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Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition
during crop production is central for assuring appropriate iron concentrations in the
harvestable organs, for human food or animal feed. The whole-plant movement of iron
involves several processes, including the reduction of ferric to ferrous iron at several
locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this
study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were
analyzed for leaf iron reductase activity, as well as the effect of this transgene’s expression
on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination
with the constitutive expression of AtFRO2, resulted in significantly higher concentrations
of different minerals in roots (K, P, Zn, Ca, Ni, Mg, and Mo), pod walls (Fe, K, P, Cu, and
Ni), leaves (Fe, P, Cu, Ca, Ni, and Mg) and seeds (Fe, Zn, Cu, and Ni). Leaf and pod
wall iron concentrations increased as much as 500% in transgenic plants, while seed iron
concentrations only increased by 10%, suggesting that factors other than leaf and pod
wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated
from transgenic leaves had three-fold higher reductase activity than controls. Expression
levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-
type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore
unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels
in the roots and leaves of transgenic plants were significantly higher than in wild-type,
suggesting that organic acid production could be related to the increased accumulation of
minerals in roots, leaves, and pod walls, but not in the seeds. All together, these results
suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation
and distribution.

Keywords: FRO2, iron, mineral nutrition, soybean, transgenic

INTRODUCTION
Iron is one of the most important micronutrients in human and
plant nutrition, and a suitable level of iron nutrition in plants
is vital to providing adequate concentrations of this mineral in
the harvestable plant organs for human food or animal feed.
Researchers have been interested in creating plant foods that are
nutrient-dense (to guarantee“nutrient security”) in iron and other
minerals (Carvalho and Vasconcelos, 2013), using an approach
referred to as biofortification. Soybean, being an important plant
food in several parts of the world, would be a suitable target for bio-
fortification programs. However, in soybean, most biofortification
strategies have aimed at increasing sulfur amino acids (Dinkins
et al., 2001) and vitamins, such as α-tocopherol (Dwiyanti et al.,
2011), and not at increasing mineral concentrations.

To create crop plants with more minerals, researchers must
boost their mobilization and uptake from the soil, improve their
movement to the edible portions of the plant and ultimately,
enhance their storage in those tissues. For this, it is essential to

understand the relevant contributions of the mineral transport
system throughout the plant as well as the regulatory system that
controls it.

One possible strategy is to utilize a “bottom up” approach,
where scientists enhance the mechanism of iron uptake from
the roots, and “hope” that the additional iron will be mobilized
and stored in the edible parts of the plant. Mineral elements tra-
verse the root via apoplastic and/or symplastic pathways to the
stele, where they are loaded into the xylem for transport to the
shoot (White and Broadley, 2009). In the plant kingdom there
are two main strategies for iron uptake. Dicots, such as soybean,
and non-graminaceous monocots, respond to iron limiting envi-
ronments by induction of the Strategy I mechanism (Römheld
and Marschner, 1986; Marschner, 1995), which involves several
processes at the root membrane such as the expression of active
proton pumps (AHA2) to increase solubility of ferric (Fe+3) iron,
a ferric reductase (FRO2) to generate ferrous (Fe+2) iron, and
an iron transporter (IRT1) to take up this reduced, available iron

www.frontiersin.org April 2014 | Volume 5 | Article 112 | 1

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/journal/10.3389/fpls.2014.00112/abstract
http://community.frontiersin.org/people/u/74696
http://community.frontiersin.org/people/u/125499
http://community.frontiersin.org/people/u/55795
mailto:mvasconcelos@porto.ucp.pt
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Nutrition/archive


Vasconcelos et al. Nutritional enhancement of soybean

from the rhizosphere (Hell and Stephan, 2003). This uptake sys-
tem depends on the activity of specific transcription factors, such
as FIT and bHLH proteins. Recent work in Arabidopsis and Med-
icago has shown that Strategy I plants also produce species-specific
iron deficiency-elicited compounds, namely phenolics and flavins
(Rodríguez-Celma et al., 2013) such as scopoletins (Fourcroy et al.,
2013). Monocots utilize the Strategy II mechanism, in which
there is extrusion of phytosiderophores that chelate iron and then
are taken up as an iron-chelate complex by root specific trans-
porters. Several comprehensive reviews are currently available on
this topic (Curie and Briat, 2003; Walker and Waters, 2011; Hindt
and Guerinot, 2012; Ivanov et al., 2012; Kobayashi and Nishizawa,
2012).

The Arabidopsis FRO2 gene is a member of the FRO gene
family and encodes an iron-deficiency inducible iron reductase
responsible for reducing iron at the root surface (Yi and Guerinot,
1996; Robinson et al., 1999; Connolly et al., 2003). Once inside
the roots, iron is transported via the xylem to the vegetative tis-
sues in response to transpirational activity from various organs.
It is thought that iron is transported in the xylem as a complex
with organic acids (OA) such as citrate (Tiffin, 1966; Rellán-
Álvarez et al., 2010), and that nicotianamine (NA) also may play
an important role in this process (Curie et al., 2009; Ivanov et al.,
2012).

The role of iron reduction in the roots is well documented
(Robinson et al., 1999; Connolly et al., 2003; Mukherjee et al.,
2006); however, the role of the reductase in the leaf, fruit, and
grain is still unclear. It is thought that iron reduction is necessary to
reduce ferric iron in the aerial parts of the plant before being trans-
ported into the leaf cells (Larbi et al., 2001; Feng et al., 2006). It was
found that AtFRO7 localizes to the chloroplast and is required for
efficient photosynthesis in young seedlings and for survival under
iron-limiting conditions (Jeong et al., 2008). Iron reductase activ-
ity has been detected in leaves of different plant species such as
sunflower (de la Guardia and Alcántara, 1996), Vigna unguiculata
(Brüggemann et al., 1993) and sugar beet (Gonzalez-Vallejo et al.,
2000; Larbi et al., 2001).

Once in the leaves, iron is used in diverse biochemical processes,
or it can be stored for future use. The storage form of iron and
the organelles where it is accumulated is only partially defined. It
is thought that most of the iron will be stored as ferritin in the
plastids (chloroplasts contain up to 90% of the leaf cell iron), with
about half in the stroma and half in the thylakoid membranes.
The remaining iron pool will probably be found in the vacuole
(Thomine et al., 2003). There also seems to be a role for the reduc-
tase in the transport to and eventual accumulation of iron in seeds
(Grusak, 1995). A pea mutant (dgl) was identified that has uncon-
trolled hyperaccumulation of Fe in vegetative tissues, and that has
the ability to accumulate up to 3-fold higher concentrations of Fe
in the seeds (Marentes and Grusak, 1998). Another pea mutant,
brz (bronze leaves) also has been shown to have hyperaccumula-
tion of iron in the leaves, but it does not move excess iron into
the seeds (Grusak, 1995). Unfortunately, there are no data on the
possible role of leaf iron reduction in the transport of iron to the
developing seeds.

There is also very limited information on the common reg-
ulatory mechanisms that co-regulate the uptake, transport and

accumulation of iron and other minerals in the plant. Several com-
mon transporters have been identified, but only limited evidence
is available on the effects of higher Fe intake on the dynamics
of other minerals, such as zinc (Zn), copper (Cu), manganese
(Mn), magnesium (Mg), phosphorous (P), potassium (K), nickel
(Ni), molybdenum (Mo), or calcium (Ca). All of these also play
important roles in human and animal nutrition, and enhanced
accumulation of more than one mineral could be a cost effective
strategy in biofortification programs.

Ectopic expression of the Arabidopsis thaliana ferric chelate
reductase, AtFRO2 (Robinson et al., 1999) in transgenic soybean
conferred increased iron reduction in the roots and enhanced tol-
erance towards iron deficiency chlorosis (Vasconcelos et al., 2006).
To determine if the reductase activity is a rate-limiting step for
seed mineral acquisition, and to establish AtFRO2 as a possi-
ble molecular tool to be used in biofortification programs, we
functionally analyzed the transgenic soybean line 392-3 carrying
the Arabidopsis FRO2 gene under the 35S constitutive promoter
for leaf iron reductase activity and general whole-plant mineral
distribution.

MATERIALS AND METHODS
PLANT MATERIAL
Soybean (Glycine max L.) genotypes “Thorne” wild-type (WT)
and transgenic homozygous line 392-3 carrying the FRO2 gene
from Arabidopsis thaliana under the constitutive 35S promoter
(Vasconcelos et al., 2006) were used in this study. Plants were
grown in a controlled environment chamber with 16-h, 20◦C-
day and 8-h, 15◦C-night. Relative humidity was maintained at
50% and photon flux density during the day was 350 μmol m−2

s−1, supplied by a mixture of incandescent bulbs and fluores-
cent lamps. Seeds of control and homozygous transgenic plants
in T3 generation were first germinated in beakers with wet filter
paper for 4 days before being transferred to hydroponics solu-
tion (four plants per 4.5 l) with different Fe treatments. The
standard solution for hydroponically grown plants contained:
0.8 mM Ca(NO3)2, 1.2 mM KNO3, 0.2 mM MgSO4, 0.3 mM
NH4H2PO4, 25 μM CaCl2, 25 μM H3BO3, 0.5 μM MnSO4,
2.0 μM ZnSO4, 0.5 μM CuSO4, 0.5 μM H2MoO4, and 0.1 μM
NiSO4. For various studies, plants were grown either at 0, 10,
32, or 100 μM Fe(III)-EDDHA [ethylenediamine-N,N’bis(o-
hydroxyphenyl)acetic acid]. All nutrients were buffered with 1 mM
MES (2,4-morpholino-ethane sulfonic acid), pH 5.5 and growth
solutions were changed weekly until full maturity (FM) of the
plants.

For mineral analysis, tissues were collected at three devel-
opmental stages: 40 (Grain-Fill I), 80 (Grain-Fill II), and 120
(Grain-Fill III) days after the initiation of flowering.

LEAF PROTOPLAST ISOLATION AND REDUCTION ACTIVITY
Trifoliate leaves of Thorne and 392-3 were collected at two weeks of
age from plants grown with 0, 10, 32, or 100 μM Fe(III)-EDDHA.
Protoplasts were isolated using a method modified from Larbi et al.
(2001). Specifically, leaf tissue of a known surface area was cut and
placed in Solution A (500 mM D-sorbitol, 1 mM CaCl2, 2% [w/v]
cellulase, 0.3% macerozyme, 0.1% pectolyase, 5 mM MES, pH 5.5).
The macerate was incubated at 27◦C for 3 h on an orbital shaker at
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70 rpm, in the dark. Protoplasts were filtered, centrifuged, washed
with Solution B (500 mM D-sorbitol, 1 mM CaCl2 and 5 mM
MES, pH 6.0), isolated after sucrose layering and centrifugation,
sized, and counted for viability. Protoplasts were sized by using
a calibrated eyepiece fitted to a microscope (Nikon, Japan, 40×
objective). The number of protoplasts per unit volume was deter-
mined with a hemacytometer (Hausser Scientific, Horsham, PA,
USA), and viability of the protoplasts was calculated by incubation
of the protoplast suspension in 0.04% (w/v) Evans Blue for 5 min,
and determining the number of protoplasts excluding the dye. A
500 μl volume of leaf protoplast solution was added to 500 μl of
Solution B (described above) supplemented with 800 μM BPDS
and 800 μM Fe(III)-EDTA. Tubes were agitated for 45 min at 27◦C,
centrifuged (2 min at 12,000 g) and absorbances read at 535 nm.
The extinction coefficient of Fe(II)-BPDS3 (22.14 mM−1 cm−1)
was used to calculate the Fe reduction rates; values are presented
on protoplast surface area basis (nmol of Fe reduced μm−2 s−1).

TISSUE ELEMENTAL ANALYSIS
All tissues were harvested and dried overnight in a 60◦C oven.
Samples were then digested overnight in borosilicate glass tubes by
adding 4 ml of redistilled 98.8% HNO3 and 1 ml of concentrated
trace metal grade HClO4. Samples were heated at 100◦C for 1 h,
150◦C for 1 h, 180◦C for 1½ h and then at 210◦C to dryness. Diges-
tions were performed using a heating block (Model 1016, Tecator,
Höganäs, Sweden) with an exhaust-collecting manifold. Digests
were resuspended in 10 ml of redistilled 2% HNO3. Elemental
analysis was performed using inductively coupled plasma – opti-
cal emission spectroscopy (ICP-OES; CIROS ICP Model FCE12;
Spectro, Kleve, Germany). Five plants were grown for each treat-
ment as described before. Material from each plant was ground
and five independent digestions were performed prior to ICP-OES
analysis.

AtFRO2 AND GmFer EXPRESSION ANALYSIS
RNA from roots, leaves, seeds, root tips, pod walls, and petals
of control and transgenic plants grown hydroponically under
various iron concentrations (see above) was isolated using the
RNA-easy kit (Qiagen Inc., Valencia, CA, USA) according to
the manufacturer’s instructions. RNA was isolated from 3 plants
in each treatment. The experiments were repeated twice, and
PCR reactions were performed at least in triplicate. Possible
contaminating genomic DNA was removed with the TURBO
DNA-freeTM kit from Ambion (Ambion Inc., Austin, TX, USA)
following the manufacturer’s instructions. Total RNA (0.5 μg)
were subjected to reverse transcription (RT) with an anchored
oligo (dT) primer and 200 units superscript II reverse tran-
scriptase (Invitrogen, Carlsbad, CA, USA) in a volume of 20 μl
according to the manufacturer’s instructions. PCR reactions were
carried out with 1.5 μl of the RT reaction solutions. Addi-
tional reaction components were: 10 mM polymerase buffer,
1 mM dNTP’s, 0.1 units Taq polymerase (Clontech, Palo
Alto, CA, USA) and 1 μM specific primers. All primers sur-
rounded an intron so that genomic DNA was clearly distinguished
from cDNA-derived products. The following primer sets were
designed: ferritin (GmFer), 5′-ACTTGCTCTGTTTCTCTGAGC-
3′ (forward), 5′–CGCTAGACGGTGTGACACGT-3′ (reverse);

ubiquitin (GmUbq), 5′-GGGTTTTAAGCTCGTTGT-3′ (forward)
and 5′-GGACACATTGAGTTCAAC-3′ (reverse). The number
of cycles in each PCR reaction was 28, with 58◦C annealing
temperature. Amplified products from 10 μl of PCR reac-
tion were visualized on a 1% TAE agarose gel containing
ethidium bromide. Bands were photographed using the Quan-
tity One 4.5.1 Chemidoc EQTM Software System (Biorad, CA,
USA).

Quantitative RT-PCR (Q-RT PCR) was performed for AtFRO2
transcript quantification in different plant tissues. Reactions
were carried out in an ABI PRISM® 7700 sequence detector
using TaqMan One Step PCR master Mix reagents Kit and an
ABI PRISM® 96-well optical reaction plate (all from Applied
Biosystems, Foster City, CA, USA). Validation of the Q-RT
PCR methodology was performed in order to find the appro-
priate RNA concentration at which there is a linear correlation
between ribosomal RNA control (18S rRNA) and AtFRO2 tran-
scription. Reactions were carried out with 0.2 ng/μl RNA to
a final volume of reaction of 25 μl. Specific primers designed
for AtFRO2 were: 5′-CGTATCAAGTTTGGAACATCCACTT-
3′ (forward) and 5′-CCATCATTGGGAACATATACATGAA-3′
(reverse), amplifying the TaqMan Probe AtFRO2 sequence of
5′-AAGTTTGGAACATCCACTTATTTTGGTGCCA-3′. For sig-
nal detection and quantification, Applied Biosystems-Sequence
Detection Systems 1.9.1 was used (Applied Biosystems, Foster
City, CA, USA). The following standard thermal profile was
used for all PCRs: 40 cycles starting at 48◦C 30 min, 95◦C
10 min, 95◦C 15 s and 60◦C for 1 min. The ΔCt ± SD
and mean transcript level were calculated between four tech-
nical replicates from two experiments. To generate a baseline-
subtracted plot of the logarithmic increase in fluorescence sig-
nal (ΔRn) versus cycle number, baseline data were collected
between cycles 3 and 15. All amplifications were analyzed with
an Rn threshold of 0.02 to obtain the CT (threshold cycle)
values.

ORGANIC ACID ANALYSIS
Leaf and root tissue of control (Thorne) and transgenic (392-3)
soybean plants grown hydroponically at 0, 10, 32, or 100 μM
Fe (III)-EDDHA for 2 weeks were used for citrate and malate
analysis. Five samples of each tissue were frozen in liquid nitro-
gen and ground in a ceramic mortar and pestle with 8 mM
sulfuric acid. Homogenates were boiled for 30 min, filtered
with a 0.2 μm filter (Falcon, USA), taken to a final volume of
2 ml with 8 mM sulfuric acid and kept at −80◦C until HPLC
analysis.

Organic anions were analyzed with an Acclaim OA 5 μm ion-
exchange column (250 × 4 mm, DIONEX, TX, USA) with an
HPLC system (ICS 3000 Ion Chromatography System, DIONEX,
Houston, TX, USA), and Chromeleon software. Samples were
manually injected (10-μl loop). Mobile phase (100 mM Na2SO4,
pH 2.65) was pumped with an isocratic 0.5 ml min−1 flow rate.
Organic anions were detected at 210 nm. Peaks corresponding to
citrate and malate were identified by comparison of their reten-
tion times with those of known standards from Bio-Rad and Sigma
(St. Louis). Quantification was made with known amounts of each
organic anion using peak areas.
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STATISTICAL ANALYSIS
Welch’s t-test and the Dunnett-C test to compare the means were
used to compare the leaf, pod wall, root, stem and seed nutrient
levels between transgenic and WT plants. A Pearson’s correla-
tion analysis with four significance levels (P < 0.05; P < 0.01;
P < 0.001, and P < 0.0001) was performed to determine the cor-
relation between 10 different minerals in different tissue types.
The mineral data used for the correlation study integrated the ICP
results from WT and 392-3 plants grown to maturity at the three
iron concentrations, and at the three harvest dates. All statistical
analyses were performed using GraphPad Prism 6, version 6.1 (La
Jolla, CA, USA).

RESULTS
PLANT ORGAN WEIGHT
Fourteen days after transfer to the hydroponics solution, WT and
392-3 plants appeared similar to each other, in terms of plant size
and leaf color, particularly at 100 μM Fe(III)-EDDHA (Figure 1).
However, both WT and 392-3 plants grown in the complete
absence of iron were already showing severe signs of chlorosis
(Figure 1); therefore, this treatment had to be discontinued for
the analysis that involved growing the plants to FM.

To test if the constitutive expression of AtFRO2 and a combi-
nation of different Fe supplies would influence dry mass accumu-
lation in soybean organs, we cultivated WT and 392-3 plants with
10, 32, or 100 μM Fe(III)-EDDHA until FM. The lowest Fe sup-
plies (10 and 32 μM) resulted in significant differences in root dry
weight (DW) between the WT and 392-3 line, while no differences
were seen between genotypes in the roots at the highest Fe sup-
ply of 100 μM Fe (III)-EDDHA (Figure 2). The transgenic plants
also had significantly heavier shoot DW (P < 0.001) than the WT,
regardless of the Fe concentration in the growth solution. At 10 and
32 μM Fe (III)-EDDHA the transgenic soybean line 392-3 had sig-
nificantly higher pod wall DW. High Fe supply caused a decrease of
about 30% in root DW in the transgenic line compared to the lower
concentrations (10 or 32 μM). In the WT plants, this reduction
in root DW was not observed. In fact, WT plants exhibited higher
root DW (12.5 ± 0.8 g and 12.2 ± 0.1g) when grown in higher

FIGURE 1 | Wild-type (Panel A) and transgenic 392-3 (Panel B) soybean

plants at 14 days of hydroponic growth supplemented with 0, 10, 32,

or 100 μM Fe(III) EDDHA (left to right).

Fe concentrations than when grown at 10 μM concentration
(9.4 ± 0.3g).

AtFRO2 AND GmFer EXPRESSION
Quantitative RT-PCR revealed that the CaMV 35S promoter drove
AtFRO2 expression in different organs of the transgenic plants
such as root tips, basal regions of roots (without tips), leaves,
petals, pod walls, and seeds, and that AtFRO2 transcript levels
were relatively similar amongst the different organs (Figure 3).
However, when looking at different root regions, it was found
that AtFRO2 was less expressed in root tips than in the remaining
regions of the root. No expression of AtFRO2 was found in the
non-transformed control.

In order to determine if the constitutive expression of AtFRO2
is influenced by the external supply of iron, quantitative RT-PCR
was performed in roots and shoots of transgenic soybean line 392-
3 grown at 0, 10, 32, or 100 μM Fe(III)-EDDHA for 14 days.
Similar transcript levels were observed in both roots and shoots,
regardless of iron concentration in the hydroponics solution
(Figure 4).

Ferritin expression was assessed in roots and shoots of con-
trol and transgenic plants (Figure 5). Higher ferritin levels were
found in the shoots than in the roots in both control and trans-
genic plants, and an increase in ferritin expression was found when
plants were grown at higher iron concentrations. Moreover, 392-3
plants appeared to have higher expression of the ferritin gene when
compared to control.

TISSUE MINERAL CONCENTRATIONS
At an initial stage of our experiments, 392-3 soybeans were grown
along with the WT plants for 14 days at 32 μM Fe(III)-EDDHA
in hydroponic conditions and plants were screened for possible
modulatory effects on mineral concentrations in roots, stems, and
leaves (Table 1). It was observed that the transgenic line had sig-
nificantly higher concentrations of Fe, Zn, P, K, and Mn in leaves,
roots and stems, with concentrations increasing more than 50%
when compared to the WT.

The 392-3 soybeans were also grown along with the WT plants
at 10, 32, or 100 μM Fe (III)-EDDHA in hydroponic conditions
and plants were screened up to FM. Iron and Zn determinations of
the leaves, pod walls and seeds were performed at three different
developmental seed filling stages: Grain-Fill I (GF I), Grain-Fill
II (GF II), and FM (Figure 6). Significant differences in Fe accu-
mulation in the different tissues was found when comparing WT
and 392-3 plants, and differences were particularly significant at
the last collection date (FM), and at the highest iron concentra-
tion (100 μM). For plants that were grown at 100 μM Fe, at the
last collection date (Table 2; Figure 6) 392-3 plants had up to
1142 ± 69 μg g−1 Fe in the leaves, whereas the WT plants had
435 ± 18 μg g−1. Nonetheless, the increase in Fe concentration
in the leaves of plants grown at 100 μM Fe (III)-EDDHA was
already significant at the GF I and GF II stages. The pod wall Fe
levels also were significantly higher in the 392-3 plants, relative to
WT, at 32 and 100 μM Fe growth conditions at FM (Figure 6),
with values reaching up to 120 ± 4 μg g−1. At FM, an increase
of up to 100% was found in iron levels in the leaves of plants
grown at 100 μM Fe(III)-EDDHA, a higher than 60% increase
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FIGURE 2 | Dry weight of seeds, pod walls, shoot (leaf and stem), and

roots collected at full maturity (FM) stages of WT and transgenic 392-3

soybean plants supplied with 10, 32, or 100 μM of Fe(III)-EDDHA. Values

are the averages of at least five samples ± SE. Asterisks indicate that the
means (between WT and 392-3 within tissue type) are different by the Tukey
HSD test (*P < 0.05; **P < 0.01; ***P < 0.001).

FIGURE 3 | Relative AtFRO2 RNA expression in different soybean

plant tissues measured by Quantitative RT-PCR (Biorad). Amount
of transcript was calculated according to internal 18S RNA

expression for each tissue. RNA was extracted from two plants for
each tissue and Quantitative RT-PCR reaction was repeated three
times.

was found in the levels of iron in the pod walls of these same
plants, and a 10% increase was detected in the corresponding seed
iron levels. Plants that had been grown in soil, in greenhouse con-
ditions, showed a similar increase in seed iron levels (data not
shown).

Zinc concentrations were also higher in the transgenic leaves
and seeds but not in the pod walls. The increments were varied
with the concentration of iron in the nutrient solution and with
the harvest date. In the leaves, increases in Zn concentration were
significantly higher at GF I and GF II, but not at FM. In the seeds,
Zn concentration in 392-3 was always significantly higher than in
WT plants grown at the highest Fe concentration.

Because Fe and Zn differences were more pronounced in
plants grown at 100 μM Fe and at FM, we decided to deter-
mine whether other minerals were also affected, looking at this
particular stage of development and treatment. Table 2 shows
that other minerals besides Fe and Zn were also modulated in
the transgenic plants, with differences noted in mineral com-
position in the roots, pod walls, leaves, and seeds (Table 2). In
roots, several obvious mineral concentration differences could be
detected. High Fe supply, in combination with the constitutive
expression of AtFRO2, was associated with higher concentra-
tions of K, P, Zn, Ca, Ni, Mg, and Mo. In pod walls, transgenic
plants had significantly higher Fe, K, P, Cu, and Ni concentrations
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FIGURE 4 | Relative AtFRO2 RNA expression in roots and shoots of

transgenic 392-3 soybean plants supplied with 0, 10, 32, or 100 μM Fe(III)

EDDHA detected by Quantitative RT-PCR (Biorad). Amount of transcript

was calculated according to internal 18S RNA expression for each tissue.
RNA was extracted from 2 plants for each tissue and Quantitative RT-PCR
reaction was repeated three times.

FIGURE 5 | Semi-quantitative RT-PCR analysis of the soybean ferritin (GmFer ) expression in roots (Panel A) and shoots (Panel B) of WT and 392-3 G.

max plants grown under different iron concentrations [0, 10, 32, or 100 μM Fe (III)-EDDHA]. Soybean ubiquitin gene (GmUbq) was used as template
loading control.

Table 1 | Average root, stem, and leaf mineral concentration of wild-type (WT) and 392-3 transgenic soybean plants grown in hydroponic

conditions with 32 μM Fe(III)-EDDHA for 2 weeks.

Mineral

(μg g−1)

Roots Stems Leaves

WT 392-3 WT 392-3 WT 392-3

Fe 201 ± 11 582 ± 25** 41 ± 3 94 ± 6** 196 ± 8 766 ± 31**

Mn 122 ± 10 258 ± 13** 122 ± 10 258 ± 13** 65 ± 2 188 ± 8**

K 46430 ± 7979 51266 ± 2875* 33692 ± 2556 46004 ± 2467* 27244 ± 389 30575 ± 1306*

P 12284 ± 738 17490 ± 880* 4558 ± 195 6106 ± 393* 4658 ± 34 6912 ± 105*

Zn 100 ± 4 346 ± 11** 56 ± 3 149 ± 9** 136 ± 3 283 ± 6**

Values are shown as mean ± SE and represent an average of five plants. Significance within tissue types: *P < 0.05; **P < 0.01.

and significantly lower concentrations of Ca and Mg. In leaves
there was a significant increase in leaf Fe, but also in P, Cu, Ca,
Ni, and Mg. In seeds, the concentrations of Fe, Zn, Cu, and
Ni were significantly increased in the transgenic line, relative to
WT.

MINERAL CORRELATION ANALYSIS
Pearson’s correlation analysis was performed in order to find
relationships among the ten minerals’ concentrations in three

different plant tissues. The organ with the fewest number of
correlations was the seed; however, it was also the organ where
the most significant correlations occurred (Figure 7). In gen-
eral, Fe seems to be very tightly linked to several other minerals,
with particular emphasis in the leaves and pod walls. As can
be observed in Figure 7, the only positive correlations that are
common for the three tissue types are the pairs Fe-Zn, Fe-Cu,
and Ni-Cu. Other correlations are common in two of the three
tissues.
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FIGURE 6 | Fe and Zn concentration (μg g−1) in leaves, pod walls and

seeds of WT and transgenic 392-3 soybean plants grown in hydroponic

conditions with 10, 32, or 100 μM Fe (III)-EDDHA. Tissues were harvested
at two grain filling stages (GF I and GF II) and at full maturity (FM). Asterisks

indicate that the means (between WT and 392-3 within Fe supply) are
different by the Tukey HSD test (*P < 0.05; **P < 0.01; ***P < 0.001). Error
bars may be too small to be visible in the figure. Data are means ± SE of five
plants per treatment.

Table 2 | Mineral concentration (μg g−1) in roots, pod walls, leaves, and seeds of wild-type (WT) and transgenic 392-3 soybean plants grown in

hydroponic conditions with 100 μM Fe(III)-EDDHA until full maturity (FM).

Mineral

(μg g−1)

Roots Pod walls Leaves Seeds

WT 392-3 WT 392-3 WT 392-3 WT 392-3

Fe 2904 ± 109 2592 ± 177 49 ± 1 120 ± 4*** 435 ± 18 1142 ± 69*** 96 ± 2 112 ± 3**

Mn 10 ± 0.6 9 ± 0.3 22 ± 2 17 ± 1 49 ± 6 47 ± 1 20 ± 1 24 ± 1*

K 13256 ± 83 41661 ± 2644* 26722 ± 436 32064 ± 620** 15385 ± 200 13336 ± 977 18920 ± 415 19341 ± 78

P 4079 ± 97 7991 ± 529* 2572 ± 37 4244 ± 89** 1427 ± 53 2414 ± 68** 6389 ± 164 6509 ± 132

Zn 45 ± 1 137 ± 50* 49 ± 1 84 ± 19** 157 ± 3 162 ± 2 61 ± 1 76 ± 1**

Cu 27 ± 1 25 ± 2 8 ± 0.1 13 ± 0.3** 3 ± 0.1 8 ± 0.4** 15 ± 0.1 17 ± 0.1***

Ca 9788 ± 72 7553 ± 200* 23605 ± 395 19275 ± 124** 21861 ± 330 30398 ± 591** 3519 ± 57 3674 ± 61

Ni 2 ± 0.4 3 ± 0.2* 3 ± 0.1 5 ± 0.1** 1 ± 0.1 2 ± 0.2** 8 ± 0.1 9 ± 0.1*

Mg 435 ± 0.5 534 ± 12* 4886 ± 61 4310 ± 59* 1648 ± 28 2346 ± 120* 2190 ± 21 2103 ± 16

Mo 5 ± 0.3 3 ± 0.3* 39 ± 2 20 ± 1 23 ± 2 18 ± 1 55 ± 0.9 55 ± 0.3

Values are shown as mean ± SE and represent an average of five plants. Significance within tissue types: *P < 0.05; **P < 0.01; ***P < 0.001.

LEAF IRON REDUCTION ACTIVITY
The small differences in the seed iron concentration between WT
and 392-3 transgenic plants led to the hypothesis that perhaps
the higher reductase activity in the roots may not be paral-
leled by a higher reductase activity in the leaves or in other
plant organs, which could be sources of transportable Fe. If the
increased iron concentration in the leaves of the 392-3 plants is
being stored in a non-transportable form, then there will not be
a concomitant transport to the developing seeds. Therefore, an
optimized protocol was used to measure ferric chelate reductase

activity of soybean plants grown in hydroponics for two weeks
at 10, 32, or 100 μM Fe (III)-EDDHA. Protoplasts isolated
from leaf cells of 392-3 and WT plants showed that expression
of AtFRO2 increased leaf iron reduction capacity up to 3-fold
when compared to the WT, regardless of the plant iron treatment
(Figure 8).

CHANGES IN LEAF AND ROOT ORGANIC ACIDS
Malate and citrate have been described as important compounds in
the translocation of Fe in the plant’s vascular system. Both OA were
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FIGURE 7 | Mineral correlation analysis. Pearson’s correlation analysis of
ten mineral concentrations in leaves (A), pod walls (B), and seeds (C) of
Thorne and 392-3 soybean plants cultivated with 10, 32, or 100 μM of
Fe (III)-EDDHA and measured at two grain filling stages (GF I and GF II)
or at full maturity (FM). Solid lines represent a significant positive

correlation and dashed lines represent a significant negative correlation.
Thinner lines indicate significance at the P < 0.05, semi-thin indicate
significance at the P < 0.01, semi-thick indicate significance at the
P < 0.001 level and the thicker lines indicate significance at the
P < 0.0001 level.

FIGURE 8 | Iron reductase activity measured in vivo in protoplasts isolated from WT and transgenic 392-3 soybean leaves of plants grown with 10, 32,

or 100 μM Fe (III)-EDDHA. Values are shown per surface area. Measurements were made with 400 μM Fe (III)-EDTA as a substrate. Data are means ± SE of
three replications each.

detected in transgenic and control leaves and roots. In general, dif-
ferences between 392-3 and WT plants were more pronounced in
the leaves than in the roots, and transgenic plants accumulated
significantly higher amounts of both OA than WT. In the leaves
of 392-3 plants, citrate and malate were higher when plants were
grown at 10, 32, or 100 μM Fe (Figures 9A,B). A different pat-
tern was observed in the WT plants: malate concentrations were
highest in leaves of iron-starved plants, and were lower when iron
was available to the plants. Leaf citrate concentrations were only
elevated at 32 μM Fe.

For plants grown in the absence of Fe, citrate, and malate were
not detectable in the roots of WT and transgenic plants. However,
when plants were grown in Fe sufficiency, both OA were observed
(Figures 9A,B).

DISCUSSION
There is currently a strong interest in developing strategies to
increase the level of minerals, such as iron, in edible plant organs.

One such strategy is the over-expression of genes that are neces-
sary for proper plant iron status. Previous work has shown that by
enhancing the reductase activity in transgenic soybean, plants are
able to cope better in iron limiting soils, having higher chlorophyll
values and improved agronomic performance (Vasconcelos et al.,
2006). Also, a possible strategy to enhance the mineral content of
plant foods is to enhance the uptake of minerals from the roots
during the period of seed development (Waters and Grusak, 2008;
Sperotto et al., 2012).

MINERAL CONCENTRATIONS AND CORRELATIONS
In the current study, soybean plants overexpressing AtFRO2 were
analyzed for mineral concentrations (Fe, Zn, Cu, Mn, Mg,
Ca, Mo, Ni, K, and P) in source and sink tissues at differ-
ent seed-filling stages. Significant differences were found in the
mineral concentration of transgenic plants when compared to
the WT, and differences were particularly prominent when tis-
sues were collected at the final developmental stage (Table 1).
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FIGURE 9 | Effects of Fe concentration on organic acid (citrate and malate) accumulation in WT and 392-3 soybean leaves and roots. Data are
means ± SE of eight replicates. Asterisks represent significant differences between WT and 392-3 (**P < 0.01; ***P < 0.001).

This suggests that the iron reductase is not only involved in
iron acquisition, but it plays a more general role in the regula-
tion of ion absorption by root cells. This hypothesis has been
supported by others (Marschner et al., 1982; Stephan and Grün,
1989; Welch and LaRue, 1990; Yi and Guerinot, 1996). Further-
more, after two weeks in hydroponic conditions supplemented
with 0, 10, 32, or 100 μM Fe (III)-EDDHA, the transgenic line
392-3 had significantly higher concentrations of Fe, Zn, and
Mn in leaves, roots, and stems, with concentrations 50% higher
when compared to the WT (Table 1). Increased Mn uptake and
subsequent translocation to the aerial parts of the plant is rea-
sonable, because Mn moves easily from roots to shoot tissues in
the xylem-sap transpiration stream (Ramani and Kannan, 1987;
Marschner, 1995).

After observing that 392-3 had altered concentrations of differ-
ent minerals after 14 days of growth, we grew plants to maturity
and analyzed mineral accumulation in roots, leaves, pod walls, and
seeds at different developmental seed filling stages (Figure 6). At
the last harvest date (FM), it was observed that when grown with
high Fe supply, in combination with the constitutive expression
of AtFRO2, there were several significant mineral changes. In pod

walls, transgenic plants had significantly higher Fe, K, P, Cu, and
Ni; however, significantly lower concentrations of Ca and Mg were
found (Table 2), suggesting an antagonistic effect of the higher Fe
concentrations in these tissues, or that pod transpiration rates were
depressed. Finally, besides Fe, seeds had also significantly higher
concentrations of Zn, Cu, and Ni.

There were two minerals which were significantly higher across
all tissues of 392-3 when compared to WT (roots, leaves, pod walls,
and seeds): Ni and P. In fact, Ni rapidly re-translocates from leaves
to young tissues in the phloem, particularly during reproductive
growth. Up to 70% of Ni in the shoots is transported to the seeds
of soybean (Tiffin, 1971).

In the case of P, more P becomes available for uptake when
there is an increase of OA exudation (Remy et al., 2012). Thus, our
observations of significantly higher OA production by 392-3 roots
and leaves (Figure 9) could explain the increased uptake of P. If
this hypothesis is true, then it suggests that the most important
source of P for the seeds is the P taken up during seed fill, and
not remobilized P. In fact, in previous work where P was either
remobilized or not from the leaves, no changes in P occurred in
soybean seeds (Crafts-Brandner, 1992).
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When looking at mineral correlations (Figure 7), the posi-
tive correlations which were common in leaves, pod walls and
seeds were the pairs Fe-Zn, Fe-Cu, and Ni-Cu. Ni-Cu share
a common uptake system (Kochian, 1991), and Fe-Zn as well,
because the IRT1 Fe transporter also mediates Zn transport (Eide
et al., 1996; Korshunova et al., 1999; Vert et al., 2002). The link
between Fe-Cu cannot be explained by common transporters,
as it has been shown that IRT1 (at least in Arabidopsis) can-
not transport Cu. However, 35S-FRO2 transgenic Arabidopsis
plants have elevated Cu reductase activity (Connolly et al., 2003;
Zimmermann et al., 2009), and at 14d 392-3 plants also have
enhanced Cu reductase activity (data not shown), which may have
increased the amount of available Cu for uptake, transport and
accumulation.

In leaves and pod walls, there was a positive correlation between
Fe-Mn, contrary to what was found in rice (Sperotto et al., 2012).
In seeds, there was a positive correlation between Ca and Mn,
which is in agreement with Zeng et al. (2005) and Majumder et al.
(1990). Also in the seeds, there was a positive correlation between
Ca and K, confirming what was seen before in rice (Sperotto et al.,
2012).

The mineral correlations in the different plant organs could
also be related to differential mobilities within the plant, and sev-
eral mineral elements, such as Ca and Mo, are not very phloem
mobile (Marschner, 1995; Lucas et al., 2013). Once deposited
in the leaves, minerals must be remobilized to the seeds via
phloem transport, and K, Na, Mg, P, are transported read-
ily, but Fe, Zn, Cu, and Mo are less mobile, and Mn and
Ca are poorly mobile in the phloem of most plant species
(Marschner, 1995). Mineral elements that have low phloem mobil-
ities generally accumulate in tissues with high transpiration rates
(White and Broadley, 2009).

THE ROLE OF SHOOT Fe REDUCTASE ACTIVITY
An interesting question that arises from this study is why 392-3
acquired only 10% more iron in the seeds when leaves and pod
walls were more highly enriched in iron. Why did this excess
iron not move to the seeds? It has been shown previously that
in soybean (Lazlo, 1990), the developing ovules exhibit a gradual
increase in seed Fe accretion as long as seed DW is increasing.
In the current study, the source tissues of the transgenic plants
showed more than double the iron concentration when compared
to control plants (Table 1), and in certain instances, a 5-fold
increase was observed in iron concentrations in the leaves. The
small (yet significant) differences in the seed iron concentration
between WT and 392-3 plants suggested that perhaps the higher
reductase activity in the roots (Vasconcelos et al., 2006) may not
have been paralleled by a higher reductase activity in the leaves.
However, protoplasts isolated from leaf cells of 392-3 and WT
plants showed that AtFRO2 expression increased leaf iron reduc-
tion capacity up to 3-fold, relative to WT (Figure 1). However, it
appears that having higher iron reduction capacity in the leaves
(and presumably other vegetative tissues) may confer only a mod-
est benefit in the availability and/or loading of iron to the phloem
and subsequent transport to the seeds. Fe remobilization from
leaves to seeds has been seen in legumes (Hocking and Pate, 1977;
Grusak, 1994), and remobilization from leaves to seeds increases

during senescence in common bean (Phaseolus vulgaris L.; Zhang
et al., 1995). At FM, in the current study, we already had several
senescing leaves, which should be working as sources of Fe to the
seeds.

Chelation is a required factor for phloem transport of iron.
Using the brz and dgl Fe-hyperaccumulating pea mutants, it
was suggested that Fe must be chelated prior to phloem load-
ing, since transition metal ions precipitate at alkaline pH values
characteristic of phloem saps (Grusak, 1994). It is possible that
our transgenic 392-3 soybean plants did not produce enough
chelators to transport the excess leaf iron to the seeds. Once
iron has entered the plant, both NA and citrate have been pro-
posed to serve as iron chelators; mutants that do not properly
synthesize or transport these chelators have lower Fe accumula-
tion in the seeds (Jeong et al., 2008). We have shown that the
392-3 plants have significantly higher citrate and malate con-
centrations in leaves and roots. Several authors have reported
an increase in xylem sap OA concentrations with Fe deficiency
(Abadía et al., 2002; López-Millán et al., 2009; Larbi et al., 2010),
a condition where there is up-regulation of the Fe reductase.
Also, FRO2 belongs to a superfamily of flavocytochrome oxidore-
ductases, containing a NADPH sequence motif on the inside of
the membrane (Schagerlof et al., 2006). It is possible that ele-
vated levels of AtFRO2 lead to increased NADPH consumption,
which consequently induces metabolic pathways that lead to a
higher production of OA (López-Millán et al., 2000). Because
the higher accumulation of malate and citrate did not enable
increased seed iron levels, it seems that citrate and malate may
not be limiting factors contributing to the transport of Fe to
seeds.

Perhaps other factors need to be turned on for higher phloem Fe
translocation from shoots to seeds. In rice, it is known that OsYSL2
expression is a necessary component for correct translocation of
Fe to young shoots and developing seeds (Ishimaru et al., 2010;
Masuda et al., 2012), as it is thought to transport Fe(II)-NA in the
phloem (Koike et al., 2004). If there is a similar need in soybean,
it is possible that the expression of this ortholog in our transgenic
plants may not have been up-regulated.

IRON STORED AS FERRITIN
Another factor that could have prevented the remobilization of Fe
to the seeds is if Fe was stored in a non-translocatable form, e.g.,
complexed within ferritin. Ferritin is one of the principal forms of
iron storage in plants, and it provides a means of rapidly seques-
tering iron ions that might otherwise promote the formation of
reactive oxygen species (Truty et al., 2001). Ferritin expression was
assessed in roots and shoots of control and transgenic plants in
order to see if the extra iron could be stored in the form of fer-
ritin (Figure 3). Higher ferritin transcript levels were found in the
shoots than in the roots in both control and transgenic plants,
and an increase in ferritin expression was found when plants were
grown at higher iron concentrations (100 μM Fe). Moreover, 392-
3 plants seemed to have higher expression of the ferritin gene,
indicating that the excess iron concentration found in the roots
and shoots of the transgenic plants is at least partly stored in
the form of ferritin, and thus may not be readily available for
export.
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CONCLUSION
Accumulation of iron in the various plant tissues during growth
and development is a dynamic process resulting from an inte-
grated regulation of genes encoding proteins for mineral uptake,
transport and storage. These processes depend on the plant geno-
type and are greatly influenced by environmental cues. Can an
improved soybean be developed that is fortified with essential
minerals? The results presented herein demonstrate that consti-
tutive expression of an iron reductase gene led to a 10% increase
in seed Fe, Zn, and Cu, and a 20% increase in Mn levels, despite the
fact that mineral concentration in the leaves and pod walls (two of
the most important mineral sources for the seeds) reached much
higher relative levels in the transgenic plants. This indicates that
manipulation of the iron reductase could be an effective biofor-
tification strategy for several minerals, especially when targeting
leafy food sources.
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