
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

Summer 7-15-2019

New Algorithms for Large Datasets and
Distributions
Sutanu Gayen
University of Nebraska - Lincoln, sutanugayen@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Gayen, Sutanu, "New Algorithms for Large Datasets and Distributions" (2019). Computer Science and Engineering: Theses, Dissertations,
and Student Research. 173.
https://digitalcommons.unl.edu/computerscidiss/173

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNL | Libraries

https://core.ac.uk/display/225544109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/173?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F173&utm_medium=PDF&utm_campaign=PDFCoverPages


NEW ALGORITHMS FOR LARGE DATASETS AND DISTRIBUTIONS

by

Sutanu Gayen

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Vinodchandran N. Variyam

Lincoln, Nebraska

May, 2019



NEW ALGORITHMS FOR LARGE DATASETS AND DISTRIBUTIONS

Sutanu Gayen, Ph.D.

University of Nebraska, 2019

Adviser: Vinodchandran N. Variyam

In this dissertation, we make progress on certain algorithmic problems broadly over

two computational models: the streaming model for large datasets and the distribu-

tion testing model for large probability distributions.

First we consider the streaming model, where a large sequence of data items arrives

one by one. The computer needs to make one pass over this sequence, processing

every item quickly, in a limited space. In Chapter 2 motivated by a bioinformatics

application, we consider the problem of estimating the number of low-frequency items

in a stream, which has received only a limited theoretical work so far. We give

an efficient streaming algorithm for this problem and show its complexity is almost

optimal.

In Chapter 3 we consider a distributed variation of the streaming model, where

each item of the data sequence arrives arbitrarily to one among a set of comput-

ers, who together need to compute certain functions over the entire stream. In such

scenarios combining the data at a computer is infeasible due to large communica-

tion overhead. We give the first algorithm for k-median clustering in this model.

Moreover, we give new algorithms for frequency moments and clustering functions in

the distributed sliding window model, where the computation is limited to the most

recent W items, as the items arrive in the stream.

In Chapter 5, in our identity testing problem, given two distributions P (unknown,

only samples are obtained) andQ (known) over a common sample space of exponential



size, we need to distinguish P = Q (output ‘yes’) versus P is far from Q (output

‘no’). This problem requires an exponential number of samples. To circumvent this

lower bound, this problem was recently studied with certain structural assumptions.

In particular, optimally efficient testers were given assuming P and Q are product

distributions. For such product distributions, we give the first tolerant testers, which

not only output yes when P = Q but also when P is close toQ, in Chapter 5. Likewise,

we study the tolerant closeness testing problem for such product distributions, where

Q too is accessed only by samples.
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PREFACE

• Some of the results presented in Chapter 2 has been published in [10].

• Some of the results presented in Chapter 3 has been published in [36] and [37].

• The results presented in Chapter 5 are to be included in a manuscript [11] that

is currently in preparation for publication.
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Chapter 1

Introduction to Streaming Algorithms

Organizations have taken a quantum leap in their ability to generate data due to

advances in computing facilities such as storage, processor, and communication chan-

nels. It is estimated that 1.7 MB of data will be created per person on earth per second

by 2020 [34]. We refer the reader to an interesting study conducted by domo.com [34]

about the gigantic scale of data that was generated per minute in 2018 by a few major

commercial organizations including Google, Netflix, Skype, and Twitter. There are

also massive static datasets coming out of crucial scientific studies [20, 56]. All these

data are stored under the assumption that they can be ‘mined’ or analyzed for the

benefit of the stakeholder.

This phenomenal ability of the above organizations to generate massive amounts

of data have posed a challenge to traditional ways of looking at the computation

involved. Traditional models of computing assumes data resides in one place in the

physical memory of the system and any desired location of it can be accessed ef-

ficiently. Traditionally, a computation is considered efficient if the time and space

(physical memory) taken by it are small polynomial functions in the size of the input.

These assumptions are no longer valid for modern datasets for reasons such as:

- The data may be distributed across several locations which could not be easily
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combined in a single place

- Any desired location of the data might not be accessed efficiently since it may

be residing in a secondary storage, where access time is orders of magnitudes

higher than the seek time

- Data might be coming through a communication channel, and it must be pro-

cessed on the fly

- Data may be so large that even linear space and linear time computations are

too costly, and any saving in them would enable us to analyze a larger amount

of data in proportion.

These challenges posed by large datasets and their analysis is referred to by the

umbrella term: big data. In an attempt to address the above concerns, researchers

have proposed new models of computation for big data. Among them, the streaming

model has received considerable attention.

1.1 Streaming algorithms and their history

In the first part of this thesis, we study certain algorithmic problems over the stream-

ing model of computation. In this model we can make only a single pass over the

dataset: we cannot revisit an item unless it is stored in the memory. The time to

process an item and the space used by the algorithm need to be as small as possible.

This model is schematically represented in Figure 1.1.

In a classic study in 1980, Munro and Patterson [55] studied the searching and

sorting in data stored on a one-way read-only tape with constrained memory. In

1985, Flajolet and Martin [35] gave a fast and small space randomized algorithm

for counting the distinct items in a dataset, by making a single pass over it. These
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s1 si. . .

A

si+1 . . . sm

Figure 1.1: Streaming algorithm A processing the stream D =
〈s1, . . . , si, si+1, . . . , sm〉. A sees each item once in the above sequence and
must process it fast within a small space.

eventually led to the formalization of the streaming model by the popular work of

Alon, Matias, and Szegedy [2]. Since then, a flurry of important research works

appeared in this model from theory, database, machine learning, and networking

researchers. We refer the reader to the textbooks [49, 12] and the references therein

for a comprehensive coverage of streaming algorithms and big data algorithms in

general.

1.2 Summary of our results on streaming algorithms

In Chapter 2 we consider a problem motivated by bioinformatics. In this problem,

we are interested to estimate the number of low frequency items in a stream. We give

an efficient streaming algorithm for this problem and also show its space complexity

is almost optimal.

In Chapter 3, we consider a variation of the streaming model, where the dataset

is distributed across several locations. In this variation, simply combining the data

at a single place would cost too much communication overhead. The primary goal in

this case is to use as little communication as possible. We give the first algorithm for

approximate k-median clustering in this model. We also look at the sliding window

variation of the distributed streaming model, where the computation is limited to the

set of most recent W items, which is continuously updated at the arrival of every new
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item. We give the first algorithms for frequency moments, k-median clustering and

k-center clustering in this model.
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Chapter 2

Estimating Low Frequency Items in a Stream and Its

Application to Bioinformatics

2.1 Introduction

In this chapter, we present our algorithm for estimating the number of low frequency

items in a data stream. We start by presenting the problem.

2.1.1 Algorithmic problem

In the streaming model, the input is a sequence of data items: D = 〈s1, s2, . . . , sm〉,

where each si is an item from the universe {1, 2, . . . , n}. We need to make a single

pass over D, processing each si fast using a limited amount of memory, and need to

estimate the following statistics about D:

• ni, the number of distinct items which appear exactly i times in D,

where 1 ≤ i ≤ L for some constant L such as 64. We denote by F0, the number

of items from the universe {1, 2, . . . , n} which appear at least once in the stream.

We next present how this abstraction could model the problem of estimating k-mer

abundance histogram in massive genetic datasets.
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A genetic dataset essentially consists of a large sequence of symbols from the

alphabet {A,C, T,G}. A k-mer is a subsequence of exactly k consecutive symbols for

a parameter k such as 31. Our goal is to approximately compute the following:

• total number of k-mer patterns which appear exactly i times in the sequence

for small values of i such as 1 ≤ i ≤ 64. We use the following example to illustrate

this modeling.

Let ACCTAGAGTAATTTGACAT be our dataset and let k = 2. We treat the

dataset as the following stream: D = 〈AC,CC,CT, TA,AG,GA,AG,GT, TA,AA,

AT, TT, TT, TG,GA,AC,CA,AT 〉, where each data item is from the universe {AA,

AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT, TA, TC, TG, TT} whose vector of

frequencies in the D would be 〈1, 2, 2, 2, 1, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 2〉. Hence n1 = 6

and n2 = 6, where ni is the number of k-mer patterns of length 2 which occur exactly

i times in the dataset.

2.1.2 Previous work

Computing important functions of the frequencies of a stream of items has been

studied extensively. In particular, Flajolet and Martin [35] gave the first algorithm

for approximating F0, the number of distinct items in a stream, up to a factor of 3.

Subsequently in [7], three algorithms for this problem were given with varying space

and time complexities. Finally, an optimal algorithm for estimating F0 was given

in [46]. The optimal lower bound was given earlier in [44, 66]. Another well-studied

problem is the identification and frequency-computation of ‘heavy hitters’: the set of

items which appear in the stream with very high frequency [13].

In contrast, the problem of counting the number of very low frequency items in

the stream has received only limited attention from theoretical perspective. Melsted
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Table 2.1: Results on estimating ni for a constant i, for any error parameter 0 < ε <
0.5. Results marked with [∗] are our contribution. Results with [†] use a perfectly
random hash function whose space complexity is excluded.

Approximation Space Time

additive εF0 [52, 60, 50] [†] O(log n/ε2) O(1)

additive εF0 [10] [∗] O(log n+ 1
ε2

(log 1
ε

+ log log n)) O(1)

additive εF0 [10] [∗] Ω(log n+ 1
ε2

) -

multiplicative constant [10] [∗] Ω(n) -

and Halldorsson [52] gave the first algorithm for computing n1. Later Sivadasan et

al. [60] extended the algorithm of [52] for computing ni for a general i. Lipovsky

et al. [50] proposed a fix for a ‘bias’ in the algorithm of [60], which they verified

experimentally. We note that all the above papers are based on random hashing and

the analyses given assume perfectly random hash functions and hence the optimal

space complexity is not analyzed. Mohamadi et al. [54] gave a heuristic algorithm

based on statistical modeling.

2.1.3 Our results

We gave an efficient algorithm for estimating low frequency items in a data stream

and show its optimality of space usage. Our algorithm gives state-of-the-art empirical

performance on large genetic datasets [10]. We summarize our key results in Table 2.1

and in the following. Our algorithm is based on an observation that the third among

the three algorithms given in [7] (henceforth referred to as BJKST) can be used to keep

a pairwise random sample of distinct items from the set of distinct items, which in

turn can be used to estimate ni. Our algorithm uses a pairwise random hash function.

Our lower bound uses known techniques from communication complexity [66].

In particular, we give the following upper bound for estimating ni upto an additive

error.
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Theorem 2.1. (Upper bound) For any constant i ≥ 1 and 0 < ε < 1 there is a

streaming algorithm that on a data stream over a universe of size n outputs an esti-

mate n̂i for ni such that |n̂i−ni| ≤ εF0 with probability at least 2
3
. This algorithm has

space complexity O(log n + 1
ε2

(log 1
ε

+ log log n)) bits and has amortized update time

O(1).

We next show that in general it takes prohibitive amounts of space for multiplica-

tively estimate ni when the universe size is large.

Theorem 2.2. (Hardness of multiplicative approximation) For any i ≥ 1 and for any

constant c ≥ 1, any randomized streaming algorithm that outputs n̂i on any stream,

such that ni
c
≤ n̂i ≤ cni, needs Ω(n) bits of space, where n is the universe size.

Finally, we show that our space complexity from Theorem 2.1 for additively esti-

mating ni is optimal upto small factors.

Theorem 2.3. (Hardness of additive approximation) For any ε < 0.5 and i ≥ 1 any

streaming algorithm for estimating ni of a stream of items over a universe of size n,

up to at most εF0 absolute error, with probability at least 2
3
, requires Ω(log n + 1

ε2
)

space.

We also show the following optimal theoretical bound for ni estimation for a

constant i and ε.

Theorem 2.4. (Optimal theoretical bound for constant ε) For any cosntant i ≥ 1

and 0 < ε < 1 there is a streaming algorithm that on a data stream over a universe

of size n outputs an estimate n̂i for ni such that |n̂i − ni| ≤ εF0 with probability

at least 2
3
. This algorithm takes l ≥ i as a parameter and have space complexity

O(l log l(log n+ (
Cl,i
ε

)
2(l+1)
l+1−i )) bits and have amortized update time O(l log l). Here, Cl,i

is a constant that depends on i and l.
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2.1.4 Organization of the rest of the chapter

In Section 2.2 we present our algorithm and its analysis. In Section 2.2.1 we analyze

its space complexity and establish Theorem 2.1. In Section 2.2.2 we prove the lower

bounds, Theorem 2.2 and Theorem 2.3. In Section 2.3 we present an alternate al-

gorithm for estimating ni based on a reduction to F0 and prove Theorem 2.4, which

could be of independent theoretical interest.

2.2 Our algorithm and its optimality

In this section, we formally present and analyze Algorithm 1 for estimating ni for a

general i.

2.2.1 Upper bound

We show the main upper bound in this section. We denote the set of all distinct

items in a data stream by S and the number of distinct items by F0. Then F0 = |S|.

We use Markov’s and Chebyshev’s inequalities.

Fact 2.5 (Markov’s inequality). Let X be a non-negative random variable with finite

expectation E(X). Then for any constant t > 0, Pr[X ≥ t] ≤ E[X]
t

.

Fact 2.6 (Chebyshev’s inequality). Let X be a random variable with finite expectation

E(X) and variance Var(X). Then for any constant t > 0, Pr[|X − E[X]| > t] ≤
Var(X)
t2

.

Algorithm 1 is a general algorithm which is based on the BJKST algorithm and

maintains a set of random samples (more precisely a sketch) chosen from S, that are

uniform and pairwise independent, along with their frequencies in the stream. To get
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Algorithm 1: Algorithm for estimating ni. Constants d and L are fixed from
tha analysis in 2.2.1

1 h← a 2-wise independent uniformly random hash function mapping [n]→ [n];
2 g ← a 2-wise independent uniformly random hash function mapping

[n]→ [Θ(10d2

ε4
log2 n)];

3 L← a parameter fixed in the analysis;
4 B0 ← φ;
5 s← 0;
6 for arrival of data item j ∈ {1, 2, · · · , n} in the stream do
7 if zeros(h(j)) ≥ s then
8 if key = (g(j), zeros(h(j)) ∈ Bs then
9 key.count = key.count+ 1;

10 else
11 Insert(key,Bs);
12 key.count = 1;

13 end

14 end
15 while |Bs| ≥ L do
16 Bs+1 ← Remove all keys (α, β) with β = s from Bs ;
17 s← s+ 1;

18 end

19 end
/* At the end of stream */

20 sf ← s; // final value of s
21 ki ← the number of samples in Bsf with count value exactly i;

22 Return n̂i = ki · 2sf ;

an estimate of ni we just count the number of items in the sample that has frequency

exactly i, and scale this count appropriately.

The analysis is similar to that of BJKST. We introduce necessary notation. The

function zeros(x) gives the number of trailing zeros of a bit-string x. We fix L = 10c
ε2

in the algorithm for a constant c which we fix later. Let sf denote the random

variable that gives final value of s in Algorithm 1. For each j ∈ S and each integer
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0 ≤ s ≤ dlog ne, define the following indicator random variables:

Xj,s = 1 if zeros(h(j)) ≥ s

= 0 otherwise

Then, Pr(Xj,s = 1) = 1
2s

. Let Xs =
∑

j∈S Xj,s. Then, E(Xs) = F0

2s
.

The following key lemma guarantees the approximation of our algorithm.

Lemma 2.7. Let ki be the number of items with count exactly i in Bsf in Algorithm 1.

Let n̂i = ki · 2sf . Then |n̂i − ni| ≤ εF0 with probability at least 1− (10+c)
5c

.

Proof. For the analysis we will assume F0 ≥ c
2ε2

(for smaller F0, the algorithm will

give exact count as we describe later). Let s∗ ≥ 0 be the unique integer such that

c
2ε2
≤ F0

2s∗
< c

ε2
.

Claim 2.8. For F0 ≥ c
2ε2

, Pr(sf > s∗) ≤ 1
10

.

Proof. (of claim.) Note that for sf to be < s∗, Xs∗ should be ≥ L. Hence Pr(sf <

s∗) ≤ Pr(Xs∗ ≥ L) = Pr(Xs∗ ≥ 10c
ε2

) ≤ 1
10
. The last inequality because E(Xs∗) =

F0

2s∗
≤ c

ε2
and hence by Markov’s inequality Pr(Xs∗ ≥ 10c

ε2
) ≤ 1

10
.

Let Ni ⊆ S denote the set of distinct items in the stream having frequency exactly

i. Thus ni = |Ni|. Fix any integer 1 ≤ s ≤ s∗. Recall the random variable Xj,s for

each j ∈ S: Xj,s = 1 if zeros(h(j)) ≥ s and 0 otherwise. (Thus Pr(Xj,s = 1) = 1
2s

).

Let Xs =
∑

j∈Ni Xj,s (with slight abuse of notation). Then, E(Xs) = ni/2
s and from

the pairwise independence of h,

Var(Xs) =
∑
j∈Ni

Var(Xj,s) ≤ ni/2
s ≤ F0/2

s.
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Using Chebyshev’s inequality,

Pr(|Xs − ni/2s| > t) ≤ Var(Xs)

t2
≤ F0

2st2
.

We choose t = εF0/2
s, to get that Pr(|2sXs − ni| > εF0) ≤ 2s

ε2F0
≤ 2/c. The last

inequality because s ≤ s∗ ⇒ 2s/F0 ≤ 2s∗/F0 ≤ 2ε2/c.

Notice, the final bucket Bsf includes each item j ∈ Ni satisfying zeros(h(j)) ≥ sf .

Moreover, assuming g is one-to-one (no collision), the count value for each such j will

be exactly i, implying Xsf = ki. So 2sfXsf = ki · 2sf = n̂i. If F0 <
c

2ε2
< L, sf = 0

and n̂i = ki = ni. Since this holds for an arbitrary s : 1 ≤ s ≤ s∗ , the statement

holds for sf in particular, provided sf ≤ s∗.

The probability that sf > s∗ is ≤ 1/10. Also probability that g is not one-to-one

is ≤ 1/10 (see Lemma below). Hence Pr(|n̂i − ni| > εF0) ≤ (10 + c)/5c.

The following lemma is standard and shows that with high probability g does

not have any collision on the set of samples. Notice, for the value of L fixed earlier,∑
s≤sf |Bs| ≤ 10c(1+logn)

ε2
≤ d logn

ε2
for some constant d. Then by Lemma 2.9, g is

one-to-one.

Lemma 2.9. Let d be any constant. On any fixed set D ⊆ [n] of at most d
ε2

log n

items, g : [n]→ [10d2 log2 n
ε4

] is one-to-one except for probability at most 1
10

.

Proof. Probability that any two fixed items a, b maps to the same element by g,

Pr(g(a) = g(b)) = ε4

10d2 log2 n
. Restrict g to a domain D of size d

ε2
log n. Taking union

bound over choices of a, b ∈ D; we get that the probability that g collides is at most

1
10

.

At this point, we present the correctness and efficiency of Algorithm 1.
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Theorem 2.1. (Upper bound) For any constant i ≥ 1 and 0 < ε < 1 there is a

streaming algorithm that on a data stream over a universe of size n outputs an esti-

mate n̂i for ni such that |n̂i−ni| ≤ εF0 with probability at least 2
3
. This algorithm has

space complexity O(log n + 1
ε2

(log 1
ε

+ log log n)) bits and has amortized update time

O(1).

Proof. We run Algorithm 1 on the given stream. At any point, buckets Bs for at most

two s values need to be kept. Storing each key (g(j), zeros(h(j))) takes O(log 1
ε

+

log log n) bits of space. Count for each item could be large in general but for our

purpose, count up to (i + 1) suffices. This needs O(log i) bits per key in addition.

The hash functions require O(log n) bits. The buckets Bs can be implemented using

a balanced binary search tree, requiring O(log 1
ε
) time except when Bs needs to be

updated. Note that, if the length of the stream, m is at most L, every element from

the stream will be stored and the running time will be O(m). Otherwise, m > L,

hence, O(log 1
ε
) = O(logm). In the RAM model it is standard in the literature to

treat any O(logm) bit operation as O(1) for time complexity. Updating Bs requires

O( 1
ε2

log n) time over the entire course of the algorithm. From Lemma 2.7, n̂i is the

required output of the algorithm. Choosing the constant c = 20, we have Pr(|n̂i−ni| >

εF0) ≤ 1/3.

2.2.2 Lower bounds

For hardness results, we use communication complexity techniques. In two party

communication complexity, there are two players Alice and Bob who together has to

compute a function of interest on the union of their input data. The main resource

of interest is the communication between Alice and Bob. Communication complexity

has been a very effective technique in establishing lower bound results in streaming
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algorithms. We establish our lower bounds by giving reductions from the communi-

cation problems Index, Equality and Gap-hamming distance which we define

next, to our frequency estimation problem. In this subsection we use definitions and

notation that are standard in communication complexity literature. Please see the

text book by Nisan and Kushilevitz [48] for fundamentals of communications com-

plexity.

Definition 2.10 (Index(n)). Alice has an n-bit long private string X and Bob has

an integer 1 ≤ j ≤ n. Alice may send a single message to Bob after which Bob needs

to output X[j].

Definition 2.11 (EQ(n)). Alice and Bob both have a n-bit long private string X and

Y respectively, and they need to decide whether X = Y .

Definition 2.12 (Gap-Ham(n)). Alice and Bob both have a n-bit long private string

X and Y respectively and they need to decide whether Ham(X, Y ) ≥ n
2

+
√
n or

Ham(X, Y ) ≤ n
2
−
√
n, given the promise that one of these two conditions holds.

Here Ham denotes the hamming distance function.

We will use the following known communication complexity lower bounds.

Fact 2.13 ([48]). The randomized (private) one-way communication complexity of

EQ(n) is Ω(log n). The problem is hard for inputs coming from the following set:

C ⊂ {0, 1}n, |support(c)| = n
100
, |c ∩ c′| ≤ n

2000
∀c 6= c′ ∈ C, |C| = 2Ω(n).

Theorem 2.14 ([66, 45, 21]). The randomized one-way communication complexity

of Gap-Ham(n) is Ω(n).

Theorem 2.15 ([47]). The randomized one-way communication complexity of Index(n)

is Ω(n).
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First we show that any multiplicative approximation of ni is hard in general.

Theorem 2.2. (Hardness of multiplicative approximation) For any i ≥ 1 and for any

constant c ≥ 1, any randomized streaming algorithm that outputs n̂i on any stream,

such that ni
c
≤ n̂i ≤ cni, needs Ω(n) bits of space, where n is the universe size.

Proof. Given an instance (x, j) where is an n bit vector and 1 ≤ j ≤ n of the Index

problem, Alice generates a stream which consists of a single occurrence for each non-

zero coordinates of x. Let us call this stream σA. Bob generates a second stream σB

which consists of (i + 1) occurrences for each coordinate except for the jth one. He

also adds (i− 1) occurrences of the jth coordinate. Then in the combined stream σA

followed by σB, ni is 1 if x[j] is 1. Otherwise, it is 0.

Consider any streaming algorithm A for computing a factor c approximation of ni

of n items that uses S(n) bits of space. Alice runs A on σA and forwards the memory

content to Bob using S(n) bits of communication. Bob completes running of A on σB

and obtains n̂i of the combined stream. By previous discussion, Bob can use whether

n̂i is zero or not to decide the hard problem Index(n). Hence, from Theorem 2.15,

S(n) = Ω(n).

We next give space lower bound for additive approximations. The proof of this

lower bound closely follows that of the lower bound for F0 estimation [66].

Theorem 2.3. (Hardness of additive approximation) For any ε < 0.5 and i ≥ 1 any

streaming algorithm for estimating ni of a stream of items over a universe of size n,

up to at most εF0 absolute error, with probability at least 2
3
, requires Ω(log n + 1

ε2
)

space.

Proof. We first prove the result for n1. Consider an instance (X, Y ) of the problem

Gap-Ham( 1
ε2

). We will treat the inputs X and Y as subsets of {1, 2, · · · , 1
ε2
}. Con-
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sider a stream produce by the elements of X followed by the elements of Y . Alice

starts to run a streaming algorithm for estimating n1 on X. Upon completion, she

sends the memory contents of the algorithm of size S to Bob, who then completes

the algorithm on Y . Notice, the true value of n1 is exactly Ham(X, Y ) and also,

F0 ≤ 1
ε2

. Thus an εf0 additive error translates to an absolute error of at most 1
ε

for

the hamming distance. Hence by checking whether the estimate for n1 < 1/2ε2 or

not, we can decide Gap-Ham( 1
ε2

). Hence, from Theorem 2.14, S ≥ Ω( 1
ε2

) bits. The

result can be generalized to larger stream size by padding a single fixed item enough

number of times to either the stream of Alice or Bob. This increases F0 by 1 and

keeps n1 unchanged.

For the second term, we start from the hard instance of EQ(n) from Fact 2.13. As

before consider a stream produced by the elements of X followed by the elements of Y

(where X, Y ⊆ {1, · · · , n}). Alice starts to run a streaming algorithm for estimating

n1 on X. Upon completion, she sends the memory contents of the algorithm of size

S to Bob, who then completes the algorithm on Y . If the two sets are equal, n1 = 0

and this estimate will be at most εF0 ≤ ε n
100

. Otherwise, since two different sets of

the distribution have a low overlap, the estimate will be at least (1− ε) n
50
− n

1000
. For

ε < 0.5, this gap can exploited to decide the hard problem EQ(n), which requires

Ω(log n) bits.

In general, for larger values of i, the two parties could repeat each item exactly i

times while creating the stream and the rest of the arguments remain the same.
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2.3 Alternate optimal algorithm for small i and ε based on a

reduction to F0 computation

In this section, we present an alternate algorithm that works efficiently when i and

ε are small constants. This algorithm is based on a completely different approach of

F0 computation on a sub-sampled stream, which could be of independent theoretical

interest. Computation of statistics over a sub-sampled stream has been investigated

before [51].

We recall the notations and also introduce new ones. The stream σ consists of m

data elements each coming from a universal item set of size n. For an item a, the

frequency of a is the number of occurrences of a in σ. For an integer i, ni denote the

number of items in the stream with frequency i. Let F0 denote the the number of

elements having non-zero frequency in σ (also known as 0th frequency moment of σ).

Our goal is to approximate ni for a given i.

Consider the following process: For a probability p, obtain a substream σ′p by

keeping each item of σ with probability p. Let F p
0 = F0(σ′p) be a renaming of this

random variable. The following lemma gives the expected value of F p
0 for this process.

Lemma 2.16. E(F p
0 ) = pn1 + (1− (1− p)2)n2 + · · ·+ (1− (1− p)m)nm

Proof. Consider an item a with frequency i in σ. The probability that none of these

i occurances of a appear in σ′ is exactly (1 − p)i. With the remaining probability it

appears and contributes exactly 1 to F p
0 . The expected contribution to F p

0 for element

a will be (1 − (1 − p)i). Using linearity of expectation and the fact that there are

exactly ni items with frequency i, the result follows.

It can be observed, pF0 < E(F p
0 ) < F0. A form of Chernoff’s bound could be used

to show concentration of F p
0 around E(F p

0 ).
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Theorem 2.17 (Chernoff’s bound). Let X =
∑n

i=1Xi such that each Xi is an inde-

pendent indicator random variable. Then, Pr(|X−E(X)| ≤ εE(X)) ≥ (1−2e−
ε2E(X)

3 )

for any 0 < ε < 1.

For an item a let Xa to be the indicator random variable for event a appearing at

least once in σ′. Since the selection of each element into the substream is independent,

Xa are all independent. The above theorem could be applied to get the following

claim.

Corollary 2.18. For p > 1
2

and for any a > 0 such that F0 >
6a
ε2

, Pr(|F p
0 −E(F p

0 )| ≤

εE(F p
0 )) > (1− 2/ea).

Proof.
ε2E(F p0 )

3
≥ ε2pF0

3
> ε2F0

6
> a. From Theorem 2.17, the required probability

≥ (1− 2e−
ε2E(F

p
0 )

3 ) > (1− 2
ea

).

The previous process could be repeated a number of times for a given p so that

their median lies in the desired range with high probability. A key lemma follows

next. This shows how to obtain the values ni for a small set of values of i given values

of F p
0 for enough number of p’s. The intuition is that, in the substream, elements

which have smaller frequencies will have lesser chance of contributing to F p
0 . On the

other hand, higher frequency elements will have a higher chance.

Lemma 2.19. For any l: 1 ≤ l ≤ m and any set of distinct positive values 0 < pi < 1

where 1 ≤ i ≤ l, the following holds:


n1

...

nl

 =


(1− p1) · · · (1− p1)l

...
...

...

(1− pl) · · · (1− pl)l


−1

F0 − E(F p1

0 )− e1

...

F0 − E(F pl
0 )− el


where ej =

∑m
t=l+1(1− pj)tnt.
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Proof. By definition F0 = n1 + n2 + · · ·+ nm. Then, from Lemma 2.16,

(F0 − E(F p
0 )) = (1− p)n1 + (1− p)2n2 + · · ·+ (1− p)mnm

= (1− p)n1 + · · ·+ (1− p)lnl + e

where e =
∑m

t=l+1(1− p)tnt. For l such distinct values of p,


F0 − E(F p1

0 ))

...

F0 − E(F pl
0 ))

 =


(1− p1) · · · (1− p1)l

...
...

...

(1− pl) · · · (1− pl)l




n1

...

nl

+


e1

...

el


and the result follows.

2.3.1 A simple algorithm for estimating n1

The above Lemma could be used to design an algorithm for computing the number

of low frequency in a stream. An issue that arises is that the values of E(F pi
0 )’s and

F0 can only be approximated up to a relative error ξ. This introduces some error for

the ni’s. The later error seems to depend on the entries of the inverse matrix. Larger

value of these entries would result in a larger error. As a warm-up, let us obtain n1

approximately.

Lemma 2.20. Let p1 = (1 −
√

2ξ) for any 0 < ξ < 1. Let F̃0 and F̃ p1

0 are (1 ± ξ)

approximations for F0 and E(F p1

0 ) respectively. Then, one can obtain ñ1, such that,

|ñ1 − n1| ≤ 2
√

2ξF0.

Proof. From Lemma 2.19, with l = 1, n1 = 1
1−p1

(F0−E(F p1

0 )− e1) for all 0 < p1 < 1,

p1 will be fixed later. Let ñ1 = 1
1−p1

(F̃0 − F̃ p1

0 ). Then, |ñ1 − n1| ≤ 1
1−p1

(ξ(F0 +
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E(F p1

0 )) + e1). Using the facts, E(F p1

0 ) ≤ F0 and e1 =
∑m

t=2(1− p1)tnt ≤ (1− p1)2F0,

the error ≤ ( 2ξ
1−p1

+ (1− p1))F0. Finally, choose p1 = (1−
√

2ξ) to get the result.

An algorithm for n1 is given below. For the F0 computations, the following result

from [46] will be used.

Theorem 2.21 (Kane et al. [46] restated). There is a streaming algorithm for com-

puting F0 of n items up to approximation ratio (1 ± ε) with probability at least 2/3

that uses O(log n + 1
ε2

) bits of space. This algorithm has update time O(1) per item

and reporting time O(1).

Algorithm 2: Algorithm for estimation of n1 up to at most εF0 absolute error.
Works for F0 >

243

ε4
and succeeds with probability at least 2

3

1 l = 1;
2 Choose ε < 1;
3 p1 = (1− ε

2
);

4 Denote by F0(ε1, δ1, k), the kth instance of the F0 algorithm with relative error
at most ε1 and failure probability at most δ1;

5 for arrival of data item d in the stream do
/* Process current item */

6 if Toss(p1) = True then
/* Obtain substream implicitly */

7 Update F0( ε
2

24
, 1

12
, 1) with item d to get F̃ p1

0 ;

8 end

9 Update F0( ε
2

8
, 1

6
, 2) with item d to get F̃0;

10 end
/* At the end of stream */

11 F = F̃0 − F̃ p1

0 ;
12 ñ1 = 2

ε
F ;

13 Return ñ1;

Lemma 2.22. Algorithm 2 computes n1, the number of items with frequency 1, in

a data stream up to absolute error at most εF0 with probability at least 2
3

for any
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0 < ε < 1. It uses O(log n + 1
ε4

) bits of space, O(1) update time and requires O(1)

time to report the output.

Proof. A pseudocode for the algorithm (with constant error probability) is given in

Algorithm 2. From line number 7, F̃ p1

0 is an (1 ± ε2

24
) approximation of F p1

0 , with a

failure probability at most 1
12

. Notice that for ε < 1, p1 >
1
2
. From Corollary 2.18

with a = 4 and F0 >
243

ε4
, F p1

0 is an (1± ε2

24
) approximation of E(F p1

0 ), with a failure

probability at most 2
e4
< 1

12
. Together, F̃ p1

0 is an (1± ε2

24
)2 < (1± ε2

8
) approximation

for E(F p1

0 ) with a failure probability at most 1
6
. Similarly From line number 9, F̃0 is

an (1± ε2

8
) approximation for F0 with a failure probability at most 1

6
. It follows from

Lemma 2.20 with ξ = ε2

8
, ñ1 is an approximation of n1 with at most εF0 absolute error

with a failure probability at most 1
3
. From Theorem 2.21, in total it takes O(log n+ 1

ε4
)

space, O(1) reporting and update times.

2.3.2 Algorithm for ni for i > 1 and improving the dependency on the

error term

In general, to obtain ni, one needs to analyze the entries of the inverse matrix in

Lemma 2.19. In the process, the absolute error for n1 will be improved as well. The

following known fact about the inverse of Vandermonde matrices, will be useful.

Fact 2.23. Let P =



a1 a2
1 · · · al1

a2 a2
2 · · · al2

...
...

...
...

al a2
l · · · all


and Q = P−1.

Then, Qij =
(−1)i−1Πl−i

j̄

aj(Π1≤m≤l
m6=j

(aj−am))
where Πl−i

j̄
is the symmetric polynomial of degree (l−i)

on the variables {a1, a2, · · · , al} \ {aj}.
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The values of pi’s need to be fixed in order to derive an upper bound for the error.

This requires to first fix a value for l, which in turn depend on the desired errors

(ei’s). If ei is too small, some of the entries of P become very small, and hence some

entries of Q become very large. But setting ei ≤ εF0 is good enough.

Lemma 2.24. Let ei and pi be as in Lemma 2.19. For any 0 < ε < 1, let pi ≥

(1− ε
1
l+1 ). Then, ei ≤ εF0.

Proof.

ei = (1− pi)l+1nl+1 + (1− pi)l+2nl+2 + · · ·+ (1− pi)mnm

≤ (1− pi)l+1(nl+1 + nl+2 + · · ·+ nm−1 + nm)

≤ (1− pi)l+1F0

For pi ≥ (1− ε
1
l+1 ), the last term is at most εF0.

The next lemma states an upper bound for the entries Qij, for suitable choices of

pi’s.

Lemma 2.25. Let aj = 1 − (p + (j − 1)δ) for all j = 1 to l in Fact 2.23 for some

0 < p < 1 such that al > 0. Then, |Qij| <
(l−1
l−i)(1−p)l−i

(1−(p+(l−1)δ))δl−1(b l
2
c)!(b l−1

2
c)! for all i, j.

Proof. By definition ai ≥ 1− (p+(l−1)δ), ∀j. Also, Πm6=j|aj−am| is minimum when

j is b l
2
c and this minimum value is δl−1(b l

2
c)!(b l−1

2
c)!. Also, Πl−i

j̄
<
(
l−1
l−i

)
(1 − p)l−i.

The result follows from Fact 2.23.

The following lemma gives an upper-bound for the error for estimation of the ni’s

for any i in general.

Lemma 2.26. Let pi = (p + (i − 1)δ), for an integer 1 ≤ i ≤ l, for some p, δ; such

that 0 < p ≤ p + (l − 1)δ < 1. For each j = 1 to l, let F̃0 and F̃
pj
0 are (1 ± ξ)
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approximations for F0 and E(F
pj
0 ) respectively for some ξ < min{ l+1

2i
− 1

2
, 1}. Then,

for this particular i, one can obtain ñi, such that, |ñi − ni| ≤ (Cl,iξ
1− i

l+1 )F0 for any

0 < ξ < 1 and Cl,i is a constant depending on l and i.

Proof. Recall, by Lemma 2.19, ni =
∑l

j=1Qij(F0 − E(F
pj
0 ) − ej), where Q is the

inverse matrix of the RHS. Let us set ñi =
∑l

j=1 Qij(F̃0 − F̃
pj
0 )). Then for all i, the

absolute error,

|ñi − ni| ≤
l∑

j=1

|Qij|.(ξF0 + ξE(F
pj
0 ) + ej)

≤
l∑

j=1

|Qij|.(ξF0 + ξF0 + ej) (Since E(F
pj
0 ) < F0)

≤
l∑

j=1

|Qij|.(ξF0 + ξF0 + ξiF0)

(From Lemma 2.24 choosing pj = (1− ξ
1
l+1

i ) + (j − 1)δ)

≤ l(max
j
|Qij|)(2ξ + ξi)F0

≤
(
l−1
l−i

)
l

(b l
2
c)!(b l−1

2
c)!

ξ
l−i
l+1

i

δl−1(ξ
1
l+1

i − (l − 1)δ)
(2ξ + ξi)F0

(From Lemma 2.25, using value of pj set before)

=

(
l−1
l−i

)
ll+1

(b l
2
c)!(b l−1

2
c)!

(2ξ + ξi)

ξ
i
l+1

i

F0 (By minimizing with respect to δ, δ = 1
l
ξ

1
l+1

i )

=
2
(
l−1
l−i

)
ll+1(l + 1)

(b l
2
c)!(b l−1

2
c)!(2i)

i
l+1 (l + 1− i)1− i

l+1

ξ1− i
l+1F0

(By minimizing with respect to ξi, ξi = 2iξ
l+1−i for ξ < l+1−i

2i
)

= Cl,iξ
1− i

l+1F0

The required probability values could be pj = (1 − ( 2iξ
l+1−i)

1
l+1 (1 − j−1

l
)) for j = 1 to

l.
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Table 2.2: dCl,ie values for first 10 values of i and l. i indexes column and l indexes
row.

3 0 0 0 0 0 0 0 0 0
24 20 0 0 0 0 0 0 0 0
240 459 170 0 0 0 0 0 0 0
1471 4564 3973 971 0 0 0 0 0 0
10922 46875 66292 37205 6881 0 0 0 0 0
63682 348093 686243 621547 258632 38815 0 0 0 0
428068 2835468 7178441 9058511 6036325 2004979 254531 0 0 0
2446389 18998896 58720256 95301107 88236885 46606299 12926754 1426892 0 0
15635485 139071650 507196952 1007149378 1198520991 876774458 384383412 91753071 8980228 0
88424563 885244788 3718064400 8732195663 12717716720 11941057341 7228103601 2713220512 569506698 50150545

Lemma 2.26 gives a method to estimate the ni values one at a time up to some

absolute error. The dependency of the error term on ξ is largest for n1 and gets

smaller for n2, n3, · · · , nl. For a fixed i, this dependency is larger for larger values

of l. Note, Lemma 2.20 can be derived as a special case. This gives the following

algorithm (Algorithm 3), which uses the F0 result of Theorem 2.21. A few values of

Cl,i can be found in Table 2.2.

Theorem 2.4. (Optimal theoretical bound for constant ε) For any cosntant i ≥ 1

and 0 < ε < 1 there is a streaming algorithm that on a data stream over a universe

of size n outputs an estimate n̂i for ni such that |n̂i − ni| ≤ εF0 with probability

at least 2
3
. This algorithm takes l ≥ i as a parameter and have space complexity

O(l log l(log n+ (
Cl,i
ε

)
2(l+1)
l+1−i )) bits and have amortized update time O(l log l). Here, Cl,i

is a constant that depends on i and l.

Proof. From Lemma 2.26, to obtain an absolute error of at most εF0, ξ = ( ε
Cl,i

)
l+1
l+1−i <

min{ l+1
2i
−1

2
, 1} and pj = (1−( 2i

l+1−i)
1
l+1 ( ε

Cl,i
)

1
l+1−i (1− j−1

l
)) > 1

2
. ε < 1 < Cl,i min{( l+1

2i
−

1
2
)
l+1−i
l+1 , 1} works. ξ is the upper bound of relative error required from F0 and E(F p

0 ).

We start with Algorithm 3. Line number 9 computes F̃
pj
0 , a (1± ξ

3
) approximation

of F
pj
0 except for failure probability at most 1

6(l+1)
. Assume F0 > (54 log 12(l+1)

ξ2 ) =

Ω(log l(
Cl,i
ε

)
2(l+1)
l+1−i ). Otherwise, it is sufficient to maintain a frequency table. From

Corollary 2.18 with a = log 12(l+1), F
pj
0 is at most (1± ξ

3
) approximation of E(F

pj
0 ),
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Algorithm 3: Algorithm for estimation of ni for a particular i, up to at most

εF0 absolute error. Works for F0 > (54 log 12(l+1))(
Cl,i
ε

)
2(l+1)
l+1−i and succeeds with

probability at least 2
3
.

1 Choose l ≥ i;
2 Choose ε < 1;

3 P = {pj = 1− ( 2i
l+1−i)

1
l+1 ( ε

Cl,i
)

1
l+1−i (1− j−1

l
)}lj=1;

4 ξ = ( ε
Cl,i

)
l+1
l+1−i ;

5 Denote by F0(ε1, δ1, k), the kth instance of the F0 algorithm with relative error
at most ε1 and failure probability at most δ1;

6 for arrival of data item d in the stream do
/* Process current item */

7 for j = 1 to l do
8 if Toss(pj) = True then

/* Obtain substream implicitly */

9 Update F0( ξ
3
, 1

6(l+1)
, j) with item d to get F̃

pj
0 ;

10 end

11 end

12 Update F0(ξ, 1
3(l+1)

, l + 1) with item d to get F̃0;

13 end
/* At the end of stream */

14 for j = 1 to l do

15 F j = F̃0 − F̃
pj
0 ;

16 end

17 N =

∣∣∣∣∣∣∣
(1− p1) · · · (1− p1)l

...
...

...
(1− pl) · · · (1− pl)l

∣∣∣∣∣∣∣
−1

∗

 F 1

...
F l

;

18 ñi = ith value in N ;
19 Return ñi;

except for failure probability at most 1
6(l+1)

. Hence, for each j = 1 to l, F̃
pj
0 is at

most (1 ± ξ
3
)2 ≤ (1 ± ξ) approximation of E(F

pj
0 ) except for failure probability at

most 1
3(l+1)

. Line number 12 computes F̃0, a (1 ± ξ) approximation of F0 except

for failure probability at most 1
3(l+1)

. Apply Lemma 2.26 at this point to obtain ñi

except for failure probability at most 1
3
. From Theorem 2.21, for each of the (l + 1)

F0 computations, it takes O(log l(log n+ 1
ξ2 )) space, O(log l) update time.
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It may be observed, for constant l and for i = 1, the space complexity of Theo-

rem 2.4 is O(log n+ (1
ε
)2(1+ 1

l
)), which is close to the lower bound of Theorem 2.3, for

a large l. Also, for a constant ε and i, its space complexity is O(log n), which matches

the lower bound of Theorem 2.3. This theorem could be applied repeatedly to obtain

an algorithm for estimation of a set of ni’s.
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Chapter 3

Algorithms in the Distributed Streaming Model

3.1 Introduction and Preliminaries

In this chapter, we focus on designing algorithms in a distributed variant of the basic

streaming model and in its sliding window counterpart. To motivate the importance

of distributed streaming model, we present the following two scenarios.

• A network operator needs to continuously monitor for the existence of global

icebergs [68, 3] or elephant flows [42] that are coming across multiple servers in

the network to prevent distributed denial of service attacks. These are enormous

traffic flows intended to take down the network, which come from a single source

and distributed itself to different destination serves in order to evade detection.

• A number of sensors are deployed in a vast field for sensing certain variables.

A base station needs to continuously compute certain important statistics for

past 24 hours based on the readings of the variables.

The following common properties emerge while studying the patterns of the above

computations. Firstly, due to the distributed nature of computing devices, the com-

putation could not be performed by bringing the data locally, as that would cost

an impracticable communication overhead. Secondly, the statistics must be updated
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quickly, with time or arrival of new items, since the computations are limited to a

well-defined set of recent items. The distributed streaming model, and its sliding

window counterpart were proposed as an abstraction to model computations in such

scenarios. In this chapter, we study certain important computational problems over

these models. We start by presenting these models.

3.1.1 The models

The distributed streaming model. In the distributed streaming model there are

(K + 1) computational nodes: {N1, N2, . . . , NK , C} where Nis are called distributed

nodes and C is called the coordinator node. These nodes have to collectively compute

a function f over a global stream of data items: {d1, d2, . . . , dt, . . . , dm} which are

distributed over Nis in an arbitrary manner. More precisely, at time t, the item dt

will be sent to the node Nj for some 1 ≤ j ≤ K. At all times t, the coordinator should

maintain an approximation of f over the set of items {d1, d2, . . . , dt} seen so far from

the global stream. In order to achieve this, each Nj can communicate with C through

a bi-directional channel. An algorithm in this model must work for any ordering of

the global input stream. The resources of interest are the total communication, total

space usage over all nodes, and time to process each data item. The term local

stream will be used to refer to the substream seen only at a particular node Nj. In

this chapter we call this model, the distributed streaming model. Sometimes a subtle

distinction is made between the cases when the computation must produce outputs

continuously versus on demand or one-shot. The former variation is usually referred

to as the distributed infinite window model, whereas the later variation is called the

distributed streaming model.

The distributed sliding window model. In the sliding window variation of the
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distributed infinite window model, there are the global stream and the set of (K + 1)

nodes as before. But at any time t, the coordinator needs to maintain an approxi-

mation of the function f over the set of most recent W data items: {dt−W+1, . . . , dt}.

This set of items is known as the active window and W is known as the window size.

As in most of the prior literature, we assume each data item comes with a unique

(or unique modulo W ) increasing time-stamp. As an example, the current UTC time

could be the time-stamp. This model is referred to as the time-based distributed

sliding window model. There is another variation called sequence-based distributed

sliding window model, where no time-stamps are available. This model is harder

to design algorithms on. Unless otherwise mentioned, by distributed sliding window

we’ll mean the time-based model. Schematic diagrams of these models appear in

Figures 3.1 and 3.2.

3.1.2 Notations

Throughout this chapter, we use the abbreviations diw and dsw to mean distributed

infinite window and distributed sliding window respectively. In certain contexts, we

denote by (t1, t2], the substream from (t1 + 1) th through t2 th element. We use: K

to denote the number of distributed nodes, m the length of stream, W the length

of window and k the number of medians/centers for clustering. 〈c, s, t〉 denotes the

costs of our diw/dsw algorithm, where c is the communication complexity over any

window of size W or over the length of the stream m as appropriate, s is the space

complexity and t is the update time (possibly amortized). We assume storage of each

data item, as well as a O(logm) bit counter, takes unit space.

For a function f , by a c-factor approximation we mean f
c
≤ f̃ ≤ c · f and by

(1 ± ε) approximation we mean (1 − ε)f ≤ f̃ ≤ (1 + ε)f . Õ notation subsumes

poly(log(·)) factors in the parameters of the problem such as W,m, f̃ , p, 1/ε. For a
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C

Nj. . .N1
. . . NK

time

Figure 3.1: distributed streaming

C

Nj. . .N1
. . . NK

W=9

Figure 3.2: distributed sliding window

diw algorithm, with high probability means with probability at least (1− 1/poly(m))

per m items. For a dsw algorithm, with high probability means with probability at

least (1− 1/poly(W )) per W items.
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3.1.3 Previous work

Gibbons and Tirthapura [38] introduced the distributed streaming model in 2001. A

formal study of computation over distributed streams was performed by Cormode,

Muthukrishnan and Yi [27], who considered the problem of computing frequency

moments in this model. Subsequently, efficient randomized algorithms for computing

sum of bits, frequencies and ranks, were given in this model [43]. Woodruff and

Zhang gave near-optimal bounds for computing frequency moments in [67]. Sampling

algorithms over a distributed stream were given in [28, 62]. An efficient algorithm for

computing k-center clustering, was given in [29]. Algorithms for computing entropy

in this model were given in [4, 24]. We refer the reader to the survey of Cormode [26]

on this topic.

In contrast, the sliding window variation of distributed streams have received only

limited attention. Cormode et al. [28] gave the first efficient algorithm in dsw model,

for the problem of maintaining a random sample. Later in [30] algorithms for counting

the number of bits, quantiles, and heavy hitters were given. In [59], the authors gave

an algorithm for computing approximate frequencies over a dsw.

We note that computing frequency moments and clustering, have received consid-

erable attention in the single stream sliding window model [6, 14, 15, 17, 25].

3.1.4 Problem definitions for this chapter

Definition 3.1 (p-th Frequency moment). Given a set of items {1, 2, . . . , n} such

that their frequencies are {f1, f2, . . . , fn} respectively, their p-th frequency moment is

defined as Fp =
∑n

i=1 f
p
i .

Definition 3.2 (Metric k-median clustering problem). Given a set of points P from a

metric space χ, output a set of k optimal medians C∗ = arg minC⊆χ,|C|≤k
∑

p∈P minc∈C



32

d(p, c) and the optimal clustering cost OPTk =
∑

p∈P minc∈C∗ d(p, c) where d is the

distance function of χ.

Definition 3.3 (Metric k-center clustering problem). Given a set of points P from a

metric space χ, output a set of k optimal centers C∗ = arg minC⊆χ,|C|≤k maxp∈P minc∈C

d(p, c) and the optimal clustering cost OPTk = maxp∈P minc∈C∗ d(p, c) where d is the

distance function of χ.

For the above two clustering problems, an algorithm with approximation ratio of

r > 1 means the clustering cost of the algorithm is in the range [OPTk, r.OPTk].

When the context is clear, we sometimes use OPT in place of OPTk. Sometimes we

write OPT(S) to emphasize the input set of points S.

3.1.5 Our results

We give algorithms for certain functions on dsw and diw model. We note that if

every data item is communicated to the coordinator, the diw (dsw) model reduces

to the non-distributed streaming (sliding window) model, with the cost c = Θ(m)

(c=Θ(W )). The challenge is to obtain better communication cost. Our strategy is to

use space to reduce the communication cost, without impacting the (amortized) time

by much. At a high level, our dsw algorithms are obtained using a reduction based

approach. We give a framework that takes an efficient black-box diw algorithm A,

and gives an efficient dsw algorithm B that uses A.

Such a framework was given in [17] for computing certain functions over a non-

distributed stream. Our work gives an analogous framework for computing these

functions over a distributed stream. We summarize our results on the dsw model,

arising out of applying this framework for important functions such as frequency

moments, k-median clustering, and k-center clustering in Table 3.1. We note that
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these are the first algorithms given for the above functions in the dsw model. We also

give the first algorithm for metric k-median clustering in the diw model. It remains

open to either improve the cost of the above algorithms or to prove non-trivial lower

bounds.

Table 3.1: Results on dsw and diw. All results, except the two on k-center, are randomized.

All results are up to Õ(1) factor. Results with [∗] are our contribution.

Problem Approx. Result

F2, diw (1± ε) 〈K2

ε2
+ K1.5

ε4
, K
ε3
, 1
ε3
〉 [27]

F2, dsw [∗] (1± ε) 〈W x(K
2

ε4
+ K1.5

ε8
),W y + K

ε6
, 1
ε6
〉 [37]

Fp, diw, p ≥ 2 (1± ε) 〈Kp−1

εΘ(p) ,
nK
ε
, 1
ε2
〉 [67]

Fp, dsw, p ≥ 2 [∗] (1± ε) 〈W x Kp−1

εΘ(p2)
,W y + nK

εΘ(p) ,
1

εΘ(p) 〉. [37]

k-center, diw O(1) 〈kK, kK, k〉 [29]

k-median, diw [∗] O(1) 〈kK, kK, k〉 [36]

k-center, dsw [∗] O(1) 〈k2K, k2K +W,k2〉 [37]

k-median, dsw [∗] O(1) 〈k2K, k2K +W,k2〉 [37]

F2, sequence based dsw [∗] (1± ε) 〈k
√
n/ε2, k +

√
n/ε2, 1〉 Section 3.5

3.1.6 Organization of the rest of the chapter

In Section 3.2 we give a distributed streaming algorithm for k-median clustering.

In Section 3.3 we give a generic framework that takes a diw algorithm for certain

functions and gives a dsw algorithm for it. In Section 3.4 we apply this framework

to give dsw algorithms for clustering functions. We conclude this chapter with an

algorithm for computing F2 over a sequence based dsw model in Section 3.5.
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3.2 New distributed streaming algorithm for k-median clus-

tering

3.2.1 Brief recap of streaming algorithms for k-median clustering

Our starting point is the algorithm of Charikar et al. [23] for k-median clustering

on insertion-only streams rooted on Meyerson’s algorithm [53] for computing online

facility location problem. The later problem is closely related to k-median clustering.

Given a set of points P , the online facility problem asks to find a set F ⊆ P of facilities

to open such that (f.|F | + Cost(P, F )) is as small as possible. Here, Cost(P, F ) is

the sum total of distances for each point in P to its closest facility from F and f is

the cost of opening a single facility. The first part of the sum is known as the facility

cost and the second part of the sum is known as the service cost.

Let us first go over Meyerson’s algorithm briefly. It keeps in memory the set of

already opened facilities F . As the new point p arrives, it computes the distance d

from p to the closest facility from F . We open facility at p with probability min{1, d
f
},

where f is the cost of opening a single facility. It can be shown if we set f to be

L
k(1+logm)

, where m is the number of points, and 0 < L ≤ OPT is a parameter,

the expected service cost becomes at most (L + 4OPT), where OPT is the optimal

k-median clustering cost. The expected number of opened facilities becomes k(1 +

logm)(1 + 4OPT
L

). Moreover, it was shown by Braverman et al. [16] that these values

are close to their expectations with high probability. For metric space, we restate this

result in the following lemma.

Lemma 3.4 (Theorem 3.1 of [16]). If we run the online facility location algorithm

of [53] with f = L
k(1+logm)

for some 0 < L ≤ OPT, on a set of m points, the service

cost is at most 6.2OPT and the number of opened facilities is at most 7k(1+logm)OPT
L
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with probability at least 1− 1
mk

. Here OPT is the optimum k-median clustering cost.

Given these facts, we can do a binary search to guess L = Θ(OPT) so that we get a

set of O(k logm) weighted points which represents the original points with additional

k-media clustering cost of O(OPT). This idea was used in both the algorithms of [16]

and [23]. We start with a small value of L and check that the clustering cost is

at most αL and the number of opened facilities is at most βk(1 + logm) for some

constants α, β. As soon as this condition is violated we increase the current value of

L by a factor of γ for some γ > 1. With this new value of L, we start a new round

and continue seeing all the elements of the stream again. But now the already seen

elements would be replaced by the current set of at most βk(1 + logm) weighted

centers produced. In this way, after all elements of the stream are seen, we can run

an offline k-median algorithm on these weighted centers to get the final k clusters.

3.2.2 Distributed streaming algorithm for k-median clustering

Theorem 3.5. There is a distributed streaming algorithm for computing a O(1)-

approximate metric k-median clustering with high probability, with cost 〈O(kK log3m),

O(kK log2m), O(k log2m)〉, assuming OPTk = poly(m).

Proof. Our approach is to adapt the streaming algorithm discussed in Section 3.2.1

into the distributed setting. We need to know the stream length m to set the facility

cost f = L/k(1 + logm). If this is unknown, we use a set of O(logm) guesses for

m: 1, 2, . . . , up to an appropriate large number. For each guess we run a separate

algorithm. We also count the stream length as the elements arrive. At the end of

stream, we output from the algorithm with the guess m̂ ∈ [m, 2m), and discard other

algorithms. Henceforth, we assume the knowledge of such a value m̂ ∈ [m, 2m).
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We run the Meyerson’s algorithm in a distributed manner. Upon arrival of a point

at a node, it opens a median at the arrived point with probability min{1, d/f}, where

d is its distance to the nearest median and f is the current facility cost, and maps

it to the nearest median with the remaining probability 1 − min{1, d/f}. We keep

track of the set of opened medians C, at every node and the coordinator. This can be

achieved by the nodes broadcasting, whenever a median is opened in its local stream.

The coordinator keeps track of the approximate service cost. Each node tracks the

service cost due to its local stream and updates the coordinator whenever it crosses

a multiple of 2. Thus the coordinator always have a value ŝ ∈ (s/2, s], where s is the

true service cost.

Our algorithm works in rounds. In the first round, L = 1, and f = 1/k(1+log m̂).

A round is ended just before either |C| > 14k(1 + log m̂) or ŝ > 13L. During the

change of round, the value of L is doubled and we need to replay the seen part of

the stream with the doubled value of f . The set of currently opened medians, along

with the weights of points mapped to each median, serves as a proxy to this seen part

with a clustering cost at most 2ŝ < 26L. The coordinator performs this replay with

the updated value of f . At the end of replay, the coordinator broadcasts the set of

medians opened from the replay to the nodes, and the next round is started.

We assume the success of the event stated in Lemma 3.4, at every point in the

stream. When the guess of L reaches a value (OPT/2,OPT], |C| ≤ 14k(1 + logm) <

14k(1 + log m̂), and ŝ ≤ s ≤ 6.2OPT ≤ 12.4L. Thus, the algorithm is guaranteed

to terminate in O(log OPT) = O(logm) rounds. The failure probability is at most

1/poly(m) from Lemma 3.4. When the algorithm terminates, the total clustering cost

is at most 26(1 + 2 + 22 + · · ·+ OPT) = O(OPT). The final medians are obtained by

running a O(1)-approximate offline k-median clustering algorithm on these O(k logm)

weighted medians, with an additional clustering cost of O(OPT). For the details, we
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refer the reader to Section 2.3 of [23].

In each round, the communication for opening a median costs O(K) and there

are O(k logm) such medians per round. During the change of round, communicating

the proxy stream costs O(k logm) and communicating the set of opened median from

the replay, costs O(kK logm). Thus, over all the rounds, and over all the O(logm)

guesses for the stream length, the total communication cost is O(kK log3m). The

space complexity is determined by that for keeping the current set of O(k logm)

medians at each node. The (amortized) update time is mainly spent to find the

nearest median of the arrived point.

3.3 Dsw algorithms for smooth functions

3.3.1 Smooth functions and smooth histograms

The notion of smooth functions was introduced by Braverman and Ostrovsky in [17].

The main property that a smooth function f should satisfy is the following continuity

property: Consider f computed on a stream starting at two time points (or indices)

i and j (j > i). If f computed starting at i and f computed starting at j are within

a constant factor of each other at a given point in time, then it will remain within a

constant factor in the future.

Definition 3.6 ((α, β)-smooth function [17]). A function f defined on a set χ of

elements is called (α, β)-smooth, for some 0 < β < α < 1 if (1) f is non-decreasing

and non-negative, (2) f(A) is at most poly(|A|), (3) (1 − β)f(A ∪ B) ≤ f(B) =⇒

(1− α)f(A ∪B ∪ C) ≤ f(B ∪ C) for any set A,B,C ⊆ χ.

Braverman and Ostrovsky show that for such smooth functions, it suffices to run

an online algorithm to compute the function starting at a logarithmic number of care-
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fully chosen indices to get constant approximation at any given window. These indices

correspond to a constant factor decrease in the value of the function. The correspond-

ing data structure is referred as smooth histogram. This resulted in a construction

that translates any single stream infinite window algorithm to a single stream sliding

window algorithm for smooth functions with comparable space complexity (up to log

factors) as that of the infinite window algorithm.

Definition 3.7 (Approximate smooth histogram [17]). Let f be an (α, β) smooth

function. A smooth histogram for f is a data structure that consists of an increas-

ing set of indices [I1, I2, . . . , IL] over a sliding window of size W with the following

properties.

1. For each i = 1 to L, there is an instance of a (1 ± ε)-approximating algorithm

A, running for approximating f(Ii, N), the value of f for ε ≤ β/4 over the set

{dIi , dIi+1, . . . , dN}, where dj is the data element at location j and dN is the

most recently arrived element.

2. I1 is expired and I2 is active or I1 = 0.

3. For i = 1 to t−2, either 1) (1−α)f(Ii, N) ≤ f(Ii+1, N) and (1−β/2)f(Ii, N) >

f(Ii+2, N) or 2) (1− β/2)f(Ii, N) > f(Ii+1, N) and Ii+1 = Ii + 1.

For a smooth function, the third point above ensures that consecutive indices are

farthest apart but staying within at least (1−α) factor (or immediate in stream and

drops by > (1 − β/2) factor). Note that f(Ii, N) where Ii is the least index from

the histogram that is contained in the current window, approximates the value of the

function on the current window.
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3.3.2 A transfer theorem for smooth functions

Our dsw algorithms take a reduction-based approach: using a diw algorithm for a

smooth function f , we give a dsw algorithm for it. Informally, given a 〈c, s, t〉 cost

diw algorithm for f , we give a dsw algorithm with cost 〈Õ(
√
Wc), Õ(

√
W + s), Õ(t)〉

for it. More generally, we give a trade-off result, that takes roughly W x times more

communication, and W 1−x additional space. This result is presented below in full

technical details, involving the smoothness and approximation parameters, and other

natural parameters of the model and the problem.

Theorem 3.8. Let f be an (α, β)-smooth function f for some 0 < β < α < 1. Let

0 < ε < 1 be such that b = (1+ε)2

(1−ε)2 (1−β) < 1. Fix any 0 ≤ x, y ≤ 1, x+y = 1. Suppose

there is a diw algorithm B computes f over stream size at most m, up to approximation

ratio (1± ε), using cost 〈cB(m, ε), sB(m, ε), tB(m, ε)〉. Then there is another algorithm

that computes f over a dsw of size W up to approximation ratio (1± (α + ε)) using

cost 〈L ·W x · (1 + logW )cB(W, ε), (4L · sB(W, ε) +W y), L(4 + logW )tB(W, ε)〉, where

L = ((log fmax

fmin(1−ε)/ log 1
b
) + 2), fmax = the maximum value of f over any window

of size W , and fmin = smallest non-zero value of f . We assume storing each data

element takes unit space.

Note that the construction allows trade-offs between communication and space.

In particular setting x = y = 1/2, we get that for any function f with fmax/fmin =

poly(W ), a diw algorithm for f with cost 〈c, s, t〉 can be transformed to get a dsw

algorithm with cost 〈Õ(
√
Wc), Õ(

√
W + s), Õ(t)〉, where Õ hides polylog factors.

We first give the algorithm and its proof for the case when x = 0 and y = 1,

and then point out how to modify this algorithm to get the general algorithm. This

algorithm has communication and time costs close to (up to polylog(W )) that of the

diw algorithm, but uses Θ(W ) space.
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• • •
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window future

window

Figure 3.3: Online algorithms run from each index Ij (position indicated by ‘(’). The
one from I3 can be used to approximate f over the future window. Thus, indices from
the buffered window serves for next W elements.

Theorem 3.9. Let f be an (α, β) smooth function for some 0 < β < α < 1. Let

0 < ε < 1 be any number such that b = (1+ε)2

(1−ε)2 (1 − β) < 1. Further assume f

has a (1 ± ε)-approximate diw algorithm B over stream size at most m, with cost

〈cB(m, ε), sB(m, ε), tB(m, ε)〉. Then, there is a dsw algorithm for computing f up to

approximation ratio (1 ± (α + ε)) with cost 〈L(logW + 1)cB(W, ε), L · sB(W, ε) +

W,L(logW + 1)tB(W, ε)〉, where L ≤ (log fmax

fmin(1−ε)/ log 1
b
) + 2, fmax = the maximum

value of f over any window of size W , and fmin = smallest non-zero value of f . We

assume storing each data element takes unit space.

High level idea of the algorithm: Our general approach is to adapt the smooth

histogram technique for sliding windows due to Braverman and Ostrovsky [17] to the

distributed setting. Braverman and Ostrovsky showed that for smooth functions, if

streaming algorithms are maintained from a small set of carefully chosen indices of the

active window, one of these algorithms would approximate the value of the function

over all active windows in near future. These indices correspond to a drop of the

value of the function by some constant factor. Their algorithm has three main steps:

when a new data item d arrives (1) start a new instance of the streaming algorithm

A from this new item (2) update all running instances of A with d and (3) remove

redundant indices and the corresponding instances of A.

There are technical challenges to translate the smooth histogram technique to the
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distributed setting. The main obstacle is the following: in the single stream case, for

each newly arrived element, an instance of A is started from its index. Most of them

are removed at some later point in the future so that at all times only a logarithmic

number of indices are kept. In distributed setting, if one has to start instances of A

each time a new element arrives, it will cost Ω(W ) bits of communication (from the

distributed node where the item arrives to the coordinator).

In order to reduce the communication cost we use the following approach. Instead

of continuously building the histogram, we observe that it is enough to create it once

per W items. Once built, this histogram will continue to work till the arrival of

next W th item due to smoothness of the function. In other words, steps (1) and (3)

in the previous discussion could be dropped except once per W items. This keeps

the asymptotic time and communication cost small. We split the entire stream into

static windows of size W : (0,W ], (W, 2W ], . . . , (aW, aW + W ], . . . and we build the

smooth histogram only when the current window coincides with one of the static

windows. This is done by buffering the entire expiring window using O(W ) space

(see Figure 3.3 for illustration). The indices, which correspond to a drop of some

constant factor for f , are obtained by performing binary searches on the buffered

static window. This will introduce further communication cost and time for about

O(log2W ) many instances of the online algorithm.

Proof. (Of Theorem 3.9). A high-level pseudocode of the algorithms is given in Algo-

rithm 4. We split the entire stream into static windows of size W : (0,W ], (W, 2W ], . . .

, (aW, aW + W ], . . . and maintain a smooth histogram over exactly one of them. If

the current time t satisfies aW − W < t < aW , the smooth histogram from the

static window (aW − 2W,aW −W ] can be used to approximate f([t−W + 1, t]). We

recall, the smooth histogram maintains online algorithms from a set of appropriately
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chosen indices guarantees that any two consecutive indices are either consecutive or

are (1−α)-factor close in f . If I1 ≤ (t−W + 1) < I2 are the two unique consecutive

pair of indices enclosing (t−W + 1), the value of the online algorithm from the index

I1 can be used to approximate f([t−W + 1, t]) up to (1± (α+ ε))-factor. We buffer

the next static window (aW, aW +W ] locally (at the distributed nodes as they arrive)

and build the smooth histogram from it at time (aW +W ). We describe how to build

this in detail in the following claim.

Algorithm 4: High level dsw algorithm for smooth functions

Input: A stream of data: 〈d1, d2, . . . , dN〉
Output: Approximate value of f((N −W,N ])

1 while Not the end of stream do
2 Let dN be the newly arrived item;
3 if N = aW +W then
4 Delete the current smooth histogram H((aW −W, aW ]);
5 H((aW, aW +W ])← Build a new smooth histogram for (aW, aW +W ];
6 Output the value of online algorithm over (aW, aW +W ];

7 else
8 if aW < N < aW +W then
9 Update the online algorithm from each index of H((aW −W,aW ])

with dN ;
10 Buffer dN at the node where it arrived;
11 Ij, Ij+1 be the immediate indices such that Ij ≤ N −W + 1 < Ij+1;
12 Output the value of the online algorithm started from index Ij;

13 end

14 end

15 end
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Claim 3.10. Suppose we have stored a static window [L,R] = (aW, aW +W ] locally.

A smooth histogram H for [L,R] can be built using cost 〈L logW ·cB(W, ε), (sB(W, ε)+

W ), L logW ·tB(W, ε)〉, where the number of indices in H is L ≤ (log fmax

fmin(1−ε)/ log 1
b
)+

2.

Proof. We find the indices from the buffered window [L,R] by binary search and

by running the online algorithm B on the buffered set of items1. The first index is

always L. The last index is always the index R. We denote by f̃ , a (1 ± ε) factor

approximation for f , found using B. Then, the second index is created at a time-

stamp t, such that,

f̃([t, R]) ≥ (1− β)
(1 + ε)

(1− ε)
f̃([L,R]). (3.1)

This ensures, f([t, R]) ≥ (1 − β)f([L,R]), as desired for smooth histogram. In fact,

we try to find such a t as far as possible in the window to minimize the number of

indices. We tag a time-stamp ‘yes’ if it satisfies Equation (3.1) and ‘no’ otherwise.

We set two variables l = L and r = R and maintain the invariant that l has ‘yes’ tag

and r has ‘no’ tag. We next check whether mid = (l + r)/2 has ‘yes’ tag or ‘no’ tag

and update l or r appropriately to maintain the invariant. Then, in logW steps, we

will be able to get hold of a t, such that, t has ‘yes’ tag but (t+ 1) has ‘no’ tag. This

is our next index. We find subsequent indices in a similar manner.

1 There are some details for running B on the buffered items. For a general function, assume,
all the nodes have some global knowledge of time. Then, a fixed time interval of sufficient length
can be allotted for processing each data item. Thus, for example, it may be agreed upon that the
kth data item d in the current window will be processed during time interval (t, t + ∆ · k) where
∆ is at least as large as the update time of the algorithm and t is the time of arrival of the oldest
element of the current window. During this interval, whichever node has received d, will process it.
For a permutation-invariant function such as Fp and clustering, the nodes can take turns and run
the online algorithm over the desired sub-window of the local stream, to compute the function over
any sub-window of the global stream.
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Notice that, at the (t+1)-st item, the value of f̃ drops at least by factor (1−β) (1+ε)
(1−ε)

(Recall, if the indices are consecutive, drop could be larger). This implies, f drops

at least by factor b = (1− β) (1+ε)2

(1−ε)2 < 1. Suppose there are L indices in total. Then,

After crossing the (L − 1)-st index, the value of f̃ is at most fmaxb
(L−2), where fmax

is the maximum value of f over any window. Moreover, assuming the least non-zero

value of f is fmin, fmaxb
(L−2) ≥ fmin(1 − ε). Hence L ≤ (log fmax

fmin(1−ε)/ log 1
b
) + 2. We

denote by I this set of indices. This concludes the updating of the smooth histogram.

While finding the indices, at most L logW instance of B are run for at most W

units of time. This can be achieved using L logW · cB(W, ε) total communication

and LW logW · tB(W, ε) total time (i.e. amortized update time L logW · tB(W, ε) per

item). During the binary search, we need space for running at most a single instance

of B at any point in time, and the space is reused. We also need space for buffering

the current window. So, the space complexity for this part is (sB(W, ε) +W ).

Afterwards, we maintain B from each of the indices and update them with newly

arrived items. For any time till the arrival of next (W − 1) items, let f1 > f2 be

the value of f at the two enclosing indices of the current window. Let fcurrent be

the value of f over the current window. From the properties of smooth histogram,

either fcurrent = f1, or (1 − α)f1 < f2 ≤ fcurrent ≤ f1. Moreover, the value of online

algorithm at the former index holds a value f̃1, such that, (1− ε)f1 ≤ f̃1 ≤ (1 + ε)f1.

Hence, (1−ε)fcurrent ≤ f̃1 ≤ (1+ε)
(1−α)

fcurrent. This is close to (1± (α+ε))-approximation

for small α and ε. We also need to continue running B from each index for W units

of time. This costs at most L · cB(W, ε) communication, L · tB(W, ε) update time per

item and L · sB(W, ε) space in total.

Proof. (of Theorem 3.8). The proof follows closely from that of Theorem 3.9. In

this case, we break the current window of size W into W x blocks, each of size W y,
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such that W = W x ·W y, for some 0 < x, y < 1, x + y = 1. We rebuild the smooth

histogram per arrival of W x elements in the combined stream. Then, the nodes need

to store at most W x items. As before, total number of indices within each block,

L1 ≤ L = ((log fmax

fmin(1−ε)/ log 1
b
)+2). As in the algorithm of Theorem 3.9, finding these

indices is done by binary search, using at most L1 logW calls to B. In total, this can be

done with L1 logWcB(W, ε) total communication per block (i.e L1 ·W x · logWcB(W, ε)

in total), (sB(W, ε) + W y) space (since space is reused during binary-search) and

L1 logWW ytB(W, ε) total time per block (i.e. amortized L1 logWtB(W, ε) time per

item).

Subsequently, we need to maintain L1 · W x online algorithms from each of the

indices within the current window of size W . But we can do better by removing

unnecessary ones while introducing indices from a new block. We arrange the com-

bined indices in decreasing order of arrival. Then, for each index i, we look for

the subsequent index j where the current value of the online algorithm drops by

factor b for the first time. We remove all indices strictly between i and (j − 1)

if there are any. We repeat this removal procedure until no more indices can be

removed in such a manner. Then, starting from each index, at the next to next in-

dex, value of online algorithm drops at least by factor b. After merging, there are

L2 ≤ (2(log fmax

fmin(1−ε)/ log 1
b
) + 2) ≤ 2L such indices at any point in time. Moreover,

by previous discussion, every next index is either the subsequent item, or within a

factor b from the previous index. This entire removal takes time linear in the set

of the indices to be merged, i.e. at most 10(log fmax

fmin(1−ε)/ log 1
b
) time per block. So,

we ignore this while computing the update time per item. Note that, during this

removal, no further communication or space is required. This concludes the indices

removal procedure. Then, online algorithms from each of the indices run for ≥ W y

and ≤ W time. So the total communication cost is at most L1 ·W xcB(W, ε). The
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space complexity for running the online algorithms is at most 2L2 ·sB(W, ε). Using the

indices removal procedure, we improve the update time to 2L2 · tB(W, ε) per arrival,

for updating each of the current instances of B.

3.3.3 Better and simpler algorithm for symmetric smooth functions

For symmetric smooth functions we get a simpler algorithm with slightly better cost.

In particular, the cost of the algorithm will be 〈(L+ 1) · cB(W, ε) ·W x, 4L · sB(W, ε) +

W y, 4(L+ 1)tB(W, ε)〉.

We call a function symmetric if its value is invariant to the permutation of its

arguments. For symmetric functions, we create the indices of the smooth histogram

by making a single backward pass (i.e. from the most recent to the least recent

item in the window) of the distributed online algorithm on the buffered window

[aW + 1, aW +W ]. Let f̃(A) be the value of this algorithm, which is within (1± ε)-

factor of f(A). We create the last index of the smooth histogram at (aW + W ).

Recursively assume the previous index we created was at t1. During the backward

pass, suppose at the time-stamp (t2 − 1) ≤ t1, the value f̃([t2 − 1, aW + W ]) is

at least 1
b
· f̃([t1, aW + W ]) = 1

(1−β)
(1−ε)
(1+ε)

· f̃([t1, aW + W ]) for the first time. If

this happens at t2 − 1 = t1 − 1, we create an index at (t1 − 1). Otherwise, we

create at t2, which satisfies f̃([t2, aW + W ]) < 1
b
f̃([t1, aW + W ]). This implies,

f([t1, aW+W ]) ≥ (1−β)f([t2, aW+W ]), ensuring the smoothness condition between

the consecutive indices t1 and t2. We find all the L indices in similar manner, where

L = ((log fmax

fmin(1−ε)/ log 1
b
)+2), fmax = the maximum value of f over any window of size

W , and fmin = smallest non-zero value of f . This improves the cost of Theorem 3.9

to 〈(L+ 1)cB(W, ε), (L+ 1) · sB(W, ε) +W, (L+ 1)tB(W, ε)〉. We can shave off a logW

factor from the costs of Theorem 3.8 using a similar simpler algorithm. Note that, we

crucially use the symmetric nature of the function in the use of the backward online
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algorithm. The Fp and geometric mean are symmetric smooth functions, whereas,

the function ‘length of longest increasing subsequence’ is asymmetric smooth [17].

3.3.4 Dsw algorithms for frequency moments

In this section we apply the transfer theorem for computing Fp over a dsw. We first

recall a result that shows Fp is smooth.

Theorem 3.11 (Lemma 5 of [17]). Fix any 0 < ε < 1. For p ≤ 1, Fp is (ε, ε)-smooth

function. For p > 1, Fp is (ε, ε
p

pp
)-smooth function.

We’ll be using the following diw algorithm for Fp, due to Woodruff and Zhang.

We’ll be using the simpler transfer framework discussed in Section 3.3.3 to get the

dsw algorithm. Note that, this framework requires 1
(1−β)

(1−ε)
(1+ε)

> 1, where (α, β) is

the smoothness parameter of Fp and (1 ± ε) is the approximation ratio of the diw

algorithm. Thus, to achieve α = ε we need β = εp/pp, requiring the approximation

ratio of the diw algorithm to be something like εp/3pp.

Theorem 3.12 (Follows from Theorem 8 of [67]). For any 0 < ε < 1, there is an

algorithm that continuously computes Fp for any constant p ≥ 1, over universe [n]

over a distributed stream of length at most W up to approximation (1± ε) with high

probability using cost 〈Õ(K
p−1

εΘ(p) ), Õ(nK
ε

), Õ( 1
ε2

)〉.

Corollary 3.13. Fix any 0 ≤ x, y ≤ 1, x + y = 1. For any constant p, there is

an algorithm that continuously computes Fp over a time based dsw of width W up

to approximation ratio (1± ε) with high probability using cost 〈Õ(W x Kp−1

εΘ(p2)
), Õ(W y +

nK
εΘ(p) ), Õ( 1

εΘ(p) )〉.

In particular for F2, we chose to work with the diw algorithm of [27], whose

communication cost has a smaller dependence on ε.



48

Theorem 3.14 (Follows from Theorem 6.1 of [27]). For any 0 < ε < 1, there is an

algorithm that continuously computes F2 over universe n over a distributed stream

of length at most W up to approximation (1 ± ε) with high probability using cost

〈Õ(K
2

ε2
+ K1.5

ε4
), Õ(K

ε3
), Õ( 1

ε3
)〉.

Corollary 3.15. Fix any 0 ≤ x, y ≤ 1, x + y = 1. There is an algorithm that

continuously computes F2 over a time based dsw of width W up to approximation

ratio (1± ε) with high probability using cost 〈Õ(W x(K
2

ε4
+ K1.5

ε8
)), Õ(W y + K

ε6
), Õ( 1

ε6
)〉

3.4 Dsw algorithms for clustering

In this section, we give dsw algorithms for metric k-median and k-center clustering

problems. These clustering costs are not exactly smooth functions. So, we could not

use the transfer framework of Section 3.3. Nevertheless we show how to maintain a

smooth histogram for these two problems, using additional observations. Our dsw

algorithms take O(W ) space, and we could not give a trade-off result as in the case

of smooth functions. The non-smoothness of these clustering costs was also observed

in [15]. We give a slightly general proof.

Lemma 3.16. k-center and k-median clustering cost functions are not smooth.

Proof. Consider two subsets of points A,B such that OPT(A ∪ B) ≤ βOPT(B) for

some β. We set up a subset C such that OPT(A ∪ B ∪ C) > αOPT(B ∪ C) for any

α. The idea is to enforce at least one center from the set A by choosing a tight group

of points and also placing these points far from B and C. This ensures that both

in OPT(A ∪ B) and OPT(A ∪ B ∪ C), one is forced to use at most (k − 1) centers

from B part and (B ∪C) part respectively. Now it remains to create a configuration
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. . .

Group 1 Group 2 Group (k − 1) Group k

A B C

Figure 3.4: k-median and k-center costs are not smooth for A,B,C as above

of B and C such that OPTk−1(B) and OPTk(B) are close but OPTk−1(B ∪ C) and

OPTk(B ∪ C) are not. We show such a counterexample in Figure 3.4.

For convenience, only for the current Section 3.4, we slightly change the notation

of Definition 3.6 for a smooth function as follows.

Definition 3.17 ((α, β)-smooth function). A function f defined on a set χ of ele-

ments is called (α, β)-smooth, for some 1 < β < α if (1) f is non-decreasing and non-

negative, (2) f(A) is at most poly(|A|), (3) 1
β
f(A∪B) ≤ f(B) =⇒ 1

α
f(A∪B∪C) ≤

f(B ∪ C) for any set A,B,C ⊆ χ.

We denote by Cost(P,O) the clustering cost for a set of points P , when O is the

set of k medians/centers.

3.4.1 Dsw algorithm for k-median clustering

We start with the following crucial Lemma from [15], which shows the k-median cost

behaves like a smooth function, if an additional condition is satisfied.

Lemma 3.18 (Lemma 3.1 of [15] restated). For any distinct sets of points A,B,C ⊆

χ from some metric space χ, OPT(A ∪ B) ≤ γOPT(B) =⇒ OPT(A ∪ B ∪ C) ≤

(2 + rγ)OPT(B ∪ C) for any r, γ ≥ 1, provided the following property holds for the

sets A,B:
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• There exists a k-median clustering t : (A ∪ B) → F up to approximation ratio

r such that |t−1(f) ∩ A| ≤ |t−1(f) ∩B| for each median f ∈ F .

We use the diw algorithm of Theorem 3.5 for k-median clustering, given in Sec-

tion 3.2.

Theorem 3.19. There is a dsw algorithm for O(1)-approximate metric k-median

with success probability (1 − 1
poly(W )

) per W items, and with cost 〈O(k2K log5W ),

O(k2K log4W +W ), O(k2 log4W )〉 assuming OPT = poly(W ).

Proof. We split the stream into static windows of the form: [aW + 1, aW + W ] and

store this window locally. At time (aW +W ), we need to rebuild a smooth histogram.

We use the idea of binary-search described in Claim 3.10 to get a set of indices from

the stored window such that crossing each index drops the clustering cost by a γ

factor, where γ is a constant satisfying γ > λ, and λ is the approximation factor of

the distributed streaming algorithm A from Theorem 3.5. These indices are referred

to as the ‘outer indices’. There are O(logW ) of them. For each outer index, we also

record the set of k medians produces by A. Let the indices be I = {I1 < I2 < · · · <

IL} and the corresponding sets of k medians be C = {C1, C2, . . . , CL}, where each

Ci = {ci1, ci2, . . . , cik}. We communicate I and C to each node. We claim that for

any Ii ≤ t < Ii+1, Ci is a γλ-approximate set of k-medians for [t, aW + W ]. This is

because, Cost([t, aW +W ], Ci) ≤ Cost([Ii, aW +W ], Ci) ≤ λ ·OPT([Ii, aW +W ]) ≤

γλ ·OPT([Ii+1, aW +W ]) ≤ γλ ·OPT([t, aW +W ]) (Using monotonicity of OPT and

smoothness).

We also need to ensure the additional property from Lemma 3.18. We ensure this

by keeping a set of ‘inner’ indices between each pair of outer indices. We describe

below how to find the inner indices between I1 and I2. Other inner indices can be

found accordingly. For any i = 1 to L, and for any set S = [t, aW+W ] ⊆ [Ii, aW+W ],
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let nSij denote the number of points from S which map to the median cij, in the

clustering [Ii, aW + W ] → Ci. Let ñSij denote a (1 ± 1
10

) approximation of nSij. We

first assume the coordinator can compute ñSij for any S = [t, aW+W ] ⊆ [Ii, aW+W ].

We defer the description of how to compute this in the following paragraph. Let J1

be the first (earliest in window) inner index between I1 and I2. We will create the

index J1 at the farthest time-stamp I1 < t ≤ I2, such that

∀j = 1 : k, ñ
[I1,aW+W ]
1j ≤ 18

11
ñ

[t,aW+W ]
1j (3.2)

The latter condition ensures, for each median c1j ∈ C1, n
[I1,aW+W ]
1j ≤ 2 · n[t,aW+W ]

1j ,

equivalently n
[I1,t−1]
1j ≤ n

[t,aW+W ]
1j , as demanded in the additional property from Lemma

3.18. Such a farthest t satisfying Equation 3.2 is found by using binary search. No-

tice that t = l = I1 is always satisfied. We first guess t = r = I2. If this t satisfies

Equation 3.2, we already have an index at I2 and we don’t need to keep any inner

index. If not, we next guess t = d l+r
2
e and if this t satisfies, we change l = d l+r

2
e,

otherwise, we change r = d l+r
2
e. In this way, we preserve the invariant that l sat-

isfies Equation 3.2 but r does not. In O(logW ) steps, we will get a t∗, such that

t∗ satisfies but (t∗ + 1) does not. We set J1 = t∗. We find the next inner index J2

similarly using the same clustering C1 and at the farthest time-stamp t, such that,

∀j = 1 : k, ñ
[J1,aW+W ]
1j ≤ 18

11
ñ

[t,aW+W ]
1j holds. Note that, the set C1 is a γλ approximate

median for any I1 ≤ t < I2, from previous discussion. So, the additional property

from Lemma 3.18 holds at indices J1 and J2, with respect to the clustering C1 and

r = γλ. Let C ′1 and C ′2 be the λ-approximate clusterings for J1 and J2 respectively.

Hence from Lemma 3.18 at any later time (t′ + W − 1), such that J1 ≤ t′ < J2,

Cost([t, t + W − 1], C ′1) ≤ Cost([J1, t + W − 1], C ′1) ≤ λ · OPT([J1, t + W − 1]) ≤

λ(2 + γ2λ) ·OPT([Ii+1, t+W − 1]) ≤ λ(2 + γ2λ) ·OPT([t, t+W − 1]) (Using mono-
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tonicity of OPT and smoothness). So, the final approximation is λ(2 + γ2λ). We

find subsequent inner indices in similar manner. Note that, after crossing each inner

index, ñij for some j reduces by a factor 18
11

. Since there are at most k medians and

W items, the total number of inner indices between I1 and I2 is at most O(k logW ).

Also note that, for checking Equation 3.2, the coordinator needs ñ
[t,aW+W ]
ij values, for

various values of t, and j, which we obtain as follows.

Each node makes a backward pass over its local data. During this pass, for each

i, it maps each point p ∈ [Ii, aW + W ] to cij∗ , where j∗ = arg minj d(p, cij), i.e. cij∗

is the closest of the medians from Ci. It also keeps a counter nij for each cij, which

increments for each new point mapping to cij. We then record the time-points where

nij increases by (1 + 1
10

)-factor, i.e crosses {11
10
, 112

102 , . . . ,W} for the first time. We

call this set of time-points as Hij. Each node z sends such Hz
ij, for each i, j to the

coordinator. Note that, n
[t,aW+W ]
ij =

∑
z n

[t,aW+W ]z
ij , where [t, aW +W ]z denotes items

from [t, aW + W ] that appear at node z. Using Hz
ij, coordinator can approximate

n
[t,aW+W ]z
ij up to (1± 1

10
) factor, for any z. Taking sum over all z, it can approximate

n
[t,aW+W ]
ij for any t, up to (1± 1

10
) factor, as required.

The total number of indices are O(k log2W ), from each of which a distributed

streaming algorithm is run with cost 〈O(kK log3W ), O(kK log2W ), O(k log2W )〉.

The total cost due to this is 〈O(k2K log5W ), O(k2K log4W ), O(k2 log4W )〉, which

dominates the total cost of the dsw algorithm. We also need O(W ) space while re-

building the histogram once per W points. Since we run at most O(k log2W ) online

algorithms, success probability per W items is still (1− 1
poly(W )

).

3.4.2 Dsw algorithm for k-center clustering

We start with a Lemma analogous to Lemma 3.18 for smoothness of k-center clus-

tering. The additional property is more relaxed in the case of k-center clustering. To
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the best of our knowledge, this result was not known before.

Lemma 3.20. For any distinct sets of points A,B,C ⊆ χ from some metric space

χ, OPT(A∪B) ≤ γOPT(B) =⇒ OPT(A∪B ∪C) ≤ (1 + 2rγ)OPT(B ∪C) for any

r, γ ≥ 1, provided the following property holds for the sets A,B:

• There is a k-center clustering t : (A ∪ B) → F , up to approximation ratio r,

such that, for each center f ∈ F, |t−1(f) ∩ A| > 0 =⇒ |t−1(f) ∩B| > 0.

Proof. Let O be the optimal set of centers for B ∪ C. We will map each element

a ∈ A to some point in O. Let O′ be the r-approximate set of centers for A ∪ B,

which satisfies the above property. Let o′ ∈ O′ be the center to which a ∈ A maps to.

By assumption some b ∈ B also gets mapped to o′. Finally, let o ∈ O be the center

to which b maps to. We will map a to o. Then by definition, max(d(a, o′), d(b, o′)) ≤

r · OPT(A ∪ B) and d(b, o) ≤ OPT(B ∪ C). Then, by triangle inequality, d(a, o) ≤

(d(a, o′) + d(b, o′) + d(b, o)) ≤ (2r ·OPT(A ∪B) + OPT(B ∪ C))

OPT(A ∪B ∪ C) ≤ Cost(A ∪B ∪ C,O)

≤ max{OPT(B ∪ C), Cost(A,O)}

≤ max{OPT(B ∪ C), (2r ·OPT(A ∪B) + OPT(B ∪ C))}

≤ (2r ·OPT(A ∪B) + OPT(B ∪ C))

≤ (2rγ ·OPT(B) + OPT(B ∪ C)) (Given)

≤ (1 + 2rγ)OPT(B ∪ C) (Using monotonicity of OPT)

We use the following distributed streaming algorithm for k-center clustering.
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Theorem 3.21 (Theorem 6 of [29] restated). There is a deterministic distributed

streaming algorithm for 3-approximate metric k-center with cost 〈O(kK logW ), O(kK

logW ), O(k)〉, assuming OPTk = poly(W ).

Our dsw algorithm for k-center clustering closely follows that for k-median clus-

tering given in Section 3.4.1. We create a set of ‘outer’ indices corresponding to a

constant factor drop of the cost of the distributed streaming algorithm. We also

introduce a set of ‘inner’ indices between each pair of outer indices to satisfy the

additional property of Lemma 3.20. These inner indices are created at a point t, such

that there exists a center to which no item from part (t, aW +W ] maps. Since, there

are at most k centers, at most k inner indices are possible between each pair of outer

indices. Hence the total number of indices is O(k logW ). We present the theorem for

k-center clustering and skip the proof since it closely follows that of Theorem 3.19.

Theorem 3.22. There is a deterministic dsw algorithm for O(1)-approximate met-

ric k-center with cost 〈O(k2K log2W ), O(k2K log2W + W ), O(k2 logW )〉 assuming

OPTk = poly(W ).

3.5 Computing frequency moments over a sequence-based

dsw

In Section 3.1.1, while defining the dsw model, we made an assumption that every

item of the stream comes with a unique (modulo W ) time-stamp. This assumption

is crucial for designing our algorithms, since in dsw model, the coordinator is not

directly aware of the arrival of a new item. Thus most of the dsw algorithms in the

literature works with this assumption. This model is specifically called the time-based

dsw model. The harder model, where the computation is limited to the most recent
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W items, without any time-stamp information, is known as the sequence-based dsw

model. To the best of our knowledge only sampling was known in this later model [28]

before this work.

In this section, we give an algorithm for computing F2 over a sequence based dsw.

Our algorithm uses the following sampling algorithm.

Theorem 3.23 (Rephrased from [28]). There is a sequence-based dsw algorithm for

keeping a uniform sample of size s drawn with replacement from the active window

with cost 〈Õ(Ks), Õ(K + s), Õ(1)〉 with high probability.

We also use the following algorithm for computing the second moment of an

unknown probability distribution over n items. We recall that the second moment of

a probability distribution, P = 〈p1, p2, . . . , pn〉 is ||P ||22 =
∑

i p
2
i .

Theorem 3.24 (Rephrased from [40]). Given an unknown distribution P , known to

have support size at most n, there is an algorithm which computes ||P ||22 up to (1± ε)

approximation, using O(
√
n log 1

δ
/ε2) samples with probability at least (1− δ).

Theorem 3.25. There is a sequence-based dsw algorithm for computing a (1 ± ε)-

approximate F2, with cost 〈Õ(K
√
n/ε2), Õ(K +

√
n/ε2), Õ(1)〉, with high probability.

Proof. We note that the frequencies of the items from the active window 〈f1, f2, . . . , fn〉

naturally induces a distribution with probability valuesD = 〈f1/W, f2/W, . . . , fn/W 〉,

obtained by sampling with replacement. This distribution satisfies ||D||22 = F2/W
2.

Thus, a (1 ± ε) approximation for ||D||22 could be used to approximate F2. From

Theorem 3.24, a set of Õ(
√
n/ε2) samples from the active window are enough for

approximating ||D||22 with high probability, which we accomplish using the algorithm

of Theorem 3.23.
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A similar technique can be used to approximate other frequency moments. We

skip the details.
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Chapter 4

Introduction to Distribution Testing

In the area of property testing we are given limited access to a large object and the

goal is to infer certain properties of interest about the object [39]. The total cost

of the accesses defined appropriately should be as small as possible. In this part of

the thesis we make progress on certain questions from distribution testing, where the

unknown object is an unknown distribution P , and the access to it is provided by

giving independent samples from it.

The related problem of hypothesis testing an unknown distribution have seen

extensive research spanning more than 300 years [5, 58]. As a motivating example

of distribution testing, we would like to mention the pioneering work of John Snow

in epidemiology [61], when during the severe Cholera outbreak of 1854 in London,

he studied whether the distribution of the patients are consistent with a unimodal

distribution, one that has a single peak and the probability of infection reduces with

distance.

More formally let P be a distribution over the sample space [m] = {1, 2, . . . ,m}.

Let C be a set of distributions over [m], which is of interest to us. In (C, ε) distribution

testing, we need to distinguish between the following two cases:

1. P ∈ C
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2. dist(P, C) = minC∈C dist(P,C) > ε,

where dist is a well defined distance function between two probability distributions,

and ε is a parameter, using as few as samples as possible from P . The following

three important classes C, ordered from easier to harder, are thoroughly studied in

the distribution testing literature:

1. (Uniformity testing) C is the singleton set having uniform distribution over [m]

2. (Identity testing or 1-sample testing) C is the singleton set having a particular

fully known distribution Q over [m]

3. (Closeness tesing or 2-sample testing) C is the singleton set having another

unknwon distribution Q over [m], to which we also have sample access, and the

goal is to minimize the total number of samples taken from either P or Q.

Other examples of C include unimodal (unimodality testing), monotonic (monotonic-

ity testing) and product (independence testing) distributions.

A tester T for (C, ε) distribution testing an unknown distribution P , working with

a set S of independent samples from D, should have the following behavior:

1. If P ∈ C then T (S) outputs ‘yes’ with probability 2/3,

2. If dist(P, C) > ε, then T (S) outputs ‘no’ with probability 2/3.

If 0 < dist(P, C) ≤ ε, T can answer arbitrarily. The sample complexity of T is the

maximum number of samples taken by it for (C, ε) distribution testing any unknown

ditribution P over [m]. The sample complexity of (C, ε) distribution testing is defined

as the minimum sample complexity of among all testers T for it. The success proba-

bility 2/3 in the above can be replaced by any constant (1/2, 1] and can be amplified

to (1 − δ), using a majority vote of the outputs of O(log(1/δ)) repititions of T . In
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Figure 4.1: Distribution testing (left) and its tolerant version (right). In both cases,
the innermost circle represents the class C, the ‘yes class’ is shaded, and the ‘no class’
lies outside the outermost circle.

distribution testing, we are interested to know the asymptotic sample complexity of

(C, ε) distribution testing, for various interesting classes of distributions C.

In practice, often we want the following ‘tolerant’ behavior from T :

1. If dist(P, C) ≤ ε/3 then T (S) outputs ‘yes’ with probability 2/3,

2. If dist(P, C) > ε, then T (S) outputs ‘no’ with probability 2/3.

If ε/3 < dist(P, C) ≤ ε, T can answer arbitrarily. Note that, this test is stronger than

that discussed in the last paragraph, because if P ∈ C then dist(P, C) = 0 ≤ ε/3.

Note that, the tolerant behaviour could instead be defined with respect to a second

distance function dist′ and a second distance parameter ε′, provided dist′(P, C) ≤ ε′

and dist(P, C) > ε could never happen simultaneously for a distribution P . Such

testers are called (dist′ versus dist) tolerant testers, as opposed to the non-tolerant

ones discussed previously. The classes of distributions satisfying dist(P, C) ≤ ε/3 and

dist(P, C) > ε are often referred to as the ‘yes class’ and the ‘no class’ respectively

for convenience. See Figure 4.1 for an illustration.
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4.1 Distances between probability distributions

We define the distance measures between distributions that we use in this part.

Definition 4.1. Let P = (p1, p2, . . . , pm) and Q = (q1, q2, . . . , qm) be two distributions

over the sample space [m] = {1, 2, . . . ,m}. Then the distance measures total varia-

tional distance, chi-squared distance, Hellinger distance, and KL distance, respectively

are defined as follows.

- dTV (P,Q) = 1
2

∑
i |pi − qi|

- dχ2(P,Q) =
∑

i(pi − qi)2/qi =
∑

i p
2
i /qi − 1

- d2
H(P,Q) = 1

2

∑
i(
√
pi −
√
qi)

2 = 1−
∑

i

√
piqi, dH(P,Q) =

√
d2

H(P,Q)

- dKL(P,Q) =
∑

i pi ln
pi
qi

The most popular choice for dist for (C, ε) distribution testing has been dTV , which

we’ll assume, unless otherwise mentioned.

4.2 History of distribution testing

Goldreich and Ron [40] formally pioneered the work on distribution testing, by giving

a uniformity tester with O(
√
m/ε4) samples. Paninski [57] showed uniformity testing

has sample complexity Ω(
√
m/ε2) samples and gave an optimal tester assuming ε >

m−1/4. Batu, Fischer, Fortnow, Kumar, Rubinfeld and White [8] gave the first identity

tester working in O(
√
mpoly(log n, ε−1)) samples, which was improved to optimal

O(
√
m/ε2) by Valiant and Valiant [65]. The closeness testing problem was first studied

by Batu, Fortnow, Rubinfeld, Smith, and White [9] and its sample complexity was

settled to Θ(max{m2/3/ε4/3,
√
m/ε2}) by Chan et al. [22]. Valiant and Valiant showed

that dTV tolerant uniformity testing has sample complexity Θ(m/ logm) [63, 64]. To
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circumvent this lower bound, Acharya, Daskalakis and Kamath [1] gave a chi-squared

tolerant identity tester. Daskalakis, Kamath, and Wright [32] thoroughly studied

tolerant testing for every pairs of distances among the four defined in 4.1. We refer

the reader to a survey by Canonne [18] for more details on distribution testing.

4.3 Poisson sampling

We briefly describe an important analytic tool, known as Poisson sampling that we

use in Chapter 5. Let P = (p1, p2, . . . , pm) be a probability distribution. If we

take m samples from P , each symbol i ∈ [m] marginally follows the distribution

Ni ∼ Binomial(m, pi). However, there are non-zero correlations between Ni and Nj

for i 6= j. As an example, given the value of Ni for some i is too large, the other

Nj values for j 6= i are small, since the total number of samples are fixed. If instead

we take Poi(m) samples, which means we first draw a number N ∼ Poisson(m)

and then take N samples from P , these correlations become zero. Moreover, each

Ni ∼ Poi(mpi) independent of other Nj values for j 6= i, from the properties of the

Poisson distribution.

Finally, Poisson sampling does not change the asymptotic sample complexity.

Since due to strong concentration of the Poisson distribution around its mean, N =

Theta(m) except for a very small constant probability.

4.4 Summary of our results on distribution testing

In Chapter 5 we present our results on tolerant identity and closeness testing of

high-dimensional product distributions, over the sample space Σn. Without any as-

sumption, testing distributions over Σn would require |Σ|n/2 samples. Thus recently

testing problems for distributions over |Σ|n/2 were studied with additional assump-
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tions about them. Our results give the first tolerant testers for this testing problem,

when the underlying distribution is known to be a product distribution.
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Chapter 5

Efficient Tolerant Testing of High-Dimensional Product

Distributions

5.1 Introduction

In this chapter, we initiate the study of tolerant testing over an exponential size sam-

ple space Σn, for an alphabet Σ. Recall from Section 4.2, in this case, the simpler

problem of non-tolerant uniformity testing would require Ω(|Σ|n/2) samples, which is

prohibitive. To circumvent this difficulty, testing problems for distributions over such

high-dimensional sample space were investigated with additional structural assump-

tions, independently and concurrently in the following three papers, [31, 19, 33].

These papers gave efficient non-tolerant testers for such distributions coming out of

small degree bayes nets and ising models.

For this work, we entirely focus on product distributions, and show that efficient

tolerant testers could be designed for them. In fact, we comprehensively study the

tolerant testing problem for product distributions for various pairs of distances from

Section 4.1.
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5.1.1 Our Contributions

Our contributions regarding the tolerant identity testing problem of product distribu-

tions are summarized in Table 5.1, where each cell represents the sample complexity

of testing whether the two product distributions are close or far in terms of the dis-

tance corresponding to that row and column respectively. Refer to Section 5.2 for

notation and definitions. The problems become harder as we traverse the table down

or to the right due to the following inequality:

d2
H(P,Q) ≤ dTV (P,Q) ≤

√
2dH(P,Q) ≤

√
dKL(P,Q) ≤

√
dχ2(P,Q) (5.1)

Table 5.1: Sample complexity of identity testing of product distributions. Sample com-

plexity is non-decreasing, as we traverse the table down or to the right. [†] are from [33]

and [∗] are from [19].

dTV (P,Q) > ε
√

2dH(P,Q) > ε dKL(P,Q) > ε2 dχ2(P,Q) > ε2

P = Q
O(
√
n/ε2)

Ω(
√
n/ε2)

(for |Σ| = 2) [†,∗] Untestable

dχ2(P,Q) ≤ ε2/9 O(|Σ|3/2
√
n/ε2) Theorem 5.2

dKL(P,Q) ≤ ε2/9 Ω(n/ log n) Theorem 5.5√
2dH(P,Q) ≤ ε/3 O(|Σ|n log n/ε2) Theorem 5.3

dTV (P,Q) ≤ ε/3 Ω(n/ log n) [∗]

Next, we consider the tolerant closeness testing problem of product distributions.

Our results are summarized in Table 5.2 below.

Table 5.2: Sample complexity of closeness testing of product distributions. Sample com-

plexity is non-decreasing, as we traverse the table down or to the right. [∗] are from [19].

dTV (P,Q) > ε
√

2dH(P,Q) > ε dKL(P,Q) > ε2 dχ2(P,Q) > ε2

P = Q

O(max(
√
n/ε2, n3/4/ε))

Ω(max(
√
n/ε2, n3/4/ε))

(for |Σ| = 2) [*]

O
(

max
{√

n|Σ|/ε2, (n|Σ|)3/4/ε3/2
})

Theorem 5.7 O((n|Σ|)3/4/ε2), Theorem 5.6 Untestable

dχ2(P,Q) ≤ ε2/9 Ω(n/ log n) Theorem 5.4
dKL(P,Q) ≤ ε2/9√

2dH(P,Q) ≤ ε/3 O(|Σ|n log n/ε2) Theorem 5.3
dTV (P,Q) ≤ ε/3 Ω(n/ log n) [∗]
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5.1.2 Related Work

Daskalakis, Dikkala, and Kamath [31] studied testing problems for high-dimensional

distributions coming out of ising models. Daskalakis and Pan [33] gave identity tester

for high-dimesional distributions coming out of Bayesian networks on small degree

graphs. Canonne, Diakonikolas, Kane, and Stewart [19] gave identity testers for high

dimensional distributions coming from Bayes nets under certain assumptions.

In particular, the sample complexity of identity testing for product distributions

over {0, 1}n was settled to be Θ(
√
n/ε2) in [19]. The same for closeness testing was

settled to be Θ(max(
√
n/ε2, n3/4/ε)) in [19]. The identity tester of [19] is claimed

to have certain weaker (O(ε2) in dTV , see Remark 8) tolerance. A reduction from

testing problems for product distributions over alphabet Σ, to that for the Bayes nets

of degree blog2 |Σ|c − 1, was given in [19] (Remark 55 of their paper). Canonne et

al. [19] also show that for product distributions, Ω(n/ log n) samples are necessary for

tolerant identity and closeness testing with respect to the total variation distance.

Thus, the previous work on testing product distributions entirely focused on the

boolean alphabet and the dTV distance without any significant tolerance behavior.

Our work in this chapter is aimed at addressing these gaps.

5.1.3 Our techniques

We consider product distributions over an arbitrary alphabet Σ. Let l = |Σ|. There

are nl parameters of the product distributions P =
∏n

i=1 Pi: pij is the probability

of seeing the symbol j ∈ Σ in the i-th coordinate of the sample, for every i ∈ [n].

Similarly for Q =
∏n

i=1 Qi and Qijs.

Our dχ2-tolerant identity test statistic uses a function of Wij and qij values (we

have complete knowledge of Q), where Wij ∼ Poi(pij) are sampled using Poisson
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sampling. Under this sampling, the property of our test statistic is reminiscent of the

identity tester of [1] for unstructured distributions over nl items, and its behaviour

is well understood. We show a separation of this statistic for the ‘yes’ and ‘no’

cases, using a sub-additivity result for d2
H from [33], and using a super-additivity

result for dχ2 which we derive in this chapter. Our non-tolerant closeness testers over

arbitrary alphabet are reminiscent of the closeness testers of [22, 32] for unstructured

distributions over nl items.

Our Hellinger tolerant (Hellinger-versus-Hellinger) closeness tester uses the testing-

by-learning approach. For distributions supported over Σn, getting such an approach

to work efficiently is not as obvious as it seems. For such an approach to work, we

need the following components: 1) the distance satisfies triangle inequality, 2) the

distance has a ‘localization equality’ (Lemma 5.22) and ‘localization subadditivity’

(Lemma 5.11), and 3) it has an efficient learning algorithm for small support size

distributions. Fortunately, all of these properties hold for the Hellinger distance. We

note that for other distances such as dTV , dKL, dχ2 ; one of the above conditions does

not hold or is not known to hold.

As previously mentioned, for our Hellinger tolerant tester, we design a novel effi-

cient and high probability learning algorithm. Such an algorithm was previouly known

for total variation distance. We are not aware of such an algorithm for learning ef-

ficiently in Hellinger distance. Our algorithm works as follows. We first obtain an

empirical distribution by sampling from the unknown distribution with enough num-

ber of samples to make the expected d2
H distance at most ε2. Then from Markov’s

inequality with at least 2/3 probability the distance is at most O(ε2). In order to

amplify the success probability, we use a ‘clustering trick’, reminiscent of the ‘median

trick’. The ‘median trick’ cannot be used in the context of learning an unknown

distribution.
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For our lower bounds, we reduce from the testing problems on product distribu-

tions over {0, 1}n to the testing problems on unstructured distributions over n items,

known from the work of [19]. Our lower bounds for tolerant testing problems depend

on certain upper bounds, which we derive in this chapter.

5.1.4 Organization of the rest of the chapter

The rest of the chapter is organized as follows. In the next section, we give necessary

definitions and also state the main results of the chapter. In Section 5.3, we present

proofs of our upper bound results on tolerant testing. This section also contains proof

of the non-tolerant testers. In Section 5.4, we give proofs of our lower bound results.

5.2 Preliminaries

Lemma 5.1. For two distributions P and Q, the following relation holds.

d2
H(P,Q) ≤ dTV (P,Q) ≤

√
2dH(P,Q) ≤

√
dKL(P,Q) ≤

√
dχ2(P,Q)

See [32] for a proof of the above chain of inequalities. Let d1, d2 be any distance

function(s) from Lemma 5.1 together with the constant (for example d1 =
√
dχ2(P,Q)

and d2 =
√

2dH(P,Q)).

d1-versus-d2 identity (1-sample) testing: Given an unknown distribution P , which

we have sample access to, and a known distribution Q, an error parameter 0 < ε < 1,

and a constant gap parameter 0 ≤ α < 1, a d1-versus-d2 identity (1-sample) tester is

an algorithm with the following behavior: (1) If d1(P,Q) ≤ αε it outputs ‘yes’ with

probability at least 2/3, (2) If d2(P,Q) > ε it outputs ‘no’ with probability at least

2/3, (3) If neither of the above two cases hold, it outputs ‘yes’ or ‘no’ arbitrarily.
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d1-versus-d2 closeness (2-sample) testing: Given two unknown distributions P and

Q which we have sample access to, an error parameter 0 < ε < 1, and a constant gap

parameter 0 ≤ α < 1, a a d1-versus-d2 closeness (2-sample) tester is an algorithm

with the following behavior: If d1(P,Q) ≤ αε it outputs ‘yes’ with probability at least

2/3, (2) If d2(P,Q) > ε it outputs ‘no’ with probability at least 2/3, (3) If neither of

the above two cases hold, it outputs ‘yes’ or ‘no’ arbitrarily.

The special case α = 0 is the non-tolerant d2 tester in both the 1-sample and

2-sample cases. The sample complexity of a tester is the number of samples it takes

in the worst case. The sample complexity of d1-versus-d2 identity (closeness) testing

problem is the minimum sample complexity over all d1-versus-d2 identity (closeness)

testers.

The following facts are easy to observe. A d1-versus-d2 tester implies an non-

tolerant d2 tester, with the same sample complexity. A d1-versus-d2 tester implies a d′1-

versus-d′2 tester, with the same sample complexity, when d′1 is the distance right of d1

and d′2 is the distance left of d2 in the chain from Lemma 5.1. A d1-versus-d2 closeness

tester implies a d1-versus-d2 identity tester, with the same sample complexity.

It is known from [32] that there is no non-tolerant
√
KL identity tester with

finite sample complexity. Thus, Hellinger distance is the most general among those

considered, we can aim for d2 (the ‘no’ case). In this chapter, we remove the constants

and the square roots in the distances in Lemma 5.1 when we mention a d1-versus-d2

tester.

In this chapter we interchangeably use identity testing (closeness testing) and

1-sample testing (respectively 2-sample testing). Let Bern(δ) be the Bernoulli distri-

bution with Pr[1] = δ.
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5.2.1 Formal statement of our main results

Here we list the formal statements of the main theorems we prove in the chapter.

First we state the two main upper bounds, which are proved in Section 5.3.

Theorem 5.2. (dχ2-versus-dH identity tester) Let P =
∏n

i=1 Pi be an unknown dis-

tribution and Q =
∏n

i=1Qi be a known distribution, both over the common sample

space Σn. Then testing dχ2(P,Q) ≤ ε2/9 versus
√

2dH(P,Q) > ε can be performed

with O(
√
n|Σ|3/2/ε2) samples, in time O(n3/2|Σ|3/2/ε2), with success probability at

least 2/3.

Theorem 5.3. (dH-versus-dH closeness tester) Let P =
∏n

i=1 Pi and Q =
∏n

i=1 Qi

be two distributions over Σn. There is an algorithm to distinguish
√

2dH(P,Q) ≤ ε/3

(‘yes’) versus
√

2dH(P,Q) > ε (‘no’) with O(|Σ|n log n/ε2) samples from each of P

and Q. The running time is O(|Σ| log |Σ|n2 log2 n/ε2) and the success probability is

at least 1− 2/n.

We complement the above upper bounds on sample complexity with the following

lower bounds. See Section 5.4 for the details.

Theorem 5.4. (dχ2-versus-dTV closeness testing lower bound) There exists a con-

stant 0 < ε < 1 and three product distributions F yes, F no and F , each over the sample

space {0, 1}n such that dχ2(F yes, F ) ≤ ε2/9, whereas dTV (F no, F ) > ε, and given only

sample accesses to F yes, F no and F , distinguishing F yes versus F no with probability

> 2/3, requires Ω(n/ log n) samples.

Theorem 5.5. (dKL-versus-dTV identity testing lower bound) There exists a con-

stant 0 < ε < 1 and three product distributions F yes, F no and F , each over the sample

space {0, 1}n such that dKL(F yes, F ) ≤ ε2/9, whereas dTV (F no, F ) > ε, and given only
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sample accesses to F yes, F no, and complete knowledge about F , distinguishing F yes

versus F no with probability > 2/3, requires Ω(n/ log n) samples.

Earlier work has designed non-tolerant 2-sample tester for product distribution

over Σ = {0, 1}. Here we extend it to arbitrary alphabets. We state the results.

Proofs are in Section 5.3.5.

Theorem 5.6. (Exact-versus-dH closeness tester) Let P =
∏n

i=1 Pi and Q =
∏n

i=1 Qi

be two unknown distributions, both over the common sample space Σn. Then testing

P = Q versus
√

2dH(P,Q) > ε can be performed with m = O((n|Σ|)3/4/ε2) samples,

in time O(mn), with success probability at least 51/100.

Theorem 5.7. (Exact-versus-dTV closeness tester) Let P =
∏n

i=1 Pi and Q =
∏n

i=1Qi

be two unknown distributions, both over the common sample space Σn. Then test-

ing P = Q versus dTV (P,Q) > ε can be performed with m = O(max{
√
n|Σ|/ε2,

(n|Σ|)3/4/ε3/2}) samples, in time O(mn), with success probability at least 51/100.

5.3 Efficient Tolerant Testers for Product distributions over

Σn

5.3.1 Chi-squared tolerant 1-sample tester for product distributions

In this section we generalize the testers [33, 19] that distinguishes P = Q (‘yes class’)

versus dTV (P,Q) ≥ ε (‘no class’) using O(
√
n/ε2) samples, where P and Q are product

distributions over {0, 1}n. Our first contribution is to generalize their tester in the

following three ways. Firstly, our ‘no class’ is defined as
√

2dH(P,Q) ≥ ε, which is

more general than dTV (P,Q) ≥ ε. Secondly, our tester works for any general alphabet

size |Σ| ≥ 2. Finally, we give a dχ2 tolerant tester i.e. our ‘yes class’ is defined as

dχ2(P,Q) < ε2/9.
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Our tester relies on certain result on the multiplicativity of Chi-squared distance

for product distributions.

Lemma 5.8. Let P =
∏n

i=1 Pi and Q =
∏n

i=1 Qi be two distributions, both over the

common sample space Σn. Then dχ2(P,Q) =
∏n

i=1(1 + dχ2(Pi, Qi)− 1.

Proof. Let P (i) and Q(i) be the probability of an item i = (i1i2 . . . in) ∈ Σn in P and

Q respectively. Then P (i) = P1(i1) . . . Pn(in) and Q(i) = Q1(i1) . . . Qn(in), where

Pj(ij) and Qj(ij) is the probability of item ij in Pj and Qj respectively.

dχ2(P,Q) =
∑
i∈Σn

(P (i)−Q(i))2/Q(i)

=
∑
i∈Σn

P 2(i)/Q(i)− 1

=
∑

(i1i2...in)∈Σn

P 2
1 (i1) . . . P 2

n(in)

Q1(i1) . . . Qn(in)
− 1

=
∑
i1∈Σ

P 2
1 (i1)

Q1(i1)
· · ·
∑
in∈Σ

P 2
n(in)

Qn(in)
− 1

= (1 + dχ2(P1, Q1)) . . . (1 + dχ2(Pn, Qn))− 1

We get the following useful corollary from Lemma 5.8.

Corollary 5.9. Let P =
∏n

i=1 Pi and Q =
∏n

i=1 Qi be two distributions, both over

the common sample space Σn. Then dχ2(P,Q) ≥
∑

i dχ2(Pi, Qi).

We also need the following upper bound of Hellinger distance by chi-squared

distance.

Lemma 5.10. Let P and Q be two distributions over a common sample space. Then

2d2
H(P,Q) ≤ dχ2(P,Q).
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Proof. For any item i in the common sample space let P (i) and Q(i) denote the

probability values of item i under P and Q respectively.

2d2
H(P,Q) =

∑
i

(
√
P (i)−

√
Q(i))2

=
∑
i

(P (i)−Q(i))2

(
√
P (i) +

√
Q(i))2

≤
∑
i

(P (i)−Q(i))2

Q(i)

= dχ2(P,Q)

We recall the following subadditivity result for product distributions.

Lemma 5.11. [[33]] Let P =
∏n

i=1 Pi and Q =
∏n

i=1 Qi be two product distributions,

both over the common sample space Σn. Then d2
H(P,Q) ≤

∑
i d

2
H(Pi, Qi)

We get the following useful corollary from Lemma 5.10 and Lemma 5.11.

Corollary 5.12. Let P =
∏n

i=1 Pi and Q =
∏n

i=1 Qi be two distributions, both over

the common sample space Σn. Then d2
H(P,Q) ≤

∑
i dχ2(Pi, Qi)/2.

For a technical reason, we need to ensure that for each distribution Qi, each

element in the sample space Σ gets at least a sufficiently large probability Ω(ε2/|Σ|n).

We do this by slightly randomizing Q to get a new distribution S. The randomization

process to get S from Q is given below. This is similar to the reduction given in [33]

and [19] for the case Σ = {0, 1} and for the case when the ‘no’ class is defined with

respect to dTV . Let Bern(δ)n be the product distribution of n copies of Bern(δ).
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Lemma 5.13. For a product distribution P =
∏n

i=1 Pi, where P ′is are over a sample

space Σ, and 0 < δ < 1, let P δ be the distribution over Σn defined by the following

sampling process. In order to produce a sample (X1, X2, . . . , Xn) of P δ,

- Sample (r1, r2, . . . , rn) ∼ Bern(δ)n and sample (Y1, Y2, . . . , Yn) ∼ P

- For every i, if ri = 0, Xi ← uniform sample from Σ, if ri = 1,

Xi ← Yi.

Then, the following is true.

- P δ is a product distribution
∏

i P
δ
i and each sample from P δ can be

simulated by 1 sample from P .

- For every i : 1 ≤ i ≤ n and j ∈ Σ, P δ
i (j) ≥ δ/|Σ|.

- d2
H(P, P δ) ≤ 2nδ

Proof. The first part is obvious from the sampling process. For the second part,

P δ
i (j) = (1− δ)Pi(j) + δ/|Σ| ≥ δ/|Σ| for every i, j.

The proof of the third part also appears in [32]. We give a slightly general version

here. For convenience, we denote P δ by R. Define the event E to be ai = 0 for every

i. Then Pr(E) = (1− δ)n ≥ (1− nδ) and Pr[Ē] ≤ nδ. Also note that conditioned on

the event E, for any item i ∈ Σn, the probability values satisfy R(i|E) = P (i).
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d2
H(P,R) =

∑
i

(
√
R(i)−

√
P (i))2

=
∑
i

(
√
R(i|E)Pr(E) +R(i|Ē)Pr(Ē)−

√
P (i))2

=
∑
i

(
√
P (i)Pr(E) +R(i|Ē)Pr(Ē)−

√
P (i))2

≤
∑
i

[(
√
P (i)Pr(E)−

√
P (i))2 + (

√
R(i|Ē)Pr(Ē))2]

(Using (
√
a+ b−

√
c+ d)2 ≤ (

√
a−
√
c)2 + (

√
b−
√
d)2 for non-negative a, b, c, d)

= (1−
√

Pr(E))2
∑
i

P (i) + Pr(Ē)
∑
i

R(i|Ē)

= (1−
√

1− Pr(Ē))2 + Pr(Ē)

≤ 2Pr(Ē) (Using (1−
√

1− x)2 ≤ x for 0 ≤ x ≤ 1)

≤ 2nδ

Lemma 5.14. Let P =
∏n

i=1 Pi and Q =
∏n

i=1 Qi be two distributions, both over

the common sample space Σn. Let l = |Σ|, R = P δ, S = Qδ with δ = ε2/50n.

R =
∏n

i=1Ri and S =
∏n

i=1 Si, where Ri = 〈ri1, ri2, . . . , ril〉 and Si = 〈si1, si2, . . . , sil〉

for every i. Then

(1) If dχ2(P,Q) ≤ ε2/9 then
∑

i,j
(rij−sij)2

sij
< 0.12ε2.

(2) If
√

2dH(P,Q) ≥ ε then
∑

i,j
(rij−sij)2

sij
> 0.18ε2.



75

Proof. (Proof of (1)) We have that rij = (1− δ)pij + δ/l and sij = (1− δ)qij + δ/l.

∑
i,j

(rij − sij)2

sij
=
∑
i,j

(1− δ)2(pij − qij)2

(1− δ)qij + δ/l

≤
∑
i,j

(1− δ)2(pij − qij)2

(1− δ)qij

= (1− δ)
∑
i,j

(pij − qij)2

qij

<
∑
i

∑
j

(pij − qij)2

qij

=
∑
i

dχ2(Pi, Qi)

≤ dχ2(P,Q) (From Corollary 5.9)

< 0.12ε2

(Proof of (2)). From Lemma 5.13, for δ = ε2/50n, it follows that d2
H(P,R) ≤ ε2/25

and d2
H(Q,S) ≤ ε2/25. By triangle inequality we get dH(P,Q) ≤ dH(R, S)+dH(P,R)+

dH(Q,S). It follows that if
√

2dH(P,Q) ≥ ε then dH(R, S) ≥ ε(1/
√

2 − 2/5). Then

Corollary 5.12 gives
∑

i,j
(rij−sij)2

sij
=
∑

i dχ2(Ri, Si)) ≥ 2d2
H(R, S) > 0.18ε2.

At this point it remains to test
∑

i,j
(rij−sij)2

sij
> 0.18ε2/10 versus < 0.12ε2/10,

which we perform using the tester of Acharya et al. [1].

Remark The test T of Acharya et al. [1] is given by T = Σn
i=1

(Ni−msi)2−Ni
msi

. Their

paper gives the upper bound Var[T ] ≤ 4n + 9
√
nE[T ] + 2

5
n

1
4 E[T ]3/2 under the as-

sumption si ≥ ε/50n for every i. In our application, l is the alphabet size and we will

need the bound to depend on l. In addition, we also need the bounds to work when

si ≥ ε2/50nl. Both these can be achieved by modifying their proof, as follows.
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Theorem 5.15. (Modified from [1]) Let m be an integer and 0 < ε < 1 be an

error parameter. Let r1, r2, . . . , rn be n non-negative real numbers. For an integer

parameter l, let s1, s2, . . . , sn be non-negative real numbers such that si ≥ ε2/50nl.

For 1 ≤ i ≤ n, let Ni ∼ Poi(mri) be independent samples from Poi(mri). Then there

exists a test statistic T, computable in time O(n) from inputs Nis and sis, with the

following guarantees.

- E[T ] = m
∑

i
(ri−si)2

si

- Var[T ] ≤ 2n +
√
n(l + 6)E[T ] + 4n1/4

√
l(E[T ])3/2, for a constant c and m ≥

c
√
n/ε2.

Proof. The test T of Acharya et al. [1] is given by T = Σn
i=1

(Ni−msi)2−Ni
msi

.

E[T ] = E

[∑
i

(Ni −msi)2 −Ni

msi

]

=
∑
i

E[(Ni −msi)2 −Ni]

msi

=
∑
i

E[N2
i ] +m2s2

i − 2msiE[Ni]− E[Ni]

msi

=
∑
i

mri(1 +mri) +m2s2
i − 2msi ·mri −mri

msi
(Since Ni ∼ Poi(mri))

= m
∑
i

(ri − si)2

si
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Var[T ] = Var

[∑
i

(Ni −msi)2 −Ni

msi

]

=
∑
i

Var

[
(Ni −msi)2 −Ni

msi

]
(Since Nis are independent for different is)

=
∑
i

1

m2s2
i

Var[N2
i − (2msi + 1)Ni]

=
∑
i

1

m2s2
i

[Var[N2
i ] + (2msi + 1)2Var[Ni]− 2(2msi + 1)Cov(N2

i , Ni)]

=
∑
i

1

m2s2
i

[λ(1 + 5λ+ 4λ2) + λ(2msi + 1)2 − 2(2msi + 1)(λ(2λ+ 1))]

(Since Ni ∼ Poi(λ), where λ = mri)

=
∑
i

1

m2s2
i

λ[λ+ (2msi − 2λ)2]

=
∑
i

r2
i

s2
i

+
∑
i

4mri
(ri − si)2

s2
i

We bound the above two summations separately.

∑
i

r2
i

s2
i

=
∑
i

(ri − si)2 + 2si(ri − si) + s2
i

s2
i

=
∑
i

(ri − si)2

s2
i

+ 2
∑
i

ri − si
si

+
∑
i

1

≤ 2

(∑
i

(ri − si)2

s2
i

+
∑
i

1

)
(Using a2 + 1 ≥ 2a)

≤ 2

(
50nl

ε2

∑
i

(ri − si)2

si
+ n

)
(Using si ≥ ε2/50nl)

= 2(
50nl

ε2
E[T ]

m
+ n)

≤
√
nlE[T ] + 2n (Using m ≥ c

√
n/ε2 for c sufficiently large)
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∑
i

4mri
(ri − si)2

s2
i

≤ 4m

√∑
i

r2
i

s2
i

√∑
i

(ri − si)4

s2
i

(Using Cauchy-Schwarz inequality)

≤ 4m

√√
nlE[T ] + 2n

∑
i

(ri − si)2

si

≤ 4E[T ](n1/4
√
lE[T ] +

√
2n)

Together we get

Var[T ] ≤
√
nlE[T ] + 2n+ 4E[T ](n1/4

√
lE[T ] +

√
2n)

≤ 2n+
√
n(l + 6)E[T ] + 4n1/4

√
l(E[T ])3/2

It remains to sample numbers Nij ∼ Poi(mrij) independently for every i, j. We

do this via poissonization followed by sampling from each coordinate of the prod-

uct distribution R independently [33] and [19]. We present Algorithm 5 with its

correctness.

Proof. (Proof of Theorem 5.2) Let l = |Σ|. First, we transform the distributions

P and Q into the distributions R and S respectively according to the modification

process mentioned in Lemma 5.14. This gives:

- Each sample from R can be simulated by 1 sample from P .

- R and S are product distributions, R =
∏n

i=1 Ri and S =
∏n

i=1 Si,

where Ri = 〈ri1, ri2, . . . , ril〉 and Si = 〈si1, si2, . . . , sil〉 for every i.

- For every i, j, sij ≥ ε2/50ln.

- If dχ2(P,Q) ≤ ε2/9 then
∑

i,j
(rij−sij)2

sij
< 0.12ε2.
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Algorithm 5: Given samples from an unknown distribution R =
∏n

i=1Ri and a
known distribution S =

∏n
i=1 Si over Σn, decide dχ2(R, S) ≤ ε2/10 (‘yes’) versus

dH(R, S) ≥ ε (‘no’). Let l = |Σ|, Si = 〈si1, si2, . . . , sil〉 with sij ≥ ε2/50nl for
every j, for every i

1 for i = 1 to n do
2 Sample Ni ∼ Poi(m) independently;
3 end
4 N = maxiNi;
5 X ← Take N samples from R;
6 for i = 1 to n do
7 Xi ← Sequence of symbols in the i-th coordinate of first Ni samples of X;
8 〈Ni1, Ni1, . . . , Nil〉 ← histogram of symbols in Xi;

9 end
10 Compute statistic T of Theorem 5.15 using Nij and sij values for every i, j;
11 if T ≤ 0.15mε2 then
12 output ‘yes.’;
13 else
14 output ‘no.’
15 end

- If
√

2dH(P,Q) > ε then
∑

i,j
(rij−sij)2

sij
> 0.18ε2.

Henceforth, we focus on distinguishing
∑

i,j
(rij−sij)2

sij
< 0.12ε2 versus > 0.18ε2, under

the assumption sij ≥ ε2/50ln for every i, j, by sampling from R. We use the tester T

of [1] stated in Theorem 5.15 for this. Firstly, note that in Algorithm 5, the samples Si

is a set of Ni ∼ Poi(m) samples from Ri, independently for every i’s. This is because

the set of samples are taken from the product distribution R = R1 × R2 × · · · × Rn

and the Ni values are independent for different i’s. Due to Poissonization it follows

Nij ∼ Poi(rij) independently for every i, j. The tester T requires m ≥ c
√
nl/ε2, for

some constant c.

If
∑

i,j
(rij−sij)2

sij
< 0.12ε2 then E[T ] ≤ 0.12mε2 and Var[T ] ≤ (2/c2 +0.12(l+6)/c+

4(0.12)3
√
l/c)m2ε4, the last inequality from Theorem 5.15 using m ≥ c

√
n/ε2, and

the upper bound for E[T ]. By Chebyshev’s inequality T < 0.15mε2 with probability
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at least 4/5, for c = Ω(l) for an appropriate constant.

If
∑

i,j
(rij−sij)2

sij
> 0.18ε2 then E[T ] > 0.18mε2 ≥ 0.18c

√
n and Var[T ] ≤ (1/(0.18c)2+

(l+ 6)/0.18c+ 4
√
l/0.18c)E2[T ]. By Chebyshev’s inequality T > 0.15mε2 with prob-

ability at least 4/5, for c = Ω(l) for an appropriate constant.

Hence m ≥ c′
√
nl3/2/ε2 for some constant c′ suffices for the tester T to distinguish

the above two cases. It also follows from the concentration of the Poisson distribution

that the number of samples required is maxiNi ≤ 2m, except for probability at most

n · exp(−m) < 1/10, using union bound.

The histograms can be computed by a single pass over the n-dimensional sample

set S. The statistic T can be computed in time O(nl). So the time complexity is

O(nl + (nl)3/2/ε2).

5.3.2 Hellinger tolerant 2-sample tester for product distributions

In this section we give a tester for distinguishing dH(P,Q) ≤ ε versus dH(P,Q) > 3ε for

two unknown product distributions P and Q over support Σn. To get Theorem 5.3,

we rescale ε downto ε/
√

2. We take a testing-by-learning approach. In general,

such an approach becomes intractable for high dimensional distributions since due to

large support size, it is intractable to compute the distance between the two learnt

distributions. But as we show, for product distributions and Hellinger distance this

computation is tractable.

We first present a general learning algorithm of an unknown distribution in Hellinger

distance with high probability with near-optimal sample complexity. Such a result for

learning distributions in variation distance is well-known. We found the same proof

does not extend to the tighter problem of learning in Hellinger distance (dH between

the empirical and the true distributions has a larger ‘sensitivity’ than that of dTV ).

To the best of our knowledge this result was not known before and potentially have
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other applications beyond testing [11].

5.3.3 Learning Distributions in Hellinger Distance

Theorem 5.16. Let P be a distribution over N items. Then there is an algorithm

that takes O(N log 1
δ
/ε2) samples from P and outputs a distribution R which sat-

isfy dH(P,R) ≤ ε except with error probability at most δ. The running time of the

algorithm is O(N logN log2 1
δ
/ε2).

We first prove that the empirical distribution over O(N/ε2) independent samples is

close in square of the Hellinger distance to the unknown distribution in expectation.

We will use the following bound on the expectation of square root of a Binomial

random variable.

Fact 5.17 ([41]). Let X ∼ Bin(n, p). Then E(
√
X) ≥ √np− (1−p)

2
√
np

Lemma 5.18. Let P be a distribution over a sample space of N items. Let R be

the empirical distribution obtained by taking m ≥ (N − 1)/2ε2 i.i.d. samples from P .

Then, E[d2
H(P,R)] ≤ ε2.

Proof. Let Ω be the sample space of P with pi being the probability of item i ∈ Ω.

Let S be the set of m independent samples obtained. For each i ∈ Ω we denote by

mi the number of samples in S which are item i. Then mi is distributed according to

Bin(m, pi). d
2
H(P,R) = 1 −

∑
i

√
pimi/m. So E[d2

H(P,R)] = 1 −
∑

i E[
√
pimi/m] =

1−
∑

i

√
pi/mE[

√
mi]. Note that E[

√
mi] ≥

√
mpi− (1− pi)/2

√
mpi from Fact 5.17.

We get E[d2
H(P,R)] ≤ 1 −

∑
i

√
pi/m[

√
mpi − (1 − pi)/2

√
mpi] = 1 −

∑
i[pi − (1 −

pi)/2m] = (N − 1)/2m ≤ ε2 for m ≥ (N − 1)/2ε2.

We get the following corollary from Markov’s inequality.
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Corollary 5.19. Let P and R be as in Lemma 5.18. Then dH(P,R) ≤
√

3ε with

probability at least 2/3.

In order to make the error probability arbitrary small, we repeat the above con-

struction k time to get k distributions and use a “clustering trick.” The details follow.

Proof. (of Theorem 5.16) We use the construction of Lemma 5.18 k times using inde-

pendent samples to obtain the distributions Ri for 1 ≤ i ≤ k. From Corollary 5.19,

the output distribution Ri from each repetition satisfies dH(P,Ri) ≤
√

3ε with proba-

bility at least 2/3. For a given Ri if this event succeeds we call Ri a ‘good’ distribution.

We use the following process to choose the final distribution R from Ris:

Amplify(R1, . . . , Rk)

1. dij ← dH(Ri, Rj) for every 1 ≤ i, j ≤ k

2. counti ← |{j|dij ≤ 2
√

3ε}|

3. R← Ri∗ where i∗ is the least i such that counti ≥ 7k/12

4. Output R

5.3.4 Learning product distributions with very high probability

We start with an algorithm for learning a product distribution in Hellinger distance.

Lemma 5.20. Let P =
∏n

i=1 Pi be a product distribution over Σn. Then there is

a O(|Σ| log |Σ|n2 log2(n/δ)/ε2) time algorithm that takes O(n|Σ| log(n/δ)/ε2) samples

from P and produces a product distribution R = Πn
i=1Ri such that dH(P,R) ≤ ε with

probability at least (1− δ).

Proof. We learn P component wise, ensuring dH(Pi, Ri) ≤ ε/
√
n using the algorithm

of Theorem 5.16, with probability at least (1 − δ/n), for every i. Let ` = |Σ|. By
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a union bound, the overall failure probability is ≤ δ and the sample complexity is

O(n` log(n/δ)/ε2). The running time is O(n` log ` log2(n/δ)/ε2) for each marginal.

The Hellinger subadditivity result for product distributions (Lemma 5.11) then

directly implies that dH(P,R) ≤ ε.

Corollary 5.21. Let P =
∏n

i=1 Pi be a product distribution over Σn. Then there is

a O(|Σ| log |Σ|n2 log2(n/δ)/ε2) time algorithm that takes O(n|Σ| log(n/δ)/ε2) samples

from P and produces a product distribution R = Πn
i=1Ri such that dTV (P,R) ≤ ε with

probability at least (1− δ).

Proof. Follows from dTV (P,R) ≤
√

2dH(P,R) and Lemma 5.20.

Remark A dTV -learning algorithm with success probability 2/3 for product distri-

butions over {0, 1}n with sample complexity O(n log n/ε2) follows from [19] (Section

A.1). Corollary 5.21 extends it for the case when the success probability is 1 − δ

and the support is Σn. It goes through a dH-learning algorithm using Theorem 5.16

and dH-subadditivity. Going through a dTV -learning algorithm and dTV -subadditivity

(dTV (P,R) ≤
∑

i dTV (Pi, Ri)) would give a sample complexity ofO(n2(|Σ|+log(n/δ))/ε2).

5.3.4.1 2-sample Tester via Learning

We need the following localization equality result for efficiently computing the Hellinger

distance of a pair of known product distributions.

Lemma 5.22. Let P =
∏n

i=1 Pi and Q =
∏n

i=1Qi be two distributions over Σn. It

holds that 1− d2
H(P,Q) = Πn

i=1(1− d2
H(Pi, Qi)).
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Proof. Using Definition 4.1 for d2
H(·, ·) distance:

1− d2
H(P,Q) =

∑
i1∈Σ

√
P1(i1)Q1(i1) · · ·

∑
in∈Σ

√
Pn(in)Qn(in) =

n∏
i=1

(1− d2
H(Pi, Qi))

Proof. (of Theorem 5.3) Given the two unknown distributions P and Q we first learn

them as R and S, satisfying
√

2dH(P,R) ≤ ε/12 and
√

2dH(Q,S) ≤ ε/12, using

the algorithm of Lemma 5.20. It remains to distinguish
√

2dH(R, S) ≤ ε/2 versus
√

2dH(R, S) > 5ε/6. We compute dH(R, S) exactly using Lemma 5.22.

Remark. The technique introduced in this section could give an analogous tolerant

tester for any distance dist for which the following properties hold: 1) it satisfies

triangle inequality, 2) it has a localization equality and subadditivity as in Lemma 5.22

and Lemma 5.11 respectively, and 3) it has an efficient learning algorithm for small

support size distributions.

5.3.5 Non-tolerant 2-sample testers for product distributions over Σn

5.3.5.1 In Hellinger distance

A non-tolerant tester for 2-sample testing of product distributions was given in [19].

Their tester distinguishes P = Q from dTV (P,Q) ≥ ε with sample complexity

O(max{n3/4/ε,
√
n/ε2}). Using the relation, dTV ≥ d2

H from Lemma 5.1, we im-

mediately get a tester for distinguishing P = Q from dH(P,Q) ≥ ε, with sample

complexity O(max{n3/4/ε2,
√
n/ε4}). In the following we show an improved tester

with sample complexity O(n3/4/ε2).
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Algorithm 6: Given samples from two unknown distributions P = P1×· · ·×Pn
and Q = Q1×· · ·×Qn over Σn, decide P = Q (‘yes’) versus dH(P,Q) ≥ ε (‘no’).
Let ` = |Σ|.
/* Approximately identify heavy and light partitions */

1 Take m samples from P and Q. Let U ′ ⊆ [n]× [`] be the set of indices (i, j),
such that at least one sample from either P or Q has hit symbol j ∈ Σ in the
coordinate i;

2 Let V ′ = [n]× [`] \ U ′;
3

/* Poisson sampling */

4 For each i ∈ [n], sample Mi ∼ Poi(m) independently
5 For each i ∈ [n], sample M ′

i ∼ Poi(m) independently
6 Let M = maxi{Mi} and M ′ = maxi{M ′

i}
7 If max{M,M ′} ≥ 2m output ‘no’
8 Take M samples X1, . . . , XM from P

9 Take M ′ samples Y 1, . . . , Y M ′ from Q
10 For every (i, j), let Wij be the number of occurrences of symbol j ∈ Σ in the

i-th coordinate of the sample subset X1, . . . , XMi

11 For every (i, j), let Vij be the number of occurrences of symbol j ∈ Σ in the

i-th coordinate of the sample subsetY 1, . . . , Y M ′i

12

/* Test the heavy partition */

13 Wheavy =
∑

(i,j)∈U ′
(Wij−Vij)2−(Wij+Vij)

(Wij+Vij)

14 If Wheavy > mε2/20 output ‘no’
15

/* Test the light partition */

16 Wlight =
∑

(i,j)∈V ′(Wij − Vij)2 − (Wij + Vij)

17 If Wlight > m2ε4/2000n` output ‘no’
18 Output ‘yes’



86

Let P =
∏n

i=1 Pi and Q =
∏n

i=1Qi, with Pi = 〈pi1, . . . , pi`〉 and Qi = 〈qi1, . . . , qi`〉

as probability vectors. We assume mini,j pij ≥ ε2/50n` and mini,j qij ≥ ε2/50n`,

without loss of generality using the reduction of Lemma 5.13.

Analysis of Algorithm 6 can be divided into two cases: ‘heavy’ and ‘light’. Let

V ⊆ [n] × [`] be the ‘light’ set of indices (i, j), such that max{pij, qij} < 1/m. The

remaining indices in U = [n] × [`] \ V are ‘heavy’. The following important lemma

shows that for each case, a certain sum must deviate from zero substantially, for the

‘no’ class.

Lemma 5.23. Suppose dH(P,Q) ≥ ε. Suppose mini,j pij ≥ ε2/50n` and mini,j qij ≥

ε2/50n`. Then at least one of the following two must hold: 1)
∑

(i,j)∈V (pij − qij)2 ≥

ε4/50n`, 2)
∑

(i,j)∈U
(pij−qij)2

pij+qij
≥ ε2.

Proof. If dH(P,Q) ≥ ε, by the subadditivity of squared Hellinger distance from

Lemma 5.11, we get
∑

i d
2
H(Pi, Qi) ≥ ε2. We use the following Fact,

Fact 5.24. [Proposition 2.3 from [32]] For two distributions P = {p1, . . . , p`} and

Q = {q1, . . . , q`},
∑

j
(pj−qj)2

pj+qj
≥ 2d2

H(P,Q).

to get
∑n

i=1

∑`
j=1

(pij−qij)2

pij+qij
≥ 2

∑
i d

2
H(Pi, Qi) ≥ 2ε2. It follows at least one of 1)∑

(i,j)∈U
(pij−qij)2

pij+qij
or 2)

∑
(i,j)∈V

(pij−qij)2

pij+qij
is at least ε2.

In the second case,
∑

(i,j)∈V (pij − qij)2 =
∑

(i,j)∈V (
√
pij −

√
qij)

2(
√
pij +

√
qij)

2 ≥

ε2/25n`·
∑

(i,j)∈V (
√
pij−
√
qij)

2 ≥ ε2/25n`·
∑

(i,j)∈V
(pij−qij)2

(
√
pij+

√
qij)2 ≥ ε2/50n`·

∑
(i,j)∈V

(pij−qij)2

pij+qij
≥

ε4/50n`.

The following lemma shows U ′ (V ′), as obtained in Lines 1-2 of Algorithm 6, could

be an acceptable proxy for the heavy (light) partition U (V ).
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Lemma 5.25. Let U ′, V ′ be as in Algorithm 6. Let m = Ω(
√
n`/ε2) for some suffi-

ciently large constant. Then with probability at least 0.63 in each case, the following

holds:

1.
∑

(i,j)∈U
(pij−qij)2

pij+qij
≥ ε2 implies

∑
(i,j)∈U∩U ′

(pij−qij)2

pij+qij
≥ 3ε2/10

2.
∑

(i,j)∈V (pij − qij)2 ≥ ε4/50n` implies
∑

(i,j)∈V ′(pij − qij)2 ≥ ε4/1000n`

Proof. Note that (i, j) ∈ V ′ with probability = (1 − pij)m(1 − qij)m, and (i, j) ∈ U ′

with the remaining probability.

(Proof of 1:) Let U ′′ = U∩U ′. Suppose there exists (i, j) ∈ U such that
(pij−qij)2

pij+qij
≥

ε2/50. Then this (i, j) ∈ U ′′ with probability 1 − (1 − pij)
m(1 − qij)

m ≥ 1 − (1 −

1/m)m ≥ 0.63, in which case the result follows. Otherwise, we consider sum of the

independent random variables, S =
∑

(i,j) 1(i,j)∈U ′′
50(pij−qij)2

ε2(pij+qij)
, each of which is in [0, 1].

E[S] =
∑

(i,j)∈U(1− (1− pij)m(1− qij)m)
50(pij−qij)2

ε2(pij+qij)
≥ 31. We apply Chernoff’s bound

to get S ≥ 15 except for probability at most exp(−31/8).

(Proof of 2:) Let V ′′ = V ∩V ′. We consider sum of the independent random vari-

ables, S =
∑

(i,j) 1(i,j)∈V ′′m
2(pij − qij)2, each of which is in [0, 1]. E[S] =

∑
(i,j)∈V (1−

pij)
m(1− qij)mm2(pij − qij)2 > (1− 1/m)2m

∑
(i,j)∈V m

2(pij − qij)2 ≥ m2ε4/500n`, for

m ≥ 4. We apply Chernoff’s bound to get S ≥ m2ε4/1000n` except for probability

at most exp(−m2ε4/4000n`).

Combining Lemma 5.23 and Lemma 5.25, we get for the ‘no’ case, one of the

two conditions of Lemma 5.25 must hold. Algorithm 6 uses the two tests Wheavy

and Wlight to check these two conditions. To analyze them, we use certain important

results from [19], assuming Wij ∼ Poi(pij) and Vij ∼ Poi(qij) for every i, j, which

holds due to Poisson sampling. We assume the check of Line 7 goes through except

1/50 probability, using the concentration of Poisson distribution.
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Analysis of Wheavy

Lemma 5.26 (Obtained from Claims 37 and 38 of [19]). If P = Q then E[Wheavy] = 0.

If
∑

(i,j)∈U∩U ′
(pij−qij)2

pij+qij
≥ 3ε2/10 then E[Wheavy] ≥ mε2/10. In both cases Var[Wheavy] ≤

7n`+ 15E[Wheavy]

By the application of Chebyshev’s inequality we get the following.

Lemma 5.27. Let m = Ω(
√
n`/ε2) for a sufficiently large constant. Then the follow-

ing holds except for probability ≤ 1/25 in each case,

1. P = Q implies Wheavy ≤ mε2/20

2.
∑

(i,j)∈U∩U ′
(pij−qij)2

pij+qij
≥ 3ε2/10 implies Wheavy > mε2/20.

Analysis of Wlight

Lemma 5.28 (Obtained from Proposition 6 of [22] and Claim 35 of [19]). E[Wlight] =

m2
∑

(i,j)∈V ′ (pij − qij)2 and Var[Wlight] ≤ 80m3
√
b
∑

(i,j)∈V ′ (pij − qij)2 + 8m2b, where

b = max{
∑

(i,j)∈V ′ p
2
ij,
∑

(i,j)∈V ′ q
2
ij}. Furthermore, b ≤ 50n`/m2 for a sufficiently

large m, except for probability at most 1/50.

By the application of Chebyshev’s inequality we get the following.

Lemma 5.29. Let m = Ω((n`)3/4/ε2) for a sufficiently large constant. Then the

following holds except for probability ≤ 1/50 in each case,

1. P = Q implies Wlight ≤ m2ε4/2000n`

2.
∑

(i,j)∈V ′(pij − qij)2 ≥ ε4/1000n` implies Wlight > m2ε4/2000n`.

Together we get O((n`)3/4/ε2) samples are enough to distinguish P = Q versus

dH(P,Q) ≥ ε.
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Theorem 5.6. (Exact-versus-dH closeness tester) Let P =
∏n

i=1 Pi and Q =
∏n

i=1 Qi

be two unknown distributions, both over the common sample space Σn. Then testing

P = Q versus
√

2dH(P,Q) > ε can be performed with m = O((n|Σ|)3/4/ε2) samples,

in time O(mn), with success probability at least 51/100.

5.3.5.2 In total variation distance

A 2-sample tester for distinguishing P = Q from dTV (P,Q) ≥
√

2ε, for product distri-

butions over {0, 1}n, was given in [19] with sample complexityO(
√
n/ε2,max{n3/4/ε}).

In the following, we generalize this result for product distributions over Σn with sam-

ple complexity m = O(max{
√
n|Σ|/ε2, (n|Σ|)3/4/ε3/2}). Let ` = |Σ|. We assume

mini,j pij ≥ ε/50n` and mini,j qij ≥ ε/50n` without loss of generality, using the re-

duction given in [19, 33]. Let V ⊆ [n] × [`] be the set of indices (i, j), such that

max{pij, qij} < 1/m. Let U = [n]× [`] \ V .

Lemma 5.30. Suppose dTV (P,Q) ≥
√

2ε. Suppose mini,j pij ≥ ε/50n` and mini,j qij ≥

ε/50n`. Then at least one of the following two must hold: 1)
∑

(i,j)∈V (pij − qij)2 ≥

ε3/50n`, 2)
∑

(i,j)∈U
(pij−qij)2

pij+qij
≥ ε2.

Proof. dTV (P,Q) ≥
√

2ε gives dH(P,Q) ≥ ε. If dH(P,Q) ≥ ε, by the subadditivity of

squared Hellinger distance from Lemma 5.11, we get
∑

i d
2
H(Pi, Qi) ≥ ε2. This gives∑n

i=1

∑`
j=1

(pij−qij)2

pij+qij
≥ 2

∑
i d

2
H(Pi, Qi) ≥ 2ε2, using Fact 5.24. It follows at least one

of 1)
∑

(i,j)∈U
(pij−qij)2

pij+qij
or 2)

∑
(i,j)∈V

(pij−qij)2

pij+qij
is at least ε2.

In the second case,
∑

(i,j)∈V (pij − qij)2 =
∑

(i,j)∈V (
√
pij −

√
qij)

2(
√
pij +

√
qij)

2 ≥

ε/25n`·
∑

(i,j)∈V (
√
pij−
√
qij)

2 ≥ ε/25n`·
∑

(i,j)∈V
(pij−qij)2

(
√
pij+

√
qij)2 ≥ ε/50n`·

∑
(i,j)∈V

(pij−qij)2

pij+qij
≥

ε3/50n`
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We skip the rest of the details of the algorithm and its analysis since it closely

follows that of Section 5.3.5.1. We identify the partitions U and V approximately

by checking which indices are hit in m samples. For m = Ω(
√
n`/ε3/2), this ap-

proximation is acceptable using a result similar to Lemma 5.25. Lemmas 5.26, 5.27

and 5.28 are as before. Only in Lemma 5.29, the threshold for the light part changes

to m2ε3/2000n`, and the sample complexity for the light part changes to m =

Ω((n`)3/4/ε3/2).

Theorem 5.7. (Exact-versus-dTV closeness tester) Let P =
∏n

i=1 Pi and Q =∏n
i=1Qi be two unknown distributions, both over the common sample space Σn. Then

testing P = Q versus dTV (P,Q) > ε can be performed with m = O(max{
√
n|Σ|/ε2,

(n|Σ|)3/4/ε3/2}) samples, in time O(mn), with success probability at least 51/100.

5.3.6 dTV tolerant 2-sample tester for product distributions

In this section, we discuss an exponential time algorithm for checking dTV (P,Q) ≤ ε/3

versus dTV (P,Q) > ε, for two product distributions P and Q over Σn. We use

the testing-by-learning framework. We first learn P and Q as R and S, satisfy-

ing dTV (P,R) ≤ ε/12 and dTV (Q,S) ≤ ε/12, using O(|Σ|n log n/ε2) samples from

the algorithm of Corollary 5.21. It remains to distinguish dTV (R, S) ≤ ε/2 versus

dTV (R, S) > 5ε/6, which we perform by evaluating dTV (R, S) exactly in O(|Σ|n)

time.

5.4 Lower bounds

In this section, we give lower bounds for tolerant testing of product distributions. Our

lower bounds use a reduction from testing the class of unstructured distributions over

n items to testing the class of product distributions over {0, 1}n, given by [19] (Section
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5.3 of their paper). However, in order to apply this reduction, we need to establish

certain new bounds relating distances in the unstructured setting to the setting of

product distribution. We first define how to construct a product distribution from the

corresponding unstructured distribution. In particular, for a δ < 1, this construction

produces a product distribution Fδ(P ) over {0, 1}n from a given distribution P over

n symbols.

Definition 5.31. (Construction of Fδ(P )) Let P be a distribution over a sample

space of n items and 0 < δ ≤ 1 be a constant. Let S be a random set of Poi(δ)

samples from P . For every item i ∈ [n], let xi be the indicator variable such that

xi = 1 iff i appears in S. Let Fδ(P ) be the joint distribution of 〈x1, x2, . . . , xn〉 over

the sample space {0, 1}n.

The following property can be observed using the property of Poissonization.

Fact 5.32. Let P be a distribution over a sample space of n items with probability vec-

tor 〈p1, p2, . . . , pn〉 and 0 < δ ≤ 1 be a constant. Then Fδ(P ) is a product distribution

such that Fδ(P ) =
∏n

i=1 Fδ(Pi) where Fδ(Pi) ∼ Bern(1− e−δpi).

We use the following crucial lemma.

Lemma 5.33. For any 0 < δ ≤ 1 and distributions P,Q, dTV (Fδ(P ), Fδ(Q)) ≥

δe−δdTV (P,Q), with equality holding iff P = Q.

Proof. Let P = 〈p1, . . . , pi, . . . , pn〉 and Q = 〈q1, . . . , qi, . . . , qn〉 be the probability
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values of P and Q.

dTV (Fδ(P ), Fδ(Q)) =
∑

x∈{0,1}n
|Fδ(P )(x)− Fδ(Q)(x)|

≥
n∑
i=1

|dTV (Fδ(P )(ei)− Fδ(Q))(ei)|

(unit vector ei has i th value 1)

=
n∑
i=1

|(1− e−δpi)Πj 6=ie
−δpj − (1− e−δqi)Πj 6=ie

−δqj |

=
n∑
i=1

e−δ|eδpi − eδqi | (Since Πje
−δpj = Πje

−δqj = e−δ)

= e−δ
n∑
i=1

|δ(pi − qi) + δ2(p2
i − q2

i )/2! + · · ·+ δj(pji − q
j
i )/j! + . . . |

We analyze the expression under modulus under two cases: 1) if pi > qi, it is >

δ(pi − qi), 2) if pi < qi, it is > δ(qi − pi).

dTV (Fδ(P ), Fδ(Q)) ≥ e−δ
n∑
i=1

|δ(pi − qi)|

= δe−δdTV (P,Q)

5.4.1 Hardness of χ2-tolerance for 2-sample testing of product distribu-

tions

Here we show that for two unknown product distribution P,Q over {0, 1}n, distin-

guishing dχ2(P,Q) ≤ ε2/9 versus dTV (P,Q) > ε, for a constant ε, cannot be decided

in general with a truly sublinear sample complexity. We use a reduction to the follow-

ing difficult problem, for hardness of χ2-tolerance for 2-sample testing of unstructured
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distributions over n items, given in [32]. We restate the theorem with changes in the

constants.

Theorem 5.34. There exists a constant 0 < ε < 1 and three distributions P yes, P no

and Q, each over the sample space [n] such that: (1) dχ2(P yes, Q) ≤ ε2/216, whereas

dTV (P no, Q) ≥ ε and (2) given only sample accesses to one of P yes or P no, and Q,

distinguishing P yes versus P no with probability > 4/5, requires Ω(n/ log n) samples.

We use the following important property about the χ2-distance between the re-

duced distributions.

Lemma 5.35. dχ2(Fδ(P ), Fδ(Q)) ≤ exp(4δχ2(P,Q))− 1, for any 0 < δ ≤ 1.

Proof. From Fact 5.32, both Fδ(P ) and Fδ(Q) are product distributions, the dis-

tribution of the i-th component being Fδ(Pi) and Fδ(Qi) respectively. Let P =

〈p1, p2, . . . , pn〉 and Q = 〈q1, q2, . . . , qn〉. Then Fδ(Pi) ∼ Bern(1− e−δpi) and Fδ(Qi) ∼
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Bern(1− e−δqi).

dχ2(Fδ(P ), Fδ(Q)) =
∏
i

(1 + dχ2(Fδ(Pi), Fδ(Qi)))− 1 (From Lemma 5.8)

≤
∏
i

exp(dχ2(Fδ(Pi), Fδ(Qi)))− 1

(Since ex ≥ (1 + x) for x ≥ 0)

= exp(
∑
i

dχ2(Fδ(Pi), Fδ(Qi)))− 1

= exp

(∑
i

(e−δpi − e−δqi)2

(
1

e−δqi
+

1

1− e−δqi

))
− 1

(Since Fδ(P
yes
i ) ∼ Bern(1− e−δpi) and Fδ(Qi) ∼ Bern(1− e−δqi))

= exp(
∑
i

(e−δpi − e−δqi)2/e−δqi(1− e−δqi))− 1

= exp(
∑
i

(eδ(qi−pi) − 1)2/(eδqi − 1))− 1

= exp(
∑
i

(eδ(qi−pi) − 1)2/(eδqi − 1))− 1

≤ exp(
∑
i

(2δ(pi − qi))2/δqi))− 1

(Since (ex − 1) ≥ x and (|ex − 1| ≤ 2|x| for 0 < |x| < 1)

= exp(4δχ2(P,Q))− 1

We are set to present the main lower bound result of this section.

Theorem 5.4. (dχ2-versus-dTV closeness testing lower bound) There exists a con-

stant 0 < ε < 1 and three product distributions F yes, F no and F , each over the sample

space {0, 1}n such that dχ2(F yes, F ) ≤ ε2/9, whereas dTV (F no, F ) > ε, and given only
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sample accesses to F yes, F no and F , distinguishing F yes versus F no with probability

> 2/3, requires Ω(n/ log n) samples.

Proof. We start with the distributions P yes, P no and Q from the hardness Theo-

rem 5.34. Then dχ2(P yes, Q) ≤ ε2/216 and dTV (P no, Q) ≥ ε for some constant

0 < ε < 1. We apply the reduction of Definition 5.31, with δ = 1/3 to these

three distributions. Then from Lemma 5.33 and Lemma 5.35 we get the following

two inequalities:

• dχ2(Fδ(P
yes), Fδ(Q)) ≤ exp(4χ2(P yes, Q)/3)− 1 < ε2/160.

• dTV (Fδ(P
no), Fδ(Q)) > (1/3e1/3)ε.

It follows if we can distinguish dχ2(Fδ(P
yes), Fδ(Q)) ≤ ε2/160 versus dTV (Fδ(P

no), Fδ(Q)) >

(1/3e1/3)ε, then we are able to decide the hard instance of Theorem 5.34. Moreover,

in order to simulate each sample from the distribution F1/2(P ), we need Poi(1/2)

samples from P . So, if we need m samples in total, from the additive property of the

Poisson distribution, we need Poi(m/2) = O(m) samples from P in total, except for

exp(−m) probability. It follows, if we can decide the problem given in the theorem

statement in o(n/ log n) samples, we can decide the hard problem of Theorem 5.34 in

o(n/ log n) samples as well. This leads to a contradiction. Replacing the constant ε

by 3e1/3ε1, we get Theorem 5.4.

5.4.2 Hardness of KL-tolerance for 1-sample testing of product distribu-

tions

In this section we show that for an unknown product distribution P and a known prod-

uct distribution Q over {0, 1}n, distinguishing dKL(P,Q) ≤ ε2/9 versus dTV (P,Q) > ε,

for a constant ε, cannot be decided in general with a truly sublinear sample complex-

ity. We use a reduction to the following hardness result, for KL-tolerance for 1-sample
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testing of unstructured distributions over n items, given in [32]. We restate the theo-

rem with changes in the constants. For a probability distribution P = 〈p1, p2, . . . , pn〉

over n items, ||P ||22 =
∑

i p
2
i .

Theorem 5.36. There exists a constant 0 < ε < 1 and three distributions P yes, P no

and Q, each over the sample space [n] such that: (1) dKL(P yes, Q) ≤ ε2/216, whereas

dTV (P no, Q) ≥ ε, (2) ||P yes||22 = O(log2 n/n), and (3) given only sample accesses to

one of P yes or P no, and complete knowledge of Q, distinguishing P yes versus P no with

probability > 4/5, requires Ω(n/ log n) samples.

Proof. The proof of this Theorem appears in [32], in Theorem 6.2 of this version,

except the fact ||P yes||22 = O(log2 n/n) is not explicitly claimed. We prove this claim

in the following, by observing from the original construction given in the paper by

Valiant and Valiant [63].

The hard distribution P yes is the distribution p−log k,φ as defined in Definition 12

of [63]. We use the following facts about this distribution p−log k,φ, given in Fact 11,

Definition 12 and (in the end of the second paragraph in the proof of) Lemma 13

in [63]:

• φ is a small enough constant

• The support size n and the parameter k are related as n = 32k log k/φ

• The ‘un-normalized’ mass at each point is x/32k, where j = log k and x ≤ 4j

• The ‘normalizing constant’ c2 (which makes the probability values sum up to

1) is at most φ/j where j = log k

From these facts we conclude each probability mass is c2 · x/32k ≤ φ/8k, where

n = 32k log k/φ for some constant φ. Hence, ||P yes||22 ≤ φ2/64k2 · 32k log k/φ =

φ log k/2k = O(log2 n/n).
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We use the reduction given in Definition 5.31. We establish the following lemma,

relating KL distances between the original and the reduced distributions.

Lemma 5.37. dKL(Fδ(P ), Fδ(Q)) ≤ δdKL(P,Q) + δ2||P ||22, for any 0 < δ ≤ 1.

Proof. We use the following fact about the KL-distance between two product distri-

butions.

Fact 5.38. For two distributions P =
∏n

i=1 Pi and Q =
∏n

i=1Qi over the same

discrete sample space, it holds that dKL(P,Q) =
∑n

i=1 dKL(Pi, Qi).

From Fact 5.32, both Fδ(P ) and Fδ(Q) are product distributions, the distribution

of the i-th component being Fδ(Pi) and Fδ(Qi) respectively. Let P = 〈p1, p2, . . . , pn〉
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and Q = 〈q1, q2, . . . , qn〉. Then Fδ(Pi) ∼ Bern(1−e−δpi) and Fδ(Qi) ∼ Bern(1−e−δqi).

dKL(Fδ(P ), Fδ(Q)) =
∑
i

dKL(Fδ(Pi), Fδ(Qi))

=
∑
i

[
(1− e−δpi) ln

(
1− e−δpi
1− e−δqi

)
+ e−δpi ln

e−δpi

e−δqi

]
=
∑
i

ln

(
1− e−δpi
1− e−δqi

)
+
∑
i

e−δpi ln
e−δpi(1− e−δqi)
e−δqi(1− e−δpi)

=
∑
i

ln
eδqi(eδpi − 1)

eδpi(eδqi − 1)
+
∑
i

e−δpi ln

(
eδqi − 1

eδpi − 1

)
=
∑
i

ln
eδqi

eδpi
+
∑
i

ln

(
eδpi − 1

eδqi − 1

)
+
∑
i

e−δpi ln

(
eδqi − 1

eδpi − 1

)
=
∑
i

(qi − pi) +
∑
i

(1− e−δpi) ln

(
eδpi − 1

eδqi − 1

)
=
∑
i

(1− e−δpi) ln

(
eδpi − 1

eδqi − 1

)
(Since

∑
i pi =

∑
i qi = 1)

≤
∑
i

δpi ln

(
δpi(1 + δpi)

δqi

)
(Since 1− e−x ≤ x, and x ≤ ex − 1 ≤ x(1 + x) for x < 1)

= δ
∑
i

pi ln
pi
qi

+ δ
∑
i

pi ln(1 + δpi)

≤ δdKL(P,Q) + δ2
∑
i

p2
i (Using ln(1 + x) ≤ x)

We present the lower bound for closeness testing of product distributions.

Theorem 5.5. (dKL-versus-dTV identity testing lower bound) There exists a con-

stant 0 < ε < 1 and three product distributions F yes, F no and F , each over the sample

space {0, 1}n such that dKL(F yes, F ) ≤ ε2/9, whereas dTV (F no, F ) > ε, and given only

sample accesses to F yes, F no, and complete knowledge about F , distinguishing F yes

versus F no with probability > 2/3, requires Ω(n/ log n) samples.
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Proof. We start with the distributions P yes, P no and Q from the hardness result The-

orem 5.36. Then dKL(P yes, Q) ≤ ε2/216, ||P yes||22 = O(log2 n/n) and dTV (P no, Q) ≥ ε

for some constant 0 < ε < 1. We apply the reduction of Definition 5.31, with δ = 1/3

to these three distributions. Then from Lemma 5.33 and Lemma 5.37 we get the

following two:

• dKL(Fδ(P
yes), Fδ(Q)) ≤ ε2/160, for any large enough n.

• dTV (Fδ(P
no), Fδ(Q)) > (1/3e1/3)ε.

It follows if we can distinguish dKL(Fδ(P
yes), Fδ(Q)) ≤ ε2/160 versus dTV (Fδ(P

no), Fδ(Q)) >

(1/3e1/3)ε, then we will be able to decide the hard instance of Theorem 5.34. More-

over, in order to simulate each sample from the distribution F1/2(P ), we need Poi(1/2)

samples from P . So, if we need m samples in total, from the additive property of the

Poisson distribution, we need Poi(m/2) = O(m) samples from P in total, except for

exp(−m) probability. It follows, if we can decide the problem given in the Theorem

statement in o(n/ log n) samples, we can decide the hard problem of Theorem 5.36 in

o(n/ log n) samples as well. This leads to a contradiction. Replacing the constant ε

by 3e1/3ε1, we get Theorem 5.5.
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Chapter 6

Conclusion

In this dissertation we made progress on certain computational problems over broadly

two models of computation: the streaming model for large datasets and the distribu-

tion testing model for large distributions.

In Chapter 2 we gave the first formal algorithm for estimating the number of low

frequency items in a large dataset of items. Unlike previous approaches we formally

analyzed the space complexities our algorithm and established its optimality. This

algorithm was motivated by the bioinfomatics problem of estimating k-mer abundance

histogram and gave state-of-the-art empirical performance.

In Chapter 3 we worked in the distributed variation of the streaming model and

its sliding window counterpart. We looked at the problem of estimating frequency

moments and clustering problems in the above models. We are not aware of any

lower bounds for these problems. Hence showing optimality or better upper bounds

for them would be interesting.

In Chapter 5 we studied tolerant testing problems for high dimensional product

distributions. We gave near-optimal upper and lower bounds for a number of these

problems. A natural question is to find more general structured classes of high-

dimensional distributions for which tolerant or non-tolerant testing problems would

be tractable.
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