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Codes Over Rings from Curves of Higher Genus
José Felipe Voloch and Judy L. Walker

Abstract—We construct certain error-correcting codes over
finite rings and estimate their parameters. These codes are con-
structed using plane curves and the estimates for their parameters
rely on constructing “lifts” of these curves and then estimating
the size of certain exponential sums.

Index Terms—Algebraic geometry, codes, codes over rings,
plane curves.

I. INTRODUCTION

T HE purpose of this paper is to construct certain error-
correcting codes over finit rings and estimate their

parameters. For this purpose, we need to develop some tools;
notably, an estimate for the dimension of trace codes over rings
(generalizing work of van der Vlugt over fields and some
results on lifts of affin curves from field of characteristic
to Witt vectors of length two. This work partly generalizes
our previous work on elliptic curves, although there are some
differences which we will point out below.
A code is a subset of , where is a finit set (called

the alphabet). Usually is just the fiel of two elements
and, in this case, one speaks of binary codes. For various
reasons one often restricts attention to linear codes, which are
linear subspaces of when is a field However, there
are nonlinear binary codes (such as the Nordstrom–Robinson,
Kerdock, and Preparata codes) that outperform linear codes
for certain parameters. These codes have remained somewhat
mysterious until recently when Hammons et al. [3] discovered
that one can obtain these codes from linear codes over rings
(i.e., submodules of , a ring) via the Gray mapping,
which we recall below.
In a different vein, over the last decade there has been a lot

of interest in linear codes coming from algebraic curves over
finit fields The construction of such codes was firs proposed
by Goppa in [2]; see [10] or [11], for instance. In [12], it is
proven that for a square, there exist sequences of codes
over the finit fiel with elements which give asymptotically
the best known linear codes over these fields The second
author has extended Goppa’s construction to curves over finit
rings and shown, for instance, that the Nordstrom–Robinson
code can be obtained from her construction followed by
the Gray mapping; see [17] and [18]. While most of the
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parameters for these new codes were estimated in the above
papers, the crucial parameter needed to describe the error-
correcting capability of the images of these codes under the
Gray mapping was still lacking.
In our previous work [14], [15] we used elliptic curves

which were canonical lifts of their reductions and we were
able to estimate the minimum distance in that case. Curves
of higher genus unfortunately do not have canonical lifts so
we need to proceed differently. We fin that on an open set
there are lifts which are sufficientl good so we use those. For
these codes, the missing parameter can be estimated and we
do so. We also obtain fine estimates on the dimension of the
trace codes.
The work of Mochizuki [7] indicates that there might be a

general framework for working with lifts for curves of higher
genus, with the proviso that the lift of points is only on certain
open subsets of the curve. Mochizuki define an analog of
ordinary curves and of canonical liftings for such. It remains
to be seen if the corresponding lift of points is of small degree,
which is essential for applications.

II. CODES OVER WITT RINGS
In this section we recall the definitio of the ring of Witt

vectors over a finit fiel and prove some general results about
such rings and codes over them. The two theorems in this
section are both generalizations of results which are known in
the finit fiel case. We believe that Theorem II.3 is known,
but we include it for lack of a good reference. In contrast,
Theorem II.2 is new, having only appeared previously in the
second author’s thesis [16].
Recall the definition of the Frobenius and trace maps for

finit fields Let be prime and consider the fiel extension
. Then the Frobenius automorphism :

is the element of given by , and the
trace map is given by

We will be working mostly with rings of Witt vectors or
Witt rings, for short. See, e.g., [9] for an introduction to Witt
rings. Let us just point that the Witt ring is, as a set,

, and the operations are define by
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where the ’s and ’s are certain polynomials with integer
coefficient in . In partic-
ular, we have

The ring is a local ring with maximal ideal
generated by , satisfying and having residue fiel .
It is easy to check that the Galois ring GR of degree

over is isomorphic to the ring of length
Witt vectors over the fiel with elements. In particular,

.
One can now defin the Frobenius and trace maps for a Witt

ring . Let . The
Frobenius : is given by

The trace map : is given by

It is a standard fact that for any

we have

and

for every .
We would like to prove a version of Delsarte’s theorem

for Witt rings. The usual statement of this theorem goes as
follows: Let be a linear code over . Denote by
the linear code over obtained by applying the trace map

coordinate wise to the codewords of . Denote
by the subcode of consisting of all codewords whose
coordinates all lie in . Then

In order to prove our version of this theorem, we must check
that several of the standard properties of and still hold
for and . This checking is done in the following technical
lemma.

Lemma II.1: Let be the natural
projection, and let , , , and be as above. Then
1) and .
2) The map is onto.
3) There is some with

.
4) Let be a nonzero element of . Then there is

some with .

Proof: Part 1) is a straightforward calculation. Consider
an arbitrary element

We have

and

For 2), firs note that it is well known that
is onto (see, for example, [10]). Since is onto, we see
that is onto. If is not onto, then its
image is contained in a -submodule of , i.e.,
an ideal. Since is local with maximal ideal , we
have , which implies ,
contradicting 1).
Now suppose that 3) fails, and let be any element of

. We can write for some
. Then

Since was arbitrary, this contradicts 2) above.
Finally, to see why 4) is true, write

and let be minimal with . Then

for some . By 3), there is some such
that . But then

Since this is nonzero modulo , it is nonzero.

We are now equipped to prove a version of Delsarte’s
theorem for codes over Witt rings.

Theorem II.2: Let be any linear code over and
let be the dual code of . Write for the subcode

of . Then

Proof (Following [10]): First we show
. For this, it is enough to show that for

every and
But

To see that , it is enough to show that
. Suppose this is not the case. Then for

some , . Hence there is some



with . By Lemma II.1 4), there is some
with . So we have

However, and so , which means
that , a contradiction.

Finally, we would like to point out that the proof of the
additive form of Hilbert’s Theorem 90 as given in [5] goes
through for Witt vectors. It is given here for reference.

Theorem II.3 (Hilbert’s Theorem 90 for Witt Vectors):Let
: be the map

and let : be the trace
mapping, so that . Then
for any , we have if and only if

for some .
Proof: Clearly , so assume

is arbitary with . Since the map is onto by
Lemma II.1 2) above, there is some with

. Setting

it is straightforward to check that .

III. ALGEBRAIC–GEOMETRIC CODES OVER RINGS
In [17], the idea of algebraic–geometric codes over rings

other than field is introduced, and foundational results about
these codes are proven. In [18], the methods of [17] are
used to explicitly construct the -version of the Nord-
strom–Robinson code as an algebraic–geometric code. In order
to construct other codes over with good nonlinear binary
shadows, we must firs investigate the Lee and Euclidean
weights of these codes. In this section, we recall the definition
and some results from [17] and explain how the Lee and
Euclidean weights of algebraic–geometric codes over rings are
related to exponential sums.
Let be a local Artinian ring with maximal ideal . We

assume that the fiel is finite say . For
example, we could take , and then and

. Let be a curve over , that is, a connected
irreducible scheme over which is smooth of relative
dimension one. Let be the
fibe of over the closed point of . We assume
is absolutely irreducible, so that it is the type of curve on
which algebraic–geometric codes over are defined Let

be a set of -points on with distinct
specializations in .
Recall that in the case of a curve over a fiel , given

a (Weil) divisor on a curve , there is a corresponding
line bundle , and we have the -vector space of global
sections of .

A similar thing holds in the case of the curve over and a
Cartier divisor. Thus for a Cartier divisor on , we defin

to be the -module of global sections of on .
In particular, let be a (Cartier) divisor on such that

no is in the support of , and let be the
corresponding line bundle. For each , , and
thinking of elements of as rational functions on , we
may think of the composition as
evaluation of these functions at . Summing over all , we
have a map

given by .

Definition III.1: Let , , , , and be as above. Defin
to be the image of . is called the

algebraic–geometric code over associated to , , and .

The following theorem summarizes some of the main results
of [17].

Theorem III.2: Let , , and be as
above. Let denote the genus of , and suppose

. Set . Then is a linear code of
length over , and is free as an -module. The dimension
(rank) of is , and the minimum Hamming
distance of is at least .

Remark III.3: The minimum Hamming distance is obtained
by comparing zeros and poles and the dimension computa-
tion is a consequence of the Riemann–Roch theorem. These
estimates require the assumption .
The duality result follows from a generalized version of the
Residue theorem which holds for Gorenstein rings. See [17]
for details.

For applications, one is usually concerned with constructing
codes over , or more generally, over rings of the form

, where is prime and . We can use algebraic
geometry to construct such codes in two different ways. First,
we can simply set in the definitio of alge-
braic–geometric codes above. Alternatively, we can construct
an algebraic–geometric code over and look at the
associated trace code over .
The Gray map allows us to construct (nonlinear) binary

codes from codes over and is define as follows.
Consider the map define by ,

, , . Now we defin
a map, again denoted by , by applying the
previous to each coordinate.
For linear codes over rings of the form , it is often

either the Euclidean or Lee weight rather than the Hamming
weight which is of interest. In particular, when , the
Euclidean and Lee weights are closely related, and the Lee
weight gives the Hamming weight of the associated nonlinear
binary code.
We begin by definin Euclidean weights. We identify an

element of the cyclic group with the corresponding



th root of unity via the map

Definition III.4: The Euclidean distance between and
is the distance in the complex plane between the
points and , and the Euclidean weight of is the
distance between and . We have

In fact, it is usually the square of the Euclidean weight in
which one is interested. This is given by

For vectors and over
, we defin

and

For example, the squared Euclidean weight of the all-one
vector in is . Using the Taylor
expansion of cosine, we get that this is at least

Further, any other nonzero constant vector in has
squared Euclidean weight at least this.
For general vectors, since , we

have

Hence, to fin a lower bound on the minimum Euclidean
weight of a linear code over , it is enough to fin an
upper bound on the modulus of the exponential sum

Now consider the case . Then , ,
, and . Hence ,
, and . Since the Lee weight is define

by , , and , we have

for any . From this we see that the Euclidean weight
of a codeword over is twice the Hamming weight of the

binary codeword obtained by applying the Gray map. Notice
that the Lee weight of a constant vector in is either
, , or .
Finally, let be an algebraic–geometric code over

, and let denote the trace
map as before. We are interested in the minimum Euclidean
weight of , the trace code of , which is a linear
code over . Codewords in are of the form

, where is a rational function
on some curve define over and are

-points on . From the argument above, to fin a
lower bound for the minimum Euclidean weight of it
suffice to fin an upper bound on the modulus of

To estimate these kinds of sums, Theorem III.5 below,
which we proved in [14], is very useful. Let be a curve
over the finit fiel , where with prime. Denote by

the function fiel of . Let and
consider the Witt vector . Let
be the maximal affin open subvariety of where
do not have poles and let . We can then consider
the Witt vector .
Letting denote the trace
map, we can consider the exponential sum

Theorem III.5: With notation as above, assume
consists of the points above the valuations of .
Let be the genus of

and assume that is not of the form
for any and , where

denotes the additive endomorphism on given by

Then , where

IV. LIFTINGS
In what follows, we consider an affin curve over

define by a polynomial equation . Assume
that has the form where and
are relatively prime integers, , and

. Assume further that the affin curve define over
by , where is the reduction of modulo
, is smooth. Letting be the projective closure of , we
have that is the projective closure
of , and we see that consists of a single point, which
we call the point at infinity Moreover, the genus of can
be computed to be by the Plücker formula.
Let be the coordinate ring of . For

, let denote the order of the pole at infinit of .



Lemma IV.1: Let with , ,
, and . Then there exist

satisfying with and
, where .

Proof: Let be the point at infinit of . Then
, , and . For any

positive integer , consider the map

given by . We wish firs to describe the
kernel of this map. If , then since , we
have and for some , which is then
in . Thus the kernel is isomorphic to . Now
we examine the image. If , Riemann–Roch gives the
dimensions of , , and

as , , and
, respectively. Thus since the dimension

of our domain is equal to sum of the dimension of our range
with the dimension of our kernel, our map must be surjective.
Since we want in the image, we take and

.

The next theorem uses explicit computations with Witt
vectors to show that there is a “lift of points” from to .
Notice that part 2 of the theorem, giving the lower bound
on what the degrees of the coordinates of the “lift” must
be, is primarily of theoretical interest and is not used in the
remainder of the paper.

Theorem IV.2:Assume that the equation
satisfie the conditions above. Let be the unique point of
at infinity Then there is a “lift of points”

given by
where and are polynomials in and satisfying
the following condition.
1) and have poles of order at most

and , respectively, at .
2) If the genus of is at least two, then either has a

pole at of order at least , or has a pole
at of order at least .

3) For any , we have , a Witt
vector of rational functions on . Further,
and , where is a linear polynomial
in , independent of and satisfying

Proof: Notice firs that has a pole at of order
and has a pole at of order .
By calculations in the Witt ring, we see that if and are

polynomials in and such that
whenever , then and must satisfy

where is a polynomial in and , having a pole
of order at most at .
We can apply Lemma IV.1 with ,

, and . Then ,

, and . Since
we have

Lemma IV.1 then gives us that and exist with

and

To see why at least one of the two lower bounds mentioned
in the theorem must hold, let
be any lift of points. Recall that the Greenberg transform

of can be thought of as the variety over obtained
by looking at the coordinate components of the Witt vector
equations which defin . In particular, the coordinate ring
of the affin part of is

, so there is a canonical map .
Then is in fact a map from the affin open subset

of to the Greenberg transform which is
a partial splitting of the map . Since the genus
of is at least , a result of Raynaud [8] implies that
is affine so that the image of the extension
(where is the projective closure of ) cannot lie
entirely within . In particular, we must have

. Examining the implications of this condition
at a local parameter for , we get our desired lower bound
as follows.
Since by assumption, we can fin integers

with . This means that is a
local parameter at . Then we have that ,
where and . The
condition on above amounts to a requirement that
have a pole at . But the valuation of at is at least

. Requiring this
minimum to be negative proves 2) of the theorem.
Finally, to see why 3) is true, firs notice that has

a basis consisting of all those monomials which satisfy
the three conditions , , and .
If , then we have

The firs coordinate of the above expression has degree
, and the second has degree at most

which is at most

Adding constant multiples of these monomials together will
not increase the degrees of the coordinate functions.

Corollary IV.3: Let , , and
be as above. Let be the unique point at infinit on ,
and let be any -point of containing . For
a positive integer and a rational function , let



denote the exponential sum

Then

Proof: Write

By 3) of Theorem IV.2, we know that and
. Applying Theorem III.5

above, we get the desired bound.

V. A LOWER BOUND ON THE SIZE OF THE TRACE CODE
Let and, as before, let denote an affin curve

over define by a polynomial equation
satisfying the conditions of the previous section. Let be
the projective closure of , and and the reductions
modulo of and , respectively. Let denote both the
trace map and the coordinate-wise trace
map .
Let be a positive integer and denote by

the map which define the code.
Corollary IV.3 above can be used to estimate the

squared Euclidean weight of the trace code of an
algebraic–geometric code . In this section and the next,
our aim is to estimate the size of . While it is true that

will be a linear code over (a -module), it
need not be true that is a free code (module). Thus we
are forced to discuss the cardinality, rather than the rank, of

. We will do this by considering the size of the kernel
of the trace map .
In this section, we fin an upper bound on the size of this

kernel, hence a lower bound on the size of the trace code.
The general structure of our approach follows the approach
taken by van der Vlugt in [13] as he studied trace codes of
algebraic–geometric codes over finit fields In particular, the
following result extends to rings a result of van der Vlugt [13]
over fields

Proposition V.1: Let and suppose that
is not of the form for any and

. Write with each ,
and suppose that

#
(V.1)

Then .

Remark V.2: In specifi examples, this proposition can be
made to involve a general condition on the divisor rather
than a condition on the function .

Proof: Assume that . Then
for all . Further, is not constant by

assumption, so

#

But also, by Theorem III.5, we have

Putting this together we have

#

which contradicts the assumption of the proposition.

Theorem V.3:Let and assume that condition
(V.1) holds. Then if and only if
for some .

Proof: If , then a coordinate of
is

Conversely, suppose that . Then we know that
is of the form for some and

some by Proposition V.1 above. But then we have

so that . By Theorem II.3, must be of the form
for some . But then we have

and we are done.

We see from Theorem V.3 that findin the size of is
equivalent to findin the size of the set

for some

In order to study this set, we restrict to the case .
For , we have that with

, where and , for some linear
polynomial which we compute explicitly from the equation
for the curve and the map . Condition (V.1) of Theorem V.1
can be rewritten as

#
(V.2)

In particular, notice that (V.2) does not depend at all on a
specifi choice of rational function . Assuming
(V.2), we know that if , then .
If we write we see that



Combining this with our knowledge about and , we see
that

and

This gives three conditions which must be satisfied

1) .

2) .

3) .

Putting 1) and 2) together, we have proven the following.

Theorem V.4:In the case where , if
and condition (V.2) is satisfied then , where

with where

and

We now set out to bound the size of . We will do this
by bounding the number of pairs such that,
in the notation of the previous theorem, and

for some satisfying (V.2) and such that
.

Because of the existence of , there exists also
lifting Frobenius by [1]. Let us choose some function regular
on . Then , where is a differential
regular on , as shown by Mazur in [6].

Lemma V.5: If then

Proof: Let be the lift of Frobenius. Then
we have . Differentiating this last
equation gives

Also,

Combining these two equations gives

which simplifie to (using that for any )

as desired.

Theorem V.6:Under the above conditions

# # #

Proof: Let

Then . Suppose that
, where . By computation with Witt

vectors, this translates to the pair of equations
and . Differentiating these equations
gives and

Thus if , then , . It then
follows that and . Moreover,

, where is a fixe solution to

with , provided such solution exists (oth-
erwise we cannot have such a pair ). Then

. Given , the number of possible is
at most the number of possible times the number of possible
. This gives the firs estimate in the theorem. The second

follows from using the trivial estimate that
for any effective divisor on a curve over

a field

Theorem V.7:In the situation above, the cardinality of the
trace code satisfie

#

Proof: Just use the fact that # and
the estimate on the size of the kernel of the trace map in
Theorem V.6.

VI. AN UPPER BOUND ON THE SIZE OF THE TRACE CODE
After findin a lower bound on the size of the trace code in

the previous section, the aim of this section is to fin an upper
bound on how large a trace code can be.

Definition VI.1: For , defin

and

If is a free -module, we denote by rank its
rank.



Proposition VI.2 (c.f. [10, Proposition VIII.1.4, p. 223]):Let
be a free code over the ring and let be a

free subcode such that . Then

# #

Proof: Defin by . Then

But for any , so . Thus

# # # # # #

and the result follows by simply noting that #
# # .

Because of the existence of , we know that the Frobenius
lifts to a map , where is the
ring of regular functions on . Further, for we have

.

Lemma VI.3: In the situation of Theorem IV.2, assume
and set . Then for every

.
Proof: Since , we have so we just need

to fin the order of the pole at infinit of . Recall that
is generated by monomials of the form where

, , and . Writing ,
we have

so

For any monomial appearing in , we have

and adding constant multiples of such monomials together will
not increase the degree.

Theorem VI.4: In the situation of Theorem IV.2 with
, set . For a positive integer , defin

. Let be the algebraic–geometric
code define on using the divisor . Then

#

Proof: Set . Then since
and for each

, we have . Therefore, by the above
proposition, we have

# #

and we only need to fin # .
Suppose is such that for

each . Since and ,
we have . But since
we have for each , so that is in the kernel
of the evaluation map which define the code. Our assumption
that forces this map to be injective, so we have .
Thus , but this means that .

VII. EXAMPLES

We start by considering curves of genus zero, noting that
certain aspects of this case were previously considered in
[4] without using the language of algebraic geometry. In our
language, we see that the curve has a natural lifting of
points given by the Teichmüller lift . The
coordinate ring of is . Given a
polynomial , a simple calculation shows
that , where .
It follows that , so we can take .
The case of genus one was studied extensively in our

previous work [14]. An ordinary elliptic curve define over a
finit fiel has a canonical lifting to an elliptic curve over

for which the Frobenius of also lifts to an isogeny
of degree . In addition, there is an injective

homomorphism (analogous to the
Teichmüller lift), compatible with the action of Frobenius,
which we will call the elliptic Teichmüller lift. Analogously
to the case of , given a function on we have

, where . In [4, Proposi-
tion 4.2] we prove that, if is given by a Weierstrass equation
in coordinates , then , . In
the affin coordinate ring generated by , every function is
a polynomial in of degree at most in and it follows
from this that for any in this ring.
In other words, we can take .
For a numerical example, consider the curve given by

the equation over the fiel
. This curve is supersingular so we cannot

consider its canonical lift. It is easy to see that the curve
over given by the equation
certainly has as its reduction. Further, it is easy to check
that whenever is an affin point on

satisfie the equation definin so we get a lift of points on
the affin curve.
The curve has 24 affin -rational points. Let be

the point at infinit on . If we use the basis for
the global sections of on , we get a binary code
of length with codewords and minimum distance . As
the best linear code of this length with this many codewords
has minimum distance somewhere between and , this is
not a good code.
However, if we evaluate the rational functions in

(using the basis ) at the lifts of only half the points,
we get a pretty good code. In particular, it is easy to see that
the affin -rational points on occur in pairs sharing the
same -coordinate. Taking one point from each of these pairs,
lifting them, and evaluating the functions and at these lifts
yields a code whose trace code has generator matrix



The image under the Gray mapping of this code is a binary
code of length with codewords and minimum Hamming
distance . This matches the best possible binary linear code
with this length and number of codewords.
For another class of examples, let be the Hermitian curve

define by

over the ring , , where is a power of the
prime . Its reduction modulo is the curve define by
the equation

The equation define an
open affin subset of , and the equation

define an open affin subset of . Notice
also that , where is the unique point at
infinit on . Fix a -point of containing .
Letting # , and choosing with

, we see by [17] that we can use and the divisor
to construct a free code over having length ,
rank , and minimum Hamming weight at
least . We are interested in the parameters of the trace
code over .
By Theorem IV.2, we know that there is a “lift of points”

given by

with , , and, if
, either or .

In fact, one can check by brute force that the map given by

where is any constant and

is a lift of points satisfying and

where if and if . Notice that
is “good,” in the sense that it satisfie the conditions of the
conclusion of Theorem IV.2.
A basis for the global sections of is ,

, . Setting and
and doing computations in the Witt ring, we get

Writing the above expression as , we see (using the
facts that and ) that
and , where
if and if .
Applying Theorem III.5 and using the fact that

for all , we see that if , then

This means that the minimum squared Euclidean weight of
is at least . Notice

that this is an improvement upon the general result of Theo-

rem V.7, which would only yield that the squared Euclidean
weight is at least .
Finally, we know that the number of elements in the

kernel of the trace map is at most
.

Let’s now restrict to the case where . The number of
-rational points on is if is odd,

if , and
if , so we shall fi . Choosing with

, we construct a free
-code of length , rank , and

minimum Hamming distance at least . The trace code
is a (not necessarily free) -module of

length with at least

elements and minimum squared Euclidean weight at least
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