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ABSTRACT. Binary self-dual codes and additive self-dual codes over F4 have 
in common interesting properties, for example, Type I, Type II, shadows, etc. 
Recently Bachoc and Gaborit introduced the notion of s-extremality for binary 
self-dua.l codes, generalizing Elkies' study on the highest possible minimum 
weight of the shadows of binary self-dual codes. In this paper, we introduce a 
concept of s-extrema.lity for additive self-dual codes over '4, give a bound on 
the length of these codes with even distance d, classify them up to minimum 
distance d = 4, give possible lengths and (shadow) weight enumerators for 
which there exist s-extremal codes with 5 :5 d :5 11 and give five s-extremal 
codes with d = 7. We construct four s-extremal codes of length n = 13 and 
minimum distance d = 5. We relate an s-extremal code of length 3d to another 
a-extremal code of that length, and produce extremal Type II codes from s­
extremal codes. 

1. INTRODUCTION 

Conway and Sloane [5] introduced the shadow of a binary self-dual code in order 
to get additional constraints in the weight enumerator of a singly-even binary self­
dual code. Let C be a singly-even (or Type I) binary self-dual code of length nand 
Co its doubly-even subcode. The shadow S of C is defined as 

S:= cd- \ c, 
equivalently 

1 
S = {w E lF21 v· w == '2 wt(v) (mod 2) for every v E C}. 

Let d be the minimum distance of C and s the minimum weight of S. Bachoc 
and Gaborit [3] showed that 2d+s ~ ~+4, except in the case n == 22 (mod 24) and 
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d = 4[n/24] + 6, where 2d + s = n/2 + 8. Binary codes attaining these bounds are 
called s-extremal [3]. In fact, ElIdes [7] already classified binary s-extremal codes 
for d = 2 and d = 4. Bachoc and Gaborit considered the case when d = 6 and 
showed that there exist binary s-extremal codes of length n with d = 6 if and only 
if 22:::; n :::; 44. 

In a similar manner to that of Conway and Sloane [5], additional constraints 
of the weight enumerator of the shadow of an additive self-dual Type I code over 
F 4 were used by Rains [13] to derive the best known upper bound on the highest 
possible minimum distance of these codes as follows. Let dr (dll' respectively) be 
the minimum weight of an additive self-dual Type I (Type II, respectively) code of 
length n > 1. Then 

(1.1) 

(1.2) 

if n = 0 (mod 6) 
if n = 5 (mod 6) 
otherwise 

A code meeting the appropriate bound is called extremal. 

After the introduction of s-extremal binary self-dual codes, it is natural to ask 
whether there exists a concept of s-extremal additive IF 4 codes. If so, can we classify 
them? In this paper, we introduce a concept of s-extremal codes for additive self­
dual codes over F 4, give a bound on the possible lengths of such codes related to their 
distances for even d, classify them up to minimum distance d = 4, and give possible 
lengths (only strongly conjectured for odd d) and (shadow) weight enumerators for 
which there exist s-extremal codes with 5 :::; d :::; 11 . We construct four s-extremal 
codes of length n = 13 and minimum distance d = 5 with the trivial automorphism 
group, which do not appear in any literature. We relate an s-extremal code of 
length 3d to another s-extremal code of that length, and produce extremal Type II 
codes from s-extremal codes. 

2. S-EXTREMAL ADDITIVE IF4 CODES 

We recall basic definitions on additive IF4 codes from [4], [9]. 

Definition 2.1. An additive IF4 code C of length n is a subset C c IF~ which is 
a vector space over F2 • We say that C is an (n,2k) code if it has 2k codewords. 
If c E C, the weight of c, denoted by wt(c) , is the Hamming weight of c and the 
minimum distance (or minimum weight) d of C is the smallest weight among any 
non-zero codeword in C. We call C an (n , 2k, d) code. 

Definition 2.2. Let x = (Xl , ... , Xn ), Y = (Yl. ... , Yn) E F~. The trace inner 
product of x and y is given by 

n 

(x, Y) := L Tr(XiY;) 
i=l 

where Tr : IF4 -+ IF2 is the trace map Tr(o:) = 0: + 0:2. 

Definition 2.3. If C is an additive code, its dual, denoted Cl. , is the additive code 
{x E IF4' I (x, c) = 0 for all c E C} . If C is an (n, 2k) code, then Cl. is an (n , 22n

-
k) 

code. C is self-orthogonal if C ~ C l. and self-dual if C = Cl. . If C is self-dual, it is 
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an (n,2n) code. For an additive self-dual code over 1F4, if all codewords have even 
weight, the code is Type II, otherwise it is Type l. 

Dennition 2.4. Let C be an additive lF4 code of length n which is self-dual with 
respect to the trace inner product. The shadow S = S(C) of C is given by 

S = {w E JF~ I (v, w) == wt(v) (mod 2) for every v E C}, 

where wt(v) is the Hamming weight of v. If C is Type II S(C) = C, while if C is 
Type I 8(C) is a coset of C. 

The next theorem, which is the lF4-analog of (3, Theorem 1], is the first main 
result of this paper. Its proof is given in Section 3 below. 

Theorem 2.5. Let C be a Type I additive lF4 code of length n, self-dual with respect 
to the trace inner product, let d = dmin(C) be the minimum distance of C, let 
S = S(C) be the shadow of C, and let s = wtmin(S) be the minimum weight of S. 
Then 2d+s :::; n+2 unless n = 6m+5 and d = 2m+3, in which case 2d+s = n+4. 

Theorem 2.5 motivates the next definition. 

Definition 2.6. Let C be a Type I additive 1F4 code of length n, self-dual with 
respect to the trace inner product, let d = dmin(C) be the minimum distance of C, 
let S = 8 (C) be the shadow of C, and let s = wtmin (S) be the minimum weight of 
S. We say C is s-extremal if the bound of Theorem 2.5 is met, Le., if 2d + s = n + 2 
except if n = 6m + 5 and d = 2m + 3 in which case 2d + s = n + 4. 

Remark 2.7. It will follow from the proof of Theorem 2.5 that the weight enumerator 
of any s-extremal code is uniquely determined and can be explicitly computed from 
the values of nand d (or n and s). 

3. PROOF OF THEOREM 2.5 

We will make integral use of Gleason's Theorem for additive 1F4-codes. The 
statement of this theorem is recalled below. 

Theorem 3.1 ([IIJ,[13]). Let C be an additive 1F4 code 0/ length n which is sel/­
dual with respect to the trace inner product. Let S = S(C) be the shadow of C, 
and let C(x, y) and Sex, y) be the homogeneous weight enumerators of C and S, 
respectively. Then 

1 
Sex, y) = ICI C(x + 3y, y - x) 

and there are polynomials 

LtJ LtJ 
P(X, Y) = L Uixn-2iyi and Q(X, Y) = L Vixn-2iyi 

i=O i=O 

over IR such that 

C(x, y) = P(x + y, x 2 + 3y2) = Q(x + y, y(x - y)) 

and 
y2 _ x2 

Sex, y) = P(2y, x2 + 3y2) = Q(2y, ' 2 ). 
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Lemma 3.2. Let G be an additive IF 4 code of length n which is self-dual with respect 
to the tmce inner product. Let S = S(G) be the shadow olG. Every vector in S has 
weight congruent to n modulo 2. Moreover, if we let s = wtmin(S) be the minimum 
weight of S and write s = n - 2r, then the coefficients Ui and Vi in the polynomials 
P(X, Y) and Q(X, Y) of Theorem 9.1 are 0 for r + 1:5 i:5 l~J. 

Proof. We have 

l1fJ 
S(x, y) = P(2y, x2 + 3y2) = L ui(2y)n-2i(x2 + 3y2)i 

i=O 

The first statement of the lemma is now clear since the exponent on y corresponds 
to the weight of the vector. 

Now let s be the minimal weight of any vector in S and write s = n - 2r. Then 
n - 2r is the smallest exponent which appears on y with nonzero coefficient and so 
for l > r, we have 

From this we see that Ui appears in the expression for the coefficient of x21 yn-21 for 
l :5 i :5 l ~ J. Thus we recursively obtain the desired l ~ J - r equations U l1f J = 0, 
Ul1fJ-l = 0, ... , Ur+l = ul1fJ-(l1fJ-(r+l» = O. 

To see that the Vi'S are also 0 for i ~ r + 1, notice that 

(x + y)2 _ 2y(x - y) = x2 + 3y2 

and so writing ¢> = x + y, p = x2 + 3y2 and 'I/J = y(x - y) we have 

G(x,y) = Q(¢>,'I/J) = P(¢>,p) = p(¢>,¢>2 - 2'I/J). 

Using the second and last terms in the above equation, we get 

l1f J r L Vi¢>n-2i'I/Ji = L Uj¢>n-2j(¢>2 - 2'I/J)j 
i=O j=O 

= t Uj f) _2)k G) ¢>n-2k'I/Jk . 
j=O k=O 

It is clear that no term 'l/Jk with k ~ r+ 1 can occur in this last sum, and so we must 
have Vi = 0 for r + 1 :5 i :5 l ~ J since ¢> and 'I/J are algebraically independent. 0 

We are now ready to prove Theorem 2.5. 
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Proof of Theorem 2.5. If 2d + s < n + 2, then we don't wish to say anything, so 
assume 2d + ~ n + 2. Set t = n + 2 - 2d = n - 2(d - 1), which is nonnegative by 
the Singleton bound for nonlinear codes [12, p. 71]. So 0 ~ t ~ s and we have 

C(x, y) = 1 + Adxn-dyd + ... 
S(x, y) = Btxn- tyt. + Bt+2Xn-t-2yt+2 + ... 

where we are using the fact from Lemma 3.2 that all weights in S are congruent to 
n modulo 2 and we are not assuming that B t is nonzero. 

Note that if B t f= 0 then t = s, i.e., 2d + s = n + 2. If B t = 0 then t < s, i.e., 
2d + s > n + 2. We wish to show that B t = 0 only in the case n = 6m + 5 and 
d = 2m + 3, and that in that case, Bt+2 f= 0, i.e., s = t + 2, i.e., 2d + s = n + 4. 

From the assumption 2d + s ~ n + 2 and substituting s = n - 2r, we get r ~ d - 1. 
ff r = 0, then s = n. In this case, we have d = 1 by Lemma 3.2, and so 2d+s = n+2 
as desired. Hence we may assume r > O. 

We have that Bt is the coefficient of xn-tyt in S(x, y) and as Vi = 0 for i ~ d by 
Lemma 3.2, we may write 

L~J (2 2)i 
S(x,y) = ~ v,(2yt- 2

' Y; x 

= ~ vi2n-2iyn-2i2-i t( -1)j (~)y2i-2jx2j 
i=O j=O J 

= ~ t( _1)j2n- 3i (~) Vix2jyn-2j. 
i=O j=O J 

We see that B t comes from the summand where i = j = d - 1, i.e., 

B, = (_I)d-12n- 3(d-l) (: = D Vd-l = (-1)d-12n-3d+3Vd_l. 

Hence Bt = 0 if and only if Vd-l = O. 
Next, start with the equation 

d-l 

1 + Adyd + ... = C(I, y) = L vi(1 + y)n-2i(y(1 _ y))i. 
i=O 

Dividing both sides by (1 + y)n, we get 

1 d ~ (Y(I_ y))i 
(1 + y)n (1 + AdY + ... ) = ~ Vi (1 + y)2 

Write f(y) = (l+11l)n and g(y) = fi~~fJ. Then we have 

d-l 

f(y) = L vig(y)i - f(y)(Adyd + ... ) 
i=O 
d-l 

= L Vig(y)i - Adyd + O(yd+l). 
i=O 
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Since 

= L:) _1)i+l(2i - l)yi, 

i~l 

g(y)j = yj + O(yj+l ) for any j ~ 1. We see that the first few terms in th xpan ion 
of fey) as a power series in g(y) are Vo ... , Vd-l, - Ad. So by using the Biirman­
Lagrange Theorem below, we see that the weight enumerator of an s-extr mal code 
is uniquely determined. 

We recall the Biirman-Lagrange Theorem (as stated in [13]): If f( x) and g(x) are 
formal power series with g(O) = 0 and g'(O) :/; 0 and the coefficients Ki ar d fin d 
by 

then 

f(x) = L Kig(x)i , 
i~O 

Ki = ~ (coeffiCient of X'-I in f'(x) (g~) y) , 
Our functions fey) and g(y) satisfy these hypotheses, and we have 

Vd-l = Kd - l 

= d ~ 1 (coefficient of yd-
2 

in !' (y) Cry) r-I 

) 

= d ~ 1 (coefficient of yd-
2 

in ((1+ -y~n+l) C~ ~ ~2 r-I 

) 

= d ___ n1 (coefficient of yd-2 in (1 + y)n-2d!3(1 _ y)d-I ) , 

We are now ready show that B t = 0, i.e. , Vd-l = 0 if and only if n = 6m + 5 
and d = 2m + 3. We may rewrite Vd- l as 

-n ( ffi' f d-2' 1 ) 
Vd - l = d _ 1 coe Clent 0 y III (1 + y)n- 3d+4(1 _ y2)d- l 

and we consider three cases. 
If n - 3d + 4 < 0, then we are looking at the coefficient of yd- 2 in the product 

of the polynomial (1 + y)3d-4-n and the power series (1 + y2 + y4 + ... )d- l. That 
coefficient will certainly be nonzero (in fact, positive), which mean Vd - l:/; 0 and 
B t :/; O. 
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If n - 3d + 4 > 0 th n we have 

-n 
Vd- I = d - 1 

i,k ~ 0 
i + 2k = d - 2 

= _n_(_ l)d+ l ""'" 
d - 1 L.J 

i, k ~ 0 
i + 2k = d - 2 

and so again B t :/= O. 
Finally, con id r th cas where n - 3d+4 = O. Write n = 6m + l where 0 < 1 < 5. 

Then 0 = n - 3d + 4 = 6m + 1 - 3d + 4 and so 3d = 6m + 1 + 4, i.e. , 

d - 2m + 1 + 4 - 3 . 

Since d must be an integer , this means 1 = 2 or 1 = 5. If 1 = 2, we have n = 6m + 2, 
d = 2m + 2, and 

- (6m + 2) ( . 2m . 1 ) 
Vd - l = V2m+l = 2m + 1 coefficIent of y III (1 _ y2)2m+l :/= 0 

and 0 B t :/= O. If 1 = 5, we have n = 6m + 5, d = 2m + 3 and then 

-(6m + 5) ( . 2m+ l . 1 ) 
Vd-I = V2m+2 = 2m + 2 coefficIent of y III (1 _ y2)2m+2 = 0 

and hence B t = 0 in this case. Thus we have completed the proof of the fact that 
B t = 0 if and only if n = 6m + 5 and d = 2m + 3. 

We now ne d to show that if n = 6m + 5 and d = 2m + 3, then Bt+ 2 :/= O. We 
have 

Thus Bt+ 2 i obtain d by taking j to satisfy n - 2j = t + 2 in the ummand on the 
right. As n = 6m + 5 and t = n + 2 - 2d = 6m + 5 + 2 - 4m - 6 = 2m + 1, we need 
j = 2m + 1 = d - 2. Thus we must have i = d - 2 as well and w get 

B () d - 2 n -3d+6 (d - 2) 
t+ 2 = - 1 2 d _ 2 Vd-2 = - 4Vd - 2· 
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Using Burman-Lagrange again w get 

Vd-2 = Kd-2 

= d _1 2 (coefficient of yd-3 in ( -n ) ((1 + y )2) d-2) 
(1 + y)n+l 1 - y 

-n ( ffi' f d-3· 1 ) 
= d _ 2 coe Clent 0 y In (1 + y)n- 2d+5(1 _ y)d-2 

= d __ n2 (coefficient of yd-3 in (I + y)n-3d;7(1 _ y2)d- 2 ) 

d __ n2 L ( _ IJi(n-3d/j+6)(d+~-3) 
j, k ;::: 0 

j + 2k = d - 3 

= ~(_I)d ~ 
d-2 L-

j,k ;::: 0 
j + 2k = d - 3 

which is certainly nonzero. Hence Bt+2 is nonz ro and w have s = t+2 = n-2d+4 
as desired. This completes the proof. 0 

4. A BOUND FOR THE LENGTH OF AN s-EXTREMAL CODE 

In this s ction, w giv an upper bound for the length of an s-extr mal ode with 
even minimum distance d. This bound generalizes additiv IF 4 cod th case of 
binary s-extremal codes of [8]. 

Theorem 4.1. An s-extremaL code with length nand ev n minimum distanc d 
must satisfy n < 3d. 

Proof. Gleason's theorem gives us 

C(I, y) = 1 + Adyd + ... = L vi(1 + yt-2i (y(1 _ y)) i . 
O~i$L ~ J 

If C is s-extremal and has even minimum distance th n it follow from Defini­
tion 2.6 that s = n - 2(d - 1). We have shown in the proof of L mma 3.2 that 
Vi = 0 if i ~ d and we may once again divid both side of the abov quation by 
(1 + y)n to g t 

~ ( y (1 - y) ) i _ 1 1 (d d+ 1 ) 
~Vi (1 + y)2 - (1 + y)n + (1 + y)n Ady + Ad+1y + ... . 

y(1 - y) 
L t g(y) = ( )2 and from the above expre ion, we s that vo, ... 1 Vd-l, - Ad 

l+y 
. 1 

ar the fir t oefficlents of the dev lopment of ( ) as a ri sin g(y). Applying 
l+yn 

th Biirman-Lagrang Th orem w th n hav 

Ad = ~ ( oefficient of yd-l in (I + y)n- 2!+1(I_ y)d) 

n ( ffi' f d - l' 1 ) = d coe clent 0 y ill (1 + y)n-3d+l (1 _ y2) d 
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If n = 3d + Q' where Q' 2: 0, then 

A n ( ffi' f d-l' 1 ) 
d = d coe Clent 0 y In (1 + y)1+a(1 _ y2)d 

= 
n 

d 
j . Ie ~ O 

j+2k=d-l 

Now, if d is even, then d - 1 = j + 2k must be odd which shows that j must be 
odd. This implies that all the terms in the summation must be negative, showing 
that Ad < 0 and leading to a contradiction. Therefore n < 3d. 0 

Remark 4.2. For the odd distance case it also seems that there is always a negative 
coefficient in the possible s-extremal weight enumerators at some point, but we 
could not find any clear patter~ to use to prove this as for the even case. 

Next, we consider a lower bound for the length of an s-extremal code of length n 
and minimum distance d. First notice that it follows from Eq. (1.1) that any Type 
I additive self-dual code of length n and minimum distance d satisfies n 2: 3d - 5. 
In the case that d is even and C is s-extremal, we have: 

Lemma 4.3. If d is even, then any s-extremal code with length n and minimum 
distance d satisfies n 2: 3d - 4. 

Proof. We see from the proof of Theorem 2.5 that if n - 3d + 4 < 0, then Vd- l is 
positive. This implies B t = (-I)d- 12n-3d+3vd_l is negative if d is even. This is 
impossible. Hence n - 3d + 4 2: O. 0 

Putting this all together, we have: 

Corollary 4.4. If d is even, then any s-extremal code of length n with minimum 
distance d' satisfies d - 2 ~ s < d + 2 and 3d - 4 ~ n ~ 3d - 1. 

5. A CONSTRUCTION OF s-EXTREMAL ADDITIVE 1F 4 CODES 

We recall the shortening of additive IF 4 codes from [9]. Let C be a self-dual 
additive (n , 2n

, d) code with its generator matrix G. Choose any column of G, say 
the ith one. The entries in column i can be any of 0, 1, W , or w. By row reducing G 
(to obtain another generator matrix we call G again), we can make all the entries 
in column i equal to 0 except for one or two entries; if two they would be two of the 
three values 1, W, or w. The shortened code of C' on coordinate i, denoted C' is the 
code with generator matrix G' obtained from G by eliminating one row of G with 
a nonzero entry in column i and then eliminating column i. [If there is only one 
nonz ro entry in column i of G, then G' is C shortened in the usual sense.] Clearly 
C' is a self-dual additive (n - 1, 2n- l, d') code with d' 2: d - 1. 

Proposition 5.1. Suppose C is an extremal Type II additive lF4 code of length n. 
If n == 0 or 2 (mod 6), then any shortening of C is s-extremal. 
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Proof. Suppose first that n == 0 (mod 6). Writing n = 6k, we have that C has 
M := 23k codewords and minimum distance d = 2k+2. We may choose a generator 
matrix G of C which has the form: 

o 

Go 
G = o 

w y 
1 x 

where Go is a matrix of size (3k - 2) x (n - 1) over IF4 and x and yare v ctor in 
~- l. Without 10 s of generality, we horten with resp t to the first column and 
last row of this generator matrix, and so our code C' has generator matrix 

L tting Co be the code generated by Go, C~ = Y + Co, C~ = x + Co and C~ = 
(x + y) + Co, we see that 

C = {OICb} u {wIC~} u {IICa u {wIC~}. 

Further the shortened code C' is imply Co U C~ and it hadow 8' i C~ U C~. 
Letting n' d' and s' denote the length, minimum distance and minimum hadow 
weight of C', we have n' = 6k - 1, d' 2: 2k + 1 and s' ~ 2k + 1. But th n 

2d' + s' 2: 2(2k + 1) + (2k + 1) = 6k + 3 = (6k - 1) + 4. 

Since 6k - 1 == 5 (mod 6), we s e that C' is s-extremal. 
The proof in the case n == 2 (mod 6) is xactly the same, except that w have 

n' = 6k + 1 and conclude 

2d' + s' 2: 2(2k + 1) + (2k + 1) = 6k + 3 = (6k + 1) + 2, 

which giv the reult. o 
Remark 5.2. The analogous result for the case n = 6k + 4 doe not hold. For 
example consider the extremal Typ II code QClOa [9] of length 10 and minimum 
distance 4. If we horten this code with resp ct to the first column and the fifth row, 
we get a Type I code of length 9 and minimum di tance 3 with weight numerator 
C(x y) = x 9 + 3x6y3 + 18x5y4 + 63x4y5 + 120x3y6 + 153x2y7 + 117xy + 37y9. This 
cannot be the weight enumerator of an s-extremal code with d = 3 and n = 9 by 
the below classifi ation. 

6. CLASSIFICATION OF s - EXTREMAL CODES 

In this ection, we classify all s-extr mal codes of minimum distance at rno t 4 
and give partial result for s-extremal codes of higher minimum distances. 

Suppo e C is an s-extremal code of minimum distanc d. Th n w have the d 
equations Ao = 1, Ai = 0 for 1 ~ i ~ d - 1 in the unknown coefficients Ui in 
the Gleason polynomial P(X, Y). If d is not of the form d = 2m + 3 for orne 
nonn gative m, i.e., if d = 1 or d is even, then the length n of the code mu t not 
be ongruent to 5 modulo 6 and d and the minimum hadow weight s mu t ati fy 
2d + = n + 2. Thus we hav s = n - 2(d - 1) and so, by Lemma 3.2, only the 
d co fficient Uo , . . . , Ud - l can b nonzero. Thus there i a unique solution to the 
sy t m of lin ar equation and hence there is a unique po sible wight numerator 
for an s-extremal code of length n and minimum distance d. 
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If on he other hand, d is odd and at least 3, then th re ar two cases to con ider . 
If n i not congruent to 5 modulo 6, then the argument above shows that there is a 
unique possible weight enum rator. If n is congruent to 5 modulo 6, then in order 
for C to be s-extremal, we must have s = n - 2(d - 2). By Lemma 3.2, only the 
d - 1 coefficients un, ... , Ud - 2 can be nonzero. Hence we have d equations in d - 1 
unknowns and there need not be a solution. 

For each value of d we first compute the possible values of n such that there 
is an s-extremal code of I ngth n and minimum distanc d. We then explicitly 
compute the putativ weight enumerator for each possible pair (d n) . Since the 
shadow enumerator and hen e the minimum weight of the shadow, is deterrnin d 
by the weight enumerator, any code with this weight enumerator is necessarily s­
extremal. So we only need to find the codes with these weight enumerators. Some 
of the simpler cases were treated by Hahn [11]; many of the others were treated by 
Gaborit, et al., in [9] or by Danielsen and Parker in [6]. 

We now begin our classification. 

d = 1: In this cas we have s = n. Thus P(X Y) = uoxn and so C(x, y) 
uo(x+y)n . Since Ao = 1 we have Uo = 1, i.e., C(x,y) = (x+y)n. HC i-lF2 
then C has at I ast two (and hence three) distinct words of weight 1 supported 
on the ith coordinate for some i . Let w be the unique word of weight n in 
C. Then for orne i, there is a word C E C of weight 1 supported on the ith 
coordinate with Ci -=F Wi. But then w + c -=F w is a word of weight n in C, a 
ontradiction. Hen e C '" 1F~. (This is also shown in [11]. ) 

d = 2: In this case we have 0 < s = n - 2. Hahn [11) proves that there are 
A2 = ~(S - n) words of weight 2, and so we must have n ~ 4. The weight 
enumerators of C for the possible values of n are as follows: 

n C(x, y) 
3 x;j + 3xy 'l + 4y J 

4 x4 + 2x2y2 + 8xy3 + Sy4 

Not that th hadow enumerators can be computed from the weight enumer­
ator using Theor m 3.1. 

There is a uniqu ode up to equivalence in each case. For n = 3 it is 
generated (over 1F2 ) by th vectors (1,1,0), (1 0,1) and (w, w, w). For n = 4, 
it is generated by (1,1,0, 0), (0,0,1,1), (I,O,w,w), (w,w,I,O). 

d = 3: Since 3 = 2(0) + 3, a code of minimal distance 3 can be s-extremal if 
ither it has length n = S and minimum shadow weight s = 3, or if has length 

n ~ S (mod 6) and minimum shadow weight s = n - 4. In the former case 
the weight enumerator of the code is C(x y) = x 5 + 10x2y3 + ISxy4 + 6y5 

and there is a uniqu code called the shorter hexacode by Hahn [11]. In th 
latter case, one find 6 ~ n ~ 10 as follows: Since = n - 4 we have n > 4. 
The coefficient of x2yn- 2 in the shadow enumerator i 2n - 6n(I3 - n) whi h 
i negative for n 2: 14. Finally one can check that th coefficient of xn - 6 yn 

in the weight enum rat r of the code i negativ if n = 12 or 13. 
n = 6: The wight enumerator of the code i 

C(x, y) = x6 + 8x3 y3 + 2Ix2y4 + 24xy5 + 10y6. Ther is a unique code 
with this weight numerator, called the odd hexacode by Hohn [11]. 

n = 7: We hav C(X, y) = x 7 + 7x4y3 + 21x3y4 + 42x2y5 + 42xy6 + lSy7. 
By [6] there are thr codes with this weight num rator out of four 
codes with n = 7 and d = 3. Incidentally w may obtain hem by 
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shortening the three extremal even self-dual codes of length n = 8 and 
minimum distance d = 4 [9] and applying Proposition 5.l. 

n = 8: We have 
C(x, y) = x8 + 8x5y3 + 18x4y4 + 48x3y5 + 88x2y6 + 72xy7 + 21y8. Again 
appealing to the classification done by [6], we see that there are exactly 
three s-extremal codes of length 8 and minimum distance 3. 

n = 9: We have C(x,y) = 
x9 + 12x6y3 + 18x5y4 + 36x4y5 + 120x3y6 + 180x2y7 + 117xy8 + 28y9. 
There is only one s-extremal code of this length and minimum distance 
by [6]. 

n = 10: We have C(x, y) = x lO + 20x7 y3 + 30X6y4 + 12x5y5 + 100x4 y6 + 
300x3y7 + 345x2y8 + 180xy9 + 36y lO = (x5 + 10x2y3 + 15xy4 + 6y5)2. 
There exists only one s-extremal code of this length by [6]; it is 
interesting to note that this code is decomposable. This must be a 
direct sum of two shorter hexacodes because n = 5 is the shortest length 
for additive self-dual codes of length n with d = 3, i.e., the shorter 
hexacode. : 

d = 4: Using a similar argument to that. used above to find the possible lengths 
of s-extremal codes of minimum distance 3, we see that any s-extremal code 
of minimum distance 4 must have length n with 8 :::; n :::; 10. 

n = 8: We have C(x, y) = x8 + 26x4 y4 + 64x3y5 + 72x2y6 + 64xy7 + 29y8. 
There are exactly two codes with this weight enumerator. They are 
denoted by 1100 and iIOl using the notation of [6], or by QC8a and QC8b 

in the notation of [9]. 
n = 9: We get 

C(x, y) = x9 + 18x5y4 + 72x4y5 + 120x3y6 + 144x2y7 + 117xy8 + 40y9. 
Of the eight Type I codes of length 9 and minimum distance 4 found in 
[9], precisely five are s-extremal: QC9a , QC9b, QC9d , QC9f, and QC9h ; 
this information can be verified via [6] also. 

n = 10: We get C(x, y) = 
XlO + 10x6y4 + 72x5y5 + 160x4y6 + 240x3y7 + 285x2y8 + 200xy9 + 56y lO. 

Of the 120 Type I codes of length 10 and minimum distance 4, exactly 
15 are s-extremal [6]. 

d = 5: As 5 = 2(1) + 3, it is possible to have an s-extremal code of minimum 
distance 5 and length n == 5 (mod 6). In that case, the length must be 
6(1) +5 = 11 and the weight enumerator is C(x, y) = Xll +66x6y5 + 198x5y6 + 
330x4y 7 + 495x3y8 + 550x2y9 + 330xy lO + 78yll. By [6] or [9] , we see that there 
is a unique code with this weight enumerator and hence a unique s-extremal 
code of minimum distance 5 and length 11. 

In the case n ~ 5 (mod 6) , we find that any s-extremal code of minimum 
distance 5 must have length n with 12 :::; n :::; 15. 

n = 12: We get C(x , y) = X12 + 48x7 y5 + 188x6y6 + 432x5y7 + 765x4y8 + 
1040x3y9 + 972x2y lO + 528xyll + 122y12. Of the 63 Type I codes of 
length 12 and minimum distance 5, exactly 59 are s-extremal [6]. 

n = 13: We get C(x, y) = x13 + 39x8 y5 + 156x7 y6 + 468x6 y7 + 1053x5y8 + 
1690x4y9 + 2028x3ylO + 1716x2yll + 858xy12 + 183y13. Five codes with 
this weight enumerator can be found in [10]. They all have nontrivial 
automorphism groups. We further construct the first examples of 
s-extremal codes of length n = 13 and d = 5 with the trivial 

12



automorphism group. The generator matrices of these codes are given 
by A13 + Wh3, where A13 is a symmetric (0 , I)-matrix of size 13 x 13 
with diagonal zero and h3 is the identity matrix of that size. It is easy 
to check that such a matrix gives an additive self-dual code over 1F 4. In 
fact , the converse holds too. (See [6] for a proof.) In order to save space 
we only give a lower triangular part of A13 row by row. For example, 
the vector (1; 00; 110) refers to the following matrix: 

A'=[~ ~! II 
The four vectors producing s-extremal codes of length n = 13 and d = 5 
are the following. 

(1 ; 10'001;0000;00101;111110;0001100;01011010' 
010001011; 1110000101;10111111110;011100000110), 
(0; 10;110;1000;01011;010000;1000001; 10100111; 
101000010; 1100110101; 11010000111; 111111101110), 
(1;11;100;0000; 10100;101101; 1100101; 11001000; 
110101010; 1111110111;01001110011;000011010010), 
(0;11;111;1001;01111;110000;0110001; 11101111; 
011100010; 1000110001;01001010001;100110001000) 

n = 14: We get C(x, y) = X14 + 42x9y5 + 119x8y6 + 408x7y7 + 1281x6y8 + 
2492x5y 9 + 3486x4y lO + 3864x3y ll + 3038x2y12 + 1386xy13 + 267y14. 
There is at least one s-extremal code [10]; it is one of the five Type I 
4-circulant codes. 

n = 15: It is unknown whether there exists an s-extremal code of n = 15 
and d = 5, but the putative weight enumerator of such a code would be 
C(x, y) = x15 +63 x lO y5+105 x 9 y6+225 x 8 y7 +1305 x 7 y8+3430 x6 y9+ 
5418 x5 ylo+6930 X4 yll+7350 x 3 y12+5355 x 2 y13+2205 x y14+381 y15. 

We summarize the above results in Table 1. 

TABLE 1. Summary of s-extremal codes for 1 ~ d ~ 5 

d n #~~es Weight ~numerators C(x, 11); S(x , 11) 
1 > 2 l(i.e . , F;n (x + 11)·' ; 2··y 

2 3 1 x'" + 3xll'" + 4y"; 3x~1I + 511" 
4 1 x4 + 2x :l1l2 + 8x1l3 + 5114 ; 8x2112 + 8114 

5 1 XO + 1Ox"y" + 15x1l4 + 6Y~ j 20X~1I" + 1211a 
6 1 x 6 + 8x3113 + 21x2y4 + 24xy5 + 10y6 ; 

3x4112 + 42x2y4 + 19116 

3 7 3 x 7 + 7x 4'113 + 21x3 y 4 + 42x2 1/5 + 42zy6 + 15117 ; 
14x41/3 + 84 :1; 2 y 5 + 301/7 

8 3 :1;8 + 8x51/3 + 18x4 y 4 + 48x3 y 5 + 88x 2116 + 72x y7 + 21y8 ; 
48x41/4 + 160x2 y 6 + 48y8 

9 1 x 9 + 12:1;61/3 + 18xS y 4 + 36:1;4 y 5 + 120:l;3 y 6 + 180x 2y 7 + 
144x4 y 5 + 288x2117 + 80y9 

10 1 lx5 + 10X2j13 + 15xy4 + 6115 )2 j 400X4 1/6 + 480x2118 + 144y10 

8 2 x" + 26x"1/" + 64x "yO + 72x"1/o + 64xy( + 29y" ; 
4z61/2 + 36x4y 4 + 172x21/6 + 44y 

4 9 5 x9 + 18xS1/4 + 72x4 y5 + 120x 3 y6 + 144:1;21/7 + 117x y + 401/9 ; 
12x6 y 3 + 108x4 1/S + 324x2 y 7 + 68y9 

10 15 x lO + 10x 6 y 4 + 72x51/5 + 160x 4 y 6 + 240x3 y 7 + ... ; 
40x6 114 + 280x4 y 6 +600x2 ,,8 + 104,,10 . 

11 1 Xl' + 66:1;v lI D + 198:1;°yO + 330:l;"y + 495:1;"'y" + 550x"y" + ... i 

132:1;6 y 5 + 660x4 y 7 + 1100x2 y 9 + 156y11 

12 59 :1;12 + 48x7 y5 + 188x6 116 + 432:1;5,,7 + 765:1;4 y 8 + ... i 

15:1;8 y 4 + 356x6 ,,6 + 1530:1;411 + 1956:1;2 y 10 + 2391112 

5 13 at least 9 x 13 + 39:1;8 y 5 + 156:1;7 y 6 + 468x6 y 7 + 1053x5 y + 1690x4 y 9 + ... ; 
78x8 y 5 + 936:116 11 7 + 3380x4 119 + 3432x:l1l11 + 366y13 

14 at least 1 x14 + 42x9115 + 119x8116 + 408x 7" 7 + 1281 x 6 1/8 + 2492x 5 119 + ... ; 
308x8116 + 2352x6118 + 7224x41110 + 5936x2 y12 + 5641114 

15 unknown x 15 + 63x10"5 + 105x9 y 6 + 225x8 ,,7 + 1305x7 Y + 3430x6 y 9 + . .. ; 
1080x8 y 7 + 5600X6 1/9 + 15120x4 11 11 + l0080x:l 11 13 + 888y1 5 
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d = 6: There is no known s-extremal code with d = 6, but the putative weight 
and shadow enumerators are as follows: 

n = 14: 
C(x, y) = Xl4 + 161xBy6 + 576x7y7 + 1113x6yB + 2240x5y9 + 
3738x4ylO + 4032x3yll + 2870x2yl2 + 1344xy13 + 309yl4j 
S(x y) = 21xlOy4+203xBy6+2562x6yB+7014x4yIO+6041x2yI2+543yI4. 

n = 15: 
C(x, y) = xl5 + 105x9y6 + 540xBy7 + 1305x7y8 + 2800x6y9 + 5418x5ylO + 
7560x4yll + 7350x3y l2 + 5040X2yl3 + 2205xyl4 + 444y15, and S(x, y) = 
63x lOy5 + 765x8 y7 + 6230x6y9 + 14490x4yll + 10395x2y l3 + 825y 15. 

n = 16: . 
C(x,y) = xl6 + 56xlOy6 + 480x9 y7 + 1410x8y8 + 3200x7y9 +7056x6y10 + 
12096x5yll + 14840X4yl2 + 13440x3y13 + 8760x2yl4 + 3552xyl5 + 645y16, 
and S(x, y) = 
224xlOy6 + 2400x8y8 + 14784x6y lO + 29120X4y l2 + 17760x2yl4 + 124 y16. 

d = 7: Gulliver and Kim [10] give one circulant s-extremal code of length 17 
G17,1 with weight enumerator 

C(x, y) = x l7 + 408xlOy7 + 1530x9 yB + 3400X8y9 + 8160x7 ylO + 17136x6yll + 
25704x5y l2 + 28560x4y13 + 24480X3y14 + 15096x2yl5 + 5661xy l6 + 936y17 
and S(x, y) = 
816xlO y7 + 6800x8y9 + 34272x6yll + 57120X4yl3 + 30192x2y15 + 1 72y17. 
They also give four circulant s-extremal codes of length 19, GI9,1, CI9,2, 

C19,3, CI9 ,4, each of which has weight enumerator 
C(x , y) = xl9 + 228xl2y7 + 1026xll y8 + 3496x lOy9 + 10488x9 y lO + 
25308x8y ll + 50616x7y l2 + 82992x6y l3 + 106704x5y l4 + 105564x4yl5 + 
79173x3yl6 + 42408x2y 17 + 14136xyl8 + 2148y19 and 
S(x, y) = 456x l2 y7 + 6992x lOy9 + 50616x8y ll + 165984x6yl3 + 
211128x4y15 + 84816x2y l7 + 4296y19. 

The other possible lengths are n = 18, 20 or 21. There are no known 
examples for the e lengths but the putative weight and hadow enumerators 
are as follows: 

n = 18: 
C(x, y) = X l8 + 288xll y7 + 1314xlOyB + 3680x9 y9 + 9432x8 y lO + 
21312x7 yll + 38136x6yl2 + 52416x5y l3 + 55440x4y14 + 44448x3y15 + 
25317x2y16 + 8928xy17 + 1432y lB and S(x y) = 4x12y6 + 2376x lO y8 + 
19116x8y lO + 76272x6y 12 + 110700x4yl4 + 50760x2yl6 + 2836yl . 

n = 20: 
C(x, y) = x 20 + 240xl3 y7 + 750x 12y8 + 2720xll y9 + 10992xlOy lO + 
29520X9yll + 62220X8yl2 + 116160x7y13 + 179040X6yl4 + 213648x 5y15 + 
197145x4y l6 + 139680x3yl7 + 70960x2yl + 22320x y l9 + 3180y20 and 
S(x y) = 1920X12 y8 + 19968xlOy lO + 128640XByl2 + 353280X6yl4 + 
397440x4y l6 + 140800x2ylB + 6528y20. 

14



n = 21: 
C(x , y) = 
x2l + 360Xl4y7 + 630xl3y + 1120xl2y 9 + 10080xllylO + 34776xlOy ll + 
74340X9y 12 + 146160X8y 13 + 264960X7y l4 + 380184x6y l5 + 418257x5yl6 + 
362880X4y 17 + 245280x3y l8 + 118440x2y19 + 35028xy20 + 4656y2l, and 
S (x y) = 7280x 12y9 + 54432xlOyll + 317520x8yl3 + 735168x6y l5 + 
740880x4y17 + 231840x2yl9 + 10032y21. 

Table 2 ummarizes the possible lengths of s-extremal codes for 6 $ d $ 11. For 
even d th bound comes from Section 4. For the odd case the ,*, in the table means 
that for this d, th possible lengths are only conjectured in the sense that for greater 
n there always seems to be a negative coefficient in the weight enumerator. See the 
Appendix for the detailed weight enumerators of the s-extremal codes considered 
in thi ta ble. 

TABLE 2. Possible range of n for 6 $ d $ 11 

7. CODES RELATED TO s-EXTREMAL CODES 

In this section we describe how to produce two Type I or Type II codes over IF 4 

from the shadow of an s-extremal code. As in the case of the shadow of a binary 
Type I code, it follows from the definition of the shadow of a Type I code Cover 
IF 4 with the even subcode Co of C that Ct = Co U C2 U C l U C3 , where C = Co U C2 
and the shadow S = C l U C3 with a correction of S(C) = ct\Co in [14, p. 203] 
as S(C) = ct\C. Note that Ci (i = 1 2,3) are nonzero cosets of Co in ct. We 
give an orthogonality among Ci (i = 0, ··· 3) in Table 3 where 1. means that two 
cosets are orthogonal and / means that they are not. Hence Co U C l and Co U C3 
are self-dual. 

TABLE 3. Orthogonality for the cosets of Co in ct 

Co 1. 1. 1. 1. 
C2 1. 1. / / 
Cl 1. / 1. / 
C3 1. / / 1. 

Proposition 7.1. Suppose C is an s-extremal code of length n and minimum dis­
tance d satisfying 2d + s = n + 2. If d is odd and s = d + 2, then Co U C l or Co U C3 
is an s-extremal code with minimum distance d' = d + 1 and the 1!linimum shadow 
weight s' = s - 2 = d. 

Proof. Let C(1) := Co U C l and C(3) := Co U C3. Since n = 3d is odd, all weights 
in S of C are odd by Lemma 3.2. Hence both C(l) and C(3) are of Type I. We 
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may assume that Gl contains a vector x of minimum weight s. Then the minimum 
distance of G(1) is min{d(Go), d(Gt}} = min{d + 1, s} = d + 1. The shadow of G(l) 
is G2 U G3 and its minimum weight is min{d(G2 ),d(G3)} = min{d, ~ s} = d. As 
2(d + 1) + d = 3d + 2 = n + 2, G(l) is an s-extremal code. 0 

Example 7.2. The s-extremal code of length n = 9 with d = 3 in Table 1 produces 
an s-extremal code of the same length with minimum distance 4. Similarly if there 
is an s.lextremal code of length 15 with d = 5, then there must exist an s-extremal 
code of n = 15 and d = 6. Further, if there is an s-extre~al code of length 21 with 
d = 7, then there is an s-extremal code of that length with d = 8. Exi tence of 
these codes of lengths 15 and 21 are unknown. 

Proposition 1.3. Suppose G is an s-extremal code of length n = 6m + 2 and 
minimum distance d. If d is odd and s = d + 1, then both Go U Gl and Go U G3 
are extremal Type II codes with minimum distance d + 1. Moreover the weight 
enumerators of Gl and' G3 are the same and are explicitly determined. 

Proof Let G(l) := Co U Cl and G(3) := Co U C3. By Lemma 3.2 all weights 
in S of C are even. So G(l) is of Type II. The minimum distance of G(l) is 
min{d(Go),d(Gl )} = d+ 1. Similarly d(G(3») is d+ 1. Since s = d+ 1 and 
2d + s = n + 2 = 6m + 4, we get d + 1 = 2m + 2 = 2 * l ~ J + 2. Hence the two codes 
are extremal. Finally we recall that the weight enumerator of an extremal Type II 
code is uniquely determined by its length and that the weight enumerator of Go is 
explicitly determined by that of G. Therefore the weight enumerator of Gl and G3 
are the same and are explicitly determined. 0 

Example 7.4. The three s-extremal codes of length 8 and d = 3 produce the three 
extremal Type II codes of length 8 and d = 4. The weight enumerator of an extremal 
Type It code of length 8 and d = 4 is known as xS + 42x4y4 + 168x2y6 + 45y8 

(for example in [10]). Since the weight enumerator of the even subcode of the 
three s-extremal codes of length 8 and d = 3 is x 8 + 18x4y4 + 88x2 y6 + 21y8 from 
Table 1, we get W C 1 = 24x4y4 + 80x2 y6 + 24y4 = W C3' We have checked that 
WC i + WC3 = S(x, y). From Table 1 we know that there exists an s-extremal 
code of length 14 with d = 5. By Proposition 7.3 we can decompose S(x y) as 
WeI = WC

3 
= 154x8y6 + 1176x6y8 + 3612x4 y lO + 2968x 2 y12 + 282y 14 and there 

should exists a Type II code of n = 14 and d = 6. Similarly if there exists an 
s-extremal code of n = 26 and d = 9, then there must exist an extremal Type II 
code of length 26 with minimum distance 10 whose existence is unknown [10}. 

8. CONCLUSION 

We have introduced a concept of s-extremal codes for additive self-dual codes over 
1F 4. More precisely, for an additive self-dual 1F 4 code G of length n with minimum 
distance d, it satisfies 2d + s ~ n + 2 unless n = 6m + 5 and d = 2m + 3, in which 
case 2d + s = n + 4, where s is the minimum weight of the shadow of C. Then 
we have given a bound on the length of s-extremal codes with even length and 
classified them up to minimum distance d = 4. We have shown that any shortening 
of extremal Type II codes of length n = 0 or 2 (mod 6) produces an s- xtremal 
code of length n - 1. Furthermore we have given possible lengths and (shadow) 
weight enumerators for which there exist s-extremal codes with 5 ~ d ~ 11 and fiv 
s-extremal codes with d = 7. We have given four new s-extremal codes of length 
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n = 13 and minimum distance d = 5. We also have described a way to relate an s­
extremal code of length 3d to another s-extremal code of that length, and produced 
extremal Type II codes from s-extremal codes. 

In Theorem 3.1 of [3], Bachoc and Gaborit showed that the set of words of weight i 
in a binary s-extremal code holds I-designs (and even 2-designs in some cases) using 
the idea of harmonic weight enumerators of binary codes as introduced by Bachoc 
in [1]. As a future work, it would be interesting to find t-designs (possibly with 
repeated blocks) in s-extremal codes over F4 . Bachoc's idea [2) of using harmonic 
weight enumerators is not directly applicable to s-extremal codes over F 4 due to the 
requirement of linearity. 

ApPENDIX 

In this appendix, we give detailed weight enumerators of the s-extremal codes 
treated in Table 2. 

d = 8: There is no known s-extremal code with d = 8. The putative weight 
enumerators and shadow enumerators are as follows. 

n = 19: 
If n = 19, then the coefficients of C(x, y) and Sex, y) are nonnegative. 
But the highest possible minimum weight of a Type I code of length 19 
is 7 [14]. So we exclude n = 19. 

n = 20: 
C(x, y) = x 20 + 990x12y8 + 4160xlly9 + 9552x10ylO + 25920X9y ll + 
65820X8y12 + 120960X7y13 + 174240X6y14 + 210048x5y15 + 
200745x4y 16 + 141120X3y17 + 69520X2y18 + 22080xy19 + 3420y20, and 
Sex, y) = 120x14y6 + 1080X12y8 + 22488x10y lO + 124440X8y12 + 
357480x6y14 + 394920X4y16 + 141640X2y18 + 6408y20. 

n= 21: 
C(x, y) = x 21 + 630x13y8 + 3640x12y9 + 10080xllylO + 27216x10yll + 
74340x9y12 + 158760X8y13 + 264960x7 y14 + 367584x6y15 + 418257x5y16 + 
370440x4y17 + 245280x3y18 + 115920x2y19 + 35028xy20 + 5016y21, and 
Sex, y) = 360x14y7 + 4760x12y9 + 61992x lOy ll + 304920x8y13 + 
747768x6y 15 + 733320X4y17 + 234360X2y 19 + 9672y21. 

n = 22: 
C(x, y) = 
x 22 + 330X14y8 + 3080X13y9 + 10164x12y lO + 27216xllyll + 79464xlOy 12 + 
194040X9y13 + 367620X8y14 + 577632x7 y15 + 763917x6y 16 + 814968x5y17 + 
676060x4y18 + 425040X3y19 + 192192x2y20 + 55176xy21 + 7404y22, and 
Sex, y) = 1320x14y8 + 16632x12ylO + 168168xlOy12 + 722040X8y 14 + 
1539384x6y16 + 1345960X4y18 + 386232x2y 20 + 14568y22. 

d = 9: There is no known s-extremal code with d = 9. The putative weight 
enumerators and shadow enumerators are as follows. 

n = 23: 
C(x, y) = x 23 + 2530X14y9 + 10626x13y lO + 26082x12yll + 78246xlly12 + 
223146x10y13 + 478170X9y14 + 830346x8y15 + 1245519x7y16 + 
1562022x6y17 + 1562022x5y18 + 1221990X4y 19 + 733194x3y2o + 
317262x2y21 + 86526xy22 + 10926y23 , and 
Sex , y) = 5060x14y9 + 52164x12yll + 446292x10y13 + 1660692x y15 + 
+3124044x6y17 + 2443980X4y19 + 634524x2y21 + 21852y23. 
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n= 24: 
C(x, y) = x24 + 1760X15y9 + 8712x14y lO + 26208x13y ll + 80556x12y12 + 
235872xlly 13 + 567864xlOy14 + 1122528x9y15 + 1876941x8y 16 + 
2657952x7y17 + 3116344x6y18 + 2949408x5y 19 + 2203740x4y20 + 
1259808x3y21 + 517896x2y22 + 135072xy23 + 16554y 24, and 
S(x, y) = 495x16 y8 + 15048x14y lO + 165732x12y12 + 1131768x10y14 + 
3753882x8y 16 + 6235768x6y18 + 4404708x4y20 + 1036872x2y22 + 32943y24. 

n = 25: 
C(x, y) = x 25 + 1375x16y9 + 6600x15y lO + 23400x14y ll + 81900x13y12 + 
245700X12y13 + 631800xlly14 + 1403160XlOy15 + 2630925x9y 16 + 
4153050X8y 17 + 5537400X7y18 + 6144600x6y 19 + 5530140x5y2o + 
3936900x4y21 + 2147400x3y22 + 844200X2y23 + 211050xy24 + 24831y25, 
and 
S(x, y) = 2750x16y9 + 46800x14yll + 491400X12y13 + 2806320XlOy15 + 
8306100X8y 17 + 12289200x6y19 + 7873800x4y21 + 1688400x2y23 + 49662y25. 

n = 26: 
C(x,y) = 
x 26 + 1430x17 y9 +4719x16 ylO+ 16848x15yll +80340x14y12 +259560x13y13+ 
671580x12y 14 + 1625520Xlly15 + 3442725x10y16 + 6048900X9y17 + 
8973250X8y18 + 11359920X7y19 + 11999988x6y20 + 10271976x5y21 + 
6970860x4y22 + 3641040x3y23 + 1373970x2y24 + 329238xy25 + 36999y26, 
and S(x, y) = 12012x16y lO + 143520X14y12 + 1394640X12y 14 + 
6795360xlOy16 + 18046600X8y18 + 23927904x6y20 + 13974480x4y22 + 
2739360x2y24 + 7 4988y26 , 

n= 27: 
C(x, y) = x 27 + 2145x18y9 + 3861x17 ylO + 4563x 16yll + 69732x 15y12 + 
288900X14y13 + 712260x13y14 + 1738620x12y15 + 4182165xll y16 + 
8301150xlOy17 + 13534950X9y 18 + 19034730X8y19 + 23057892x7y20 + 
23202036x6y21 + 18885204x5y22 + 12249900x4y23 + 6150690x3y24 + 
2232009x2y25 + 512109xy26 + 54811y27, and S(x y) = 47736x16yll + 
423360X14y13 + 3837600x12y15 + 16061760XlOy17 + 38610000X8y19 + 
46043712x6y21 + 24654240x4y23 + 4425408x2y25 + 113912y27. 

d = 10: There is no known s-extremal code with d = 10. The putative weight 
enumerators and shadow enumerators are as follows, 

n= 26: 
C(x, y) = x 26 + 6149x16y lO + 28288x15y ll + 68900x14y12 + 219520x13y13 + 
711620x 12y 14 + 1705600xlly15 + 3362645x10y16 + 5948800X9y17 + 
9073350x8y 18 + 11440000x7y19 + 11919908x6y2o + 10231936x5y21 + 
7010900x4y22 + 3652480x3y23 + 1362530x2y24 + 327808xy25 + 38429y26, 
and S(x, y) = 715x 18y8 + 5577x16y lO + 169260x14y12 + 1334580x12y14 + 
6885450x lOy 16 + 17956510X8y18 + 23987964x6y20 + 13948740x4y22 + 
2745795x2y24 + 74273y26, 

n= 27: 
C(x, y) = X27 + 3861x17y lO + 23868x16y ll + 69732x15y12 + 
211680X14y13 + 712260x13y14 + 1918800X12y15 + 4182165xlly 16 + 
8030880xlOy17 + 13534950X9y18 + 19305000x8y19 + 23057892x7y20 + 
23021856x6y21 + 18885204x5y22 + 12327120x4y23 + 6150690x3y24 + 
2212704x2y25 + 512109xy26 + 56956y27, and 
S(x y) = 2145x18y9 + 28431x16yll + 500580x14y13 + 3657420x12y15 + 
16332030x 10y 17 + 38339730X8y19 + 46223892x6y21 + 24577020x4y23 + 
4444713x2y25 + 111767y27, 
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n = 28: 
C(x, y) = x28 + 2002x18y lO.+ 19656x17y ll + 68523x16y12 + 
197568x15y13 + 686520X 14y 14 + 2066400x13y 15 + 4931745x12y 16 + 
10221120xlly17 + 18878860x lOy 18 + 30030000X9y 19 + 40414374x8y2o + 
46043712x7y 21 + 44027256x6y22 + 34515936x5y23 + 21542430x4y24 + 
10325952x3y 25 + 3581298x2y26 + 797384xy27 + 84719y28, and 
S(x, y) = 8008x18y lO + 107016x16y 12 + 1476000x14y14 + 
9653280x12y 16 + 38038000x10y 18 + 80576496x8y20 + 88207392x6y22 + 
43024800x4y24 + 7176456x2y26 + 168008y2B. 

d = 11: There is no known s-extremal code with d = 11. The putative weight 
enumerators and shadow enumerators are as follows. 

n = 29: 
C(x~ y) = x 29 + 15834x18yll + 71253x17y 12 + 179046x 16y 13 + 
613872x15y 14 + 2140200x14y 15 + 5618025x13y 16 + 12350520x12y 17 + 
24701040xll y lB + 43543500x lOy 19 + 65315250x9y2o + 83454228xBy21 + 
91040976x7y 22 + 83413512x6y 23 + 62560134x5y 24 + 37431576x4y25 + 
17276112x3y 26 + 5781034x2y27 + 1238793xy2B + 126006y29, and 
S(x , y) = 31668x1By ll + 358092x16y l3 + 4280400X14y 15 + 
24701040Xl2yl7 + 87087000xlOyl9 + 166908456x8y2l + 166827024x6y23 + 
74863152x4y 25 + 11562068x2y27 + 252012y 29. 

n = 30: 
C(x, y) = 
x 30 + 10920x19y ll + 56875x1By 12 + 173880X17 y13 + 594810x16y14 + 
2068128x15y 15 + 5951745x14y16 + 14444640x13y17 + 31016440X12y lB + 
59033520xlly19 + 97783686x10y20 + 139510800x9y21 + 170873820xBy22 + 
178382880x7y23 + 156295230x6y24 + 112510944x5y 25 + 64827000x4y26 + 
28815080x3y 27 + 9281295x2y2B + 1920120xy29 + 190010y30, and 
S(x, y) = 3003x20y lO + 93730x18y 12 + 1247535x16y 14 + 11813400X14y 16 + 
62102950x12y 18 + 195567372x lOy20 + 341690310x8y22 + 
312650520x6y24 + 129622815x4y26 + 18571170x2y2B + 379019y3o. 

n = 31: 
C(x, y) = X 31 + 8463x20y ll + 42315x19y 12 + 149730x1By13 + 
577530x17y 14 + 2003499x16y15 + 6010497x 15y 16 + 15992280x14y 17 + 
37315320x13y 18 + 76251630x12y 19 + 137252934xlly 20 + 
216241740X10y2l + 294875100x9y22 + 345616830xBy 23 + 
345616830x7y 24 + 290653272x6y25 + 201221496x5y 26 + 111658435x4y 27 + 
47853615x3y 2B + 14880930x2y29 + 2976186xy3o + 285015y31, and 
S(x, y) = 16926x20yll + 299460x18y 13 + 4006998x16y 15 + 
31984560X14y17 + 152503260x 12y19 +432483480x lOy 2l + 691233660x8y 23 + 
581306544x6y25 + 223316870x4y27 + 29761860x2y29 + 570030y31. 

n = 32: 
C(x, y) = x 32 + 8736x21yll + 29848x20y 12 + 100800x19y 13 + 
547680x1By14 + 2012832x17y 15 + 5875362x16y 16 + 16674048x15y17 + 
42966400x14y l +94624320x13y 19 + 182499408x12y20 + 313432704xlly21 + 
472350528x 10y22 + 615551040x9y23 + 690813240x8y 24 + 
663526656x7y25 + 536812416x6y26 + 357739424x5y27 + 191337240x4y2 + 
79204800x3U 29 + 23825504x21130 + 4608288xy31 + 4260211/32, and 
S(x,y) = 
75712x20y12 + 958080x18y 14 + 12291264x16y 16 + 84651520x14y 18 + 
367016832x12y 20 + 942499584x lOy22 + 1383308160x8y24 + 
1072737792x6y26 + 382983360x4y28 + 47586944x2y30 + 858048y32. 
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n=33: 
C(x, y) = X 33 + 13104x22yll + 24024x21y12 + 11088x20y13 + 
459360X19y14 + 2205456x18y15 + 5821794x17 y16 + 16114032x16y17 + 
46814592x15y18 + 113683680X14y19 + 232681680X13y20 + 
427942944x12y21 + 706874688xlly22 + 1018686240X10y23 + 
1268312760x9y24 + 1366361568x8y25 + 1263917952x7y26 + 
984864496x6y27 + 632200536x5y28 + 326359440x4y29 + 130735968x3y3o + 
38090448x2y31 + 7123941xy32 + 634800y33, and S(x, y) = 
310464x20y13 + 2969472x18y 15 + 36552384x16y17 + 218718720X14y19 + 
867993984x12y21 + 2025264384x10y23 + 2741371776x8y25 + 
1965404672x6y27 + 654160320x4y29 + 75892608x2y31 + 1295808y33. 
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