larger classF

𝐴
1
,𝐴
2

than the Fresnel classF(𝐵) and showed
the existence of the analytic Feynman integral of functionals

in F
𝐴
1
,𝐴
2

for a successful treatment of certain physical
problems by means of a Feynman integral. The Fresnel class
F
𝐴
1
,𝐴
2

of 𝐵2 is the space of (equivalence classes of) all
functionals on 𝐵2 of the following form:

𝐹 (𝑥
1
, 𝑥
2
) = ∫

𝐻

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
ℎ, 𝑥
𝑗
)

∼}

}

}

𝑑𝜎 (ℎ) , (3)

where𝐴
1
and𝐴

2
are bounded, nonnegative, and self-adjoint

operators on𝐻 and 𝜎 ∈M(𝐻).
In this paper we study the functionals 𝐹 of the form (3)

with (𝑥
1
, 𝑥
2
) in a very general function space 𝐶2

𝑎,𝑏
[0, 𝑇] ≡

𝐶
𝑎,𝑏
[0, 𝑇] ×𝐶

𝑎,𝑏
[0, 𝑇]. The function space 𝐶

𝑎,𝑏
[0, 𝑇], induced

by generalized Brownian motion process, was introduced
by Yeh [4, 5] and was used extensively in [6–13]. In this
paper, we also construct a concrete theory of the generalized
analytic Fourier-Feynman transform (GFFT) of functionals
in a generalized Fresnel type class defined on𝐶2

𝑎,𝑏
[0, 𝑇]. Other

work involving GFFT theories on 𝐶
𝑎,𝑏
[0, 𝑇] include [6, 7, 9,

12, 13].
The Wiener process used in [1, 2, 14–17] is stationary in

time and is free of drift while the stochastic process used in
this paper, as well as in [4, 6–13, 18], is nonstationary in time
and is subject to a drift 𝑎(𝑡).

It turns out, as noted in Remark 7 below, that including a
drift term 𝑎(𝑡) makes establishing the existence of the GFFT
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of functionals on 𝐶2
𝑎,𝑏
[0, 𝑇] very difficult. However, when

𝑎(𝑡) ≡ 0 and 𝑏(𝑡) = 𝑡 on [0, 𝑇], the general function space
𝐶
𝑎,𝑏
[0, 𝑇] reduces to the Wiener space 𝐶

0
[0, 𝑇].

2. Definitions and Preliminaries

Let 𝑎(𝑡) be an absolutely continuous real-valued function on
[0, 𝑇] with 𝑎(0) = 0, 𝑎(𝑡) ∈ 𝐿2[0, 𝑇], and let 𝑏(𝑡) be a strictly
increasing, continuously differentiable real-valued function
with 𝑏(0) = 0 and 𝑏(𝑡) > 0 for each 𝑡 ∈ [0, 𝑇].The generalized
Brownian motion process 𝑌 determined by 𝑎(𝑡) and 𝑏(𝑡) is
a Gaussian process with mean function 𝑎(𝑡) and covariance
function 𝑟(𝑠, 𝑡) = min{𝑏(𝑠), 𝑏(𝑡)}. For more details, see
[6, 10, 12]. By Theorem 14.2 in [5], the probability measure
𝜇 induced by 𝑌, taking a separable version, is supported
by 𝐶
𝑎,𝑏
[0, 𝑇] (which is equivalent to the Banach space of

continuous functions 𝑥 on [0, 𝑇]with 𝑥(0) = 0 under the sup
norm). Hence, (𝐶

𝑎,𝑏
[0, 𝑇], B(𝐶

𝑎,𝑏
[0, 𝑇]), 𝜇) is the function

space induced by𝑌whereB(𝐶
𝑎,𝑏
[0, 𝑇]) is the Borel𝜎-algebra

of 𝐶
𝑎,𝑏
[0, 𝑇]. We then complete this function space to obtain

(𝐶
𝑎,𝑏
[0, 𝑇], W(𝐶

𝑎,𝑏
[0, 𝑇]), 𝜇), whereW(𝐶

𝑎,𝑏
[0, 𝑇]) is the set

of all Wiener measurable subsets of 𝐶
𝑎,𝑏
[0, 𝑇].

A subset 𝐵 of 𝐶
𝑎,𝑏
[0, 𝑇] is said to be scale-invariant

measurable provided 𝜌𝐵 is W(𝐶
𝑎,𝑏
[0, 𝑇])-measurable for all

𝜌 > 0, and a scale-invariant measurable set 𝑁 is said to be a
scale-invariant null set provided 𝜇(𝜌𝑁) = 0 for all 𝜌 > 0.
A property that holds except on a scale-invariant null set
is said to hold scale-invariant almost everywhere (s-a.e.). A
functional𝐹 is said to be scale-invariantmeasurable provided
𝐹 is defined on a scale-invariant measurable set and 𝐹(𝜌⋅) is
W(𝐶
𝑎,𝑏
[0, 𝑇])-measurable for every 𝜌 > 0. If two functionals

𝐹 and𝐺 defined on𝐶
𝑎,𝑏
[0, 𝑇] are equal s-a.e., we write 𝐹 ≈ 𝐺.

Let 𝐿1,2
𝑎,𝑏
[0, 𝑇] be the space of Lebesgue measurable func-

tions on [0, 𝑇] given by

𝐿
1,2

𝑎,𝑏
[0, 𝑇] = {V : ∫

𝑇

0

|V (𝑠)|2𝑑𝑏 (𝑠) < ∞,

∫

𝑇

0

|V (𝑠)| 𝑑 |𝑎| (𝑠) < ∞} ,

(4)

where |𝑎|(⋅) is the total variation function of 𝑎(⋅). Then
𝐿
1,2

𝑎,𝑏
[0, 𝑇] is a separable Hilbert space with inner product

defined by

(𝑢, V)
𝐿
1,2

𝑎,𝑏

= ∫

𝑇

0

𝑢 (𝑡) V (𝑡) 𝑑𝑏 (𝑡)

+ (∫

𝑇

0

𝑢 (𝑡) 𝑑𝑎 (𝑡)) (∫

𝑇

0

V (𝑡) 𝑑𝑎 (𝑡)) .

(5)

In particular, note that ‖𝑢‖
𝐿
1,2

𝑎,𝑏

≡ [(𝑢, 𝑢)
𝐿
1,2

𝑎,𝑏

]
1/2

= 0 if and only
if 𝑢(𝑡) = 0 a.e. on [0, 𝑇].

Let {𝜙
𝑗
}
∞

𝑗=1
be a complete orthonormal set in 𝐿1,2

𝑎,𝑏
[0, 𝑇],

each of whose elements is of bounded variation on [0, 𝑇] such
that

∫

𝑇

0

𝜙
𝑗
(𝑡) 𝜙
𝑘
(𝑡) 𝑑𝑏 (𝑡) = {

0, 𝑗 ̸= 𝑘

1, 𝑗 = 𝑘.

(6)

Then for each V ∈ 𝐿1,2
𝑎,𝑏
[0, 𝑇], the Paley-Wiener-Zygmund

(PWZ) stochastic integral ⟨V, 𝑥⟩ is defined by the following
formula:

⟨V, 𝑥⟩ = lim
𝑛→∞

∫

𝑇

0

𝑛

∑

𝑗=1

(V, 𝜙
𝑗
)
𝑎,𝑏

𝜙
𝑗
(𝑡) 𝑑𝑥 (𝑡) (7)

for all 𝑥 ∈ 𝐶
𝑎,𝑏
[0, 𝑇] for which the limit exists; one can show

that for each V ∈ 𝐿1,2
𝑎,𝑏
[0, 𝑇], the PWZ stochastic integral

⟨V, 𝑥⟩ exists for 𝜇-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏
[0, 𝑇], and if V is of bounded

variation on [0, 𝑇], then the PWZ stochastic integral ⟨V, 𝑥⟩
equals the Riemann-Stieltjes integral ∫𝑇

0

V(𝑡)𝑑𝑥(𝑡) for s-a.e.
𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇].

Remark 1. (1) For each V ∈ 𝐿1,2
𝑎,𝑏
[0, 𝑇], the PWZ stochastic

integral ⟨V, 𝑥⟩ is a Gaussian random variable on 𝐶
𝑎,𝑏
[0, 𝑇]

with mean ∫𝑇
0

V(𝑠)𝑑𝑎(𝑠) and variance ∫𝑇
0

V2(𝑠)𝑑𝑏(𝑠).
(2) For all 𝑢, V ∈ 𝐿1,2

𝑎,𝑏
[0, 𝑇],

∫

𝐶
𝑎,𝑏
[0,𝑇]

⟨𝑢, 𝑥⟩⟨V, 𝑥⟩ 𝑑𝜇 (𝑥)

= ∫

𝑇

0

𝑢 (𝑠) V (𝑠) 𝑑𝑏 (𝑠)

+ (∫

𝑇

0

𝑢 (𝑠) 𝑑𝑎 (𝑠)) (∫

𝑇

0

V (𝑠) 𝑑𝑎 (𝑠)) .

(8)

Hence, we see that for all 𝑢, V ∈ 𝐿1,2
𝑎,𝑏
[0, 𝑇], ∫𝑇

0

𝑢(𝑠)V(𝑠)𝑑𝑏(𝑠) =
0 if and only if ⟨𝑢, 𝑥⟩ and ⟨V, 𝑥⟩ are independent random
variables.

The following Cameron-Martin subspace of 𝐶
𝑎,𝑏
[0, 𝑇]

plays an important role throughout this paper.
Let

𝐶


𝑎,𝑏
[0, 𝑇] = {𝑤 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] : 𝑤 (𝑡) = ∫

𝑡

0

𝑧 (𝑠) 𝑑𝑏 (𝑠)

for some 𝑧 ∈ 𝐿1,2
𝑎,𝑏
[0, 𝑇] } .

(9)

For 𝑤 ∈ 𝐶
𝑎,𝑏
[0, 𝑇], let𝐷 : 𝐶

𝑎,𝑏
[0, 𝑇] → 𝐿

1,2

𝑎,𝑏
[0, 𝑇] be defined

by the following formula:

𝐷𝑤 (𝑡) =

𝑑𝜆
𝑤

𝑑𝜆
𝑏

(𝑡) , (10)

where 𝑑𝜆
𝑤
/𝑑𝜆
𝑏
denotes the Radon-Nikodym derivative of

the signed measure 𝜆
𝑤

induced by 𝑤, with respect to
the Borel-Stieltjes measure 𝜆

𝑏
induced by 𝑏. Then 𝐶

𝑎,𝑏
≡

𝐶


𝑎,𝑏
[0, 𝑇] with inner product

(𝑤
1
, 𝑤
2
)
𝐶


𝑎,𝑏

= ∫

𝐶
𝑎,𝑏
[0,𝑇]

⟨𝐷𝑤
1
, 𝑥⟩⟨𝐷𝑤

2
, 𝑥⟩ 𝑑𝜇 (𝑥) (11)

is a separable Hilbert space.
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Using (8), we observe that the linear operator given by
(10) is an isometry. In fact, the inverse operator 𝐷−1 :
𝐿
1,2

𝑎,𝑏
[0, 𝑇] → 𝐶



𝑎,𝑏
[0, 𝑇] is given by

(𝐷
−1

𝑧) (𝑡) = ∫

𝑡

0

𝑧 (𝑠) 𝑑𝑏 (𝑠) . (12)

Moreover, the triple (𝐶
𝑎,𝑏
[0, 𝑇], 𝐶

𝑎,𝑏
[0, 𝑇], 𝜇) becomes an

abstract Wiener space.
Throughout this paper, for 𝑤 ∈ 𝐶

𝑎,𝑏
[0, 𝑇], we will use the

notation (𝑤, 𝑥)∼ instead of ⟨𝐷𝑤, 𝑥⟩.We also use the following
notations for 𝑤

1
, 𝑤
2
, 𝑤 ∈ 𝐶

𝑎,𝑏
[0, 𝑇]:

(𝑤
1
, 𝑤
2
)
𝑏
= ∫

𝑇

0

𝐷𝑤
1
(𝑡) 𝐷𝑤

2
(𝑡) 𝑑𝑏 (𝑡) ,

‖𝑤‖
𝑏
= √(𝑤,𝑤)

𝑏
.

(13)

Then 𝐶
𝑎,𝑏
[0, 𝑇] with the inner product given by (13) is also a

separable Hilbert space. It is easy to see that the two norms
‖ ⋅ ‖
𝐶


𝑎,𝑏

and ‖ ⋅ ‖
𝑏
are equivalent. Furthermore, we have the

following assertions.

(i) 𝑎(⋅) is an element of 𝐶
𝑎,𝑏
[0, 𝑇].

(ii) For each 𝑤 ∈ 𝐶
𝑎,𝑏
[0, 𝑇], the random variable 𝑥 →

(𝑤, 𝑥)
∼ is Gaussian with mean (𝑤, 𝑎)

𝑏
and variance

‖𝑤‖
2

𝑏
.

(iii) (𝑤, 𝛼𝑥)∼ = (𝛼𝑤, 𝑥)∼ = 𝛼(𝑤, 𝑥)∼ for any real number
𝛼, 𝑤 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] and 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇].

(iv) Let {𝑤
1
, . . . , 𝑤

𝑛
} be a subset of 𝐶

𝑎,𝑏
[0, 𝑇] such that

∫

𝑇

0

𝐷𝑤
𝑖
(𝑡)𝐷𝑤

𝑗
(𝑡)𝑑𝑏(𝑡) = 𝛿

𝑖𝑗
, where 𝛿

𝑖𝑗
is the Kro-

necker delta. Then the random variables (𝑤
𝑖
, 𝑥)
∼’s are

independent.

In this paper, we adopt asmuch as possible the definitions
and notations used in [7, 9, 12, 13] for the definitions of
the generalized analytic Feynman integral and the GFFT of
functionals on 𝐶

𝑎,𝑏
[0, 𝑇].

The following integration formula is used several times in
this paper:

∫

R

exp {−𝛼𝑢2 + 𝛽𝑢} 𝑑𝑢 = √𝜋
𝛼

exp{
𝛽
2

4𝛼

} (14)

for complex numbers 𝛼 and 𝛽 with Re(𝛼) > 0.

3. The GFFT of Functionals in a Banach
Algebra F𝑎,𝑏

𝐴
1
,𝐴
2

LetM(𝐶
𝑎,𝑏
[0, 𝑇]) be the space of complex-valued, countably

additive (and hence finite) Borel measures on 𝐶
𝑎,𝑏
[0, 𝑇].

M(𝐶
𝑎,𝑏
[0, 𝑇]) is a Banach algebra under the total variation

norm and with convolution as multiplication.
We define the Fresnel type class F(𝐶

𝑎,𝑏
[0, 𝑇]) of

functionals on 𝐶
𝑎,𝑏
[0, 𝑇] as the space of all stochastic

Fourier transforms of elements of M(𝐶
𝑎,𝑏
[0, 𝑇]); that is,

𝐹 ∈ F(𝐶
𝑎,𝑏
[0, 𝑇]) if and only if there exists a measure 𝑓 in

M(𝐶
𝑎,𝑏
[0, 𝑇]) such that

𝐹 (𝑥) = ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝑤, 𝑥)∼} 𝑑𝑓 (𝑤) (15)

for s-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏
[0, 𝑇]. More precisely, since we will identify

functionals which coincide s-a.e. on 𝐶
𝑎,𝑏
[0, 𝑇],F(𝐶

𝑎,𝑏
[0, 𝑇])

can be regarded as the space of all 𝑠-equivalence classes of
functionals of the form (15).

The Fresnel type class F(𝐶
𝑎,𝑏
[0, 𝑇]) is a Banach algebra

with norm

‖𝐹‖ =




𝑓




= ∫

𝐶


𝑎,𝑏
[0,𝑇]

𝑑




𝑓




(𝑤) . (16)

In fact, the correspondence 𝑓 → 𝐹 is injective, carries
convolution into pointwise multiplication and is a Banach
algebra isomorphism where 𝑓 and 𝐹 are related by (15).

Remark 2. The Banach algebra F(𝐶
𝑎,𝑏
[0, 𝑇]) contains sev-

eral interesting functions which arise naturally in quantum
mechanics. Let M(R) be the class of C-valued countably
additive measures on B(R), the Borel class of R. For ] ∈
M(R), the Fourier transform ]̂ of ] is a complex-valued
function defined on R by the following formula:

]̂ (𝑢) = ∫
R

exp {𝑖𝑢V} 𝑑] (V) . (17)

Let G be the set of all complex-valued functions on
[0, 𝑇]×R of the form 𝜃(𝑠, 𝑢) = �̂�

𝑠
(𝑢), where {𝜎

𝑠
: 0 ≤ 𝑠 ≤ 𝑇} is

a family fromM(R) satisfying the following two conditions:

(i) for every 𝐸 ∈B(R), 𝜎
𝑠
(𝐸) is Borel measurable in 𝑠,

(ii) ∫𝑇
0

‖𝜎
𝑠
‖𝑑𝑏(𝑠) < +∞.

Let 𝜃 ∈ G and let𝐻 be given by

𝐻(𝑥) = exp{∫
𝑇

0

𝜃 (𝑡, 𝑥 (𝑡)) 𝑑𝑡} (18)

for s-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏
[0, 𝑇]. Then, using the methods similar

to those used in [18], we can show that the function 𝜃(𝑡, 𝑢)
is Borel-measurable and that 𝜃(𝑡, 𝑥(𝑡)), ∫𝑇

0

𝜃(𝑡, 𝑥(𝑡))𝑑𝑡, and
𝐻(𝑥) are elements of F(𝐶

𝑎,𝑏
[0, 𝑇]). These facts are relevant

to quantum mechanics where exponential functions play a
prominent role.

Let𝐴 be a nonnegative self-adjoint operator on𝐶
𝑎,𝑏
[0, 𝑇]

and 𝑓 any complex measure on 𝐶
𝑎,𝑏
[0, 𝑇]. Then the func-

tional

𝐹 (𝑥) = ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp {𝑖(𝐴1/2𝑤, 𝑥)
∼

} 𝑑𝑓 (𝑤) (19)

belongs to F(𝐶
𝑎,𝑏
[0, 𝑇]) because it can be rewritten as

∫
𝐶


𝑎,𝑏
[0,𝑇]

exp{𝑖(𝑤, 𝑥)∼}𝑑𝑓
𝐴
(𝑤) for 𝑓

𝐴
= 𝑓 ∘ (𝐴

1/2

)
−1. Let 𝐴 be

self-adjoint but not nonnegative. Then 𝐴 has the form

𝐴 = 𝐴
+

− 𝐴
−

, (20)
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where both 𝐴+ and 𝐴− are bounded, nonnegative, and self-
adjoint operators.

In this section we will extend the ideas of [1] to obtain
expressions of the generalized analytic Feynman integral and
the GFFT of functionals of the form (19) when𝐴 is no longer
required to be nonnegative. To do this, we will introduce
definitions and notations analogous to those in [7, 12, 13].

Let W(𝐶2
𝑎,𝑏
[0, 𝑇]) denote the class of all Wiener mea-

surable subsets of the product function space 𝐶2
𝑎,𝑏
[0, 𝑇]. A

subset 𝐵 of 𝐶2
𝑎,𝑏
[0, 𝑇] is said to be scale-invariant measurable

provided {(𝜌
1
𝑥
1
, 𝜌
2
𝑥
2
) : (𝑥

1
, 𝑥
2
) ∈ 𝐵} is W(𝐶2

𝑎,𝑏
[0, 𝑇])-

measurable for every 𝜌
1
> 0 and 𝜌

2
> 0, and a scale-

invariantmeasurable subset𝑁 of𝐶2
𝑎,𝑏
[0, 𝑇] is said to be scale-

invariant null provided (𝜇 × 𝜇)({(𝜌
1
𝑥
1
, 𝜌
2
𝑥
2
) : (𝑥

1
, 𝑥
2
) ∈

𝑁}) = 0 for every 𝜌
1
> 0 and 𝜌

2
> 0. A property that

holds except on a scale-invariant null set is said to hold s-
a.e. on 𝐶2

𝑎,𝑏
[0, 𝑇]. A functional 𝐹 on 𝐶2

𝑎,𝑏
[0, 𝑇] is said to be

scale-invariant measurable provided 𝐹 is defined on a scale-
invariant measurable set and 𝐹(𝜌

1
⋅, 𝜌
2
⋅) is W(𝐶2

𝑎,𝑏
[0, 𝑇])-

measurable for every 𝜌
1
> 0 and 𝜌

2
> 0. If two functionals

𝐹 and 𝐺 defined on 𝐶2
𝑎,𝑏
[0, 𝑇] are equal s-a.e., then we write

𝐹 ≈ 𝐺.
We denote the product function space integral of a

W(𝐶2
𝑎,𝑏
[0, 𝑇])-measurable functional 𝐹 by

𝐸 [𝐹] ≡ 𝐸
⃗𝑥
[𝐹 (𝑥
1
, 𝑥
2
)]

= ∫

𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝑥
1
, 𝑥
2
) 𝑑 (𝜇 × 𝜇) (𝑥

1
, 𝑥
2
)

(21)

whenever the integral exists.
Throughout this paper, letC,C

+
and ̃C

+
denote the set of

complex numbers, complex numbers with positive real part,
and nonzero complex numbers with nonnegative real part,
respectively. Furthermore, for all 𝜆 ∈ ̃C

+
, 𝜆−1/2 (or 𝜆1/2) is

always chosen to have positive real part. We also assume that
every functional 𝐹 on 𝐶2

𝑎,𝑏
[0, 𝑇] we consider is s-a.e. defined

and is scale-invariant measurable.

Definition 3. Let C2
+
≡ C
+
× C
+
and let ̃C2

+
≡
̃C
+
×
̃C
+
. Let

𝐹 : 𝐶
2

𝑎,𝑏
[0, 𝑇] → C be such that for each 𝜆

1
> 0 and 𝜆

2
> 0,

the function space integral

𝐽 (𝜆
1
, 𝜆
2
)

= ∫

𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

1
𝑥
1
, 𝜆
−1/2

2
𝑥
2
) 𝑑 (𝜇 × 𝜇) (𝑥

1
, 𝑥
2
)

(22)

exists. If there exists a function 𝐽∗(𝜆
1
, 𝜆
2
) analytic inC2

+
such

that 𝐽∗(𝜆
1
, 𝜆
2
) = 𝐽(𝜆

1
, 𝜆
2
) for all 𝜆

1
> 0 and 𝜆

2
> 0, then

𝐽
∗

(𝜆
1
, 𝜆
2
) is defined to be the analytic function space integral

of 𝐹 over 𝐶2
𝑎,𝑏
[0, 𝑇] with parameter ⃗𝜆 = (𝜆

1
, 𝜆
2
), and for ⃗𝜆 ∈

C2
+
we write

𝐸
an
�⃗�
[𝐹] ≡ 𝐸

an
�⃗�

⃗𝑥
[𝐹 (𝑥
1
, 𝑥
2
)]

≡ 𝐸

an
(𝜆1,𝜆2)

𝑥
1
,𝑥
2
[𝐹 (𝑥
1
, 𝑥
2
)] = 𝐽

∗

(𝜆
1
, 𝜆
2
) .

(23)

Let 𝑞
1
and 𝑞
2
be nonzero real numbers. Let 𝐹 be a functional

such that 𝐸an�⃗�[𝐹] exists for all ⃗𝜆 ∈ C2
+
. If the following limit

exists, we call it the generalized analytic Feynman integral of
𝐹 with parameter ⃗𝑞 = (𝑞

1
, 𝑞
2
), and we write

𝐸
anf ⃗𝑞
[𝐹] ≡ 𝐸

anf ⃗𝑞
⃗𝑥
[𝐹 (𝑥
1
, 𝑥
2
)]

≡ 𝐸

anf
(𝑞1,𝑞2)

𝑥
1
,𝑥
2
[𝐹 (𝑥
1
, 𝑥
2
)] = lim

⃗
𝜆→−𝑖 ⃗𝑞

𝐸
an
�⃗�
[𝐹] ,

(24)

where ⃗𝜆 = (𝜆
1
, 𝜆
2
) → −𝑖 ⃗𝑞 = (−𝑖𝑞

1
, −𝑖𝑞
2
) through values in

C2
+
.

Definition 4. Let 𝑞
1
and 𝑞
2
be nonzero real numbers. For ⃗𝜆 =

(𝜆
1
, 𝜆
2
) ∈ C2
+
and (𝑦

1
, 𝑦
2
) ∈ 𝐶
2

𝑎,𝑏
[0, 𝑇], let

𝑇 ⃗
𝜆
(𝐹) (𝑦

1
, 𝑦
2
) ≡ 𝑇
(𝜆
1
,𝜆
2
)
(𝐹) (𝑦

1
, 𝑦
2
)

= 𝐸

an
�⃗�

⃗𝑥
[𝐹 (𝑦
1
+ 𝑥
1
, 𝑦
2
+ 𝑥
2
)] .

(25)

For 𝑝 ∈ (1, 2], we define the 𝐿
𝑝
analytic GFFT, 𝑇(𝑝)

⃗𝑞
(𝐹) of 𝐹,

by the formula ( ⃗𝜆 ∈ C2
+
)

𝑇
(𝑝)

⃗𝑞
(𝐹) (𝑦

1
, 𝑦
2
) ≡ 𝑇
(𝑝)

(𝑞1 ,𝑞2)
(𝐹) (𝑦

1
, 𝑦
2
)

= lim
⃗
𝜆→−𝑖 ⃗𝑞

𝑇 ⃗
𝜆
(𝐹) (𝑦

1
, 𝑦
2
)

(26)

if it exists; that is, for each 𝜌
1
> 0 and 𝜌

2
> 0,

lim
⃗
𝜆→−𝑖 ⃗𝑞

∫

𝐶
2

𝑎,𝑏
[0,𝑇]








𝑇 ⃗
𝜆
(𝐹) (𝜌

1
𝑦
1
, 𝜌
2
𝑦
2
)

−𝑇
(𝑝)

⃗𝑞
(𝐹) (𝜌

1
𝑦
1
, 𝜌
2
𝑦
2
)








𝑝


𝑑 (𝜇 × 𝜇) (𝑦
1
, 𝑦
2
)

= 0,

(27)

where 1/𝑝+1/𝑝 = 1.We define the 𝐿
1
analytic GFFT,𝑇(1)

⃗𝑞
(𝐹)

of 𝐹, by the formula ( ⃗𝜆 ∈ C2
+
)

𝑇
(1)

⃗𝑞
(𝐹) (𝑦

1
, 𝑦
2
) = lim
⃗
𝜆→−𝑖 ⃗𝑞

𝑇 ⃗
𝜆
(𝐹) (𝑦

1
, 𝑦
2
) (28)

if it exists.

We note that for 1 ≤ 𝑝 ≤ 2, 𝑇(𝑝)
⃗𝑞
(𝐹) is defined only s-a.e.

We also note that if 𝑇(𝑝)
⃗𝑞
(𝐹) exists and if 𝐹 ≈ 𝐺, then 𝑇(𝑝)

⃗𝑞
(𝐺)

exists and 𝑇(𝑝)
⃗𝑞
(𝐺) ≈ 𝑇

(𝑝)

⃗𝑞
(𝐹). Moreover, from Definition 4,

we see that for 𝑞
1
, 𝑞
2
∈ R − {0}

𝐸

anf ⃗𝑞
⃗𝑥
[𝐹 (𝑥
1
, 𝑥
2
)] = 𝑇

(1)

⃗𝑞
(𝐹) (0, 0) . (29)

Next we give the definition of the generalized Fresnel type
classF𝑎,𝑏

𝐴
1
,𝐴
2

.
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Definition 5. Let 𝐴
1
and 𝐴

2
be bounded, nonnegative, and

self-adjoint operators on 𝐶
𝑎,𝑏
[0, 𝑇]. The generalized Fresnel

type classF𝑎,𝑏
𝐴
1
,𝐴
2

of functionals on𝐶2
𝑎,𝑏
[0, 𝑇] is defined as the

space of all functionals 𝐹 on 𝐶2
𝑎,𝑏
[0, 𝑇] of the following form:

𝐹 (𝑥
1
, 𝑥
2
) = ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝑥
𝑗
)

∼}

}

}

𝑑𝑓 (𝑤) (30)

for some𝑓 ∈M(𝐶
𝑎,𝑏
[0, 𝑇]). More precisely, since we identify

functionals which coincide s-a.e. on 𝐶2
𝑎,𝑏
[0, 𝑇], F𝑎,𝑏

𝐴
1
,𝐴
2

can
be regarded as the space of all 𝑠-equivalence classes of
functionals of the form (30).

Remark 6. (1) In Definition 5, let 𝐴
1
be the identity operator

on 𝐶
𝑎,𝑏
[0, 𝑇] and 𝐴

2
≡ 0. Then F 𝑎,𝑏

𝐴
1
,𝐴
2

is essentially the
Fresnel type class F(𝐶

𝑎,𝑏
[0, 𝑇]), and for 𝑝 ∈ [1, 2] and

nonzero real numbers 𝑞
1
and 𝑞
2
,

𝑇
(𝑝)

(𝑞1 ,𝑞2)
(𝐹) (𝑦

1
, 𝑦
2
) = 𝑇
(𝑝)

𝑞
1

(𝐹
0
) (𝑦
1
) , (31)

if it exists, where 𝐹
0
(𝑥
1
) = 𝐹(𝑥

1
, 𝑥
2
) for all (𝑥

1
, 𝑥
2
) ∈

𝐶
2

𝑎,𝑏
[0, 𝑇] and 𝑇(𝑝)

𝑞
1

(𝐹
0
) means the 𝐿

𝑝
analytic GFFT on

𝐶
𝑎,𝑏
[0, 𝑇]; see [6, 12].
(2) The map 𝑓 → 𝐹 defined by (30) sets up an algebra

isomorphism betweenM(𝐶
𝑎,𝑏
[0, 𝑇]) andF𝑎,𝑏

𝐴
1
,𝐴
2

if Ran(𝐴
1
+

𝐴
2
) is dense in𝐶

𝑎,𝑏
[0, 𝑇], where Ran indicates the range of an

operator. In this caseF 𝑎,𝑏
𝐴
1
,𝐴
2

becomes a Banach algebra under
the norm ‖𝐹‖ = ‖𝑓‖. For more details see [1].

Remark 7. Let 𝐹 be given by (30). In evaluating
𝐸
⃗𝑥
[𝐹(𝜆
−1/2

1
𝑥
1
, 𝜆
−1/2

2
𝑥
2
)] and 𝑇

(𝜆
1
,𝜆
2
)
(𝐹)(𝑦
1
, 𝑦
2
) = 𝐸

⃗𝑥
[𝐹(𝑦
1
+

𝜆
−1/2

1
𝑥
1
, 𝑦
2
+ 𝜆
−1/2

2
𝑥
2
)] for 𝜆

1
> 0 and 𝜆

2
> 0, the expression

𝜓 (
⃗
𝜆; �⃗�; 𝑤)

≡ 𝜓 (𝜆
1
, 𝜆
2
; 𝐴
1
, 𝐴
2
; 𝑤)

= exp
{

{

{

2

∑

𝑗=1

[

[

−

(𝐴
𝑗
𝑤,𝑤)

𝑏

2𝜆
𝑗

+ 𝑖𝜆
−1/2

𝑗
(𝐴
1/2

𝑗
𝑤, 𝑎)
𝑏

]

]

}

}

}

(32)

occurs. Clearly, for 𝜆
𝑗
> 0, 𝑗 ∈ {1, 2}, |𝜓( ⃗𝜆; �⃗�; 𝑤)| ≤ 1 for all

𝑤 ∈ 𝐶


𝑎,𝑏
[0, 𝑇]. But for ⃗𝜆 ∈ ̃C2

+
, |𝜓( ⃗𝜆; �⃗�; 𝑤)| is not necessarily

bounded by 1.
Note that for each 𝜆

𝑗
∈
̃C
+
with 𝜆

𝑗
= 𝛼
𝑗
+ 𝑖𝛽
𝑗
, 𝑗 ∈ {1, 2},

𝜆
1/2

𝑗
=

√
√𝛼
2

𝑗
+ 𝛽
2

𝑗
+ 𝛼
𝑗

2

+ 𝑖

𝛽
𝑗






𝛽
𝑗







√
√𝛼
2

𝑗
+ 𝛽
2

𝑗
− 𝛼
𝑗

2

,

𝜆
−1/2

𝑗
=
√

√𝛼
2

𝑗
+ 𝛽
2

𝑗
+ 𝛼
𝑗

2 (𝛼
2

𝑗
+ 𝛽
2

𝑗
)

− 𝑖

𝛽
𝑗






𝛽
𝑗







√

√𝛼
2

𝑗
+ 𝛽
2

𝑗
− 𝛼
𝑗

2 (𝛼
2

𝑗
+ 𝛽
2

𝑗
)

.

(33)

Hence, for 𝜆
𝑗
∈
̃C
+
with 𝜆

𝑗
= 𝛼
𝑗
+ 𝑖𝛽
𝑗
, 𝑗 ∈ {1, 2},






𝜓 (
⃗
𝜆; �⃗�; 𝑤)







= exp
{
{
{

{
{
{

{

2

∑

𝑗=1

[

[

[

[

−

𝛼
𝑗

2 (𝛼
2

𝑗
+ 𝛽
2

𝑗
)

(𝐴
𝑗
𝑤,𝑤)

𝑏

+

𝛽
𝑗






𝛽
𝑗







√

√𝛼
2

𝑗
+ 𝛽
2

𝑗
− 𝛼
𝑗

2 (𝛼
2

𝑗
+ 𝛽
2

𝑗
)

(𝐴
1/2

𝑗
𝑤, 𝑎)
𝑏

]

]

]

]

}
}
}

}
}
}

}

.

(34)

The right hand side of (34) is an unbounded function
of 𝑤 for 𝑤 ∈ 𝐶

𝑎,𝑏
[0, 𝑇]. Thus 𝐸an�⃗�[𝐹], 𝐸anf ⃗𝑞[𝐹], 𝑇 ⃗

𝜆
(𝐹), and

𝑇
(𝑝)

⃗𝑞
(𝐹) might not exist. Thus throughout this paper we will

need to put additional restrictions on the complex measure
𝑓 corresponding to 𝐹 in order to obtain our results for the
GFFT and the generalized analytic Feynman integral of 𝐹.

In view of Remark 7, we clearly need to impose additional
restrictions on the functionals 𝐹 inF𝑎,𝑏

𝐴
1
,𝐴
2

.
For a positive real number 𝑞

0
, let

Γ
𝑞
0

=

{
{
{

{
{
{

{

⃗
𝜆 = (𝜆

1
, 𝜆
2
) ∈
̃C
2

+
| 𝜆
𝑗
= 𝛼
𝑗
+ 𝑖𝛽
𝑗
,






Im (𝜆−1/2

𝑗
)






=
√

√𝛼
2

𝑗
+ 𝛽
2

𝑗
− 𝛼
𝑗

2 (𝛼
2

𝑗
+ 𝛽
2

𝑗
)

<

1

√2𝑞
0

, 𝑗 = 1, 2

}
}
}

}
}
}

}

(35)

and let
𝑘 (𝑞
0
; �⃗�; 𝑤) ≡ 𝑘 (𝑞

0
; 𝐴
1
, 𝐴
2
; 𝑤)

= exp
{

{

{

2

∑

𝑗=1

(2𝑞
0
)
−1/2



𝐴
1/2

𝑗
𝑤





𝑏
‖𝑎‖
𝑏

}

}

}

.

(36)

Then, for all ⃗𝜆 = (𝜆
1
, 𝜆
2
) ∈ Γ
𝑞
0






𝜓 (
⃗
𝜆; �⃗�; 𝑤)






≤ exp

{
{
{

{
{
{

{

2

∑

𝑗=1

√

√𝛼
2

𝑗
+ 𝛽
2

𝑗
− 𝛼
𝑗

2 (𝛼
2

𝑗
+ 𝛽
2

𝑗
)








(𝐴
1/2

𝑗
𝑤, 𝑎)
𝑏








}
}
}

}
}
}

}

≤ exp
{
{
{

{
{
{

{

2

∑

𝑗=1

√

√𝛼
2

𝑗
+ 𝛽
2

𝑗
− 𝛼
𝑗

2 (𝛼
2

𝑗
+ 𝛽
2

𝑗
)






𝐴
1/2

𝑗
𝑤





𝑏
‖𝑎‖
𝑏

}
}
}

}
}
}

}

< 𝑘 (𝑞
0
; �⃗�; 𝑤) .

(37)
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We note that for all real 𝑞
𝑗
with |𝑞

𝑗
| > 𝑞
0
, 𝑗 ∈ {1, 2},

(−𝑖𝑞
𝑗
)

−1/2

=

1

√






2𝑞
𝑗







+ sign (𝑞
𝑗
)

𝑖

√






2𝑞
𝑗







(38)

and (−𝑖𝑞
1
, −𝑖𝑞
2
) ∈ Γ
𝑞
0

.
For the existence of the GFFT of 𝐹, we define a subclass

F
𝑞
0

𝐴
1
,𝐴
2

ofF 𝑎,𝑏
𝐴
1
,𝐴
2

by 𝐹 ∈ F 𝑞0
𝐴
1
,𝐴
2

if and only if

∫

𝐶


𝑎,𝑏
[0,𝑇]

𝑘 (𝑞
0
; �⃗�; 𝑤) 𝑑





𝑓




(𝑤) < +∞, (39)

where 𝑓 and 𝐹 are related by (30) and 𝑘 is given by (36).

Remark 8. Note that in case 𝑎(𝑡) ≡ 0 and 𝑏(𝑡) = 𝑡 on [0, 𝑇],
the function space 𝐶

𝑎,𝑏
[0, 𝑇] reduces to the classical Wiener

space 𝐶
0
[0, 𝑇] and (𝑤, 𝑎)

𝑏
= 0 for all 𝑤 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] =

𝐶


0
[0, 𝑇]. Hence, for all ⃗𝜆 ∈ ̃C2

+
, |𝜓( ⃗𝜆; �⃗�; 𝑤)| ≤ 1 and for any

positive real number 𝑞
0
,F 𝑞0
𝐴
1
,𝐴
2

= F
𝐴
1
,𝐴
2

, theKallianpur and
Bromley’s class introduced in Section 1.

Theorem 9. Let 𝑞
0
be a positive real number and let 𝐹 be an

element ofF 𝑞0
𝐴
1
,𝐴
2

. Then for any nonzero real numbers 𝑞
1
and

𝑞
2
with |𝑞

𝑗
| > 𝑞
0
, 𝑗 ∈ {1, 2}, the 𝐿

1
analytic GFFT of 𝐹, 𝑇(1)

⃗𝑞
(𝐹)

exists and is given by the following formula:

𝑇
(1)

⃗𝑞
(𝐹) (𝑦

1
, 𝑦
2
)

= ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼}

}

}

𝜓(−𝑖 ⃗𝑞; �⃗�; 𝑤) 𝑑𝑓 (𝑤)

(40)

for s-a.e. (𝑦
1
, 𝑦
2
) ∈ 𝐶
2

𝑎,𝑏
[0, 𝑇], where 𝜓 is given by (32).

Proof. We first note that for 𝑗 ∈ {1, 2}, the PWZ stochastic
integral (𝐴1/2

𝑗
𝑤, 𝑥)
∼ is a Gaussian random variable withmean

(𝐴
1/2

𝑗
𝑤, 𝑎)
𝑏
and variance ‖𝐴1/2

𝑗
𝑤‖

2

𝑏

= (𝐴
𝑗
𝑤,𝑤)
𝑏

. Hence, using
(30), the Fubini theorem, the change of variables theorem and
(14), we have that for all 𝜆

1
> 0 and 𝜆

2
> 0,

𝐽 (𝑦
1
, 𝑦
2
; 𝜆
1
, 𝜆
2
)

≡ 𝐸
⃗𝑥
[𝐹 (𝑦
1
+ 𝜆
−1/2

1
𝑥
1
, 𝑦
2
+ 𝜆
−1/2

2
𝑥
2
)]

= ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼}

}

}

×(

2

∏

𝑗=1

𝐸
𝑥
𝑗

[exp {𝑖𝜆−1/2
𝑗
(𝐴
1/2

𝑗
𝑤, 𝑥
𝑗
)

∼

}])𝑑𝑓 (𝑤)

= ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼}

}

}

×
[

[

[

2

∏

𝑗=1

(2𝜋(𝐴
𝑗
𝑤,𝑤)

𝑏

)

−1/2

× ∫

R

exp
{
{

{
{

{

𝑖𝜆
−1/2

𝑗
𝑢
𝑗

−

[𝑢
𝑗
− (𝐴
1/2

𝑗
𝑤, 𝑎)
𝑏

]

2

2(𝐴
𝑗
𝑤,𝑤)

𝑏

}
}

}
}

}

𝑑𝑢
𝑗

]

]

]

𝑑𝑓(𝑤)

= ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼}

}

}

𝜓(
⃗
𝜆; �⃗�; 𝑤) 𝑑𝑓 (𝑤) .

(41)

Let

𝑇 ⃗
𝜆
(𝐹) (𝑦

1
, 𝑦
2
)

= ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼}

}

}

𝜓(
⃗
𝜆; �⃗�; 𝑤) 𝑑𝑓 (𝑤)

(42)

for each ⃗𝜆 ∈ C2
+
. Clearly,

𝑇 ⃗
𝜆
(𝐹) (𝑦

1
, 𝑦
2
) = 𝐽 (𝑦

1
, 𝑦
2
; 𝜆
1
, 𝜆
2
) (43)

for all 𝜆
1
> 0 and 𝜆

2
> 0. Let Γ

𝑞
0

be given by (35).Then for all
⃗
𝜆 ∈ Int(Γ

𝑞
0

)





𝑇 ⃗
𝜆
(𝐹) (𝑦

1
, 𝑦
2
)




< ∫

𝐶


𝑎,𝑏
[0,𝑇]

𝑘 (𝑞
0
; �⃗�; 𝑤) 𝑑





𝑓




(𝑤) < +∞.

(44)

Using this fact and the dominated convergence theorem,
we see that 𝑇 ⃗

𝜆
(𝐹)(𝑦
1
, 𝑦
2
) is a continuous function of ⃗𝜆 =

(𝜆
1
, 𝜆
2
) on Int(Γ

𝑞
0

). For each 𝑤 ∈ 𝐶
𝑎,𝑏
[0, 𝑇], 𝜓( ⃗𝜆; �⃗�; 𝑤) is an

analytic function of ⃗𝜆 throughout the domain Int(Γ
𝑞
0

) so that
∫
Δ

𝜓(
⃗
𝜆; �⃗�; 𝑤)𝑑

⃗
𝜆 = 0 for every rectifiable simple closed curve

Δ in Int(Γ
𝑞
0

). By (42), the Fubini theorem and the Morera
theorem, we see that 𝑇 ⃗

𝜆
(𝐹)(𝑦
1
, 𝑦
2
) is an analytic function of

⃗
𝜆 throughout the domain Int(Γ

𝑞
0

). Finally, using (28) with
the dominated convergence theorem, we obtain the desired
result.

Theorem 10. Let 𝑞
0
and 𝐹 be as inTheorem 9.Then for all 𝑝 ∈

(1, 2] and all nonzero real numbers 𝑞
1
and 𝑞

2
with |𝑞

𝑗
| > 𝑞
0
,

𝑗 ∈ {1, 2}, the𝐿
𝑝
analytic GFFT of𝐹,𝑇(𝑝)

⃗𝑞
(𝐹) exists and is given

by the right hand side of (40) for s-a.e. (𝑦
1
, 𝑦
2
) ∈ 𝐶
2

𝑎,𝑏
[0, 𝑇].



Journal of Function Spaces and Applications 7

Proof. Let Γ
𝑞
0

be given by (35). It was shown in the proof
of Theorem 9 that 𝑇 ⃗

𝜆
(𝐹)(𝑦
1
, 𝑦
2
) is an analytic function of ⃗𝜆

throughout the domain Int(Γ
𝑞
0

). In viewofDefinition 4, it will
suffice to show that for each 𝜌

1
> 0 and 𝜌

2
> 0,

lim
⃗
𝜆→−𝑖 ⃗𝑞

∫

𝐶
2

𝑎,𝑏
[0,𝑇]








𝑇 ⃗
𝜆
(𝐹) (𝜌

1
𝑦
1
, 𝜌
2
𝑦
2
)

−𝑇
(𝑝)

⃗𝑞
(𝐹) (𝜌

1
𝑦
1
, 𝜌
2
𝑦
2
)








𝑝


× 𝑑 (𝜇 × 𝜇) (𝑦
1
, 𝑦
2
) = 0.

(45)

Fixing 𝑝 ∈ (1, 2] and using the inequalities (37) and (39),
we obtain that for all 𝜌

𝑗
> 0, 𝑗 ∈ {1, 2} and all ⃗𝜆 ∈ Γ

𝑞
0

,








𝑇 ⃗
𝜆
(𝐹) (𝜌

1
𝑦
1
, 𝜌
2
𝑦
2
) − 𝑇
(𝑝)

⃗𝑞
(𝐹) (𝜌

1
𝑦
1
, 𝜌
2
𝑦
2
)








𝑝


≤














∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖𝜌
𝑗
(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼}

}

}

×[𝜓 (
⃗
𝜆; �⃗�; 𝑤) − 𝜓 (−𝑖 ⃗𝑞; �⃗�; 𝑤)] 𝑑𝑓 (𝑤)














𝑝


≤ (∫

𝐶


𝑎,𝑏
[0,𝑇]

[






𝜓 (
⃗
𝜆; �⃗�; 𝑤)






+






𝜓 (−𝑖 ⃗𝑞; �⃗�; 𝑤)






] 𝑑




𝑓




(𝑤))

𝑝


≤ (2∫

𝐶


𝑎,𝑏
[0,𝑇]

𝑘 (𝑞
0
; �⃗�; 𝑤) 𝑑





𝑓




(𝑤))

𝑝


< +∞.

(46)

Hence, by the dominated convergence theorem, we see that
for each 𝑝 ∈ (1, 2] and each 𝜌

1
> 0 and 𝜌

2
> 0,

lim
⃗
𝜆→−𝑖 ⃗𝑞

∫

𝐶
2

𝑎,𝑏
[0,𝑇]








𝑇 ⃗
𝜆
(𝐹) (𝜌

1
𝑦
1
, 𝜌
2
𝑦
2
)

−𝑇
(𝑝)

⃗𝑞
(𝐹) (𝜌

1
𝑦
1
, 𝜌
2
𝑦
2
)








𝑝


𝑑 (𝜇 × 𝜇) (𝑦
1
, 𝑦
2
)

= lim
⃗
𝜆→−𝑖 ⃗𝑞

∫

𝐶
2

𝑎,𝑏
[0,𝑇]














∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝜌
𝑗
𝑦
𝑗
)

∼}

}

}

× 𝜓(
⃗
𝜆; �⃗�; 𝑤) 𝑑𝑓 (𝑤)

− ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝜌
𝑗
𝑦
𝑗
)

∼}

}

}

×𝜓(−𝑖 ⃗𝑞; �⃗�; 𝑤) 𝑑𝑓 (𝑤)













𝑝


× 𝑑 (𝜇 × 𝜇) (𝑦
1
, 𝑦
2
)

= ∫

𝐶
2

𝑎,𝑏
[0,𝑇]














∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝜌
𝑗
𝑦
𝑗
)

∼}

}

}

× lim
⃗
𝜆→−𝑖 ⃗𝑞

[𝜓 (
⃗
𝜆; �⃗�; 𝑤)

−𝜓 (−𝑖 ⃗𝑞; �⃗�; 𝑤)] 𝑑𝑓 (𝑤)













𝑝


× 𝑑 (𝜇 × 𝜇) (𝑦
1
, 𝑦
2
)

= 0

(47)

which concludes the proof of Theorem 10.

Remark 11. (1) In view of Theorems 9 and 10, we see that
for each 𝑝 ∈ [1, 2], the 𝐿

𝑝
analytic GFFT of 𝐹, 𝑇(𝑝)

⃗𝑞
(𝐹) is

given by the right hand side of (40) for 𝑞
0
, 𝑞
1
, 𝑞
2
, and 𝐹 as

in Theorem 9, and for s-a.e. (𝑦
1
, 𝑦
2
) ∈ 𝐶
2

𝑎,𝑏
[0, 𝑇],

𝑇
(𝑝)

⃗𝑞
(𝐹) (𝑦

1
, 𝑦
2
) = 𝐸

anf ⃗𝑞
⃗𝑥
[𝐹 (𝑦
1
+ 𝑥
1
, 𝑦
2
+ 𝑥
2
)] , 𝑝 ∈ [1, 2] .

(48)

In particular, using this fact and (29), we have that for all 𝑝 ∈
[1, 2],

𝑇
(𝑝)

⃗𝑞
(𝐹) (0, 0) = 𝐸

anf ⃗𝑞
⃗𝑥
[𝐹 (𝑥
1
, 𝑥
2
)] . (49)

(2) For nonzero real numbers 𝑞
1
and 𝑞

2
with |𝑞

𝑗
| > 𝑞

0
,

𝑗 ∈ {1, 2}, define a set function 𝑓 ⃗𝐴
⃗𝑞
:B(𝐶

𝑎,𝑏
[0, 𝑇]) → C by

𝑓

⃗
𝐴

⃗𝑞
(𝐵) = ∫

𝐵

𝜓 (−𝑖 ⃗𝑞; �⃗�; 𝑤) 𝑑𝑓 (𝑤) , 𝐵 ∈B (𝐶


𝑎,𝑏
[0, 𝑇]) ,

(50)

where 𝑓 and 𝐹 are related by (30) and B(𝐶
𝑎,𝑏
[0, 𝑇]) is the

Borel 𝜎-algebra of 𝐶
𝑎,𝑏
[0, 𝑇]. Then it is obvious that 𝑓 ⃗𝐴

⃗𝑞

belongs to M(𝐶
𝑎,𝑏
[0, 𝑇]) and for all 𝑝 ∈ [1, 2], 𝑇(𝑝)

⃗𝑞
(𝐹) can

be expressed as

𝑇
(𝑝)

⃗𝑞
(𝐹) (𝑦

1
, 𝑦
2
) = ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼}

}

}

𝑑𝑓

⃗
𝐴

⃗𝑞
(𝑤)

(51)

for s-a.e. (𝑦
1
, 𝑦
2
) ∈ 𝐶

2

𝑎,𝑏
[0, 𝑇]. Hence, 𝑇(𝑝)

⃗𝑞
(𝐹) belongs to

F 𝑎,𝑏
𝐴
1
,𝐴
2

for all 𝑝 ∈ [1, 2].

4. Relationships between the GFFT and the
Function Space Integral of Functionals in
F𝑎,𝑏
𝐴
1
,𝐴
2

In this section we establish a relationship between the GFFT
and the function space integral of functionals in the Fresnel
type classF𝑎,𝑏

𝐴
1
,𝐴
2

.
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Throughout this section, for convenience, we use the
following notation: for given 𝜆 ∈ ̃C

+
and 𝑛 = 1, 2, . . ., let

𝐺
𝑛
(𝜆, 𝑥)

= exp{[1 − 𝜆
2

]

𝑛

∑

𝑘=1

[(𝑒
𝑘
, 𝑥)
∼

]

2

+ (𝜆
1/2

− 1)

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝑎)
𝐶


𝑎,𝑏

(𝑒
𝑘
, 𝑥)
∼

} ,

(52)

where {𝑒
𝑛
}
∞

𝑛=1
is a complete orthonormal set in (𝐶

𝑎,𝑏
[0, 𝑇],

‖ ⋅ ‖
𝑏
).
To obtain our main results, Theorems 14 and 17 below,

we state a fundamental integration formula for the function
space 𝐶

𝑎,𝑏
[0, 𝑇].

Let {𝑒
1
, . . . , 𝑒

𝑛
} be an orthonormal set in (𝐶

𝑎,𝑏
[0, 𝑇], ‖ ⋅ ‖

𝑏
),

let 𝑘 : R𝑛 → C be a Lebesgue measurable function, and let
𝐾 : 𝐶
𝑎,𝑏
[0, 𝑇] → C be given by

𝐾 (𝑥) = 𝑘 ((𝑒
1
, 𝑥)
∼

, . . . , (𝑒
𝑛
, 𝑥)
∼

) . (53)

Then

𝐸 [𝐾] = ∫

𝐶
𝑎,𝑏
[0,𝑇]

𝑘 ((𝑒
1
, 𝑥)
∼

, . . . , (𝑒
𝑛
, 𝑥)
∼

) 𝑑𝜇 (𝑥)

= (2𝜋)
−𝑛/2

∫

R𝑛
𝑘 (𝑢
1
, . . . , 𝑢

𝑛
)

× exp
{

{

{

−

𝑛

∑

𝑗=1

[𝑢
𝑗
− (𝑒
𝑗
, 𝑎)
𝑏

]

2

2

}

}

}

𝑑𝑢
1
. . . 𝑑𝑢

𝑛

(54)

in the sense that if either side of (54) exists, both sides exist
and equality holds.

We also need the following lemma to obtain our main
theorem in this section.

Lemma 12. Let {𝑒
1
, . . . , 𝑒

𝑛
} be an orthonormal subset of

(𝐶


𝑎,𝑏
[0, 𝑇], ‖ ⋅ ‖

𝑏
) and let 𝑤 be an element of 𝐶

𝑎,𝑏
[0, 𝑇]. Then

for each 𝜆 ∈ C
+
, the function space integral

𝐸
𝑥
[𝐺
𝑛
(𝜆, 𝑥) exp {𝑖(𝑤, 𝑥)∼}] (55)

exists and is given by the formula

𝐸
𝑥
[𝐺
𝑛
(𝜆, 𝑥) exp {𝑖(𝑤, 𝑥)∼}]

= 𝜆
−𝑛/2 exp

{

{

{

[

𝜆 − 1

2𝜆

]

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝑤)
2

𝑏
−

1

2

‖𝑤‖
2

𝑏

+ 𝑖𝜆
−1/2

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝑎)
𝑏
(𝑒
𝑘
, 𝑤)
𝑏

+ 𝑖(𝑒
𝑛+1
, 𝑎)
𝑏
[‖𝑤‖
2

𝑏
−

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝑤)
2

𝑏
]

1/2

}

}

}

,

(56)

where 𝐺
𝑛
is given by (52) above and

𝑒
𝑛+1
=
[

[

‖𝑤‖
2

𝑏
−

𝑛

∑

𝑗=1

(𝑒
𝑗
, 𝑤)

2

𝑏

]

]

−1/2

{

{

{

𝑤 −

𝑛

∑

𝑗=1

(𝑒
𝑗
, 𝑤)
𝑏

𝑒
𝑗

}

}

}

.

(57)

Proof (Outline). Using the Gram-Schmidt process, for any
𝑤 ∈ 𝐶



𝑎,𝑏
[0, 𝑇], we can write 𝑤 = ∑

𝑛+1

𝑘=1
𝑐
𝑘
𝑒
𝑘
, where

{𝑒
1
, . . . , 𝑒

𝑛
, 𝑒
𝑛+1
} is an orthonormal set in (𝐶

𝑎,𝑏
[0, 𝑇], ‖ ⋅ ‖

𝑏
)

and

𝑐
𝑘
=

{
{

{
{

{

(𝑒
𝑘
, 𝑤)
𝑏
, 𝑘 = 1, . . . , 𝑛

[‖𝑤‖
2

𝑏
−

𝑛

∑

𝑗=1

(𝑒
𝑗
, 𝑤)

2

𝑏

]

1/2

, 𝑘 = 𝑛 + 1.

(58)

Then using (52), (54), the Fubini theorem, and (14), it follows
that (56) holds for all 𝜆 ∈ C

+
.

The following remark will be very useful in the proof of
our main theorem in this section.

Remark 13. Let 𝑞
0
be a positive real number and let Γ

𝑞
0

be
given by (35). For real numbers 𝑞

1
and 𝑞
2
with |𝑞

𝑗
| > 𝑞
0
, 𝑗 ∈

{1, 2}, let { ⃗𝜆
𝑛
}
∞

𝑛=1
= {(𝜆
1,𝑛
, 𝜆
2,𝑛
)}
∞

𝑛=1
be a sequence in C2

+
such

that

⃗
𝜆
𝑛
= (𝜆
1,𝑛
, 𝜆
2,𝑛
) → −𝑖 ⃗𝑞 = (−𝑖𝑞

1
, −𝑖𝑞
2
) . (59)

Let 𝜆
𝑗,𝑛
= 𝛼
𝑗,𝑛
+ 𝑖𝛽
𝑗,𝑛

for 𝑗 ∈ {1, 2} and 𝑛 ∈ N. Then for
𝑗 ∈ {1, 2}, Re(𝜆

𝑗,𝑛
) = 𝛼
𝑗,𝑛
> 0 and

𝜆
−1

𝑗,𝑛
= (𝛼
𝑗,𝑛
+ 𝑖𝛽
𝑗,𝑛
)

−1

=

𝛼
𝑗,𝑛
− 𝑖𝛽
𝑗,𝑛

𝛼
2

𝑗,𝑛
+ 𝛽
2

𝑗,𝑛

(60)

for each 𝑛 ∈ N. Since |Im ((−𝑖𝑞
𝑗
)
−1/2

)| = 1/√2|𝑞
𝑗
| < 1/√2𝑞

0

for 𝑗 ∈ {1, 2}, there exists a sufficiently large 𝐿 ∈ N such that
for any 𝑛 ≥ 𝐿, 𝜆

1,𝑛
and 𝜆

2,𝑛
are in Int(Γ

𝑞
0

) and

𝛿 (𝑞
1
, 𝑞
2
) ≡ sup ({ 


Im (𝜆−1/2

1,𝑛
)






: 𝑛 ≥ 𝐿}

∪ {






Im (𝜆−1/2

2,𝑛
)






: 𝑛 ≥ 𝐿}

∪ {








Im ((−𝑖𝑞
1
)
−1/2

)








,








Im ((−𝑖𝑞
2
)
−1/2

)








})

<

1

√2𝑞
0

.

(61)

Thus, there exists a positive real number 𝜀 > 1 such that
𝛿(𝑞
1
, 𝑞
2
) < 1/(𝜀√2𝑞

0
).

Let {𝑒
𝑛
}
∞

𝑛=1
be a complete orthonormal set in (𝐶

𝑎,𝑏
[0, 𝑇],

‖ ⋅ ‖
𝑏
). Using Parseval’s identity, it follows that

(𝑔
1
, 𝑔
2
)
𝑏
=

∞

∑

𝑛=1

(𝑒
𝑛
, 𝑔
1
)
𝑏
(𝑒
𝑛
, 𝑔
2
)
𝑏

(62)
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for all 𝑔
1
, 𝑔
2
∈ 𝐶


𝑎,𝑏
[0, 𝑇]. In addition for each 𝑔 ∈ 𝐶

𝑎,𝑏
[0, 𝑇],





𝑔





2

𝑏
−

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝑔)
2

𝑏
=

∞

∑

𝑘=𝑛+1

(𝑒
𝑘
, 𝑔)
2

𝑏
≥ 0 (63)

for every 𝑛 ∈ N.
Since

(𝑔, 𝑎)
𝑏
=

∞

∑

𝑛=1

(𝑒
𝑛
, 𝑔)
𝑏
(𝑒
𝑛
, 𝑎)
𝑏

(64)

and for 𝜀 > 1

−𝜀




𝑔



𝑏
‖𝑎‖
𝑏
< −




𝑔



𝑏
‖𝑎‖
𝑏
≤ (𝑔, 𝑎)

𝑏

≤




𝑔



𝑏
‖𝑎‖
𝑏
< 𝜀




𝑔



𝑏
‖𝑎‖
𝑏
,

(65)

there exists a sufficiently large𝐾
𝑗
∈ N such that for any 𝑛 ≥ 𝐾

𝑗












𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝐴
1/2

𝑗
𝑤)
𝑏

(𝑒
𝑘
, 𝑎)
𝑏












< 𝜀






𝐴
1/2

𝑗
𝑤





𝑏
‖𝑎‖
𝑏

(66)

for 𝑗 ∈ {1, 2}.
Using these and a long and tedious calculation we can

show that for every 𝑛 ≥ max{𝐿, 𝐾
1
, 𝐾
2
},














exp
{

{

{

2

∑

𝑗=1

([

𝜆
𝑗,𝑛
− 1

2𝜆
𝑗,𝑛

]

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝐴
1/2

𝑗
𝑤)

2

𝑏

−

1

2






𝐴
1/2

𝑗
𝑤







2

𝑏

+ 𝑖𝜆
−1/2

𝑗,𝑛

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝐴
1/2

𝑗
𝑤)
𝑏

(𝑒
𝑘
, 𝑎)
𝑏
+ 𝑖(𝑒
𝑛+1
, 𝑎)
𝑏

× [






𝐴
1/2

𝑗
𝑤







2

𝑏

−

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝐴
1/2

𝑗
𝑤)

2

𝑏

]

1/2

)

}

}

}














< 𝑘 (𝑞
0
; �⃗�; 𝑤) ,

(67)

where 𝑘(𝑞
0
; �⃗�; 𝑤) is given by (36).

In our next theorem, for𝐹 ∈ F𝑎,𝑏
𝐴
1
,𝐴
2

, we express theGFFT
of 𝐹 as the limit of a sequence of function space integrals on
𝐶
2

𝑎,𝑏
[0, 𝑇].

Theorem 14. Let 𝑞
0
and 𝐹 be as in Theorem 10. Let {𝑒

𝑛
}
∞

𝑛=1

be a complete orthonormal set in (𝐶
𝑎,𝑏
[0, 𝑇], ‖ ⋅ ‖

𝑏
) and let

{(𝜆
1,𝑛
, 𝜆
2,𝑛
)}
∞

𝑛=1
be a sequence in C2

+
such that 𝜆

𝑗,𝑛
→ −𝑖𝑞

𝑗

where 𝑞
𝑗
is a real number with |𝑞

𝑗
| > 𝑞
0
, 𝑗 ∈ {1, 2}. Then for

𝑝 ∈ [1, 2] and for s-a.e. (𝑦
1
, 𝑦
2
) ∈ 𝐶
2

𝑎,𝑏
[0, 𝑇],

𝑇
(𝑝)

⃗𝑞
(𝐹) (𝑦

1
, 𝑦
2
)

= lim
𝑛→∞

𝜆
𝑛/2

1,𝑛
𝜆
𝑛/2

2,𝑛

×𝐸
⃗𝑥
[𝐺
𝑛
(𝜆
1,𝑛
, 𝑥
1
) 𝐺
𝑛
(𝜆
2,𝑛
, 𝑥
2
) 𝐹 (𝑦

1
+ 𝑥
1
, 𝑦
2
+ 𝑥
2
)] ,

(68)

where 𝐺
𝑛
is given by (52).

Proof. ByTheorems9 and 10,we know that for each𝑝 ∈ [1, 2],
the 𝐿
𝑝
analytic GFFT of 𝐹, 𝑇(𝑝)

⃗𝑞
(𝐹) exists and is given by the

right hand side of (40). Thus, it suffices to show that

𝑇
(1)

⃗𝑞
(𝐹) (𝑦

1
, 𝑦
2
) = 𝐸

anf ⃗𝑞
⃗𝑥
[𝐹 (𝑦
1
+ 𝑥
1
, 𝑦
2
+ 𝑥
2
)]

= lim
𝑛→∞

𝜆
𝑛/2

1,𝑛
𝜆
𝑛/2

2,𝑛

× 𝐸
⃗𝑥
[𝐺
𝑛
(𝜆
1,𝑛
, 𝑥
1
) 𝐺
𝑛
(𝜆
2,𝑛
, 𝑥
2
)

× 𝐹 (𝑦
1
+ 𝑥
1
, 𝑦
2
+ 𝑥
2
)] ⋅

(69)

Using (30), the Fubini theorem and (56) with 𝜆 and 𝑤
replaced with 𝜆

𝑗,𝑛
and 𝐴1/2

𝑗
𝑤, 𝑗 ∈ {1, 2}, respectively, we see

that

𝜆
𝑛/2

1,𝑛
𝜆
𝑛/2

2,𝑛
𝐸
⃗𝑥
[𝐺
𝑛
(𝜆
1,𝑛
, 𝑥
1
) 𝐺
𝑛
(𝜆
2,𝑛
, 𝑥
2
) 𝐹 (𝑦

1
+ 𝑥
1
, 𝑦
2
+ 𝑥
2
)]

= 𝜆
𝑛/2

1,𝑛
𝜆
𝑛/2

2,𝑛
∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼}

}

}

×(

2

∏

𝑗=1

𝐸
𝑥
𝑗

[𝐺
𝑛
(𝜆
−1/2

𝑗,𝑛
, 𝑥
𝑗
)

× exp {𝑖(𝐴1/2
𝑗
𝑤, 𝑥
𝑗
)

∼

}])𝑑𝑓 (𝑤)

= ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

(𝑖(𝐴
1/2

𝑗
𝑤, 𝑦
𝑗
)

∼

+ [

𝜆
𝑗,𝑛
− 1

2𝜆
𝑗,𝑛

]

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝐴
1/2

𝑗
𝑤)

2

𝑏

−

1

2






𝐴
1/2

𝑗
𝑤







2

𝑏

+ 𝑖𝜆
−1/2

𝑗,𝑛

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝑎)
𝑏
(𝑒
𝑘
, 𝐴
1/2

𝑗
𝑤)
𝑏

+ 𝑖(𝑒
𝑛+1
, 𝑎)
𝑏
[






𝐴
1/2

𝑗
𝑤







2

𝑏

−

𝑛

∑

𝑘=1

(𝑒
𝑘
, 𝐴
1/2

𝑗
𝑤)

2

𝑏

]

1/2

)

}

}

}

𝑑𝑓 (𝑤).

(70)

But, by Remark 13 we see that the last expression of (70) is
dominated by (39) on the region Γ

𝑞
0

given by (35) for all
but a finite number of values of 𝑛. Next using the dominated
convergence theorem, Parseval’s relation and (40), we obtain
the desired result.

Corollary 15. Let 𝑞
0
, 𝐹, {𝑒

𝑛
}
∞

𝑛=1
, {(𝜆
1,𝑛
, 𝜆
2,𝑛
)}
∞

𝑛=1
and (𝑞

1
, 𝑞
2
)

be as in Theorem 14. Then

𝐸

anf
⃗𝑞

⃗𝑥
[𝐹 (𝑥
1
, 𝑥
2
)]

= lim
𝑛→∞

𝜆
𝑛/2

1,𝑛
𝜆
𝑛/2

2,𝑛

× 𝐸
⃗𝑥
[𝐺
𝑛
(𝜆
1,𝑛
, 𝑥
1
) 𝐺
𝑛
(𝜆
2,𝑛
, 𝑥
2
) 𝐹 (𝑥

1
, 𝑥
2
)] ,

(71)

where 𝐺
𝑛
is given by (52).
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Corollary 16. Let 𝑞
0
, 𝐹 and {𝑒

𝑛
}
∞

𝑛=1
be as in Theorem 14 and

let Γ
𝑞
0

be given by (35). Let ⃗𝜆 = (𝜆
1
, 𝜆
2
) ∈ Int (Γ

𝑞
0

) and
{(𝜆
1,𝑛
, 𝜆
2,𝑛
)}
∞

𝑛=1
be a sequence in C2

+
such that 𝜆

𝑗,𝑛
→ 𝜆

𝑗
,

𝑗 ∈ {1, 2}. Then

𝐸

an
�⃗�

⃗𝑥
[𝐹 (𝑥
1
, 𝑥
2
)] = lim
𝑛→∞

𝜆
𝑛/2

1,𝑛
𝜆
𝑛/2

2,𝑛

×𝐸
⃗𝑥
[𝐺
𝑛
(𝜆
1,𝑛
, 𝑥
1
) 𝐺
𝑛
(𝜆
2,𝑛
, 𝑥
2
) 𝐹(𝑥
1
, 𝑥
2
)] ,

(72)

where 𝐺
𝑛
is given by (52).

Our another result, namely, a change of scale formula for
function space integrals now follows fromCorollary 16 above.

Theorem 17. Let 𝐹 ∈ F𝑎,𝑏
𝐴
1
,𝐴
2

and let {𝑒
𝑛
}
∞

𝑛=1
be a complete

orthonormal set in (𝐶
𝑎,𝑏
[0, 𝑇], ‖ ⋅ ‖

𝑏
). Then for any 𝜌

1
> 0 and

𝜌
2
> 0,

𝐸
⃗𝑥
[𝐹 (𝜌
1
𝑥
1
, 𝜌
2
𝑥
2
)]

= lim
𝑛→∞

𝜌
−𝑛

1
𝜌
−𝑛

2

× 𝐸
⃗𝑥
[𝐺
𝑛
(𝜌
−2

1
, 𝑥
1
)𝐺
𝑛
(𝜌
−2

2
, 𝑥
2
) 𝐹 (𝑥

1
, 𝑥
2
)] ,

(73)

where 𝐺
𝑛
is given by (52).

Proof. Simply choose 𝜆
𝑗
= 𝜌
−2

𝑗
for 𝑗 ∈ {1, 2} and 𝜆

𝑗,𝑛
= 𝜌
−2

𝑗

for 𝑗 ∈ {1, 2} and 𝑛 ∈ N in (72).

Remark 18. Of course, if we choose 𝑎(𝑡) ≡ 0, 𝑏(𝑡) = 𝑡,
𝐴
1
= 𝐼 (identity operator), and 𝐴

2
= 0 (zero operator), then

the function space 𝐶
𝑎,𝑏
[0, 𝑇] reduces to the classical Wiener

space 𝐶
0
[0, 𝑇] and the generalized Fresnel type class F 𝑎,𝑏

𝐴
1
,𝐴
2

reduces to the Fresnel class F(𝐶
0
[0, 𝑇]). It is known that

F(𝐶
0
[0, 𝑇]) forms a Banach algebra over the complex field.

In this case, we have the relationships between the analytic
Feynman integral and theWiener integral on classicalWiener
space as discussed in [14, 15].

In recent paper [19], Yoo et al. have studied a change of
scale formula for function space integral of the functionals
in the Banach algebra S(𝐿2

𝑎,𝑏
[0, 𝑇]); the Banach algebra

S(𝐿2
𝑎,𝑏
[0, 𝑇]) is introduced in [12].

5. Functionals in F𝑎,𝑏
𝐴
1
,𝐴
2

In this section, we prove a theorem ensuring that various
functionals are inF𝑎,𝑏

𝐴
1
,𝐴
2

.

Theorem 19. Let 𝐴
1
and 𝐴

2
be bounded, nonnegative, and

self-adjoint operators on 𝐶
𝑎,𝑏
[0, 𝑇]. Let (𝑌,Y, 𝛾) be a 𝜎-finite

measure space and let 𝜑
𝑙
: 𝑌 → 𝐶



𝑎,𝑏
[0, 𝑇] beY–B(𝐶

𝑎,𝑏
[0, 𝑇])

measurable for 𝑙 ∈ {1, . . . , 𝑑}. Let 𝜃 : 𝑌 × R𝑑 → C be given by
𝜃(𝜂; ⋅) = ]̂

𝜂
(⋅), where ]

𝜂
∈ M(R𝑑) for every 𝜂 ∈ 𝑌 and where

the family {]
𝜂
: 𝜂 ∈ 𝑌} satisfies

(i) ]
𝜂
(𝐸) is a Y-measurable function of 𝜂 for every 𝐸 ∈

B(R𝑑);
(ii) ‖]

𝜂
‖ ∈ 𝐿
1

(𝑌,Y, 𝛾).

Under these hypothesis, the functional 𝐹 : 𝐶2
𝑎,𝑏
[0, 𝑇] → C

given by

𝐹 (𝑥
1
, 𝑥
2
) = ∫

𝑌

𝜃(𝜂;

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝜑
1
(𝜂) , 𝑥

𝑗
)

∼

,

. . . ,

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝜑
𝑑
(𝜂) , 𝑥

𝑗
)

∼

)𝑑𝛾 (𝜂)

(74)

belongs toF𝑎,𝑏
𝐴
1
,𝐴
2

and satisfies the inequality

‖𝐹‖ ≤ ∫

𝑌






]
𝜂






𝑑𝛾 (𝜂) . (75)

Proof. Using the techniques similar to those used in [20], we
can show that ‖]

𝜂
‖ is measurable as a function of 𝜂, that 𝜃 is

Y-measurable, and that the integrand in (74) is a measurable
function of 𝜂 for every (𝑥

1
, 𝑥
2
) ∈ 𝐶
2

𝑎,𝑏
[0, 𝑇].

We define a measure 𝜏 onY ×B(R𝑑) by

𝜏 (𝐸) = ∫

𝑌

]
𝜂
(𝐸
(𝜂)

) 𝑑𝛾 (𝜂) , for 𝐸 ∈ Y ×B (R𝑑) . (76)

Then by the first assertion of Theorem 3.1 in [17], 𝜏 satisfies
‖𝜏‖ ≤ ∫

𝑌

‖]
𝜂
‖𝑑𝛾(𝜂). Now let Φ : 𝑌 × R𝑑 → 𝐶



𝑎,𝑏
[0, 𝑇] be

defined by Φ(𝜂; V
1
, . . . , V

𝑑
) = ∑

𝑑

𝑙=1
V
𝑙
𝜑
𝑙
(𝜂). Then Φ is Y ×

B(R𝑑) –B(𝐶
𝑎,𝑏
[0, 𝑇])-measurable on the hypothesis for 𝜑

𝑙
,

𝑙 ∈ {1, . . . , 𝑑}. Let 𝜎 = 𝜏 ∘Φ−1. Then clearly 𝜎 ∈M(𝐶
𝑎,𝑏
[0, 𝑇])

and satisfies ‖𝜎‖ ≤ ‖𝜏‖.
From the change of variables theorem and the second

assertion of Theorem 3.1 in [17], it follows that for a.e.
(𝑥
1
, 𝑥
2
) ∈ 𝐶
2

𝑎,𝑏
[0, 𝑇] and for every 𝜌

1
> 0 and 𝜌

2
> 0,

𝐹 (𝜌
1
𝑥
1
, 𝜌
2
𝑥
2
)

= ∫

𝑌

]̂
𝜂
(

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝜑
1
(𝜂) , 𝜌

𝑗
𝑥
𝑗
)

∼

,

. . . ,

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝜑
𝑑
(𝜂) , 𝜌

𝑗
𝑥
𝑗
)

∼

)𝑑𝛾 (𝜂)

= ∫

𝑌

[

[

∫

R𝑑
exp
{

{

{

𝑖

𝑑

∑

𝑙=1

V
𝑙

[

[

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝜑
𝑙
(𝜂) ,

𝜌
𝑗
𝑥
𝑗
)

∼

]

]

}

}

}

𝑑]
𝜂

× (V
1
, . . . , V

𝑑
)
]

]

𝑑𝛾 (𝜂)

= ∫

𝑌×R𝑑
exp
{

{

{

𝑖

𝑑

∑

𝑙=1

V
𝑙

[

[

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝜑
𝑙
(𝜂) , 𝜌

𝑗
𝑥
𝑗
)

∼

]

]

}

}

}

𝑑𝜏

× (𝜂; V
1
, . . . , V

𝑑
)
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= ∫

𝑌×R𝑑
exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
Φ(𝜂; V

1
, . . . , V

𝑑
) , 𝜌
𝑗
𝑥
𝑗
)

∼}

}

}

𝑑𝜏

× (𝜂; V
1
, . . . , V

𝑑
)

= ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝜌
𝑗
𝑥
𝑗
)

∼}

}

}

𝑑𝜏 ∘ Φ
−1

(𝑤)

= ∫

𝐶


𝑎,𝑏
[0,𝑇]

exp
{

{

{

2

∑

𝑗=1

𝑖(𝐴
1/2

𝑗
𝑤, 𝜌
𝑗
𝑥
𝑗
)

∼}

}

}

𝑑𝜎 (𝑤) .

(77)

Thus, the functional 𝐹 given by (74) belongs to F𝑎,𝑏
𝐴
1
,𝐴
2

and
satisfies the inequality

‖𝐹‖ = ‖𝜎‖ ≤ ‖𝜏‖ ≤ ∫

𝑌






]
𝜂






𝑑𝛾 (𝜂) . (78)

As mentioned in (2) of Remark 6, F 𝑎,𝑏
𝐴
1
,𝐴
2

is a Banach
algebra if Ran(𝐴

1
+ 𝐴
2
) is dense in 𝐶

𝑎,𝑏
[0, 𝑇]. In this case,

many analytic functionals of 𝐹 can be formed. The following
corollary is relevant to Feynman integration theories and
quantum mechanics where exponential functions play an
important role.

Corollary 20. Let 𝐴
1
and 𝐴

2
be bounded, nonnegative and

self-adjoint operators on 𝐶
𝑎,𝑏
[0, 𝑇] such that Ran(𝐴

1
+ 𝐴
2
)

is dense in 𝐶
𝑎,𝑏
[0, 𝑇]. Let 𝐹 be given by (74) with 𝜃 as in

Theorem 19, and let 𝛽 : C → C be an entire function. Then
(𝛽 ∘ 𝐹)(𝑥

1
, 𝑥
2
) is in F𝑎,𝑏

𝐴
1
,𝐴
2

. In particular, exp{𝐹(𝑥
1
, 𝑥
2
)} ∈

F𝑎,𝑏
𝐴
1
,𝐴
2

.

Corollary 21. Let 𝐴
1
and 𝐴

2
be bounded, nonnegative, and

self-adjoint operators on 𝐶
𝑎,𝑏
[0, 𝑇], and let {𝑔

1
, . . . , 𝑔

𝑑
} be a

finite subset of 𝐶
𝑎,𝑏
[0, 𝑇]. Given 𝛽 = ]̂ where ] ∈ M(R𝑑),

define 𝐹 : 𝐶2
𝑎,𝑏
[0, 𝑇] → C by

𝐹 (𝑥
1
, 𝑥
2
) = 𝛽(

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝑔
1
, 𝑥
𝑗
)

∼

, . . . ,

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝑔
𝑑
, 𝑥
𝑗
)

∼

) .

(79)

Then 𝐹 is an element ofF𝑎,𝑏
𝐴
1
,𝐴
2

.

Proof. Let (𝑌,Y, 𝛾) be a probability space, and for 𝑙 ∈
{1, . . . , 𝑑}, let 𝜑

𝑙
(𝜂) ≡ 𝑔

𝑙
. Take 𝜃(𝜂; ⋅) = 𝛽(⋅) = ]̂(⋅). Then for

all 𝜌
1
> 0 and 𝜌

2
> 0 and for a.e. (𝑥

1
, 𝑥
2
) ∈ 𝐶
2

𝑎,𝑏
[0, 𝑇],

∫

𝑌

𝜃(𝜂;

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝜑
1
(𝜂) , 𝜌

𝑗
𝑥
𝑗
)

∼

,

. . . ,

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝜑
𝑑
(𝜂) , 𝜌

𝑗
𝑥
𝑗
)

∼

)𝑑𝛾 (𝜂)

= ∫

𝑌

𝛽(

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝑔
1
, 𝜌
𝑗
𝑥
𝑗
)

∼

,

. . . ,

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝑔
𝑑
, 𝜌
𝑗
𝑥
𝑗
)

∼

)𝑑𝛾 (𝜂)

= 𝛽(

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝑔
1
, 𝜌
𝑗
𝑥
𝑗
)

∼

, . . . ,

2

∑

𝑗=1

(𝐴
1/2

𝑗
𝑔
𝑑
, 𝜌
𝑗
𝑥
𝑗
)

∼

)

= 𝐹 (𝜌
1
𝑥
1
, 𝜌
2
𝑥
2
) .

(80)

Hence, 𝐹 ∈ F𝑎,𝑏
𝐴
1
,𝐴
2

.

Remark 22. Let 𝑑 = 1 and let (𝑌,Y, 𝛾) = ([0, 𝑇],B([0, 𝑇]),
𝑚
𝐿
) in Theorem 19 where 𝑚

𝐿
denotes the Lebesgue measure

on [0, 𝑇]. ThenTheorems 4.6, 4.7, and 4.9 in [18] follow from
the results in this section by letting𝐴

1
be the identity operator

and letting 𝐴
2
≡ 0 on 𝐶

𝑎,𝑏
[0, 𝑇]. The function 𝜃 studied in

[18] (and mentioned in Remark 2 above) is interpreted as the
potential energy in quantum mechanics.
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