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Nitrogen Rate
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Michael J. Castellano 1, Kenneth J. Moore 1, Andrew VanLoocke 1, Emily A. Heaton 2 and

Sotirios V. Archontoulis 1*
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Historically crop models have been used to evaluate crop yield responses to nitrogen

(N) rates after harvest when it is too late for the farmers to make in-season adjustments.

We hypothesize that the use of a crop model as an in-season forecast tool will improve

current N decision-making. To explore this, we used the Agricultural Production Systems

sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA

(16-years in continuous corn and 15-years in soybean-corn rotation) combined with

actual weather data up to a specific crop stage and historical weather data thereafter.

The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and

economic optimum N rate (EONR) predictions at four forecast times (planting time,

6th and 12th leaf, and silking phenological stages); (2) determine whether the use of

analogous historical weather years based on precipitation and temperature patterns as

opposed to using a 35-year dataset could improve the accuracy of the forecast; and

(3) quantify the value added by the crop model in predicting annual EONR and yields

using the site-mean EONR and the yield at the EONR to benchmark predicted values.

Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using

35-years of historical weather was close to the observed and predicted yield at maturity

(R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate

in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of

25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of

optimum N rates (above, below or at average site-mean EONR) in 62% of the cases

examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average

N rate). Across all forecast times, prediction error of EONR was about three times higher

than yield predictions. The use of the 35-year weather record was better than using

selected historical weather years to forecast (RRMSE was on average 3% lower). Overall,

the proposed approach of using the crop model as a forecasting tool could improve

year-to-year predictability of corn yields and optimum N rates. Further improvements in

modeling and set-up protocols are needed toward more accurate forecast, especially for

extreme weather years with the most significant economic and environmental cost.

Keywords: corn, economic optimum N rate, forecast, modeling, APSIM, in-season nitrogen management, nutrient

recommendation
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INTRODUCTION

Over and under fertilization of nitrogen (N) in corn
production affects the farmer’s profitability and the environment
(Shanahan et al., 2008). Predicting the economic optimum
N rate (EONR) before crop planting is an ongoing research
effort. The challenge persists because of multiple dynamic
factors influencing the EONR. In brief, genotypic inputs
(cultivars), environment (soil × weather, especially rainfall and
its distribution), and management choices (tillage, N application
time, etc.) affect soil and crop processes in various ways. The
result of all these dynamic processes and their interactions
(soil supply vs. crop demand) determine the yield at any N
fertilization level (Figure 1). There are several examples in the
literature where a single component of the system was studied
in detail without acknowledging other system’s components
and their inherent feedbacks (effect of tillage, effect of residue
removal, Kwaw-Mensah and Al-Kaisi, 2006; Coulter and
Nafziger, 2008). Several tools and methodologies have been
developed over time to assist farmers with N rate decisions (e.g.,
yield goal approach, Stanford, 1973; soil nitrate test, Bundy and
Andraski, 1995; Shapiro et al., 2008), while other new tools such
as sensor technologies and simulation models are currently being
developed and tested (Scharf, 2015; Banger et al., 2017).

Most of today’s N-rate decision tools focus on a single
component of the soil-plant system to predict EONR rather than
utilizing all of the N dynamics and interactions that occur among
processes in the system (Figure 1; Arbuckle and Lasley, 2013).
For example, the single time soil testing approach around corn at
6th leaf stage provides an estimate of soil N supply (Magdoff et al.,
1984; Blackmer et al., 1989; Binford et al., 1992). However, the
prediction accuracy and usage of this approach is low because the
soil nitrate varies greatly in time and space, especially in rainfed
production regions with unpredictable rain events (Jemison and
Lytle, 1996; Ma et al., 2007; Arbuckle and Lasley, 2013). Other
examples are crop sensors and remote sensing technologies that
provide an estimate of crop N status during the season (Yuan
et al., 2016). Although promising as a N diagnostic tool this
approach has not yet been widely adopted by farmers (Mamo
et al., 2003; Scharf et al., 2005; Hawkins et al., 2007) because
they typically delay N application until the plant N status can be
reliably determined. That requirement increases the risk of not
being able to apply N or adds extra application costs (Van Es et al.,
2006; Tremblay et al., 2012; Franzen et al., 2016).

Another N tool, the yield goal (Stanford, 1973; Stanford and
Legg, 1984), requires inputs such as grain yield, N concentration,
nitrogen use efficiency, and N credits coming from manure,
legume crops, and soil organic matter to determine corn
N rates. These inputs are difficult to estimate because they
are derived properties (outputs) of many interactive processes
occurring simultaneously within the soil-plant-atmosphere
system (Figure 1). Thus, farmers use prior knowledge or
guesswork to provide these inputs. According to Lory and Scharf
(2003) and Shanahan (2011), the yield goal approach usually
results in over fertilization as a form of “insurance” against
uncertain soil N supply. In contrast, the Maximum Return To
Nitrogen approach (MRTN; Sawyer et al., 2006) requires simple

inputs such as location, rotation, crop and fertilizer prices. By
using an extensive experimental network of derived N-response
datasets across the USA Midwest, it provides farmers with a
N-rate recommendation per geographical areas (Sawyer et al.,
2006).

In contrast to the aforementioned tools, process-based
cropping system models that account for different soil-crop
processes, and their interactions with management, cultivar
and environmental conditions (Figure 1), have demonstrated
capabilities explaining causes of EONR variability and perform
scenario analyses (Thorp et al., 2007; Gowda et al., 2008; Nangia
et al., 2008; Puntel et al., 2016). However, most of the model
applications in N research have been applied ex-post (after
harvest), which is of limited use to farmers (Kersebaum et al.,
2005; Nendel et al., 2013).

Successful crop yield forecasting approaches using process-
based models and historical weather in the USA (Morell
et al., 2016; Togliatti et al., 2017) and Australia (Carberry
et al., 2009), have indicated the potential to complement
the explanatory power of cropping system models with
the forecasting component that is needed for N decisions.
Theoretically, by running a process-based model for different
N rates using actual and historical weather, data the model can
provide end-of-season yields (the yield-N response curve) at
any time during the growing season. Thus, the EONR could be
estimated as early as planting time, providing a new approach
to make N rate decisions and supporting information on crop
yields, N supply, and N demand (Figure 1). To our knowledge,
the validity of this approach and the uncertainty around the year-
by-year (annual) EONR prediction at planting and during the
growing season have not been previously investigated.

A critical aspect in crop yield forecasting (and ultimately N-
forecasting) is the use of weather information to drive model
simulations. Traditionally, historical weather data is used to fill
the unknown weather for the remainder of the growing season
and calculate yield probabilities (Hammer et al., 1996; Quiring
and Legates, 2008). Thus, forecasting yield and optimal N-rate
at planting time is a challenge given the uncertainty in weather.
As weather information becomes available during the season,
the uncertainty around crop yield prediction decreases, but it
follows different patterns from year to year and cropping systems
(Archontoulis et al., 2016; Togliatti et al., 2017). Furthermore, use
of analogous historical weather years (i.e., weather with similar
precipitation or temperature patterns as the year to be forecasted)
instead of using 35-year record has been used as an approach to
improve yield forecast (i.e., Hammer et al., 2001; Hansen et al.,
2004). The time of the forecast may also affect yield and EONR
predictions and uncertainty patterns.

In this study, we tested the hypothesis that the use of a
calibrated cropping system model coupled with an assembly
of actual and historical weather datasets can predict EONR as
early as planting time with similar accuracy as the prediction at
harvest with known weather (ex-post). We build upon Puntel
et al. (2016) in which the APSIM model was calibrated using 16
years of corn yield response to N data from two crop rotation
systems at a site in central Iowa, USA. Our objectives were to: (1)
evaluate the accuracy and uncertainty of corn yield and EONR
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FIGURE 1 | Overview of the main factors influencing the economic optimum nitrogen fertilizer (EONR) rate and their interactions. Soil organic matter (SOM).

predictions at four forecast times (planting time, 6th and 12th
leaf, and silking crop physiological stages) compared with the
observed and simulated values at harvest; (2) investigate whether
the use of selective historical weather records (e.g., years with
similar precipitation) will increase accuracy of yield and EONR
predictions as opposed to the 35-year historical record; and (3)
quantify value added by the crop model in predicting annual
EONR and yields using the site-mean EONR and the yield at the
EONR (average of yearly values) to benchmark predicted values.

METHODS

Experimental Data and Site Description
We used 16 years (1999–2014) of corn yield response to N
fertilizer rate data from a field experiment conducted in central
Iowa, USA (details in Puntel et al., 2016). The experiment was
designed to study the effect of five N fertilizer rates (0, 67, 134,
201, and 268 kg N ha−1) on corn yield in continuous corn (CC)
and corn following soybean (SC) cropping systems. Application
of N was either pre-plant or side-dress; see details in Puntel et al.
(2016). Corn grain yield was reported at 15.5% moisture content.
The corresponding EONR values per year and rotation were
calculated using measured yields (see section Estimation of the
Annual Economic Optimum Nitrogen Rate). The weather at the
experimental site is humid continental with warm rainy summers
with an average annual precipitation of 900mm and annual
temperature of 9◦C. Over the 16-year experimental period, crops
experienced warm and wet conditions (3 years), cool and wet
conditions (3 years), warm and dry conditions (5 years), and cool
and dry conditions (5 years; Figure S1a). The soil at the site is a

deep fertile loamy (Clarion soil series) with topsoil organicmatter
of 3.4% and profile plant available water of 250mm.

The APSIM Modeling Platform, Set Up, and
Calibration
The APSIM model is an open-source advanced simulator of
agricultural systems that combines several process-based models
in a modular design (Holzworth et al., 2014). In this study, we
used the recently calibrated version of the model for this site
with no additional changes (see Puntel et al., 2016 for detailed
calibration information). Model performance is also provided in
this study (see yield predictions at maturity, results section). The
simulation process was continuous, starting in 1999 and ending
in 2014 without annual re-initialization of inputs to capture
carryover effects on soil N, water, residue, and soil organic
matter dynamics from 1 year to the next. The following APSIM
models were used: corn and soybean crop models (Keating
et al., 2003), Soil N (soil N and C cycling model; Probert et al.,
1998), SWIM (soil water model using the Richard equation and
fluctuated water tables; Huth et al., 2012); SURFACEOM (residue
model; Probert et al., 1998; Thorburn et al., 2001; Thorp et al.,
2005), soil temperature (Campbell, 1985), and the following
management rules: planting, harvesting, fertilizer, tillage, and
rotations (Keating et al., 2003).

Forecasting Yields and EONR
To forecast yields and EONR in each study year (1999–2014)
we combined actual weather data up to a specific crop stage
and historical weather data thereafter (Figure S2). The following
forecast times were considered in this study: planting, 6th leaf
(V6), 12th leaf (V12), and silking (R1; Abendroth et al., 2011).
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We selected these times because farmers in rainfed production
regions can make delayed N applications during vegetative and
early reproductive stages (R1) without a significant negative effect
on yield (Scharf et al., 2002). In this environment, there is not
much evidence of yield response to N fertilizer application after
corn silking, thus we did not explore yield and N forecasts during
grain filling period.

Except for planting time, which only includes observed
weather data until the planting date, the rest of the forecast times
used observed in-season weather data until the forecast time
(Figure S2). Historical daily weather data from 1980 to 2015 (35
years, maximum available for this site) was obtained from the
Iowa EnvironmentalMesonet (2014) to fill the unknownweather.
The combination of 35 years of simulations, four forecast times,
16 study years, five N rates, and two crop rotations resulted
in more than 22,000 simulations. We calculated the yearly
mean and standard deviation of yield and EONR from the 35
simulated values per year and forecasting time similar to Togliatti
et al. (2017). The simulated site-mean EONR was calculated
by averaging individual annual estimates of EONR and yield
at EONR (YEONR) for each rotation, and then calculating the
associated standard deviation (SD; across years mean).

Once the simulations were completed, we grouped the data to
represent the following five weather scenarios and quantify the
impact on yield and EONR forecasts:

• Use simulated yields from calendar years with similar annual
precipitation and temperature patterns as the year of interest
(e.g., 2010 and 1984). These groups of years can be found in
Figure S1a.

• Use simulated yields from calendar years with similar summer
(June to August) precipitation and temperature patterns as the
year of interest. These groups of years can be found in Figure
S1b.

• Use simulated yields from the five calendar years prior to the
study year (e.g., for 2010 we used 2005–2009 years).

• Use simulated yields from the 10 calendar years prior to the
study year.

• Use simulated yields from the 20 calendar years prior to the
study year.

Scenarios I and II were investigated because previous findings
showed that the used of analogous weather years instead of the
full weather record could increase accuracy of yield predictions
and thus, derived EONR predictions (Hammer et al., 2001;
Hansen et al., 2004). Scenarios III to V were investigated to
quantify the impact of using limited amount of weather data
because long term (35-years) weather data are not available in
every location (Hansen et al., 2004; Grassini et al., 2015).

Data Analysis
Estimation of the Annual Economic Optimum

Nitrogen Rate
The relationship between observed or simulated yield and
the five N rates was fit using the quadratic and quadratic-
plus-plateau model following the methodology described in
Puntel et al. (2016). Models were deemed significant at
p < 0.05 and the equations with the smallest sums of

squares and largest R2 were selected. The EONR and YEONR
was calculated from the N response equations by setting
the first derivative of the fitted response curve equal to a
common price ratio of 5.6:1 N: corn grain price (US$ kg−1

N: US$ kg−1 grain) ratio during the study years (Cerrato
and Blackmer, 1990; Bullock and Bullock, 1994). Variations
in N: grain price ratios during the period of this study
(1999–2014) were not taken into consideration because of
its potential confounding effect on the simulated EONR and
YEORN evaluation. Different price ratios will need to be
considered for historical evaluation (Amatya et al., 2008; Sawyer,
2015).

Both the observed EONR and YEONR for each year are
presented in Puntel et al. (2016).

Statistical Evaluation of Model Performance
To evaluate the APSIM model simulations goodness of fit,
we used graphical and statistical methods. For the statistical
evaluation, we computed the root mean square error (RMSE),
and the relative root mean square error (RRMSE; see equations in
Archontoulis andMiguez, 2015) between observed and predicted
values. The lower the value of RMSE and RRMSE the better
the model performed. In this study, we considered RRMSE ≤

15% as “good” agreement; 15–30% as “moderate” agreement;
and ≥30% as “poor” agreement (Liu et al., 2013; Yang et al.,
2014).

We quantified the accuracy of yield and EONR predictions
by comparing the closeness agreement between the simulated
and observed means. The accuracy of EONR prediction was
considered good when the error was < ± 30 kg N ha−1. This
threshold represents the historical and current suggested N
fertilization rate range for corn (Voss and Shrader, 1979; Sawyer
et al., 2006).

The uncertainty around the simulated yields and EONR was
calculated as the standard deviation of the 35 estimates (Togliatti
et al., 2017). The standard deviation characterized the range
of values within which the mean prediction is asserted to lie.
We used the standard deviation among forecasting times to
evaluate the impact of known weather on the uncertainty around
the mean prediction for EONR and yield. Finally, we evaluated
the proximity of the observed EONR and yield values to the
acceptable range within the standard deviation.

To calculate the site-mean EONR and YEONR, we averaged
annually observed values for each rotation similar to Puntel et al.
(2016). These site-mean values were used to benchmark model
predictions, i.e., above, below or at average. We then counted
the number of years in which the model correctly predicted the
direction being above, below or at average of EONR and YEONR
values at planting time. In each year, we calculated the absolute
differences between the observed and the predicted EONR and
we counted the years with an average difference of ± 30 kg N
ha−1.

We also examined APSIM predictions of EONR in extreme
N rate years defined as years where the observed EONR is at
least 30 kg N ha−1 above or below the site-mean EONR. We
specified three categories: (1) 30 kg N ha−1 greater than the site-
mean EONR (high N need), (2) within ± 30 kg N ha−1 of the
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FIGURE 2 | Simulated vs. observed corn yield (Top panel), economic optimum N rate (Bottom panel, EONR), and yield at EONR (Central panel, YEONR) at

different corn stages using 35-yr weather data. In the top panels data presented by N-rate while in the bottom panels data presented by cropping system: CC,

continuous corn and CS, soybean-corn. The V6 and V12 are the 6th and 12th leaf stage, respectively; R1 and R6 are silking and physiological maturity stages,

respectively (Abendroth et al., 2011).

site-mean EONR, and (3) 30 kg N ha−1 lower than the site-mean
EONR (low N need). In addition, we explored the performance
of the model by measuring the agreement (correlation, R2)
between the observed and predicted EONR and YEONR at
each forecasting time and by weather conditions based on
Figure S2.

Statistical Evaluation of Weather Scenarios
The impact of the weather scenarios on yield and EONR
predictions was evaluated by calculating the RRMSE for
each scenario and then subtracting the RRMSE value of
each scenario from the RRMSE of the standard approach
using the 35-years of weather data. A positive difference
means that a scenario (I–V) performed worse than the 35-
year standard approach and a negative difference means that
selection of weather years was better than the 35-year standard
approach.

RESULTS

Yield Predictions at Different Forecasting
Times Using 35 Years of Historical Weather
Yield prediction at different forecast times did not significantly
change during the growing season compared with yield
prediction at maturity (Figure 2). On average, the RRMSE
decreased by 1.2% from planting to maturity. Across five N rates,
two crop rotations, and 16 years APSIM explained 77% of the
observed variability of corn yield (Figure 2) when predictions
were made early in the season (planting and V6 stage), about
79% of the variability during mid-season (V12 and R1 stages),
and 81% of the variability at the end of the season (R6 stage).
The simulated mean yield at the four forecasting times (with
unknown weather after the corresponding growth stage) was
similar to the final yield prediction at R6 simulated with known
weather (Figure 2).
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FIGURE 3 | Predicted and observed yield at the economic optimum N rate (YEONR) for continuous corn. The connected red dots indicate APSIM model predictions

at planting time, V6 (6th leaf), V12 (12th leaf), and R1 (silking) stages using actual and historical weather data (vertical bars indicate standard deviation, n = 35). At

maturity (R6), the weather is known so there is no uncertainty in yield prediction. Blue squares represent the observed YEONR. The green dashed line represents the

mean YEONR for the study period at this site.

At early stages (planting to V12), APSIM was able to explain
∼40% of the variability in observed YEONR and 57% of the
variability at maturity (Figure 2). The APSIM model was better
at explaining the observed variability in the YEONR during
warm weather years than cold weather years across the different
forecasting times (R2 ∼ 0.8 vs. 0.5, respectively; Table S3).
Absolute differences between observed and predicted YEONR
were 1.55 and 0.63Mg ha−1 for cold and warm weather years,
respectively. Overall model performance improved (R2 = 0.6;
data not shown) when looking at this relationship while
excluding the 2008, 2010, 2012, and 2014 extreme weather
condition years in the 16-years of experiments (Figure S2).

Between the two cropping systems, yield predictions were
slightly better for SC than CC rotations across all four forecasting
times (RRMSE of 12.9 vs. 14.2%, respectively; Table S1).
The standard deviation of the mean yield, a measure of the
uncertainty around yield predictions, did not decrease from

planting to R1 (Figures S3, S4). At maturity, there is no
uncertainty (standard deviation = 0) because the actual weather
was known (Figures S3, S4). In agreement with yield predictions,
the uncertainty around the predicted mean YEONR did not
decrease from planting to R1 in a significant number of the years
(Figures 3, 4). However, the mean deviation (precision) of yield
predictions across all years was 27% lower for R1 than at planting
(Figures 3, 4).

EONR Prediction at Different Forecasting
Times Using 35 Year of Historical Weather
In contrast to yield predictions, the EONR predictions were less
accurate (Figure 2), and at different forecasting times showed
different patterns across rotations and years (Figures 5, 6). In
some cases, the EONR prediction was more accurate at planting
or V6 than at maturity (e.g., 2004, Figure 5). In other cases, the
EONR prediction was more accurate at maturity than early in the
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FIGURE 4 | Predicted and observed yield at the economic optimum N rate (YEONR) for soybean-corn. The connected red dots indicate APSIM model predictions at

planting time, V6 (6th leaf), V12 (12th leaf), and R1 (silking) stages using actual and historical weather data (vertical bars indicate standard deviation, n = 35). At

maturity (R6), the weather is known so there is no uncertainty in yield prediction. Blue squares represent the observed YEONR. The green dashed line represents the

mean YEONR for the study period at this site.

season, but the differences in terms of actual value were small
(e.g., Figure 5, 2007, the difference between simulated EONR
at planting and maturity was 18 kg N ha−1 for CC). Overall,
the mean deviation (precision) of EONR predictions across all
years was 25% lower for R1 than at planting (Figures 5, 6).
The forecasted site-mean EONR and the standard deviation was
similar to the observed values, but low for SC and high for CC
(Table 1).

At early forecasting times (planting, V6, and V12), the
absolute average differences between observed and predicted
EONR for both rotations were lower for warm than for cold
weather years (37 vs. 50 kg N ha−1, respectively; Table S3). The
model better explained observed variability in the EONR in
cold/dry than warm/wet seasons across forecasting times and
crop rotations (R2 = 0.32).

In terms of uncertainty, the standard deviation of the mean
EONR prediction did not show a consistent pattern of decrease

during the growing season (Figures 5, 6). Overall, the EONR
predictions were more accurate in CC (RRMSE= 25%) than SC
(RRMSE= 45%) across forecast times (Figure 2).

The APSIM model predicted EONR with an average error of
±38 kg N ha−1 in 62% of the study cases (n = 31). Prediction
error was below the threshold value of ±30 kg N ha−1 in about
50% of the cases.

Assessing the Impact of Different Weather
Scenarios
Using 35 years of weather data as input to the model
resulted in marginally lower RRMSE (on average 1.4%) values
and therefore better yield predictions across forecast times
compared to the use of 5, 10, or 20 years of weather
data or weather data that included only years with similar
weather patterns (Figure 7A). Similar results were found for
the EONR prediction; that is, use of 35-year weather data
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FIGURE 5 | Predicted and observed economic optimum N rate (EONR) for corn-corn. The connected red dots indicate APSIM model predictions at planting time, V6

(6th leaf), V12 (12th leaf), and R1 (silking) stages using actual and historical weather data (vertical bars indicate standard deviation, n = 35). At maturity (R6), the

weather is known so there is no uncertainty in yield prediction. Blue squares represent the observed EONR. The green dashed line represents the mean EONR for the

study period at this site.

performed better than all other scenarios (Figure 7B). Across
all forecasting times, RRMSE was 3.5% lower when using
35-years of weather data. Among the scenarios compared
against the use of 35-years, the use of 20 years of weather
data had the lowest RRMSE for yield and EONR at all
forecasting times (Figure 7A). The exception was the yield
predictions at V12 and silking stage where the RRMSE was the
lowest for scenarios with 5, 10, or 20 years of weather data
(Figure 7A).

Independent of the weather scenarios, RRMSE values for
EONR predictions were four times higher compared to yield
predictions. The selection of a specific weather scenario tended
to have a greater impact on predictions early in the season than
toward the end-of-season (Figure 7). For example, at flowering
the RRMSE was on average across weather scenarios 0.8 and
2.3% lower than RRMSE at planting for yield and EORN,
respectively.

Comparison Between APSIM and the 16
Year Site-Mean EONR and YEONR
We use the site-mean EONR and YEONR (see green horizontal
line in Figures 3–6) to benchmark the direction and magnitude
of error in annual APSIM predictions. Across 16-years in CC and
15-years in SC (n= 31 cases), the observed EONR values were in
11, 14, and 6 cases above, below and at site- mean EONR values
respectively. APSIM predictions of EONR at planting time were
in 11, 16, and 4 cases, above, below and at the site-mean EONR
values respectively (Figures 5, 6). In 19 of 31 (62%) cases, APSIM
correctly predicted the direction of annual EONR being above,
below, or at average. For those cases, the average error was 38 kg
N ha−1 which represents 20 and 25% error base on the average N
rate for CC (observed mean= 184 kg N ha−1) and SC (149 kg N
ha−1), respectively.

The observed YEONR values were in 14, 11, and 6 cases
above, below and at site-mean YEONR values respectively,
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FIGURE 6 | Predicted and observed economic optimum N rate (EONR) for soybean-corn. The connected red dots indicate APSIM model predictions at planting time,

V6 (6th leaf), V12 (12th leaf), and R1 (silking) stages using actual and historical weather data (vertical bars indicate standard deviation, n = 35). At maturity (R6), the

weather is known so there is no uncertainty in yield prediction. Blue squares represent the observed EONR. The green dashed line represents the mean EONR for the

study period at this site.

TABLE 1 | Site-mean and the associated standard deviation economic optimum

N rate (EONR, units: kg N ha−1) for each crop rotation, forecast time, and the

measured site-mean across years.

Soybean-Corn Corn-Corn

Simulated site-mean at planting (n = 560) 135 ± 42 199 ± 43

Simulated site-mean at 6th corn leaf (n = 560) 138 ± 41 200 ± 42

Simulated site-mean at 12th corn leaf (n = 560) 137 ± 39 193 ± 40

Simulated site-mean at corn silking (n = 560) 135 ± 40 199 ± 43

Simulated site-mean at corn maturity (n = 16) 137 ± 43 225 ± 33

Measured site-mean (n = 16) 149 ± 48 188 ± 42

across rotations and years. APSIM predictions of YEONR at
planting time were in 8, 14, and 9 cases, above, below and
at the site-mean YEONR values respectively (Figures 3, 4). In
21 of 31 (67%) cases, APSIM correctly predicted at planting

time the direction of annual YEONR being above, below, or at
average.

In low or high N need years the simulated EONR deviated
more from observations than in average N need years (Figures 5,
6; Table 2). In 2 out of 16 years (extreme wet years; 2008 and
2010) the APSIMmodel greatly underestimated the EONR when
> 30 kg N ha−1. In low fertilization need years, APSIM over
predicted the N rate on average by 36 and 69 kg N ha−1 in CC
and SC rotation, respectively (Table 2). Overall the distribution
of the differences between APSIM predicted EONR and observed
EONR was skewed to the right (∼ + 30 kg N ha−1) for CC and
skewed to the left for SC, underestimating the observed EONR
(Figure 8).

DISCUSSION

We demonstrated an alternative way to utilize the power of
mechanistic cropping systems models to assist N-rate decisions
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FIGURE 7 | Differences in relative root mean square error (RRMSE) between weather scenarios (I-V) and standard approach (use of 35-years of weather data) for

predicted corn yield (A) and economic optimum N rate (B) at four forecasted times: planting, V6 (6th leaf), V12 (12th leaf), and R1 (silking) stage. The positive values

indicate that using the 35-years of weather history is better than use of other weather scenarios (I–V). Continuous corn (CC) and soybean-corn (SC). Vertical bars

represents the standard deviation.

in real time as opposed to current ex-post use of models that are
of little interest to farmers (Quiring and Legates, 2008; Thompson
et al., 2015). This is the first study that concurrently forecast corn
yields and their N requirements in the USA Corn Belt.

Yield Forecasts
This study showed that end-of season corn yields and YEONR
can be predicted within an acceptable error (RRMSE < 17%) as
early as planting time in most of the study years (Figures 2–4
and Figures S3, S4). The 16-years of data used to test our yield
forecasts accounted for different weather years (wet, dry, warm,
cold, Figure S1a) and management practices, which further
increased our confidence that our process-based forecasting
approach is robust (He et al., 2017). This means that our science-
based yield forecasting approach has the potential to inform corn
producers in the USA Midwest that are using the yield-goal
approach to predict N-rates by “guessing” end-of-season yields
(Arbuckle and Lasley, 2013; Raun et al., 2017; Morris et al., 2018).
Further testing of our approach across multiple environments is
needed before application. This would minimize expected errors
that are often encountered when using a conventional yield
approach based on yield averages across years (Raun et al., 2017).

In most cases, the simulated yield at maturity was within the
standard deviation of yield prediction at planting (Figures S3,

S4). The uncertainty in yield predictions did not substantially
decrease from planting to silking even though that the weather
uncertainty decreased (Figure S3). We believe that if we had
run the forecast at 150◦C-days (or 15 calendar days) after
silking we would have seen a decrease in the uncertainty
as two of the major determinants of corn yield (kernel
number and potential kernel weight) is set (Andrade et al.,
1999; Borrás and Vitantonio-Mazzini, 2018). Previous studies
have shown a decrease in the uncertainty around corn yield
predictions at or about 150◦C-days after silking (Thornton
et al., 1997; Hansen et al., 2004; Togliatti et al., 2017). By
R1 stage, about 50% of the weather is still unknown and
the weather during grain fill period has substantial effects
on yield. This weather uncertainty introduces yield variability
in model predictions as different weather variables affects
various plant and soil processes (and thus the final product
that is yield) in different ways that are also phenologically
time dependent (Semenov et al., 1993). For a thorough
sensitivity analysis of weather effects on APSIM simulated
grain yield for central Iowa, USA we refer to Togliatti et al.
(2017).

In two of the years, yield predictions at maturity deviated
substantially from the simulated yields at planting (2004 and 2008
in both rotations; Figures 3, 4). In these years, yield predictions
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TABLE 2 | Comparison of economic optimum nitrogen rate (EONR) estimated by APSIM to the site mean EONR and observed EONR for continuous corn and

soybean-corn over three categorical EONR ranges.

Timing Categorical EONR ranges* APSIM-Observed annual EONR

Corn-Corn Soybean-Corn

--------------------kg N ha−1------------------

Planting High N need year (30 kg N ha−1 above the measured site-mean EONR) −16 −84

V6 −18 −74

V12 −15 −72

R1 −19 −71

R6 9 −73

Planting Average year (± 30 kg N ha−1 from the measured site-mean EONR) 13 −8

V6 17 −7

V12 11 −8

R1 17 −12

R6 38 −11

Planting Low N need year (30 kg N ha−1 below the measured site-mean EONR) 40 61

V6 38 67

V12 33 63

R1 37 63

R6 65 68

*Observed categorical ranges for the EONR based on site-mean of 188 (corn-corn) and 149 kg N ha−1 (soybean-corn).

changed during the season as a response to extremely low
temperature conditions during grain fill compared to the 35-year
average temperature (Figures S2A, S5). The model responded to
this weather event by increasing the length of grain fill resulting
in higher yield predictions at maturity than at early stages.
However, in our study the response of the model was not enough
to match the observed yields; perhaps use of a newer maize
version (Soufizadeh et al., 2018) of the APSIMmodel may capture
these dynamics better. Nevertheless, this example shows that use
of crop model offers both predictability and the reasons behind
yield predictions (Banger et al., 2017).

EONR Forecast
The APSIMmodel predictions at planting time were directionally
correct in 62% of the study cases. This means that our N
forecasting approach is promising and has future potential to
directly and/or indirectly aid N rate decisions by providing a
year-to-year opportunity to adjust N rate recommendations early
in the season (Figures 5, 6). In terms of prediction accuracy, our
modeling approach forecasted annual EONR values at all forecast
times with an error range of ±38 kg N ha−1 in about 62–69% of
the simulated cases (Figures 5, 6, 8). These results emphasize the
difficulty in predicting annual EONR in corn production. Given
a potential threshold error range of ±30 kg N ha−1, this means
that further improvements are needed in modeling algorithms as
well as development of more precise soil and crop management
inputs to the model.

To our knowledge, there is no other tool that can provide
both yield and EONR forecasts as early as at planting time. The
soil nitrate test and remote sensing approaches are in-season

tools. Pre-season tools such as the yield-goal approach rely on
yield guesses (Van Es et al., 2006; Sela et al., 2017); while the
MRTN tool incorporates N response variation and accounts for
price fluctuations, but does not directly adjust for year-to-year
variability (Sawyer et al., 2006).

As illustrated in Figure 1, there are many dynamic and
interactive factors involved in EONR prediction (Scharf, 2001;
Mamo et al., 2003; Scharf et al., 2006; Dhital and Raun,
2016). Every year, management, environment, and genotype
interactions determine the shape of the yield response to N
fertilizer relationship that is used to estimate EONR. Our
modeling approach accounted for the majority of the factors by
simulating residue decomposition, soil organic matter dynamics,
changes in soil temperature, moisture, and nitrate levels during
fallow periods and accounted for management such as planting
date, row spacing and date of N application. All these factors
affect soil N supply and crop N demand. Low EONR predictions
from the model were usually associated with high estimates of
soil residual nitrate levels at planting and delays in planting.
But, there are many interactions that simultaneously occur
among soil-plant processes within the system that makes it
difficult to simplify and generalize the reasons of yield and
EONR variability (see Figure S5 and Table S2). For example,
in a previous work using APSIM model, we found that spring
precipitation was related to N losses and EONR (the higher the
spring precipitation the higher the EONR; Puntel et al., 2016). In
contrast, a later study showed that the amount of precipitation
had little influence on simulated grain yield in central Iowa
because of the effect of groundwater tables (Togliatti et al.,
2017).
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FIGURE 8 | Distribution of differences between simulated economic optimum N rate (EONR) at planting time, V6 (6th leaf), V12 (12th leaf), R1 (silking), and R6

(maturity) growth stages, and the site-mean EONR minus the yearly observed EONR for continuous corn (CC) and soybean corn (SC) rotation.

The inter-annual prediction accuracy of the EONR forecast
was lower than that of the yield forecast (Figures 3–fig66, Figures
S3, S4). One reason is that EONR values are not a direct output
of the model but a result from a regression analysis of model
outputs (yields) which incorporates further uncertainty (Puntel
et al., 2016). Across years, the simulated site-mean EONR value
by the model was similar to the observed site-mean (Table 1).
We believe that by running the model sequentially, annual over-
and under-predictions are canceled out and the model is able to
predict the site-mean values more accurately.

Future Improvements Toward More
Accurate N Rate Forecasts
This study identified three areas for future research: (1)
simulation set up, continuously vs. annual reset; (2) YEONR and
EONR predictions in extreme years, and (3) weather data to drive
simulations.

Our simulation protocol is characterized by a high degree of
difficulty as we ran the model sequentially from 1999 to 2014
to avoid annual re-initialization of soil input parameters and
to capture the carry-over effects on N dynamics (Constantin
et al., 2011; Basso and Ritchie, 2015). That approach was followed
because of the lack in data to update the model every year and
because there was evidence from other studies that models can
simulate yields and organic matter trends at different N rates in
the long term (Ma et al., 2007; Puntel et al., 2016). The drawback
of this approach is that simulation errors can accumulate over
time and affect the next year’s simulation, especially if the model
fails to predict crop yield andN dynamics in one of the years (Salo
et al., 2016).

We believe that yield and EONR forecasts at planting time
can be further improved if additional information on soil
nitrate, water, and surface residue was available to eliminate
model uncertainties in simulating carry-over effects during fallow
periods (Hansen et al., 2006; Carberry et al., 2009; Ines et al.,
2013; Yin et al., 2017). Previous modeling work in Iowa has
shown that the available soil water and N status at planting

time largely affected predicted mean yields and the range of
yield level probabilities (Archontoulis et al., 2016). Therefore,
when the model is primarily used for accurate year-by-year yield
and EONR forecasting purposes, an annual reset approach may
be more appropriate than sequential (Ines et al., 2013; Iqbal
et al., 2017). This information can be derived from emerging
technologies such as remote sensing, and other common tools
such as soil N testing (Basso et al., 2001; Jin et al., 2017; Reimer
et al., 2017). Testing and possible improvements in the APSIM
surface organic matter model for corn and soybean residues in
future studies may improve the simulation of the carry over
effects and predictions of EONR, especially in the SC rotation.

There is a need for further research to improve the annual
EONR predictability in extreme weather years with precipitation
above or below historical average precipitations. Differences
between predicted and observed EONR tended to be higher for
cold weather years (temperature below the historical average),
and their agreement was largely affected by the inaccurate
prediction on extremely wet (i.e., 2008) and dry (i.e., 2000)
weather years (Figure S2). In this study, we noticed that EONR
forecast was more accurate in years that had EONR values near
the long-term site average and the prediction accuracy decreased
in years with extreme high or low EONRmeasured values (±20%
from long-term site average, Table 2).

For the farmer, both extreme high or low EONR predictions
result in economic loss, with the greatest being yield loss when
under-fertilizing in high N rate requirement years. Furthermore,
when high N is predicted in low N need years the risk of N loss
to the environment is greatest (Raun et al., 2017). In particular,
the model failed to forecast accurate EONR values in extreme
high precipitation years such as 2008 and 2010. We believe the
main reason is the incorrect simulation of the carry-over effects
from previous year (i.e., soil inorganic nitrogen, soil moisture,
root and carbon and nitrogen inputs from previous crops) or
possible underestimation of N losses from the system (He et al.,
2017; Yin et al., 2017). Prediction of EONR is very complex
and less accurate than yield (Figure 2). Perhaps an alternative
way of using the model as a forecast tool may be to predict the
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key-components of the EONR such as yields and soil supply
and plant N uptake dynamics, in which the model performs
well (Archontoulis and Licht, 2017). In that way, we avoid
accumulation of errors that leads to a low prediction accuracy of
the EONR.

For weather uncertainty affecting yield and derived EONR
forecasts (Hansen et al., 2006), our results indicated that use of
the entire historical record (35 years) in the simulation process
is better than selecting years based on similar weather events or
using only a smaller set number of previous years (Figure 7).
This was more evident in EONR predictions and less in yield
predictions. Although the reasons are not sufficiently clear, based
on other studies, we believe that simulated crop growth depends
more on the distribution of weather within the season than
the season average which was used to categorize the years used
for the weather scenarios (Hansen and Indeje, 2004; Figure
S1b).

We also found that the use of at least 10 and 20 years of
weather data is associated with small error (2.5% less accuracy
than the 35-year; Figure 7) which is an important finding given
that not all sites have accurate weather records for 35 years
(Hansen et al., 2004; Grassini et al., 2015). Our findings agree with
Van Wart et al. (2013), who showed that 6–10 years of weather
data is needed for sites with similar rain patterns as the one used
in this study. However, we also recognize there are other ways of
selecting years to be used in forecasting studies and this is a topic
for further investigation (Hansen et al., 2004).

CONCLUSIONS

This study provided evidence that use of a calibrated cropping
systems model can aid yield and N rate forecasts. At planting
time, model predictions were directionally correct in predicting
whether the optimum N-rate for corn would be above, below or

at site-mean value. The associated prediction error was within an
error range of±30 kg N ha−1 in∼60% of the years. Predictability
of corn yields was more accurate than optimum N-rates at
planting time. In most years, in-season yield and optimum N-
rate forecasts were not better than the predictions made at the
beginning of the season. Use of 35-year historical weather data
was found to be more accurate than using analogous weather
years based on similarity of current weather conditions. Process-
based modeling forecast of corn yields and optimum N-rates
is already promising and has potential for realizing further
improvements in achieving even more accurate early-season
predictions.
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