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Introduction
Plant breeding is a science that uses multiple scientific disci-
plines to develop improved cultivars. Some of the scientific 
fields involved in plant breeding are genetics, agronomy, soil 
science, botany, biochemistry, plant pathology, computer sci-
ence, statistics, and engineering. The goal of plant breeding is 
to combine the advantages of these disciplines to increase food 
security and face the environmental challenges, thus producing 
high-yielding cultivars with agronomically desired traits for 
humans in a sustainable way.

One of the biggest tasks of plant breeders is to select indi-
viduals for crossing that will produce the desired phenotype. 
Breeders have to cross individuals and test the progeny in several 
cycles. They not only measure their success regarding the amount 
of increase in the performance of the cultivar that is achieved in 
a cycle (called genetic gain) but also in the amount of time they 
can release a cultivar to the farmers. One of the ways in which 
the development process can be shortened is by decreasing the 
amount of cycles used to develop the cultivar. To achieve this 
goal, several methods were developed that help in the selection 
procedure. The development of inexpensive genotyping strate-
gies such as genotype by sequencing (GBS) and single-nucleo-
tide polymorphism (SNP)1,2 made it feasible for plant breeders 
to take advantage of molecular marker information and develop 
techniques that improve the efficiency of selection in plant 
breeding. Molecular markers were first used for prediction pur-
poses in the 1970s when it was assumed that only a few genes 
affect the phenotype, and it is financially feasible to develop 
progeny with the desired genes. This approach is called quantita-
tive trait locus (QTL) mapping.3,4 However, the success of QTL 

mapping depends on the number of QTLs affecting the pheno-
type. Agronomically important traits (eg, yield) usually are influ-
enced by many small-effect QTLs instead of by few large-effect 
QTLs. As a result, the adoption of the technology into breeding 
programs is problematic because it is very expensive to develop a 
population using this method.

Another method that takes advantage of the dense molecu-
lar marker information is called genomic prediction (GP) or 
genomic selection (GS). The distinction between the 2 terms 
relies on the notion that genomic information is used for pre-
dicting the phenotype, and the prediction results are used by 
the plant breeders to select individuals for advancing into the 
next generation and make the desired crosses. Although there 
are earlier articles describing the foundation of this method,5–7 
the first article defining GS using dense markers was presented 
by Meuwissen et al.8 Since then, there has been a large amount 
of effort dedicated to developing methods for GP and evaluat-
ing them under various conditions.9–13 GP has the potential to 
increase the expected genetic gain by reducing the cycle length, 
and it uses fewer resources compared with traditional pheno-
typic selection; thus, it has the ability to improve complex traits 
that are influenced by many small-effect QTLs and their inter-
actions, and traits with low heritability. Evidently, the improve-
ment is more significant for simple traits that are controlled by 
fewer QTLs and traits with high heritability.14

Phenomics is an area of research that opens new avenues in 
the field of prediction for plant breeding. With this new tech-
nique, physical and biochemical traits of the plants can be 
measured in a cost-effective way, and the measurements can be 
monitored over time. However, it also introduces new 
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challenges in plant breeding because an extensive amount of 
data can be collected, and the existing statistical methods have 
difficulty incorporating the large dimensionality of the col-
lected data. Thus, new statistical techniques and algorithms 
have to be developed to efficiently use the given data to increase 
the predictive ability of complex traits.

In this article, we introduce a model that combines molec-
ular marker and canopy coverage image information via a 
combined relationship matrix for the soybean nested associa-
tion mapping (SoyNAM) population. Christensen et al15 and 
Legarra et al16 have developed similar models by combining 
marker and pedigree data. To our knowledge, this is the first 
time that phenotypic and genomic data are used to compute 
a hybrid matrix. For the model, we create a hybrid matrix that 
combines both the molecular marker and canopy coverage 
data. We predict the yield of the lines and compare the pre-
dictive ability of the model with that of the models where 
only the molecular marker information and only the canopy 
coverage information are included. The ultimate goal is to 
help improve the selection tools used by breeders. In this arti-
cle, first, we introduce the SoyNAM population and discuss 
the structure, composition of the population, and molecular 
marker and canopy data. Then, we discuss how the hybrid 
matrix is developed from the base GP model. For the predic-
tion, we considered 5 different ways to split the data into 
training and testing sets based on 2 clustering algorithms. We 
describe the clustering algorithms used to divide the data into 
testing and training sets, and how the data were divided. 
Finally, we present the results and some future avenues to 
improve the model.

Material and Methods
The SoyNAM dataset

For the evaluation of our model, we used data collected from 
the SoyNAM population (https://www.soybase.org/SoyNAM/), 
which is a nested association mapping population originally 
consisting of 5600 F5-derived recombinant inbred lines (RILs). 
The RILs were derived by crossing a common, high-yielding 
parent (IA3023) to 40 other parents. Out of the 40 parents, 17 
were high-yielding, elite lines from 8 different states from the 
United States, 15 lines had diverse ancestry, and 8 were consid-
ered as exotic lines as their origins were South Korea, China, 
Russia, and Serbia. Originally, the development of the 
SoyNAM population started in 2011, but the phenotypic and 
canopy coverage data used in this study were observed in 
2013.17 Details of the experimental design can be found in 
Xavier et al.17 The molecular marker information consisted of 
5305 SNP markers but, after employing quality control (remov-
ing markers with minor allele frequency less than 0.05), about 
4600 SNP markers were included into the model.17

Canopy coverage information, which is the area covered by 
the plant, can easily be measured on soybean plants. The can-
opy coverage is correlated with canopy light interception, 

which is a trait that is positively correlated with grain yield but 
difficult to measure.18

The canopy image data used for evaluating our model were 
ground-based red-green-blue (RGB) images. Then, the raw 
images were converted into a metric that describes the percent-
age of image pixels that are classified as canopy pixels. The 
images were collected at regular intervals from 2 to 8 weeks 
after planting; thus, only 6 measurements were obtained. To 
extrapolate the data, allowing estimations of daily measures, a 
logistic growth function via the logit link was used to model 
longitudinal data of canopy coverage for each genetic line. In 
this way, at the end for each RIL, there were (6 × 7) 42 canopy 
coverage measurements (14-56 days after planting) available. 
The data and models employed in this research are described in 
detail by Xavier et al.17

The phenotypic trait that we predicted using the molecular 
marker and canopy coverage information was grain yield (in 
kg/ha). There are 8 other traits that were observed for the 
SoyNAM population, but we only considered the agronomi-
cally most important trait. For more information about the 
development of the SoyNAM population, the genotypic, phe-
notypic, and canopy coverage information, the reader can refer 
to Xavier et al.17,19

The hybrid matrix model development

The goal of this study was to develop a model to predict grain 
yield that incorporates molecular marker and canopy coverage 
image information using the SoyNAM population. To build a 
hybrid matrix model, the following model was used as a base

yi i i= + +µ εu

where yi  is the phenotypic response of the ith ( , , , )i n= …1 2  
genotype and it can be explained as the sum of a common 
mean (m), plus random deviations due to genetic effects ( )ui , 
plus an error term ( )εi , where u G= { } ( , )u Ni u∼ σ0 2  with G  
acting as a covariance structure that describes similarities of 
different types (genetic via molecular markers, phenotypic via 
daily measures of canopy values, or both) between pairs of indi-
viduals, and σu

2  is the associated variance component. This 
model, also known as genomic best linear unbiased prediction 
(GBLUP) model, was introduced in the GS context following 
standard assumptions of the Ridge-Regression-BLUP model 
for the marker effects as identically and independently distrib-
uted draws from a normal distribution. Details of this model 
can be found in Habier et al20 and VanRaden.21

Because the marker and canopy data were available, these 2 
sources of information were used for computing covariance 
structures as follows: G XXX = ′ / p  and G CCC = ′ / q  with 
Xn p×  and Cn q×  as the centered and standardized (by columns) 
matrices for n (5600) phenotypic records, p (5305) genomic 
markers, and q (42) canopy records derived from the image 
data. In this case, the standardization by columns is not needed; 

https://www.soybase.org/SoyNAM/
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however, it allows interpreting the variance components as 
genomic and image variances in the same scale relative to the 
error variance. Initially, the marker values were coded based on 
the number of copies of the allele with the minor allele fre-
quency (0, 1, and 2). In the case of the canopy data, these values 
ranged between 0 and 1 to indicate the proportion of covered 
area of each plot by the canopy vegetation. In both cases, these 
values were standardized (centered at 0 and with a unit vari-
ance). Thus, after standardization, these values of both sources 
of information had the same scale.

Here, GX  and GC  have the same dimensions (n × n) 
allowing the cell-to-cell additive operations.

The hybrid matrix could be built combining both covari-
ance structures as a linear combination that depends on the 
weight ( )w  where 0 1≤ ≤w

G G GF X C= −( ) + ( )⋅ ⋅1 w w

In this study, values between 0 and 1 in steps of 0.01 were used 
for w , such that w = { , . , . , . , . , . , . , . , . , . , }0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 , 
and these values were tested in a grid search for optimizing the 
predictive ability of the proposed models.

Cross-validation methods

To evaluate the prediction models, 3 cross-validation (CV) 
schemes were employed. The first one was the leave-one-obser-
vation-out CV where, for predicting an unobserved genotype, 
we used all of the remaining RILs. The other ones were based on 
2 clustering techniques. We clustered the RILs based on the 
Euclidean distance among the combined molecular marker and 
canopy coverage information. We compared 2 clustering algo-
rithms: Clustering Large Applications (CLARA) and a 
Hierarchical Linkage (HL) method.

CLARA22 is based on k-means clustering technique23 which 
is an unsupervised machine learning technique that divides the 
data into k clusters (groups) based on the Euclidean distance 
between the individuals (in our case the molecular markers and 
the canopy coverage information of the RILs). CLARA extends 
the idea of the k-means clustering, and it divides on the data 
into k clusters using a sampling approach. CLARA is an itera-
tive procedure where first a small sample of the data is selected, 
and then the clustering is performed. This procedure is repeated 
a pre-specified number of times. The clustering within the sam-
ples is done by first finding the central objects of the clusters, 
then assigning all of the other observations to the nearest cen-
tral object based on the Euclidean distance. The clustering is 
finalized based on the minimum of the sum of the dissimilari-
ties of the objects to the nearest central object.24

HL method is a clustering technique that is based on the 
dissimilarity of the objects, and it builds the clusters starting 
with the objects being individual clusters (which also called as 
a “bottom-up” approach). The dissimilarity of the objects is 
based on the Euclidean distance among the molecular markers 

and the canopy coverage information of the RILs. For dividing 
the objects into clusters, the Ward method was implemented 
which minimizes the total within-cluster variance.

Essentially, the foundations of methods for creating clusters 
are different. Whereas CLARA attempts to find clusters based 
on similarities within randomly selected subsets of the data, the 
HL method starts with single-element clusters and builds the 
clusters in a “bottom-up” manner.

For both the CLARA and the HL methods, the RILs were 
partitioned into 2, 3, 4, and 5 clusters. The predictions were 
performed using the leave-one-observation-out CV within 
each of the 2, 3, 4, or 5 clusters. Once the predictions for all 
clusters were computed, these values were integrated into a sin-
gle vector across clusters. Then, the predictive ability for each 
of the 99 strategies was evaluated using the Pearson correlation 
coefficient between the entire vectors of the observed and the 
predicted values.

Results and Discussion
In this study, we developed a hybrid matrix approach for incor-
porating molecular marker and canopy coverage information to 
predict grain yield for the SoyNAM population. For the hybrid 
matrix, we evaluated 11 different weights. One of the extremes 
was when absolutely no canopy coverage information was 
included in the training-testing sets and these were composed 
only of marker data. The other extreme was the opposite case, 
where no marker information was used but only canopy cover-
age information was available. The intermediate cases had both 
canopy and marker information at different intensities. We 
clustered the RILs using the CLARA and HL methods, and 
the numbers of clusters we considered were 2, 3, 4, and 5. 
Within each cluster, for dividing the data into training and 
testing sets, we used the leave-one-observation-out CV scheme, 
where 1 RIL was predicted using all of the remaining RILs. 
The predictive ability was evaluated based on the correlation 
between the observed and the predicted grain yield.

We considered prediction strategies based on the combina-
tion of 11 weights w (ranging between 0 and 1 in increments 
of 0.1, such that w = 0, 0.1, 0.2, . . ., 1), 2 clustering techniques 
(CLARA and HL), and 4 different cluster sizes (2, 3, 4, 5) 
which resulted in 88 unique combinations (11 weights × 2 
clustering techniques × 4 cluster sizes). Also, the case where no 
clusters were formed (i.e., the whole population is the unique 
cluster) was considered, generating another 11 combinations 
(the weights). Thus, there were a total of 99 (88 + 11) unique 
combinations considered in this study. The results of the previ-
ous combinations are shown in Table 1.

From Table 1, we can see that the highest predictive ability 
when no clusters were considered (i.e., only 1 cluster, the entire 
population) was 0.599. This value was obtained for different 
weights w (0.1, 0.2, 0.5, 0.8, and 0.9). Regarding the efficiency of 
the 2 clustering techniques to improve the predictive ability, we 
observed that for the same cluster size × weight combinations 
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these results were very similar. However, the highest correlation 
among all cluster sizes was 0.603, and it was reached using the 
HL cluster method for creating 2 clusters with a w value of 0.3 
(i.e., 30% of importance was given to marker data and the remain-
ing 70% to canopy image data). However, this value was not sig-
nificantly different from other high values that were found for 
other w values. For example, for this same clustering method 
(HL) and cluster size, the predictive abilities of 0.602 and 0.601 
were obtained for the w values of 0.6 and 0.9, respectively. Thus, 
no specific patterns about the importance of marker-canopy data 
for improving the predictive ability were found. For the case 
when 3 clusters were considered, the highest predictive abilities 
were 0.6 and 0.599 for the strategies (CLARA with w = 0.8) and 
(HL with w = 0.4, 0.6), respectively. With 4 clusters, CLARA 
with w = 0.4 and HL with w = 0.3 produced the highest correla-
tion (0.589). Finally, with 5 clusters, the highest values were 0.58 
(CLARA with w = 8) and 0.578 (HL with w = 0.6, 0.7). Although 
no significant improvements in predictive ability were shown by 
constructing homogeneous clusters, a slight increase in the cor-
relation was observed when solely canopy data were used (i.e., 
w = 1). These values ranged between 0.276 (for only 1 cluster) and 
0.314 (5 clusters using CLARA). On the other hand, the predic-
tive ability was reduced with clustering when only marker data 
were included (i.e., w = 0). These values ranged between 0.531 (no 
clusters) and 0.463 (5 clusters using HL).

In the figures, we only show the results using the CLARA 
method due to the similarity of the clustering techniques 
regarding predictive ability. The top row of the figures shows 
the correlation plots when the leave-one-observation-out CV 
is implemented for the whole dataset without clustering, and 
the bottom row of the figures shows the results for the 

CLARA method when 5 clusters were considered. The left 
panels are the correlation plots when only canopy coverage 
information is included (w = 1) into the prediction model but 
no molecular marker information, the center panels are the 
correlation plots when only molecular marker information 
(w = 0) is included into the model but no canopy coverage 
information, and the right panels are the correlation plots 
when both the marker and canopy information is included 
with an equal weight (w = 0.5). We only included the plots 
where w = 0.5, and not the other cases where 0 < w < 1 
because the results were very similar (see Table 1).

The plots in Figure 1 show the predictive ability as the correla-
tion between the observed and predicted values of grain yield. 
The title of the plots includes the overall correlation coefficients 
(i.e., the prediction between the entire vector of the predicted and 
observed values across clusters), and the plots include the correct 
classification rates for 16 combinations between 4 different inter-
vals based on empirical percentiles ([0%, 20%], [20%, 50%], [50%, 
80%], and [80%, 100%]) for the predictions and 4 intervals ([0%, 
20%], [20%, 50%], [50%, 80%], and [80%, 100%]) for the 
observed values. Within each plot, the top right value represents 
the proportion of the top 20% of the observed values that were 
also predicted as the top 20% in grain yield. On the other hand, if 
we were interested in screening or discarding the lowest 20% of 
the lines based on the predictions, the bottom left value shows the 
proportion of correctly discarded lines based on the observed val-
ues. In this case, the objective would be to increase the classifica-
tion rate values in the diagonal grid of the plot and to reduce the 
classification error rate addressed in the off diagonal. In general, 
we observed that the classification rate in the diagonal of the grid 
improved when the marker and canopy image data were 

Table 1.  Predictive ability values for the CLARA and HL methods using 2, 3, 4, and 5 clusters compared with the leave-one-observation-out CV for 
the different weights of the hybrid matrix model.

Cluster 1 2 3 4 5

methoD
Weight

None CLARA HL CLARA HL CLARA HL CLARA HL

0 0.531 0.506 0.506 0.496 0.49 0.477 0.472 0.466 0.463

0.1 0.599 0.596 0.593 0.588 0.575 0.576 0.566 0.568 0.554

0.2 0.599 0.592 0.595 0.598 0.594 0.584 0.581 0.578 0.571

0.3 0.598 0.589 0.603 0.599 0.597 0.587 0.589 0.575 0.575

0.4 0.598 0.592 0.598 0.588 0.599 0.589 0.58 0.576 0.57

0.5 0.599 0.597 0.597 0.596 0.583 0.587 0.576 0.573 0.571

0.6 0.598 0.592 0.602 0.597 0.599 0.587 0.587 0.575 0.578

0.7 0.598 0.597 0.589 0.598 0.585 0.586 0.583 0.577 0.578

0.8 0.599 0.595 0.597 0.6 0.596 0.587 0.587 0.58 0.572

0.9 0.599 0.597 0.601 0.597 0.598 0.587 0.585 0.572 0.574

1 0.276 0.308 0.302 0.308 0.304 0.315 0.308 0.314 0.312

CLARA, Clustering Large Applications; CV, cross-validation; HL, Hierarchical Linkage.
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combined using the hybrid matrix and the classification error rate 
decreased (i.e., for cases in the off diagonal).

When we compare the overall correlation coefficients and 
the classification error rate (the numbers within the grid in the 
off diagonal), we observed that the predictive ability was the 
lowest when we only included canopy coverage information 
into the prediction model, and thus the classification error rate 
was larger than those in the other 2 cases. When only marker 
information was considered, the predictive ability was improved 
and the classification error rate was reduced.

Prediction techniques are valuable tools for plant breeders as 
they can evaluate a larger number of candidates and select a less 
number of lines with the same level of efficiency and less cost 
than with the traditional phenotypic selection; thus, it is impor-
tant to improve the predictive ability of the available models. 
With the advancements of collecting image information on 
plants, we have the opportunity to develop prediction models 
where we integrate multiple sources of information. The hybrid 
matrix model can integrate the diverse information as a weighted 
linear combination of the different sources of information, and it 

increases the predictive ability compared with models that only 
incorporated a single source of variation into the model (e.g., only 
molecular marker or only canopy coverage information). In our 
future work, we plan to develop a model that also includes the 
interaction of the hybrid matrix with environmental covariates.
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