Rewriteability in Finite Groups

Judy Leavitt Walker
University of Nebraska - Lincoln, judy.walker@unl.edu
G.J. Sherman

Rose-Hulman Institute of Technology
Mark E. Walker
University of Nebraska - Lincoln, mark.walker@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub
Part of the Applied Mathematics Commons, and the Mathematics Commons

Walker, Judy Leavitt; Sherman, G. J.; and Walker, Mark E., "Rewriteability in Finite Groups" (1992). Faculty Publications, Department of Mathematics. 185.
https://digitalcommons.unl.edu/mathfacpub/185

Rewriteability in Finite Groups

J. L. Leavitt, G. J. Sherman and M. E. Walker

INTRODUCTION. What's the probability that two elements in a finite group commute? A formal answer,

$$
\begin{equation*}
\operatorname{Pr}_{2}(G)=\frac{\left|\left\{(x, y) \in G^{2} \mid x y=y x\right\}\right|}{|G|^{2}} \tag{1}
\end{equation*}
$$

begs our next question. How many ordered pairs of elements of a finite group commute?

Let's be specific. Consider the "commutativity matrix" for the symmetric group on three symbols.

S_{3}	id	$(1,2)$	$(1,3)$	$(2,3)$	$(1,2,3)$	$(1,3,2)$
id	1	1	1	1	1	1
$(1,2)$	1	1	0	0	0	0
$(1,3)$	1	0	1	0	0	0
$(2,3)$	1	0	0	1	0	0
$(1,2,3)$	1	0	0	0	1	1
$(1,3,2)$	1	0	0	0	1	1

The x th row of this matrix identifies the subgroup, $C(x)$, of elements which commute with x; i.e., the centralizer of x. Here's the way to parse the commutativity count for S_{3}.

$$
18=6+2+2+2+3+3=1 \cdot 6+3 \cdot 2+2 \cdot 3=6+6+6=3 \cdot 6
$$

The elementary group theory at work in this count is:

- conjugate elements have centralizers of the same order

$$
y=g^{-1} x g \text { implies } C(y)=g^{-1} C(x) g,
$$

- the order of a conjugacy class is the index of the centralizer of any element in the class

$$
\left|x^{G}\right|=\left|\left\{g^{-1} x g \mid g \in G\right\}\right|=[G: C(x)]
$$

- Lagrange's theorem

$$
|G|=[G: H] \cdot|H| .
$$

An abstraction of this example, originally due to Erdös and Turán [4], answers our second question.

$$
\begin{align*}
\left|\left\{(x, y) \in G^{2} \mid x y=y x\right\}\right| & =\sum_{x \in G}|C(x)| \\
& =\sum_{i=1}^{k}\left|x_{i}^{G}\right| \cdot\left|C\left(x_{i}\right)\right| \\
& =\sum_{i=1}^{k}\left[G: C\left(x_{i}\right)\right] \cdot\left|C\left(x_{i}\right)\right| \\
& =k \cdot|G| \tag{2}
\end{align*}
$$

where $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is a complete set of conjugacy class representatives of G.
Thus, an informative answer to our first question is

$$
\operatorname{Pr}_{2}(G)=\frac{k}{|G|}
$$

It comes as no surprise that G is abelian precisely when $\operatorname{Pr}_{2}(G)=1$. But what may surprise you is that if G is not abelian, then

$$
\begin{equation*}
\operatorname{Pr}_{2}(G)=\frac{k}{|G|} \leq \frac{p_{s}^{2}+p_{s}-1}{p_{s}^{3}} \leq \frac{5}{8} . \tag{3}
\end{equation*}
$$

where p_{s} is the smallest prime divisor of the order of G. The essence of these bounds is that the index of the center of a nonabelian group is at least p_{s}^{2}; i.e., $\mid G: Z] \geq p_{s}^{2}$.

The $5 / 8$ bound, which is assumed by the dihedral and quaternion groups of order eight, has been around for a long time. Yet, it doesn't seem to be commonly known-so be sure to tell your students about it. We do not know with whom it originated. Some say Max Zorn. But, many years ago, during a conversation with one of the authors (Sherman), Zorn declined credit for the bound. To the best of our knowledge the bound first appeared in print in 1973 when Gustafson [7] showed that an analogous bound holds for compact nonabelian groups. Gallian's recent textbook ([6, pages 329, 330]) also includes a discussion of the bound. Both upper and lower bounds on $\operatorname{Pr}_{2}(G)$ for various classes of groups have been obtained ([1], [4], [5], [7], [10], [13]). And, since commutativity can be defined in terms of conjugation, analogous results have been pursued for various group actions ([11], [13], [15]).

Commutativity is a special case of rewriteability. Let $S \subseteq S_{n}-\{i d\}$; i.e., S is a set of nontrivial permutations of $\{1,2, \ldots n\}$. An n-tuple ($x_{1}, x_{2}, \ldots, x_{n}$) of elements of G is S-rewriteable if $x_{1} x_{2} \cdots x_{n}=x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}$ for some $\sigma \in S$. We generalize (1) by setting

$$
\begin{equation*}
\operatorname{Pr}_{n}(G ; S)=\frac{\left|R w_{n}(G ; S)\right|}{|G|^{n}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
R w_{n}(G ; S)=\left\{\left(x_{1}, x_{2}, \ldots x_{n}\right) \in G^{n} \mid\left(x_{1}, x_{2}, \ldots x_{n}\right) \text { is S-rewriteable }\right\} . \tag{5}
\end{equation*}
$$

Those groups for which $\operatorname{Pr}_{n}\left(G ; S_{n}-\{\mathrm{id}\}\right)=1$ will be referred to as n-rewriteable groups. The notion of rewriteability has its origins in automata theory and is currently of considerable interest in group theory [2].

In particular, Curzio, Longobardo and Maj [3] have provided elementary proofs that the following three statements are equivalent.
i) G is 3-rewriteable; i.e., $x y z \in\{y x z, z y x, x z y, z x y, y z x\}$ for all $x, y, z \in G$.
ii) The order of the derived subgroup of $G, G^{\prime}=\left\langle x^{-1} y^{-1} x y \mid x, y \in G\right\rangle$ is one or two.
iii) The order of the centralizer of each element of G is $|G|$ or $|G| / 2$.

The equivalence of ii) and iii) revolves around the relationship between commutators (elements of the form $x^{-1} y^{-1} x y$) and conjugates: $x^{-1} y^{-1} x y=g$ if, and only if $y^{-1} x y=x g$. The equivalence of i) with ii) or iii) is case-driven. For example, an application of the definition of 3-rewriteability to the product $x y x^{2}$ places x^{2} in the center of the group. This means the centralizer of x is a "large" normal subgroup. In view of iii) and our discussion prior to (2), we may add the following statement to the list.
iv) The order of each conjugacy class of G is one or two.

Each of ii), iii) and iv) suggests a connection between 3-rewriteability and the probability of two elements commuting. In particular, the size of a group's derived subgroup is a classic measure of the degree of commutativity the group enjoys. If G^{\prime} is small, then "most" commutators are trivial; i.e., it is "likely" that $x y=y x$.

Let's formalize this connection. Notice that the average order of a conjugacy class of a 3-rewriteable group is less than two; i.e., $|G| / k<2$. Thus $\operatorname{Pr}_{2}(G)=$ $k /|G|>1 / 2$ for 3-rewriteable groups. An appeal to character theory establishes the converse. G has k irreducible characters and $|G| /\left|G^{\prime}\right|$ irreducible characters of degree one. Thus

$$
|G| \geq\left(|G| /\left|G^{\prime}\right|\right) \cdot 1^{2}+\left(k-|G| /\left|G^{\prime}\right|\right) \cdot 2^{2}
$$

which implies

$$
1 \geq-3 /\left|G^{\prime}\right|+4 k /|G|
$$

If $k /|G|>1 / 2$, then $1>-3 /\left|G^{\prime}\right|+2$ from which it follows that $\left|G^{\prime}\right| \leq 2$. We have the following theorem.

Theorem. A finite group G is 3-rewriteable if, and only if, $\operatorname{Pr}_{2}(G)>1 / 2$.
It's interesting to formulate this theorem in terms conjugacy classes
Each conjugacy class has order one or two if, and only if, the average conjugacy class order is less thah two.
and in terms of conditional probability.
The probability of x and y commuting, given y, is at least $1 / 2$ for each y, if and only if $\operatorname{Pr}_{2}(G)>1 / 2$.

AN ELEMENTARY PROOF. An elementary proof that if $\operatorname{Pr}_{2}(G)>1 / 2$, then G is 3-rewriteable follows. Think of "3-rewriteable" as a generic label for your favorite from among statements i)-iv) above. We will assume that G is not 3-rewriteable and prove that $\operatorname{Pr}_{2}(G) \leq 1 / 2$.

The proof and subsequent discussion hinge on relationships among the orders of three subsets of G :

$$
\begin{aligned}
X & =\{x \in G \mid[G: C(x)] \geq 3\} \\
Y & =\{x \in G \mid[G: C(x)]=2\} \\
Z & =\{x \in G \mid[G: C(x)]=1\} ; \text { i.e., the center of } G
\end{aligned}
$$

The following three lemmas, which are of some interest in their own right, help organize the proof.

Lemma 1. If x and y are elements of G for which $[G: C(x)]=2$ and $C(y) \cap(G-$ $C(x)) \neq \varnothing$, then $[G: C(x y)] \geq[G: C(y)]$.

Proof: The conjugacy class of y in G, y^{G}, may be written $\left\{y^{g_{1}}, y^{g_{2}}, \ldots, y^{g_{n}}\right\}$ where $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ is a complete set of right coset representatives for $C(y)$ in G. Moreover, we may choose each coset representative in $C(x)$. Otherwise $C(y) g_{i} \subseteq$ $G-C(x)$, which means that $G-C(x)=C(x) g_{i}$ since $[G: C(x)]=2$. Therefore $C(y) g_{i} \subseteq C(x) g_{i}$ and so $C(y) \subseteq C(x)$, a contradiction. The conclusion follows because the mapping $y^{g_{t}} \rightarrow x y^{g_{i}}$ embeds y^{G} in $(x y)^{G}$.

Lemma 2. If at least $3 \cdot|Z|$ elements of G have centralizers of index at least 3 , then $\operatorname{Pr}_{2}(G) \leq 1 / 2$.

Proof: Observe that

$$
\begin{aligned}
\left|R w_{2}(G)\right| & =k \cdot|G| \leq(|X| / 3+|Y| / 2+|Z|) \cdot|G| \\
& =(|Z|+(|X|-3 \cdot|Z|) / 3+|Y| / 2+|Z|) \cdot|G| \\
& \leq(|Z|+(|X|-3 \cdot|Z|) / 2+|Y| / 2+|Z|) \cdot|G| \\
& =(|X|+|Y|+|Z|) \cdot|G| / 2 \\
& =|G|^{2} / 2 .
\end{aligned}
$$

Thus $\operatorname{Pr}_{2}(G) \leq 1 / 2$ as claimed.
Lemma 3. If G is not 3-rewriteable, then $[G: Z] \geq 6$.
Proof: If [$G: Z$] is $1,2,3$ or 5 , then G is abelian since G / Z is cyclic. If $[G: Z]=4$ and x is a non-central element, then $Z \subset C(x) \subset G$ implies $[G: C(x)$] $=2$; i.e., G is 3-rewriteable.

It isn't necessary to invoke the centralizer characterization of 3-rewriteability to complete the proof of Lemma 3. If $[G: Z]=4$, then $G / Z \cong \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$. Thus $G=Z \cup x Z \cup y Z \cup x y Z$. The only triple products from G whose 3-rewriteability we might question have form $\left(x z_{1}\right)\left(y z_{2}\right)\left(x y z_{3}\right)$ or $\left(x z_{1}\right)\left(x y z_{2}\right)\left(y z_{3}\right)$. But, notice that $\left(x z_{1}\right)\left(y z_{2}\right)\left(x y z_{3}\right)=\left(x y z_{3}\right)\left(x z_{1}\right)\left(y z_{2}\right)$ and that $\left(x z_{1}\right)\left(x y z_{2}\right)\left(y z_{3}\right)=\left(y z_{3}\right)\left(x z_{1}\right)\left(x y z_{2}\right)$ because $x^{2} \in Z$. This proof makes Lemma 3, which is an analogue of the fact that $[G: Z] \geq 4$ for nonabelian G, an appealing student exercise.

Now we can weave that elementary proof we promised. Note that $X \neq \varnothing$ since G is not 3-rewriteable. Choose $g \in X$ and set $n=[G: C(g)]$. Then $Z \cup Z g \subseteq C(g)$ and $(Z \cup Z g) \cap Y=\varnothing$. Thus $|C(g) \cap Y| \leq|G| / n-2|Z|$ and so $\mid(G-C(g))$ $\cap Y|\geq|Y|-|G| / n+2 \cdot| Z \mid$. If $x \in(G-C(g)) \cap Y$, then $[G: C(x)]=2$ and $C(g) \cap(G-C(x)) \neq \varnothing$ implies, by Lemma 1, that $[G: C(x g)] \geq[G: C(g)] \geq 3$.

Therefore $(G-C(g)) \cap Y \subseteq X$; in fact $(G-C(g)) \cap Y \subseteq X-Z g$ as $Z g \subseteq X \cap$ $C(g)$. Thus $|X|-|Z|=|X-Z g| \geq|(G-C(g)) \cap Y| \geq|Y|-|G| / n+2$. $|Z|$; i.e.,

$$
\begin{equation*}
|X| \geq|Y|-|G| / n+3 \cdot|Z| \tag{6}
\end{equation*}
$$

In view of Lemma 2 and (6) we are done if $|Y| \geq|G| / 3$, so assume $|Y|<|G| / 3$. In this case Lemma 3 implies that $|X|>|G| / 2$ and, therefore, that $|X|>3 \cdot|\mathrm{Z}|$. The theorem is proved.

Corollary. If G is not 3-rewriteable, then at least $|G| \cdot(n-1) / 2 n+|Z|$ elements of G have centralizers of index at least 3 where n is the greatest centralizer index among the elements of G. In particular, more than $1 / 3$ of the elements of G have centralizers of index at least 3 .

Proof: This follows directly from (6) by substituting $|G|-|X|$ for $|Y|+|Z|$.
The $1 / 2$ bound for 3-rewriteability is sharp in two senses.
i) $\operatorname{Pr}_{2}(G)=1 / 2$ if, and only if, $G / Z \cong S_{3}$. Our opening example suggests the involvement of S_{3}. That $\operatorname{Pr}_{2}(G)=1 / 2$ implies $G / Z \cong S_{3}$ is a straight forward application of Lemma 3 and the Corollary. The converse follows since $|X|=3 \cdot|Z|$ and $|Y|=2 \cdot|Z|$ for groups satisfying $G / Z \cong S_{3}$.
ii) There exists a sequence, $\left\{G_{n}\right\}$, of 3-rewriteable groups such that $\operatorname{Pr}_{2}\left(G_{n}\right) \downarrow 1 / 2$. But where? A result of Ito [9] says that groups in which each conjugacy class is of order one or p, for a fixed prime p, must be the direct product of a p-group (a group whose order is a power of p) with this property and an abelian group. Thus, if G is 3-rewriteable we may write $G \cong T \times A$, where T is a 3-rewriteable 2-group and A is abelian. Conjugacy classes in direct products are direct products of conjugacy classes, so

$$
\operatorname{Pr}_{2}(G)=\operatorname{Pr}_{2}(T \times A)=\operatorname{Pr}_{2}(T) \cdot \operatorname{Pr}_{2}(A)=\operatorname{Pr}_{2}(T)
$$

Net result: we may restrict our attention to 2-groups.
The quaternion group of order eight, mentioned in conjunction with the $5 / 8$ bound, is worth a look:

$$
Q=\left\langle x, y, z \mid x^{2}=y^{2}=z^{2}=x^{-1} y^{-1} x y=x^{-1} z^{-1} x z=e, y^{-1} z^{-1} y z=x\right\rangle
$$

The relevant facts are;

$$
\begin{gathered}
|Q|=8=2^{3} \\
Z=Q^{\prime}=\{e, x\} \\
k=5=|Z|+(|G|-|Z|) / 2=(|G|+|Z|) / 2 \\
\operatorname{Pr}_{2}(Q)=5 / 8=1 / 2+|Z| /(2 \cdot|G|)
\end{gathered}
$$

We generalize by taking G_{n} to be (an extra-special 2-group [12]) generated by $x_{1}, x_{2}, \ldots, x_{2 n+1}$ subject to the relations

$$
\begin{aligned}
x_{i}^{2} & =e \text { for } 1 \leq i \leq 2 n+1 \\
x_{i}^{-1} x_{j}^{-1} x_{i} x_{j} & = \begin{cases}x_{1} & \text { for } i \text { even and } j=i+1 \\
e & \text { otherwise }\end{cases}
\end{aligned}
$$

Then $\left|G_{n}\right|=2^{2 n+1}$ and $Z=G_{n}^{\prime}=\left\{e, x_{1}\right\}$ so that $\operatorname{Pr}_{2}\left(G_{n}\right)=k /\left|G_{n}\right|=1 / 2+$ $1 / 2^{2 n+1}$.

A PROBLEM. We encourage study of the problem of determining bounds for $\operatorname{Pr}_{n}(G ; S)$. The following lemma generalizes (3) and prompts a conjecture.

Lemma 4. If $n \geq 2$ and $\sigma \in S_{n}-\{i d\}$, then $\left|R w_{n}(G ;\{\sigma\})\right| \leq k \cdot|G|^{n-1}$.
Proof: The proof is by induction on n. The case for $n=2$ was made in (2). Now assume the result holds for $n-1$.

If $\sigma(n)=n$, then $x_{1} x_{2} \cdots x_{n}=x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}$ if, and only if, $x_{1} x_{2} \cdots$ $x_{n-1}=x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n-1)}$. Therefore $\left|R w_{n}(G ;\{\sigma\})\right|=\left|R w_{n-1}(G ;\{\hat{\sigma}\})\right| \cdot|G|$ where $\hat{\sigma}$ is σ restricted to $\{1,2, \ldots, n-1\}$. The induction hypothesis yields the result.

If $\sigma(n)<n$, say $\sigma(n)=m$, then $x_{1} x_{2} \cdots x_{n}=x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}$ if, and only if, $x_{n}^{-1} x_{\sigma(j-1)}^{-1} \cdots x_{\sigma(1)}^{-1} x_{1} x_{2} \cdots x_{n}=x_{\sigma(j+1)} x_{\sigma(j+2)} \cdots x_{m}$ where $\sigma(j)=n$. Let $g=x_{\sigma(j-1)}^{-1} x_{\sigma(j-2)}^{-1} \cdots x_{\sigma(1)}^{-1} x_{1} x_{2} \cdots x_{n-1}$ and $h=x_{\sigma(j+1)} x_{\sigma(j+2)} \cdots x_{m}$. Notice that $\left|\left\{x_{n} \mid x_{n}^{-1} g x_{n}=h\right\}\right|$ is $|C(g)|$ or 0 for fixed $x_{1}, x_{2}, \cdots x_{n-1}$, and that g varies over G as x_{m} varies over G. Thus

$$
\begin{aligned}
\left|R w_{n}(G ;\{\sigma\})\right| & \leq \sum_{x_{1}} \cdots \sum_{x_{m}} \cdots \sum_{x_{n-1}}|C(g)| \\
& =\sum_{x_{1}} \cdots \sum_{x_{n-1}}\left(\sum_{x_{m}}|C(g)|\right) \\
& =\sum_{x_{1}} \cdots \sum_{x_{n-1}}\left(\sum_{g}|C(g)|\right) \\
& =\sum_{x_{1}} \cdots \sum_{x_{n-1}}(k \cdot|G|) \\
& =k|G|^{n-1} \text { as claimed. }
\end{aligned}
$$

It follows from (3) and Lemma 4 that

$$
\begin{align*}
\operatorname{Pr}_{n}(G ; S) & =\left|R w_{n}(G ; S)\right| /|G|^{n} \leq|S| \cdot k /|G|=|S| \cdot \operatorname{Pr}_{2}(G) \\
& \leq|S| \cdot\left(p_{s}^{2}+p_{s}-1\right) / p_{s}^{3} \tag{7}
\end{align*}
$$

Since $\left(p_{s}^{2}+p_{s}-1\right) / p_{s}^{3} \downarrow 0$ as $p_{s} \rightarrow \infty$ we may use (7) to conclude that, for $|S|$ fixed and sufficiently large p_{s}, a " $5 / 8$-like" bound exists for $\operatorname{Pr}_{n}(G ; S)$. Random sampling (using CAYLEY [8]) of the " S-rewriteability hypercube" of various groups suggests such bounds exist independent of p_{s}.

Conjecture. If G is not S-rewriteable then there exists $\rho_{n}(S)<1$, independent of G, such that $\operatorname{Pr}_{n}(G ; S) \leq \rho_{n}(S)<1$.

Specifically, if $p_{s} \geq 7$, then $\operatorname{Pr}_{3}\left(G ; S_{3}-\{\mathrm{id}\}\right) \leq 275 / 343$. However, CAYLEY suggests $\operatorname{Pr}_{3}\left(G ; S_{3}-\{\mathrm{id}\}\right) \leq 17 / 18$. Thus for 3-rewriteability our conjecture is:

If G is not 3-rewriteable, then $\operatorname{Pr}_{3}\left(G ; S_{3}-\{\mathrm{id}\}\right) \leq \rho_{3}\left(S_{3}-\{\mathrm{id}\}\right)=17 / 18$.
If this conjecture proves to be true, then the $17 / 18$ bound is sharp because $\operatorname{Pr}_{3}\left(S_{3}\right.$; $\left.S_{3}-\{i d\}\right)=17 / 18$.

We conclude by observing that if G is a non-abelian finite simple group then $\operatorname{Pr}_{3}\left(G, S_{3}-\{\mathrm{id}\}\right) \leq 5 / 12$. This follows from (7) because $\operatorname{Pr}_{2}(G) \leq \operatorname{Pr}_{2}\left(A_{5}\right)$ [5] and $\operatorname{Pr}_{2}\left(A_{5}\right)=1 / 12$. It seems likely that the bound is actually $27 / 100$ because CAYLEY shows $\operatorname{Pr}_{3}\left(A_{5}, S_{3}-\{\mathrm{id}\}\right)$ to be $27 / 100$.

ACKNOWLEDGMENT. The authors thank the referees for their suggestions.

1. E. A. Bertram, A density theorem on the number of conjugacy classes in finite groups, Pacific J. Math., 55 (1974) 329-333.
2. R. D. Blyth and D. J. S. Robinson, Recent progress on rewriteability in groups, J. London Math. Soc., to appear.
3. M. Curzio, P. Longobardi and M. Maj, Su di un problema combinatorio in teoria dei gruppi, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, (8) 74 (1983), 136-142.
4. P. Erdös and P. Turán, On some problems of a statistical group-theory, IV, Acta Math. Acad. Sci. Hung., 19 (1968) 413-435.
5. J. D. Dixon, Problem 176, Canad. Math. Bull., 16 (1973) 302.
6. J. A. Gallian, Contemporary Abstract Algebra, 2nd edition, D. C. Heath, 1990.
7. W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80 (1973) 1031-1034.
8. D. F. Holt, The CAYLEY group theory system, Notices of the American Mathematical Society, 35 (1988). No. 8, 1135-1140.
9. N. Itô, On finite groups with given conjugate types, Nagita Math. J., 6 (1953), 17-28.
10. E. Landau, Klassenzahl binarer quadratischer Formen von negativer Discriminante, Math. Annalen, 56 (1902) 671-676.
11. T. J. Laffey and D. MacHale, Automorphism orbits of finite groups, J. Austral. Math. Soc. (Series A), 40 (1986) 253-260.
12. D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, 1982.
13. G. J. Sherman, A probabilistic estimate of invariance for groups, Amer. Math. Monthly 85 (1978) 361-363.
14. , A lower bound for the number of conjugacy classes in a finite nilpotent group, Pacific J. Math., 79 (1979) 253-254.
15. G. J. Sherman, T. J. Tucker and M. E. Walker, How Hamiltonian can a finite group be? Archives Math., (Basel), to appear.

Ann Arbor, MI 48109
New Mexico State University
Las Cruces, NM 88003 tion of terms.
-Socrates (470?-399 в.c.)

