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ABSTRACT. Binary self-dual codes and additive self-dual codes over F4 have
in common interesting properties, for example, Type I, Type II, shadows, etc.
Recently Bachoc and Gaborit introduced the notion of s-extremality for binary
self-dual codes, generalizing Elkies’ study on the highest possible minimum
weight of the shadows of binary self-dual codes. In this paper, we introduce a
concept of s-extremality for additive self-dual codes over Fy4, give a bound on
the length of these codes with even distance d, classify them up to minimum
distance d = 4, give possible lengths and (shadow) weight enumerators for
which there exist s-extremal codes with 5 < d < 11 and give five s-extremal
codes with d = 7. We construct four s-extremal codes of length n = 13 and
minimum distance d = 5. We relate an s-extremal code of length 3d to another
s-extremal code of that length, and produce extremal Type II codes from s-
extremal codes.

1. INTRODUCTION

Conway and Sloane [5] introduced the shadow of a binary self-dual code in order
to get additional constraints in the weight enumerator of a singly-even binary self-
dual code. Let C be a singly-even (or Type I) binary self-dual code of length n and
C, its doubly-even subcode. The shadow S of C is defined as

S:=Ci\C,
equivalently
S={weF3|v-w= -21-wt(v) (mod 2) for every v € C}.

Let d be the minimum distance of C' and s the minimum weight of S. Bachoc
and Gaborit (3] showed that 2d+s < % +4, except in the case n = 22 (mod 24) and
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d = 4[n/24] + 6, where 2d + s = n/2 + 8. Binary codes attaining these bounds are
called s-eztremal [3]. In fact, Elkies (7] already classified binary s-extremal codes
for d = 2 and d = 4. Bachoc and Gaborit considered the case when d = 6 and
showed that there exist binary s-extremal codes of length n with d = 6 if and only
if22<n<44.

In a similar manner to that of Conway and Sloane (5], additional constraints
of the weight enumerator of the shadow of an additive self-dual Type I code over
F, were used by Rains [13] to derive the best known upper bound on the highest
possible minimum distance of these codes as follows. Let d; (dr1, respectively) be
the minimum weight of an additive self-dual Type I (Type II, respectively) code of
length n > 1. Then

2|2|+1 ifn=0 (mod6)
(1.1) dr < 2(2|+3 ifn=5 (mod6)
2[%2|+2 otherwise
n
(1.2) din < 2|3]+2

A code meeting the appropriate bound is called extremal.

After the introduction of s-extremal binary self-dual codes, it is natural to ask
whether there exists a concept of s-extremal additive F4 codes. If so, can we classify
them? In this paper, we introduce a concept of s-extremal codes for additive self-
dual codes over Fy, give a bound on the possible lengths of such codes related to their
distances for even d, classify them up to minimum distance d = 4, and give possible
lengths (only strongly conjectured for odd d) and (shadow) weight enumerators for
which there exist s-extremal codes with 5 < d < 11 . We construct four s-extremal
codes of length n = 13 and minimum distance d = 5 with the trivial automorphism
group, which do not appear in any literature. We relate an s-extremal code of
length 3d to another s-extremal code of that length, and produce extremal Type II
codes from s-extremal codes.

2. s-EXTREMAL ADDITIVE F4 CODES

We recall basic definitions on additive F4 codes from [4], [9].

Definition 2.1. An additive F4 code C of length n is a subset C C F} which is
a vector space over F;. We say that C is an (n,2¥) code if it has 2% codewords.
If ¢ € C, the weight of ¢, denoted by wt(c), is the Hamming weight of c and the
minimum distance (or minimum weight) d of C is the smallest weight among any
non-zero codeword in C. We call C an (n,2*,d) code.

Definition 2.2. Let x = (z1,...,%n), ¥ = (%1,...,Yn) € F;. The trace inner
product of x and y is given by

(x,y) = 3 Tr(ziv?)
=1

where Tr : F; — F, is the trace map Tr(a) = o + o®.
Definition 2.3. If C is an additive code, its dual, denoted C+, is the additive code

{x € F} | (x,c) =0 for all c € C}. If C'is an (n, 2%) code, then C* is an (n, 22" %)
code. C is self-orthogonal if C C C* and self-dual if C = C*. If C is self-dual, it is



an (n,2") code. For an additive self-dual code over Fj, if all codewords have even
weight, the code is Type II, otherwise it is Type I.

Definition 2.4. Let C be an additive F4 code of length n which is self-dual with
respect to the trace inner product. The shadow S = S(C) of C is given by

S={weF}| (v,w)=wt(v) (mod 2) for every v e C},

where wt(v) is the Hamming weight of v. If C is Type II S(C) = C, while if C' is
Type I S(C) is a coset of C.

The next theorem, which is the Fs-analog of [3, Theorem 1], is the first main
result of this paper. Its proof is given in Section 3 below.

Theorem 2.5. Let C be a Type I additive Fy code of length n, self-dual with respect
to the trace inner product, let d = dmin(C) be the minimum distance of C, let
8§ = S(C) be the shadow of C, and let s = Wtpin(S) be the minimum weight of S.
Then 2d+s < n+2 unlessn = 6m+5 and d = 2m+3, in which case 2d+s = n+4.

Theorem 2.5 motivates the next definition.

Definition 2.6. Let C be a Type I additive F4 code of length n, self-dual with
respect to the trace inner product, let d = dpin(C) be the minimum distance of C,
let S = S(C) be the shadow of C, and let s = Wtyin(S) be the minimum weight of
S. We say C is s-extremal if the bound of Theorem 2.5 is met, i.e., if 2d+s=n+2
except if n = 6m + 5 and d = 2m + 3 in which case 2d + s = n + 4.

Remark 2.7. It will follow from the proof of Theorem 2.5 that the weight enumerator
of any s-extremal code is uniquely determined and can be explicitly computed from
the values of n and d (or n and s).

3. PROOF OF THEOREM 2.5

We will make integral use of Gleason’s Theorem for additive F4-codes. The
statement of this theorem is recalled below.

Theorem 3.1 ([11],[13]). Let C be an additive F4 code of length n which is self-
dual with respect to the trace inner product. Let S = S(C) be the shadow of C,
and let C(x,y) and S(z,y) be the homogeneous weight enumerators of C and S,
respectively. Then

1
S(z,y) = laC(x +3y,y — )

and there are polynomials

L3) 2]
P(X, Y) = Z an—?iyi and Q(X, Y) — Z ,Uixn—%yi
=0 i=0

over R such that
C(z,y) = P(z+y,2° +3y*) = Q(z + y, y(z — v))

and

2 _ g2
S(a,y) = P(2y,2* + 3?) = Q(2y, *5—).



Lemma 3.2. Let C be an additive F4 code of length n which is self-dual with respect
to the trace inner product. Let S = S(C) be the shadow of C. Ewvery vector in S has
wetght congruent to n modulo 2. Moreover, if we let s = Wtpy,in(S) be the minimum
weight of S and write s = n — 2r, then the coefficients u; and v; in the polynomials
P(X,Y) and Q(X,Y) of Theorem 3.1 are 0 forr+1<i < |%].

Proof. We have

L)
S(z,y) = P(2y,2* + 3y®) = Y _ui(2y)" "% (2® + 3y?)’

1=0

L3) . e PR o . e
e Zui2n—21yn—2: Z ( ) z2J31—1y21—2J

i=0 =0 M

L3) i 7z _ '
()

i=0 j=0 J

The first statement of the lemma is now clear since the exponent on y corresponds
to the weight of the vector.

Now let s be the minimal weight of any vector in S and write s = n — 2r. Then
n — 2r is the smallest exponent which appears on y with nonzero coefficient and so
for [l > r, we have

L3] .
— fHici £ g2lyn—2 — jn-2igi-l Y
0 = coefficient of z“°y 'E=l U 3 !

From this we see that u; appears in the expression for the coefficient of z2'y"~? for
I <i < |3]). Thus we recursively obtain the desired | 5| — r equations u| 3 = 0,

v g)-1=0,..., urp1 =v1g)_(3)-(r+1) =0.
To see that the v;’s are also 0 for 2 > r + 1, notice that

(z+y)* - 2y(z —y) = 2* + 3¢
and so writing ¢ = +y, p = 22 + 3y? and ¥ = y(z — y) we have
C(z,y) = Q(¢,%) = P(¢,p) = P(¢,4* — 2¢)).
Using the second and last terms in the above equation, we get

L3] r
D vid" MY =D uen Y (¢ - 29)
=0 j=0

r 7 i
- ; uj kzz(:)(_2)k (z) o2k,

It is clear that no term ¥* with k > r+1 can occur in this last sum, and so we must
have v; = 0 for r+ 1 < i < |2 since ¢ and 9 are algebraically independent. ]

We are now ready to prove Theorem 2.5.



Proof of Theorem 2.5. If 2d + s < n + 2, then we don’t wish to say anything, so
assume 2d + s > n+ 2. Set t = n+ 2 — 2d = n — 2(d — 1), which is nonnegative by
the Singleton bound for nonlinear codes [12, p. 71]. So 0 <t < s and we have
C(z,y) = 1+ Agz" %y + ...
S(z,y) = Biz" 'yt + Bryoz" 2y 4+
where we are using the fact from Lemma 3.2 that all weights in S are congruent to
n modulo 2 and we are not assuming that B; is nonzero.

Note that if By # O then t = s, i.e.,, 2d+ s =n+2. If By =0 then t < s, ie.,
2d + s > n+ 2. We wish to show that B; = 0 only in the case n = 6m + 5 and
d = 2m + 3, and that in that case, Byy2 #0, i.e.,, s=t+2,ie,2d+s=n+4.

From the assumption 2d+ s > n+2 and substituting s = n—2r, we get r < d—1.
If r = 0, then s = n. In this case, we have d = 1 by Lemma 3.2, and so 2d+s = n+2

as desired. Hence we may assume 7 > 0.
We have that B, is the coefficient of "ty in S(z,y) and as v; = 0 for ¢ > d by

Lemma 3.2, we may write

S(z,y) = %v:@y n% (———xz)'

1=0

d-1 i "
— Z vi2n—2iyn—2i2-i Z(_l)j (’) y2i—2jx2j
pord et J
J
d-1 1
_ZZ( 1)J2n 31(]) n 2]

i=0 j=0

We see that B; comes from the summand where i = j =d —1, i.e,,
B, = (_l)d—12n—3(d—1) (j: i)vd-l - (—l)d'12"'3d+3vd_1.

Hence B; = 0 if and only if v4—; = 0.
Next, start with the equation

d-1
1+ Agy? +--=C(Ly) = Y _u(l+ )" *(y(1 - )"
=0
Dividing both sides by (1 + y)™, we get
d-1
i y(1- y))
1+ Aqy® +. .
g TAWH =2 0”‘( 1+3)?

Write f(y) = 3= and g(y) = f-}i—_y Then we have

fly) = Z vig(y)' — f(y)(Aay® +...)
ot .
=Y vigly)' - Aay® + O(y**").

i=0



Since
_y(d-y)
=(y—1?) Y _(-1)Fliy!
20
— Z ):+1 2% — )yi’
i>1

g(y)? = y? +O(y’*?) for any j > 1. We see that the first few terms in the expansion
of f(y) as a power series in g(y) are vy, ..., ¥4g—1, —Aq4. So by using the Biirman-
Lagrange Theorem below, we see that the weight enumerator of an s-extremal code

is uniquely determined.
We recall the Biirman-Lagrange Theorem (as stated in [13]): If f(z) and g(x) are
formal power series with g(0) = 0 and ¢’(0) # 0 and the coefficients «; are defined

by

= ZM‘Q(’?)‘

i>0

then

Ki = % (coeﬁicient of =1 in f'(z) (ﬁ)z) :

Our functions f(y) and g(y) satisfy these hypotheses, and we have

V41 =

d-1
coefficient of y¢~2 in f'(y (—-y—)
-1 ( ¥ PO 3w
d-1
. d—2 - —n (1+ y)2
ﬁ (coefﬁment of y“% in ((1+y)"+1) ( 1—y
-n 1
=53 coefﬁmentofy (1+y)n—2d+3(1_y)d—l)'

We are now ready show that B; = 0, i.e., vg4—1 = 0, if and only if n = 6m + 5
and d = 2m + 3. We may rewrite vg_; as

n . d-2 1
T-1 (coefﬁment of y m (1+ y)n—3d+4(1 — y2)d—1)

V-1 =

and we consider three cases.

If n— 3d+ 4 < 0, then we are looking at the coefficient of y¢~2 in the product
of the polynomial (1 + y)3@~4=" and the power series (1 +y* +y*+...)?"!. That
coefficient will certainly be nonzero (in fact, positive), which means v4-1 # 0 and
B #0.



If n — 3d + 4 > 0, then we have

__-n g n—3d+3+j\[(d-2+k
YT ; ( 1)( j k
ok =

Mmoo dh n—3d+3+7\(d-2+k
_d—l( D > ( j k

and so again B; # 0.
Finally, consider the case where n—3d+4 = 0. Write n = 6m+1! where 0 <1 <5.
Then 0 =n —3d+4=6m+1—3d+4, and so 3d =6m +1+4,ie.,

d=2m+%é.

Since d must be an integer, this means [ =2or [ =5. If | = 2, we have n = 6m + 2,
d=2m+ 2, and

1

- 2
_Lf_im_—t_) (coeﬂ‘icient of y*™ in mm) #0

Vd-1 = V2m+1 = om+ 1

and so By # 0. If | = 5, we have n = 6m + 5, d = 2m + 3 and then

1

—(6m+5
—(6m +5) WE):Q

Vd—1 = U2m+2 = om + 2

(coefﬁcient of ™! in

and hence B, = 0 in this case. Thus we have completed the proof of the fact that
B, =0 if and only if n = 6m + 5 and d = 2m + 3.

We now need to show that if n = 6m + 5 and d = 2m + 3, then Byyo # 0. We
have

d—-2 1 R
Bupoz" 2y 4 = S(z,y) = (-1)72"* <;> vizPy" .

Thus By, is obtained by taking j to satisfy n —2j = t 4+ 2 in the summand on the
right. Asn=6m+5andt=n+2-2d=6m+5+2—4m—6 = 2m + 1, we need
j=2m+1=d— 2. Thus we must have i = d — 2 as well and we get

d—2

BH—? — (_l)d—22n——3d+6 (d s

)'Ud—2 = —4vg-2.



Using Biirman-Lagrange again, we get

Vd-2 = Kd—-2

1 . Py —-n (L+y)?*\"”
_ i d—3
T3 (coe cient of y in ((1 +y)"+1) ( 1-y

. -n : d-3 - 1
= m (coefﬁment of y m (1 n y)"‘2d+5(1 — y)d—2)
_ 1
- ffici =34
T—3 (coe cient of y m 1+ y)“‘3"+7(1 _ yz)d—2)

=d—Tn2' Z (_l)j(n—?:d]ji-j+6)(d+ll:—3)

k20
j+2%k=d—3
n g n—3d+j+6)\/d+k—3
==Yt X ( i )( k
k>0

j+2k=d-3

which is certainly nonzero. Hence B2 is nonzero and we have s = t+2 = n—2d+4
as desired. This completes the proof. O

4. A BOUND FOR THE LENGTH OF AN s-EXTREMAL CODE

In this section, we give an upper bound for the length of an s-extremal code with
even minimum distance d. This bound generalizes additive F4 codes the case of
binary s-extremal codes of [8].

Theorem 4.1. An s-extremal code with length n and even minimum distance d
must satisfy n < 3d.

Proof. Gleason’s theorem gives us
CLy) =1+Aa '+ = > w(l+y" 2 @1-y)"
0<i<| 3]

If C is s-extremal and has even minimum distance, then it follows from Defini-
tion 2.6 that s = n — 2(d — 1). We have shown in the proof of Lemma 3.2 that
v; = 0 if ¢ > d and we may once again divide both sides of the above equation by
(1+y)™ to get

d—1 1— i ) .
2 (1(}1(+y1)2) T A7y T Oy)n (Aay® + Agpry™™ +---).

=0
_y(d-y) . B
Let g(y) = m and from the above expression, we see that vg,...,v4—1, — Ay
y
1 .. .
are the first coefficients of the development of ———— as a series in g(y). Applying

(I+y)"
the Biirman-Lagrange Theorem, we then have

= ™ (coofficient of yi- i :
Ay = 7 (coefﬁcxent of y n (1+y)n24+1(1 — y)d)

= 7 (coefficient of y4-! :
= 3 (coefﬁcnent of y in 1+ y)"—3a+1(1 - y2)d)



If n = 3d + a where a > 0, then

. n . d—1; 1
Ay = = (coefﬁclent of " in (1+y)t*e(1 - yz)d)
=3 X (_I)J(jj)( k )
i, k20
J+2k=d-1

Now, if d is even, then d — 1 = j + 2k must be odd which shows that j must be
odd. This implies that all the terms in the summation must be negative, showing
that Ay < 0 and leading to a contradiction. Therefore n < 3d. O

Remark 4.2. For the odd distance case it also seems that there is always a negative
coefficient in the possible s-extremal weight enumerators at some point, but we
could not find any clear pattern to use to prove this as for the even case.

Next, we consider a lower bound for the length of an s-extremal code of length n
and minimum distance d. First notice that it follows from Eq. (1.1) that any Type
I additive self-dual code of length n and minimum distance d satisfies n > 3d — 5.
In the case that d is even and C is s-extremal, we have:

Lemma 4.3. If d is even, then any s-ertremal code with length n and minimum
distance d satisfies n > 3d — 4.

Proof. We see from the proof of Theorem 2.5 that if n — 3d + 4 < 0, then vg—; is
positive. This implies B, = (—1)4-12n=3d+3y,_, is negative if d is even. This is
impossible. Hence n —3d +4 > 0. a

Putting this all together, we have:

Corollary 4.4. If d is even, then any s-extremal code of length n with minimum
distance d satisfiesd —2<s<d+2and3d—-4<n<3d-1.

5. A CONSTRUCTION OF s-EXTREMAL ADDITIVE F4 CODES

We recall the shortening of additive F4 codes from [9]. Let C be a self-dual
additive (n,2",d) code with its generator matrix G. Choose any column of G, say
the i*h one. The entries in column i can be any of 0, 1, w, or @. By row reducing G
(to obtain another generator matrix we call G again), we can make all the entries
in column i equal to 0 except for one or two entries; if two they would be two of the
three values 1, w, or @. The shortened code of C' on coordinate i, denoted C’ is the
code with generator matrix G’ obtained from G by eliminating one row of G with
a nonzero entry in column i and then eliminating column i. [If there is only one
nonzero entry in column i of G, then C’ is C shortened in the usual sense.] Clearly
C' is a self-dual additive (n — 1,2"~1,d’) code with d’ > d — 1.

Proposition 5.1. Suppose C is an extremal Type II additive Fy code of length n.
Ifn =0 or2 (mod 6), then any shortening of C is s-extremal.
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Proof. Suppose first that n = 0 (mod 6). Writing n = 6k, we have that C has
M := 23F codewords and minimum distance d = 2k +2. We may choose a generator
matrix G of C' which has the form:

0

: Go
G=1] o

w Y

1 X

where Gy is a matrix of size (3k — 2) x (n — 1) over F4 and x and y are vectors in
F}~!. Without loss of generality, we shorten with respect to the first column and
last row of this generator matrix, and so our code C’ has generator matrix

- (5)

Letting Cj be the code generated by Go, C3 = y + Cj, C; = x + C}) and Cj =
(x+y) + Cj, we see that

C ={0ICy} U {w|C3} U {1]C1} U {@]|C5}.

Further, the shortened code C’ is simply Cj U Cj and its shadow S’ is C} U Cj.
Letting n’, d' and s’ denote the length, minimum distance and minimum shadow
weight of C’, we have n’ =6k — 1, d’ > 2k + 1 and s’ > 2k + 1. But then

2d' +5' >2(2k+1)+ (2k+1) =6k + 3 = (6k — 1) + 4.

Since 6k — 1 =5 (mod 6), we see that C’ is s-extremal.
The proof in the case n = 2 (mod 6) is exactly the same, except that we have
n’ = 6k + 1 and conclude

2d' +5" >2(2k+1)+ (2k+1)=6k+3 = (6k+1) +2,
which gives the result. O

Remark 5.2. The analogous result for the case n = 6k + 4 does not hold. For
example, consider the extremal Type II code QC1g, [9] of length 10 and minimum
distance 4. If we shorten this code with respect to the first column and the fifth row,
we get a Type I code of length 9 and minimum distance 3 with weight enumerator
C(z,y) = 2% + 3253 + 1825y* + 63245 + 12023y + 15322y” + 117zy® + 37y°. This
cannot be the weight enumerator of an s-extremal code with d = 3 and n = 9 by
the below classification.

6. CLASSIFICATION OF s-EXTREMAL CODES

In this section, we classify all s-extremal codes of minimum distance at most 4
and give partial results for s-extremal codes of higher minimum distances.

Suppose C is an s-extremal code of minimum distance d. Then we have the d
equations Ag = 1, A; = 0for 1 < ¢ < d—1 in the unknown coefficients u; in
the Gleason polynomial P(X,Y). If d is not of the form d = 2m + 3 for some
nonnegative m, i.e., if d = 1 or d is even, then the length n of the code must not
be congruent to 5 modulo 6, and d and the minimum shadow weight s must satisfy
2d+ s = n+ 2. Thus we have s = n — 2(d — 1) and so, by Lemma 3.2, only the
d coefficients ug, ..., uq—1 can be nonzero. Thus there is a unique solution to the
system of linear equations, and hence there is a unique possible weight enumerator
for an s-extremal code of length n and minimum distance d.
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If, on the other hand, d is odd and at least 3, then there are two cases to consider.
If n is not congruent to 5 modulo 6, then the argument above shows that there is a
unique possible weight enumerator. If n is congruent to 5 modulo 6, then in order
for C to be s-extremal, we must have s = n — 2(d — 2). By Lemma 3.2, only the
d — 1 coefficients uy, ..., ug—2 can be nonzero. Hence we have d equations in d — 1
unknowns and there need not be a solution.

For each value of d, we first compute the possible values of n such that there
is an s-extremal code of length n and minimum distance d. We then explicitly
compute the putative weight enumerator for each possible pair (d,n). Since the
shadow enumerator, and hence the minimum weight of the shadow, is determined
by the weight enumerator, any code with this weight enumerator is necessarily s-
extremal. So we only need to find the codes with these weight enumerators. Some
of the simpler cases were treated by Héhn [11]; many of the others were treated by
Gaborit, et al., in [9] or by Danielsen and Parker in [6].

We now begin our classification.

d = 1: In this case we have s = n. Thus P(X,Y) = uX" and so C(z,y) =
uo(z+y)". Since Ag = 1, we have ug = 1, i.e., C(z,y) = (z+y)". If C £ F3,
then C has at least two (and hence three) distinct words of weight 1 supported
on the i** coordinate for some i. Let w be the unique word of weight n in
C. Then, for some i, there is a word ¢ € C of weight 1 supported on the ith
coordinate with ¢; # w;. But then w 4+ ¢ # w is a word of weight nin C, a
contradiction. Hence C ~ F%. (This is also shown in [11].)

d = 2: In this case we have 0 < s = n — 2. Hohn [11] proves that there are
Az = 3(5 — n) words of weight 2, and so we must have n < 4. The weight
enumerators of C for the possible values of n are as follows:

n C(z,y)
3 z° + 3xy* + 4y°
4 | z* + 22%y? + 8xy® + 5y*

Note that the shadow enumerators can be computed from the weight enumer-
ators using Theorem 3.1.

There is a unique code up to equivalence in each case. For n = 3, it is
generated (over F3) by the vectors (1,1,0), (1,0,1) and (w,w,w). For n = 4,
it is generated by (1, 1,0,0), (0,0,1,1), (1,0, w,w), (w,w, 1,0).

d = 3: Since 3 = 2(0) + 3, a code of minimal distance 3 can be s-extremal if
either it has length n = 5 and minimum shadow weight s = 3, or if has length
n # 5 (mod 6) and minimum shadow weight s = n — 4. In the former case,
the weight enumerator of the code is C(z,y) = z° + 102%y3 + 15zy* + 6y°
and there is a unique code, called the shorter hezacode by Hohn [11]. In the
latter case, one finds 6 < n < 10 as follows: Since s = n — 4, we have n > 4.
The coefficient of z?y™~? in the shadow enumerator is 2" ~5n(13 — n), which
is negative for n > 14. Finally, one can check that the coefficient of ™ 6y"
in the weight enumerator of the code is negative if n = 12 or 13.

n = 6: The weight enumerator of the code is
C(z,y) = 25 + 823y® + 212%y* + 24zy® + 10y°. There is a unique code
with this weight enumerator, called the odd hezacode by Hohn [11].
n="T: We have C(z,y) = 27 + T2y + 2123y* + 422%° + 42245 + 1547,
By [6], there are three codes with this weight enumerator out of four
codes with n = 7 and d = 3. Incidentally, we may obtain them by
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shortening the three extremal even self-dual codes of length n = 8 and
minimum distance d = 4 [9] and applying Proposition 5.1.

n = 8: We have
C(z,y) = 28 + 8z5y3 + 18z%y* + 48x3y5 + 88z2yS + 72xy” + 21y8. Again
appealing to the classification done by [6], we see that there are exactly
three s-extremal codes of length 8 and minimum distance 3.

n=9: We have C(z,y) =
z9 + 122593 + 1825y* + 36z%y5 + 1202%y°® + 180x2y” + 117xy® + 28y°.
There is only one s-extremal code of this length and minimum distance
by [6].

n = 10: We have C(z,y) = % + 20z27y® + 30z%y* + 1225y + 1002%y5 +
300x3y” + 34522y + 180xy® + 36y'° = (2° + 1022y + 15zy* + 6y°)%.
There exists only one s-extremal code of this length by [6]; it is
interesting to note that this code is decomposable. This must be a
direct sum of two shorter hexacodes because n = 5 is the shortest length
for additive self-dual codes of length n with d = 3, i.e., the shorter
hexacode. '

d = 4: Using a similar argument to that, used above to find the possible lengths
of s-extremal codes of minimum distance 3, we see that any s-extremal code
of minimum distance 4 must have length n with 8 < n < 10.

n = 8: We have C(z,y) = z8 + 26z%y* + 643y + 7222y + 64zy” + 29y5.
There are exactly two codes with this weight enumerator. They are
denoted by fip0 and fi01 using the notation of [6], or by QCs, and QCsp
in the notation of [9].

n=9: We get
C(z,y) = 2° + 18x5y* + 72x%y5 + 120238 + 1442%y7 + 117zy® + 40y°.
Of the eight Type I codes of length 9 and minimum distance 4 found in
(9], precisely five are s-extremal: QCy,, QCos, QCo4, QCoy, and QCyp;
this information can be verified via [6] also.

n = 10: We get C(z,y) =
210 4 1028y* + 72255 + 1602%y° + 24023y + 28522y + 2002y° + 561°.
Of the 120 Type I codes of length 10 and minimum distance 4, exactly
15 are s-extremal [6].

d=>5: As 5 = 2(1) + 3, it is possible to have an s-extremal code of minimum
distance 5 and length n = 5 (mod 6). In that case, the length must be
6(1)+5 = 11 and the weight enumerator is C(z,y) = ! +662%y° + 198255 +
330xy” +495x3y® + 550x2y? + 330xy'% 4 78y!!. By [6] or [9], we see that there
is a unique code with this weight enumerator and hence a unique s-extremal
code of minimum distance 5 and length 11.

In the case n Z 5 (mod 6), we find that any s-extremal code of minimum
distance 5 must have length n with 12 < n < 15.

n = 12: We get C(z,y) = x'2 + 4827y5 + 1882545 + 43225y" + 76528 +
10402332 + 972x2y10 4 528zy! + 122y'2. Of the 63 Type I codes of
length 12 and minimum distance 5, exactly 59 are s-extremal [6)].

n = 13: We get C(z,y) = z'3 + 3928y® + 15627y® + 4682z°%y" + 1053z25y® +
1690z%y° + 202823y + 1716z%y'! + 858zy'% + 183y!3. Five codes with
this weight enumerator can be found in [10]. They all have nontrivial
automorphism groups. We further construct the first examples of
s-extremal codes of length n = 13 and d = 5 with the trivial
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automorphism group. The generator matrices of these codes are given
by A3 + wl3, where A;3 is a symmetric (0, 1)-matrix of size 13 x 13
with diagonal zero and I3 is the identity matrix of that size. It is easy
to check that such a matrix gives an additive self-dual code over F4. In
fact, the converse holds too. (See [6] for a proof.) In order to save space
we only give a lower triangular part of A;3 row by row. For example,
the vector (1;00;110) refers to the following matrix:

Ay

I
== O = O
-0 oM
SO OO
OO = =

The four vectors producing s-extremal codes of length n =13 and d = 5
are the following.

(1; 10;001; 0000; 00101; 111110; 0001100; 01011010;
010001011; 1110000101; 10111111110; 011100000110),
(0; 105 110; 10005 01011; 010000; 1000001; 10100111;
101000010; 1100110101; 11010000111; 111111101110),
(1; 11; 100; 0000; 10100; 101101; 1100101; 11001000;
110101010; 1111110111; 01001110011; 000011010010),
(0;11;111;1001; 01111; 110000; 0110001; 11101111;
011100010; 1000110001; 01001010001; 100110001000)

n = 14: We get C(z,y) = =4 + 422%° + 119285 + 408x7y" + 1281x%y® +

2492x%y° + 34862y + 3864x%y!! + 303822%y'? + 1386zy'3 + 267y'4.
There is at least one s-extremal code [10]; it is one of the five Type I
4-circulant codes.

n = 15: It is unknown whether there exists an s-extremal code of n = 15

and d = 5, but the putative weight enumerator of such a code would be
C(z,y) = z'5+63 210 y54+105 295+ 225 28 y7 41305 =7 y®+3430 26 y°+
5418 z° y'° 46930 z* y!1+7350 z° y'2 45355 2 y'3 42205 z y'4+381 y'°.

We summarize the above results in Table 1.

TABLE 1. Summary of s-extremal codes for 1 <d <5

d n # of Codes | Weight Enumerators C(x, y); S(x, ¥)
1] >2 1(i.e., F3') (z+y)"; 2"y
2 3 1 5 + 3zy? + 4y°; 3x’y + 5y°
4 1 % + 2222 + 8z + 5y%; 82?y? + 8y?
5 1 z° + 10z°y° + 15zy” + 6y°; 20z2yS +12y°
6 1 26 + 8233 + 212294 + 24795 + 1045;
3:4]’2 + 4222y + lgy‘i
3| 7 3 27 + 723 + 2123y* + 42225 4+ 42248 + 1507
142493 + 8422y® 4+ 30y7
8 3 28 4+ 82%y3 + 18z3y% + 4823y + 8822y° + T22y7 + 215;
48z4y? + 16022y + 48y
9 1 22 4 122993 + 182834 + 362%y® + 120238 + 180227 + - - - ;
144z%y® + 288z2y7 + 80y°
10 1 («® + 1022y3 + 15zy* + 6y°)?; 400240 + 48022 3® + 144410
8 2 Z5 + 2623yT + 64z°yD + T2z2y° + 64xy’ + 29y°;
4z%y2 + 3624y + 1722290 + 44°
a| 9 5 29 + 182%y% + 722%y5 + 120230 + 144227 + 1172y + 40y%;
1228y + 10824 y® + 3242247 + 68y°
10 15 210 4 1020y4 + 722545 + 1602%y® + 2402347 4+ - -+ ;
402%y* + 2802%y® + 60022 y® + 104y'°
11 1 ZIT + 6620y + 19820 y® + 330z7y" + 49520 y° + 550z7y° + - - ;
1322%y® + 660z%y7 + 110022y° + 156y'!
12 59 z12 4+ 4827 y% + 1882%y° + 43225y7 4+ 7652y + .- ;
15284 + 3562815 + 1530z4y® + 195622y 10 + 239y12
5| 13 at least 9 | =13 + 3928y5 + 15627y% + 468287 + 1053z%y® + 1690z%y% + .. - ;
782z8y5 + 9362547 + 3380x%y® + 343222y 1! 4+ 366y'3
14 at least 1 | o4 + 422995 + 1192898 + 408277 + 12812%y® + 24922%4% + .. -
308x8y® + 23522598 + 72242410 + 593622y 12 + 564y’
15 unknown z15 4 6321045 + 105z%y% + 22528 y7 + 130527 y® + 3430z%y°% + .- - ;
108028 y” + 5600z8y? + 151202%y!! + 1008022 y'3 + 888y'°
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d = 6: There is no known s-extremal code with d = 6, but the putative weight
and shadow enumerators are as follows:
n = 14:
C(z,y) = z'* + 16128y5 + 57627y™ + 111325y8 + 224025y° +
3738z4y10 + 403223y + 28702%y'? + 1344zy*3 + 309y'4;
S(z,y) = 21x1°y4+203z +2562x6y3+7014x4y1°+60419:2y12+543y“.
n = 15:
C(z,y) = =5 + 1052%° + 54028y" + 130527y + 280026y° + 54182°y0 +
756024y + 735023y 12 + 5040:::2 13 4 2205xy + 444y15, and S(z,y) =
63x0y5 + 765x8y7 + 62305y° + 14490:1:“ 11 4 103952%y'3 + 825y'5.
n = 16:
C(x,y) = x'0 + 562'09¢ + 4802%7 + 141028y® + 3200x7y° + 705625y'° +
1209625y + 14840x%y'? + 13440z3y'3 + 8760:c2 14 4 3552zy15 + 645y16
and S(z,y) =
2242105 + 2400288 + 14784200 + 291202y '? + 1776022y 4 + 1248y16.
d = 7: Gulliver and Kim [10] give one circulant s-extremal code of length 17,
C17.1 with weight enumerator
C(z,y) = ='7 + 408z1%7 + 15302%® + 3400z%y° + 8160z7y'" + 1713625y"! +
25704252 + 28560xy gt + 24480z3y' + 1509622%y'5 + 5661:1:y16 + 936y'7
and S(z,y) =
816z10y7 + 680028y° + 34272x%y11 + 57120zy"® + 30192x%y*> + 1872y7.
They also give four circulant s-extremal codes of length 19, Cig.1, Ci9,2,
Ch9,3, C19,4, each of which has weight enumerator
C(z,y) = z1° + 228212y + 1026z 1y® + 34962'%° + 1048827y +
25308z8y!! + 506167y 2 + 82992:56 13 4 1067045y + 1055649:4 15 4
7917323y 16 + 4240822y 7 + 14136my18 + 2148y and
S(z,y) = 456z'%y” +6992x1° % + 506162°y*! + 165984x%y*® +
211128z + 848169:2 17 4 4296y19

The other possible lengths are n = 18, 20, or 21. There are no known
examples for these lengths, but the putative weight and shadow enumerators
are as follows:

n = 18:
C(z,y) = =!8 + 288z1y7 + 1314208 + 36802%° + 9432z%y'" +
2131227y + 381362 2 + 524162°y'3 + 5544024y + 444483:3 15 4
25317x2%y'6 + 89281:y17 + 1432y'8, and S(z,y) = 843712316 + 2376:1:103/8 +
1911628y + 76272252 + 110700z%y'* + 5076022y + 2836y"®.

n = 20:
C(z,y) = 220 + 240z'3y7 + 750z'%y® + 2720z1y® + 10992z'%%"° +
29520z%"! + 62220z%y 12 +11616027y'3 + 17904025y + 21364815 15+
197145z ylﬁ + 139680z%y'7 + 70960z2y'® + 223‘20:1:y19 + 3180y%°, and
S(z,y) = 1920z'%y® + 19968:c10 10 4 128640x8y'? + 35328026y’ +
3974402%y'6 + 1408002%y'8 + 6528y2°

b
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n=21:
C(.’L‘, y) —
22! 4+ 360214y + 630z'3y® + 1120z'%y° + 10080z 1y0 + 34776210y +
74340292 + 146160z3y'3 + 264960z 7y'* + 3801845y'% + 41825725y +
36288024y 7 + 245280z%y'8 + 11844022y + 35028zy?° + 4656y2', and
S(x,y) = 7280z %y? + 54432209 + 31752028y'3 + 735168z5y'® +
740880z%y'7 + 231840x%y'? + 10032y%!.

Table 2 summarizes the possible lengths of s-extremal codes for 6 < d < 11. For
even d, the bound comes from Section 4. For the odd case the ‘*' in the table means
that, for this d, the possible lengths are only conjectured in the sense that for greater
n there always seems to be a negative coefficient in the weight enumerator. See the
Appendix for the detailed weight enumerators of the s-extremal codes considered
in this table.

TABLE 2. Possible range of n for 6 < d <11

d 6 ™ 8 9* 10 11*
n | 14..16 | 17..21 | 20..22 | 23..27 | 26..28 | 29..33

7. CODES RELATED TO S-EXTREMAL CODES

In this section we describe how to produce two Type I or Type II codes over Fy4
from the shadow of an s-extremal code. As in the case of the shadow of a binary
Type I code, it follows from the definition of the shadow of a Type I code C over
F, with the even subcode Cp of C that C3- = CoUC2 UC; UC3, where C = CoUC2
and the shadow S = C; U C3 with a correction of S(C) = C3-\Co in [14, p. 203]
as S(C) = C#\C. Note that C; (i = 1,2,3) are nonzero cosets of Cp in Cj-. We
give an orthogonality among C; (i = 0,---,3) in Table 3, where L means that two
cosets are orthogonal and / means that they are not. Hence Cy UC) and Cp U Cj
are self-dual.

TABLE 3. Orthogonality for the cosets of Cy in Cg-

Co C; C; Cs
Chb L L1 1 L
c L L [/ /
e Lo/ L
G L/ /1

Proposition 7.1. Suppose C is an s-extremal code of length n and minimum dis-
tance d satisfying 2d+s =n+2. Ifd is odd and s = d+2, then CoUC} or CoUC3
is an s-extremal code with minimum distance d’ = d + 1 and the minimum shadow
weight s’ =s—2=d.

Proof. Let C(V) := Co U Cy and C®) := Cy U Cs. Since n = 3d is odd, all weights
in S of C are odd by Lemma 3.2. Hence both C() and C® are of Type 1. We
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may assume that C contains a vector x of minimum weight s. Then the minimum
distance of C() is min{d(Cp),d(C1)} = min{d + 1,s} = d + 1. The shadow of C(!)
is C U C3 and its minimum weight is min{d(C;),d(C3)} = min{d,> s} = d. As
2(d+1)+d=3d+2=n+2,CW is an s-extremal code. a

Example 7.2. The s-extremal code of length n = 9 with d = 3 in Table 1 produces
an s-extremal code of the same length with minimum distance 4. Similarly if there
is an s<extremal code of length 15 with d = 5, then there must exist an s-extremal
code of n = 15 and d = 6. Further, if there is an s-extremal code of length 21 with
d = 7, then there is an s-extremal code of that length with d = 8. Existence of
these codes of lengths 15 and 21 are unknown.

Proposition 7.3. Suppose C is an s-ezxtremal code of length n = 6m + 2 and
minimum distance d. If d is odd and s = d + 1, then both Co U C; and Cy U Cs
are extremal Type II codes with minimum distance d + 1. Moreover the weight
enumerators of C; and C3 are the same and are explicitly determined.

Proof. Let C(V) := CoUC; and C® := Cy U Cs. By Lemma 3.2 all weights
in S of C are even. So C(1) is of Type II. The minimum distance of C(!) is
min{d(Co),d(C1)} = d + 1. Similarly d(C®) is d + 1. Since s = d + 1 and
2d+s=n+2=6m+4, wegetd+1=2m+2=2x|§]+2. Hence the two codes
are extremal. Finally we recall that the weight enumerator of an extremal Type II
code is uniquely determined by its length and that the weight enumerator of Cj is
explicitly determined by that of C. Therefore the weight enumerator of C; and Cs
are the same and are explicitly determined. a

Example 7.4. The three s-extremal codes of length 8 and d = 3 produce the three
extremal Type II codes of length 8 and d = 4. The weight enumerator of an extremal
Type II code of length 8 and d = 4 is known as z8 + 42z%y* + 168225 + 4548
(for example in [10]). Since the weight enumerator of the even subcode of the
three s-extremal codes of length 8 and d = 3 is z® + 18z%y* + 882%y® + 2138 from
Table 1, we get We, = 24ziy* + 802%y8 + 24y* = Wi,. We have checked that
We, + We, = S(z,y). From Table 1 we know that there exists an s-extremal
code of length 14 with d = 5. By Proposition 7.3 we can decompose S(z,y) as
We, = We, = 154288 + 1176258 + 3612240 + 2968x%y'? + 282y'* and there
should exists a Type II code of n = 14 and d = 6. Similarly if there exists an
s-extremal code of n = 26 and d = 9, then there must exist an extremal Type II
code of length 26 with minimum distance 10 whose existence is unknown [10].

8. CONCLUSION

We have introduced a concept of s-extremal codes for additive self-dual codes over
F,4. More precisely, for an additive self-dual F4 code C of length n with minimum
distance d, it satisfies 2d + s < n + 2 unless n = 6m + 5 and d = 2m + 3, in which
case 2d + s = n + 4, where s is the minimum weight of the shadow of C. Then
we have given a bound on the length of s-extremal codes with even length, and
classified them up to minimum distance d = 4. We have shown that any shortening
of extremal Type II codes of length n = 0 or 2 (mod 6) produces an s-extremal
code of length n — 1. Furthermore, we have given possible lengths and (shadow)
weight enumerators for which there exist s-extremal codes with 5 < d < 11 and five
s-extremal codes with d = 7. We have given four new s-extremal codes of length
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n = 13 and minimum distance d = 5. We also have described a way to relate an s-
extremal code of length 3d to another s-extremal code of that length, and produced
extremal Type II codes from s-extremal codes.

In Theorem 3.1 of [3], Bachoc and Gaborit showed that the set of words of weight
in a binary s-extremal code holds 1-designs (and even 2-designs in some cases) using
the idea of harmonic weight enumerators of binary codes as introduced by Bachoc
in [1]. As a future work, it would be interesting to find t-designs (possibly with
repeated blocks) in s-extremal codes over F4. Bachoc’s idea [2] of using harmonic
weight enumerators is not directly applicable to s-extremal codes over Fy due to the
requirement of linearity.

APPENDIX

In this appendix, we give detailed weight enumerators of the s-extremal codes
treated in Table 2.

d = 8: There is no known s-extremal code with d = 8. The putative weight
enumerators and shadow enumerators are as follows.

n=19:
If n = 19, then the coefficients of C(z,y) and S(z,y) are nonnegative.
But the highest possible minimum weight of a Type I code of length 19
is 7 [14]. So we exclude n = 19.

n = 20:
C(z,y) = £2° + 9902y + 4160z 1y° + 955221010 + 259202%'" +
6582028y2 + 120960z 7y'3 + 17424025y'* + 210048z5y° +
200745z%y'6 + 14112023y'7 + 69520z2y'® + 22080zy'® + 3420y%°, and
S(z,y) = 120zy8 + 1080z'2y® + 224882010 + 12444028%y'% +
35748025y14 + 39492024y’ + 141640z%y'® + 6408y%.

n=21:
C(z,y) = z2' + 630238 + 3640z'%y° + 10080z 'y'" + 27216z'%'! +
743402%'2 + 15876028y'3 + 264960z 7y'* + 367584285 + 4182575y16 +
370440z%y'7 + 245280238 + 115920z2%y'? + 35028zy?° + 5016y°!, and
S(z,y) = 360z 4y” + 4760z'%y° + 619922'°y*! + 30492028y™® +
7477682815 + 7333202417 + 234360z%y"® + 9672y

n = 22:
C(z,y) =
222 + 3302'4y® + 3080213y + 101642y 10 + 2721621y ! + 79464z'%y'? 4
1940402%13 + 36762028y 4 + 577632z 7y + 76391725y + 8149685y 7 +
6760602y '8 + 42504023y + 192192x%y° + 55176zy? + 7404y*?, and
S(z,y) = 1320248 + 16632z'2y'® + 168168z %' + 722040z%y' +
15393842516 + 134596028 + 3862322%y%° + 14568y>2.

d = 9: There is no known s-extremal code with d = 9. The putative weight
enumerators and shadow enumerators are as follows.

n = 23:
C(z,y) = 22 + 25302'4y° + 106262'3y'° + 26082z'2y'! + 78246z 1y'? +
223146710913 + 4781702%'* + 8303462%y'® + 1245519z 7y'6 +
156202225917 + 156202225y + 1221990z%y'® + 73319423y +
317262z2y2! + 86526zy*? + 10926y, and
S(z,y) = 5060z'4y? + 52164x'2y"! + 446292x'%'3 + 1660692255 +
+312404425y7 + 2443980y + 6345242%y?! + 21852y23.
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n = 24:
C(z,y) = o + 1760z'%y® + 8712240 + 26208z'3y!! + 80556z 2y"'% +
235872z 1y1% + 567864:::10 "4 11225282:9 15 4 18769411:8 16 4
26579523:7 17 4 3116344z yw + 2949408z y19 + 2203740z y2° +
1259808z3y2! + 517896x2y?? + 135072zy?® + 16554y24, and
S(z,y) = 495116y8+ 15048x14y1° + 165732x%y'? + 1131768z %y +
37538822816 + 62357685y 8 + 4404708z y?° + 10368721:2 a2 +32943y24.
n =25
C(z,y) = £ + 137525y + 6600z'5y'" + 23400z 4y + 81900x'3y'? +
24570023 + 6318003“ 4y 1403160210 15 4 26309253:9 16 4
41530502:8 17 1 5537400z yls + 6144600x°y19 + 5530140z5y2° +
3936900:5“3/21 + 21474002%y2? + 844200z%y?® + 211050zy?* + 24831y%,
and
S(z,y) = 27508y + 46800z 4y + 491400z'%y'3 + 2806320z'%'5 +
8306100x3y7 4122892005y + 7873800:043121 + 1688400:1:2y23 +49662y%5.
n = 26:
C(z,y) =
72641430z 7y? 4471921010 41684825y 1 +80340x 4y 2 +259560x3y '3 +
671580212y + 1625520z 1y15 + 344272521016 + 604890027 +
8973250:(:8 18 + 11359920z y19 + 11999988:06 20 4 10271976;:5 21
6970860z4y?2 + 3641040z3y?3 + 1373970z2%y 54 + 329238xy?5 + 36999y26,
and S(z,y) = 12012590 + 143520z'4y'? + 139464022y +
6795360z0y16 + 18046600:1:8 18 4 23927904356 s 1397448014 24
273936022y 2 + 74988y,
n=2T7:
C(z,y) = %7 + 2145z'8y° + 3861z'7y'0 + 45636y ! + 69732z'5y'? +
288900z 4y + 712260:1:13 14 4 1738620:1:12 15 4 41821651” 16 4
8301150:cmy" + 1353495031:9 18 4 190347303:8 19 4 2305789217 20 4
23202036x%y%! + 18885204z5 2 4 1224990014 23 4 615069023y%* +
2232009z2y 2 + 512109zy?6 + 54811y%", and S(z,y) = 47736x16 11 +
4233604y s + 3837600z'2y'5 + 16061760z y'7 + 38610000z%y"? +
46043712x5y%! + 24654240z%y?® + 4425408z%y 25 + 113912427,
d = 10: There is no known s-extremal code with d = 10. The putative weight
enumerators and shadow enumerators are as follows.
n = 26:
C(z,y) = 20+ 61492010 4 2828825y ! + 68900z 4y ? + 21952023y +
711620z 12y4 + 17056001 y% + 33626452106 + 5948800x%'7 +
9073350:1:8 18 4 11440000z y19 + 11919908z y'w + 10231936m5 21
7010900z*y?2 + 365248023y3 + 1362530z2y?* + 327808zy?® + 38429y26
and S(z,y) = 715288 + 5577:;:16 10 4 1692601“y12 + 1334580x12y'4 +
6885450106 + 17956510x8y'8 + 23987964:::6 20 1 13948740z%y%? +
2745795x%y o4 + 74273y%.
n=2T:
C(z,y) = %7 + 3861x'7y'0 + 23868z 6y + 69732z'%y'2 +
211680z 4y13 + 712260:1:13 14 4 19188001‘12 15 1 4182165z'1y'6 +
80308803:‘0 17 4 135349503:9 18 4 193050001'3 19 4 23057892x7y2° +
23021856x5y%! + 188852041:5 22 } 12327120z + 6150690z%y** +
2212704x%y z + 512109zy%6 + 56956y%7, and
S(z,y) = 2145x18 9 + 2843110y 4 500580z 4y + 3657420212y +
1633203021017 + 38339730289 + 46223892x%y%! + 24577020z%y*® +
44447132%y 2 +111767y%".
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n = 28:
C(z,y) = =28 + 2002z'8y'0 + 19656z 7y"! + 68523z6y'2 +
197568z 1%y'3 + 6865209:“ 144 2066400z*3 15 4 49317451“’- 16 4
102211202:“ 17 4 18878860:0‘0 B +30030000x9y19+40414374z8 20 4
46043712z7y o + 44027256z% 22 + 345159362°y% + 21542430z%y?* +
10325952x3y yas + 3581298x%y 2 + 797384xy?" + 84719y%8, and

S(z,y) —80082:18 ‘°+107016x16 12 1 1476000x14y'4 +
9653280x12y6 + 38038000z1° 18 4 80576496x8y20 + 882073922522 +
43024800x4 24 4 717645622y 26+ 168008y28.

d = 11: There is no known s-extremal code with d = 11. The putative weight
enumerators and shadow enumerators are as follows.
n=29:

C(z,y) = £ + 158348y + 712532 7y'? + 179046203 +
613872z15y14 +2140200x“ 15+56180253:13 16+123505201:12 17 4
24701040:c11 18 1 43543500209 + 653152502%%° + 83454228z%y%! +
91040976z "y o2 + 8341351225y 24 + 6256013425y + 374315762%y° +
1727611223y?5 + 5781034z2y?” + 1238793zy?® + 126006y%°, and
S(z,y) = 31668:13 uy 358092;&6 13 1 428040024y +
24701040z %y 17+87087000:c1° 19+166908456m8 21+166827024a:6y23+
74863152z%y 25+ 115620682 27+252012y29

n = 30:
C(z,y) =
230 + 109202191 + 56875x'8y!2 + 173880z 7y'® + 594810z6y¢ +
2068128z 5y 15+5951745x” 16+14444640m13 "+3101644Oa:12 18
59033520x11 - +97783686$1° 20 4 139510800z%2! + 1708738208y 22
178382880:::7 23 4 156295230z5y24 + 1125109442525 + 64827000z%y?¢ +
2881508023y T + 928129522528 + 1920120xy?° + 190010y3°, and
S(z, )—3003x2° 1°+93730:c18 12 4 1247535216y + 11813400x4y6 +
621029503[,-12 18 4 195567372z1% 0 + 3416903102822 +
3126505201:5 y24 + 129622815z%y 26+ 18571170z%y?8 + 379019y°.
n=31:
C(z,y) =z +8463x2° 114 42315292 + 149730z'8y3 +
577530z 7y l4+2003499:c16 15+6010497x15 16+15992280x“ 17 4
37315320z13 18 4 76251630z'2y'® + 1372529341y +
2162417401;10 a1 +294875100:r9 3 +345616830x8 23 4
345616830z 7y 24=+29065:’,272J~,6 25 4 2012214962°%y 26+111658435x4y27+
47853615x3y A + 14880930z2y?? + 2976186xy3° + 285015y%!, and

S(z,y) = 16926:1:2” tl +299460x13 13 4 4006998z16y15 +
31984560z 4y'7 + 152503260x12y19 +432483480x1° - +6912336603:8y23 +
58130654425y5 + 223316870227 + 29761860z%y 2 + 570030y°!.

n = 32:

C(z,y) = 32 + 8736z y"! + 29848270y + 10080029y +
547680z'8y!4 +2012832z" 15-{-58753621:16 16 4 16674048x15 17 4
42966400::“ 18 4 9462432023y '? + 1824994081220 +3134327O4$“y21 +
472350528:1:10 22 | 61555104023 + 6908132408y +
66352665627y 2 +536812416x6 26+357739424z5 y?T + 1913372402428 +
792048003y 29 + 2382550422130 + 4608288x13! + 42602132, and
S(z,y
75712z2° 12 | 958080x!8y14 + 122912642646 + 84651520x14y'® +
3670168323:” 20 4 9424995842022 + 138330816018 24 4
1072737"(92;,:6 26 | 382983360z%y?8 + 475869441230 + 858048y32.
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n=33:
C(z,y) = % + 13104z%2y*! + 24024z%1y'? + 11088x%%y'3 +
459360x% 14+2205456z18 15+5821794m17 16+16114032m16 74
46814592x15 18 4 113683680z 4y? +232681680113 20 4
427'942944z12 21 4 706874688z 1y?% + 1018686240:1:10 3 4
1268312760:1:9 24 4 1366361568x%y2° + 126391795227y 26
984864496z%y 27+632200536:c5 28 1 326359440z%y 29+130735968:r3y3”+
38090448z2%y 3 - 7123941xy32+634800y33 and S(z,y) =
310464220y 13+29694723:18 15 4 36552384z'5y'7 4 218718720z'4y'® +
8679939843:‘2 21 4 2025264384x1%y23 + 274137177628y%> +
1965404672::6 27 } 654160320z%y 2 + 75892608x2y%! + 1295803y33.
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