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Phenotyping is an essential aspect for plant breeding research since it is the 

foundation of the plant selection process. Traditional plant phenotyping methods such as 

measuring and recording plant traits manually can be inefficient, laborious and prone to 

error. With the help of modern sensing technologies, high-throughput field phenotyping 

is becoming popular recently due to its ability of sensing various crop traits non-

destructively with high efficiency. A multi-sensor phenotyping system equipped with 

red-green-blue (RGB) cameras, radiometers, ultrasonic sensors, spectrometers, a global 

positioning system (GPS) receiver, a pyranometer, a temperature and relative humidity 

probe and a light detection and ranging (LiDAR) was first constructed, and a LabVIEW 

program was developed for sensor controlling and data acquisition. Two studies were 

conducted focusing on system performance examination and data exploration 

respectively. The first study was to compare wheat height measurements from ultrasonic 

sensor and LiDAR. Canopy heights of 100 wheat plots were estimated five times over the 

season by the ground phenotyping system, and the results were compared to manual 

measurements. Overall, LiDAR provided the better estimations with root mean square 

error (RMSE) of 0.05 m and R2 of 0.97. Ultrasonic sensor did not perform well due to the 

style of our application. In conclusion LiDAR was recommended as a reliable method for 



 
 
 
 

wheat height evaluation. The second study was to explore the possibility of early 

predicting soybean traits through color and texture features of canopy images. Six 

thousand three hundred and eighty-three RGB images were captured at V4/V5 growth 

stage over 5667 soybean plots growing at four locations. One hundred and forty color 

features and 315 gray-level co-occurrence matrix (GLCM)-based texture features were 

derived from each image. Another two variables were also introduced to account for the 

location and timing difference between images. Cubist and Random Forests were used 

for regression and classification modelling respectively. Yield (RMSE=9.82, R2=0.68), 

Maturity (RMSE=3.70, R2=0.76) and Seed Size (RMSE=1.63, R2=0.53) were identified 

as potential soybean traits that might be early-predictable.  
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CHAPTER 1 

INTRODUCTION 

1.1. Importance of High-Throughput Field Phenotyping 

Genotype refers to the genetic makeup of an organism, which in a large degree 

determines the organism’s characteristics. However, genotype itself is not the only factor 

that would influence gene expression. Environment, or the living conditions of an 

organism, also plays a big role in shaping its final appearance. Hence, the term phenotype 

was created, meaning the set of observable characteristics of an organism resulting from 

the interaction of its genotype with the environment. In agriculture, plant phenotyping 

aims to quantitatively describe the morphological, physiological and biochemical 

properties of a plant (Walter, Liebisch, and Hund 2015), which can have a significant 

implication for plant breeding in terms of helping understand gene expression under 

certain environments.  

Plant breeding has long been a key method for improving the quality of 

agricultural products in human history, and one of its fundamentals is plant selection 

based on plant phenotypes. Since the beginning of domestication to Gregor Mendel’s 

experiments with pea plant hybridization, plant propagation is more or less dependent on 

plant phenotyping as newly developed varieties need to be assessed based on certain 

plant parameters such as yield. The process of quantifying plant traits in a standardized 

manner is the essence of plant phenotyping, and the quantified plant traits allow breeders 

to compare different plant varieties and make selections. 
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Modern biotechnologies such as marker-assisted selection and low-cost DNA 

sequencing have greatly improved the efficiency of genomic research (Behjati and 

Tarpey 2013), while traditional plant phenotyping in field is not able to keep up with the 

pace due to its disadvantage of being laborious and inefficient. Humans are typically 

heavily involved in traditional plant phenotyping activities, such as destructive sampling, 

visual estimation, or physical measurement of experimental plots. Yet it is challenging to 

perform those procedures on thousands of plots. Many considered high-throughput field 

phenotyping as a bottleneck for both conventional and modern plant breeding (Araus et 

al. 2018; Underwood et al. 2017), and this challenge stands in the way of the next green 

revolution (Bai et al. 2016), which would be essential for future global food security by 

2050 (Ray et al. 2012).  

1.2. Existing Multi-Sensor Phenotyping Systems 

Diverse approaches for field phenotyping exist. From hand-held devices, fixed in-

field sensors, to mobile airborne or ground platforms, each has their unique advantages 

and limitations (Deery et al. 2014). For example, fixed systems can only monitor limited 

amount of plots, but they are usually fully automated and can provide measurements in 

high quality. Airborne platforms such as unmanned aircraft vehicles have limited 

payload, however they have high data collection efficiency and are not limited by 

geography. Ground mobiles, on the other hand, can differ from each other greatly in 

terms of cost, payload, and sensing modules. Generally speaking ground platforms have 

high payloads and are more flexible in terms of the measuring area, however they tend to 

be less efficient than airborne platforms. 



 

 
 

 3 

Ground-based multi-sensor phenotyping systems have been gaining popularity in 

recent years due to their ability of sensing various crop traits non-destructively in a high-

throughput fashion, and efforts have been made by researchers and engineers on 

developing sophisticated systems in the past. The following are some examples of such 

systems: 

• BreedVision 

BreedVision was a tractor-pulled phenotyping platform for small grain cereals 

(Busemeyer et al. 2013). It was equipped with laser distance sensors, light curtains, time-

of-flight cameras, a hyperspectral camera, RGB cameras, a GPS receiver and a rotary 

encoder (Figure 1.1).  

 

Figure 1.1. BreedVision platform and sensor layout (Busemeyer et al. 2013). 
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Based on just a single sensor or the fusion of multiple sensors, the platform can be 

used for determining simple or complex crop parameters such as plant height, plant 

moisture content, tiller density and dry biomass yield.  

• Maricopa Phenotyping System 

A tractor-based multi-sensor system was developed for phenotyping plant 

dynamic traits and tested in 2011 in Maricopa, Arizona (Andrade-Sanchez et al. 2014). 

The system carried a GPS receiver and four sets of sensors consisting of a sonar 

proximity sensor, an infrared radiometer and a multispectral crop canopy sensor (Figure 

1.2). 

 

Figure 1.2. The Maricopa phenotyping system: (a) front view; (b) the sonar proximity 

sensor; (c) the infrared radiometer; (d) the GPS receiver; (e) the multispectral crop 

canopy sensor (Andrade-Sanchez et al. 2014). 
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Canopy height, canopy temperature and normalized difference vegetation index 

(NDVI) of four experimental plots can be measured simultaneously, which all showed 

differences between cultivars in the study. 

• Phenomobile 

Deery et al. (2014) reported a buggy for plant phenotyping purposes. The mobile 

was installed with wheel encoders, a GPS receiver, LiDARs, RGB cameras, a thermal 

infrared camera, infrared thermometers, a spectrometer and a hyperspectral line scanner 

camera (Figure 1.3). 

   

Figure 1.3. Phenomobile and its sensor components (Deery et al. 2014). 

In the study the possible uses of each sensor component of Phenomobile were 

explained in details. LiDAR signals are able to show the high contrast betwee soil and 

vegetation, from which ground cover and possibly plant seedling counts might be 

evaluated. Aside from basic plant height information, LiDAR’s high resolution data 

could also be used for estimating advanced canopy structural parameters such as leaf 
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angular distribution. RGB cameras were used for assessing leaf area and volume based on 

stereo vision algorithm in the study. By moving the mobile slowly, high resolution data 

could be collected from the hyperspectral camera and the spectrometer, and it was 

possible to extract the reflectance information from individual plants and distinguish 

between individual plant organs such as flag leaves and spikes. Spectral vegetation 

indices could also be calculated to estimate plant parameters such as leaf area index, 

nutrient contents and water status. Thermal infrared camera was used to assessing canopy 

temperatures, which could be an indicator for overall canopy transpiration. 

• Ladybird 

 

Figure 1.4. Ladybird robot and its sensor configurations (Underwood et al. 2017). 
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Ladybird was an autonomous unmanned ground-vehicle robot for row-crop 

phenotyping (Underwood et al. 2017), which was also coupled with a data processing 

framework. The robot is equipped with a GPS receiver and an inertial navigation systems 

(INS) receiver, forward and rear facing LiDARs, a panospheric camera, a hyperspectral 

camera, a stereo camera and a thermal camera (Figure 1.4).  

Underwood et al. (2017) only reported the application of LiDAR and 

hyperspectral camera of the system, and three key crop traits were observed. LiDAR was 

utilized for crop height measurement since height influences harvest index and lodging 

risk, and hyperspectral camera was used for NDVI and canopy closure measurements, 

which are related with chlorophyll and nitrogen concentration, and humidity driven 

diseases respectively. 

• Field Scanalyzer 

Field Scanalyzer was a fixed site, fully automated robotic phenotyping platform 

installed at Rothamsted Research, England (Virlet et al. 2017). The system has a camera 

box, within which multiple sensors were mounted: a visible camera, a thermal infrared 

camera, 3D laser scanners, a visible and near-infrared camera and an extended visible and 

near-infrared camera, a NDVI sensor and a chlorophyll fluorescence imager (Figure 1.5). 

The actual usage of each sensor component of the system were not described 

explicitly in the study, however the authors mentioned some potential sensor 

applications. RGB camera of the system could be used for monitoring canopy closure, by 

segmenting plants from soil and calculating the percentage of green pixels of an image. 

Also it could be used to monitor canopy development overtime and detect and quantify 
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plant organs such as wheat ears. Thermal infrared camera could provide plant 

temperature information, which can further be used to assess crop water status. Plant 

heights could be derived from laser scanner’s point cloud images. Chlorophyll 

fluorescence imager could help simplify the task of quantifying plant photosynthetic 

capacity in field at night. The entire spectrum of hyperspectral data could be utilized 

through multivariate approaches to predict early biotic stress, and plant nitrogen and 

water content. 

 

Figure 1.5. Field Scanalyzer and its camera box (Virlet et al. 2017). 
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• Phenomobile Lite 

Phenomobile Lite was a dedicated plant phenotyping mobile with aluminum 

frame, electric motor and adjustable wheelbase to accommodate for various plot width 

(Jimenez-Berni et al. 2018). It comprised of a LiDAR, an INS receiver and a GPS 

receiver and an incremental wheel encoder. The system was also able to integrate other 

sensors such as active NDVI sensor and digital camera (Figure 1.6). In the study three 

plant traits were extracted from LiDAR data, namely canopy height, ground cover and 

above-ground biomass. 

 

Figure 1.6. Phenomobile Lite and its sensor components (Jimenez-Berni et al. 2018). 
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1.3. Objectives 

The primary objective of this thesis was to develop a fully functioning ground-

based multi-sensor plant phenotyping system. Two follow-up studies were conducted 

respectively: the first study was to examine the system’s performance on wheat height 

estimation; the second study was to explore a new methodology of utilizing RGB images 

to early predict soybean traits.  
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CHAPTER 2 

DEVELOPMENT OF THE MULTI-SENSOR PHENOTYPING SYSTEM 

2.1. Hardware 

2.1.1. Sensors 

Eight types of sensors were selected for the system in order to measure various 

crop traits and environmental conditions. As an overview, sensor models and 

manufacturers, total amounts of sensors employed in the system, sensor input voltage 

requirements and meanings of sensor measurements were listed in Table 2.1. 

Table 2.1. Sensor overview of the phenotyping system. 

Sensor Model Manufacturer Amount Voltage Measurement 

HD Webcam C270 
Logitech, 
Lausanne, 

Switzerland 
Three USB Canopy RGB image 

SI-131 Infrared 
Radiometer 

Apogee 
Instruments, Inc., 
Logan, UT, USA 

Three 2.5 V Canopy temperature 

ToughSonic 14 
Ultrasonic Sensor 

Senix Corporation, 
Hinesburg, VT, 

USA 
Three 10 - 30 

V Canopy height 

VLP-16 Puck 
LiDAR 

Velodyne LiDAR, 
Inc., San Jose, 

CA, USA 
One 12 V Canopy 3D point 

cloud 

Flame-S-VIS-NIR 
Spectrometer 

Ocean Optics, 
Inc., Largo, FL, 

USA 
Four USB 

Canopy spectral 
reflectance, 

incoming radiation 
spectrum 

SP-110 
Pyranometer 

Apogee 
Instruments, Inc., 
Logan, UT, USA 

One Self-
powered 

Incoming shortwave 
radiation 
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HMP60 
Temperature and 

Relative Humidity 
Probe 

Campbell 
Scientific, Inc., 

Logan, UT, USA 
One 5 - 28 V Air temperature, 

relative humidity 

AgGPS 162 
Receiver 

Trimble Inc, 
Sunnyvale, CA, 

USA 
One 10 - 16 

V Plot location 

 

Key sensor specifications and common applications of sensor measurements in 

field phenotyping were summarized below: 

• HD Webcam C270  

The webcam uses USB 2.0 for data communication. It has a fixed focus, a 60° 

diagonal field of view (FOV) and a 1280×960 optical resolution. RGB images contain 

information regarding plant color and morphology. Estimating plant canopy cover 

through plant segmentation is a typical usage of RGB images. Vegetation indices based 

on R, G and B bands can be derived for assessment of plant parameters such as 

chlorophyll content (Hunt et al. 2013). Plant 3D canopy structure can also be generated 

from 2D images using structure from motion (Wilke et al. 2019) or other techniques. 

• SI-131 Infrared Radiometer 

The radiometer consists of an internal thermistor and a thermopile and it measures 

temperature based on the Stefan-Boltzmann Law. The thermistor measures the sensor 

body temperature. It requires a 2.5 V excitation voltage, and typically produces 0 to 2500 

mV single-ended signals. The self-powered thermopile measures the infrared radiation 

emitted or reflected by the target. It has a FOV of 28°, gives approximately -1.1 to 1.1 V 

differential signals for targets with temperatures ranging from -55 to 55 °C. Along with 
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other parameters such as air temperature, canopy temperature can be used for indicating 

plant water stress (Jackson, Reginato, and Idso 1977) and assessing plant heat and 

drought tolerance (Balota et al. 2007). 

• ToughSonic 14 Ultrasonic Sensor 

The ultrasonic sensor has a total FOV of 14°, and it measures distance from 4 in 

to 168 in with a resolution of 0.0034 in. The sensor produces 0 to 10 V single-ended 

signals. Plant height is an important parameter when it comes to plant genotype selection 

in breeding programs. Besides for plant height, ultrasonic sensors have also been applied 

for plant biomass estimation (Fricke, Richter, and Wachendorf 2011; Pittman et al. 2015) 

and weed detection (Andújar, Weis, and Gerhards 2012). 

• VLP-16 Puck LiDAR 

The LiDAR transfers data via Ethernet. It has 16 near-infrared lasers with a 903 

nm wavelength, and it detects distance up to 100 m. The sensor has a vertical FOV of 30° 

with a resolution of 2°, and a horizontal FOV of 360° with an adjustable resolution 

between 0.1° and 0.4° (Yuan et al. 2018). Plant 3D point cloud can be used for extracting 

multiple plant parameters such as height, ground cover, biomass (Jimenez-Berni et al. 

2018), leaf area index and plant area density (Deery et al. 2014). 

• Flame-S-VIS-NIR Spectrometer 

The spectrometer uses USB 2.0 for transferring data. It detects light within the 

spectral range of 350 to 1000 nm at a 0.1 to 10 nm resolution. The integration time can be 

set from 1 ms to 65 s. The optical fiber coupled with the spectrometer has a FOV of 
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25.4°. Various vegetation indices such as NDVI can be derived from canopy spectral 

reflectance and used for assessing vegetation cover, vigor, and growth dynamics (Xue 

and Su 2017). Due to the limited FOV, spectrometers are not the most practical 

instrument for field phenotyping, whereas hyperspectral cameras are gradually becoming 

the mainstream (Xu, Li, and Paterson 2019). 

• SP-110 Pyranometer 

The pyranometer has a FOV of 180° and measures solar radiation within the 

spectral range of 360 to 1120 nm. It generates 0 to 350 mV differential signals. Solar 

radiation can be used for estimating evapotranspiration and predicting infection risk of 

fungal diseases, thus is informative for scheduling irrigation and fungicide spraying 

(López-Lapeña and Pallas-Areny 2018). 

• HMP60 Temperature and Relative Humidity Probe 

The probe measures temperature from -40 to 60 °C and relative humidity from 0 

to 100%. It produces two 0 to 1 V single-ended signals. The difference between air 

temperature and canopy temperature is typically calculated as an indicator for plant water 

status as mentioned above. Similarly, along with dry bulb air temperature and net 

radiation, wet bulb air temperature can be estimated from relative humidity and crop 

water stress index can be calculated (Jackson et al. 1981), which is useful for facilitating 

irrigation scheduling. 

• AgGPS 162 Receiver 

The GPS receiver has a pass-to-pass accuracy of ±8 to 12 in, and it uses RS-232 
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for data communication. The location information of plants helps match phenotypic data 

with agronomic data, and the unwanted spatial variability in data can be accounted during 

data analysis (Stroup, Baenziger, and Mulitze 1994). GPS coordinates are also commonly 

needed for data mapping of certain instruments such as LiDAR. 

2.1.2. Hardware Connection 

A data acquisition (DAQ) device LabJack U6 with one Mux80 AIN Expansion 

Board and one CB37 Terminal Board (LabJack Corporation, Lakewood, CO, USA) was 

used for reading sensor voltage signals. A 10-Port Industrial USB 3.0 Hub 

(StarTech.com, Lockbourne, OH) was used for receiving USB signals. Figure 2.1 shows 

the data communications between different hardware components. 

 

Figure 2.1. Flowchart of data communications between sensors and computer of the 

phenotyping system. 

All hardware components are either installed on “sensor bars” or placed in the 

“DAQ box”. There are three down-looking sensor bars allowing the system scanning 



 

 
 

 16 

three plots simultaneously, and one up-looking sensor bar for monitoring the environment 

(Figure 2.2). Except for LiDAR, three down-looking sensor bars have identical sensor 

arrangements. 

 

Figure 2.2. Down-looking and up-looking sensor bar of the phenotyping system. 

 

Figure 2.3. Inside and outside of the DAQ box of the phenotyping system. 

A power supply circuit, the DAQ device, the USB hub and four spectrometers are 

placed in the DAQ box (Figure 2.3). Sensor USB cables and optical fibers can be directly 

plugged inside the box, while sensor signal and power wires connect to the box through 

circular connectors (Figure 2.3). 
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The carrier of the phenotyping system, “phenocart”, which consists of two 

bicycles, a metal platform and a metal frame, was developed by Bai et al. (2016) (Figure 

2.4). Sensor bars can be mounted to the frame through pipefittings, and batteries, DAQ 

box and computer can be placed on the platform. The phenocart has a clearance of 4 ft, 

and the wheel spacing between two bicycles is 60 in. The cart can be operated by one or 

two people using the bicycle handlebars. 

 

Figure 2.4. The assembled phenotyping system. 

2.2. Software 

2.2.1. Functions 

A customized software was developed for sensor controlling and data acquisition 

using LabVIEW 2016 (National Instruments, Austin, TX, USA) (Figure 2.5). A static 

measurement style was adopted for the system. Instead of collecting data continuously, 

sensor outputs were saved only when designated buttons were triggered. 
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Figure 2.5. Front panel of the LabVIEW program. 

The main functions of the software include the following: 

• Allowing users to input Row and Column identification numbers for the plots 

being scanned if such numbers have been pre-assigned; 

• Allowing users to turn on or off data saving for any of the three down-looking 

sensor bars; 

• Allowing users to adjust four camera attributes including brightness, contrast, 

saturation and sharpness; 

• Allowing users to set starting and ending position of LiDAR’s horizontal FOV; 

• Displaying real-time point cloud of three plots being scanned by LiDAR, and 

saving point cloud data to csv files when measured; 

• Displaying real-time incoming radiation spectrum and three canopy reflectance 
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spectra with automatic integration time, and saving spectrum data to csv files when 

measured; 

• Displaying real-time GPS coordinates of the cart, air temperature, relative 

humidity and total incoming shortwave radiation of the environment, canopy 

temperatures and canopy heights estimated from both ultrasonic sensor and LiDAR for 

three plots being scanned, and saving the readings to one csv file; 

• Displaying images of crop canopies captured by the cameras, and saving images 

as png files. 

2.2.2. Programming 

Five major dataflow components existed (Figure 2.6). Built-in LabVIEW virtual 

instruments (VIs) under “VISA” function palette were used for reading serial port signals 

from the GPS receiver. Publicly available VIs “LabVIEW_LJUD” were used for reading 

the voltage signals from the DAQ device’s analog inputs. VIs “Ocean Optics 2000 4000” 

from Instrument Driver Network of National Instruments were used for calculating the 

sampling wavelengths of each spectrometer and reading the spectrum signals. Built-in 

VIs under “NI-IMAQdx” function palette were used for capturing images through the 

cameras and saving the images. A customized subVI was created for communicating with 

LiDAR (Figure 2.7), and details can be found in Chapter 3.2.2. 
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Figure 2.6. Block diagram of the LabVIEW program. 

 

Figure 2.7. Block diagram of the LiDAR subVI. 

Figure 2.8 shows the basic programming logic of the software. A while loop is 

used for keeping the program refreshing the sensor readings, which runs once per second. 

Inside the while loop, a case structure, which examines whether the “Measure” button is 

triggered or not, is responsible for saving the sensor readings. 
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Figure 2.8. Programming logic flowchart of the LabVIEW program. 
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CHAPTER 3 

WHEAT HEIGHT ESTIMATION USING ULTRASONIC SENSOR AND LIDAR1 

3.1. Background 

Plant height is one of the most important parameters for crop selection in breeding 

programs. For wheat, height is associated with grain yield (Bhatta et al. 2017), lodging 

(Navabi et al. 2006), biomass (Schirrmann et al. 2016), and resistance to certain disease 

(Mao et al. 2010). Traditionally plant height is measured manually using a yardstick. This 

method is labor-intensive and time-consuming when a large number of plants need to be 

evaluated. In addition, it is prone to error during reading and recording, especially in 

harsh weather conditions. Alternative but reliable methods for plant height evaluation are 

needed. 

As some of the most common methods for plant height estimation nowadays, 

ultrasonic sensor and LiDAR are favored over one another because of the unique 

advantages and disadvantages they possess. Ultrasonic sensor is typically inexpensive 

and user-friendly, and it has a long history of being utilized in plant height measurement 

(Fricke et al. 2011). However some of its disadvantages include reduced sensor 

accuracies when sensors become farther from objects due to the larger FOV (Sun, Li, and 

Paterson 2017), sensor’s sensitivity to temperature as sound speed changes with 

temperature (Barker et al. 2016), and the susceptibility of sound waves to plant leaf size, 

                                                           
1 This chapter is a portion of a published journal article: Yuan, W., Li, J., Bhatta, M., Shi, Y., Baenziger, P. 
S., & Ge, Y. (2018). Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and 
UAS. Sensors, 18(11). 
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angle, and surfaces (Fricke et al. 2011). LiDAR is a relatively new methods for 

estimating various plant traits such as height, biomass and ground cover (Jimenez-Berni 

et al. 2018). LiDAR is considered as a widely-accepted and promising sensor for plant 

3D reconstruction because of its high spatial resolution, low beam divergence and 

versatility regardless of ambient light conditions (Jimenez-Berni et al. 2018; Shi et al. 

2015; Underwood et al. 2017). Yet, LiDAR is also costly, and LiDAR data can be 

voluminous and challenging to process.  

Ultrasonic sensor and LiDAR have been both exploited for a wide range of crops 

in the past. However, ultrasonic sensor was not able to provide consistently accurate 

height estimations when compared to LiDAR. For example, ultrasonic sensor has been 

used to estimate the height of cotton (Andrade-Sanchez et al. 2014; Sharma and Ritchie 

2015), alfalfa (Pittman et al. 2015), wild blueberry (Chang et al. 2017; Farooque et al. 

2013), legume-grass mixture (Fricke et al. 2011; Fricke and Wachendorf 2013), 

bermudagrass (Pittman et al. 2015), barley (Barmeier, Mistele, and Schmidhalter 2016) 

and wheat (Andújar et al. 2012; Pittman et al. 2015; Scotford and Miller 2004), and 

RMSE from 0.022 to 0.072 m and R2 from 0.44 to 0.90 were observed. On the other 

hand, LiDAR has been employed for crops such as cotton (Sun et al. 2017), blueberry 

(Sun and Li 2016) and wheat (Deery et al. 2014; Friedli et al. 2016; Jimenez-Berni et al. 

2018; Madec et al. 2017; Underwood et al. 2017; Virlet et al. 2017), and RMSE from 

0.017 to 0.089 m and R2 from 0.86 to 0.99 were obtained. 

In existing studies of utilizing terrestrial LiDAR, an experimental field is usually 

scanned by a LiDAR that moves continuously with a constant speed. For a manned multi-
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sensor system, this might be problematic since sensors such as cameras often require to 

be stationary to record high quality data, which can cause difficulties for software 

programming to harness multiple sensor dataflows simultaneously, as well as actual 

system operating for maintaining the uniform speed. Moreover, despite all the successes 

and failures of applying ultrasonic sensor and LiDAR in plant height estimation, a direct 

comparison between two methods was rarely done in previous research. In this study, we 

aimed to explore a new methodology of processing LiDAR data in the context of a static 

measurement style, and compare ultrasonic sensor and LiDAR in terms of their plant 

height estimation performance. 

3.2. Materials and Methods 

3.2.1. Experiment Arrangement 

The experiment was conducted in 2018 growing season at Agronomy Research 

Farm in Lincoln, NE, USA (40.86027°N, 96.61502°W). The experimental field contained 

100 wheat plots where an augmented design with 10 checks replicated twice was used. 

The wheat lines consisted of 80 wheat genotypes produced at University of Nebraska–

Lincoln, NE, USA. The planting was done at October 20th, 2017, and the plots were 

harvested at June 29th, 2018. 

Five data collection campaigns occurred over the season. Each time the 100 plots 

were scanned by the ground phenotyping system (Figure 3.1). The plots were also 

measured by a yardstick using two methods depending on the growth stage (Table 3.1). 

At vegetative stages plant height was measured from soil surface to the top of stem, or 

apical bud (method A). At reproductive stages plant height was measured from soil 
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surface to the top of spike excluding awns (method B). For each plot three measurements 

were taken and averaged as the reference height of the plot. 

 

Figure 3.1. Schematic diagram showing the scanning areas of LiDAR and ultrasonic 

sensors at each measurement. 

Table 3.1. Data collection campaign dates of manual measurement and the ground system 

for wheat height evaluation. 

Data 
Collection 
Campaign 

Growth Stage 
Manual Ground 

System 
Date Method Date 

1st Jointing stage: Feekes 6 May 7th A May 7th 
2nd Flag leaf stage: Feekes 8 May 15th A May 15th 
3rd Boot stage: Feekes 9 May 23rd B May 23rd 
4th Grain filling period: Feekes 10.5.3 May 31st B May 31st 
5th Physiological maturity: Feekes 11 June 16th B June 15th 
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3.2.2. Sensor and Software Setup 

The measurement rate of ultrasonic sensors was set at 20 Hz. Since only half of 

the full azimuth range could be possibly useful for our application of scanning crop 

canopies (Figure 3.1), the LiDAR’s horizontal FOV range was configured as 180°, and a 

0.1° horizontal resolution was adopted for higher precision. The sensor was also 

configured to report the strongest return for each laser firing. 

Voltage signals from ultrasonic sensors were converted to distances in the 

program through an equation calibrated in lab: 

 𝐷 = 29.116𝑉 + 11.641, (3.1) 

where D is distance in meters and V is sensor signal in volts. Ultrasonic canopy heights 

were then calculated as: 

 𝐻𝑐 = 𝐻𝑠 −𝐷, (3.2) 

where Hc is ultrasonic canopy height and Hs is ultrasonic sensor height. Hs was 

determined by measuring the distance between the sensors and soil surface before data 

collection, and LiDAR height was determined in the same way. 

The subVI developed for LiDAR was incorporated in the while loop of the main 

program. The subVI receives data packets from LiDAR through User Datagram Protocol 

(UDP). Each data packet contains azimuth and distance information of all 16 lasers, and 

the subVI extracts and converts the information into a 3D Cartesian coordinate system. 

The origin of the coordinate system is defined as shown in Figure 3.2. After acquiring the 

XYZ coordinates of the points, the subprogram trims the point cloud in X dimension 

using a threshold of ±1.5×“plot width” (Figure 3.1) to delete points outside the desired 
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range. “Plot width” is defined as the distance between the middles of two adjacent 

alleyways, which was 1.524 m in this study. Figure 3.3 is an example of a raw point 

cloud captured by LiDAR. 

 
Figure 3.2. The Cartesian coordinate system for LiDAR point cloud at each 

measurement. 

 

Figure 3.3. An example of raw LiDAR point cloud at each measurement. 
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3.2.3. Height Extraction from LiDAR Point Clouds 

One issue that we encountered often in the field was the slant of the phenocart 

along with the sensor bars due to the unevenness and slope of ground (Figure 3.4). 

Corresponding LiDAR point clouds thus would show the tilted angle in the Cartesian 

coordinate system. In order to obtain accurate canopy height estimations from LiDAR, a 

pre-processing was performed for all raw point clouds to correct for this slanting issue 

before extracting height information. One assumption for the pre-processing is that the 

ground slope variation between the three plots within LiDAR’s horizontal FOV can be 

ignored. LiDAR point clouds were processed using MATLAB R2017a (The MathWorks, 

Inc., Natick, MA, USA). 

 

Figure 3.4. The slanting issue of the phenocart in field. 

It is reasonable to speculate that the points of a point cloud without the slanting 

issue should be evenly distributed along the Y dimension considering plants with the 
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same genotype should have similar heights. A linear least-squares curve was fitted to the 

Y-Z plane (Figure 3.5b). The slope of the fitted curve was then converted to an angle θ in 

radiance through the relationship: 

 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑠𝑙𝑜𝑝𝑒). (3.3) 

The point cloud was finally rotated clockwise by the angle θ (Figure 3.5c). The 

rotation center could be set at any point, as later the point cloud will be repositioned in 

the Z dimension. 

 

Figure 3.5. An example of Y-Z plane rotation correction: (a) Point cloud before rotation; 

(b) Fit a linear curve to points on Y-Z plane; (c) Rotate points on Y-Z plane by the angle 

θ; (d) Point cloud after rotation. 

A similar procedure was also undertaken for the X-Y plane, which could be 

skipped as the slanting issue of point clouds on X-Y plane was minimum. 
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As the point distribution along the X-dimension could not be assumed to be even 

because points were representing plants with different genotypes, linear curve fitting 

couldn’t be directly applied to the X-Z plane. The method proposed here was to find the 

rotation angle by finding the average Z value difference between the ground points of two 

alleyways. 

 

Figure 3.6. An example of extracting coarse alleyway point clouds: (a) point cloud before 

rotation; (b) line graph before sorting; (c) line graph after sorting; (d) smoothed line; (e) 

positions of the four most significant changes; (f) deletion of points beyond the desired 

range. 

The points were first sorted by their X values so that the line graph of the points 

on the X-Z plane would have a horizontal curve (Figure 3.6c). Then, a moving average 

filter with a 0.05-m span was applied to smooth the curve (Figure 3.6d). Since the FOV 

of LiDAR could cover two alleyways, the trend of the curve typically had four abrupt 

changes in the Z dimension as lasers would scan from the canopy to the ground and back 
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to the canopy twice. After finding the position of the four most significant changes 

(Figure 3.6e), points with X values smaller than C1, larger than C4, or between C2 and C3 

were deleted so that the portion of point cloud that contained two alleyways in the X 

dimension was extracted (Figure 3.6f). 

The point cloud containing two alleyways (Figure 3.6f) was separated into left 

and right alleyway point clouds using the border of X=0. The non-ground points of two 

alleyway point clouds were further removed using the procedure explained below. 

 

Figure 3.7. An example of extracting a refined alleyway point cloud: (a) point cloud of 

ground before cleaning; (b) point cloud kernel density in the Z dimension; (c) first 

derivative of the kernel density; (d) point cloud of ground after cleaning. 

The kernel density in terms of Z values of the alleyway point cloud was first 

estimated (Figure 3.7b). As the points of ground were typically clustered at the bottom of 
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the Z axis, a dominant peak P1 could be observed from the kernel density graph, which 

was also the first peak in the Z axis direction. The first derivative of the kernel density 

curve was calculated (Figure 3.7c). Assuming ground points follow a normal distribution 

in the Z dimension, the first peak P2 of the first derivate curve in the Z axis direction 

would be the inflection point of the normal distribution, and the distance between P1 and 

P2 would be one standard deviation of the distribution. For a normal distribution, the 

range μ ± 2σ includes about 95.45% of the values. Here a threshold of μ+2σ on the Z axis 

was used to separate non-ground points from ground points, where μ is P1 and σ is P1−P2, 

and points with Z values larger than the threshold were deleted (Figure 3.7d). 

After combining refined left and right alleyway point clouds (Figure 3.8a), a 

linear least-squares curve was fitted to the combined alleyway point cloud on the X-Z 

plane (Figure 3.8b), and the point cloud with the Y-Z and X-Y plane rotation correction 

performed (Figure 3.6a) was rotated by the angle φ, which was derived from the slope of 

the fitted curve (Figure 3.8c). 

 

Figure 3.8. An example of X-Z plane rotation correction: (a) point cloud of ground before 

rotation; (b) linear curve fitted to ground points on the X-Z plane; (c) rotation of points 

on the X-Z plane by the angle φ; (d) point cloud after rotation. 
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The logic of the X-Z plane rotation correction was again executed on the point 

cloud with the X-Z plane rotation correction already performed (Figure 3.8d) to extract 

the rotated and refined alleyway point clouds (Figure 3.9a). The average Z value of the 

alleyway point cloud was calculated (Figure 3.9b), and the Z values of the whole point 

cloud (Figure 3.9d) were adjusted so that the average Z value of the alleyway point cloud 

would be located at 0. 

 

Figure 3.9. An example of ground baseline correction: (a) point cloud of ground before 

shifting; (b) the mean in the Z dimension; (c) points on the X-Z plane shifted by the 

offset; (d) point cloud after shifting. 

The mean X values S1 and S2 of two alleyway point clouds were calculated 

(Figure 3.10b) and used as the border between different plots to split the point cloud 

(Figure 3.10c). Cumulative Z value percentiles of a point cloud with 0.5 percentage 

interval from 0 to 100 percent were extracted from each of the three split point clouds. In 

total there were 200 height values extracted and investigated for each plot.  
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Figure 3.10. An example of splitting a point cloud: (a) point cloud of ground after 

rotation and shifting; (b) the mean in the X dimension for each side; (c) point cloud of 

each plot after splitting. 

3.3. Results 

3.3.1. Raw Point Clouds versus Processed Point Clouds 

To evaluate the effectiveness of LiDAR point cloud pre-processing, plant heights 

were also extracted from all raw point clouds. With manual measurements being the 

standard, the minimum RMSE and the corresponding percentile of raw point clouds and 

processed point clouds at each data collection campaign were compared (Table 3.2). 

The point cloud pre-processing consistently improved the precision of LiDAR’s 

plant height estimation by lowering the minimum RMSE at different data collection 

campaigns by 12.85 to 44.95%, which confirmed its effectiveness of reducing the 

influence from uneven ground surface on point clouds. 
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Table 3.2. Optimal RMSE and percentile of raw and processed point clouds at each data 

collection campaign. 

Data Collection Campaign 1st 2nd 3rd 4th 5th 

Raw Point 
Clouds 

Minimum RMSE (m) 0.0462 0.0389 0.0643 0.0467 0.0521 
Optimal Percentile 67.5th 85th 99.5th 99th 99.5th 

Processed 
Point Clouds 

Minimum RMSE (m) 0.0290 0.0300 0.0354 0.0407 0.0420 
Optimal Percentile 60th 91st 99th 99th 99.5th 

 

3.3.2. LiDAR Height Estimation Performance by Date, Manual Method and Plot Position 

By comparing to manual measurements, RMSE, Bias and R2 of the heights 

extracted at each of the 200 percentiles of the processed point clouds across five data 

collection campaigns were investigated (Figure 3.11). 

 

Figure 3.11. RMSE, Bias and R2 of heights extracted at different percentiles from 

processed LiDAR point clouds over five data collection campaigns. 

For a point cloud, low percentiles of Z value represent the height of ground, and 

high percentiles represent the height of vegetation above ground. Since the height of a 

wheat plot was never measured as the height of the tallest plant, it is easy to understand 

why RMSE dropped as percentile increased and raised again when percentile approached 
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100 percent. At the percentiles of the minimum RMSE, the average Bias over five data 

collections was -0.0011 m, which demonstrated LiDAR’s accuracy. The percentiles for 

maximum R2 fluctuated in between 98 and 99 percent, which did not seem to agree with 

the percentiles of minimum RMSE for the first two data collection campaigns (Table 

3.2). 

Considering the percentile of minimum RMSE could always vary if data were 

collected at different dates, the optimal percentile at each individual data collection 

campaign was impractical. Instead of treating all data collection campaigns equally and 

chose one universal percentile, we classified the 1st and 2nd data collection campaigns as 

method A category, and the 3rd, 4th and 5th data collection campaigns as method B 

category (Table 3.1) for more precise height estimations. RMSE of method A category, 

method B category and all category meaning treating all five data collection campaigns 

as a whole were compared (Table 3.3). 

Table 3.3. Effects of manual method and plot position on minimum RMSE of processed 

LiDAR point clouds. 

Category Method A Method B All 
Number of Plots 200 300 500 

Minimum RMSE (m) 0.0478 0.0398 0.0657 
Optimal Percentile 82nd 99th 98th 

Sub-category Side Middle Side Middle Side Middle 
Number of Plots 140 60 200 100 340 160 

Minimum RMSE (m) 0.0436 0.0491 0.0395 0.0327 0.0649 0.0624 
Optimal Percentile 77th 89th 99th 99.5th 97th 99th 
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Meanwhile, the effect of plot position on RMSE was investigated as well (Table 

3.3). LiDAR had a fixed horizontal resolution, due to which the closer one object was to 

LiDAR the denser point cloud of that object would be acquired. In our case, the point 

cloud generated at each measurement included two side plots and one middle plot, and 

LiDAR was positioned above the middle plot, thus middle plots had denser point clouds 

than side plots. On average the point clouds of side plots had about 6000 points while the 

ones of middle plots had about 8000 points. 

Based on Table 3.3, manual method affected RMSE substantially as the minimum 

RMSE of all category was 37.45% and 65.08% higher than the minimum RMSE of 

method A and B categories respectively, thus it makes more sense to use different 

optimal percentiles for two method categories for future work. However plot position 

didn’t seem to affect RMSE in a significant way, with an average RMSE increase of 

0.0026 m when plot positions weren’t differentiated in two method categories, hence the 

effect of plot position can be ignored in the future as the additional RMSE should be 

minor. 

3.3.3. Height Estimation Comparison between Ultrasonic Sensor and LiDAR 

Over five data collection campaigns, ultrasonic senor estimated canopy heights 

and LiDAR estimated canopy heights where 82nd and 99th Z value percentiles of 

processed point clouds were chosen for method A and B categories were plotted against 

manual measurements (Figure 3.12). 
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Figure 3.12. Ultrasonic sensor and LiDAR estimated canopy heights versus manually 

measured canopy heights. 

Among two methods, LiDAR performed much better than ultrasonic sensors. 

With a large RMSE of 0.34 m and a low R2 of 0.05, ultrasonic sensors tended to 

overestimate wheat canopy heights at the 1st data collection campaign and underestimate 

heights at the rest data collection campaigns, also it provided some negative readings, 

which will be discussed in Section 3.4.1. LiDAR provided precise and accurate height 

estimations throughout the season, with a low RMSE of 0.05 m, a low Bias of -0.02 m 

and a high R2 of 0.97. In terms of the results, LiDAR can be considered as a reliable plant 

height evaluation method. 

3.4. Discussion 

3.4.1. Ultrasonic Sensor 

The poor performance of ultrasonic sensors in this study can be explained by 

sensor limitations, wheat morphology and our measurement style. Ultrasonic sensor 
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generates sound waves to detect distances. When the sound waves are not reflected 

straight back to the sensor, due to either sensor orientation or object surface orientation, 

ultrasonic sensor may not capture the reflected sound waves. In this study the slanting 

issue of the phenocart could be a cause for that. Also when the surface of an object is not 

large enough to create strong echoes, ultrasonic sensor may not treat the weak echoes as 

valid signals. A typical wheat plant has narrow leaves and thin spikes, thus making it 

hard for ultrasonic sensors to pick up valid signals reflected from wheat. Moreover, 

because of our static measurement style, for each plot the ultrasonic sensor was only able 

to sample a small area (about 0.05 m2 assuming one meter distance between sensor and 

canopy) to represent the whole plot. Due to within-plot variation, the random error from 

sampling could not be assessed or corrected, which led to ultrasonic sensors’ low 

performance. Andújar et al. (2012) also used ultrasonic sensors in a static measurement 

style to detect weeds in wheat plants, and a low Pearson's correlation of 0.32 between 

ultrasonic sensor readings and manually measured wheat heights was observed. 

The overestimation and underestimation of wheat height by ultrasonic sensors are 

illustrated in Figure 3.13. For a young wheat plant, clustered leaves with natural 

curvature seemed to reflect sound waves effectively, however the reference height was 

measured as the height of stem top instead of leaf top (method A). As wheat plants grew 

taller and started to emerge spikes, only the vegetation at the bottom seemed to have 

sufficient density to reflect strong echoes, which was lower than the manually measured 

spike tip height (method B). 



 

 
 

 40 

 

Figure 3.13. Two scenarios where ultrasonic sensor estimations disagree with manual 

measurements. 

Near-zero canopy heights can appear when ultrasonic sensors cannot detect any 

significant echoes except for those reflected from ground. Moreover, if the phenocart is 

slanted so that the distance between ultrasonic sensors and ground at a given moment is 

larger than Hs in Equation 3.2, negative canopy heights will be recorded. 

To improve plant height estimation of ultrasonic sensors, a continuous 

measurement style—i.e., multiple measurements per plot—is preferred. In a previous 

study by Scotford and Miller (2004), approximately 180 wheat height measurements 

from ultrasonic sensor were recorded for each plot, and it was found that the 90% 

percentile of each data set provided the best wheat height estimation, with the lowest 

RMSE for a wheat variety of 0.046 m. Pittman et al. (2015) extracted 25 to 30 ultrasonic 

sensor readings per wheat plot, and found a Pearson’s R of 0.85 compared to manual 

measurements.  

The continuous measurement style is superior to static measurement in terms of 
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obtaining better ultrasonic height estimations. In the context of our manned multi-sensor 

system, however, the phenocart was often required to stop to capture images. Two issues 

could occur if a continuous measurement style were adopted for the system: first, due to 

the highly variable phenocart speed on a field with a rough surface, inconsistent numbers 

of height measurements could be recorded for different plots; second, a large number of 

repeated measurements will be taken from the same sampling area when the phenocart is 

stationary. Both issues can Bias the data and make them troublesome to process. The 

static measurement style may, therefore, still be preferable for our system, in which case 

the ultrasonic sensor is not the best method for wheat height estimation. 

3.4.2. LiDAR 

The LiDAR point cloud pre-processing proposed in this study effectively reduced 

the influence from the slanting issue of the phenocart on the field. However, when ground 

is fully covered by vegetation, LiDAR with strongest return mode might not capture 

enough ground points, and pre-processing of the point cloud could not be undertaken. 

Due to the beam divergence of the lasers, a single firing of a laser can hit multiple objects 

resulting in multiple returns, and, typically, LiDAR can be configured to report multiple 

returns. A suggested solution is to configure LiDAR in multiple return mode since the 

last return signal has a higher chance of being reflected by soil, so a sufficient amount of 

ground points might be collected. 

For processed point clouds, the minimum RMSE and the corresponding percentile 

increased as wheat grew taller (Table 3.2). As method B was measuring the tip of wheat 

spikes while method A was measuring the top of wheat stems, it was expected that the 
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optimal percentiles increased with data collection campaigns. Wind was suspected to be 

the reason for the increasing RMSE. As wheat plants get taller, wind can cause a larger 

degree of bending in plants, and LiDAR can capture deformed point clouds due to wind. 

At the fifth data collection campaign, when the minimum RMSE was the largest, the 

wind speed on the field was maintained at 8.0 to 8.9 m/s, with gust speeds up to  

14.8 m/s. 

Generally, extracting plant heights from point clouds can include the following 

steps: soil level estimation, noisy point removal, rasterization of the point cloud, and 

percentile selection. Similar to the purpose of our ground baseline correction (Yuan et al. 

2018), most studies removed the effect of uneven soil levels by subtracting the 

corresponding soil height from vegetation points. The peak of a point cloud’s Z value 

histogram (Jimenez-Berni et al. 2018; Madec et al. 2017), mean height of non-vegetation 

points (Deery et al. 2014), vehicle wheel contact points (Underwood et al. 2017) and 

direct soil measurement at the beginning of the season (Friedli et al. 2016) have all been 

used to estimate soil level. Some studies have also assumed constant distance between 

sensor and ground (Sun et al. 2017). LiDAR can detect spurious points in very bright 

light conditions (Jimenez-Berni et al. 2018), and some studies (Jimenez-Berni et al. 2018; 

Madec et al. 2017) removed outlier points by the method proposed by Rusu et al. (2008). 

We did not perform any noise removal technique, since even if a small number of 

erroneous points existed, they would not affect our optimal percentile significantly. Point 

clouds are sometimes rasterized for easier future data analysis, and statistics such as 

maximum, mean and certain percentiles are calculated for each grid or pixel. We 

preferred point clouds over 2D height maps because rasterization can cause loss of 
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information. “Percentiles” of point clouds are essentially plant heights, and 95th (Deery et 

al. 2014), 95.5th (Jimenez-Berni et al. 2018), 99.5th (Madec et al. 2017) and 100th 

percentiles (Sun and Li 2016; Sun et al. 2017) have all been adopted in different studies. 

Compared to the results of other relevant studies on wheat height estimation using 

LiDAR, such as R2 of 0.90 and RMSE of 3.47 cm from Madec et al. (2017), R2 of 0.88 

and 0.95 at two different months from Underwood et al. (2017), R2 of 0.993 and RMSE 

of 0.017 m from Jimenez-Berni et al. (2018), and R2 of 0.86 and RMSE of 78.93 mm 

from Deery et al. (2014), this study demonstrated the practicality of obtaining adequate 

wheat canopy height estimations using LiDAR based only on a section of a plot instead 

of the whole plot. The advantage here was higher system throughput and easier data 

processing, but the downside might be lower precision for plant height estimation. In this 

study, the advantage of 3D LiDAR technology allowed us to adopt a static measurement 

style, whereas for a 2D LiDAR, the continuous motion of the sensor is a necessity for 

generating 3D point clouds. 

To improve LiDAR’s plant height estimation performance, in the context of our 

static measurement style, denser point clouds—i.e., collecting more data packets—might 

provide more consistent results. In this study, due to the insufficient number of data 

collection campaigns, our data did not cover all the important growth stages, thus we 

were unable to categorize data collection campaigns by growth stage. For future work 

optimal percentiles at each growth stage of wheat can be further investigated and 

established, which should provide more precise and accurate plant height estimations. 
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3.5. Conclusions 

In this study, our proposed LiDAR point cloud pre-processing was demonstrated 

to be effective at reducing the influence of an uneven ground surface, and a LiDAR point 

cloud generated from a section of a plot was proven to be sufficient for providing precise 

and accurate plant height estimates. This methodology can be a reference for future 

studies that wish to adopt a static measurement style. The ultrasonic sensor, when used 

for plant height estimation in a static measurement style, is not suggested for plants with 

tall sward structures, such as mature wheat plants. In conclusion, LiDAR is 

recommended as a reliable alternative method for wheat height evaluation. 
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CHAPTER 4 

EARLY PREDICTION OF SOYBEAN TRAITS THROUGH COLOR AND TEXTURE 

FEATURES OF CANOPY RGB IMAGERY2 

4.1. Background 

Increasing population, growing meat and dairy consumption and rising biofuel 

usage are key factors for the climbing global demand for crop production (Ray et al. 

2012, 2013). By 2050, a 60 to 110% increase in world’s agricultural production may be 

needed to meet the projected demand (Ray et al. 2013; Tilman et al. 2011), which is 

known as the 2050 challenge. Ray et al. (2013) found that, globally, the average increase 

rates of yield from 1961 to 2008 for four major crops—maize, rice, wheat, and soybean, 

are far below the adequate level to meet future demands. Doubts even exist for our ability 

to maintain current crop yield in the context of a rapidly changing global environment 

(Tester and Langridge 2010). More land clearing for agriculture and improving the 

productivity of existing cropland are two solutions for the challenge (Tilman et al. 2011), 

however the later solution is preferred (Ray et al. 2013). 

Crop productivity can be improved through crop breeding and advanced 

management practices. Crop breeding aims to improve crop genetic makeup for more 

desirable traits such as higher yield, however the improvement rate of modern crop 

breeding in terms of genetic gain is insufficient for the 2050 challenge (Li et al. 2018). 

                                                           
2 This chapter is a portion of a submitted manuscript: Yuan, W., Wijewardane, N. K., Jerkins, S., Bai, G., 
Ge, Y., & Graef, G. L. (2019). Early Prediction of Soybean Traits through Color and Texture Features of 
Canopy RGB Imagery. 



 

 
 

 46 

Partially, this slow improvement rate is due to the long crop generation cycles (Watson et 

al. 2018). Newly emerged methods such as “speed breeding”, which utilizes prolonged 

photoperiods, can increase the generation cycles of various crops in greenhouse from 2-3 

to 4-6 per year (Watson et al. 2018). However, a greenhouse cannot fully mimic field 

conditions, plus it has limited space and a high running and maintenance cost. In order to 

select the crop genotypes that are suitable for extensive agricultural production, breeding 

in field is irreplaceable. Since field environment cannot be easily altered by humans, the 

concept of “speed breeding” cannot be realized in field in the same way as if in 

greenhouse, and alternative methods are needed for accelerating crop breeding research. 

The phenotype of a plant results from the interaction between its genotype and 

environment, and it reflects plant performance under a certain environment. Since the 

genotype of a plant does not change throughout the course of growth, relationships might 

exist between the plant phenotypes at different time points. If plant traits at the end of a 

season such as yield can be predicted by plant phenotyping at early-season, breeders then 

do not have to wait for a full crop generation cycle to make genotype selections, thus the 

speed of crop breeding can be improved. Attempts for early prediction of plant traits have 

been made in previous research. For example, predicting soybean yield using NDVI 

measured at reproductive stages (Ma et al. 2001); predicting sugar and fiber content of 

sugarcane at maturity using the corresponding values measured months before the harvest 

(Elibox 2012); predicting leaf nitrogen concentration of almond in summer using leaf 

nitrogen and boron concentrations in spring (Saa et al. 2014); predicting grapevine yield 

using the number of berries detected at fruit development stages (Aquino et al. 2018).  
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To select a phenotyping method that is suitable for large-scale crop breeding 

research, it needs to be non-destructive and efficient. Advanced instruments such as light 

detection and ranging (LiDAR) or hyperspectral camera can provide rich information 

about a plant, however they are typically expensive and can be difficult for people with 

agronomy background to use. Red-green-blue (RGB) cameras, on the other hand, have 

been widely and long employed in agricultural research. They are cheap and user-

friendly, and modern models are able to capture images in very high spatial resolutions. 

With the popularization of smartphones, RGB cameras also have high accessibility. 

Many well-developed image processing and analysis techniques allow various features 

from RGB images to be extracted and analyzed, however few have been studied for crop 

trait early prediction purpose. 

Color and texture are two important aspects in digital imagery. Color is the 

characteristic perceived by human visual system. The color of a plant is closely related 

with plant physiology. In an image, the color feature of a plant can be used for, for 

example, plant segmentation (Hamuda, Glavin, and Jones 2016), plant stress assessment 

(Bai et al. 2018), disease spot detection (Chaudhary et al. 2012), or estimating plant traits 

such as ground cover (Ritchie et al. 2010), biomass (Hunt et al. 2005), leaf chlorophyll 

content (Hunt et al. 2011) and leaf nitrogen concentration (Wang et al. 2014). Many 

vegetation indices based on RGB bands have been developed and studied for 

accomplishing the tasks. Textures, though lacking a formal definition, are visual patterns 

consisted of entities with certain characteristic in terms of color, shape, size, etc. The 

properties of the entities give the perceived coarseness, smoothness, randomness, 

uniformity, etc., that are eventually regarded as texture (Materka and Strzelecki 1998). 
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The essence of texture in digital imagery is the spatial arrangement of pixels with various 

gray levels (Bharati, Liu, and MacGregor 2004). Texture analysis is important in many 

areas such as remote sensing and medical imaging, and its common applications include 

image segmentation, image classification, and pattern recognition (Bharati et al. 2004). 

Although various texture analysis techniques exist, texture features derived from gray-

level co-occurrence matrix (GLCM) are the most popular because of their simplicity and 

adaptability (Zhang et al. 2017). Details regarding GLCM calculation would be reviewed 

in the next section. The color co-occurrence matrix (CCM) method was first reported by 

Shearer and Holmes in 1990 (Shearer and Holmes 1990), where GLCMs were computed 

from image color channels, instead of being calculated from grayscale images. 

Interestingly, CCM method has never been applied to vegetation index images such as 

NDVI images, and the value of texture information of such images has never been 

investigated to the author’s knowledge. 

The goal of this study was to explore the possibility of early prediction of soybean 

traits through canopy RGB imagery. More specifically, the objective is to identify which 

soybean traits might be predictable using color and texture features of early-season 

canopy RGB images. CCM method was used for extracting texture features, and nine 

soybean traits were selected as case-study traits. In addition to the original RGB images, 

theoretical and empirical transformations of RGB images, namely images in alternative 

color spaces and vegetation index images based on RGB bands were also computed for 

additional color and texture features. 
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4.2. Gray-Level Co-Occurrence Matrix Review 

GLCM, originally called gray-tone spatial-dependence matrix, was first 

introduced by Haralick et al. in 1973 (Haralick, Shanmugam, and Dinstein 1973). It 

describes the joint probability of pixel pairs at any gray-levels, thus is able to represent 

the texture of an image statistically. GLCM-based texture features have many 

applications in agricultural research, and some examples were listed in Table 4.1. 

Table 4.1. Examples of agriculture-related research utilizing GLCM-based texture 

features 

Statistical 
Approach Application Case Study Reference 

Classification 

Plant 
identification 

Plant leaf identification using Flavia 
dataset (32 types of plants) and 

Foliage dataset (60 types of plants) 
(Kadir 2014) 

Identification of grape, mango, chili, 
wheat, beans and sunflower affected 

by powdery mildew disease 

(Pujari, 
Yakkundimath, 

and Byadgi 
2014) 

Identification of five Ficus deltoidea 
varieties 

(Nasir et al. 
2014) 

Recognition of 31 classes of plant 
leaves 

(Chaki, 
Parekh, and 

Bhattacharya 
2015) 

Flower 
identification Classification of 18 types of flower 

(Siraj, Ekhsan, 
and Zulkifli 

2014) 

Seed 
identification 

Classification for individual kernels 
of wheat, barley, oats, and rye 

(Majumdar and 
Jayas 2000) 

Classification of wheat and barley 
kernels 

(Guevara-
Hernandez and 

Gomez-Gil 
2011) 
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Identify four geographical origins of 
Jatropha curcas L. seeds 

(Gao et al. 
2013) 

Detection of freefalling wheat kernel 
damage 

(Delwiche, 
Yang, and 
Graybosch 

2013) 
Pollen 

identification 
Identify ten types of pollen grains in 

honey 
(Kaya et al. 

2013) 

Disease 
identification 

Classify lesions of three Phalaenopsis 
seedling diseases and uninfected 

leaves 
(Huang 2007) 

Classify diseased wheat leaves at five 
severity stages 

(Majumdar et 
al. 2015) 

Classify healthy, early blight and late 
blight diseased tomato leaves 

(Xie et al. 
2015) 

Classify early blight diseased 
eggplant leaves and heathy leaves 

(Xie and He 
2016) 

Identify two types of diseased 
grapevine leaves 

(AlSaddik et 
al. 2018) 

Stress 
detection 

Detection of three levels of drought 
stress in maize 

(Jiang et al. 
2018) 

Weed 
detection 

Identify wild blueberry, weeds and 
bare spots in field 

(Chang et al. 
2012) 

Detection of weeds in rice fields (Barrero et al. 
2016) 

Classify vegetable and weed in filed 
(Pulido, 

Solaque, and 
Velasco 2017) 

Plant 
mapping 

Classification for corn, wheat, soya, 
pasture, and alfalfa using 

multipolarization radar data 

(Anys and He 
1995) 

Map invasive Leucaena leucocephala 
using QuickBird satellite imagery 

(Tsai and Chou 
2006) 

Map invasive Fallopia japonica using 
orthophotos 

(Dorigo et al. 
2012) 

Growth 
stage 

identification 

Phenological stage classification of 
wheat, barely, lentil, cotton, pepper 

and corn 
(Yalcin 2015) 
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Regression Trait 
estimation 

Improve the empirical relationship 
between leaf area index and 

normalized difference vegetation 
index of forest 

(Wulder et al. 
1998) 

Estimate age, top height, 
circumference, stand density and 

basal area of forest 

(Kayitakire, 
Hamel, and 
Defourny 

2006) 
Predict textural class, moisture 

content, leaf area index and leaf water 
potential of moss 

(Ushada, 
Murase, and 

Fukuda 2007) 

Estimate forest biomass (Sarker and 
Nichol 2011) 

Predict glucose, fructose, sucrose and 
total sugar content of muskmelon 

(Wei et al. 
2012) 

Predict moisture content of quince 
fruits being dried 

(Bakhshipour, 
Jafari, and 
Babellahi 

2013) 

Predict maize leaf moisture content (Han et al. 
2014) 

Estimate leaf nitrogen content of 
winter wheat 

(Leemans et al. 
2017) 

Count ear number of wheat growing 
in filed 

(Zhou et al. 
2018) 

 

A GLCM can be mathematically expressed as P(i,j,d,θ), where i and j stand for 

the pixel intensity, or gray-levels of two pixels in a pixel pair, d stands for pixel 

displacement, and θ stands for scanning direction. Since calculating a GLCM over the 

full dynamic range of an image can be prohibitive, quantization is a common practice for 

reducing the number of gray levels of an image. For 8-bit images, which have 256 gray 

levels, quantization level can be 8, 16 or 32 (Clausi 2002). However, the tradeoff of this 

accelerated GLCM calculation is a reduction in image information. 
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Assume a 4×4 image with gray-levels specified, then the corresponding GLCM 

represents the numbers of pixel pairs in an image (Figure 4.1).  

 

Figure 4.1. Schematic diagram showing the GLCM layout of an image. 

To calculate a GLCM, one needs to specify d and θ. d defines the distance 

between two pixels that can be considered as “a pair”, which is typically set as 1, 

meaning two adjacent pixels are considered as a pair. θ defines the direction along which 

the pixel pairs lie. 0°, 45°, 90° and 135° are common scanning directions (Figure 4.2).  

 

Figure 4.2. Common scanning directions for generating a GLCM. 

The distinction between two opposite scanning directions is typically ignored, 

such as left to right versus right to left, since the resulting GLCMs are simply the 

transpose of each other, then symmetric GLCMs are employed as shown in Figure 4.3 

(Conners and Harlow 1980), where both opposite directions are considered.  
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Figure 4.3. Symmetric GLCM examples of the sample image. 

Before extracting texture features, GLCMs need to be normalized. p(i,j,d,θ) 

denotes the normalized GLCM, where: 

 𝑝(𝑖, 𝑗, 𝑑, 𝜃) =  
𝑃(𝑖, 𝑗, 𝑑, 𝜃)

∑ 𝑃(𝑖, 𝑗, 𝑑, 𝜃)𝑖,𝑗
 (4.1) 

as shown in Figure 4.4. 

 

Figure 4.4. Normalized GLCM examples of the sample image. 

Texture features extracted from different GLCMs of the same image can be either 

averaged or treated as independent variables, though Haralick et al. suggested to use the 

averages (Haralick et al. 1973). 

4.3. Materials and Methods 

4.3.1. Data Collection 

Soybean canopy images were collected in 2016 over plots distributed among four 

locations at V4/V5 growth stage using a multi-sensor phenotyping system (Bai et al. 

2016), which was equipped with C920-C Webcams (Logitech, Lausanne, Switzerland). 
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Soybean plots belonged to 35 yield evaluation experiments in soybean breeding 

programs, within which the soybean populations were developed for different purposes, 

such as improved yield, improved genotype diversity, improved response to water, and 

improved seed quality metrics. In total 6383 images were captured over 5667 unique 

plots with measurements repeated for some plots. Among all plots, 2551 unique 

genotypes existed. Relevant information regarding the soybean plots and data collection 

were listed in Table 4.2. Images were stored as 8-bit png files with a 2304×1536 

resolution. 

Table 4.2. Soybean plot and data collection details. 

Location Date Planted Date Harvested Date Measured Number of 
Images 

Clay Center, NE 5/20/2016 10/20/2016 6/21/2016 1254 
Cotesfield, NE 5/21/2016 10/2/2016 6/23&24/2016 1332 

Mead, NE 6/3/2016 10/16/2016 7/6&8/2016 2555 
Wymore, NE 6/4/2016 10/31/2016 7/10/2016 1242 

 

4.3.2. Ground Truths 

Nine soybean traits were selected for this study, which were defined as the 

following: 

• Yield: seed volume in bushels per acre, adjusted to 13% moisture content, after 

the seeds have been dried to a uniform moisture content. 

• Maturity: the number of days in between the planting date and the date when 

95% of the pods have ripened. Delayed leaf drop and green stems are not considered in 

assigning maturity. 
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• Height: the average length from the ground to the tip of the main stem at 

maturity, measured in inches. 

• Seed Size: seed weight in grams per 100 seeds. 

• Protein, Oil, and Fiber: The protein, oil, and fiber concentration of a 70 g seed 

sample determined by an lnfratec 1229 whole-seed grain analyzer. All measurements are 

adjusted to a 13% moisture basis. 

• Lodging: rated at maturity according to the following scores:  

◦ 1: Most plants erect.  

◦ 2: All plants leaning slightly or a few plants down.  

◦ 3: All plants leaning moderately, or 25 to 50% down.  

◦ 4: All plants leaning considerably, or 50 to 80% down.  

◦ 5: Most plants down. 

• Seed Quality: rated according to the following scores considering the amount 

and degree of wrinkling, defective seed coat (growth cracks), greenish ness, and moldy or 

other pigment: 

◦ 1: Very good. 

◦ 2: Good. 

◦ 3: Fair. 

◦ 4: Poor. 
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◦ 5: Very poor. 

Not all ground truths were available for every plot measured. Table 4.3 shows the 

availability of different ground truths. 

Table 4.3. The number of images having the corresponding ground truth available. 

Ground Truth Number of Images 

Yield 6001 

Maturity 4719 

Height 3118 

Seed Size 2372 

Protein 2801 

Oil 2801 

Fiber 2801 

Lodging 4719 

Seed Quality 1866 
 

4.3.3. Image Processing 

4.3.3.1. Pre-processing 

For the purpose of enhancing contrast and improving color consistency across 

images, the contrast of raw images were stretched by saturating the bottom 1% and the 

top 1% of all pixel values in R, G and B channels respectively. Assume a grayscale image 

I(x,y), where x stands for pixel row position, and y stands for pixel column position. In 

our case, x and y range from 1 to 1536 and 1 to 2304. Then the contrast-enhanced image 

E(x,y) would be: 
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 𝐸(𝑥, 𝑦) =

{
 

 
𝐿𝑁 , 𝐼(𝑥, 𝑦) < 𝐿𝑂

(𝐼(𝑥, 𝑦) − 𝐿𝑂)(𝑈𝑁 − 𝐿𝑁)

𝑈𝑂 − 𝐿𝑂
+ 𝐿𝑁 , 𝐿𝑂 ≪ 𝐼(𝑥, 𝑦) ≪ 𝑈𝑂

𝑈𝑁 , 𝐼(𝑥, 𝑦) > 𝑈𝑂

, (4.2) 

where LO and UO are the original lower and upper limits, which are the 1st and 99th 

percentile of all pixel values in I(x,y), and LN and UN are the new limits, which are 0 and 

255 for 8-bit images.  

Next, soil background was removed since it contained irrelevant information. It 

was challenging to segment plants under different lighting and shadowing conditions 

using one regular thresholding technique. Here we proposed a new plant segmentation 

method utilizing multiple vegetation indices to maximize segmentation accuracy. 

First three vegetation index images were calculated from each contrast-enhanced 

RGB image: excess green (ExG) (Woebbecke et al. 1995), modified excess green 

(MExG) and color index of vegetation extraction (CIVE), where: 

 𝐸𝑥𝐺 = {
−1, 𝑅 = 𝐺 = 𝐵 = 0
2𝐺 − 𝑅 − 𝐵

𝑅 + 𝐺 + 𝐵
, 𝑒𝑙𝑠𝑒

, (4.3) 

 𝑀𝐸𝑥𝐺 = 1.262𝐺 − 0.884𝑅 − 0.311𝐵, (4.4) 

 𝐶𝐼𝑉𝐸 = 0.441𝑅 − 0.811𝐺 + 0.385𝐵 + 18.78745. (4.5) 

Each of the three vegetation index images was then rescaled to the range of 0 to 1 

respectively. The difference image between MExG and CIVE was computed to further 

enhance the intensity difference between plant pixels and background pixels, then a 

binary mask M1(x,y) was generated using Otsu’s thresholding technique (Otsu 1979). A 

0.5 threshold was applied to ExG to generate another binary mask M2(x,y). Two masks 
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were overlaid to create the final mask M(x,y) where: 

 𝑀(𝑥, 𝑦) = {
𝑁𝐴,𝑀1(𝑥, 𝑦) = 𝑀2(𝑥, 𝑦) = 0

1, 𝑒𝑙𝑠𝑒
 (4.6) 

 

Figure 4.5. Flowchart of soybean canopy image pre-processing. 

Instead of using 0, NA values were adopted here to avoid the influence of a large 

number of 0 in a masked image when computing color and texture features. The noise of 

M(x,y) was cleaned by removing objects with 300 or fewer connected pixels. To this 
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point M(x,y) was ready to be used for removing soil background from any images 

calculated later (Figure 4.5). 

4.3.3.2. Image Transformations 

Four common color spaces, and 20 vegetation indices based on RGB bands were 

selected to represent the theoretical and empirical transformations of RGB imagery 

(Table 4.4). Plus the original RGB color space, in total (1+4)×3+20=35 transformed 

images were calculated from each contrast-enhanced RGB image, then mask M(x,y) was 

applied to all transformed images. 

Table 4.4. List of theoretical and empirical RGB image transformations. 

Type Name Abbreviation Description Note Reference 

Original 

Red R R channel from RGB color space Raw values were 
adjusted by contrast 
stretching. Values 

range from 0 to 255. 

(Casadesús et al. 
2007; Wang et 

al. 2014) 
Green G G channel from RGB color space 

Blue B B channel from RGB color space 

Theoretical 
transformation 

X X X channel from CIE 1931 XYZ color space CIE 1931 2° Standard 
Observer; 

CIE Standard 
Illuminant D65 

(Casadesús et al. 
2007) Y Y Y channel from CIE 1931 XYZ color space 

Z Z Z channel from CIE 1931 XYZ color space 

L-star L* L* channel from CIE 1976 L*a*b* color space 
CIE Standard 

Illuminant D65 
(Wang et al. 

2014) a-star a* a* channel from CIE 1976 L*a*b* color space 

b-star b* b* channel from CIE 1976 L*a*b* color space 

Hue H H channel from HSI color space 

 

(Karcher and 
Richardson 

2003; Wang et 
al. 2014) 

Saturation S S channel from HSI color space 

Intensity I I channel from HSI color space 

Y-prime Y’ Y’ channel from Y’CbCr color space 

 (Liu et al. 2018) Cb Cb Cb channel from Y’CbCr color space 

Cr Cr Cr channel from Y’CbCr color space 

Empirical 
transformation 

Normalized 
red NR NR = 

R
R + G + B

 

Equations simplified. 
Abbreviations also 
known as r, g, b. 

(Woebbecke et 
al. 1995) 

Normalized 
green NG NG = 

G
R + G + B

 

Normalized 
blue NB NB = 

B
R + G + B

 

Excess red ExR ExR = 
1.4R - G

R + G + B
 Equation simplified. 

(Meyer, 
Hindman, and 
Laksmi 1999) 

Excess blue ExB ExB = 
1.4B - G

R + G + B
 Equation simplified. (Guijarro et al. 

2011) 
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Excess green 

red ExGR ExGR = 
3G - 2.4R - B

R + G + B
 Equation simplified. (Meyer and Neto 

2008) 

Green blue 
difference GBD GBD = G - B 

 (Sanjerehei 
2014) 

Red blue 
difference RBD RBD = R - B 

Red green 
difference RGD RGD = R - G 

Green red 
ratio GRR GRR = 

G
R

  
(Du and Noguchi 
2017; Ritchie et 

al. 2010) 

Green blue 
ratio GBR GBR = 

G
B

  (Sanjerehei 
2014) 

Normalized 
green red 
difference 

NGRD NGRD = 
G - R
G + R

 

Also known as 
normalized difference 
index (NDI) or green 
red vegetation index 

(GRVI). 

(Hamuda et al. 
2016; Hunt et al. 

2005) 

Normalized 
green blue 
difference 

NGBD NGBD = 
G - B
G + B

  
(Du and Noguchi 
2017; Shimada 

et al. 2012) 

Modified 
normalized 
green red 
difference 

MNGRD MNGRD = 
G2 - R2

G2 + R2 

Also known as 
modified green red 

vegetation index 
(MGRVI). 

(Bendig et al. 
2015) 

Visible band 
difference VD VD = 

2G - B - R
2G + B + R

 
Also known as green 

leaf index (GLI). 

(Hunt et al. 
2013; Louhaichi, 

Borman, and 
Johnson 2001) 

Red green 
blue 

vegetation 
index 

RGBVI RGBVI = 
G2 - B × R
G2 + B × R

  (Bendig et al. 
2015) 

Crust index CI CI = 
2B

R + B
 Equation simplified. (Sanjerehei 

2014) 

Color index of 
vegetation 
extraction 

CIVE CIVE = 0.441R - 0.811G + 0.385B + 18.78745  (Kataoka et al. 
2003) 

Triangular 
greenness 

index 
TGI TGI = 95G - 35R - 60B Equation simplified. (Hunt et al. 

2011) 

Modified 
excess green MExG MExG = 1.262G - 0.884R - 0.311B  (Burgos-Artizzu 

et al. 2011) 

 

For each of the 35 transformed images, if applicable, non-mask NA values and 

negative infinity values were replaced as the minimum real value of the image, and 

positive infinity values were replaced as the maximum real value of the image. All values 

of transformed images were stored in double format, meaning decimal places were not 

rounded. Figure 4.6 shows various texture patterns carried by different transformed 

images derived from the same RGB image. The images in Figure 4.6 were colorized for 

viewing convenience, and the color scheme corresponded to the value range of an image 
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before mask M(x,y) was applied. Images were processed using MATLAB R2018b (The 

MathWorks, Inc., Natick, MA, USA). 

 

Figure 4.6. Examples of colorized transformed images containing different color and 

texture information. 
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4.3.4. Image Feature Extraction 

4.3.4.1. Color Features 

For each of the 35 transformed images, four color indices were calculated: mean 

(μ), standard deviation (σ), skewness (θ) and kurtosis (δ) (Kadir 2014). Since for each 

soybean plot the cameras were able to capture the majority of the canopy, we assume the 

plant pixels in each image follow a population distribution instead of a sample 

distribution. 

Take a transformed image T(x,y) where the number of plant pixels, or non-NA 

values is N, then: 

 𝜇 =
∑ ∑ 𝑇(𝑥, 𝑦)𝑦𝑥

𝑁
 (4.7) 

 𝜎 = √
∑ ∑ (𝑇(𝑥, 𝑦) − 𝜇)2𝑦𝑥

𝑁
 (4.8) 

 𝜃 =
∑ ∑ (𝑇(𝑥, 𝑦) − 𝜇)3𝑦𝑥

𝑁𝜎3
 (4.9) 

 𝛿 =
∑ ∑ (𝑇(𝑥, 𝑦) − 𝜇)4𝑦𝑥

𝑁𝜎4
 (4.10) 

Notice NA values from mask M(x,y) were ignored in the calculations above. In 

total 35×4=140 color indices were derived from each original RGB image. 

4.3.4.2. Texture Features 

It is reasonable to assume that transformed images cannot contain more 

information than the original RGB image. Before extracting texture features, each of the 
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35 transformed images without mask M(x,y) applied was first rescaled to 0 to 255 and 

rounded as integers to reduce computational complexity, then mask M(x,y) was applied. 

Two symmetric GLCMs p(i,j,1,0°) and p(i,j,1,90°) were calculated from each 

transformed image. Notice NA values were ignored when computing GLCMs. Nine 

texture indices were calculated from each GLCM: maximum probability (MP), mean 

(MEA), variance (VAR), correlation (COR), angular second moment (ASM), entropy 

(ENT), dissimilarity (DIS), contrast (CON) and inverse difference moment (IDM) 

(Beliakov, James, and Troiano 2008; Haralick et al. 1973), where: 

 𝑀𝑃 = 𝑚𝑎𝑥 (𝑝(𝑖, 𝑗, 𝑑, 𝜃)) (4.11) 

 𝑀𝐸𝐴 =∑ 𝑖𝑝(𝑖, 𝑗, 𝑑, 𝜃)
𝑖,𝑗

=∑ 𝑗𝑝(𝑖, 𝑗, 𝑑, 𝜃)
𝑖,𝑗

 (4.12) 

 𝑉𝐴𝑅 =∑ (𝑖 − 𝑀𝐸𝐴)2𝑝(𝑖, 𝑗, 𝑑, 𝜃)
𝑖,𝑗

=∑ (𝑗 −𝑀𝐸𝐴)2𝑝(𝑖, 𝑗, 𝑑, 𝜃)
𝑖,𝑗

 (4.13) 

 
𝐶𝑂𝑅 =

∑ (𝑖 − 𝑀𝐸𝐴)(𝑗 − 𝑀𝐸𝐴)𝑝(𝑖, 𝑗, 𝑑, 𝜃)𝑖,𝑗

𝑉𝐴𝑅

=
∑ 𝑖𝑗𝑝(𝑖, 𝑗, 𝑑, 𝜃) − 𝑀𝐸𝐴2𝑖,𝑗

𝑉𝐴𝑅
 

(4.14) 

 𝐴𝑆𝑀 =∑ 𝑝(𝑖, 𝑗, 𝑑, 𝜃)2
𝑖,𝑗

 (4.15) 

 𝐸𝑁𝑇 = −∑ 𝑝(𝑖, 𝑗, 𝑑, 𝜃)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗, 𝑑, 𝜃))
𝑖,𝑗

 (4.16) 

 𝐷𝐼𝑆 =∑ |𝑖 − 𝑗|𝑝(𝑖, 𝑗, 𝑑, 𝜃)
𝑖,𝑗

 (4.17) 

 𝐶𝑂𝑁 =∑ (𝑖 − 𝑗)2𝑝(𝑖, 𝑗, 𝑑, 𝜃)
𝑖,𝑗

 (4.18) 
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 𝐼𝐷𝑀 =∑
𝑝(𝑖, 𝑗, 𝑑, 𝜃)

1 + (𝑖 − 𝑗)2𝑖,𝑗
 (4.19) 

After obtaining the same texture features from two GLCMs of the same image, 

such as MP of p(i,j,1,0°) and MP of p(i,j,1,90°), two texture indices were averaged as 

one. In total 35×9=315 texture indices were derived from each original RGB image. 

4.3.5. Data Analysis 

The dataset was randomly split into 70% and 30% segments for model calibration 

and validation. Regression technique Cubist was used to model for Yield, Maturity, 

Height, Seed Size, Protein, Oil and Fiber, and classification technique Random Forests 

was used to model for Lodging and Seed Quality. Since the RGB images were captured 

over different locations at different dates, we introduced another two variables to improve 

model robustness: Location and Time (LnT). Variable “Location” contained number 1, 2, 

3 and 4 which represented four locations where the soybean plots grew. Variable “Time” 

was the number of days in between the planting date and the measuring date. All color 

and texture indices plus LnT (140+315+2=457 variables) were used as predictor 

variables. All predictor variables were standardized by removing the mean and scaling to 

unit variance before used for calibrating models. Model tuning was done through 10 

random segment cross-validation. The data analysis was conducted in R language (R 

Core Team 2018) using package cubist (Kuhn and Quinlan 2018) and randomForests 

(Liaw and Wiener 2002).  

Calibrated models were used to predict for the validation dataset, and prediction 

statistics, including root mean squared error (RMSE), coefficient of determination (R2), 
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Bias, Accuracy, and Cohen's kappa coefficient (Kappa) were calculated to evaluate 

model performance. RMSE indicates the average prediction error compared to the 

observations. R2 indicates the percentage of observation variance that is explained by the 

model. Bias indicates the average prediction deviation from the observations. Accuracy 

indicates the percentage of overall accurate classifications. Kappa indicates the 

agreement between observed and predicted classes. The statistics were defined as the 

following: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)2

𝑖
, (4.20) 

 𝑅2 = 1 −
∑ (𝑂𝑖 − 𝑃𝑖)

2
𝑖

∑ (𝑂𝑖 − �̅�)2𝑖

, (4.21) 

 𝐵𝑖𝑎𝑠 =
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖),

𝑖
 (4.22) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐

𝑛
, (4.23) 

 𝐾𝑎𝑝𝑝𝑎 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐸

1 − 𝐸
, (4.24) 

where n is the number of observations or the number of data entries of the validation 

dataset, Pi is the ith prediction, Oi is the ith observation, �̅� is the mean of observations, and 

c is the number of correct classifications. Notice n was different for each soybean trait 

because of the data availability (Table 4.3). E is defined as: 

 𝐸 =
1

𝑛2
∑ 𝑛𝑝𝑘𝑛𝑜𝑘

𝑘
, (4.25) 

where k is the kth class, npk is the number of predictions in kth class, nok is the number of 

observations in kth class.  
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4.4. Results 

When using all 457 variables as predictor variables, Cubist as the regression 

technique, and Random Forests as the classification technique, prediction results for all 

soybean traits were presented below (Figure 4.7). Aside from the statistics showing in the 

figure, Lodging had an Accuracy of 0.7662 and a Kappa of 0.3910, and Seed Quality had 

an Accuracy of 0.6629 and a Kappa of 0.1687. 

 

Figure 4.7. Prediction results for all soybean traits using all 457 predictor variables. 
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Statistically speaking, Seed Size, Protein, Oil and Fiber had very small RMSEs, 

Yield and Maturity had fair RMSEs, and Height had a large RMSE. Yield, Maturity, 

Seed Size, Protein and Oil all had decent R2s, whereas Height and Fiber had low R2s 

indicating models were not able to explain large percentages of the data variances. All 

soybean traits had very small Biases. Both Lodging and Seed Quality had good prediction 

Accuracy, however their Kappa were very low. The reason that caused this phenomenon 

might be the imbalanced data distribution, meaning Lodging and Seed Quality had large 

proportions of low rating scores, whereas only a few high rating scores existed. In this 

scenario even if a model classifies all data entries as low rating, Accuracy of the result 

can still be high. 

Data clusters were observed in Maturity, Seed Size, Protein and Oil. When 

compared to the rest three locations, Clay Center had the highest overall Maturity 

distribution, and the cluster at upper right corner in Maturity represented the soybean 

plots influenced by Clay Center’s location effect. Similar to Maturity, clusters in Seed 

Size also indicated location difference. The Seed Size distributions of Cotesfield and 

Wymore were centered around 17 while Clay Center and Mead were centered around 15, 

thus each of the two clusters in Seed Size represented two locations. The clusters in 

Protein and Oil showed difference in between soybean populations. The cluster at upper 

right corner in Protein and the cluster at lower left corner in Oil represented the same 

soybean population, which was developed for improved genotype diversity. All other 

soybean populations behaved similarly in Protein and Oil. 

Based on the overall consideration of the prediction results, we identified Yield, 



 

 
 

 68 

Maturity and Seed Size as the potential soybean traits for early prediction purpose. 

4.5. Discussion 

4.5.1. Agronomical Interpretation 

Our results suggested that several end-season soybean traits might be predictable 

through the color and texture feature of early-season canopy images. Since this subject 

has never been explored before, the true reason for the results remained unknown. 

Ushada et al. (2007) estimated moss traits through GLCM-based canopy texture features, 

and they proposed a black box relationship between canopy parameters and canopy 

image. Here we proposed several theoretical explanations in an attempt to connect plant 

parameters and color and texture features of canopy images. 

Plant developmental traits, such as plant architecture and leaf features, are 

important factors that determine plant overall performance, which can be reflected in an 

early-season canopy image. It is logical to assume the color and texture features of a crop 

canopy image indicate, or represent crop parameters as well as the interactions between 

the parameters. We identified five major crop parameters below that are represented by 

the color and texture information of a canopy image. In other words, the variation of the 

color and texture indices of a canopy image is mainly affected by the following five plant 

developmental parameters: 

• Leaf color 

Plant leaf color is associated with biotic and abiotic stresses, such as plant 

diseases (Matsunaga et al. 2017) and nutrient deficiencies (Xu et al. 2011), which 
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typically cause chlorophyll destruction or chlorophyll formation failure. A common 

practice in crop nitrogen management is to use a leaf color chart, which utilizes relative 

leaf greenness as an indicator for leaf nitrogen status. A healthy plant leaf should have a 

uniform green color distribution, and the corresponding canopy RGB image should have 

small standard deviations in all three channels. A diseased leaf may have necrotic lesions 

with non-green colors, which leads to larger standard deviations in all channels because 

of the nonuniform color distribution. Nutrient deficient or drought-stressed leaves often 

have chlorosis, which can lead to shifts of means in three channels. Essentially leaf color 

indicates plant vigor and health, and it is reasonable to imagine vigorous young plants 

can have better performance later on. 

• Leaf shape 

Plants with different genotypes can have diverse leaf shapes, which can further 

influence the efficiency of light harvesting when leaf area density is high. From the 

perspective of a 2D image, leaf shape is also affected by leaf or branch angle, which has a 

heavy effect on the amount light that can be received by the leaf. Though it was not 

observed in our images, insect damage, plant disease or environmental stress can also 

change the shape of leaf. In relation to canopy RGB imagery, texture indices are 

apparently affected by the shape of leaves since leaves are the fundamental subunits that 

give the overall canopy texture appearance. Leaf shape contains the information 

regarding plant health and photosynthetic efficiency, thus is partially responsible for plant 

end-season performance.  
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• Leaf Size 

Since our images were all collected at the same growth stage, the leaf size 

difference between plots could indicate plant growth rates. Also leaf size is directly 

related with cell number and chlorophyll content, which in turn determine plant 

photosynthetic capacity (Mathan, Bhattacharya, and Ranjan 2016). Both plant growth 

rate and photosynthetic capacity have been found to be correlated with yield (Ashraf and 

Bashir 2003; Matsuo et al. 2018). Large leaf size can give canopy a “coarser” texture 

appearance, while small leaf size gives a “finer” canopy appearance. This appearance 

difference would eventually affects the values of texture indices.  

• Leaf Area Density 

Leaf area density describes how dense the leaves distribute spatially. Similar to 

leaf angle and leaf size, leaf area density directly influences plant photosynthetic capacity 

and the quantity of light interception, therefore leaf photosynthetic efficiency is 

influenced, which in the long-term can have a substantial accumulated effect on plant 

end-season performance. Also leaf area density indirectly shows the number of stems or 

branches, which is usually negatively correlated with plant height and lodging. High leaf 

area density can add complexity to plant canopy texture, while canopies with low leaf 

area density would have a “simpler” appearance. 

• Plant Density 

As the seeding rates for all soybean plots that we measured were the same, plant 

density showing in the images indicated the germination rate of a plot. Also plant density 
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interferes plant photosynthetic efficiency by affecting the quantity of light interception. It 

is logical to expect a plot with fewer plants emerged to have less final yield. 

The color and texture indices of an early-season canopy image statistically 

represent various characteristics of a plant, such as leaf color, leaf shape, leaf angle, 

branch angle, leaf size, plant growth rate, leaf area density, stem number, branch number, 

germination rate, etc. These plant developmental parameters further indicate or determine 

plant vigor, plant health, plant photosynthetic efficiency, plant photosynthetic capacity, 

plant drought resistance, etc. at early growth stages, which can have significant influence 

on plant overall performance (Figure 7). 

 

Figure 4.8. Schematic diagram explaining the potential relationships between color and 

texture information of early-season canopy images and end-season plant performance. 
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4.5.2. Limitations of the Study and Directions for Future Studies 

An image is often rescaled into fewer gray levels before calculating its GLCMs. 

However, assuming the more gray levels there are the more information an image 

contains, we chose 256 gray levels for our transformed image dataset. Research has 

found that the classification ability of some texture indices decreases when the number of 

gray levels increases (Clausi 2002). Future studies can investigate the optimal gray level 

quantization for crop trait early prediction purpose by rescaling images into 128, 64, 32, 

16 or 8 gray levels and comparing the predictions results. Optimal pixel displacement can 

be explored in a similar manner. Also, instead of only computing GLCMs of two 

scanning directions, GLCMs of all four scanning directions can be computed and their 

texture indices can be averaged as more comprehensive representations of a canopy. 

A flaw in our image dataset was that the images were not color-calibrated. Image 

color is subject to the lighting condition, which can cause inconsistent color 

representations across images, that is, the same pixel value intensity can represent 

different colors in different images. One common method for image color calibration is to 

capture a camera calibration target in all images, such as ColorChecker (X-Rite, Grand 

Rapids, MI, USA) (Sunoj et al. 2018). Yet, how to effectively implement a calibration 

target into a high-throughput phenotyping system when measuring thousands of plots 

remains a challenge for future research. 

The cameras employed in this study were not able to capture the fine vasculature 

of soybean leaves. Vasculature features such as vein density and vein diameter regulate 

plant mechanical strength and serve as channels for transporting nutrients such as water 
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and minerals (Mathan et al. 2016), therefore they are crucial for plant photosynthesis. If 

the images have sufficient spatial resolutions to capture leaf vasculature, texture indices 

can be good indicators for subtle leaf vasculature difference.  

The soybean image dataset in this study was collected at eastern Nebraska areas 

in the year of 2016. Without images collected over a different crop type, from another 

location with different environmental conditions, or from another year as reference, 

significant crop, location, year effects on plant end-season performance might exist. 

Thus, all conclusions made in this article are solely valid for soybean plots growing at 

eastern Nebraska in 2016 and cannot be generalized. As the concept of this study is 

rudimentary, experiments for various crops under diverse environments across multiple 

years are needed to confirm the validity and applicability of crop trait early prediction 

through RGB imagery. 

4.6. Conclusion 

Based on the results of this study, Yield, Maturity and Seed Size are the soybean 

traits that might be predictable using color and texture features of early-season canopy 

RGB images. However this conclusion is only valid for soybean growing at eastern 

Nebraska in 2016, and the concept of crop trait early prediction needs future studies to 

consolidate. 
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