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ABSTRACT 1 
In this paper we analyze the impact of using cooperative intelligent transportation systems (C-ITS) 2 

to manage electrical bus systems. A simulation-based study is presented where three control 3 

strategies are used to regulate the operations of a line, namely bus holding, Green Light Optimal 4 

Dwell Time Adaptation (GLODTA) and Transit Signal Priority (TSP). The results show, using a 5 

realistic scenario of a major line in Luxembourg City, that buses are efficiently operated without 6 

necessarily providing additional priority to public transport, hence without negatively affecting the 7 

capacity of the private vehicles system. Benefits in terms of headway regulations, energy 8 

consumption and travel time variance reductions are quantified. 9 

   10 
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INTRODUCTION 1 
 2 

Sustainable urban development motivates investments in environmental-friendly and user-centred 3 

Public Transport (PT) services. Recent trends towards next generation PT systems show the 4 

development of greener vehicles such as battery electric/hybrid buses (e-buses), which are 5 

introduced to reduce the emission of pollutants, especially in urban environments (thanks to the 6 

implementation of, for instance, zero-emission zones), and the noise caused by traditional 7 

combustion engines. Apart from engine technology advancements, increased penetration of e-8 

buses is also favoured by the introduction of new solutions at the level of charging infrastructures 9 

(opportunity or on-route charging, flash charging), which allow extending the operational range of 10 

electric vehicles. 11 

A second trend is observed on bus operators seeking higher service quality beyond conventional 12 

performance measures such as service regularity and/or punctuality, for instance through increased 13 

ride comfort and reduced emissions and energy consumption via mitigation of stop-and-go driving 14 

patterns. These additional features are possible thanks especially to the introduction of sensors 15 

allowing real data information retrieval (automatic vehicle location, automatic passenger counts, 16 

etc.) and communication between all actors involved in the bus eco-system (vehicle-to-vehicle and 17 

vehicle-to-infrastructure communication). These technologies, which define the so-called 18 

Cooperative Intelligent Transportation System (C-ITS), offer great potential to improve the overall 19 

system performance, and to increase the level of driving control and automation. In particular, 20 

more conventional bus control systems (holding, stop skipping, etc.) and Transit Signal Priority 21 

(TSP) can be extended and improved thanks to information on e.g. signal times and phases of 22 

traffic lights, hence reducing the number of unneeded stops or signal timing changes. C-ITS has 23 

also great potential in reducing bus operating costs related to energy consumption and equipment 24 

wear and tear during bus operations (1).  25 

These trends, however, bring new challenges. The first one is due to different operational 26 

characteristics and constraints characterising e-buses, e.g. they need to periodically recharge 27 

batteries at charging stations placed in terminals and (optionally) in bus stops. Despite fast 28 

technological advancements are showing that range extension of e-buses is growing significantly, 29 

it is still hard to imagine fully electric buses to operate the whole day without being recharged at 30 

some point of the day. This brings additional complexity into PT operations and its costs. The 31 

second challenge is to find measures able to provide comfort- and cost-related benefits without 32 

negatively impacting the general traffic performance. Relying solely on strategies such as TSP, 33 

which prioritises buses at signalised intersections penalising the other traffic streams, might cause 34 

congestion effects that could backfire on the PT system itself via blocking back phenomena.  35 

In this paper, we demonstrate how these challenges can be effectively addressed by the emerging 36 

Cooperative ITS solutions. A novel framework addressing the problem via combination of 37 

cooperation and multi-objective optimisation is introduced. In particular, we extend a C-ITS-based 38 

driver assistance system, namely the Green Light Optimal Dwell Time Adaptation (GLODTA), 39 

which adapt driving speeds and holding times, respectively, to avoid buses to arrive at nearby 40 

traffic lights during the red phase, hence reducing the number of stops at intersections. We 41 

investigate how the use of such C-ITS based solutions contribute to minimise total energy 42 

consumption. We also show that, by adopting these solutions, we reduce the need to resort to transit 43 

signal priority, hence in turn we reduce the negative impacts on private traffic. 44 

The paper is structured as follows. The next section provides a review of the relevant literature. 45 

Then, Section 3 describes the whole methodology. Section 4 presents a realistic case study on an 46 

electrified urban line and then compares different strategies both in terms of operational efficiency 47 
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and in terms of energy consumption. Finally, Section 5 provides the main conclusions and 1 

recommendations for future research.  2 

 3 

LITERATURE REVIEW 4 

 5 
PT systems consisting of e-buses reduce emissions, energy use, and noise as well as offer smoother 6 

rides (2). Currently, e-bus systems are moving from pilot projects to small-scale deployments with 7 

single line/operator and with very few charging stations. The potentials and technical needs of 8 

large-scale e-bus systems have been recently under investigation by, for instance, the EU's Zero 9 

Emission Urban Bus System project (3). Peak demand charges (based on the maximum amount of 10 

electrical power drawn from a grid within certain period) are a major barrier to e-bus deployment 11 

(4). As opportunity charging provides the technical feasibility for the deployment of fully 12 

electrified lines, it comes with high costs for the line operators, and, in future large deployment 13 

scenarios, may create issues for the electrical grid, it is important to find measures to reduce the 14 

energy consumption during operations to reduce the need for daily charging operations. 15 

Therefore, the charging requirements create a strong link between infrastructure planning and bus 16 

operations (5). Currently, approaches for optimal recharging of e-bus systems are based on design 17 

and economical principles and do not consider in detail the actual energy consumption at the 18 

operational level (6). The existing research efforts currently focus on developing a proper system 19 

design such as deploying strategic locations of charging stations (7, 8). At operational levels, 20 

energy efficiency is currently addressed via energy management strategies for the engine (9), and 21 

regenerative breaking technologies (10). 22 

Additional gains in terms of both operational efficiency and reduced energy consumption can be 23 

obtained through prioritising PT systems at intersection through Transit Signal Priority (TSP) (11). 24 

Currently, in the literature, TSP, together with holding control strategies (12) have been designed 25 

to only support the simple punctuality objectives or aim at regulating headways in frequency-based 26 

bus systems. TSP strategies can be seen as cost-efficient, since they overall reduce the number of 27 

stops at signals, hence avoiding additional stop-and-go operations. On the other hand, such control 28 

measures may have some negative impact on the general performance of the whole urban transport 29 

system: excessive use of TSP may reduce the capacity of competing traffic streams. 30 

Holding strategy has proven to be effective in restoring regularity and maintain a smooth operation 31 

(13–17). However, holding strategies have also some limitation as, by delaying buses at stops, they 32 

may increase the total trip times, increase passenger on-board and waiting times, and force line 33 

operators to increase the fleet size in order to guarantee a certain service level.  34 

Connected vehicle technology can also contribute to reduce the energy consumption, and in the 35 

same time improve operational efficiency of bus systems. In particular, the communication of 36 

Signal Phase and Timing (SPaT) information obtained from traffic signal controllers allows to 37 

switch from signal-centric strategies (for instance, resorting to TSP requests) towards vehicle-38 

centric (18). The two SPaT-based controls that are researched in literature are the Green Light 39 

Optimal Speed Advisory (GLOSA) (19, 20) and the Green Light Optimal Dwell Time Advisory 40 

(GLODTA) (21). Both solutions have been conceived to mitigate stop-and-go driving. GLOSA 41 

does so by providing vehicles with speed guidance, while GLODTA reaches the goal by optimizing 42 

dwell time of PT vehicles (i.e. by occasionally holding the buses longer at bus stops). Consequently, 43 

performance of traffic flow of buses is improved without the need of changing traffic signal timings. 44 

As up to 20% more fuel is used to accelerate from a full stop to a speed of 8 kilometres per hour 45 

(in case of a passenger car), there are significant benefits of moving to stop-and-go or slow-and-46 

go patterns. 47 
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GLOSA has been studied in several projects and field operational tests for both cars and buses, e.g. 1 

PREDRIVE C2X (22), DRIVEC2X (23), simTD (24), MobiTraff (18), Compass4D (18) 2 

Extensions of GLOSA have been found in the literature in combination with adaptive signal 3 

control strategies (25), with vehicle platooning (20), and to generate fuel-efficiency speed profiles 4 

(26). Very limited works combine GLOSA with e-vehicles (27). GLODTA advises a prolonged 5 

dwell time at bus stops in order to avoid arriving at the next signalized intersection during a red 6 

phase (18). 7 

Both GLOSA and GLODTA strategies rely on Signal Phase and Timing (SPaT) data continuously 8 

communicated from controllers placed along the route. Furthermore, real-time positions of buses 9 

in the network are accessed through Automated Vehicle Location (AVL) systems to estimate the 10 

speed and the additional dwell times. However, the two aforementioned systems do not yet take 11 

into account battery charging requirements of electric buses with on route charging. Recently, the 12 

work of Giorgione et al. (28) addressed this issue. The proposed eGLOSA instructs the driver to 13 

maintain a specific speed so that the bus traverses the next signalized intersection without stopping 14 

and affecting signal timings, and it further considers the energy consumption. On the other hand, 15 

eGLODTA determines whether additional dwell time should be advised, considering both schedule 16 

adherence criteria and on-route battery charging needs. 17 

In this paper we investigate whether C-ITS-based solutions, and in particular GLODTA, can be 18 

adopted to reduce the need to resort to TSP and in combination with holding strategies, contribute 19 

to increase the regularity of the bus service.  20 

This study can therefore be seen as an extension of the work of Giorgione et al. (28), which has 21 

focused on introducing energy consumption in the operational objectives of e-bus systems on 22 

schedule-based services. We will instead include bus regularity objectives in frequency-based 23 

services. This work can also be seen as complementary to recent work of Seredynski and Viti (1), 24 

where GLOSA and GLODTA have been studied to reduce the need for TSP, but for conventional 25 

bus systems. 26 
  27 

METHODOLOGY 28 
 29 

Modelling assumptions 30 
Our modelling approach consists of two layers: the first represents the physical eco-system, 31 

consisting of: 32 

 a traffic light system managed by a traffic management centre;  33 

 the bus system; and  34 

 the charging infrastructure managed by the same bus operator.  35 

The second layer corresponds to the cooperative communication environment composed of 36 

interconnected vehicles communicating positions and priority levels. The goal of our approach is 37 

to manage efficiently three interacting components: 1) the in-vehicle control managed by a Driver 38 

Assistance System (DAS) dashboard supporting the bus drivers, 2) a signal control system 39 

regulating traffic and eventually providing priority to the buses, and 3) a centralised back-office 40 

system, which takes care of the bus operation and of e-bus charging.  41 

Traffic lights are assumed as pre-phased, with a-priori stages, cycle times and green/red timings. 42 

We assume that all signals are equipped with Dynamic Short-Range Communication (DSRC, also 43 

known under the name of ETSI ITS-G5 in Europe), which allows infrastructure-to-vehicle 44 

communication within a range of around 200m) and provide SPaT information to all vehicles 45 

within this range. Each e-bus is equipped with AVL and APC systems, and it collects real-time 46 

information about locations and battery status of each e-bus. We assume that the back-office, via 47 
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AVL information, seeks for cost-efficient use of e-charging infrastructure with minimisation of 1 

impact on operations, and optimised e-charging schedules.  2 

Schedules are used as constraints to the operational times of buses so it is important to guarantee 3 

punctuality (for scheduled services) and/or regularity (for frequency-based services) in order to 4 

guarantee optimal charging operations (29). On the other hand, change in charging plans may 5 

always occur during the day as the bus system remains unavoidably stochastic due to boarding and 6 

alighting operations, traffic congestion, incidents, etc. However, we leave the problem of re-7 

computing optimal charging schedules due to operational delays to future research. Since full 8 

charging takes approximately 6 minutes (4), it is reasonable to assume that a bus leaving the 9 

terminal will be fully charged. On the other hand, buses are required to terminate their trip with at 10 

least 10% remaining battery to consider a safety margin to prevent the bus to stop while still on-11 

route. 12 

 13 

Overview of the model 14 
We present a novel control strategy in which, when a vehicle gets sufficiently close to a traffic 15 

light to obtain SPaT information, the decision is not limited to traverse the next intersection during 16 

the green phase, but it involves the actual time headway between consecutive vehicles, in order to 17 

arrive evenly spaced as best as possible at stops, hence reducing the level of bunching and overall 18 

improve line regularity.  19 

In particular, at stops where holding is applied (Time Control Points, or TCPs), holding time for 20 

regularity is determined by a simple rule subject to the forward and backward headways (Cats et 21 

al., 2011). In order to ensure that vehicles, by the time of their departure, will traverse the 22 

intersection without stopping, the additional time needed is estimated via GLODTA. In case of a 23 

late arrival, only GLODTA time is checked and triggered only if it results in time saving for the 24 

line. 25 

In the control strategy developed, calls for green time extension and green recall are also 26 

considered, expecting to be in line with the findings of previous studies for need of weak TSP 27 

instead of strong TSP (21).  28 

 29 

Problem Formulation 30 
We assume a bus line i, the route of which consists of J stops and there are K trips conducted. 31 

Between stops, there are J-1 links that connect the stops with different lengths. Links may contain 32 

a signalized intersection, the distance of which from the upstream bus stop is known. A fixed cycle 33 

is assumed for all traffic lights. All trips are conducted with the same vehicle type with similar 34 

characteristics and same average speed.  35 

In the following subsections, we present the different controls that determine the trajectory of the 36 

bus along the route. 37 

 38 

Holding strategy 39 

As primary objective, bus regularity should be sought in order to guarantee high quality of service 40 

for the passengers and for smooth and efficient charging operations at terminals. A well-established 41 

control strategy to regularise bus headways is holding (14), in which buses are instructed to hold 42 

on a bus stop an additional time such that headway with the preceding and the succeeding vehicles 43 

is modified. 44 

The holding criterion chosen for this study is the criterion used by Cats et al (16). The criterion 45 

has been compared with other holding strategies using simulation for frequency-based services 46 

and has proven to be superior (16, 30). The criterion is based on the actual headway of the vehicle 47 
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subject to its preceding and succeeding buses. Additionally, the maximum allowed holding time is 1 

limited to a specific share of the planned headway. The formula to calculate departure (exit) time 2 

𝐸𝑇𝑖𝑗𝑘 is given as equation (1): 3 

 4 

𝐸𝑇𝑖𝑗𝑘 = max(min(𝑡𝑒𝑟𝑚1, 𝑡𝑒𝑟𝑚2) , 𝐴𝑇𝑖𝑗𝑘 + 𝐷𝑇𝑖𝑗𝑘)  (1) 5 

 6 

Where term 1 and term 2 are respectively formulated as: 7 

 8 

𝑡𝑒𝑟𝑚1 = 𝐴𝑇𝑖𝑗𝑘−1 +
𝐴𝑇𝑖𝑚𝑘+1+𝑆𝑅𝑇+𝐴𝑇𝑖𝑗𝑘−1

2
   (2) 9 

𝑡𝑒𝑟𝑚2 = 𝐴𝑇𝑖𝑗𝑘−1 + 𝛼𝑃𝐻     (3) 10 

  11 

In the equations, 𝐴𝑇𝑖𝑗𝑘 and 𝐷𝑇𝑖𝑗𝑘 are the arrival time and the dwell time of bus k at stop placed on 12 

link j and for line i, respectively. term1 is estimated as the average between the arrival time of the 13 

previous vehicle 𝐴𝑇𝑖𝑗𝑘−1  and the arrival time of the following vehicle k+1. We estimate the arrival 14 

time of the succeeding vehicle k+1 from the current stop by summing the scheduled riding time 15 

SRT between the last visited stop m and the current stop j and the arrival time at the last visited 16 

stop m 𝐴𝑇𝑖𝑚𝑘+1. PH is the planned headway, while α is the threshold ratio parameter that limits 17 

the maximum allowed holding. Threshold ratio parameter ranges between 0.6-0.8 (13, 16). For 18 

simplicity’s sake, we will consider a single line control from now on. 19 

 20 

GLODTA 21 

Holding is an effective way of controlling buses for regularity objectives. As aforementioned, this 22 

comes with a cost, as buses are delayed at stops, yielding to longer trip times and in turn more 23 

vehicles needed to operate at a certain service level. Similar to holding strategies, GLODTA 24 

introduces additional dwell times at bus stops. Specifically, given that a bus stop is within the 25 

DSRC range distance from the next signalized intersection downstream, when the vehicle is ready 26 

for departure, the driver can be instructed to hold an additional amount of time if the average speed 27 

to reach the signal will allow him or her to traverse the next green phase. This means that eventual 28 

delays incurred at the signal are instead transferred to the upstream stop. The additional advantage 29 

is that the total number of stops for a trip is reduced, and hence less energy is consumed and 30 

emissions are expected to be reduced. Details on how GLODTA can be implemented in practice is 31 

given in Seredynski and Khadraoui (21). 32 

 33 

R-GLODTA 34 

The aforementioned solutions have been developed to seek different objectives (regularity for the 35 

first and minimization of stops at traffic lights for the other two). However, holding and GLODTA 36 

are based on the same principle of delaying a vehicle by remaining for additional time at a stop. 37 

We explore a potential synergy of both by computing analytically, when a vehicle completes its 38 

dwell time, the holding time depending on its headway from the preceding and the succeeding 39 

vehicles together with the time needed to traverse the next green phase.  40 

 41 

If the vehicle is either on time or late, when no holding is needed, in order to assist the operation 42 

by saving time at the link, only GLODTA is applied, again if needed. In case of an early arrival, 43 

the vehicle should remain at the stop in order to restore regularity. From equation 1 both terms for 44 

actual holding time needed and the maximum holding are estimated. Then, we check if with either 45 

of the two the vehicle can hit a green phase. If one of the two times meets both regularity and green 46 
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light criteria, it is selected and counts as a combined controller. If with both holding times we hit 1 

red then the holding time with the less estimated remaining time at the traffic light is selected and 2 

the controller counts simply as a regularity controller. This joint strategy, which we name R-3 

GLODTA, is shown with the following Figure 1. 4 

 5 

 6 
FIGURE 1 Operating rules of R-GLODTA 7 

 8 
Transit Signal Priority 9 

Transit Signal Priority can be adopted at traffic lights to avoid buses to stop and in the same time 10 

provide some additional priority to the general traffic stream. This is obtained by detecting bus 11 

arrivals (via detectors or via C-ITS communication) and modifying green and red times. Green 12 

times can be anticipated (or extended) such that vehicles pass without modifying their planned 13 

trajectory. In our approach, before requesting a priority at traffic signals a bus attempts to use 14 

GLOSA and GLODTA advisory systems. That is, first a bus attempts to avoid stopping at signals 15 

by using uniquely the combination of the two systems. If this fails, priority request can be sent to 16 

the traffic controller. 17 

 18 

Computational Algorithm 19 
We present here the whole procedure to apply our integrated control method below: 20 

 21 

Given 22 

 Network layout (number of line segments, bus stop positions); 23 
 Traffic light position and signal timings; 24 
 Operational speeds of buses and their scheduled riding time; and 25 
 Passenger demand profile in terms of arrival rates per OD pair at each bus stop. 26 

 27 

CONTROLS 28 
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1. GLODTA 1 
IF  2 

distance between stop and next traffic light is less or equal than 200m 3 
THEN 4 

Calculate extra holding time Tglodta to pass on green (calculated at the end of the dwell time 5 
at the stop) 6 

IF  7 
Tglodta>0  8 

THEN  9 
apply GLODTA 10 

2. R-GLODTA 11 
IF  12 

distance between stop and next traffic light is less or equal than 200m 13 
AND 14 

vehicle early or on time 15 

THEN 16 
Calculate extra holding time Tglodta to pass on green (calculated at the end of the dwell time 17 
at the stop) 18 

ELSE  19 
Calculate holding time using regularization strategy (1-3) 20 

IF  21 
holding time within Tglodta interval to pass on green  22 

THEN  23 
use holding time 24 

ELSE  25 
depart for the holding time with the least expected waiting time at traffic light 26 

3. TSP 27 
IF  28 

GLODTA cannot be applied (out of mix-max values)  29 
THEN 30 

Check if above boundaries can be met with TSP (extend/anticipate green of max 5s) 31 
 32 

  33 

 34 

SIMULATION STUDY 35 
 36 

The proposed algorithmic scheme is tested and evaluated by simulating a high frequency line. 37 

Control is applied at specific stops of a bus line where high passenger demand and delays in terms 38 

of travel time are observed. We compare the new control criteria with independent application of 39 

holding and the DAS at the selected TCPs and a no-control case is used as a benchmark. 40 

 41 

Simulation Environment 42 
We developed a simulation environment in MATLAB. The basic elements of the code are the 43 

physical network and the passenger demand.  44 

During simulation, there are two dimensions that are logged; Time and Passengers. Passengers 45 

enter and exit to the network via the stops along the line. The time passengers spend in the network 46 

is the time spending waiting for the next vehicle to board at stops and the in-vehicle time (the time 47 

between the origin stop and the destination stop including all intermediate stops). 48 

In terms of time, the following information is recorded: 49 
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• Dispatching time from terminal; 1 

• Actual riding time between stops; 2 

• Arrival time at each stop; 3 

• Dwell time at each stop; and 4 

• Departure time at each stop; 5 

For passengers: 6 

• The number of boarding passengers;  7 

• The number of alighting passengers; and 8 

• The number of passengers on board. 9 

The main sources of stochasticity are the dispatching time, the riding time between stops and the 10 

arrival of passengers at stops. Dispatching times are drawn by Gamma distribution given the 11 

planned headway between departures and the user can increase the variability by changing the 12 

shape and the size of the distribution. For the current setup, we assume that vehicles are dispatched 13 

perfectly regular.  14 

The calculation of actual riding times on the links between stops depends on the existence of a 15 

signalized intersection. If there is no signalized intersection, the riding time is sampled by 16 

lognormal distribution with given inputs the scheduled riding time and the desired standard 17 

deviation. Since empirical data is not available, the standard deviation is set to 20% of the 18 

scheduled riding time. In case of a signalized intersection, actual speed is sampled from a normal 19 

distribution, getting values between a minimum and a maximum speed given by the user. If the 20 

vehicle pass on green with its actual speed, continues until the next stop and the actual riding time 21 

is registered. In case of a stop on a red, the waiting time at red is registered and vehicle continues 22 

after resampling a new speed. The actual riding time is the sum of the running times prior and after 23 

the intersection and the waiting time at the traffic light.  24 

We assume that passengers arrive at stops randomly following Poisson distribution. The simulator 25 

gets as input the arrival rate per OD pair and during simulation the actual headway in order to 26 

generate the number of passengers at each stop. Alighting passengers at each stop are the share of 27 

passengers boarded at the previous stop with destination the specific stop. Occupancy of the bus 28 

is defined at each stop by the numbers of boarding and alighting passengers and the last recorded 29 

occupancy. 30 

During simulation each trip is generated and arrives at the first stop at its dispatching time. At each 31 

stop, after the arrival time of the vehicle is registered and the actual headway is calculated and 32 

boarding passengers are estimated. Dwell time is calculated as the sum of the product of the 33 

boarding and alighting passengers with the corresponding rate with a constant that represents a 34 

potential delay at the stop. After the completion of dwell time, if no control is applied the vehicle 35 

departs and the departure time is registered. If control is applied the corresponding controller is 36 

triggered and returns the additional time a vehicle is help at the stop. If the controller includes a 37 

TSP call, the time the green phase of the next traffic light is also returned to be added to the cycle. 38 

Overtaking is not allowed. In the case of bunched vehicles, the successor cannot depart prior to its 39 

preceding vehicle. As a recovery strategy, the following vehicle departs after an additional time to 40 

increase the headway between vehicles.   41 

Each replication simulates a 3-hour operation of the bus lines. For each replication, the first three 42 

and the last three trips are excluded from the analysis as they run deterministically and constitute 43 

the warm up and the cool down period of the simulation. 44 

 45 

 46 
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Performance Indicators 1 
The main performance indicators used in this study are the adherence of headway of the line as 2 

well as total travel time and its variability. Moreover, we will also analyse the delay at the different 3 

intersections and the times the vehicles managed to pass through a green phase, in order to compare 4 

the results at both network level and at a local scale. The performance indicators selected for the 5 

study are the following: 6 

Regularity indicators: Coefficient of variation of headways; bunching; 7 

Passengers’ cost indicators: in-vehicle time; waiting time at stops; 8 

Link performance indicators: stop frequency and delay at traffic light; average speed and travel 9 

time variance; 10 

Energy consumption: average battery status at the end of the trip. 11 

 12 

Case Study 13 
We tested the simulated controls for one of the busiest lines of the city of Luxembourg, Line 16. 14 

The route of the line is depicted in Figure 2. 15 

 16 

 17 
FIGURE 2 Line 16, Luxembourg City 18 

 19 
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The line consists of 19 stops in the eastbound direction and connects the new activity zone at the 1 

south part of the city with the city centre, the central business district of Kirchberg and finally the 2 

airport of Findel. This line provides also connection with the major transport hubs of the city 3 

(central railway station, Kirchberg multimodal transport hub and the airport. The frequency of the 4 

line is 10min and articulated buses are used for the trip. The demand profile of the line is displayed 5 

in Figure 3. 6 

 7 

 8 
FIGURE 3 Demand Profile of Line 16 9 

 10 
All intersections have been assumed equipped with TSP technology, and bus stops have been set 11 

as time control points (TCP). We assume that all traffic lights have the same signal program with 12 

cycle of 120sec (80 green and 40 red) with the red indication first at the simulation environment. 13 

No coordination has been considered between signals.  14 

We simulated and compared 5 different scenarios (25 replications were conducted for each 15 

scenario): 16 

 17 

 No Control: the e-buses are running without any C-ITS support and they do not receive 18 

any priority at signals; 19 

 Holding: the e-buses seek for headway regularisation via holding at each bus stop; 20 

 GLODTA: when applicable, additional dwell time is added to the boarding-alighting time 21 

at each stop to avoid arriving during red at the next traffic light; 22 

 R-GLODTA: a combination of the two strategies; 23 

 R-GLODTA +TSP: additional to holding at the stop, priority is given at traffic lights. 24 

 25 

 26 

 27 

 28 
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SIMULATION RESULTS 1 

 2 

Line Performance Indicators 3 
An index of the variability of headway at each stop but also for the line is the coefficient of 4 

variation of headway (31). Coefficient of Variation of headway is the ratio of the standard deviarion 5 

over the average headway. Figure 4 compares the behaviour of the coefficient of variation (CV) of 6 

headways for all simulated scenarios. It is clear from the results that headway variability improves 7 

when the controller accounts for regularity. 8 

 9 

 10 
FIGURE 4 Coefficient of Variation (CV) at stops for the different scenarios 11 

 12 
As one can see, the R-GLODTA outperforms both holding and simple GLODTA strategies, which 13 

straightforwardly do not show any significant improvement with respect to the no-control scenario. 14 

This is because it is more generous than the simple holding strategy when adding time, with the 15 

possibility to allow maximum holding time to ensure also the GLODTA stop-avoidance criterion. 16 

It should also be noted that in terms of CV improvement, R-GLODTA shows similar achievements 17 

then with TSP, hence on the basis of bus regularity, TSP does not provide any additional gain. 18 

 19 

Regularising headways comes with a price: it penalizes the passengers on board with extra in-20 

vehicle delay compared to simple holding, as shown in Table 1. On the other hand, vehicle 21 

bunching as well as passengers’ waiting times are significantly reduced. 22 

 23 

TABLE 1 Performance Indicators of line 16 24 

Scenario CV Line Bunching 
Waiting 

time [sec] 

In vehicle 

time [sec] 

NC 0.92 0.546 150.17 152.18 

GLODTA 0.92 0.53 150.6 154.22 

HOLDING 0.66 0.37 150.4 161.8 

R_GLODTA 0.52 0.27 145.7 162.5 

R_GLODTA+TSP 0.52 0.26 145.6 162.55 

 25 
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 1 

Link Performance 2 
Table 2 shows how R-GLODTA is also very effective in reducing the number of stops, waiting 3 

time and overall increase the average speed at the link if compared to no-control and single control 4 

strategies. Clearly, in this case TSP provides some additional gain but this is relatively marginal. 5 

 6 

TABLE 2 Link performance Indicators 7 

Scenarios 
Stop Frequency at 

traffic light 

Average Waiting 

Time at Traffic 

Light [sec] 

Average 

Speed 

NC 0.329 6.76 21.8 

GLODTA 0.261 3.88 22.1 

HOLDING 0.314 6.62 21.7 

R_GLODTA 0.170 2.81 23.2 

R_GLODTA+TSP 0.163 2.67 23.3 

 8 

Travel Time 9 
In general, a travel time distribution with less variability allows to the operator to create a more 10 

robust schedule and schedule the number of vehicles needed. Figure 5 shows the trip time 11 

distribution for each scenario. As shown in the figure with control strategies that account for line 12 

regularity, the objective of travel time with reduced variability is achieved. Again, R-GLODTA 13 

shows very similar performances with or without resorting to TSP, which one more time indicates 14 

that such control strategy may be effectively applied without taking away capacity from opposing 15 

traffic streams. On the contrary, by reducing the number of stops at traffic light alone (GLODTA 16 

scenario) cannot guarantee to a stable travel time distribution.  17 

 18 

 19 
FIGURE 5 Travel time distribution for each scenario 20 

 21 

Energy Consumption 22 
Finally, we investigate the impact of adopting different control strategies affect the electrical 23 

energy consumption. We adopted the energy consumption model used in Giorgione et al. (28), 24 
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slightly adapted to consider additional traction force needed to perform bus accelerations. Figure 1 

6 provides the trend in terms of average energy saved with respect to the no-controlled scenario. 2 

 3 

 4 
FIGURE 6 Energy consumption for each scenario 5 

 6 
As one can observe, holding provides no gain with respect to the NC scenario, and actually it 7 

slightly increases the total energy consumed due to the additional holding times. All other 8 

strategies are positively impacting energy consumption, with R-GLODTA with TSP strongly 9 

outperforming the other methods and reaching more than 11% less energy consumption with 10 

respect to the no-control scenario. 11 

 12 

Controller Performance 13 

 14 
A final analysis is performed to check how many times the different strategies are adopted in the 15 

simulated scenarios. Figure 8 shows the share of each control decision, i.e. when each control was 16 

needed. As one can observe, fixing regularity was needed in around 38% of the controlled cases, 17 

when vehicles were early, while in all other cases only GLODTA was used to ensure that vehicle 18 

would pass during green. In the cases that holding was needed R-GLODTA was used more 19 

frequently used than simple holding ignoring the indication at the intersection downstream. It 20 

should be mentioned that in the simulated environment, control was needed approximately 48% 21 

of times.  22 

 23 



Laskaris, Seredynski and Viti   16 

 

 1 
FIGURE 8 Share of times each control strategy was used 2 

 3 

CONCLUSIONS 4 

 5 
This paper presented a novel control strategy that combines a Cooperative ITS-based driving 6 

assistance system, namely Green Light Optimal Speed Adaptation (GLODTA) with bus holding 7 

control at bus stops. In particular, benefits of this integrated strategy for the deployment of 8 

electrical buses is presented through a realistic simulation scenario. 9 

The logic behind this integrated method is that bus holding can effectively improve different 10 

objectives, namely 1) bus regularity performance, 2) passengers costs, 3) trip performances, and 11 

4) energy consumption. 12 

Using a case study inspired by a real line in Luxembourg city, we showed that significant gains 13 

are achieved on all four performance indicators. Additionally, we show that the novel R-GLODTA 14 

strategy provides effective improvements even when Transit Signal Priorities are not provided to 15 

buses. 16 

 Future research will focus on testing if similar conclusions are confirmed using the other C-ITS-17 

based solution, i.e. GLOSA, and will extend the current simulation to multiple interacting lines. 18 

 19 
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