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Abstract

Strain energy densities based on the Seth-Hill strain tensors are often used
to describe the hyperelastic mechanical behaviours of isotropic, transversely
isotropic and orthotropic materials for relatively large deformations. Since
one parameter distinguishes which strain tensor of the Seth-Hill family is
used, one has in theory the possibility to fit the material response in the
nonlinear regime. Most often for compressible deformations however, this
parameter is selected such that the Hencky strain tensor is recovered, because
it yields rather physical stress-strain responses. Hence, the response in the
nonlinear regime is in practise not often tailored to match experimental data.
To ensure that elastic responses in the nonlinear regime can more accurately
be controlled, this contribution proposes three generalisations that combine
several Seth-Hill strain tensors. The generalisations are formulated such that
the stress-strain responses for infinitesimal deformations remain unchanged.
Consequently, the identification of the Young’s moduli, Poisson’s ratios and
shear moduli is not affected. 3D finite element simulations are performed for
isotropy and orthotropy, with an emphasis on the identification of the new
material parameters.
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1. Introduction

Elasticity can be subdivided into hyperelasticity and hypoelasticity. Hy-
perelasticity is true elasticity, which entails that all energy supplied to the
material is stored in the material. In case of hypoelasticity on the other
hand, energy may undesirably be dissipated. In order to investigate if a
stress-strain relation can exactly be integrated into a strain energy density
and hence, to investigate if a constitutive model is hyperelastic, Riemannian
geometry was used by Bernstein (1960a,b).

Hyperelasticity is still often associated with incompressible materials (Treloar,
1958; Ogden, 1972), because it was originally proposed to treat the incom-
pressibility condition as a constraint in constrained minimization (Zienkiewicz
& Taylor, 2000). These days compressible hyperelasticity is however also fre-
quently used. The increase of man-made materials that can undergo large
elastic compressible deformations (Wismans et al., 2010; Schraedler et al.,
2011; Kucheyev et al., 2012; Pokorný et al., 2017), as well as the increased
interest in biological tissues that can undergo large elastic compressible de-
formations (Cotin et al., 1999; Baaijens et al., 2005; Hrapko et al., 2006;
Carniel & Fancello, 2017), is partially responsible for this. In contrast to
hypoelasticity (Truesdell, 1955; Khan et al., 2010; Beex & Peerlings, 2012),
hyperelasticity also allows the formulation of error estimators in terms of
stored and dissipated energies (Lovadina & Stenberg, 2006; Bui et al., 2018),
which are invariant scalars, and it avoids erroneous energy dissipation of
dissipative material models (H̊akanson et al., 2005; Harrysson & Ristinmaa,
2008; Loew et al., 2019). Hyperelasticity is thus not only important for in-
compressible materials, but also for compressible materials. It is also not only
important for purely elastic constitutive descriptions, but also for dissipative
constitutive descriptions.

A frequently employed compressible hyperelastic model uses a fourth-
order stiffness tensor and one of the strain tensors of the Seth-Hill family in
the strain energy density function, because it allows to describe the mechan-
ical responses of isotropic, transversely isotropic and orthotropic materials.
One parameter (a, see Fig. 1) distinguishes which of the Seth-Hill strain
tensors is used. This choice affects only the nonlinear regime, because in
the infinitesimal limit any of the Seth-Hill strain tensors recover the same
response.

In theory, one thus has the opportunity to tailor material parameter a to
fit the constitutive description to experimentally observed stress-deformation

2



curves. In practise however, one either uses the Green-Lagrangian strain
tensor (a = 2) because of its ease of implementation, or the Hencky strain
tensor (i.e. the logarithmic strain tensor, natural strain tensor, true strain
tensor) (Miehe et al., 2002; Andrade et al., 2011; Mahnken & Shaban, 2013;
Vogel et al., 2014) because associated stresses are monotonically increasing
(see Fig. 1). Stresses associated with a > 0 have the problem that they
do not approach −∞ when the deformation tends to large compressions.
In those cases, finite element simulations will fail to converge due to the
lack of stiffness. Stresses a < 0 have the same problem, but in tension
(see Fig. 1). In practise, the Hencky strain tensor is thus often used and a
true parameter identification for the nonlinear regime does not take place.
Note that the Lagrangian Hencky strain tensor is considered here (Miehe &
Lambrecht, 2001), not its Eulerian counterpart (Geers, 2004; Javani et al.,
2014) for which, if used appropriately, it has been shown to meet Bernstein’s
integrability condition (Xiao et al., 1997; Xiao and Chen, 2002).
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Figure 1: Sketch of stress-uniaxial deformation curves possible with the Seth-Hill strain
tensors (left) and one that is not possible with the Seth-Hill strain tensors (right), but it
is possible with the proposed generalisations.

To make sure that responses as presented on the right in Fig. 1 can be
captured and can truly be fitted, one may consider the material parameters to
be dependent on the deformation. This has the advantage that the Poynting
effect can accurately be identified and incorporated (see e.g. Mihai & Goriely
(2011, 2017) and De Rosa et al. (2017)).

This contribution argues however that instead of developing new mod-
els, a solution to achieve a good correspondence between the experimental
data and the model response may be sought in the combination of several
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hyperelastic models. In this way, one shifts the complexity from formulating
new material models to employing and/or developing numerical strategies
required to identify material parameters. This ansatz would fit the current
interest in ‘Data Driven Modelling’.

Recently, Korobeynikov (2018) has proposed such a generalised combina-
tion for hyperelasticity by collecting several strain tensors of different families
in a single strain tensor. In contrast to Korobeynikov (2018), the aim of the
current contribution is to only fuse the strain tensors of the Seth-Hill fam-
ily (Doyle & Ericksen, 1956; Seth, 1962; Hill, 1968, 1978; Curnier & Rako-
tomanana, 1991; Miehe & Lambrecht, 2001; Schröder et al., 2002; Latorre
& Montáns, 2016). The advantages of limiting one to the Seth-Hill family
are that not only isotropic, but also transversely isotropic and orthotropic
material responses can be described, and that one can employ the efficient
implementation for the stresses and tangent stiffness tensors offered by Miehe
& Lambrecht (2001).

Three generalisations are proposed in the current contribution. First, the
strain energy density can be constructed as a weighted sum of conventional
strain energy densities, where ‘conventional’ refers to the choice of a single
strain tensor of the Seth-Hill family. Second, the strain tensor itself can be
constructed as a weighted sum of conventional strain tensors. Third, the
weights for the construction of a new strain tensor based on several conven-
tional strain tensors can be made dependent on the volume change (although
probably any, or any combination, of the invariants of the deformation would
work). By ensuring that the sum of the weights equals one for the generali-
sations, the infinitesimal theory is recovered, which is not the case for many
anisotropic hyperelastic models (see e.g. De Rosa et al. (2017) for a discus-
sion on this). In other words, the identification of the conventional material
parameters in the fourth-order stiffness tensor (i.e. the Young’s moduli, Pois-
son’s ratios and possibly the shear moduli) remains unchanged. Additional
identification efforts are however required to identify the weights (amongst
others).

The generalisations’ common denominator with Ogden’s models (Ogden,
1972, 1984) is that the strain energy densities are expressed in terms of a
sum of the exponentations of the principle stretches. The difference is that
the generalisations’ strain energy densities use stiffness tensors, ensuring that
the generalisations can treat isotropy, transverse isotropy and orthotropy.

In the light of the trend of ‘Data Driven Modelling’, it may also be of
interest to compare the proposed generalisations with What-You-Prescribe-
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Is-What-You-Get (WYPiWYG) hyperelasticity (Crespo et al., 2016; Latorre
& Montáns, 2017; De Rosa et al., 2017; Romero et al., 2017). WYPiWYG
hyperelasticity is a data-driven approach, in which measurement pairs of
deformations and stresses are directly incorporated and a true fitting of ma-
terial parameters is not required. Generally it seems that advantages of
WYPiWYG hyperelasticity compared to the proposed generalisations (or
any non-data-driven approach for that matter) come with disadvantages and
vice versa.

For instance, WYPiWYG hyperelasticity automatically incorporates tension-
compression asymmetry, whereas only the third generalisation is able to do
this to some extent (based on the volume change). WYPiWYG hyperelas-
ticity also automatically incorporates dependencies between shear and non-
shear parts of the deformations, whereas none of the proposed generalisations
are able to do so. At the same time, because measurement pairs are directly
incorporated in WYPiWYG hyperelasticity, measurement noise has an im-
pact on the computational efficiency of the FE simulations. Filtering can then
be used, which is currently under investigation (Latorre & Montáns, 2018).
Second, WYPiWYG hyperelasticity will not incorporate unconventional de-
pendencies in the strain energy density (which the proposed generalisations
are not able to), if the dependencies are not sampled in the experiments. An
open question for WYPiWYG hyperelasticity therefore seems to be which
experiments are required and if they can be performed.

The outline of this paper is as follows. The conventional hyperelastic mod-
els based on the Seth-Hill family of strain tensors are described in section 2.
In section 3, the three generalisations are proposed. Section 4 discusses the
finite element implementation for quasi-static finite element problems, ex-
cluding body forces. Section 5 presents several numerical results and focuses
amongst others on the identification of the new material parameters. Sec-
tion 6 ends this contribution with conclusions. First, the notation is briefly
summarised.

Notation

• scalars are denoted by small case and capital letters (e.g. α, a, A),
• sets are denoted by caligraphic capital letters (e.g.A = {a1, a2, ... , an}),
• columns are denoted by bars under letters (e.g. a, A),
• matrices are denoted by two bars under letters (e.g. A),
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• transposes of columns and matrices are denoted by superscript T (e.g. aT ,
AT ),

• the ith base vector is denoted ~ei,
• a vector is denoted by an arrow on top of a letter (e.g. ~a = ai~ei),
• Einstein’s summation convention is used but it is avoided in case of

possible misconceptions,
• a dyadic product is denoted by directly placing two vectors or tensors

behind each other (i.e. ~a~b = aibj~ei~ej),
• 2nd-order tensors are denoted by bold capitals and bold Greek letters

(e.g. A = Aij~ei~ej and ε = εij~ei~ej),
• I denotes the 2nd-order unit tensor (I = δij~ei~ej, where δij denotes the

Kronecker delta),
• nth-order tensors with n > 2 are denoted by bold capitals with n as a

a left superscript (e.g. 4A = Aijkl~ei~ej~ek~el),
• right superscript c at a 2nd-order tensor denotes its conjugate transpose

(e.g. Ac = Aij~ej~ei),
• right superscripts between square brackets denote remaining conjugate

transposes, where commas are used to denote the sequence (e.g. 4A[13] =
Aijkl~ek~ej~ei~el,

4A[13,14] = Aijkl~el~ej~ei~ek, A
c = A[12]),

• a dot between vectors and/or tensors denotes their inner product (e.g. A·
B = AikBkj~ei~ej),
• a double dot between tensors denotes their double inner product (e.g. A :
B = AijBji),
• right superscript −1 at a 2nd-order tensor denotes its inverse (e.g. A−1 ·
A = A ·A−1 = I),

• ~X denotes the vector pointing to a material point in the reference
configuration ( ~X = Xi~ei),
• ~u denotes the displacement vector between a material point in the

reference configuration and in a deformed configuration (~u = ui~ei),

• ~∇0 denotes the vector differential operator with respect to the reference
configuration (~∇0 = ~ei

∂
∂Xi

), and

• F denotes the deformation gradient tensor (F = I + (~∇0~u)c).

2. Hyperelasticity based on the Seth-Hill family of strain tensors

This section briefly discusses hyperelastic models based on the Seth-Hill
family of (Lagrangian) strain tensors, also known as the Doyle-Ericksen fam-
ily, which includes the Hencky strain tensor, the Biot strain tensor and the
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Green-Lagrangian strain tensor. As such, this section effectively summarises
a substantial part of Miehe & Lambrecht (2001) (and references therein) and
is merely included to present a self-contained contribution.

The set of hyperelastic material models of interest here is given by the
following strain energy density:

Wa(F) =
1

2
εa : 4Z : εa, (1)

where 4Z denotes the well known 4th-order stiffness tensor with 21 non-
zero components, containing two independent parameters in case of isotropy
and six independent parameters in case of orthotropy. It is furthermore
characterised by minor symmetries 4Z = 4Z[12], 4Z = 4Z[34] (hence, 4Z =
4Z[13,24]).

εa furthermore denotes one of the invariant strain tensors of the Seth-Hill
family according to:

εa =

{
1
a

(
Ca/2 − I

)
if a 6= 0,

1
2

ln(C) if a = 0,
(2)

where a denotes a real number (a ∈ R) and C = Fc · F denotes Green’s
deformation tensor. The Hencky strain tensor is recovered for a = 0, the
Biot strain tensor for a = 1 (i.e. the linear strain tensor) and the Green-
Lagrangian strain tensor for a = 2.

To determine these strain tensors, the three eigenvalues of Green’s de-
formation tensor, ci, and the associated eigenvectors, ~ni, are computed such
that Green’s deformation tensor can be written as:

C =
3∑
i=1

ci~ni~ni, (3)

The strain tensors of the Seth-Hill family can then be written as:

εa =
3∑
i=1

εi~ni~ni, (4)

with

εi =

{
1
a
(c
a/2
i − 1) if a 6= 0,

1
2

ln(ci) if a = 0.
(5)
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2.1. Stress tensors

The 1st Piola-Kirchhoff stress tensor can be computed by differentiating
the strain energy densities of Eq. (1) with respect to the deformation gradient
tensor. After accounting for some (minor) symmetries and applying some
tensor algebra, it can be written as follows:

Pa =
∂Wa

∂F
= 2F ·

(
4Z : εa :

∂εa
∂C

)
, (6)

with

∂εa
∂C

=
3∑
i=1

di
2
~ni~ni~ni~ni +

3∑
i=1

3∑
j 6=i

θij
2

(~ni~nj~ni~nj + ~ni~nj~nj~ni) , (7)

where:

di = c
(a/2)−1
i , (8)

θij =


εi−εj
ci−cj if cα 6= cβ 6= cγ,
1
2
di if cα = cβ = cγ,{
1
2
di if i, j = α, β
εi−εj
ci−cj else

if cα = cβ and cα, cβ 6= cγ.

(9)

It is worth noting that 4th-order tensor ∂εa
∂C

only contains 45 independent

components due to minor symmetry ∂εa
∂C

=
(
∂εa
∂C

)[34]
.

Cauchy stress tensor σa can be computed based on 1st Piola-Kirchhoff
stress tensor Pa as follows:

σa =
1

J
Pa · Fc, (10)

where J = det(F) > 0 denotes the volume ratio.
It it worth mentioning that all possible Cauchy stress tensors that yield

from this class of strain energy densities (i.e. regardless of the choice of a)
abide the balance of linear momentum (i.e. the Cauchy stress tensors are
symmetric), are all frame-indifferent (i.e. objective) and in the infinitesimal
limit all behave in the same way (because all strain tensors of the Seth-Hill
family tend to the infinitesimal strain tensor for F ≈ I) .
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2.2. Tangent stiffness tensor

As the tangent stiffness tensor for any choice of a is needed in a finite
element framework, it is presented here. After employing some tensor algebra
and accounting for (minor) symmetries, tangent stiffness tensor 4Ka can be
written as:

4Ka =
∂2Wa

∂(F)2
=
∂Pa

∂F
= 2

(
4Z : εa :

∂εa
∂C

I

)[14]

+

4F ·
(

4Z : εa :
∂2εa
∂(C)2

· Fc

)[34]

+ 4F ·
(
∂εa
∂C

)[13,24]

:

(
4Z :

∂εa
∂C
· Fc

)[34]

,

(11)

where:

∂2εa
∂(C)2

=
3∑
i=1

gi
4
~ni~ni~ni~ni~ni~ni +

3∑
i=1

3∑
j 6=i

ξij
4

(
6Hijj + 6Hjij + 6Hjji

)
+

3∑
i=1

3∑
j 6=i

3∑
k 6=i,k 6=j

η

4
6Hijk, (12)

with:

gi = (a− 2)c
(a/2)−2
i , (13)

ξij =



θij− 1
2
dj

ci−cj if cα 6= cβ 6= cγ,
1
8
gi if cα = cβ = cγ,{
1
8
gi if i, j = α, β
θij− 1

2
dj

ci−cj else
if cα = cβ and cα, cβ 6= cγ,

(14)

η =


ε1

(c1−c2)(c1−c3) + ε2
(c2−c1)(c2−c3) + ε3

(c3−c1)(c3−c2) if cα 6= cβ 6= cγ,
1
8
gi if cα = cβ = cγ,

ξγα if cα = cβ and cα, cβ 6= cγ,

(15)
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6Hijk = ~ni~nj~ni~nk~nj~nk + ~ni~nj~ni~nk~nk~nj + ~ni~nj~nk~ni~nj~nk + ~ni~nj~nk~ni~nk~nj+

~nj~ni~ni~nk~nj~nk + ~nj~ni~ni~nk~nk~nj + ~nj~ni~nk~ni~nj~nk + ~nj~ni~nk~ni~nk~nj. (16)

Note that 6th-order tensor ∂2εa
∂(C)2

only contains 56 independent components

(of a total of 729 components), thanks to several minor symmetries.

3. Generalisations

As mentioned before, a is often selected to be zero such that the Hencky
strain tensor is recovered thanks to its physical properties and robustness
in FE computations. In that case, the nonlinear responses are rigidly deter-
mined and cannot be altered to match experimental data. In this section, the
three generalisations of the aforementioned hyperelastic models are proposed
that provide more freedom to alter the material behaviour in the nonlinear
regime.

3.1. Fused strain energy densities

In the first generalisation, the total strain energy density is considered to
be a weighted sum of strain energy densities associated with the Seth-Hill
family of strain tensors. A new strain energy density, W , is constructed that
incorporates several strain energy densities of Eq. (1), Wa, as follows:

W =
∑
a∈A

raWa, (17)

with

A = {a1, a2, ..., an}, (18)∑
a∈A

ra = 1, (19)

where Wa denotes the strain energy density for a particular choice of a ∈ R
of the conventional hyperelastic models of the previous section (see Eq. (1)).
Its associated weight factor is denoted ra. By ensuring that the sum of the
weight factors equals one, the mechanical responses for infinitesimally small
deformations remains the same as for the conventional hyperelasticity (for
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any choice of a). If set A furthermore contains a single value, the generali-
sation reduces to the conventional hyperelasticity of the previous section.

The 1st Piola-Kirchhoff stress tensor that results from this generalisation
can straightforwardly be computed based on the previous section as:

P =
∑
a∈A

raPa, (20)

and its tangent stiffness tensor as:

4K =
∑
a∈A

ra
4Ka. (21)

3.2. Fused strain tensors

The second generalisation proposes to not consider the strain energy den-
sity as a weighted sum, but the strain tensor instead. We thus write the strain
energy density as:

W =
1

2
ε : 4Z : ε, (22)

with

ε =
∑
a∈A

sa εa, (23)

where∑
a∈A

sa = 1. (24)

Here, εa denotes one of the generalised strain tensors of the previous section.
The fact that the sum of the weights (sa) equals one again guarantees that
the response for infinitesimally small deformations is the same as for the
conventional models (i.e. independent of the value of a). Again, if A contains
a single value, the generalisation reduces to the conventional hyperelasticity
of the previous section.

Strain tensor ε can now be computed as follows:

ε =
3∑
i=1

εi~ni~ni, (25)
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with

εi =
∑
a∈A

sa εi/a, (26)

where

εi/a =

{
1
a
(c
a/2
i − 1) if a 6= 0,

1
2

ln(ci) if a = 0.
(27)

The formulation of the 1st Piola-Kirchhoff stress tensor follows the same
construction as for those of the conventional models of the previous section,
except that subscript a in Eqs. (6) and (7) must be omitted and that di in
Eqs. (8) must be replaced by:

di =
∑
a∈A

sa c
(a/2)−1
i . (28)

Also the tangent stiffness tensor follows the same construction as for those
of the conventional models of the previous section, except that subscript a in
Eqs. (11) and (12) must be omitted and that gi in Eqs. (13) must be replaced
by:

gi =
∑
a∈A

sa (a− 2)c
(a/2)−2
i . (29)

3.3. Volume change dependent fusing of the strain tensors

The third generalisation is similar to the second one, except that the
weights used to gather the conventional strain tensors in one strain tensor
are dependent on the volume change. In this generalisation, the strain energy
density is thus again written as:

W =
1

2
ε : 4Z : ε, (30)

but strain tensor ε is now defined as:

ε =
∑
a∈A

sa(J) εa, (31)
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where∑
a∈A

sa(J) = 1. (32)

Strain tensor ε is computed as follows:

ε =
3∑
i=1

εi~ni~ni, (33)

with

εi =
∑
a∈A

sa(J) εi/a, (34)

where

εi/a =

{
1
a
(c
a/2
i − 1) if a 6= 0,

1
2

ln(ci) if a = 0.
(35)

3.3.1. Stress tensors

The expression for the 1st Piola-Kirchhoff stress tensor is now slightly
more complicated, as it can be written as:

P =
∂W

∂F
= 2F ·

(
4Z : ε :

∑
a∈A

sa(J)
∂εa
∂C

)
+J 4Z : ε :

∑
a∈A

∂sa
∂J

εaF
−c.(36)

The first term in this expression corresponds to the 1st Piola-Kirchhoff stress
tensor of the second generalisation. The second term results from the fact
that the weights are made functions of the volume change. It is worth men-
tioning that the second term has no influence for infinitesimally small defor-
mations because of the following:[∑

a∈A

∂sa
∂J

εa

]
F≈I

= 0. (37)

The reasons for this are that εa is the same for infinitesimally small defor-
mations for any choice of a and:∑

a∈A

∂sa
∂J

= 0. (38)
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Of course the second term does have an influence on the stress for large
deformations. It is therefore worth to check if the part of the Cauchy stress
tensor resulting from the second term is frame-indifferent and abides the
balance of linear momentum (i.e. if it is symmetric). The Cauchy stress
tensor resulting from the second term can be expressed as follows:

σ =
1

J
P : Fc =

(
4Z : ε :

∑
a∈A

∂sa
∂J

εa

)
I, (39)

which is a hydrostatic stress tensor, since the term between parentheses is an
invariant scalar. Rigid body rotations clearly have no influence and symmetry
is also guaranteed.

3.3.2. Tangent stiffness tensor

Since the tangent stiffness tensor necessary for FE computations is more
involved than for the previous two generalisations, it is presented here ex-
plicitly as follows:

4K =
∂2W

∂(F)2
= 2

(
Z : ε :

∑
a∈A

sa(J)
∂εa
∂C

I

)[14]

+2JF·

(
4Z : ε :

∑
a∈A

∂sa
∂J

∂εa
∂C

)
F−c+

4F ·

(
4Z : ε :

∑
a∈A

sa(J)
∂2εa
∂(C)2

· Fc

)[34]

+ 2JF−cF ·

(
4Z : ε :

∑
a∈A

∂sa
∂J

∂εa
∂C

)
+

J 4Z : ε :

(∑
a∈A

(∂sa
∂J

+ J
∂2sa
∂J2

)
εaF

−cF−c −
∑
a∈A

∂sa
∂J

εa(F
−1F−1)[34,23,12]

)
+2F ·

(∑
a∈A

sa(J)
∂εa
∂C

)[13,24]

+ JF−c
∑
a∈A

∂sa
∂J

εa

 : 4Z :

(
J
∑
a∈A

∂sa
∂J

εaF
−c + 2

(∑
a∈A

sa(J)
∂εa
∂C
· Fc
)[34])

. (40)

4. Finite element framework

In this section, the formulation of a finite element (FE) framework for
the aforementioned constitutive models is briefly discussed. Body forces are
excluded.

14



4.1. Material basis and global basis

First, it is important to mention that all tensors in the previous two
sections are expressed in terms of the material basis (which may vary based on

reference location ~X), whereas all tensors in the FE framework are expressed
in the global basis. Tensors in the global basis are distinguished by a tilde
(e.g. F̃) in order to distinguish them from their counterparts defined in the
material basis. Although this distinction is not necessary for isotropy, it
is needed for transverse isotropy and orthotropy. Deformation-independent

rotation tensor R0( ~̃X) is used to rotate a spatial vector in the global basis
to the material basis as follows:

~X = R0 · ~̃X, (41)

or vice versa as follows:

~̃X = Rc
0 · ~X. (42)

This implies that the deformation gradient tensor in the material basis is
related to that in the global basis as follows:

F = R0 · F̃ ·Rc
0. (43)

4.2. Interpolation and potential energy

As often considered in FE computations, the displacement field is inter-

polated using shape functions, which are stored in column N( ~̃X), where each
shape function is associated with an FE node. The original location vectors

and displacement vectors at the FE nodes are stored in columns ~̃X and ~̃u,

respectively, which are both of the same length as N( ~̃X). The fields of dis-
placement vectors and deformation gradient tensors can now be expressed in
the global basis as follows:

~̃u( ~̃X) = NT ( ~̃X) ~̃u, (44)

F̃( ~̃X) = I +
(
~̃∇0N

T ~̃u
)c
. (45)
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The solution of an FE simulation with the aforementioned hyperelastic
models can be expressed as the minimisation of the potential energy as fol-
lows:

~̃u
∗

= argmin
~̃u

∫
V0

W (F̃(~̃u)) dV0 − ~̃f
T

ext
· ~̃u, (46)

where ~̃f
ext

denotes the column with forces externally applied at the FE nodes
in the global basis and V0 denotes the undeformed volume.

4.3. Fermat’s theorem and its linearisation

The minimisation of the potential energy is commonly computed using
Fermat’s theorem and applying Newton’s method, since good initial guesses
are generally known. Fermat’s theorem applied to the aforementioned po-
tential energy yields the following equation:∫

V0

∂W

∂F
:
∂Fc

∂F̃
:
∂F̃c

∂~̃u
dV0 = ~̃f

ext
, (47)

where

∂Fc

∂F̃
= (R0R

c
0)

[24] , (48)

∂F̃c

∂~̃u
= ~̃∇0N I. (49)

Eq. (47) can then also be written as:

~̃f
int

(~̃u) = ~̃f
ext
, (50)

with

~̃f
int

(~̃u) =

∫
V0

~̃∇0N · (R0R0)
[14] : P(~̃u) dV0. (51)

The 1st-order Taylor expansion of the force equilibrium in Eq. (50) neces-
sary for the application of Newton’s method can then be expressed as follows:

~̃f
int

(~̃ue) + K̃(~̃ue) · d~̃u = ~̃f
ext
, (52)

16



where ~̃ue denotes the current estimate of ~̃u
∗

and d~̃u the correction to ~̃ue that
is to be computed. Matrix of 2nd-order stiffness tensors K̃ can furthermore
be computed as:

K̃(~̃ue) =

∫
V0

~̃∇0N · (R0R0)
[14] : 4K(~̃ue) : (R0R

c
0)

[24] · ~̃∇0N
TdV0, (53)

where the expressions for 4K are given in the previous sections, similar as
the expressions for P.

The FE implementation used to generate the results in the next section
employs a Total Lagrangian procedure and trilinear hexagonal elements (with
eight quadrature points) and an isoparametric mapping.

5. Results

In the current section the conventional hyperelasticity based on the Seth-
Hill strain tensors is compared to the three generalisations and the identifi-
cation of the new material parameters is presented. In the first subsection,
the conventional hyperelasticity is discussed. In the second subsection, some
results for the three generalisations are presented and compared to the con-
ventional hyperelasticity. In the third subsection, the identification is dis-
cussed for isotropy. The fourth subsection also discusses the identification,
but focuses on orthotropy. The identified parameters are also propagated for
a typical orthotropic test case.

In case of isotropy, a Young’s modulus of 1 and a Poisson’s ratio of 0.3
are used. Young’s moduli Y1 = 1, Y2 = 2, Y3 = 3, Poisson’s ratios ν12 =
ν13 = ν23 = 0.3 and shear moduli G12 = 0.5, G13 = 1, G23 = 1.5 are
used for orthotrpy. The identification presented below only focuses on the
identification of the new material parameters. Hence, the Young’s moduli,
Poisson’s ratios and shear moduli are assumed to already be identified.

5.1. Conventional hyperelasticity

The only unconventional material parameter in the conventional hyper-
elasticy based on the Seth-Hill strain tensors is a. In Fig. 2, some Cauchy
stress-deformation responses are presented for different values of a (ranging
from -3 to 3) if the deformation is fully prescribed. In case of uniaxial de-
formation (top-left and centre-left diagrams), only the Hencky strain tensor
(a = 0) behaves such that the diagonal component of the Cauchy stress ten-
sor associated with the direction in which deformation takes place (i) tends
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Figure 2: Conventional hyperelasticity: Cauchy stress-deformation responses for homoge-
neous deformations with different strain tensors, given by parameter a (see Eq. (2)). Unless
mentioned otherwise, all components of the deformation gradient tensor are according to
F = I.
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Figure 3: Conventional hyperelasticity: unit cubes exposed to tension (left column) and
compression (right column) for different strain tensors, given by parameter a (see Eq. (2)).
The deformations are not scaled and presented on the same scale.
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Figure 4: Conventional hyperelasticity: the force-displacement responses of the unit cubes
of Fig. 3 on two different scales.

to −∞ if the volume tends to 0 and (ii) monotonically increases for an in-
crease of the deformation. This means that the slope of the response for all
other values of a, either will not tend to −∞ for large compressive deforma-
tions or will be 0 for some deformation. Both cases are not very physical and
may result in problems in FE computations; stiffness matrices may become
singular, for instance due to inverted FEs.

From the shear responses (right diagrams in Fig. 2), it also becomes clear
why the Hencky strain tensor is often used. After all, the slope of the Cauchy
shear stress remains positive even if relatively large compressive or tensile
deformation is applied. The slope only becomes negative if substantially
large compressive deformations are applied (not presented here).

To illustrate in more detail why the Hencky strain tensor is often used,
results of FE computations of the compression and elongation of unit cubes
are presented in Figs. 3 and 4 for four values of a. The unit cubes are
entirely compressed and elongated with an elongation factor of two (each in
100 increments) by fully prescribing all displacements on the top and bottom
surfaces (i.e. dilatation of the top and bottom surfaces is suppressed). In case
FE nodes penetrate the virtual planes of the top and bottom surfaces during
the compression test, the FE nodes are placed back to the virtual planes to
prevent snap-through. These FE nodes in contact are free to slide over the
virtual planes.
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Figure 5: Conventional hyperelasticity: unit cubes exposed to compression with friction
for different strain tensors, given by parameter a (see Eq. (2)). The deformations are not
scaled and presented on the same scale.
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Only 1
8

of the model is considered thanks to symmetry boundary condi-
tions. 125 equally sized hexagonal FEs are used to discretise the considered
part of the model (resulting in element dimensions of 0.1 × 0.1 × 0.1). If
convergence is not found for an increment, the computation is stopped (con-
vergence is based on the relative force residual and the tolerance is set to
10−5). The results show that conventional hyperelasticity with a = 0 is in-
deed most robust. All FE computations, except the one with a = −1, are
able to converge in extension with an elongation factor of two.

In another set of FE computations, the same unit cubes with the same
strain tensors as in Figs. 3 and 4 are considered, but they are exposed to
frictional compression. In other words, the cubes are compressed whilst dry
friction (according to Coulomb’s friction model with a friction coefficient of
0.08) prevents the top and bottom surfaces from freely dilating. The results
are presented in Fig. 5 and again show a substantial robustness for the Hencky
strain tensor, although the Almansi strain tensor performs slightly better for
this test case.

Although the results have so far mainly been analysed in terms of ro-
bustness, the deformations, reaction forces and stress fields (presented in the
figures in terms of Von Mises’s stress criterion for the Cauchy stress ten-
sor) of course also depend on the value of a. During extension of the unit
cubes for instance (left images in Fig. 3), the amount of contraction increases
for an increase of a, whilst the Von Mises stress increases to localise at the
edges for an increase of a. The slope of the reaction forces during extension
furthermore increases for an increase of a.

5.2. The three generalisations

The idea behind the generalisations is to take advantage of the robustness
of the Seth-Hill strain tensors with values of a ≤ 0 in compression, whilst at
the same time incorporate Seth-Hill strain tensors with values of a > 0 to
ensure that the slope of the stress-deformation response continues to grow in
tension. In this way, the generalisations provide freedom to tailor the stress-
deformation/force-displacement responses and/or the local stress-strain fields
in the nonlinear regime, whilst the robustness is increased or remains the
same.

The first set of results presented in Fig. 6 illustrate that the general-
isations indeed yield material responses that cannot be generated with the
conventional hyperelasticity. The results for the first generalisation (in which
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Figure 6: The three generalisations: Cauchy stress-deformation responses for homogeneous
deformations compared to those of the conventional hyperelasticity. Unless mentioned
otherwise, all components of the deformation gradient tensor are according to F = I.
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Figure 7: The three generalisations: unit cubes exposed to tension (left column) and com-
pression (right column). Bottom row: the force-displacement responses on two different
scales.
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Figure 8: The three generalisations: unit cubes exposed to compression with friction. The
deformations are not scaled and presented on the same scale.

the strain energy densities are summed in a weighted average sense) are
associated with parameters r0 = 1

3
and r2 = 2

3
(where the subscript indicates

the value of a). The results for the second generalisation (in which the
conventional strain tensors are summed in a weighted average sense) are
associated with parameters s0 = 1

3
and s2 = 2

3
. The results for the third

generalisation are associated with the following volume change dependent
weights:

sa1(J) =
−tan−1(p1(J − p2))

π
+ 0.5, (54)

sa2(J) = 1− sa1(J), (55)

where a1 and a2 denote the values for a for the two strain tensors and p1 and
p2 denote material parameters that describe functions s. For the results in
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Fig. 6 (and also for the other results in the current subsection), their values
are set to a1 = 0, a2 = 2, p1 = 2 and p2 = 1. We indeed observe that none
of the mechanical responses of the three generalisations can yield from the
conventional hyperelasticity based on the generalised strain tensors.

The same FE computations are now considered as for the conventional
hyperelasticity of the previous subsection. The same unconventional material
parameters are used as mentioned in the previous paragraph. The results in
case the displacements of the top and bottom surfaces are fully prescribed
are presented in Fig. 7. Substantially larger compressive deformations are
obtained than for most conventional hyperelastic models and the contrac-
tion during elongation is substantially larger, even though the Hencky strain
tensor is present in all three generalisations.

The results for frictional compression of the unit cubes are presented in
Fig. 8. Most interesting to observe is that the force-displacement curves are
significantly more linear than for the conventional hyperelasticity and again
convergence is obtained for a larger compressive deformation than for the
conventional hyperelasticity.

5.3. Identification for isotropy

The previous two subsections have shown that the generalisations are
indeed different from the conventional hyperelasticity based on generalised
strain tensors and that they offer more flexibility to tune stress-strain re-
sponses and local stress and strain fields. The current and the next sub-
sections focus on the identification of the new parameters; the current one
for isotropy and the next one for orthotropy. In both subsections, a virtual
tensile test and compression test are performed to provide reference force-
displacement curves in tension and compression. The new parameters of
the different hyperelastic models are to be identified based on these refer-
ence data. Due to the nonlinearity of the models, (small) inverse models are
required.

The setups and final results of the virtual tensile test and compression
test for isotropy are presented in Fig. 9. They are computed using the sec-
ond generalisation with s−1 = 0.25, s0.5 = 0.25 and s3.5 = 0.5 (and again
a Young’s modulus of 1 and a Poisson’s ratio of 0.3 are used). The dimen-
sions are presented in Fig. 9 and in its caption. All displacements of the
top and bottom FE nodes are prescribed in the tensile test. A final vertical
displacement of the top FE nodes of 5 is prescribed in 100 increments. The
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computation of the virtual tensile test uses 1,920 FEs; 12 in horizontal direc-
tion, 40 in vertical direction and 4 in out-of-plane of direction of Fig. 9. The
compression test is the same as the frictional compression tests discussed in
the previous two subsections, with the same friction coefficient and the same
number of FEs (albeit the FE dimensions differ due to the different model
domain). Note that a final vertical displacement of -0.8 is prescribed in 100
increments (but only the first 62 increments converge for this case).

Identification approach

True inverse models are needed to identify the new parameters, but full
inverse models of both tests are computationally demanding. A single mate-
rial point exposed to homogenous deformation without shear contributions
is therefore used for the inverse model of the tensile test. If we compare
the force-displacement response predicted by the tensile test and by the sin-
gle material point for the true parameters (i.e. s−1 = 0.25, s0.5 = 0.25 and
s3.5 = 0.5), a small and acceptable discrepancy occurs (bottom-left diagram
of Fig. 9). Note however that the exact parameters cannot be recovered.

If a single material point exposed to homogeneous deformation without
friction and shear contributions would also be used for the inverse model
of the frictional compression test, a larger discrepancy occurs than for the
tensile test (dashed red line in the bottom-right diagram of Fig. 9). The
employed inverse model of the frictional compression test therefore consists
of a single FE with frictional contact (which represents 1

8
of the domain

due to symmetry boundary conditions), although this is computationally
more demanding than a single material point. The response of the inverse
model for the true parameters is clearly sufficiently close to that of the full
compression test, albeit not perfect (dotted black line in the bottom-right
diagram of Fig. 9).

The difference between the reference responses and the responses of the
inverse models is minimised with respect to the new parameters (that are
to be identified) with a nonlinear conjugate-gradient/steepest-descent ap-
proach (see e.g. Nocedal & Wright (2006)). The approach includes a line
search and estimates the steepest descent direction using finite differences.
Initially, the search directions are the conjugate-gradient directions (where
the Polak-Ribiere measure is used to weigh the previous search direction with
the current steepest-descent direction (Polak & Ribiere, 1996), (Nocedal &
Wright, 2006)). After the conjugate-gradient approach has converged, the
steepest-descent directions are employed as the search directions.
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Figure 9: Identification for isotropy. Top: full tensile and compression setups as reference.
Bottom: force-displacement reference curves and those a single material point and a single
element for the reference parameters.

An issue of the minimisation approach is that the algorithm will propose
parameter values for which the inverse models may not converge until the
final elongation or compression of the reference cases is reached. Parameter
values may also be proposed that give highly unphysical volume changes. In
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order to omit such sets of parameter values, the objective function is set to∞
if a stiffness matrix in the inverse models is poorly conditioned or if J < 0.2
or J > 3 is observed in a quadrature point of the inverse models.

ref. conventional 1st gen. 2nd gen. 3rd gen.

0 1 2 3 4 5

Displacement

0

0.5

1

1.5

2

2.5

F
o

rc
e

Tensile test

-0.5 -0.4 -0.3 -0.2 -0.1 0

Displacement

-10

-5

0

F
o

rc
e

Compression test

Figure 10: Identification for isotropy: the inverse model responses for the identified pa-
rameters with two strain tensors, together with the reference responses (blue).

Results

In the conventional hyperelasticity (i.e. in the proposed generalisations
with a single strain tensor), only one parameter, a, governs the nonlinear
response. The aforementioned minimisation yields a value of a = 0.76 in
this case. If each generalisation consists of two strain tensors, the identified
values for the three generalisations are r−0.44 = 0.27 and r2.51 = 0.73 for the
first generalisation, s−0.66 = 0.42 and s3.36 = 0.58 for the second generalisa-
tion, and a1 = −0.46, a2 = 3.49 p1 = 0.18, p2 = 0.17 according to Eqs. (54)
and (55) for the third generalisation. The inverse model responses associated
with these values are presented in the top diagrams of Fig. 10 together with
the reference data. The results are clearly sufficiently accurate if the gener-
alisations only contain two strain tensors. We therefore do not investigate
the generalisations for more than two strain tensors.

Interesting to observe in Fig. 10 is that the second generalisation with
two strain tensors given by parameter values s−0.66 = 0.42 and s3.36 = 0.58
is highly accurate, whereas the reference results are created with the same
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generalisation, except that three strain tensors are used. Without going in
more detail in this study, this may indicate that the use of more than two
strain tensors does incorporate more information in the material description
and/or that shear experiments can be included to provide more certainty
for the identification. Another interesting observation is that the values
of p1 and p2 for the third generalisation are substantially small; indicating
that the minimisation has largely removed the volume change dependency
in the third generalisation. This is to be expected as the reference data
were generated using the second generalisation which lacks volume change
depending weights.

5.4. Identification for orthotropy and propagation for an ellipsoidal tube

The identification of the new material parameters is again discussed in
the current subsection, except that (i) an orthotropic material is considered,
(ii) the reference responses are created using the third generalisation and
(iii) the identified parameter sets are propagated for a typical orthotropic
test case.

The same tensile test and compression test as in the previous subsection
are used to create the measurements, using the third generalisation with
unconventional parameter values a1 = 0, p1 = 2, p2 = 0.75 and a2 = 4.
The aforementioned conventional parameter values of Y1 = 1, Y2 = 2, Y3 =
3 for the Young’s moduli, ν12 = ν13 = ν23 = 0.3 for the Poisson’s ratios
and G12 = 0.5, G13 = 1, G23 = 1.5 for the shear moduli are employed.
The conventional parameter values are considered to be already identified.
Note that the horizontal direction in Fig. 9 corresponds to the first principle
direction of the orthotropic model, the out-of-plane direction to the second
principle direction of the orthotropic model and the vertical direction to the
third principle direction of the orthotropic model.

Identification results

The aforementioned minimisation procedure yields the following results.
In case of conventional hyperelasticity, a value of a = 0.87 is identified.
For the three generalisations with two strain tensors, values of r1.65 = 0.94
and r−0.65 = 0.06 are identified for the first generalisation, s−0.09 = 0.57
and s4.05 = 0.43 for the second generalisation and a1 = −0.04, p1 = 1.65,
p2 = 0.74 and a2 = 4.36 for the third one using Eqs. (54) and Eq. (55).

The inverse responses for these identified parameter values are presented
in Fig. 11 together with the reference responses. The conventional hypere-
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lasticity with a = 0.87 clearly performs the worst, as the responses are not
able to pick up the trends of the reference data. The first and the second
generalisation both perform similarly; their responses match the reference
responses much better than the conventional hyperelasticity, but they are
not perfect. Although different values are identified for the parameters of
the third generalisation than those used to create the reference data, the re-
sponses match the reference data sufficiently accurate. This shows that the
third generalisation is truly different than the first two generalisations (and
hence, potentially useful).

ref. conventional 1st gen. 2nd gen. 3rd gen.

0 1 2 3 4 5

Displacement

0

2

4

6

8

F
o

rc
e

Tensile test

-0.6 -0.4 -0.2 0

Displacement

-100

-75

-50

-25

0

F
o

rc
e

Compression test

Figure 11: Identification for orthotropy: the inverse model responses for the identified
parameters with two strain tensors, together with the reference responses (blue).

The parameters of the first and second generalisation are also identified
in case they contain three strain tensors. The identified parameter values are
r−0.56 = 0.07, r1.24 = 0.15 and r2.30 = 0.78 for the first generalisation and
s−0.17 = 0.63, s0.72 = −0.21 and s3.63 = 0.58 for the second generalisation.
The associated inverse model responses are not presented in Fig. 11, as they
are substantially similar to those in case two strain tensors are employed.
This again seems to indicate that incorporating more than two strain tensors
in the first two generalisations does not yield different material responses.
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Propagation

To investigate the implications of the different hyperelastic descriptions
with the previously identified parameter values for a typical orthotropic test
case, the focus is now on the elliptical tube of Fig. 12. The tube has a
length of 1.00 and the inner cross-sectional dimensions are Rin/1 = 0.075 and
Rin/2 = 0.15, whilst the outer cross-sectional dimensions are Rout/1 = 0.12
and Rout/2 = 0.20. The second and third principle materials directions are
tangential to the tube’s surface and they are oriented with a 45◦ difference
with respect to the tube’s axial direction (see Fig. 12). The first material
direction is normal to the tube’s surface.

Rout/2

Rout/1

R in/2

R in/1

45
o

e1
e3

e2

R in/2

R in/1

Figure 12: Propagation of unconventional material parameters for orthotropy: the material
orientation in the tube and some geometrical measures.

The tube is elongated in axial direction until an elongation factor of 1.6
is reached in 100 increments. Only the axial displacements of the FE nodes
at the right end in Fig. 12 are prescribed. The axial displacements of the
FE nodes at the left end are also prescribed. The displacements of the FE
nodes at the dotted green line in the right image of Fig. 12, at the left end of
the tube, are restrained in the in-plane direction perpendicular to the green
line in order to avoid twisting of the tube’s cross section at the left end as
much as possible. The other in-plane displacement of one of the FE nodes
at this green line is also restrained in order to avoid zero-energy modes. The
discretisation contains 6,400 hexagonal trilinear FEs. 40 FEs are used in
the axial direction, 40 in the circumferential direction and 4 in the radial
direction.

The cross-sectional deformations at the tube’s left end (blue) and right
end (red) are presented in Fig. 13 together with the initial cross sections
(green) for the different hyperelastic models. The force-displacement res-
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Figure 13: Propogation of unconventional material parameters for orthotropy: Deforma-
tions and force-displacement curves for the elliptical tube of Fig. 12. The deformations
are not scaled.
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ponses are also presented, which are in accordance with the trends of the
inverse model responses.

From the cross-sectional deformations in Fig. 13 we can learn several
things. First, the cross sectional deformations of the reference case for which
the third generalisation is used (top-left) is highly similar to those of the third
generalisation with the identified parameters (bottom-left). This indicates
that the shear response is not necessarily needed to identify the parameter
values and hence, the compression and tensile data are sufficient, since a
substantial amount of shear deformation is present in the tube, which is not
considered in the identification.

Second, the cross sectional deformations predicted by the conventional
hyperelasticity (top-right) are substantially different from all generalisations,
indicating again that the generalisations are substantially different from the
conventional hyperelasticity. Third, the cross sectional deformations pre-
dicted by the first generalisation (centre-left) are substantially different from
those predicted by the second and third generalisation (top-left, centre-right
and bottom-left), indicating that the first generalisation is substantially dif-
ferent from the other two (even though the identified inverse model responses
are similar to that of the second generalisation). Fourth, the cross sectional
deformations predicted by the second generalisation (centre-right) show most
similarities with those of the third generalisation (top-left and bottom-left),
as both the second and third generalisation gather two strain tensors in one,
whereas the first generalisation gathers two strain energy densities in one.
This again shows that the first generalisation is different from the second
and third one.

6. Conclusion

Strain energy densities quadratically expressed in terms of the Lagrangian
strain tensors of the Seth-Hill family can amongst others be used to describe
compressible isotropic, transversely isotropic and orthotropic hyperelastic
deformations. Thanks to its relatively accurate physical character however,
the Hencky strain tensor is probably a frequently employed family member.
A true experimental identification of the most suitable strain tensor of the
Seth-Hill family is thus not often performed.

To offer the possibility to fit the material response in the non-linear
regime, this contribution has proposed three generalisations for compress-
ible hyperelasticity based on the Seth-Hill strain tensors. All generalisations
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enable the incorporation of several members of the Seth-Hill family in a single
material model. All generalisations also reduce to the conventional hyperelas-
ticity, if only one Seth-Hill strain tensor is incorporated. All generalisations
furthermore recover the infinitesimal theory for small deformations and ro-
tations, meaning that the identification of the material parameters for the
nonlinear regime does not interfere with the identification of the standard
material parameters (Young’s moduli, Poisson’s ratios and shear moduli). It
must be noted that the generalisations are not polyconvex (see e.g. Schröder
and Neff (2003); Balzani et al. (2006)).

Although the results have clearly shown that the three generalisation
are truly different from each other, the second generalisation is perhaps the
most attractive thanks to three reasons. First, the implementation efforts
are truly minimal (for implementations that do not use the Green-Lagrange
strain tensor), since only a few scalars need to be altered. Second, it expresses
all employed conventional strain tensors in a single strain tensor, whereas a
single strain tensor is not trivial to distinguish in the first generalisation.
Third, the associated FE computations require substantially less time than
for the first generalisation.

As the generalisations allow to identify material behaviours in the non-
linear regime, tensile and compression data are required, and true inverse
models are needed. This study has however shown that by selecting appro-
priate specimen dimensions, it is sufficient to select a single material point
without shear contributions as the inverse model for the tensile test and
a single finite element as the the inverse model for the compression test.
Hence, the computational costs of the required inverse modelling are not as
demanding as one may expect at first sight.
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Latorre M., Montáns F.J., Experimental data reduction for hyperelasticity,
Computers & Structures, In Press.

Loew P., Peters B., Beex L.A.A., Rate-dependent phase-field damage model-
ing of rubber and its experimental parameter identification, Journal of the
Mechanics and Physics of Solids 127 (2019) 266-294.

Lovadina C., Stenberg R., Energy norm a posteriori error estimates for mixed
finite element methods, Mathematics of Computation 75 (2006) 1659-1674.

Mahnken A., Shaban A., Finite elasto-viscoplastic modeling of polymers in-
cluding asymmetric effects, Archive of Applied Mechanics 83 (2013) 53-71.

Miehe C., Lambrecht M., Algorithms for computation of stresses and elas-
ticity moduli in terms of Seth-Hill’s family of generalized strain tensors,
Communications in Numerical Methods in Engineering 17 (2001) 337-353.

Miehe C., Apel N., Lambrecht M., Anisotropic additive plasticity in the log-
arithmic strain space: modular kinematic formulation and implementation
based on incremental minimization principles for standard materials, Com-
puter Methods in Applied Mechanics and Engineering 191 (2002) 5383-
5425.

Mihai L.A., Goriely A., Positive or negative Poynting effect? The role of
adscititious inequalities in hyperelastic materials, Proceedings of the Royal
Society A 467 (2011) 3633-3646.

Mihai L.A., Goriely A., How to characterize a nonlinear elastic material?
A review on nonlinear constitutive parameters in isotropic finite elasticity,
Proceedings of the Royal Society A 473 (2017) 20170607.

Nocedal J., Wright S.J., Numerical optimisation - Second Edition, Springer
(2006) ISBN-10: 0-387-30303-0, ISBN-13: 978-0387-30303-1.

Ogden R.W., Large deformation isotropic elasticity- on the correlation of
theory and experiment for incompressible rubber-like solids, Proceedings of
the Royal Society A 328 (1972) 567-584.

Ogden R.W., Non-linear elastic deformations, Ellis Horwood Ltd. (1984)
ISBN 0-85 312-273-3.

38
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