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HOMOGENEOUS WEIGHTS AND EXPONENTIAL SUMS

JOSÉ FELIPE VOLOCH AND JUDY L. WALKER

Abstract. In this paper, we give a formula as an exponential sum for a homogeneous

weight defined by Constantinescu and Heise [3] in the case of Galois rings (or equivalently,

rings of Witt vectors) and use this formula to estimate the weight of codes obtained from

algebraic geometric codes over rings.

1. Introduction

The Gray map is the isometry φ : Z/4Z → F2
2 defined by φ(0) = (0, 0), φ(1) = (0, 1),

φ(2) = (1, 1), and φ(3) = (1, 0), where Z/4Z is given the Lee metric and F2
2 the Hamming

metric. It is extended to a map, again denoted by φ : (Z/4Z)n → F2n
2 , by applying the

previous φ to each coordinate. The Gray map allows us to construct (non-linear) binary

codes from linear codes over Z/4Z and this has been the subject of many recent papers (see,

for example, [9] and [4]).

Carlet [2] generalized the Gray map to a bijection between Z/2kZ and a subset of F2k−1

2 ,

which is in fact the first-order Reed-Muller code R(1, k − 1). Naturally one can extend the

map coordinatewise to (Z/2kZ)n and thus construct (non-linear) binary codes from Z/2kZ-

linear codes. Carlet also gave a formula for the weight of an element in Z/2kZ (obtained by

pulling back the Hamming weight in F2k−1

2 ) as an exponential sum.

Greferath and Schmidt [6] further generalized the Gray map to an arbitrary finite chain

ring with a certain homogeneous weight, recalled below. They used their map to construct

interesting non-linear binary codes, but did not produce a formula like Carlet’s for their

weight.
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The notion of homogeneous weight was first introduced by Constantinescu and Heise ([3])

for Z/mZ and studied further by Honold and Nechaev ([7] and [8]) and by Greferath and

Schmidt [6]. The results of [7] can be used to give a formula as an exponential sum for the

homogeneous weight in the case of Galois rings (or equivalently, rings of Witt vectors). The

main purpose of this paper is to use this formula to estimate the weight of codes obtained

from algebraic geometric codes over rings.

2. Homogeneous weights

Let Fq denote the finite field of q elements and let p be the characteristic of Fq, so that

q = pµ for some µ. Let W`(Fq) be the ring of Witt vectors of length ` over Fq. The ring

W`(Fq) is a finite local ring with q` elements and maximal ideal generated by p, such that

p` = 0. It is isomorphic to the Galois ring denoted by GR(p`, µ), which is the degree µ

extension of Z/p`Z ∼= W`(Fp).

One can define the Frobenius and trace maps for a ring of Witt vectors W`(Fpµ). Let

x = (x0, x1, . . . , x`−1) ∈ W`(Fpµ). The Frobenius F : W`(Fpµ) → W`(Fpµ) is given by F (x) =

F ((x0, x1, . . . , x`−1)) = (xp
0, x

p
1, . . . , x

p
`−1). The trace map Tr : W`(Fpµ) → W`(Fp) ∼= Z/p`Z is

given by Tr(x) = x + F (x) + · · ·+ F µ−1(x).

Following Constantinescu and Heise ([3]) we define the (homogeneous) weight of x ∈

W`(Fq) as follows:

wt(x) :=


0 if x = 0,

q`−1 if x is a nonzero element of the ideal generated by p`−1,

(q − 1)q`−2 otherwise.

Note that when ` = 1 this does not give the Hamming weight but (q − 1)/q times the

Hamming weight. However, for the most part, our results are not interesting for ` = 1.

It is well-known that the space of complex valued functions on any finite abelian group

G has a basis consisting of characters, that is, homomorphisms G → C×. Applying this to

the additive group of W`(Fq), we see that any weight, in particular w, will be given as a
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linear combination of characters. The characters of the additive group of W`(Fq) are all of

the form x 7→ ζTr(ax), where ζ is a primitive p`-th root of unity, Tr is the trace map defined

above and a runs through W`(Fq). This is well-known, see e.g. [15] Example 4.4 (vi).

We proceed to give explicitly the (Fourier) coefficients of the expansion of the weight

defined by Greferath and Schmidt as a linear combination of characters. This result follows

from the results of [7], which are more general, but we will give a simple, direct proof.

Theorem 2.1. For any x in W`(Fq) we have

w(x) = (q − 1)q`−2 − 1

q

∑
a∈U

ζTr(ax),

where U is the group of units of W`(Fq).

Proof. Since |U | = q` − q`−1, the formula holds for x = 0. If x = p`−1y is in the ideal

generated by p`−1, so is ax and Tr(ax) = p`−1 Tr(ay). Now, ξ = ζp`−1
is a primitive p-th

root of unity and y can be taken to be in F×q by identifying y ∈ Fq with its Teichmüller

representative. Further, p`−1 Tr(ay) only depends on a modulo p and given a residue class

modulo p, there are q`−1 possible values of a. We now count the number of solutions a ∈ F×q
to the equation Tr(ay) = c ∈ Fp. We see that c has q/p pre-images under Tr in Fq, which

are all non-zero if c is non-zero, thus there are q/p solutions to our equation if c is non-zero.

When c = 0, we have again q/p pre-images under Tr but one of them is the zero element of

Fq, which we exclude, and we obtain q/p− 1 solutions to our equation. The right-hand-side

of the formula in the theorem becomes:

(q − 1)q`−2 − 1

q
q`−1

(q
p
− 1 +

q

p

∑
c∈F×p

ξc
)

and recalling that
∑

c∈F×p ξc = −1, the last expression becomes

(q − 1)q`−2 − q`−2(q/p− 1− q/p) = q`−1,

as desired.



4 JOSÉ FELIPE VOLOCH AND JUDY L. WALKER

If x is not in the ideal generated by p`−1, then x = pry, for some unit y of W`−r(Fq) and

some r < ` − 1. As above, we can replace ζ with ζpr
and replace x by y. Since y is a unit,

we can re-index the sum so that we are left needing to show that
∑

a∈U ζTr(a) = 0 for any

` > 1. Given c ∈ Z/p`Z, there are (q/p)` solutions in W`(Fq) to Tr(a) = c. If c is a unit, all

these solutions are units, whereas if c is not a unit, only (q/p)` − (q/p)`−1 of these solutions

are units. Thus∑
a∈U

ζTr(a) =
∑

c∈Z/p`Z\(Z/p`Z)×

((q/p)` − (q/p)`−1)ζc +
∑

c∈(Z/p`Z)×

(q/p)`ζc

=
∑

c∈Z/p`Z

((q/p)` − (q/p)`−1)ζc +
∑

c∈(Z/p`Z)×

(q/p)`−1ζc.

On the other hand, clearly
∑

c∈Z/p`Z ζc = 0 and we also have
∑

c∈(Z/p`Z)× ζc = 0 since this

is the Q(ζ)/Q-trace of ζ, which is, up to sign, the coefficient of xp`(p−1)−1 in the polynomial

(xp` − 1)/(xp`−1 − 1) and this coefficient is zero for ` > 1. This completes the proof. �

3. Algebraic geometric codes

Generalizing the work of Goppa for codes over finite fields, the second author has con-

structed codes from curves over finite rings and shown, for instance, that the Nordstrom-

Robinson code can be obtained from her construction followed by the Gray mapping (see

[13], [14]). The authors have further studied this construction in [11], [12] and there has

been further work along these lines in [1] and [5].

To construct these codes, one begins with a local Artinian ring A with finite residue field

Fq and a curve (a connected irreducible scheme over Spec A which is smooth of relative

dimension one) X defined over A. Assume that the closed fiber X := X ×Spec A Spec Fq

of X is absolutely irreducible, and let Z = {Z1, . . . , Zn} be a set of A-points on X with

distinct specializations P1, . . . , Pn in X. Let G be a (Cartier) divisor on X such that no Pi

is in the support of G, and let OX(G) be the corresponding line bundle. If f ∈ L(G) :=

Γ(X,OX(G)), we may think of f as a rational function on X, and since each Zi is an A-point

whose specialization is not in supp(G), we have that f(Zi) ∈ A for i = 1, . . . , n.
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Definition 3.1. ([13]) Let A, X, Z and G be as above. Then

C(X,Z,G) := {(f(Z1), . . . , f(Zn)) | f ∈ L(G)}

is the algebraic geometric code over A associated to X, Z and G.

The following theorem summarizes some of the main results of [13].

Theorem 3.2. ([13]) Let X, G, and Z = {Z1, . . . , Zn} be as above. Let g denote the genus

of X, and suppose 2g − 2 < deg G < n. Set C = C(X,Z,G). Then C is a linear code of

length n over A, and is free as an A-module. The dimension (rank) of C is k = deg G+1−g,

and the minimum Hamming distance of C is at least n− deg G.

Remark 3.3. The minimum Hamming distance is obtained by comparing zeros and poles

and the dimension computation is a consequence of the Riemann-Roch Theorem. See [13]

for details.

Now restrict to the case A = W`(Fq), as in Section 2. We see from above that if (x1, . . . , xn)

is a codeword in C(X,Z,G) for some X, G, and Z = {Z1, . . . , Zn} as above, then there is

a function f ∈ L(G) such that xj = f(Zj) for j = 1, . . . , n. The homogeneous weight of this

codeword is then

(1) w(x1, . . . , xn) = n(q − 1)q`−2 − 1

q

n∑
j=1

∑
a∈U

ζTr(af(Zj)),

where, as before, U is the group of units of A. To find a lower bound on the minimum

homogeneous weight of the code C(X,Z,G), then, we need to find an upper bound on the

double sum

(2)
n∑

j=1

∑
a∈U

ζTr(af(Zj)),

for f ∈ L(G).

For simplicity, we restrict to the case where the divisor G on X is of the form rZ for some

A-point Z on X and some integer r > 2g− 2, where g is the genus of X. We further assume

that the disjoint A-points Z1, . . . , Zn are chosen so that X(Fq) is precisely {P1, . . . , Pn}∪{Q},
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where Q is the unique closed point contained in Z and Pi is the unique closed point contained

in Zi for i = 1, . . . , n.

Using the results of Section 4 below in addition to [11], [12], and [5], we can bound the

sum (2) in several situations. The first step in each situation is to translate the sum from

being a sum over A-points on the curve X defined over A, to being a sum over Fq-points on

the curve X = X×Spec A Spec Fq, which is defined over Fq. Doing so also changes the rational

function f ∈ L(G) = L(rZ) on X to a Witt vector of rational functions f = (f0, . . . , f`−1),

where each fi is a rational function on X having all of its poles at Q. Then we apply the

following theorem, which is a special case of a theorem in [11].

Theorem 3.4. ([11]) Let X be a curve of genus g defined over the finite field Fq with function

field K := Fq(X). Let f1, . . . , f`−1 ∈ K have poles only at Q and consider the Witt vector

of rational functions f := (f0, . . . , f`−1) ∈ W`(K). Set X0 = X \ {Q} and assume that f is

not of the form F (g)− g + c for any g ∈ W`(K) and any c ∈ W`(Fq). For i = 1, . . . , n, let

deg fi = −vQ(fi) be the order of the pole of fi at Q. Then

∣∣∣∣∣∣
∑

P∈X0(Fq)

ζTr(f(P ))

∣∣∣∣∣∣ ≤ (2g − 1 + max{p`−1−i deg fi | 0 ≤ i ≤ `− 1}√q.

4. Basic estimates

From the discussion above, it is clear that we need to understand, for each f ∈ W`(K),

the set

B(f) := {a ∈ U | af = F (g)− g + c for some g ∈ W`(K) and some c ∈ W`(Fq)}.

Notice that if F (g1)− g1 + c1 = F (g2)− g2 + c2, then Tr(c1) = Tr(c2). Thus we have a well-

defined function t : B(f) → Z/p`Z given by t(a) = Tr(c) for any c such that af = F (g)−g+c

for some g ∈ W`(K). We partition the set B(f) into three subsets: B(f) = B1(f) ∪ B2(f) ∪
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B3(f), where

B1(f) := {a ∈ B(f) | t(a) 6∈ p`−1Z/p`Z},

B2(f) := {a ∈ B(f) | t(a) ∈ p`−1Z/p`Z \ {0}},

B3(f) := {a ∈ B(f) | t(a) = 0}.

The sum (2) now splits as

∑
a∈B1(f)

∑
P∈X0(Fq)

ζTr(af(P )) +
∑

a∈B2(f)

∑
P∈X0(Fq)

ζTr(af(P ))

+
∑

a∈B3(f)

∑
P∈X0(Fq)

ζTr(af(P )) +
∑

a∈U\B(f)

∑
P∈X0(Fq)

ζTr(af(P )),(3)

where f is the Witt vector of rational functions on X0 corresponding to the rational function

f on X.

We will treat each of the four terms in the sum above separately, with the fourth being

covered by Theorem 3.4. Note that if af = F (g)− g + c then raf = F (rg)− rg + rc and so

for i = 1, 2, 3, if a ∈ Bi(f) then so is ra for each r ∈ (Z/p`Z)×. Thus each Bi(f) splits into

(Z/p`Z)×-orbits.

Lemma 4.1. Let f ∈ W`(K), P ∈ X0(Fq), and a ∈ B(f). Then

∑
r∈(Z/p`Z)×

ζTr(raf(P )) =


0 if a ∈ B1(f),

−p`−1 if a ∈ B2(f),

p` − p`−1 if a ∈ B3(f).

Proof. First note that for a ∈ B(f) and r ∈ (Z/p`Z)×, we have t(ra) = rt(a). Thus we have

∑
r∈(Z/p`Z)×

ζTr(raf(P )) =
∑

r∈(Z/p`Z)×

(
ζt(a)

)r
.
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Suppose a ∈ B1(f). Then pt(a) 6= 0 and so the map s 7→ (ζpt(a))s is a nontrivial additive

character on p`−1Z/p`Z. Thus in this case we have

∑
r∈(Z/p`Z)×

(
ζt(a)

)r
= −

∑
s∈Z/p`−1Z

(
ζpt(a)

)s
= 0.

If a ∈ B2(f), then ζt(a) is a primitive pth root of unity. Noting that
∑

r∈F×p ωr = −1 for

any primitive pth root of unity ω gives the result in this case.

Finally, if a ∈ B3(f), then ζt(a) = 1, completing the proof. �

Using the Lemma, we have that the sum (3) is at most

(4) |B3(f)| |X0(Fq)|+
(
q` − q`−1 − |B3(f)|

)
max

a∈U\B(f)

∣∣∣∣∣∣
∑

P∈X0(Fq)

ζTr(af(P ))

∣∣∣∣∣∣ ,
and we see we need to find |B3(f)|.

We treat the case ` = 1 first. Let X be a curve over Fq, fix P ∈ X(Fq), and set L(∞P ) =

∪r≥0L(rP ). Let R = {r ≥ 0 |L(rP ) 6= L((r − 1)P )}, so that L(∞P ) is in fact ∪r∈RL(rP ).

The set L(∞P ) is an infinite-dimensional vector space over Fq, and we wish to choose a basis

for it. This basis can be indexed by R, so that the basis element fr lives in L(rP ) but not

in L(sP ) for any s < r in R. In particular deg fr = r, where “deg” is understood to mean

the negative of the valuation at P . Set f0 = 1, and assume ft has been chosen for all t ∈ R

with t < r. If r is divisible by p and s := r/p is in R, set fr = fp
s . Otherwise, choose fr

arbitrarily in L(rP ) \ L((r − 1)P ).

Define φ : L(∞P ) → L(∞P ) by φ(g) = gp − g. (Note that φ could be defined on all of

Fq(X), but since φ(g) ∈ L(∞P ) if and only if g ∈ L(∞P ), we can restrict our definition of

φ to this set.) We are interested in the following question: Given g ∈ L(∞P ), for how many

values of a ∈ F×q is aφ(g) in the image of φ? To this purpose define an equivalence relation

on R by r ∼ r′ if r/r′ is a power of p. Call an element of L(∞P ) pure if, in its expansion

as linear combination of the fr, non-zero coefficients occur only for r in a single equivalence

class with respect to ∼. It is clear that every element of L(∞P ) can be written as a sum of
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pure functions in a unique way. From our construction of the fr it is clear that φ maps pure

functions to pure functions.

Proposition 4.2. Let g ∈ L(∞P ), g /∈ Fq. If deg g = pme where either e is not divisible by

p or e/p 6∈ R, then there are at most pm+1 − 1 values of a ∈ F×q such that aφ(g) is in the

image of φ.

Proof. If we have an equation aφ(g) = φ(h) and we decompose g and h as a sum of pure

functions, we will get an equation for each of the corresponding summands. Moreover, there is

a term in the decomposition of g of degree pme. It follows that we may assume that g and h are

pure. Let Re = {r ∈ R | r = pje, 0 ≤ j ≤ m} and write g =
∑

r∈Re
γrfr and h =

∑
r∈Re

ηrfr.

It follows that ηp
pme = aγp

pme and that for 1 ≤ j ≤ m− 1, ηp
pje
− a(γp

pje
− γpj+1e) = ηpj+1e and

ηe = aγe. We can successively eliminate the η’s from this system of equations to obtain a

polynomial equation of degree pm+1 in a in terms of the γ’s. This polynomial equation has

no constant term, and so a = 0 is one solution. That leaves at most pm+1 − 1 solutions in

F×p . �

Now we treat the case of general `. For g = (g0, . . . , g`−1) ∈ W`(K), define φ(g) = F (g)−g.

The notation is consistent with our previous use of φ in the case ` = 1. The following technical

lemma will be useful.

Lemma 4.3. If we write (z0, . . . , zn) = (1, 0, . . . , 0, xn)(y0, y1, . . . , yn), then zn ≡ yn + xny
pn

0

(mod p).

Proof. In general, if (z0, . . . , zn) = (x0, . . . , xn)(y0, . . . , yn), then

zpn

0 + pzpn−1

1 + · · ·+ pnzn = (xpn

0 + pxpn−1

1 + · · ·+ pnxn)(ypn

0 + pypn−1

1 + · · ·+ pnyn)

by definition. Plugging in x0 = 1 and xi = 0 for 0 < i < n, we get

ypn

0 + pypn−1

1 + · · ·+ pn−1yp
n−1 + pnzn = (1 + pnxn)(ypn

0 + pypn−1

1 + · · ·+ pnyn)
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because (1, 0, ..., 0)(y0, ..., yi) = (y0, ..., yi) since (1, 0, ..., 0) is the identity for multiplication

in Wn. So,

pnzn = pnyn + pnxn(ypn

0 + pypn−1

1 + · · ·+ pnyn).

Dividing by pn we get

zn ≡ yn + xny
pn

0 (mod p),

as we wanted. �

Theorem 4.4. Let g = (g0, . . . , g`−1) ∈ W`(L(∞P )), where L(∞P ) is as above. Assume

g0 /∈ Fq. If deg g0 = pme where either e is not divisible by p or e/p 6∈ R, then there are at

most p(`−1)(m+1)(pm+1 − 1) values of a ∈ W`(Fq)
× such that aφ(g) is in the image of φ.

Proof. We proceed by induction on `, with the base case given by Proposition 4.2. Suppose

a ≡ a′ (mod p`−1) and there are functions h and h′ such that a(F (g)− g) = F (h)− h and

a′(F (g)− g) = F (h′)− h′. Then a′a−1(F (h)− h) = F (h′)− h′, with a′a−1 ≡ 1 (mod p`−1)

and deg h0 = deg g0. We will show that the number of a ∈ W`(Fq)
× such that aφ(g) is

in the image of φ, with a ≡ 1 (mod p`−1), i.e., a of the form a = (1, 0, . . . , 0, a`−1) for

some a`−1 ∈ Fq, is at most pm+1. The induction hypothesis entails that there are at most

p(`−2)(m+1)(pm+1− 1) values of a ∈ W`−1(Fq)
× such that aφ(g0, . . . , g`−2) is in the image of φ

and the theorem will follow.

So assume a = (1, 0, . . . , 0, a`−1) and aφ(g) = φ(h) for some h. Then we have φ(g) ≡ φ(h)

(mod p`−1) and so we may assume hi = gi for 0 ≤ i ≤ `− 2. The last coordinate of φ(g) is

of the form gp
`−1 − g`−1 + S(g0, . . . , g`−2) for some polynomial S, and so by Lemma 4.3 and

the previous sentence, we get the equation a`−1(g
p
0 − g0)

p`−1
= (h`−1− g`−1)

p− (h`−1− g`−1),

and we just need to count the number of a`−1 ∈ Fq such that this is possible. Picking b ∈ Fq

and k ∈ K such that bp`−1
= a`−1 and kp`−1

= h`−1 − g`−1 (such a b and k necessarily exist

and are unique), we see that this equation is satisfied if and only if b(gp
0 − g0) = kp − k.

Proposition 4.2 shows that there are at most pm+1 − 1 non-zero b satisfying this equation,

thus at most pm+1 total values of b, as desired. �
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Now we can state and prove our basic estimate.

Theorem 4.5. Let X be a curve of genus g defined over A := W`(Fq) and let X = X×Spec A

Spec Fq. Let Z be an A-point on X containing the point Q ∈ X(Fq) and pick an integer

r > 2g − 2. Let X0 = X \ {Q}. Assume there is some lift of points λ : X0(Fq) → X(A)

so that for f ∈ L(rZ) and P ∈ X0(Fq), we have f(λ(P )) = (f0(P ), . . . , f`−1(P )) as a Witt

vector, where fi ∈ L(∞Q) for each i. For f ∈ L(rZ), let ε(f) be the corresponding codeword

in C(X,Z, rZ). Assume that pr ≤ q and that n ≥
(
2g − 1 + max0≤i≤`−1{p`−1−i deg fi}

)√
q,

then

wt(ε(f)) ≥
(

(q − 1)q`−2 − 1

q
(pr)`−1(pr − 1)

)(
n−

(
2g − 1 + max

0≤i≤`−1
{p`−1−i deg fi}

)
√

q

)
.

Proof. If f0 6∈ Fq choose m with pm < r ≤ pm+1 and apply Theorem 4.4 to get |B3(f)| ≤

p(`−1)(m+1)(pm+1 − 1) ≤ (pr)`−1(pr − 1) (note for further reference that the last quantity is

at most q`−1(q− 1) by hypothesis). Now using Theorem 3.4 and equations (1), (2), (3), and

(4) it follows that

w(ε(f)) = n(q − 1)q`−2 − 1

q

n∑
j=1

∑
a∈U

ζTr(af(Zj))

≥ n(q − 1)q`−2 − 1

q

(
|B3(f)|n +

(
q` − q`−1 − |B3(f)|

)
·

max
a∈U\B(f)

∣∣∣∣∣∣
∑

P∈X0(Fq)

ζTr(af(P ))

∣∣∣∣∣∣


=

(
(q − 1)q`−2 − 1

q
|B3(f)|

)n− max
a∈U\B(f)

∣∣∣∣∣∣
∑

P∈X0(Fq)

ζTr(af(P ))

∣∣∣∣∣∣


≥
(

(q − 1)q`−2 − 1

q
(pr)`−1(pr − 1)

)(
n−

(
2g − 1 + max

0≤i≤`−1
{p`−1−i deg fi}

)
√

q

)
.

Now suppose f0 is a nonzero constant. Then f(λ(P )) is a unit for each P ∈ X0(Fq), and

so wt(ε(f)) = n(q − 1)q`−1.

Finally, suppose f0 = 0. Let j be chosen so that fi = 0 for i < j and fj 6= 0. If j = `− 1,

then f(λ(P )) ∈ p`−1A for each P ∈ X0(Fq) and so wt(ε(f)) = nq`−1. If j < ` − 1, then
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since L(rZ) is a free A-module, there is a rational function h ∈ L(rZ) such that f = pjh.

Write h := h ◦ λ = (h0, . . . , h`−1) so that f = (0, . . . , 0, hpj

0 , . . . , hpj

`−j−1). We know h0 6= 0. If

h0 ∈ Fq, then wt(ε(f)) = n(q − 1)q`−2. Otherwise, we have

wt(ε(f)) = n(q − 1)q`−2 − 1

q

∑
P∈X0(Fq)

∑
a∈U

ζTr(af(P ))

= n(q − 1)q`−2 − 1

q

∑
P∈X0(Fq)

∑
a∈U

ξTr(ah(P )),

where ξ = ζpj
is a primitive p`−jth root of unity. Applying induction on ` gives the result. �

5. Applications

5.1. Projective line. There is a natural well-known lift of points from P1(Fq) to P1(W`(Fq)),

namely the Teichmüller lift. The point at infinity over Fq lifts to the point Z∞ at infinity

over W`(Fq) and the affine point with coordinate x lifts to τ(x) = (x, 0, . . . , 0). If f is a

polynomial with coefficients in W`(Fq) and degree r then f ◦ τ is given by a Witt vector f =

(f0, f1, . . . , f`−1) where the fi’s are polynomials with coefficients in Fq satisfying deg fi ≤ pir.

Consider C = C(P1,Z,G), where Z consists of the Teichmüller lifts of the affine points of

P1(Fq) and G = rZ∞ for some r ≥ 0. Thus n = q and applying Theorem 4.5 if pr ≤ q and
√

q ≥ p`−1r − 1, we see that the minimum homogeneous weight of this code is at least(
(q − 1)q`−2 − 1

q
(pr)`−1(pr − 1)

)(
q −

(
p`−1r − 1

)√
q
)
.

5.2. Elliptic curves. Let E be an ordinary elliptic curve defined over the field Fq, let E

be the curve over W`(Fq) obtained by reducing the Serre-Tate canonical lift (see [10]) of

E modulo p`, and let τ : E(Fq) → E(W`(Fq)) be the associated elliptic Teichmüller lift of

points. The next theorem is from [11].

Theorem 5.1. ([11]) Let E and E be as above, and let G = rτ(Q) for some Q ∈ E(Fq) and

r ≥ 0. Then for f ∈ L(G) and P ∈ E \{Q}, we have f(τ(P )) = (f0(P ), f1(P ), . . . , f`−1(P ))

as a Witt vector, where fi ∈ L((2p)irP ) for i = 0, 1, . . . , `− 1.



HOMOGENEOUS WEIGHTS AND EXPONENTIAL SUMS 13

Combining Theorem 5.1 with Theorem 4.5, we get:

Corollary 5.2. Let E, E, and G be as above, set Z := {τ(P ) |P ∈ E(Fq) \ {Q}}, and let

n = #Z. Then, provided that pr ≤ q and n ≥
(
1 + (2p)`−1r

)√
q, the minimum homogeneous

weight of C(E,Z,G) is at least(
(q − 1)q`−2 − 1

q
(pr)`−1(pr − 1)

)(
n−

(
1 + (2p)`−1r

)√
q
)
.

In the specific cases where ` = 2 or ` = 3, Finotti [5] was able to improve upon the degrees

of the functions fi in Theorem 5.1 which leads to a corresponding improvement in the above

theorems.

5.3. Plane curves with a unique point at infinity; ` = 2. In [12], the results of [11]

were extended to the case of a plane curve with a unique point at infinity defined over a

ring of Witt vectors of length 2. More precisely, let X be a proper plane curve over W2(Fq)

with affine open subset given by H(x,y) = 0. Setting X := X×Spec W2(Fq) Spec Fq, we have

that X has an affine open subset given by H(x0, y0) = 0, where H is the reduction of H

modulo p. We will assume that H is of the form
∑

di+ej≤de aijx
iyj, where d and e are coprime

integers with ae0 6≡ 0 (mod p) and a0d 6≡ 0 (mod p), and that the affine curve H(x0, y0) = 0

is smooth. Notice that the complement of the affine subset of X consists of a single point

P∞, and that the genus of X can be computed to be (d− 1)(e− 1)/2.

Theorem 5.3. ([12]) Let X, X, and P∞ be as above. Then there is a “lift of points”

λ : X(Fq) \ {P∞} → X(W2(Fq)) such that for any f ∈ L(rZ∞), we have f ◦ λ = (f0, f1) ∈

W2(Fq(X)). Further, f0 ∈ L(rP∞) and f1 ∈ L(γ(r)P∞), where γ(r) is a linear polynomial

in r, independent of f and satisfying γ(r) ≤ p(r − 1) + 2g(p + 1).

Again, we apply Theorem 4.5 to get:

Theorem 5.4. Let X, X, P∞, Z∞, and r be as above, and set Z := {λ(P ) |P ∈ X(Fq) \

{P∞}}. Then, provided that pr ≤ q and n ≥ ((2p + 4) g + p (r − 1)− 1)
√

q, the minimum
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homogeneous weight of C(X,Z, rZ∞) is at least(
q − 1− 1

q
(pr)(pr − 1)

)
(n− ((2p + 4) g + p (r − 1)− 1)

√
q)

The above results include hyperelliptic curves as special cases. However, in this case Finotti

[5] also used his methods to provide results about the degrees of certain lifts of hyperelliptic

curves, which are better than the above. Finally, Blache [1] has obtained general bounds on

degrees of lifts for arbitrary curves. They are weaker than the above results but apply to

more general curves.
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